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Preface

Almost all papers and reviews on the altered energy metabolism of tumor cells
use the nearly century-old discovery of the Warburg effect as a starting point.
One practical implementation of the Warburg effect, i.e., FDG-PET scan based
on the increased glucose uptake of tumor cells, has already had an enormous impact
on clinical routines and decisions. By contrast, the implications and consequences
of the Warburg effect for the understanding of tumor biology and hence also for
future treatment strategies are still in a state of development, intense research, and
excitement.

About a decade ago, when interest in the Warburg effect was clearly rekindled and
growing, there was considerable focus on the roles of energy and ATP metabolism in
tumor biology. This has now changed to the understanding that tumor cell metabo-
lism is fundamentally altered—indeed, to the point of being named a hallmark
of cancer (Hanahan and Weinberg 2011)—and that these alterations develop in
order to support not only energy production but also macromolecule synthesis
required for rapid proliferation (Ward and Thompson 2012). A complementing
understanding is that these alterations continue to develop with, and to influence,
tumor progression. A key illustration of the progressive alterations is the adaptability
of tumors to cellular stress (in particular, nutrient and oxygen restriction, and chemo-
and radiation therapy). These responses involve a remarkable metabolic flexibility
which in turn can involve schoolbook biochemistry as well as newly discovered
metabolic pathways and complex processes such as glutaminolysis, novel signal
transduction cascades, and autophagy.

Mitochondria have already since Warburg’s time been in focus; however, while
they were long believed to be "damaged” in tumor cells, it is now understood that, yes,
their various functions may be altered, but these changes make mitochondria efficient
contributors to the metabolic plasticity of the tumor cell. The rerouting, or alternative
uses, in tumor cells of classical biochemical pathways—from the tricarboxylic acid
cycle to nucleotide synthesis—is therefore now under scrutiny, as is the regulation of
cellular mitochondrial content. The small but complex mitochondrial genome
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(mtDNA) may harbor possibly cancer-specific mutations, the significance of which
needs to be examined.

That cellular metabolism is an important determinant of tumor cell phenotype as
well as tumor biology thus implies an extremely complex network of possible
signaling pathways, enzymes, and metabolites. In addition, while some pathways
are likely common to most cancer cells, many others are not always required or
present in a given cancer cell. In short, research in this field seeks to answer such
diverse questions as which oncogenes initiate altered metabolism, and how; more-
over, what are the connections between metabolism and resistance to therapy, and
between metabolism, differentiation states, and metastasis. It is also of interest to
determine which pathways are most commonly altered, and conversely, which ones
might be of diagnostic or predictive value or might be targeted in individualized
therapy.

It is of course impossible for one single book to cover all aspects of the influence
of cellular metabolism on tumor biology and tumor cell phenotypes, and we are
more than regretfully aware that the present book leaves big gaps in terms of topics.
What we do present here includes on the one hand specifics such as chapters on the
roles and possible clinical value of specific oncogenes, enzymes and pathways, and
an example of the use of metabolic tracers, and on the other hand also more general
overviews of hypoxia, autophagy, and the microenvironment, and not least, over-
views of metabolic wiring and the troubling flexibility of tumor cells.

Due to the sophistication and heterogeneity of the metabolic wiring and flexi-
bility of tumors, research in this field is still in a state of mapping and charting. We
hope that this book will contribute both to a general understanding of the complex-
ity and to further mapping and interest in these intriguing questions. To then
decipher what the metabolic profiles of tumors—whether in terms of proteomes,
metabolomes, kinomes, mitochondrial functions, etc.—actually imply in terms of
therapeutic targets, tumor progression, and prognosis is a major task for the future.

GieBlen, Germany Sybille Mazurek
Stockholm, Sweden Maria Shoshan
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Part I

On the Roles of Altered Tumor Cell
Metabolism in Tumor Biology



Chapter 1
Metabolic Remodeling in Bioenergetic
Disorders and Cancer

Emilie Obre and Rodrigue Rossignol
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1.1 Energy Metabolism, Control, and Regulation

The basic principles of energy metabolism regulation were deciphered in the late
1950s with the work of Warburg, Lenhinger, Krebs, Chance, Petersen, Weinhouse,
and Vaupel among several others (Scheffler 1999; Weinhouse 1956). The regula-
tion of controlling enzymes belonging to glycolysis, PDH complex, and Krebs
cycle, all involved in ATP synthesis, mostly occurs by metabolic intermediates as
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ATP itself, citrate, F1, 6BP, and Pi. Another level of regulation of mitochondrial
energy fluxes, as ATP synthesis or respiration was identified by Chance and
Williams in the 1950s with the so-called respiratory control by ADP (Chance and
Williams 1956; Cogliati et al. 2013). Thereafter, a large number of additional
molecular regulations of oxidative phosphorylation (OXPHOS) were identified,
as the recently discovered OPAl-dependent stabilization of the respiratory
supercomplexes (Cogliati et al. 2013), the ATP synthase-dependent assembly of
complex IIT (Ostoji¢ et al. 2013), and the energy state-dependent RHEB-induced
control of mitochondrial turnover (Melser et al. 2013). Consideration of the numer-
ous means to regulate ATP transduction in the cell led to the notion of a “multistep
control” of energy metabolism (Benard et al. 2010). More recently, the regulation
of energy metabolism was closely linked, in a mutual way, with the control of cell
growth and division. For instance, a signaling pathway central to cell biology and
governed by the HiFla transcription factor was shown to mediate a shift in a
subunit of respiratory chain complex IV (Fukuda et al. 2007). Conversely, succinate
accumulation in the cytosol is capable of inhibiting HiFla degradation and to
promote its stabilization (Pollard et al. 2005). Likewise, the AMP-activated protein
kinase (AMPK) pathway stimulates the expression of several OXPHOS proteins
when ATP needs are increased, as testified by a higher ADP/ATP ratio in the
cytosol (Hardie et al. 2003). Another central pathway is the control of energy
metabolism is the PGCla pathway, a transcription co-activator, which participates
in the stimulation of oxidative phosphorylation in cooperation with ERR-a or to the
induction of gluconeogenesis in cooperation with HNFA« (Lustig et al. 2011). The
RAS protein, involved in the control of cell mitogenic activities, also controls
oxidative phosphorylation, both in cancer and noncancer tissues (Wei et al. 2012;
Palorini et al. 2013; Gough et al. 2009; Telang et al. 2007). A role in modulation of
OXPHOS capacity was also discovered for MYC and for p53, both of which play
central roles in the control of cell growth and division, leading to the emerging
concept of oncobioenergetics (Jose and Rossignol 2013). Central to this review
article, a new layer of upper- or meta-regulation of energy metabolism was iden-
tified with the discovery of rewiring of metabolic circuits, governed by genetic
determinants connected or not with changes in cell microenvironment. In particular,
this upper level of bioenergetic control makes the link between catabolism and
anabolism, thereby providing a more integrated view of cell metabolism plasticity.
Prior to discussing the molecular bases and the physiology of metabolic
remodeling, we provide below a rapid overview on cellular bioenergetics.

In most human tissues, mitochondria provide the energy necessary for cell
growth and biological activities. It has been estimated that about 90 % of mamma-
lian oxygen consumption is mitochondrial, which primarily serves to synthesize
ATP, although in variable levels according to the tissue considered and the organ-
ism’s activity status. Mitochondria intervene in the ultimate phase of cellular
catabolism, following the enzymatic reactions of intermediate metabolism that
degrade carbohydrates, fats, and proteins into smaller molecules such as pyruvate,
fatty acids, and amino acids, respectively (Fig. 1.1). Mitochondria further transform
these energetic elements into NADH and/or FADH,, through f-oxidation and the
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Fig. 1.1 Overview of energy metabolism pathways. In this chapter we refer to the production of
biological energy in the form of adenosine triphosphate or ATP. This process occurs primarily
through glycolysis, the end product of which is pyruvate and through subsequent oxidative
phosphorylation. In most tissues, the pyruvate enters the mitochondrion and generates acetyl-
CoA which is further oxidized at the level of the Krebs cycle to produce ATP, NADH, and FADH,.
The latter reduced equivalents are further oxidized by the respiratory chain to generate ATP via
chemiosmosis, at the level of the F,Fy ATP synthase. This second mechanism of ATP production
is referred to as oxidative phosphorylation. The Krebs cycle can also process alpha-ketoglutarate
formed from glutamine, via glutaminolysis, or acetyl-CoA generated from fatty acids beta-
oxidation. Those anaplerotic pathways are of particular importance in cancer cells. The citrate
produced in the Krebs cycle can also escape this cycle (truncated Krebs cycle) and serve for lipid
synthesis. As discussed in this chapter, this canonic description of energy metabolism does not
apply to several cancers where the pathways are truncated (glycolysis and Krebs), rewired
(anaplerotic entries from canonical or noncanonical glutaminolysis), and branched (lipid or serine
synthesis from glycolysis). Therefore, while the pentose phosphate pathway and the Krebs cycle
generate both reducing equivalents (NADH, NADPH, FADH2), ATP and GTP used for energy
needs, these pathways also produce intermediates such as 3PG used for biosynthesis. Some
metabolites such as fumarate can also modulate transcription factors as NRF2 while oxoglutarate
can serve as substrate for HIF1a degradation and acetyl-CoA for histone acetylation. This figure
illustrates the close link between catabolism, anabolism, and genetic/epigenetic regulations. 3-PG
3-phosphoglyceric acid; PPP pentose phosphate pathway; TCA tricarboxylic acid cycle, i.e., Krebs
cycle; ETC electron transport chain

Krebs cycle. Those reduced equivalents are then degraded by the mitochondrial
respiratory chain in a global energy converting process called oxidative phosphor-
ylation (OXPHOS) where the electrons liberated by the oxidation of NADH and
FADH, are passed along a series of carriers regrouped under the name of “respi-
ratory chain” or “electron transport chain” (ETC) and ultimately transferred to
molecular oxygen (Fig. 1.2). ETC is located in the mitochondrial inner membrane,
with an enrichment in the cristae. ETC consists of four enzyme complexes (com-
plexes I-IV) and two mobile electron carriers (coenzyme Q and cytochrome c).
These complexes are composed of numerous subunits encoded by both nuclear



6 E. Obre and R. Rossignol

Acyl-CoA dehydrogenases

ETF

DHAP Int b
H* 3p H* H* ntermembrane space

-

L

I E W

N

WL
e

Nﬁ FADH2

*H NaD* FAD
Pi H*
Complex | Complex Il Complex Il Complex IV
NADH Succinate Ubiquinol Cytochrome C
dehydrogenase Dehydrogenase cytochrome C Oxidase A'f:’:F:\I::a‘:e
oxidoreductase Y

47 Subunits 4 Subunits 11 Subunits 13 Subunits thlgNS:ZL;n:;NA

7 mtDNA/40 nDNA 0 mtDNA/4 nDNA 1 mtDNA/10 nDNA 3 mtDNA/10 nDNA

Fig. 1.2 The respiratory chain. For mammals, the respiratory chain consists of four enzyme
complexes (complexes [-IV) and two intermediary substrates (coenzyme Q and cytochrome c).
The NADH, H*, and FADH, produced by the intermediate metabolism are oxidized further by the
mitochondrial respiratory chain to establish an electrochemical gradient of protons, which is
finally used by the F,Fy-ATP synthase (complex V) to produce ATP, the only form of energy
used by the cell. In this simple representation of the respiratory chain, the supramolecular
organization (supercomplexes, dimers) is not shown. Of importance for this chapter, electrons
can also be delivered to the respiration chain at the level of coenzyme Q by the ETF system or by
the glycerol 3 phosphate dehydrogenase system. The respiratory chain can generate reactive
oxygen species, and current research in the field of cancer metabolism indicates that such feature
plays a role in metabolic remodeling, notably in metastasis. Uncoupling proteins can be expressed
in the inner mitochondrial membrane to modulate ROS production. Also, different isoforms of
complex IV subunits were found in cancer cells (COX4-1 and COX-2), depending on HIFlx
stabilization. Lastly, mutations in mtDNA, impacting respiratory chain complexes activity, were
found in a large number of tumors. ETF electron-transferring-flavoprotein dehydrogenase, mtDNA
mitochondrial DNA, nDNA nuclear DNA

genes and mitochondrial DNA, with the exception of complex II (nuclear only). It
was demonstrated that these complexes assemble into supramolecular assemblies
called “supercomplexes” or respirasome (Schigger and Pfeiffer 2000; Schagger
2001). It is still debated whether some complexes, as complex I, can be found alone
or if all are embedded in supercomplexes. In addition to the classic ETC compo-
nents, other proteins are involved in the oxidation of nutrient-derived reduced
equivalents and the subsequent reduction of coenzyme Q, used for ultimate ATP
synthesis. This is the case for the electron-flavoprotein system, composed of the
ETF and the ETF-QO, which connect fatty acid oxidation and coenzyme Q
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reduction. The glycerol-3-phosphate dehydrogenase, which oxidizes cytosolic
NADH to reduce mitochondrial FAD, also supports oxidative phosphorylation
and participates to REDOX homeostasis. Lastly, the NADH-shuttling system, as
the malate-aspartate shuttle, also supports OXPHOS and REDOX homeostasis via
the delivery of cytosolic NADH to the mitochondrial matrix. The oxidation of
NADH or FADH, by complex I or complex II, respectively, triggers the transfer of
electrons from complex I (or II) to complex IV and mediates the extrusion of
protons from the matrix to the intermembrane space, thus generating an electro-
chemical gradient of protons (Ady") which is finally used by the F;F, ATP
synthase (i.e., complex V) to produce adenosine triphosphate (ATP), the main
energetic currency of the cell. This gradient has two components: an electric
potential (A¥) and a chemical potential (Apy") that can also be expressed as a
pH gradient (ApH). According to the chemiosmotic theory proposed by Peter
Mitchell (1961), Aly*" = A¥ — ZApH, with Z= —2.303 RT/F.

Under physiological conditions, mitochondrial energy production can alternate
between two energy steady states: basically, at state 4 (also denominated the “leak
respiration state”), respiration is slow and ATP is not produced (AY is high), while
during state 3, respiration is faster and ATP is largely produced (AW is lower). In
particular conditions, such as mitochondrial inner membrane permeabilization or
the use of a chemical uncoupler, AW can be totally dispersed. As a consequence,
respiration is accelerated and ATP production annihilated. The inhibition of respi-
ratory chain complexes also generally decreases AW. Under physiological condi-
tions, it is considered that mitochondria produce ATP in an intermediate state lying
between state 3 and state 4. As shown by E. Gnaiger, respiration strongly depends
on the availability of energy substrates which are multiple and can cooperate at the
level of the Q-junction, thereby determining the value of the apparent maximal
(uncoupled) respiration (Gnaiger 2009). ATP is the only form of energy used by the
cell, and when produced in the mitochondrion, it is exported to the cytosol by the
adenine nucleotide translocators (ANT1-4) in exchange for cytosolic ADP. Gener-
ally, the transport of energy metabolites, nucleotides, and cofactors in and out of the
mitochondrial matrix is performed by specific transporters located in the inner
membrane (Palmieri and Pierri 2010). These carriers can consume the membrane
electrochemical gradient or not, depending on their mechanism of transport
(electroneutral or electrogenic). A large part of OXPHOS regulation occurs at the
level of these carriers, as shown by the control of the glutamate-aspartate shuttle
(SLC25A12 also named Aralar or AGC1) by calcium (Fig. 1.3) and the “Gas pedal”
model proposed by Frank Gellerich (Gellerich et al. 2013). Studies of metabolic
control also showed that a large part of the control of mitochondrial respiration is
located at the level of substrate carriers (Rossignol et al. 2000).

Therefore, the regulation of mitochondrial energy production at the level of ETC
is concerted and multisite (Fig. 1.4) since modulations have been described at the
level of the individual complexes, membrane leak, respirasome cohesion, or carrier
activity. One should add to this molecular description the numerous signaling
pathways that modulate OXPHOS properties (AMPK, HIFla, PGCla, RAS,
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Fig. 1.3 Glutamine import in the mitochondrion. Mitochondria from mammals differ from those
of yeast in numerous ways, one being the capacity to import NADH to fuel the respiratory chain. In
yeast, a NADH transporter exists. In mammals, the NADH produced by glycolysis and other
cytosolic reactions must enter the mitochondrion to be reoxidized by the respiratory chain, and this
occurs by NADH-shuttle systems. The malate-aspartate shuttle is shown here. The cytosolic
malate dehydrogenase consumes NADH to produce malate from oxaloacetate. This malate enters
the mitochondrion (in exchange with alpha-ketoglutarate) where it is converted back into oxalo-
acetate and NADH. Oxaloacetate is transformed to aspartate by consuming glutamate, using the
enzyme glutamate-aspartate aminotransferase. This glutamate is imported by the glutamate-
aspartate antiporter (SLC25A12, Aralar, AGC1), so that aspartate is exported to the cytosol
where it is converted to oxaloacetate. The net effect of this system in NADH entry in the
mitochondrion. GOT! and -2, cytoplasmic and mitochondrial aspartate aminotransferase, respec-
tively; MDH1 and -2, cytosolic and mitochondrial malate dehydrogenase, respectively; SLC solute
carrier family, DHAP dihydroxyacetone phosphate, G3P glyceraldehyde 3-phosphate

MYQC, ...); this has been reviewed elsewhere (Jose et al. 2013). To conclude, the
different levels of OXPHOS regulation include (1) the direct modulation of respi-
ratory chain kinetic parameters, (2) modulation of OXPHOS intrinsic efficiency by
changes in the basal proton conductance or the induced proton conductance,
(3) possible changes in the morphological state of the mitochondrial compartment,
(4) modulation of mitochondrial biogenesis and degradation, and (5) in situ regu-
lation of mitochondrial heterogeneity by the cellular and the mitochondrial micro-
environment. Most of these regulatory mechanisms of mitochondrial energy
transduction were discovered at the level of the respiratory chain and its surround-
ing lipidic environment. Below, we discuss a wider level of bioenergetic regulation
(6) which considers a large-scale modification of the metabolic pathways involved
in catabolism and anabolism.
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Fig. 1.4 Multisite regulation of OXPHOS. The regulation of ATP production occurs at several
sites depicted along the arrow. (1) Regulation of mitobiogenesis (mitochondrial content and
mtDNA levels) occurs according to energy needs by, among others, PGCla, Sirtl, AMPK, and
ERRa. Agents shown to affect these processes include AICAR, resveratrol, and bezafibrate.
Downregulation occurs via RHEB-dependent bulk degradation or Parkin-dependent targeted
degradation. (2) At the level of the electron transport chain (ETC), isoforms and expression levels
can differ between tissues (the heart and liver isoforms of COX, for instance) and/or according to
current conditions; moreover, supercomplex cohesion can vary, and complexes can harbor differ-
ent posttranslational modifications, e.g., acetylation which is regulated by sirtuins. Sirtuin inhib-
itors, some vitamins, and cannabinoids may impact such modifications. (3) OXPHOS efficiency
and the coupling of ATP synthesis to NADH and FADH?2 oxidation further depend on the intrinsic
properties of the proton pumps (slipping), on the ATP synthase, and on the membrane permeability
to protons (uncoupling and decoupling can occur). Lipid peroxidation can hamper efficiency; this
may be countered by antioxidants. (4) ATP synthesis is modulated also by mitochondrial network
dynamics, involving fusion and fission of mitochondria and the overall shape and motility of the
mitochondrial network, either fused or fragmented. Moreover, the mitochondrial membrane
composition which impacts its fluidity and leakiness to protons can also modulate ATP synthesis;
diet is suggested to affect these properties. The roles of fusion and fission proteins as bioenergetic
modulators are not yet clear. Mdivi-1 is a small-molecule inhibitor of mitochondrial division.
(5) OXPHOS networks or interactions: the principles of mitochondrial bioenergetics and pharma-
cology must be considered when trying to analyze or extrapolate genotype-phenotype relation-
ships. For instance, the biochemical threshold effect defines a value of inhibition of individual
ETC complexes above which the overall flux of respiration will collapse. This value is high
(around 70 %) and varies between tissues. The control coefficient of ETC complexes is also
different in different tissues, providing a biochemical basis for the tissue specificity of mitochon-
drial disorders. Another level of bioenergetics regulation concerns energy substrate delivery to the
chain, with the phenomena of channeling, metabolic remodeling, and hormonal control of glucose
and lipids catabolism. (6) A recent layer of bioenergetics control was found in the form of
metabolic remodeling as extensively discussed in this chapter. Genetic or environmentally medi-
ated toxic alterations of each of these levels have been found in human diseases, e.g., mitochon-
drial diseases, rare motoneuron disorders, metabolic syndrome, and neurodegenerative diseases.
Drugs are also being developed to stimulate energy transduction at each of these levels. (7)
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1.2 Metabolic Remodeling in Physiology and Metabolic
Disorders

The different tissues of the human organism demonstrate a preference for particular
energy substrates, dictated by their enzymatic equipment, linked with their physi-
ological function. The adipocytes involved in fat storage do not contain the
machinery for f-oxidation, so that fatty acids are not consumed. Likewise, the
brain relies mostly on glucose and lactate, with a limited capacity to oxidize fat.
Conversely, the heart favors fatty acid oxidation for ATP synthesis, while the
skeletal muscle (depending on the type of fibers) consumes glucose, glycerol,
fatty acids, ketones, and then amino acids as valine. The liver serves for energy
storage in the form of glycerol and also fat. Therefore, tissue-specific differences in
the molecular organization of the metabolic pathways determine the metabolic
abilities of these tissues, as well as their storage capacity, both qualitatively and
quantitatively (Fig. 1.5). Physiology can also adapt to variations in nutrient avail-
ability, as metabolic coupling exists between organs, as observed in conditions of
fasting. In such situation, the liver can liberate ketone bodies which will be
consumed by the brain. Intermediates of amino acids degradation, as
3-hydroxybutyrate, can also be used for gluconeogenesis in different tissues
under such conditions. Studies performed in the 1970s revealed genetic mecha-
nisms of metabolic control, as well as described the regulatory role of different
hormones, as insulin, leptin, and ghrelin. Therefore, metabolic flexibility can be
modulated at the level of the cell, the tissue, or the whole organism by interrelated
mechanisms. As discussed below, such regulatory circuits involved in the control of
metabolic plasticity could serve for therapeutic intervention in situations of excess
food intake or genetic disorders, as suggested for the metabolic syndrome but also
for cancer.

Metabolic syndrome is a multisystemic disease with a complex pathophysiol-
ogy. One determinant is excess food intake which triggers increased (visceral) fat
storage, insulin resistance, and metabolic alteration at the cellular level. Mitochon-
drial deficiency was observed in models of metabolic syndrome where a reduction
of the respiratory rate and an increased production of reactive oxygen species were
reported (Curtis et al. 2012). Accordingly, ROS-induced alterations of mitochon-
drial proteins were also described in the metabolic syndrome, as
S-glutathionylations and carbonylations (Curtis et al. 2012). Interestingly, proteo-
mic studies revealed that adaptative processes occurred in different diseased tissues
to counter those ROS-induced damages (Peinado et al. 2014). The observed
upregulation of enzymes involved in ROS and aldehydes detoxification strength-
ened the hypothesis of oxidative stress in the pathophysiology of the metabolic

Fig. 1.4 (continued) In particular in cancer research, the role of the microenvironment and
pathological tissue in regulation of bioenergetics is attracting increasing attention, for instance,
regarding the plasticity of the cancer cell in adapting to various conditions of substrate availability
and hypoxia
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Fig. 1.5 Metabolic rigidity and metabolic flexibility. The different tissues present with specific-
ities in the type of substrate primarily used for energy synthesis. A metabolic coupling between
tissues exists to cope with this metabolic rigidity. The different tissues also differ in the form of
energy they store. When a normal tissue undergoes cancer transformation, this metabolic rigidity
is lost and the phenomenon of metabolic flexibility is observed. This is not a general rule as this
feature also depends on the bioenergetics environment of the cancer cells

syndrome. Murphy and colleagues recently proposed that an excess of ROS could
participate in the metabolic remodeling described in tissues from patients with the
metabolic syndrome (James et al. 2012). Such remodeling includes the cleavage of
aconitase, a TCA enzyme which normally transforms citrate in isocitrate. When
aconitase is cleaved (Bulteau et al. 2003), citrate accumulates in the matrix and
leaks out from the mitochondrion by a dedicated carrier. In the cytosol, the ATP
citrate lyase (ACLY) cleaves citrate in acetyl-CoA and oxaloacetate, so that lipid
synthesis can proceed from acetyl-CoA (Hatzivassiliou et al. 2005), while oxalo-
acetate can enter neoglucogenesis. This circuit of truncated Krebs cycle can
accommodate constant overfueling of the mitochondrion by pyruvate generated
from carbohydrates. The alteration of the Krebs cycle toward anabolism was also
observed in some cancer cells, where truncation of the Krebs cycle allows lipid
synthesis from citrate, produced either from pyruvate (as in metabolic syndrome) or
from glutamine (as in cancer) (Fig. 1.6).

In the case of cancer, there are no excess food intake, but a strong demand for
both ATP production and various biosyntheses as lipids. The role of ACLY goes
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Fig. 1.6 Examples of metabolic remodeling. In addition to the classic Warburg effect (high
glycolysis and poor OXPHOS), other types of metabolic remodeling were recently described in
cancer cells. They include lipid synthesis from glutamine or oxidative tumors deriving ATP from
fatty acid oxidation and from amino acid degradation. This is discussed in the text
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beyond lipid synthesis, as the acetyl-CoA generated by this enzyme can serve for
histone acetylation, and the subsequent regulation of bioenergetic genes expression,
as LDHA (Wellen et al. 2009). This loop of bioenergetic control evidenced in
cancer was not studied in metabolic syndrome. Another example of metabolic
remodeling in metabolic disorders was described in genetic mitochondrial diseases
(Saada 2014). The group of M.J. Falk recently investigated the common down-
stream effects of primary respiratory chain dysfunction on global gene expression
and pathway regulation. To this end, a bioinformatic analysis of transcriptome
datasets from all publicly available studies of respiratory dysfunction resulting
from genetic disorders, acute pathophysiologic processes, or environmental toxins
was developed.

This analysis revealed the cellular and tissue adaptative response to mitochon-
drial dysfunction, which identified several commonly dysregulated genes across
diverse mitochondrial diseases etiologies, models, and tissue types (Zhang and Falk
2014; Zhang et al. 2013). In particular, the so-called integrated nutrient-sensing
signaling network (NSSN) centered on the AKT/mTORC pathways appeared to be
one central mediator of the cellular response to respiratory chain dysfunction.
NSSN includes the AMPK (low energy sensor), mTORCI (cell growth regulator
by balancing cytosolic protein synthesis and autophagy), SREBP (lipid homeosta-
sis), FOXO1 (glucose homeostasis), and PPAR family transcription factors (lipid
metabolism), as well as YY//PGCla (mitochondrial ribosome biogenesis) and
HIFla (hypoxia response) transcription factors. The metabolic remodeling
suggested by such transcriptomic analyses and the associated GSEA and KEGG
functional analyses revealed a modulation of the genes involved in fatty acid and
amino acid metabolism, as a central feature of metabolic remodeling in mitochon-
drial diseases. This type of study indicates that cells or tissues carrying an ETC
defect do not simply rely of the Pasteur effect to activate glycolysis to generate
ATP, but that a more profound metabolic remodeling occurs to fulfill other needs
that remain to be identified, in order to propose innovative therapeutic approaches.
A recent study on resveratrol showed that fibroblasts from patients carrying a
complex I or a complex IV defect can be rescued at the level of respiration and
ATP synthesis by treatment with this drug (Lopes Costa et al. 2014). In this study,
two types of patients were identified as responders or nonresponders. The differ-
ences between these patients are not well understood at the molecular level, and a
thorough proteomic analysis of metabolic remodeling could provide such
information.

1.3 Molecular Basis of the Metabolic Flexibility of Tumors

At the molecular level, metabolic flexibility relies on the rewiring of existing
metabolic pathways and the synthesis/degradation of metabolic ‘“‘pathway
switching proteins” or “alternative pathway enhancing proteins” which allow an
efficient rerouting of metabolites selected by cellular needs. A thorough
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investigation of the molecular and signaling mechanisms underlying cancer cells
(and other metabolically diseased cells) metabolic remodeling could allow to
identify “pathway switching proteins” and “alternative pathway enhancing pro-
teins,” which could be considered as innovative targets for the metabolic therapy of
cancer. One strategy to alter the metabolic flexibility of cancer cells resides in the
ability to block the catalytic function of PSPs or APEPs. As shown in Fig. 1.6,
different types of metabolic remodeling have been reported. The first observation
by Otto Warburg revealed that some tumors consumed large amount of glucose
without a parallel consumption of oxygen but increased production of lactate
(Warburg 1930). Following these seminal findings, many studies addressed the
molecular basis of the Warburg effect (Jose and Rossignol 2013). Several mecha-
nisms were identified, as the stimulation of glycolysis by oncogenes (the so-called
high glycolysis), notably via the expression of rapid fetal-like isoforms. The
Warburg effect also raised the hypothesis of dysfunctional mitochondria, to explain
why pyruvate was not degraded by the Krebs cycle. During his Nobel Prize Lecture,
at Lindau, Germany, in 1966, Otto Warburg stated that “The prime cause of cancer
is the replacement of the respiration of oxygen in normal body cells by a fermen-
tation of sugar.” From the early 1990s until now, molecular mechanisms were
discovered at the level of the mitochondrion to explain the Warburg effect, with the
inhibition of PDH by PDK1 overexpression (controlled by HIF1a), the reduction of
mitochondrial biogenesis (notably triggered by p53 inactivation), or the inhibition
of respiratory chain activity [also triggered by mutant p53 via SCO2 and by HIF1 o
through a COX4-1/2 subunit isoform shift (Fukuda et al. 2007)].

Yet, it is very important to mention here that not all cancer cells conform to the
Warburg effect and that some cancer cells represent an opposite phenotype, i.e.,
with enhancement of the OXPHOS system (Fig. 1.6). As we discussed in a previous
article, a large body of evidence indicates the existence of oxidative cancer cells
and tumors both in vitro and in vivo (Jose et al. 2011a). Already in 1976, Reitzer LJ
reported that “in HeLa cells glutamine provides more than half of the cellular
energy by aerobic oxidation from citric acid cycle metabolism when glucose is
present.” Likewise, the idea that glucose, glutamine, hydroxybutyrate, or palmitate
can serve both for energy production and anabolism (lipid and cholesterol synthe-
sis) was experimentally tested (Morton et al. 1976). This work demonstrated that
freshly excised Morris hepatomas can oxidize palmitate and hydroxybutyrate to
produce ATP. The molecular determinants of this oxidative phenotype include the
activation of mitochondrial biogenesis, the stimulation of fatty acid oxidation, the
stimulation of canonical or noncanonical glutaminolysis, and the activation of
amino acid degradation pathways. The “oxidative phenotype” of cancer cells
illustrated in Fig. 1.6 (bottom panel where ATP is produced by OXPHOS from
fatty acid oxidation or glutamine oxidation) was found in lymphomas, melanomas,
glioblastomas, and breast cancer. Between these two extreme phenotypes, i.e., the
Warburg (glycolytic) and the “oxidative,” other types of metabolic remodeling
were recently described. Indeed, looking at the anabolic side, studies revealed the
existence of Krebs cycle truncation aiming at the conversion of glutamine to lipids,
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via citrate extrusion from the mitochondrion and production of acetyl-CoA using
the enzyme ATP citrate lyase.

Two modes of glutamine utilization have been described, with the Krebs cycle
running in the textbook direction “clockwise” or in the deviant mode “anticlock-
wise” (Mullen et al. 2012; Metallo et al. 2012; Fendt et al. 2013; DeBerardinis
et al. 2007). The first mode requires anaplerotic entry of glutamine carbons in the
TCA at the level of oxoglutarate and the normal route toward citrate, which require
the use of acetyl-CoA derived from pyruvate. The second mode of glutaminolysis
(anticlockwise) is made possible by the accumulation of oxoglutarate and the
presence of high levels of NADH, as found in situations of defective oxoglutarate
dehydrogenase and succinate dehydrogenase. Reversal of the truncated TCA is
facilitated by the isoform shift of IDH from IDH2 to IDH3 which consumes NADH.
Little is known on the metabolic remodeling which utilizes fatty acids as carbon
substrates or amino acids as valine, since the acetyl-CoA produced by p-oxidation
could serve for ketogenesis but also other means, as reentry in the TCA. It may be
pointed out here that most of the metabolic deviations were discovered during
attempts to understand the link between mutations in TCA cycle enzymes such as
SDH, IDH1/2, and FH and a predisposition to tumors as diverse as hereditary
paragangliomas (Niemann and Muller 2000), leiomyomas (Pollard et al. 2005),
and glioblastomas multiforme (Parsons et al. 2008). The fate of branched-chain
amino acids or ketone bodies is also poorly described, despite reports that indicate
the use of such energy sources by different types of tumors (Martinez-Outschoorn
etal. 2012). Strong advances in the field of metabolic remodeling were presented by
the group of R. DeBerardinis who investigated the fate of glucose and glutamine in
different types of cancers, both in vitro and in vivo, even in human subjects (Marin-
Valencia et al. 2012a). In 2012, this group reported that glucose oxidation by the
mitochondrion is active in glioblastomas, as measured in the mouse brain in vivo
(Mullen et al. 2012). Interestingly, glucose was converted to CO, and glutamine.
Analysis of human gliomas xenografts also showed that glutamine can regenerate
glucose through neoglucogenesis, evidencing the complexity of tumor metabolic
remodeling. As mentioned in the introduction, neoglucogenesis typically occurs in
the liver, while here malignant brain cells are capable of doing so from glutamine.
The study of brain tumors metabolism by NMR showed that '*C glucose is
converted to lactate, glycine, glutamate, and glutamine, indicating again the impor-
tance of glutamine synthesis in brain tumors (Marin-Valencia et al. 2012b).

1.4 The Signaling Pathways Involved in Metabolic
Remodeling

The understanding of metabolic remodeling in cancer cells and other diseases also
requires the investigation of the signaling mechanisms involved in pathways
switching. So far, many determinants have been found to explain the Warburg
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type of metabolic remodeling, with well-described roles for HIFla, MYC, p53,
PTEN, PI3K, Akt, LKB1, and AMPK on most glycolytic enzymes and LDH. At the
level of the mitochondrion, PDH inhibition depends on HIF1«, and glutaminolysis
is activated by MYC, as well as lipid synthesis from citrate (at the level of ACLY).
A general negative regulator of the Warburg effect is AMPK, in agreement with the
frequent alteration of the LKB1-AMPK axis in cancer cells (Faubert et al. 2013). So
far, no cancer-related dysregulation has been discovered at the level of the newly
identified pyruvate carrier (Herzig et al. 2012), which could participate in the onset
of the Warburg effect.

Recently, some signals and genes involved in anabolic stimulation, and in
connection with glycolysis, were discovered. It was found that when cancer cells
are confronted with serine deprivation, they activate the mTOR pathway to stim-
ulate PKM2 protein synthesis, which in turn shifts glycolysis to its anabolic mode,
thereby providing serine through the phosphorylated pathway (Ye et al. 2012). It
was further discovered that in addition to mTOR, the protein TP53, a target of p53
tumor suppressor, spares the available serine for glutathione synthesis and limits
other utilizations (Maddocks et al. 2013). In addition to mTOR and P53, the HIF 1«
pathway was shown to control PKM2 and PDK1 expression under hypoxia. The
former protein drives anabolism from glycolysis, while the latter blocks fueling of
the Krebs cycle with acetyl-CoA derived from glucose. The oncogene N-MYC was
recently shown to induce a large-scale remodeling of energy metabolism in human
cancer cells, with an activation of fatty acids oxidation concomitant with a stimu-
lation of glycolysis (Zirath et al. 2013). Analysis of C-MYC bioenergetics proper-
ties also showed that activation of this oncogene stimulates OXPHOS, redirects
glutamine toward lipids synthesis, and gives the preference to glutamine instead of
glucose to fuel the energetic machinery (Wise et al. 2008).

The inhibition of P53 tumor suppressor also triggers the stimulation of glycol-
ysis (notably via TIGAR inhibition), along with the inhibition of oxidative phos-
phorylation via respiratory chain complex IV destabilization [through SCO2
(Matoba et al. 2006)]. Lastly, the discovery of oxidative tumors in lymphoma by
the group of Nika Danial revealed a switch toward fatty acid utilization controlled
by PPARY alpha and a successful cancer-killing strategy (in vitro) using a PPARy
antagonist (T0070907) (Caro et al. 2012a). Of central importance for the regulation
of oxidative phosphorylation, the RAS oncogene was shown to stimulate respira-
tion, by molecular mechanisms which remain unclear (Wei et al. 2012; Gough
et al. 2009; De Groof et al. 2009; Baracca et al. 2010; Weinberg et al. 2010). Cancer
bioenergetics studies revealed that oxidative phosphorylation is required for
K-RAS to promote tumor progression, notably through the activation of mitochon-
drial respiration and the subsequent production of reactive oxygen species. K-RAS
also stimulates the cytosolic part of the glutamate-aspartate shuttle (GOT1, MDHI1,
MET1) (Son et al. 2013) used to reoxidize the cytosolic NADH.

Besides the metabolic remodeling triggered by oncogenes, variations in the
microenvironment can also induce pathway rewiring or branching, as discussed
above in conditions of serine deprivation or as found in situations of glutamine
deprivation. Upon glutamine removal, cancer cells rely of the pyruvate carboxylase
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to fuel the Krebs cycle and to generate citrate by a truncated TCA (Cheng
et al. 2011). The metabolic remodeling that occurs in conditions of glucose depri-
vation is less documented despite the fact that aglycemia is encountered in tumors
[we discussed this point in a recent review (Jose et al. 2013)]. In addition to these
biochemical studies, recent findings suggested a link between the metabolic
remodeling of tumors and chemoresistance: a subclass of resistant melanomas
undergo a shift toward OXPHOS which opened a therapeutic window by using
OXPHOS inhibitors as oligomycin or BZ-423 (Roesch et al. 2013). Likewise,
metabolic remodeling has implication for epigenetics, cell anchorage, metastasis,
and immune response, which demonstrate the importance and complexity of its
investigation.

We described above a series of metabolic remodelings found in various types of
cancer cells. So far, it cannot be said that only a limited number of profiles exists in
tumors, albeit with variations in the pathways utilized. Yet, one can distinguish
types of remodeling patterns, the objectives of which are (1) lipid synthesis from
glutamine, (2) serine synthesis from glutamine or pyruvate, (3) ATP synthesis from
fatty acids or amino acids, and (4) ROS generation by the ETC. The need for the
tumor to consume building blocks such as arginine and asparagine inspired the
therapeutic strategy to utilize arginase and asparaginase, which proved to be
efficient. Likewise, we must understand the biological significance of the observed
metabolic remodeling to efficiently target pathways of vital importance for tumor
growth and progression. The inhibition of fatty acid oxidation by PPARY blockers
was efficient on selected lymphomas as shown in the study of Nika Danial’s group
(Caro et al. 2012b), and the inhibition of lipolysis and subsequent fatty acid
oxidation by orlistat and etomoxir was efficient on a mice model of leukemia
(Samudio et al. 2010). Again, these findings indicate the need for a better stratifi-
cation of human cancer based on their bioenergetic and associated biosynthetic
profile. Clearly, an exhaustive evaluation of tumor proteomics cannot be done for
each patient, but relevant biomarkers could help to delineate the metabolic profile
of a given tumor, taken as a whole, and to propose adapted metabolic therapies.
Ideally, circulating biomarkers could be discovered, and the potential of
metabolomics must be considered to reach that goal. We also need to better
connect, if relevant, the oncogenetic signature with the metabolic remodeling
pattern, to evidence potential links between a particular subgroup of tumors (e.g.,
RAS mutated, or EGFR mutated, or resistant to a certain therapy) and specific
metabolic features. Are MYC-driven tumors more prone to glutaminase therapy?
Are RAS-driven tumors more sensitive to OXPHOS-targeted approaches?

A recent study by the group of JE Sarry on the anticancer effect of the AMPK
agonist metformin (Scotland et al. 2013) showed that not all leukemic cells are
sensitive and that the cell capacity to perform the Pasteur effect was a good
indicator of their sensitivity. Likewise, we tested the anticancer effect of AICAR
on different cancer cell lines (Jose et al. 2011b, 2012) and showed that different
sensitivities as well as different modes of action could be found in each cell line.
This argues again in favor of requisite a metabolic profiling of tumors prior to
consider a metabolic therapy.
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1.5 Future Directions in the Field of Energy Metabolism

As argued in this review, cancer research on tumor energy metabolism partly aims
at the identification of specific mechanisms used by cancer cells to transduce energy
from different sources of carbons, as glucose, fatty acids, amino acids, or ketone
bodies. In 2013, around 400 publications were reported in the PubMed database
with the association of the terms “cancer” and “energy metabolism.” Likewise,
90 clinical trials reported in the clinicaltrial.gov database also associated these two
terms. How cancer cells transduce energy is determined by several factors which
include the oncogenetic profile and the microenvironment, notably the type and
concentration of available energy substrates, as well as the metabolic cross-talk
with surrounding cells. The modalities of energy transduction are also closely
determined by anabolic needs as amino acids, lipids, and nucleic acid syntheses,
which consume carbon intermediates generated by the bioenergetic pathways,
thereby impacting the modalities of energy transduction and the selection of
appropriate “branched pathways” according to specific needs. Metabolic
remodeling is also controlled, directly or indirectly, by numerous oncogenes and
tumor suppressors. Hence, to determine the metabolic profile of a tumor requires
the combination of series of investigations including bioenergetics, metabolomics,
proteomics, and transcriptomics. Studies in vivo or on freshly excised tumors
should be preferred to in vitro analyses on cancer cells which adapt to the artificial
cell culture conditions and may not retain the particularities of human tumors that
we need to decipher in order to propose innovative therapeutic strategies. A global
analysis of catabolism and anabolism must be undertaken on those tumor samples
to determine the biological objective of tumor metabolic remodeling. If serine is
one endpoint, a strategy aiming at serine deprivation in tumor could be developed,
as done for arginine and asparagine in leukemias. Undoubtedly, in silico recon-
struction of metabolic pathways and their deviations will help to resolve such
objectives and to test the validity of different bioenergetics targets.

Moreover, the transcriptomic study of large panels of human tumors, well
clinically and genetically annotated, could allow stratification of tumors in bioen-
ergetic groups, based on the expression level of different markers involved in
metabolic switches, such as ACLY, PC, and IDH2/3. The direct assessment of
tumor metabolic profile in vivo will give more accurate information on which
pathway to target. However, this raises the problem of tumor internal heterogeneity.
While genetic studies of tumors show the coexistence of cancer cell clones of
different adaptative and resistance abilities, the biochemical studies performed on
tumors do not yet take into account this heterogeneity.

Importantly, the problem of metabolic resistance will have to be considered, as
suggested by the great metabolic flexibility of cancer cells. Therefore, a better
definition of the link between the large-scale metabolic remodeling of tumor and
their extended oncogenetic profile is required to adapt metabolic strategies that
could be the more effective. In particular, to target “nodal enzymes” at the interface
between catabolism and anabolism requires (1) their identification and
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(2) assessment of their regulating power (flux control coefficients). However, the
complexity of cell metabolism in terms of numbers of reactions and biochemical
intermediates strongly impedes our capacity to perform in vitro metabolic and
bioenergetic analyses and thereby also the discovery of novel targets for cancer
metabolic therapy. The metabolic charts indicate the existence of several
subpathways potentially involved both in energy transduction and anabolism, but
only some of them have been explored so far in the context of cancer adaptation to
metabolic stress. The power of in silico analyses of cancer metabolism is needed to
(1) identify the possible routes of energy transduction linked with anabolism;
(2) select the optimal ones, with the better performance and significance for cancer
metabolism; and (3) designate the enzyme with the highest control of the identified
pathways.
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2.1 Introduction

Reductionist approaches to the genetic drivers of carcinogenesis and the biochem-
ical and cellular hallmarks of cancer have increasingly fueled efforts to understand
and treat cancer. These approaches have largely involved aggressive transplantable
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tumors or tumor cell lines cultured in the laboratory under conditions that are near
optimal for cell growth and division. In patients, however, cancer cells are part of a
developing tumor in a tissue that strives to maintain homeostasis through numerous
local and systemic control systems. Developing cancer cells are exposed to a
constantly changing microenvironment. They face selective pressures dictated by
interactions with normal tissue cells of similar and unrelated origin including
stromal, vascular, and neural cells and cells of the innate and adaptive immune
system. Tumor spread is primarily mediated by the proximity of blood and lym-
phatic vessels although some tumors including prostate and colorectal cancers can
spread by perineural invasion (Liebig et al. 2009; Magnon et al. 2013).

The vast majority of tumors are heterogeneous mixtures of cancer cells at
different stages of development and normal cells of mixed origin, with cancer
cell heterogeneity loosely related to the hierarchical structure of the tissue of origin.
Thus, within a developing primary tumor, stem cell-like cells, early progenitor
cells, and differentiating cells coexist and compete with normal cells for nutrients
and other resources. Genetic and epigenetic changes are played out within the
framework of tissue microenvironment. From this complex tissue biology, circu-
lating tumor cells emerge and metastatic progression is initiated.

This review explores how genetic and epigenetic events drive complex changes
in cancer cell energy metabolism that are associated with tumorigenesis and
metastasis and discusses how the acquisition of metabolic flexibility advantages
tumor cells over their normal counterparts.

2.2  Tumor Cell Complexity

Cancers originate in particular tissues of the body. Most are carcinomas of epithelial
origin. Others are of endothelial, neural, and mesenchymal origin and leukemias and
lymphomas of the blood-forming system. Thus, cancer initiation is tissue context
dependent and occurs against a background of developmentally determined tissue
modules that make up the various organ systems of the body. Normal tissue devel-
opment, which occurs as part of organogenesis in the early embryo, involves epige-
netic remodeling. In contrast, cancer development involves the sequential
accumulation of DNA mutations, often in stem cell-like cells or early progenitor
cells within a particular tissue (Herst and Berridge 2013), as well as epigenetic
reprogramming. A good example is the process of epithelial-to-mesenchymal transi-
tion (EMT), a multistage process that is essential for embryonic development. In
cancer, EMT drives the conversion of fully differentiated epithelial cells into poorly
differentiated, migratory, and invasive mesenchymal cells through a combination of
genetic and epigenetic changes. The essential features of EMT are disruption of
intercellular contacts and enhanced cell motility leading to escape from parental
epithelial tissue. The resulting mesenchyme-like phenotype is migratory and invasive
leading to metastatic progression (Guarino et al. 2007; Tiwari et al. 2012; Wang and
Shang 2013). Thus, cancer can be considered as a new disorganized tissue with a set of
hallmarks that distinguish it from its tissue of origin (Hanahan and Weinberg 2011).



2 Tumor Cell Complexity and Metabolic Flexibility in Tumorigenesis and Metastasis 25

—— Connective tissue
ENVIRONMENT
e —
Primary tumor
L "'.-';x Epithelium
ICICICIOy OO0 0000 )
] EMT
EPIGENETIC CHANGES aa»
Invasion across BM
ONCOGENESIS | @ o oot eaiey
N e o (o o oo o e | o e
Cle
| _.'_.f.:._'.f.:.\.:.f.
ALTERED METABOLISM \ Extravasation
MET @ @
GENETIC CHANGES Secondary tmor Micrometastases

Fig. 2.1 Overview of oncogenesis of epithelial tumors. Oncogenesis takes place in context of the
tumor microenvironment that includes oxygen tension, pH, nutrient supply, and interactions with
other cell types in close proximity of the tumor, such as stromal cells and immune cells. Initiation
begins with oncogenic mutations or epigenetic changes in expression of tumor suppressor genes
and oncogenes of an epithelial cell, leading to alterations in cancer cell metabolism. Altered
metabolism drives the establishment of a primary epithelial tumor which is initially contained
within its tissue of origin. Some cancer stem cells undergo EMT, which makes them less sticky and
more aggressive, breaking the basal membrane barrier and invading underlying tissues. Some of
these mesenchymal tumor cells enter blood vessels (intravasation) and travel in the blood stream as
circulating tumor cells. Once they leave the blood stream (extravasation), they form
micrometastases in new tissues and organs. Once they undergo MET, they grow into
macrometastases or secondary tumors of epithelial origin

Cells in tissues are hierarchically organized and constitute organ structures that are
complex mixtures of cells that include mesenchymal, vascular, lymphatic, and neural
cells as well as cells of the innate and adaptive immune system. Each of these cell
populations plays a distinct role in facilitating or compromising tumor growth and
spread. For example, mesenchymal cells generate the connective tissue that structur-
ally supports the tumor as it grows first at its primary site and later during metastasis.
Vascular endothelial cells and, in some cases, neural cells develop structures that
connect the growing tumor with its wider environment providing nutrients and oxygen
and coordinating pseudo-physiological responses. These structures are also centrally
involved in tumor metastasis that involves breaking constraints on tissue boundaries,
basement membrane penetration, intravasation, circulation, extravasation, and
seeding in tissues of distant organs (see Fig. 2.1). In addition, infiltrating immune
cells including T cells, monocytes, macrophages, and dendritic cells contribute to or
hinder tumor progression by generating pro- and anti-inflammatory responses that
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protect against or mediate immune attack to which tumor cells respond by mounting
evasive responses (Croci et al. 2007; Stewart and Smyth 2011; Choi et al. 2013).

Context is paramount in the development of cancer. The tendency to develop
cancer is inherited in only 5-10 % of all cancers. Not surprisingly, these familial
mutations often occur in tumor suppressor genes such as BRCAI and BRCA2 in
breast and ovarian cancer, TP53 in, for example, Li—Fraumeni syndrome, APC in
familial adenomatous polyposis, and mismatch repair genes in colorectal cancer.
Although these inherited mutations are present in all cells, tumors only develop in
particular organs and thus are tissue context related.

2.3 Tumor Cell Hierarchy and Differentiation Therapy

Tumors are categorized in terms of location, size, cell type, state of differentiation,
local invasion, and spread to lymph nodes and distant organs. This reflects the
hierarchical nature of the tissue of origin. Normal tissue hierarchy is based on the
presence of several distinct cell types, each with a specific role in tissue function
and maintenance. Individual tissues have small populations of stem cells with self-
renewing capacity, and these cells have the ability to differentiate into more than
one cell type. Stem cells give rise to committed progenitors cells with limited
ability to self-renew. These progenitor cells have the ability to respond rapidly to
physiological demand by undergoing a number of divisions prior to differentiating
into functional end cells. A good example of hierarchical tissue is the hemopoietic
system that generates the different blood cell types. Pluripotent stem cells in the
bone marrow produce committed myeloid and lymphoid progenitors that ultimately
produce 8-10 terminally differentiated blood cells. Each lineage can be further
subdivided into numerous functional and tissue-specific cell types. Most tumor-
initiating mutations are thought to occur in stem cell populations or in committed
progenitors, and it is the expansion of these mutant cells at the expense of cells with
a more differentiated phenotype that characterizes individual cancers. This was first
described in 1997 for acute myeloid leukemia (Bonnet and Dick 1997) and subse-
quently extended to solid tumors (Reya et al. 2001; Visvader and Lindeman 2008;
Baccelli and Trumpp 2012). Differentiation plasticity has also been described in
some tumors including melanoma, pancreatic cancer, and head and neck squamous
cell carcinoma (HNSCC) with re-expression of germ line or early developmental
markers a common characteristic (Caramel et al. 2013; Giudice et al. 2013; Ziv
et al. 2013).

The stem cell nature of cancer is also reflected in the concept of differentiation
therapy (Warrell et al. 1991) whereby cancer is treated by removing differentiation
blocks. The best example is the treatment of acute promyelocytic leukemia (APL)
patients with all-trans retinoic acid in combination with the cytotoxic drug arsenic
trioxide. This is now standard therapy for APL and has raised 5-year survival rates
from <40 % to >90 % (reviewed by Lallemand-Breitenbach et al. 2012). Recently,
Aurora kinase A inhibitors were shown to terminally differentiate leukemic cells
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responsible for acute megakaryocytic leukemia, primary myelofibrosis, and
myelodysplastic syndrome by inducing polyploidy (Krause and Crispino 2013).
Other studies have reported that salinomycin, a livestock antibiotic, induced cell
death and differentiation in HNSCC stem cells (Kuo et al. 2012).

A better understanding of the cell of origin and the environmental constraints on
developing tumors will enhance our ability to target tumor-initiating cells and limit
their invasive and metastatic potential.

2.4 Bioenergetic Pathways of Proliferating, Self-Renewing,
and Differentiating Cells

The two main energy-producing pathways are glycolysis and mitochondrial elec-
tron transport (mtET) combined with oxidative phosphorylation (OXPHOS) as
depicted in Fig. 2.2. Under hypoxic conditions, HIF-1a stabilization results in the
transcription of downstream hypoxia-inducible genes which mediate glycolysis.
Degradation of HIF-1a under normoxic conditions results in a switch from glyco-
lytic to mitochondrial energy metabolism (Brahimi-Horn and Pouyssegur 2006;
Denko 2008; Majmundar et al. 2010).

Although bioenergetically more favorable than glycolysis, mtET generates
reactive oxygen species (ROS) at respiratory complexes I, I, and III, compromising
genome integrity (Herst and Berridge 2006). Interestingly, the choice of energy
metabolism is not determined solely by oxygen tension. Differentiated cells pri-
marily use OXPHOS for their energy requirements, whereas rapidly proliferating
cells use aerobic glycolysis to fuel their anabolic metabolism (Vander Heiden
et al. 2009; Berridge and Tan 2010; Schulze and Harris 2012). This cellular
bioenergetic strategy has been rationalized in terms of balancing energy require-
ments and the production of metabolic intermediates with the need to maintain
genomic integrity. The high-energy demands of physical movement and brain
function are likely drivers behind the evolution of OXPHOS in complex organisms
with the less energy-efficient glycolytic pathway downgraded to a minor compo-
nent of aerobic respiration, albeit an essential one. Muscle and brain cells, that use
over 80 % of the body’s energy resources, are nondividing cells and are therefore
largely impervious to increased ROS levels produced during mtET. In contrast,
rapidly dividing cells need to maintain DNA integrity and therefore bias their
metabolism towards glycolysis. Inefficient respiration due to environmental and
nutrient stress also increases ROS production that would be unfavorable to proli-
ferating cells.

Embryonic stem cells (ESC) and pluripotent stem cells (PSC) from blastocysts rely
on glycolysis even under aerobic conditions and have little oxidative capacity
(Prigione and Adjaye 2010; Zhang et al. 2012; Shyh-Chang et al. 2013). They have
low numbers of mitochondria and few copies of mtDNA per cell (Facucho-Oliveira
and St John 2009; St John 2012). Early embryonic developmental stages are
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Fig. 2.2 Overview of energy-generating pathways in cells. Under hypoxic conditions, cells use
glycolysis (hatched gray box) to generate energy. Glycolysis is the oxidation of glucose to
pyruvate in the cytoplasm and is associated with production of lactate and PMET. In the presence
of oxygen, most cells will use aerobic respiration to generate energy. This pathway consists of
glycolysis plus mitochondrial electron transport (mtET) coupled with oxidative phosphorylation
(OXPHOS) (dark gray box) that occurs in the mitochondria. Although mtET/OXPHOS is more
efficient than glycolysis, it also produces more ROS that may compromise genomic integrity.
Many cancer cells use glycolysis even in the presence of oxygen (aerobic glycolysis). GLUT
glucose transporter, HKII hexokinase II, PK pyruvate kinase, MCT monocarboxylate transporter,
LDH lactate dehydrogenase, PMET plasma membrane electron transport, CoQ coenzyme Q10, /-
V respiratory complexes I to V, PDH pyruvate dehydrogenase, PF fumarate hydratase, SDH
succinate dehydrogenase, /DH isocitrate dehydrogenase, OAA oxaloacetate, aKG a-ketoglutarate

characterized by elevated mitochondrial content, high mitochondrial DNA (mtDNA)
copy number, and reliance on pyruvate as a metabolic fuel. Differentiation shifts
metabolism towards OXPHOS as evidenced by reduced glycolytic flux and increased
mitochondrial OXPHOS fueled by glucose, fatty acids, and glutamine in differentiated
embryonic stem cells (Cho et al. 2006; Chung et al. 2007; Facucho-Oliveira and St
John 2009; Shyh-Chang et al. 2013; Wang and Shang 2013). Not surprisingly,
dedifferentiation of fibroblasts into induced pluripotent stem cells (iPSC) increased
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glycolytic rates and decreased mitochondrial cristae compared with parental fibro-
blasts. These stem cells exhibited a metabolome and metaboproteome consistent with
glycolytic nuclear remodeling (Armstrong et al. 2010; Prigione et al. 2010; Folmes
etal. 2011; 2012; 2013).

Considerable evidence points to a population of quiescent hemopoietic stem
cells in the bone marrow existing in an hypoxic niche employing a predominantly
glycolytic metabolism maintained by HIF-1a stabilization (Suda et al. 2011). These
cells are characterized by low mitochondrial mass and immature internal cristae
(Chung et al. 2007). Nevertheless, other hemopoietic stem cell populations reside in
well-oxygenated perivascular regions of the bone marrow and move between these
two distinct niches and into the highly oxygenated peripheral circulation. Whether
this movement between niches and the circulation is associated with changes in the
balance between glycolytic and mitochondrial metabolism or is characterized by
glycolysis regardless of oxygen tension (aerobic glycolysis) warrants further inves-
tigation. It would also be interesting to know whether transition from a quiescent to
an activated state such as occurs during self-renewal of stem cells or in cells
induced to rapid proliferation is associated with a switch from OXPHOS to
glycolysis.

The effect of oxygen tension on energy metabolism is not necessarily bidirec-
tional. Mouse embryonic fibroblasts reduce oxygen consumption when switched
from 20 % O, to 1 % O, but continue low oxygen consumption when returned to
20 % O, indicating stable metabolic reprogramming (Suda et al. 2011). Neural stem
cells in hypoxic regions of the brain and mesenchymal stem cells also show
properties consistent with low levels of glycolytic metabolism (Chen et al. 2008;
Renault et al. 2009; Shyh-Chang et al. 2013), whereas MSCs continue to consume
O, at a high rate when transferred to normoxic conditions (Pattappa et al. 2011).
Consequently, aerobic glycolysis in proliferating cells in mature organisms may be
a consequence of sustained hypoxia during early development resulting in cellular
bioenergetics being remodeled towards glycolytic metabolism regardless of
whether oxygen is present or not.

In general, quiescent stem cells and differentiated cells employ OXPHOS, while
non-quiescent pluripotent and embryonic stem cells, progenitor cells, and myo-
blasts are highly glycolytic and use OXPHOS to varying degrees. These consider-
ations provide fundamental insight into bioenergetics changes that occur during
normal tissue development. The extent to which they can be extrapolated to tumor
development is of considerable interest and will be discussed next.

2.5 Bioenergetic Remodeling in Tumor Cells

Tumor cell metabolism is often, but not always, biased towards aerobic glycolysis
particularly in highly aggressive metastatic tumors (Warburg 1956; Moreno-
Sanchez et al. 2007; DeBerardinis et al. 2008; Vander Heiden et al. 2009; Berridge
and Tan 2010). Nevertheless, the contribution of glycolytic ATP to the total energy
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budget of most solid tumors does not exceed 50-60 % (Warburg 1956; Nakashima
et al. 1984; Brand 1997; Zu and Guppy 2004; Berridge et al. 2010) with low
OXPHOS activity generating comparable amounts of ATP to glycolysis. The
preference of many tumor cells for glycolysis over OXPHOS is a characteristic
not only of proliferating anabolic cells within a tumor but may also be true for
quiescent and self-renewing populations if tumors follow the patterns observed in
normal tissue development (see Sect. 2.3). Thus, aspects other than oxygen tension
in the tumor microenvironment appear to influence the choice of metabolic energy
pathways of developing and metastasizing tumors. For example, stromal cells can
affect energy metabolism in cancer cells as was shown for cancer-associated
fibroblasts which, when cocultured with cancer cells, lose mitochondrial mass,
while cancer cells increase their mitochondrial mass (Martinez-Outschoorn
et al. 2011). Aerobic glycolysis in fibroblasts is thought to release lactate and
ketone bodies that provide an energy source for cancer cells, facilitating tumor
progression and metastasis (Migneco et al. 2010; Martinez-Outschoorn et al. 2011,
2012).

Although most aggressive and metastatic cancers use glycolysis as their pre-
ferred energy pathway, purely glycolytic mitochondrial gene-knockout B16p°
melanoma cells exhibit a long 20-30-day lag to tumor growth, grow more slowly
as tumors than parental cells, and are unable to form metastases in C57BL/6 and
NOD/scid mice (Berridge and Tan 2010; Tan et al. 2013). The difference between
glycolytic tumors that form from p° cells and those that develop naturally could be
due to the latter being able to switch more readily between glycolysis and OXPHOS
when the environment dictates, whereas tumors that grow from p° cells have fewer
choices.

The dynamic balance between glycolytic and mitochondrial ATP production
in vivo and in vitro and the flexibility of the control mechanisms involved are now
considered.

2.5.1 Consequences of a Glycolytic Metabolism: Plasma
Membrane Electron Transport

Relying on glycolysis as the sole or primary energy source has significant metabolic
implications (Herst et al. 2004; Herst and Berridge 2007; Vander Heiden
et al. 2009). In order to provide high sustained levels of glycolysis necessary to
fuel rapid cell proliferation, cells increase glucose transporter expression and
activation to facilitate glucose uptake (Ahmed and Berridge 1998, 1999; Kunkel
et al. 2003; Fiorentini et al. 2004; Migneco et al. 2010), increase glycolytic enzyme
expression (Papandreou et al. 2006), and inhibit pyruvate dehydrogenase (PDH)
activity by transactivating pyruvate dehydrogenase kinase 1 (PDK1) (Kim
et al. 2006).
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In addition, cells must find ways of recycling excess NADH produced during
glycolysis and TCA cycle activity so as to maintain the intracellular NADH/NAD™*
balance. Traditionally this has been thought to occur through increased lactate
dehydrogenase (LDH), causing acidification of the tumor microenvironment (War-
burg 1956; Schornack and Gillies 2003; Fantin et al. 2006).

In addition to LDH activity, highly glycolytic cells recycle intracellular NADH
through plasma membrane electron transport (PMET) (Crane et al. 1991; del
Castillo-Olivares et al. 2000; Herst and Berridge 2006, 2013) (see Fig. 2.2).
PMET may be an evolutionary remnant from pre-endosymbiotic times when the
cell membrane was the only means of generating energy. A major PMET pathway
in mammalian cells involves a multicomponent system that reduces the water-
soluble tetrazolium dye, WST-1, to its formazan in the presence of an obligate
intermediate electron acceptor (Berridge and Tan 2000; Herst et al. 2004; Berridge
et al. 2005; Herst and Berridge 2006, 2007). PMET activity is closely linked with
metabolic rates and intracellular NADH flux. Mitochondrial gene-knockout (p°)
cells that are incapable of OXPHOS and OXPHOS-competent cancer cells under
hypoxic conditions or in the presence of mitochondrial poisons increase their
PMET activity three- to fourfold (Berridge and Tan 2000; Herst et al. 2004; Scarlett
et al. 2004; Tan and Berridge 2004; Berridge et al. 2005; Herst and Berridge 2007).

Increased PMET activity combined with increased LDH activity ensures a
favorable ratio of NADH/NAD™ for sustained glycolysis regardless of oxygen
tension. Therefore, inhibiting PMET may be another strategy to kill quiescent
stem cells as well as highly glycolytic proliferating tumor cells (Herst and Berridge
2006).

2.5.2 Genetic and Epigenetic Changes

Tumorigenesis involves not only cumulative nuclear and mitochondrial DNA
mutations but also changes in the epigenome as a consequence of the ever-changing
microenvironment (see Fig. 2.3). Disentangling the complex interplay between
genetic and epigenetic contributions to cancer development and metastasis is one
of the major current challenges of tumor cell biology.

2.5.2.1 Nuclear Mutations Affecting Energy Metabolism

Most attention in the field of cancer cell metabolism has focused on rapidly
proliferating cells in vitro and on fast-growing tumor models where a shift from
OXPHOS towards glycolytic metabolism is a feature held in common with rapidly
dividing non-tumor cells. Mutations that have predisposed cells towards a more
glycolytic metabolism have been reported in several nuclear-encoded enzymes
involved in energy metabolism (Pollard et al. 2003; Wallace 2012). These include
mitochondrial fumarate hydratase (FH) (Toro et al. 2003; Isaacs et al. 2005),
succinate dehydrogenase (SDH) subunits A-D (King et al. 2006; Bayley
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Fig. 2.3 Overview of the genetic and epigenetic changes that can alter energy metabolism that
drives oncogenesis. The tumor microenvironment exerts selective pressure on the genome,
favoring advantageous nuclear and mitochondrial mutations in genes encoding key metabolic
proteins. The environment also drives changes in the epigenome that affect expression of these
genes either directly or by changing the expression of epigenetic modifiers. See text for a full
explanation

et al. 2010; Gill 2012) and isocitrate dehydrogenase 2 (IDH2) (Borodovsky
et al. 2012), and cytosolic IDHI (Parsons et al. 2008; Mardis et al. 2009;
Borodovsky et al. 2012) and phosphoglycerate dehydrogenase (PDH) (Locasale
et al. 2011; Possemato et al. 2011). Many other classical oncogenes and tumor
suppressors are indirectly involved in controlling metabolism through key regula-
tory nodes including mTOR and PI3K/AKT, MYC, and mutant RAS and RAF (Sun
et al. 2011; Shaw and Cantley 2012; Nemazanyy et al. 2013), PDK and its
phosphorylation regulators, PDK1 and PDP2 (Kaplon et al. 2013), hexokinase
(HK) II relocation to mitochondria (Mathupala et al. 2009), and the pyruvate kinase
(PK) splice variant, PKM2 (Christofk et al. 2008; Mazurek 2011; Gui et al. 2013),
all involved to varying degrees in this reprogramming and with some more related
to cell proliferation per se than to cancer.

Much less attention has been paid to quiescent cells or slowly self-renewing cells
that are present in most if not all tumors and to the metabolic preferences of
low-grade indolent tumors. Acquisition of certain mutations in key metabolic
enzymes suggests that the metabolism of quiescent and self-renewing cells may
also be biased towards glycolytic metabolism. Recent evidence from a variant
human osteosarcoma cell line with cancer stem cell-like properties indicated
greater dependence on glycolytic metabolism compared with parental cells
(Palorini et al. 2013). In addition, brain tumor-initiating cells have been shown to
preferentially express the high-affinity neuronal glucose transporter, Glut-3, a
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prognostic marker in brain tumor patients (Flavahan et al. 2013), implying meta-
bolic remodeling towards glycolytic metabolism.

2.5.2.2 Mitochondrial Mutations Affecting Energy Metabolism

The contribution of mtDNA mutations to tumor formation and to metastasis is often
glossed over. This is in part due to few genetic tools being available to explore the
role of these mutations in cancer, the presence of multiple mtDNA copies per
mitochondrion and hundreds per cell, and mitochondrial dynamics. In addition,
the phenomenon of heteroplasmy or mixed mitochondrial genotypes adds another
layer of complexity to analytical approaches. The presence of mtDNA sequences in
the nucleus of mammalian cells can also confound assessment of mtDNA muta-
tions, and these artifacts need to be carefully controlled in such studies (Schon
et al. 2012).

Nevertheless, mutations in mtDNA occur in almost all tumors although not all
are directly linked to cancer (Wallace 2005; Schon et al. 2012). This is particularly
relevant because the mitochondrial genome encodes 13 essential proteins of the
mtET chain. Mutations in any of these subunit proteins have the potential to
compromise mtET, thus altering the bioenergetic balance between mitochondrial
respiration and glycolytic energy production.

The remaining 24 mitochondrial genes encode 22 tRNAs and 2 rRNAs essential
for mitochondrial protein synthesis. Likewise, mutations in these genes have the
potential to reduce protein synthesis below a threshold level required to maintain
mtET and OXPHOS (Tan et al. 2013). The mitochondrial genome also contains a
displacement loop (D-loop) and adjacent control regions that are involved in
mtDNA replication and transcription. In a recent study, tumor-related somatic
mtDNA mutations occurred at a frequency of 13-63 % across five tumor types
(Larman et al. 2012), supporting previous evidence of a high somatic mtDNA
mutation rate, mostly homoplastic, in colorectal cancers (Polyak et al. 1998). In
another study, mtDNA mutations in 921 tumors were analyzed by whole genome
sequencing and showed 56 % of all tumors contained a least one mtDNA mutation
with 28 % being in complex I and 35 % being in the D-loop (Iommarini et al. 2013).
The presence of mtDNA sequences in the nucleus of mammalian cells can compli-
cate assessment of mitochondrial mutations, and these artifactual contributions
need to be carefully controlled in such studies (Schon et al. 2012).

Mitochondrial DNA haplotypes contribute to metabolic diseases including can-
cer in ways that are poorly understood, and these natural variations constitute a
variable genetic background on which somatic mtDNA mutations are superimposed
(Wallace 2012). Mitochondrial fusion—fission processes have also been implicated
in maintaining mitochondrial genome integrity and therefore the respiratory bal-
ance in cells (Vidoni et al. 2013), but the relevance of these control mechanisms to
cancer is currently uncertain.

Mammalian mitochondrial respiratory complexes I-V are composed of
13 mitochondrially encoded subunits and about 77 nuclear-encoded proteins
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(Schon et al. 2012) that are organized into supramolecular structures collectively
referred to as the respirasome (Acin-Perez et al. 2008; Lapuente-Brun et al. 2013).
Many hundreds of nuclear genes also affect mitochondrial integrity and metabolic
function, but this subject is beyond the scope of this review. A brief summary of the
contribution of mutations in complexes -V subunits to cancer as well as the
evidence for mitochondrial genome involvement in tumorigenesis and metastasis
has been presented recently (Tan et al. 2013).

2.5.2.3 Epigenetic Changes Affecting Energy Metabolism

All cancers are characterized by tumorigenic mutations and epigenetic modifica-
tions that define the different stages of tumor progression and underpin tumor cell
heterogeneity (Timp and Feinberg 2013). Although some mutations may be suffi-
cient to bring about metabolic remodeling (Turcan et al. 2012), the local microen-
vironment is intimately involved in this remodeling process through epigenetic
changes in tumor cells and their evolving progeny. In this context, considerable
genetic heterogeneity is seen within a particular tumor and between tumors within
an individual (Shah et al. 2009; Yancovitz et al. 2012; Burrell et al. 2013), and this
heterogeneity would be expected to be associated with epigenetic heterogeneity.
However, little attention has been paid to the epigenetic complexity of individual
tumors.

Epigenetic changes are mediated through a range of epigenetic modifiers includ-
ing DNA methyltransferases, histone methyltransferases, histone demethylases,
histone acetyltransferases, and histone deacetylases. Mutations in these modifiers
have been shown to affect mainly hematological cancers as well as some rare
pediatric cancers and some highly aggressive variants of adult tumors. Epigenetic
changes in expression of these modifiers have been shown to play an important role
in the more common solid cancers (Timp and Feinberg 2013). The three main
drivers of epigenetic change, DNA methylation, histone modifications, and non-
coding microRNAs, are now discussed.

DNA Methylation

The methylation status of DNA at CpG islands can promote carcinogenesis by
either silencing tumor suppressor genes through hypermethylation and/or activating
oncogenes through hypomethylation (Timp and Feinberg 2013). Tissue-specific
methylation patterns are found in regions adjacent to CpG islands, and these
facilitate metabolic reprogramming and distinguish between normal and cancerous
tissue (Doi et al. 2009).

Links between oncogenic mutations in three TCA cycle genes associated with
epigenetic changes and altered cancer metabolism have been described recently. A
mutation in /DHI generates the oncometabolite 2-hydroxyglutarate (D-2HG)
instead of a-ketoglutarate (a-KG) in acute myeloid leukemia, stage II-III gliomas,
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and secondary GBM and in metastatic colon cancer, prostate cancer, thyroid cancer,
and sarcomas (Turcan et al. 2012; Ward and Thompson 2012; Rakheja et al. 2013).
D-2HG inhibits a-KG-dependent dioxygenases and histone lysine demethylases
leading to a global hypermethylation profile that promotes carcinogenesis. Thus,
there is an emerging role of D-2HG as an oncometabolite in hematolymphoid and
central nervous system neoplasms (Zhao et al. 2009; Teicher et al. 2012; Rakheja
et al. 2013) and other cells.

Similar hypermethylation patterns have been observed in SDH mutants in
paragangliomas, gastrointestinal stromal tumors, and pheochromocytomas. Here
succinate accumulation mimics the effect of IDH mutations (Killian et al. 2013;
Letouze et al. 2013; Mason and Hornick 2013). In addition, inactivating mutations
in FH are associated with a similar hypermethylation profile in an individual
paraganglioma (Letouze et al. 2013).

Mutations in these genes facilitate carcinogenesis by changing the methylation
profile of the DNA. Global DNA hypermethylation facilitates carcinogenesis by
silencing tumor suppressors, blocking differentiation, and pushing cancer cells
towards aerobic glycolysis by stabilizing HIF-1a.

Histone Modifications

Modification of histone tails by altering their methylation or acetylation status can
either activate or inhibit transcription. Although hypermethylation and silencing of
tumor suppressor genes has been shown for many solid tumors, this tends to occur
in regions that are already inactivated by histone modifications. This suggests that
DNA methylation occurs secondary to histone modification. For instance,
hypermethylated tumor suppressor regions in breast cancer cells were shown to
occur at sites that are already repressed in normal cells of the same lineage (Sproul
et al. 2011).

Increased acetylation by inhibition of histone deacetylases (HDAC) has been
shown to initiate differentiation, reduce the number of cancer stem cells, and inhibit
clonogenic sphere formation in HNSCC (Giudice et al. 2013). However, differen-
tiation is not a uniform characteristic of HDAC inhibitors. The HDAC inhibitors,
valproic acid, and suberoylanilide hydroxamic acid were shown to reprogram
differentiated cancer cells towards a dedifferentiated more resistant stem cell-like
state in two highly aggressive breast cancer cell lines in vitro. Expansion of breast
cancer stem cells by valproic acid has important clinical implications for the use of
HDAC inhibitors in the treatment of cancer (Debeb et al. 2012).

MicroRNAs
MicroRNAs (miRNAs) are nuclear-encoded 20-25 nucleotide noncoding RNAs

that play an important role as negative regulators of translation and stability of
mRNA of key genes in most fundamental cellular pathways (Yates et al. 2013)
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including mitochondrial energy metabolism (Bienertova-Vasku et al. 2013;
Tomasetti et al. 2013). Suppression of miRNA expression promotes tumorigenesis
as most miRNAs are tumor suppressors (Garzon et al. 2006), although some have
oncogenic activity (Zhang et al. 2007).

Similar to nuclear and mitochondrial mutations and changes in DNA and histone
methylation patterns, miRNAs also alter the cell’s preference for glycolytic or
mitochondrial energy. They can directly inhibit expression of key proteins or inhibit
key regulatory pathways that promote either glycolysis or OXPHOS. For example,
miR-338 was shown to target cytochrome C oxidase IV, favoring glycolysis
(Aschrafi et al. 2008). Other miRNAs have been shown to promote OXPHOS by
decreased expression of glucose transporters, GLUTs 1-3 (miR-133) and HKII
(miR-143) (Fang et al. 2012; Jiang et al. 2012). Aberrant expression of these
miRNAs in bladder, colorectal, and pancreatic tumors increases GLUT1 and
GLUT 3 expression and HKII expression and activity promoting aerobic glycolysis
(Singh et al. 2011; Chen et al. 2012; Fei et al. 2012).

In contrast, expression of miR-210 under hypoxic conditions promotes aerobic
glycolysis. Expression of miR-210 is induced by binding of HIF-a and NFkB p50 to
its promoter (Chan et al. 2012). In the presence of oxygen, miR-210 represses MET,
causing electron leakage and increased ROS production and leading to decreased
ATP levels. Other targets of miR-210 include subunits of respiratory complexes I,
IL, and IV and glycerol-3-phosphate dehydrogenase. Inhibition of these target genes
contributes to decreased mtET and OXPHOS and a shift towards glycolysis
(Tomasetti et al. 2013).

The term epithelial-to-mesenchyme plasticity (EMP) has been used recently to
describe the dynamic and reversible regulation of EMT (Thompson and Haviv
2011). For example, the miR200s regulates mtET and metastatic lung colonization
in breast cancer (Korpal et al. 2011), suggesting that flexible transition between
these two states was crucial for metastatic progression. It would be of considerable
interest to investigate markers of energy metabolism in this model to determine
whether EMP is associated with concurrent metabolic changes.

In addition to regulating translation of nuclear transcripts in the cytoplasm,
miRNAs have also been found in mitochondria targeting both nuclear and
mitochondrially-encoded genes. For example, miR-181c has been shown to enter
mitochondria to remodel cytochrome oxidase (COX I) by inactivating mtET and
promoting glycolysis (Das et al. 2012). Localization of mature miRNAs has been
demonstrated for mitochondria isolated from human muscle cells (Barrey
et al. 2011). These mito-miRNAs are nuclear encoded and targeted to mito-
chondrial tRNA and rRNA genes (Bandiera et al. 2011). Mito-miRNAs are likely
to facilitate fast changes in mitochondrial gene expression to meet changes in
metabolic demands of the cell.

Together this brief overview shows that altered miRNA expression patterns in
tumors alter the balance between OXPHOS and glycolysis in favor of glycolysis.
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Concluding Remarks

Metabolic flexibility is a consequence of epigenetic reprogramming events
that are driven by a constantly changing tumor microenvironment imposed on
progressive genetic change. While the nature of the constraints on metabolic
flexibility is poorly understood, environmental conditions such as hypoxia
and nutrient availability make a major contribution to metabolic flexibility in
tumors with evolving cell populations. The complex interplay between
genetic and epigenetic changes promotes glycolytic energy metabolism
even in the presence of oxygen and appears to favor cancer cells competing
for oxygen and nutrients.

What has become increasingly clear in the last couple of years is that
anticancer treatment strategies that rely on single-target approaches will only
produce short-term gains as cancer cells will adapt by changing their genetic
and epigenetic makeup. Highly complex tumor biology demands strategic
therapeutic approaches that address different aspects of this biology simul-
taneously to circumvent metabolic compensation. It is particularly important
that these strategies are adapted to the ongoing metabolic changes that drive
the different stages of tumorigenesis.
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3.1 Introduction

The word autophagy, from the Greek for self-eating, refers to the catabolic pro-
cesses through which the cell recycles its own constituents in the lysosome
(Mizushima et al. 2008; Yang and Klionsky 2010). This chapter will focus on
macroautophagy (hereafter referred to as autophagy), because the evidence that the
other forms of autophagy play any role in tumor biology is relatively limited.

Autophagy starts with the formation of a double-membrane bound vacuole,
known as the autophagosome, that engulfs fractions of the cytoplasm in either an
unselective or a selective manner via the activity of the autophagy adaptors
(SQSTM1/p62, NBR1, NDP52, and optineurin) that form a bridge between the
target and the growing autophagosome membrane (Mizushima and Komatsu 2011;
Boyaet al. 2013). After being formed, most autophagosomes receive input from the
endocytic vesicles to form an amphisome before the autophagic cargo undergoes
complete degradation in the lysosomal lumen (Fig. 3.1). Basal rate autophagy
exercises quality control on the cytoplasm of most cells by removing damaged
organelles and protein aggregates. Autophagy is a response to a range of stimuli and
in most cases protects cells against stressful situations (Kroemer et al. 2010). In
response to starvation, autophagy is important for the lysosomal recycling of
metabolites into the cytoplasm, where they are reused either as a source of energy
or to provide building blocks for the synthesis of new macromolecules.

The discovery of ATG (autophagy-related) genes in eukaryotic cells and that of
the role of ATG proteins in the formation of autophagosomes were milestones in
the understanding of the molecular aspects of autophagy (Mizushima et al. 2011).
ATG proteins are recruited on a membrane known as the phagophore. Several
cellular pools of membranes contribute to the formation of the phagophore
(Hamasaki et al. 2013; Moreau et al. 2013). The hierarchical intervention of ATG
with other proteins leads to the elongation and the closure of the membrane to form
the autophagosome (Fig. 3.1). At a molecular level, the first step in the initiation of
autophagy is the activation of a molecular complex containing the serine/threonine
kinase ULK1 (the mammalian ortholog of Atgl in yeast). The activation of this
complex is downregulated by MTORC1, which integrates multiple signaling path-
ways that are sensitive to the availability of amino acids, ATP, growth factors, and
the level of ROS. The expansion, curvation, and closure of the autophagosome are
controlled by another molecular complex including phosphatidylinositol 3-kinase
(PI3K) and Beclin 1 (the mammalian ortholog of Atg6 in yeast), which allows the
production of phosphatidylinositol 3-phosphate (PI3P) to occur, and the subsequent
recruitment of PI3P-binding proteins WIPI1/2 and two ubiquitin-like conjugation
systems ATG12-ATGS5-ATG16L and LC3-PE. The final fusion with lysosome
requires small Rab GTPases and the transmembrane protein LAMP2. Acid hydro-
lases and the cathepsins present in the lysosomal lumen degrade the
autophagosomal cargoes.

Advances in our understanding of the autophagic process paved the way for the
discovery of the importance of autophagy in development, tissue homeostasis,
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Fig. 3.1 Overview of the autophagy pathway. Autophagy is orchestrated by the coordinated
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which Atg proteins are hierarchically recruited to form the isolation membrane of the phagophore.
Through a process of maturation and fusion, these membrane-bound structures become
autolysosomes, degrading their contents and releasing amino acids, fatty acids, nucleotides, and
other molecules required to maintain cell metabolism



48 A. Hamai et al.

metabolism, the immune response, and various diseases (Deretic and Levine 2009;
Ravikumar et al. 2010; Rubinsztein et al. 2012; Choi et al. 2013). Interest in the role
of autophagy in cancer stems from the discovery that BECN/ (the gene that encodes
Beclin 1, the human ortholog of the yeast Atg6) is a haplo-insufficient tumor
suppressor gene (Rubinsztein et al. 2012; Choi et al. 2013). In fact, it appears that
autophagy is under the control of a large panel of oncogenes and products of tumor
suppressor genes (Botti et al. 2006; Maiuri et al. 2009). However, the role of
autophagy in tumors is complex and ranges from a tumor-suppressive role to a
role in helping cells to adapt to the environment. In cancer cells, autophagy fulfills a
dual role, having both tumor-promoting and tumor-suppressing properties (Liu and
Ryan 2012; White 2012; Lorin et al. 2013). By maintaining cellular homeostasis in
healthy cells, autophagy prevents DNA damage and genomic instability, which can
lead to tumoral transformation. Autophagy can also facilitate oncogene-induced
senescence or protect tumors against necrosis and inflammation, thus limiting
tumor growth. On the other hand, autophagy can contribute to tumor progression,
by allowing tumor cells to survive stressful conditions and sustaining the deep
metabolic reorganization that cancer cells undergo after oncogenic transformation.
Autophagy also appears to be important in supporting tumor development by
maintaining the survival and self-renewal of cancer stem cells (Gong et al. 2013;
Guan et al. 2013; Pan et al. 2013).

In this chapter, we will discuss the interplay between autophagy and tumor cell
metabolism, the relationship between cell metabolism and the regulation of
autophagy by acetylation, and finally the emerging role of autophagy in cancer
stem cells.

3.2 Autophagy and Metabolic Adaptation

One of the hallmarks of tumors is the upregulation of cytosolic glycolysis: the
conversion of glucose into lactate under hypoxic or normoxic conditions by cancer
cells. This “aerobic glycolysis,” despite the fact that it reduces efficiency (thus
increasing the rate of energy production), is associated with a reduction of the
activity of mitochondrial electron chain transport (DeBerardinis 2008). This meta-
bolic reprogramming, also known as the “Warburg effect,” is induced by the
oncogenic transformation of tumor cells (Fig. 3.2). This metabolic adaptation is
associated with cell transformation and seems to require the activation of onco-
genes, such as RAS (Dang and Semenza 1999; Manning and Cantley 2007), AKT
(Manning and Cantley 2007), and MYC (Gordan et al. 2007), and the inhibition of
tumor suppressors, such as p53 (Bensaad et al. 2006; Matoba et al. 2006; Kawauchi
et al. 2008). MYC and RAS transformation impair acetyl-CoA production, an
essential component of the mitochondrial tricarboxylic acid (TCA) cycle, by
blocking its generation from the decarboxylation of pyruvate (White 2012). RAS
transformation also impairs acetyl-CoA production by blocking the B-oxidation of
fatty acids. In addition, MYC transformation stimulates glycolysis, glutaminolysis,
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Fig. 3.2 The autophagy and metabolic coupling between tumor and stroma cells. In a context of
metabolic stress, cancer cells catabolize glutamine to form a-ketoglutarate, which enters the
tricarboxylic acid (TCA) cycle—also known as Krebs cycle—and increases mitochondrial activ-
ity, thus promoting survival and growth. The activation of oncogenes, such as RAS and MYC,
seems to orchestrate the metabolic changes associated with cell transformation. RAS diminishes
the pool of acetyl-CoA by three known mechanisms. First, RAS can activate lactate dehydro-
genase (LDH), which converts pyruvate to lactate, which is excreted. Second, RAS can activate
hypoxia-inducible factor (HIF), thus inhibiting pyruvate dehydrogenase (PDH) and the conversion
of pyruvate to acetyl-CoA (Ac-CoA). Third, RAS inhibits liver kinase B1 (LKB1), blocking AMP
kinase (AMPK) and B-oxidation. Defective autophagy results in reduced citrate levels, impaired
TCA cycle function, and reduced mitochondrial respiration. Autophagy can potentially compen-
sate for the metabolic reprogramming by RAS by degrading proteins and lipids to provide amino
acid and fatty acid substrates that produce acetyl-CoA. Tumor cells might also compensate for
autophagy impairment by upregulating glycolysis, glutaminolysis, or the reductive carboxylation
of a-ketoglutarate (a-KG) from glutamine. The transcription factor Myc favors the “Warburg
effect” by increasing the abundance of key glycolytic enzymes, including Glutl, LDHA, and
PDK1. Myc stimulates glutamine metabolism by increasing the abundance of glutamine trans-
porters (SLC1AS) and glutaminase (GLS). a-KG is produced via the double deamination of
glutamine, a process known as glutaminolysis. Glutamine is first deaminated by GLS to produce
glutamate. Glutamate is then converted to a-KG by glutamate dehydrogenase (GDH). Ammonia is
generated as a by-product of glutamine deamination and induces autophagy in an autocrine or
paracrine fashion through an unknown mechanism, although the kinase ULK1 (unc-51-like kinase
1) seems to be required. Ammonia is a diffusible factor that stimulates the autophagy program in
the adjacent stroma cells (in particular, cancer-associated fibroblasts CAFs). Increased aerobic
glycolysis occurs in stromal cells, leading to the generation and secretion of high levels of
glutamine into the tumor microenvironment, which maintains the tumor cell metabolism. In
contrast, ammonia does not interfere with the activity of mTOR, which is a key inhibitor of
autophagy. Cancer cells are rendered less sensitive to ammonia by the upregulation of TIGAR, a
p53-inducible regulator of glycolysis. The ability of TIGAR to limit autophagy is closely corre-
lated to the suppression of ROS and is p53 independent. Interestingly, the levels of Acetyl-CoA
and of NAD*/NADH, which are both produced as a result of metabolic activity, can regulate the
outcome of autophagy through acetylation-associated, posttranscriptional modifications of
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and the uptake of both glucose and glutamine (Marino and Kroemer 2010). Acti-
vation of RAS is also able to induce autophagy in tumor cells (Guo et al. 2011; Lock
et al. 2011; Yang and Kimmelman 2011). Tumor cells preferentially use aerobic
glycolysis as an energy source, but cancer cells also depend on functional mito-
chondria for their growth and development. Autophagy might be essential to
provide substrates for anaplerotic reactions, such as amino acids through protein
degradation or lipids through the degradation of membrane organelles or of lipid
droplets, in order to sustain mitochondrial metabolism (White 2012). As most of the
glucose is consumed by glycolysis, glutamine becomes the main substrate for the
mitochondrial TCA cycle and the generation of fatty acids and NADPH. Autophagy
supports the profound metabolic rearrangements that cancer cells undergo, and this
makes them highly dependent on autophagy for survival.

3.2.1 Autophagy and the Tumor Microenvironment

Tumor development (in particular that of solid tumors) depends on the exchanges
that occur between cancer cells and their cellular and extracellular microenviron-
ments [for reviews, see Mantovani et al. (2008), McAllister and Weinberg (2010)].
Various cell populations, including macrophages, lymphocytes, vascular cells, and
carcinoma-associated fibroblasts, supplying growth factors, inflammatory cyto-
kines, angiogenic factors, and elements of the extracellular matrix compose the
tumoral stroma. The tumor cell microenvironment plays a major role in cancer
progression by promoting neoangiogenesis, tissue remodeling, and the secretion of
several factors (e.g., chemokines, cytokines, etc.) by immune cells. The role of the
microenvironment in the regulation of autophagy in tumor cells in conjunction with
the action of tumor cells on autophagy levels in cells in the surrounding stroma is of
particular interest. The physiologically extreme conditions of the tumoral micro-
environment (nutrient limitation/starvation, acidic pH, hypoxia, oxidative stress,
immune responses) promote the autophagic response of cancer cells (i.e., survival
and meeting the high energy demands of cancer cell metabolism). Tumor cells can
also influence the autophagic activity of stromal cells. Understanding how
autophagy regulates cancerous epithelial cells, fibroblasts, and immune cells and
consequently the interactions between tumors and the stromal metabolism can be
expected to provide new insights into the role of autophagy in the development and
progression of tumors.

Several studies have shown that tumor cells release autophagy inducers into the
microenvironment. These releases influence the autophagic activity of surrounding
stromal cells, resulting in the secretion of high-energy metabolites (such as lactate

Fig. 3.2 (continued) autophagic key components that constitute the link between metabolic status
and autophagy. HAT's histone acetylases, HDACs histone deacetylases, OAA oxaloacetate, PDK/
pyruvate dehydrogenase kinase 1, and the tricarboxylic acid (TCA) cycle
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and ketones) as well as chemical building blocks such as amino acids (glutamine
and nucleotides) that promote cancer development and progression (Marino and
Kroemer 2010; Cheong et al. 2011). These catabolites stimulate the oxidative
phosphorylation metabolism and mitochondrial biogenesis in epithelial cancer
cells. A novel paradigm, known as the “autophagic tumor stroma model of cancer
metabolism” or the “reverse Warburg effect,” has recently been proposed to explain
tumor metabolism (which is reprogrammed by oncogenic stress as mentioned
above), in which the tumor stroma generates the fuel required for cancer growth
(Pavlides et al. 2010). In this model, the induction of autophagy and the autophagic
destruction of mitochondria force stroma cells to undergo glycolysis result in the
production and transfer of energy-rich nutrients to anabolic tumor cells, which use
them to fuel their mitochondrial metabolism (Eng et al. 2010; Martinez-Outschoorn
et al. 2012). One autophagy inducer, ammonia, generated by amino acid catabolism
including glutaminolysis, has been identified as a diffusible factor (Cheong
et al. 2011); see Fig. 3.2. Ammonia stimulates autophagy in the neighboring stroma
cells, leading to protein degradation, the generation of high glutamine levels, and
the secretion of glutamine into the tumor microenvironment. Cancer cells convert
glutamine into glutamate, thus releasing ammonia. Glutamate is further catabolized
to o-ketoglutarate, a substrate of the tricarboxylic acid (TCA) cycle, which
increases the mitochondrial activity of epithelial cancer cells. Epithelial cancer
cells are less sensitive to ammonia, because TIGAR is upregulated (Ko et al. 2011).
Several groups of researchers have demonstrated that autophagic cancer-associated
fibroblasts (CAFs) produce a key source of energy-rich glutamine to “fuel” the
mitochondrial activity of cancer cells. A vicious catabolic cycle is set up between
the tumor stroma and anabolic tumor cell expansion; this highlights the metabolic
coupling between epithelial and stroma cancer cells (in cancers of different histo-
logical types) (Kalluri and Zeisberg 2006). These studies show that glutamine
differentially affects individual cell types within the tumor microenvironment. In
tumor epithelial cells, glutamine increases mitochondrial biogenesis, providing
protection against apoptosis and reducing autophagy. In contrast, glutamine
decreases Caveolin-1 (Cav-1) expression in the stromal compartment of the
tumor and increases autophagy. The loss of Cav-1 expression in cancer-associated
fibroblasts is a marker of a lethal tumor-promoting microenvironment and is
associated with poor prognosis in several types of cancers, such as advanced
prostate cancer (Di Vizio et al. 2009), breast cancer (Sotgia et al. 2011; Pavlides
et al. 2012), and metastatic melanoma (Wu et al. 2011). The use of autophagy
inhibitors could not only promote tumor cell death by targeting tumor cells directly
but also uncouple the epithelial and stromal compartments, leading to a decrease in
epithelial mitochondrial activity.
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3.2.2 Autophagy and Hypoxia

Limited access to oxygen owing to inadequate tissue perfusion, i.e., hypoxia, is a
common feature of solid tumors. Hypoxia is a stimulus for inducing autophagy in
order to promote tumor cell adaptation to anaerobic conditions (Martinez-
Outschoorn et al. 2009; Mathew et al. 2007). The detection of markers of increased
autophagic activity in hypoxic tumor tissues has been described (Rouschop
et al. 2010). The transcriptional regulators that allow cells to adapt to hypoxic
environments are the hypoxia-inducible factors (HIFs) HIF-1o and HIF-2a. They
form a heterodimer with the constitutively expressed HIF-1 subunit. The oxygen-
sensitive transcription factors HIF-1a and HIF-2a are tightly controlled through
oxygen-dependent hydroxylation by prolyl hydroxylases. This hydroxylation leads
to their degradation by the von Hippel-Lindau (VHL) ubiquitin-ligase under
normoxic conditions. Under hypoxic conditions, the activity of prolyl hydroxyl-
ation is reduced, and both HIF-1a and HIF-2a are stabilized. These HIF complexes
determine hypoxia-induced gene expression, including the production of the Bcl-2
homology-domain-3, which contains the proteins BNIP3 and BNIP3L (Semenza
2010). These BH3-only proapoptotic genes were initially described as promoters of
cell death (Webster et al. 2005; Lee and Paik 2006), and now the BNIP3/BNIP3L
proteins are known to destabilize inhibitory interactions between their antiapoptotic
counterparts Bcl-xL/Bcl-2 and Beclin 1, leading to autophagy and promoting
survival (Bellot et al. 2009). Autophagy induced by BNIP3 (known as mitophagy)
results in the clearance of damaged mitochondria, which are a major source of cell-
damaging reactive oxygen species (ROS), thus reducing ROS production (Xing
et al. 2008). HIFs also regulate autophagy via TSC1/TSC2 activation and indirectly
through a negative feedback mechanism, on MTORCI activity (Rabinowitz and
White 2010). Interestingly, activation of HIF by RAS impairs acetyl-CoA produc-
tion by activating pyruvate dehydrogenase kinase 1 (PDK1), which inhibits pyru-
vate dehydrogenase (PDH). It is worth noting that RAS also impairs acetyl-CoA
production through other mechanisms, including lactate dehydrogenase (LDH)
stimulation, which depletes pyruvate, and by inhibiting liver kinase B1 (LKB1)
and blocking AMP-activated protein kinase (AMPK) activation and preventing the
mobilization of lipid stores and f-oxidation. Thus, RAS potentially leaves cells
dependent on autophagy to provide substrates, such as amino acids and fatty acids,
for acetyl-CoA biosynthesis (Fig. 3.2). Stroma cells, which also inhabit the same
environment (oxidative stress, hypoxia) as tumor cells, contribute to the survival
and proliferation of these cells (McAllister and Weinberg 2010). Indeed, ROS
which are produced during hypoxia also induce the stabilization of HIF1/2a and
the activation of NF-kB (a master regulator of inflammation) in CAFs (Eng and
Abraham 2011). This stabilization leads to the autophagic degradation of Cav-1, a
shift from mitochondrial oxidative phosphorylation towards aerobic glycolysis,
with a loss of mitochondrial activity, and the increased production and release of
L-lactate and ketone (Chiavarina et al. 2010). Furthermore, the ammonia produced
by tumor cells could diffuse into the oxygen-depleted regions and thus help to
sustain the survival of tumor cells (Eng et al. 2010).
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3.3 Metabolism and Posttranslational Modification
Regulation of Autophagy

Autophagy involves the hierarchical assembly and coordinated actions of products
of the Arg family of genes. At least 30 members of the Atg (autophagy-related)
protein family and their binding partners that orchestrate this degradative process
have been identified. Autophagy is strictly controlled by posttranslational modifi-
cations, such as tyrosine or serine/threonine phosphorylation, lysine/arginine methy-
lation, SUMOylation, lipidation, and ubiquitination of keys components of
autophagy [for review, see McEwan and Dikic (2011)]. Henceforth, evidence is
accumulating that protein lysine acetylation, which results from the transfer of an
acetyl-group from acetyl-CoA to the e-amino group of the lysine residue, is an
evolutionarily conserved metabolic regulatory mechanism involved in coordinating
various different metabolic pathways and autophagy (Zhao et al. 2010a). In addition,
these posttranslational modifications concern key proteins, other than the histone
proteins classically located both in the cytoplasm (including the core autophagy
proteins, cytoskeletal proteins) and in the nucleus (such as transcriptional factors,
histones), and modulate, thus influencing the rate at which autophagy occurs, which
is known as the autophagic flux. This reaction is catalyzed by histone acetylases
(HATS), which are also known as lysine acetyltransferases (such as p300), and the
reverse reaction is accomplished by histone deacetylases (HDACs) or lysine
deacetylases, which are zinc-dependent or NAD"-dependent enzymes (such as
SIRT1/2 sirtuins). The use of HDAC inhibitors and the studies of HATs and
HDACs gain- and loss-of-function mutants highlight the pivotal role played by
HATSs and HDAGC: in autophagy regulation, where they act at multiple levels.

3.3.1 Posttranscriptional Modification Regulation at
the Cytoplasmic Level

Studies have shown that resveratrol, an activator of the deacetylase Sirtl, and
spermidine, an inhibitor of histone acetylases, influence the acetylation-modified
proteome, induce autophagy, and increase longevity in yeast, nematodes, and flies
(Eisenberg et al. 2009; Morselli et al. 2011). Changes in the acetylation status of
>100 proteins that form part of the central network of autophagic regulators or
executors have been identified after treatment with resveratrol and spermidine
(Morselli et al. 2011). Since then, reversible cytoplasmic acetylation of core
autophagy components, such as Atg5, Atg7, Atg8, and Atgl2, has been reported
to regulate autophagosome formation both in yeast and mammalian cells (McEwan
and Dikic 2011), and it has been shown that acetylation of Atg proteins can either
promote or inhibit their function in autophagy. In mammalian cells under nutrient-
rich conditions, the acetyltransferase p300 directly interacts with Atg7 and acety-
lates the autophagy proteins Atg5, Atg7, Atg8, and Atgl2 to inhibit autophagy
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(Lee and Finkel 2009). In contrast, during starvation, p300 dissociates from Atg7,
and the NAD"-dependent deacetylase Sirtl removes acetyl groups from Atg7,
Atg5, Atgl2, and Atg8, which allows autophagy to proceed (Lee et al. 2008).
Some aspects of the phenotype of Sirtl knockout mice resemble those of Atg5-
knockout mice, which suggest that Sirt1-dependent deacetylation could be impor-
tant for basal autophagy and neonatal survival (Lee et al. 2008). Another histone
acetylase, Esalp in Saccharomyces cerevisiae (Yi et al. 2012) and its mammalian
ortholog TIP60 (Lin et al. 2012) have recently been shown to act as evolutionarily
conserved regulators of autophagy by enhancing another posttranslational modifi-
cation of Atg3 or ULKI, respectively, and protein lipidation of Atg8/LC3 (in the
yeast). Acetylation of Lys183 enhanced the lipid-conjugating activity of Atg3p, and
acetylation of Lys19 and Lys48 promoted the interaction between Atg3p and
Atg8p, which is necessary for the conjugation of Atg8p to PE in yeast (Yamaguchi
et al. 2010). The reverse reaction is accomplished by the deacetylase Rpd3, which
contributes to attenuating the formation of autophagosomes during starvation. More
interestingly, it has been demonstrated that Atg3 acetylation is subject to both
spatial and temporal regulation during nitrogen starvation in the yeast. Thus, the
acetyltransferase Esalp/TIP60 has been demonstrated to be a positive regulator of
autophagy in response to nitrogen deprivation in yeast and growth factor or serum
deprivation in mammalian cells, respectively (Lin et al. 2012; Yi et al. 2012).
Consistent with an essential role of TIP60 in autophagic induction, TIP60—/—
mouse blastocysts failed to undergo implantation and died around embryonic day
3.5 at a time when autophagic activity is high during normal implantation
(Hu et al. 2009; Mizushima and Komatsu 2011).

In addition, the acetylation of autophagy substrates can promote their lysosomal
degradation [such as that of the cytotoxic huntingtin (HTT) protein] (Jeong
et al. 2009), and the acetylation of microtubules and of the actin cytoskeleton,
which provide support for intracellular transport/movement and also influence the
occurrence/outcome of autophagy (Kochl et al. 2006). Microtubule stability and
function are regulated by the reversible acetylation of o-tubulin mediated by
HDACG682 and ELP3/KAT9 acetylases (Creppe et al. 2009), which also regulate
the dynamics of actin (Zhang et al. 2007) and of SIRT2 deacetylase (North
et al. 2003). In response to nutrient deprivation, tubulin acetylation on Lys40
increases in both the labile and stable microtubule fractions and promotes
autophagy by favoring the activation and the association of key components for
initiating autophagosome formation and maturation. Indeed, whereas the markers
of phagophore/autophagosome formation (BECNI, class III PtdIns3K, WIPII,
ATGI12-ATGS5 and LC3-II) are specifically recruited on labile microtubules,
mature autophagosomes (marked with LC3-II) can move along stable microtubules
(Geeraert et al. 2010). In addition, tubulin acetylation is also essential for the fusion
of autophagosomes to lysosomes (Kochl et al. 2006; Xie et al. 2010).

It is worth noting that HATs and HDACs are also subjected to reversible
acetylation posttranscriptional modifications that provide a mechanism of fine-
tuning and control of the activity of HATs and HDACs. For example, SIRT2
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controls the self-acetylation of p300, which may also acetylate SIRT2 and inhibit its
enzymatic activity (Black et al. 2008; Han et al. 2008).

3.3.2 Posttranscriptional Modification Regulation at
the Nuclear Level

In addition to being regulated by cytoplasmic acetylation reactions, autophagy can
also be regulated by the acetylation of nuclear proteins, which can influence the
expression of genes encoding proteins involved in autophagy. These nuclear targets
of acetylation-mediated regulation include transcription factors, such as Foxo3
(Kume et al. 2010), and histones (Eisenberg et al. 2009; Morselli et al. 2011). An
example of the expression regulation of autophagy genes by histone acetylation is
the increased expression of ATG7 gene, resulting in spermidine-mediated histone
hyperacetylation of the promoter region of the gene (Eisenberg et al. 2009). More
recently, it has been demonstrated that the induction of autophagy is coupled to the
reduction of histone H4 lysine 16 acetylation (H4K16ac) via the downregulation of
the histone acetyltransferase hMOF (also designated KATS8 or MYST1), which
regulates the outcome of autophagy and initiates a regulatory feedback loop
(Fullgrabe et al. 2013). At a genome-wide level, H4K 16 deacetylation is associated
predominantly with the downregulation of autophagy-related genes (including
genes belonging to the autophagic core machinery, such as ATGY9A,
GABARAPL2, MAPILC3B, ULKI1, ULK3, VMP1). Antagonizing the down-
regulation of H4K16ac when autophagy is induced results in the promotion of
cell death (associated with an overstimulation of autophagic flux), indicating that
H4K16ac is a key determinant of survival versus death responses to the induction of
autophagy.

In the case of the transcription factors belonging to the FOXO family members
in mammalian cells, FOXO1 and FOXO3 have been shown to play important roles
in regulating autophagy in skeletal and cardiac muscles by activating genes that are
involved in autophagosome formation (such as MAPILC3, PIK3C3, GABARAPLI,
ATG12, ATG4, BECNI, ULKI, and BNIP3) (Mammucari et al. 2007; Sengupta
et al. 2009; Zhao et al. 2010b). The multiple, posttranslational modifications
(including acetylation) undergone by the FOXO transcription factors control their
subcellular localization, DNA binding, and transcriptional properties (Van Der
Heide et al. 2004; Boccitto and Kalb 2011). The acetylation of FOXO1 and
FOXO3 is mediated by p300 acetyltransferase; it impairs their transcriptional
activities and inhibits autophagy (Matsuzaki et al. 2005; Hariharan et al. 2010).
The acetylation of FOXO1/3 promotes their subsequent phosphorylation by AKT1,
leading to their dissociation from DNA, and subsequent nucleocytoplasmic trans-
port (Matsuzaki et al. 2005; Tzivion et al. 2011). Under low-energy conditions,
deacetylation of FOXO1/3 is mediated by the sirtuin deacetylases, such as SIRT1
and SIRT2, inducing the expression of genes that are involved in autophagosome
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formation and also the gene that encodes PNPLA?2, which is a major lipase involved
in mobilizing fat from lipid droplets in mammals (Zimmermann et al. 2004; Gronke
et al. 2005; Wang and Tong 2009). In addition, it has been shown that
deacetylation-activated FOXO1 and FOXO3 activate the autophagic process in a
transcription-independent manner by direct protein—protein interaction with ATG7
in response to serum deprivation in the context of human cancer cells (Zhao
et al. 2010b).

3.3.3 Cross Talk Between Metabolism and Autophagy

Lysine protein acetylation can regulate the activity of the core components of
autophagy, thus making it possible to couple the regulation of autophagy and the
metabolic status of the cell. As already mentioned, autophagy ensures the mainte-
nance of cellular energy/metabolic homeostasis by regulating intracellular storage,
for example, by means of lipid mobilization (macrolipophagy) (Singh et al. 2009;
Dong and Czaja 2011; Singh and Cuervo 2012). In a context of starvation,
[-oxidation of fatty acids in the mitochondria results in lipid mobilization, leading
to the production of NADH and the coenzyme of p300, i.e., acetyl-CoA. Increased
levels of acetyl-CoA can produce a negative feedback by inhibiting starvation-
induced autophagy/macrolipophagy via p300-mediated acetylation of autophagic
components, and the associated lower level of NAD*/NADH can lead to the
inactivation of sirtuins, which in turn induces acetylation-associated autophagy,
which constitutes the link between metabolic status and autophagy (see as below).
In the context of Ras-driven cancers, which are more dependent on autophagy than
normal cells in order to survive nutrient starvation or metabolic stress, Atg7
deficiency in lung tumor causes a shift from the development of carcinoma to
oncocytomas which are rare and benign tumors that accumulate respiration-
defective mitochondria (Guo et al. 2013). This effect has been attributed to defec-
tive mitochondrial fatty acid oxidation, which confirms that mitochondrial function
maintained by Atg7 is critical for the metabolism and growth of Ras-driven
NSCLC. In addition, it was also demonstrated in this study that autophagy sup-
presses the progression of K-Ras-induced lung tumors to oncocytomas, promoting
the carcinoma fate.

Thus, acetylation joins phosphorylation, ubiquitination, and lipidation in the
complex regulatory network controlling autophagy and constitutes the connection
between autophagy and cellular metabolism. However, the mechanisms responsible
for the recruitment of the HATs and HDACs during starvation or metabolic stress—
thus controlling the acetylation of key components of autophagy and the initiation,
duration, and magnitude of autophagy—remain topics for further investigation.
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3.4 Autophagy, Metabolism, and Cancer Stem Cells

Recent work has highlighted the importance of the role played by autophagy in
cancer stem-cell maintenance and tumor development. Cancer stem cells are a
subpopulation of cells within tumors that are responsible for tumor recurrence and
metastasis and tumor resistance to anticancer therapies. Autophagy seems to play a
critical role in maintaining and regulating all the basic properties of both stem cells
and cancer stem cells including survival, self-renewal, quiescence, differentiation,
and proliferation (Cufi et al. 2011; Mortensen et al. 2011; Oliver et al. 2012; Salemi
et al. 2012; Guan et al. 2013; Pan et al. 2013; Phadwal et al. 2013). We recently
showed that autophagy is also crucial for the maintenance and tumorigenicity of
cancer stem cells in breast cancer (Gong et al. 2012). Primary breast cancer stem
cells have been shown to exhibit a higher rate of autophagy than their non-stem
counterparts. Moreover, Beclin 1 is critical for the maintenance and tumor devel-
opment of enriched cancer stem-cell tumors, in a xenograft mouse model, whereas
its expression limits the development of classical xenografts (Gong et al. 2012).
These findings indicate the existence of two separate, context-dependent
autophagic programs that are regulated or respond in opposite ways by or to Beclin
1 (Koukourakis et al. 2010; Gong et al. 2012). Starvation- and hypoxia-related
autophagy is a cytoprotective adaptive mechanism used by CSC to resist micro-
environmental stresses (Guan et al. 2013). Cytogenetically abnormal, spheroid-
forming, tumorigenic, and invasive neoplastic epithelial cells preexist in human
breast ductal carcinoma in situ and require cellular autophagy to survive (Espina
and Liotta 2011).

The suppression of autophagy by chloroquine abolishes spheroid outgrowth and
survival in culture. These findings indicate that autophagy is necessary for the
survival, growth, and invasion of the cytogenetically abnormal, tumorigenic
DCIS cells (Espina and Liotta 2011; Guan et al. 2013). Similar data were obtained
when knockdown of an essential gene of autophagy or a pharmacological inhibitor
of autophagy, such as salinomycin, was employed (Yue et al. 2013).

Another study suggests that autophagy could promote the survival of pancreatic
cancer stem cells (Singh et al. 2012). Moreover, autophagy also plays an essential
role in glioblastoma stem-cell migration and invasion by modulating ATP meta-
bolism and remodulating the subcellular structure, for instance, by mitochondrial
fusion (Galavotti et al. 2013).

What is the possible contribution of autophagy to the metabolic shift of cancer
cells towards enhanced glycolysis (the “Warburg effect”) during the acquisition of
stemness by CSC-like cell populations? This question calls for further investi-
gation. If a “Warburg effect” does indeed play a causal role in the gain of stemlike
properties by protecting tumor-initiating cells from the pro-senescent effects of
mitochondrial respiration-induced oxidative stress, the ability of autophagy to
functionally engage the glycolytic metabolite may generate a cellular state that is
metabolically endowed with immortalization.
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Paradoxically, autophagy appears to play two opposing roles: it acts as a facili-
tator of the “Warburg effect,” but it also acts as an antagonist of the “Warburg
effect.” Both the inhibition and promotion of autophagy appear to impair the
occurrence of cancer cells with tumor-initiating capacities to a similar extent. In
normal tissues, autophagy-mediated damage mitigation may efficiently suppress
tumorigenesis; conversely, macromolecular recycling may support CSC survival
by buffering bioenergetic demands under stressful metabolic and microenvironmen-
tal conditions. Therefore, the activation of autophagy in normal tissues operates as a
bona fide tumor-suppressive mechanism, whereas the inhibition of autophagy may
be extremely beneficial for anti-CSC therapy in established tumors. However, both
autophagy promoters (e.g., MTOR inhibitors) and autophagy inhibitors (e.g., chloro-
quine) block tumorigenesis and cancer progression by eliminating CSCs. The
explanation of this “autophagy paradox” may lie in the interaction between tumor
cells and adjacent, autophagic stromal cells, as described in Sect. 3.2 (Fig. 3.2).

To conclude, autophagy appears to play two opposing roles in tumorigenesis.
The current hypothetical model describes autophagy as suppressing tumor initia-
tion, but promoting tumor development and progression (Mathew et al. 2007;
Koukourakis et al. 2010).

Conclusion

As our understanding of the biological functions of autophagy increases, the
involvement of autophagy in cancer becomes a critical point of concern. The
molecular cross talk between autophagy and cell death was initially consi-
dered to be a major determinant in the balanced role of autophagy in tumor
suppression and tumor progression (Scarlatti et al. 2009). However, this
relationship probably represents only aspect of the role of autophagy in
cancer. The roles played by autophagy in tumor immunogenicity, inflam-
matory response, metabolism, proliferation, and the behavior of tumor-
initiating cells are key questions for present and future studies (Michaud
et al. 2011; Cheong et al. 2012; White 2012; Leone and Amaravadi 2013;
Maes et al. 2013; Pan et al. 2013). It is now clear that the cross talk between
autophagy and metabolism is an important aspect of cancer that contributes to
the metabolic demand of cancer cells and also to the posttranslational modifi-
cations of proteins, i.e., acetylation, to modulate autophagic activity
(McEwan and Dikic 2011). As discussed in this chapter, it is clear that
autophagy plays an important role in the self-renewal of cancer stem cells.
Whether autophagy also supports metabolism in cancer stem cells calls for
further investigation (Shyh-Chang et al. 2013). Another important aspect is
how basic knowledge about the autophagic process can be translated into
therapeutic interventions. It is reasonable to speculate that autophagy modu-
lation should be viewed as a potential therapeutic approach in cancer. Several
phase I/II clinical trials are in progress using lysosome-inhibitor drugs, such
as chloroquine, rapamycin, or hydroxychloroquine, alone or in combination

(continued)
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with chemotherapy, to treat a range of hematological and solid tumors
(Rubinsztein et al. 2012; Choi et al. 2013). However, it is not possible to
exclude the possibility that the beneficial effects of these drugs could be
independent of their blocking effect on the autophagic pathway. The devel-
opment of more specific autophagy modulators, both for therapeutic investi-
gations and to allow acute modulation of this process for cell biology and
physiological studies, is a major challenge for the future.
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4.1 Introduction

Oxygen is a prerequisite for animal life and it is the electron acceptor in mito-
chondrial metabolism providing the organism with energy, ATP, from carbo-
hydrates. In higher animals, circulatory systems have evolved to provide all cells
in the body with sufficient oxygen. Gradients of oxygen availability occur naturally
as oxygen diffuse from providing vessels into consuming tissues. During develop-
ment and growth, low oxygen levels, or hypoxia, naturally arise in tissues and the
response from hypoxic cells drives the co-development of the vasculatory system.

Hypoxia can arise by physiological and pathophysiological processes such as
muscle exercise, tissue growth, wounding, fibrosis, inflammation and cancer.
Inflammation, fibrosis and wound (healing) are frequently concurrent with malig-
nancy and therapy. Smoking cigarettes leads to mild tissue hypoxia through the
action of carbon monoxide (Sagone et al. 1973), and conditions associated with
smoking such as chronic obstructive pulmonary disease (COPD) can further lower
oxygenation locally as well as systemically.

Solid tumours are frequently hypoxic since maintaining oxygen homeostasis
becomes increasingly difficult as the tumours grow. Thomlinsson and Gray
reported already in 1955 that poor perfusion and hypoxia led to internal necrosis
in solid tumours (Thomlinson and Gray 1955). Cell growth leads to compromised
perfusion by pushing cells further away from existing vessels as well as adding to
intra-tumour pressure that disturbs the function of these vessels. The tumour-
induced vessels are malformed and leaky, which further contributes to poor per-
fusion and increased intra-tumour pressure (Fig. 4.1) (Chung et al. 2010). The net
effect is regional hypoxia, shortage of nutrients and accumulation of metabolic
waste products affecting the pH in the tumour. Para-malignant conditions such as
increased susceptibility to venous embolism and anaemia may further contribute to
low oxygenation of both cancerous and stromal tumour cells.

Hypoxic conditions elicit cellular responses that strive to preserve energy and
monitor the generation of reactive oxygen species (ROS). Normal cells respond to
low oxygen levels by repression of proliferation, decreased rate of oxidative
phosphorylation, increased glycolysis and increased generation of angiogenic fac-
tors to restore perfusion. The hypoxic response in tumour cells deviates to varying
degrees from that of normal cells. The Warburg effect, or increased utilisation of
glycolysis for energy even when oxygen is available (Cairns et al. 2011; Koppenol
et al. 2011), may prime tumour cells to better withstand hypoxic conditions. The
occurrence and selection for tumour cells that can survive and grow under harsh
intra-tumour conditions allow continued tumour growth. Low oxygenation in
tumours is more or less concurrent with nutrient deprivation. Depending on the
reason for hypoxia and the local demand for oxygen and glucose, glucose may
diffuse over a wider tissue range than oxygen, and tumour cells can thereby have
enough glucose to compensate for its less efficient utilisation in energy production
via glycolysis. Thus, hypoxic and hypoglycaemic tumour cells are different, but
partially overlapping, populations (Papadogiorgaki et al. 2013).
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Fig. 4.1 Several conditions contribute to tumour hypoxia. Growth of the cancer cells pushes the
cells further from the provisioning capillaries increasing the diffusion distance for oxygen and
nutrients. Embolism or collapse of tumour vessels can cause loss of circulation. The tumour-
induced vasculature is often malformed, instable and inefficient with dead-ends and shunts
between arterial and venous flows. Republished with permission © Annika Jogi

This chapter will cover tumour hypoxia and the hypoxic response in relation to
epithelial-to-mesenchymal transition (EMT) and cancer stem cells (CSC) pivotal
for tumour progression/metastasis. I will discuss the impact of hypoxia on signal-
ling pathways, which are well known to influence the EMT and CSC phenotypes
such as MYC-, Notch- and Wnt/beta-catenin signalling.

4.1.1 Tumour Hypoxia

Tumour hypoxia has long been recognised to be associated with poor prognosis and
resistance to therapy, including radiation therapy (Gray et al. 1953; Moulder and
Rockwell 1987; Sorensen et al. 2013; Nordsmark et al. 2005; Hockel et al. 1996;
Jubb et al. 2010; Teicher 1994). The physiological conditions causing hypoxia
within the tumour have different duration and severity, which in turn leads to a
dynamic oxygen environment. Cells can suffer mild to severe oxygen deprivation
of short duration (acute), such as when a provisioning vessel is clogged by emboli
and subsequently cleared, or long-term (chronic) lack of oxygen that may be
slowly relieved by the outgrowth of new vessels (neoangiogenesis). Lasting severe
hypoxia/anoxia is not compatible with survival of mammalian cells.
Physiologically, hypoxia is defined as a state when oxygen availability falls
below the level necessary for the normal function of cells, tissues or organs. This is
a definition of limited value in tumours, which lack a normal function. Normal end
capillary oxygen partial pressure is in the range of 40-45 mmHg, corresponding to
about 6 % of the atmospheric gas pressure at sea level, with considerable variation
between and within organs. In an early study showing worse patient outcome in
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hypoxic tumours of cervical cancer, 10 mmHg partial oxygen pressure (about
1.3 %) was used as a cut-off (Hockel et al. 1996; Hockel and Vaupel 2001), and
later studies have often, but not uniformly, adopted 1 % as a default hypoxic
condition. In in vitro cell culture studies, 1 % of oxygen conditions have likewise
frequently been defined as hypoxic. Notably, incubators for culturing cells under
regulated oxygen conditions have a slightly increased pressure making it difficult to
convert in vitro oxygen percentage to partial pressure of oxygen. In addition, the
oxygen percentage is usually measured in the atmosphere surrounding the cell
culture dish, not in the medium or at the cell surface.

At oxygen levels around 1 %, the mitochondria and respiratory chain are still
functional, but their activity may be downregulated in cancer cells in favour of
aerobic glycolysis, i.e. the Warburg effect. The cellular response to hypoxia at this
oxygen level is, as far as we know today, mainly regulated by the hypoxia-inducible
transcription factors, HIFs. In experimental conditions, 0.1 % oxygen is often
denoted severe hypoxia, and at such conditions, other stress responses in addition
to HIF-induced transcription kick in, notably the unfolded protein response, UPR.
The UPR is HIF independent and initially promotes survival, but will with
prolonged stress lead to apoptosis.

Autophagy, another stress response induced by hypoxia, is partially regulated
through the HIFs (Lorin et al. 2013). It can have tumour-suppressing as well as
tumour-promoting effects by providing energy and metabolites (autophagy is
covered in detail in Chap. 3). Mitochondria targeting autophagy (mitophagy),
which can be induced by HIF1 (Zhang et al. 2008), decreases the oxygen demand
and the generation of reactive oxygen species, helping cells survive under hypoxic
conditions (Lorin et al. 2013).

Hypoxic conditions also activate the NF-kappaB transcription factors (Koong
etal. 1994; Cummins et al. 2006). This can occur via the HIFs (Walmsley et al. 2005;
Scortegagna et al. 2008; Culver et al. 2010), but NF-kappaB in turn also affects the
activity of the HIFs (Nam et al. 2011). NF-kappaB is activated by ROS that
accumulate under hypoxia and contributes to malignant processes such as angio-
genesis, cell survival, invasion, metastasis and migration in addition to inflammation
and is associated with poor patient outcome (Hoesel and Schmid 2013).

Hypoxic stress and reactive oxygen species normally lead to pS3 accumulation
and activation, inducing cell cycle arrest and DNA repair mechanisms (Lavin and
Gueven 2006; Graeber et al. 1994; Danielsen et al. 1998; An et al. 1998) (via HIF1)
(Chandel et al. 2000), although in the majority of cancer cells, pS3 or the p53
pathway is altered (Vousden and Prives 2009).

4.2 Hypoxia-Inducible Factors

The HIFs are often referred to as the master regulators of the hypoxic response.
These transcription factors belong to the large family of basic helix-loop-helix
(bHLH) transcription factors also encompassing the MYC proto-oncogene, several
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tissue-specific transcription factors pivotal in organ development and their ubiqui-
tous hetero-dimerisation partners, the E-proteins. All these factors have an
N-terminal basic DNA-binding domain followed by the helix-loop-helix domain
mediating factor dimerisation. The HIFs belong to a subgroup of bHLH factors
defined by the PAS (Per, ARNT (aryl hydrocarbon receptor nuclear translocator,
aka HIF1-beta), Sim) domain that takes part in factor dimerisation. The
transcription-activating complex consists of an alpha and a beta subunit, where
the alternative beta subunits are also known as ARNT1 (Reyes et al. 1992), ARNT2
(Hirose et al. 1996), and ARNT3 (Takahata et al. 1998), respectively, and these are
also part of the aryl hydrocarbon receptor complex. Three HIF-alpha subunits have
been identified: HIF1-alpha (HIF1a) (Wang et al. 1995; Wang and Semenza 1993,
1995), HIF2-alpha (HIF2a) (encoded by the gene EPAS1) (Tian et al. 1997) (Ema
etal. 1997; Flamme et al. 1997; Wiesener et al. 1998) and HIF3-alpha (HIF3a) (aka
IPAS) (Makino et al. 2001). HIF1a and HIF2a both form transcriptionally active
complexes with HIF-beta subunits, whereas HIF3a, a transcriptional target of
HIFla that comes in a number of splice variants, has mainly been attributed
negative regulatory functions (Makino et al. 2002). HIFla and HIF2a show a
large degree of homology, and on the C-terminal side of the PAS domain, they
both harbour regions involved in post-transcriptional regulation in response to
oxygen availability overlapping with the two transactivating (N-TAD and
C-TAD) domains (Fig. 4.2a).

HIF1a is widely expressed in most animal cells and tissues (including a Droso-
phila homologue) (Semenza 2011). HIF2a was first reported to have a more
restricted expression mainly in endothelial cells (Tian et al. 1997), but later studies
and new antibodies have shown HIF2a expression in numerous mammalian cell
lines, tissues and tumour types (Wiesener et al. 1998, 2003; Jogi et al. 2002;
Helczynska et al. 2008). Increased protein levels of HIF1a and HIF2a have been
detected in several tumour forms and they have been ascribed oncogenic function
(Semenza 2011). High HIF-alpha protein levels correlate to poor patient outcome in
a number of tumour forms such as breast (Helczynska et al. 2008; Yamamoto
et al. 2008; Bos et al. 2003), colorectal (Yoshimura et al. 2004) and prostate cancer
(Nanni et al. 2009). However, in neuroblastoma, HIF2a was linked to worse patient
outcome, while HIFla did not correlate significantly to outcome (Holmquist-
Mengelbier et al. 2006; Noguera et al. 2009). In glioma, expression of HIF2a
correlated to poor patient survival (Li et al. 2009), which was also seen in colon
cancer (Yoshimura et al. 2004). Both HIF1a and HIF2a benefit the tumour cells by
enabling metabolic adaptation and induction of angiogenesis. It was reported early
on that HIFla-deficient transplanted experimental teratoma tumours grew faster,
partially due to loss of hypoxia-induced apoptosis (Carmeliet et al. 1998), and more
recently similar findings were made for HIF2a (Acker et al. 2005). Other trans-
plantation studies, in contrast, find reduced tumour growth and angiogenesis in
tumours lacking HIF1a (Ryan et al. 1998, 2000). Furthermore, lack of HIF1a led to
cell death under hypoxic conditions due to inability to cope with increased ROS
levels (Kim et al. 2006). In a genetically induced breast cancer model, loss of HIF1a
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Fig. 4.2 The hypoxia-inducible transcription factors are the main mediators of the hypoxic
response. (a) Schematic presentation of the HIF-alpha subunit. The basic (b) domain is DNA
binding, and the helix-loop-helix (HLH) and PAS domains interact with the HIF-beta subunit.
There are two transactivating domains, TAD-N and TAD-C. Hydroxylation of two proline
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reduced metastasis (Liao et al. 2007), and recently, in a transplanted model, loss of
HIF1a reduced metastasis and notably the CSC pool (Schwab et al. 2012).

There are few reports of mutations in the genes encoding HIFla or HIF2a,
despite directed efforts (Anastasiadis et al. 2002; Park et al. 2009), and presumably
many non-published negative results. Polymorphisms in the HIF1a gene leading to
more stable mRNA have been linked to increased risk of prostate cancer (Vainrib
et al. 2012). Recently, mutations in EPASI, encoding HIF2a, were detected in
nonhereditary pheochromocytoma and paraganglioma (Zhuang et al. 2012; Yang
et al. 2013; Comino-Mendez et al. 2013). The altered HIF2a protein showed
increased stability leading to accumulation (Zhuang et al. 2012; Yang
et al. 2013). Increased HIF protein levels due to oncogenic signalling are reported
in several cancers (Semenza 2013).

Loss of function of the negative regulator of HIF1 and HIF2, the tumour
suppressor protein von Hippel-Lindau (pVHL), is associated with the von Hippel-
Lindau syndrome with increased susceptibility for kidney cancer, mainly clear cell
renal carcinoma (ccRCC) (Shen and Kaelin 2013). These tumours have elevated
protein levels of HIF-alpha, preferentially HIF2a, and the clear cell phenotype
comes from extensive accumulation of fat in the tumour cells due to HIF-driven
metabolic changes (Shen and Kaelin 2013; Kaelin 2008). In kidney cancer, HIF1a
can have tumour suppressor function, and loss of HIF1a in pVHL-mutated tumours
is associated with tumour progression and increased HIF2a activity (Shen and
Kaelin 2013; Shen et al. 2011). Much of the studies on the role of HIFs in cancer
has been performed in kidney cancers with loss of pVHL due to the high protein
levels under normoxia in these cells (Shen and Kaelin 2013), but this situation may
vary from other cancers with less prominent HIF dysregulation.

<
<«

Fig. 4.2 (continued) residues within the TAD-N domain by pVHL destines HIF for degradation.
Hydroxylation of an asparagine residue in the TAD-C domain by FIH-1 inhibits interaction with
coactivators CBP/p300. B. Under normoxic conditions HIF-alpha are directly hydroxylated by the
PHDs and thereby recognised by the pVHL E3 ligase and ubiquitinated and destined for
proteasomal degradation. Binding to the p53/mdm2 complex also leads to HIF-alpha
ubiquitination and degradation. When oxygen is lacking, or due to oncogenic events such as
increased gene expression or loss of pVHL, HIF-alpha can accumulate and translocate to the
nucleus. In the nucleus HIF-alpha and -beta associate, bind DNA and recruit coactivator CBP/p300
to initiate transcription. Hydroxylation of an asparagine residue in the TAD-C counteracts
coactivator binding. When the alpha subunits are stabilised, they can bind and interact with
numerous proteins. HIF2-alpha can bind mRNA in a complex with the RNA binding protein
RBM4 and promote translation of specific mRNAs under hypoxic conditions. Generally hypoxia
and HIF1a counteract protein translation. With elements from Motifolio©




72 A. Jogi
4.2.1 Hypoxic Regulation of HIF-Alpha Subunits

The HIF-induced transcription is regulated by the abundance and activity of the
alpha subunits, while the beta subunits are expressed in an oxygen-independent
manner. Both HIF1a and HIF2a are mainly regulated by increased protein stability
at low oxygen levels. However, increased mRNA levels have also been reported
(Holmquist-Mengelbier et al. 2006; Jiang et al. 1997; Mohlin et al. 2013). At
normoxia, HIF-alpha subunits are hydroxylated at two proline residues (P402 and
564 in HIF1a and P405 and 531 in HIF2a) by the enzymatic action of either of three
HIF prolyl hydroxylase-domain proteins PHD1 (EGLN2), PHD2 (EGLN1) and
PHD3 (EGLN3) (Bruick and McKnight 2001; Epstein et al. 2001; Ivan et al. 2001;
Jaakkola et al. 2001; Taylor 2001). The hydroxylated HIF-alpha subunits bind to
pVHL, an E3 recognition component of the ubiquitin ligase complex, leading to
HIF-alpha ubiquitination and rapid degradation by the proteasome (Cockman
et al. 2000; Huang et al. 1998; Kallio et al. 1999; Maxwell et al. 1999; Ohh
et al. 2000; Salceda and Caro 1997; Tanimoto et al. 2000) (Fig. 4.2). This regulatory
process is directly regulated by oxygen since the hydroxylation requires dioxygen,
2-oxoglutarate/alpha-ketoglutarate and iron(II) (Epstein et al. 2001). In glioma,
decreased levels of 2-oxoglutarate/alpha-ketoglutarate through mutation of the
NADP*-dependent isocitrate dehydrogenase 1 (IDH1) induced HIF accumulation
in non-hypoxic cells (Zhao et al. 2009).

An additional (dioxygen, 2-oxoglutarate/alpha-ketoglutarate and iron
(II) dependent) hydroxylation reaction influences the transcriptional activity of
the HIF-alpha subunits. The factor inhibiting HIF1 (FIH-1) hydroxylates an aspar-
agine residue in the HIF-alpha C-terminal transactivating domain (N803 in HIF1a
and N851 in HIF2a) rendering HIF less able to recruit the transcriptional
coactivator CBP/p300 (Lando et al. 2002a, b). Despite its name, FIH-1 hydroxyl-
ates both HIF1a and HIF2a, but has higher affinity for HIF1a (Bracken et al. 2000).
In both proline and asparagine hydroxylation reactions, one oxygen atom is incor-
porated into the hydroxylated proline or asparagine residue of HIF-a and the other
into 2-oxoglutarate forming carbon dioxide and succinate, which may enter the
TCA cycle and act as an electron donor to the electron transport chain in addition to
modulating pH. The tumour suppressor p53 can also mediate ubiquitination of the
HIF-alpha subunits, independent of oxygen availability, thereby affecting HIF
activity and tumour angiogenesis (Ravi et al. 2000).

4.2.2 Non-Hypoxia-Driven Regulation of the HIF s

In addition to the hypoxia-driven rescue from proteasomal degradation, the
HIF-alpha subunits can also be regulated on transcriptional and translational levels.
Physiologically induced growth factor signalling or oncogenic mechanisms such as
receptor mutation or overexpression can via PI3 kinase and AKT induce HIF-alpha
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transcription and translation (Semenza 2011; Laughner et al. 2001) or loss of the
tumour suppressor p53 (Ravi et al. 2000). This would prepare cells both for
increased oxygen and energy needs in growth factor-stimulated growth. Growth
factors shown to induce HIF-alpha include insulin (Treins et al. 2002), insulin-like
growth factor-1 (Beppu et al. 2005) and vascular endothelial growth factor (VEGF)
(Calvani et al. 2008). Epithelial growth factor receptor (EGFR/HER1/ErB1) sig-
nalling also induced HIF1a (Zhong et al. 2000). Most of these studies are on HIF1a
regulation, but it is not unlikely that HIF2a can be induced by growth factor
signalling as well, and HIF2a levels in neuroblastoma cells and neuroblasts corre-
late to IGF-2 levels (Jogi et al. 2002; Mohlin et al. 2013). With HIF1a being the
preferred substrate for FIH-1, which would still act on the HIF-alpha subunits
present at oxygenated conditions, HIF2a accumulation by other means than hypo-
xia may lead to significant HIF2 activity.

HIF-associated factor (HAF) is an E3 ubiquitin ligase that binds HIF1a inde-
pendently of oxygen conditions and pVHL and destines HIFla for proteasomal
degradation (Koh et al. 2008). By contrast, HAF association to HIF2a instead
reinforced its transcriptional activity (Koh et al. 2011).

4.2.3 Posttranslational Modifications of HIF 1a and HIF2a

Both HIF1a and HIF2a are phosphorylated (Richard et al. 1999; Conrad et al. 1999)
and differential phosphorylation patterns between the two factors lead to different
ability to interact with other proteins (To et al. 2006).

Acetylation is an additional means whereby HIF transcriptional activity is
regulated. The sirtuins (sirtuins are covered in the chapter by Marcia Haigis) are
a family of proteins that acetylate the HIF-alpha subunits (Chen et al. 2012) in an
HIF isoform-specific manner (Yoon et al. 2014). Sirtuins can also downregulate
HIF activity in a non-catalytic manner (Hubbi et al. 2013). HIF1a and HIF2a are
further subjected to sumoylation (van Hagen et al. 2010; Bae et al. 2004; Carbia-
Nagashima et al. 2007), nitrosylation (Li et al. 2007a) and neddylation (Ryu
et al. 2011). All these post-translational modifications may contribute to the com-
plex tuning of HIF activity.

4.2.4 Transcriptional Regulation by HIF 1a and HIF 2a

Under hypoxic conditions, the stabilised HIF-alpha subunits bind to HIF-beta,
translocate to the nucleus and bind to DNA sites with the core sequence 3'-R
(A/G)CGTG-5" known as the HIF-responsive element (HRE) in the promoter or
enhancer region of regulated genes (Kimura et al. 2000, 2001). Transcription
activation requires the recruitment of coactivators CBP/p300 and SRC/p160 pro-
teins, and the ability of HIF-alpha to bind these is regulated by FIH-1 (Fig. 4.2).
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At least HIF1a is also able to inhibit transcription of target genes by recruiting
negative cofactor 2, thereby blocking the assembly of the transcription preinitiation
complex (Denko et al. 2003).

The surrounding DNA landscape and chromatin state further influence
HIF-recruitment to HRE sites and transcription initiation. The HIFs bind preferen-
tially to genes expressed also in the normoxic state indicating that they are not
themselves directing hypoxia-induced chromatin changes to their target genes (Xia
and Kung 2009; Schodel et al. 2011) and histone demethylase activity promotes
HIF transcriptional activity (Luo et al. 2012). That the HIFs bind HREs where the
chromatin is already open has been suggested as one explanation for the cell-type-
dependent differences between which genes are transcriptionally induced by the
HIFs (Schodel et al. 2011). A number of chromatin modulators including histone
demethylases are among the genes, which are transcriptionally induced by HIFs,
suggesting a significant role for them in chromatin regulation (Xia et al. 2009; Krieg
et al. 2010).

In concordance with the main purposes of the hypoxic response, i.e. to secure
energy production and increase perfusion/angiogenesis to relieve the hypoxic
stress, many HIF-induced genes are involved in metabolism, e.g. in glycolysis
and glucose uptake (e.g. aldolases A and C, enolases 1 and 2, hexokinases 1 and
2, lactate dehydrogenase, pyruvate dehydrogenase kinases 1 and 3, glucose trans-
porters 1 and 3) and, furthermore, in angiogenesis (e.g. vascular endothelial growth
factor (VEGF), platelet-derived growth factor B (PDGFB), placental growth factor
(PGF)) (Carmeliet et al. 1998; Iyer et al. 1998; Kelly et al. 2003). Growth factors,
for example, VEGF, can also promote cell survival and proliferation through
autocrine and paracrine signalling (Weigand et al. 2005; Perrot-Applanat and Di
Benedetto 2012; Baek et al. 2000; Bachelder et al. 2002). Several hundred genes
have been reported to be HIF induced, and the list is rapidly growing as new cell
types are analysed by genome-wide methods. Notably, there are large variations
between the genes induced in different cells and under different settings such as
level of hypoxia and time frame.

HIF1a and HIF2a were initially seen as homologues acting in partially different
cells and with different kinetics but inducing the same responses. However, lately
the differential and sometimes even opposing effects of HIF1 and HIF2 have gained
focus (Keith et al. 2012). Diverging ability to recruit cofactors, different affinity for
regulating factors, varying affinity for specific HREs and diverse activities in
addition to transcriptional regulation of HIFla and HIF2a shape their effect on
cell phenotype. HIF1 and HIF2 do bind to the same core DNA sequence, but there
are plenty of reports on differential preference for one of the factors in regulation of
specific genes, such as HIF1, preferentially inducing genes of the glycolytic path-
way, e.g. hexokinases, phosphofructokinase and phosphoglycerate kinase 1 (Ryan
et al. 1998; Iyer et al. 1998; Hu et al. 2003), and HIF2, e.g. the stemness-associated
gene Oct-4 (Covello et al. 2006). However, it is likely an oversimplification to view
certain genes as HIF1 and others as HIF2 driven since numerous factors influence
HIF DNA binding and transcription activation. Furthermore, the picture is compli-
cated by the fact that HIFla and HIF2a have different kinetics in response to
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hypoxia, with HIF1a being active early under hypoxic conditions and then declin-
ing, while HIF2a levels increase later and remain for a longer period (Helczynska
et al. 2008; Holmquist-Mengelbier et al. 2006). HIF2a also has a higher oxygen
threshold for activation and induces transcription at oxygen concentrations
approaching physiological levels (Holmquist-Mengelbier et al. 2006). As one
example, VEGF gene expression has been shown to be induced by (1) both
HIFla and HIF2a, (2) preferentially by HIFla and (3) preferentially by HIF2a in
different settings (Holmquist-Mengelbier et al. 2006; Ryan et al. 1998; Iyer
et al. 1998; Hu et al. 2003; Raval et al. 2005; Tang et al. 2004; Rankin
et al. 2008). Indeed, HIF1a was first identified through its binding to the erythro-
poietin (EPO) receptor, but later HIF2a has been shown to induce EPO expression
(Yeo et al. 2008; Rankin et al. 2007).

4.2.5 Hypoxia and HIF Activity Affect Protein Translation

Mammalian target of rapamycin (mTOR) promotes mRNA translation into protein
by phosphorylation of 4EBP1 leading to the release of the eukaryotic translation
initiation factor 4E (eIF4E) allowing it to bind to the 5’ cap of messenger RNA and
initiate translation (Gingras et al. 2001). mTOR complex I activity is up-regulated
in many tumours through activation of oncogenes and/or loss of tumour suppres-
sors. Energy depletion, lack of amino acids (Gingras et al. 2001; Sengupta
et al. 2010) and hypoxia (Brugarolas et al. 2004; Koritzinsky et al. 2006; Liu
et al. 2006; Braunstein et al. 2007) can all inhibit mTOR and induce a general
repression of protein translation and thereby preservation of resources. Hypoxic
suppression of mTOR complex I can be due to lowered ATP levels (Liu et al. 2006)
or it can be HIF1a orchestrated. HIF1 induces the expression of REDD1, which is
an inhibitor of mTOR activity. High REDD]1 levels lead to activation of the mMTOR
inhibitor TSC2 (Brugarolas et al. 2004; DeYoung et al. 2008). In addition, induced
expression of the HIF transcriptional target BNIP3 (B-cell lymphoma 2 (Bcl2)/
adenovirus E1B 19 kDa protein-interacting protein 3) also lowers mTOR activity
(Li et al. 2007b). On the other hand, HIFla induces the expression of elF4El
allowing translation of selective transcripts under hypoxic conditions, which was
shown to promote tumorigenic traits in breast cancer cells (Yi et al. 2013).

Contrary to HIF1a, HIF2a has an mTOR-activating effect that would promote
hypoxic protein synthesis and proliferation. Assuming HIF2a is the predominant
HIF at near-physiological and chronically low oxygen levels, allowing protein
synthesis would benefit cell survival in these settings. HIF2a-induced growth
factors promote activation of mTOR (Roberts et al. 2009), and HIF2a-induced
expression of FIP200 has been reported to promote mTOR complex I activation
(Gan et al. 2005; Chano et al. 2006).
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4.2.6 Translational Regulation by HIF2a

HIF2a was recently shown to further counteract the general hypoxic repression of
protein translation by associating to an RNA hypoxia-responsive element (rHRE)
of specific target mRNAs by forming a complex with the RNA binding protein
RBM4 and the alternative translation initiation factor eIF4E2. This complex cap-
tures the 5’ cap and locates the mRNA to polysomes for active translation under
hypoxic conditions (Uniacke et al. 2012). This cytoplasmic activity is specific to
HIF2a and is HIF-beta independent. The hypoxia-specific translation initiation by
HIF2a was first shown for epithelial growth factor receptor (EGFR), a protein
known to be translationally upregulated at hypoxia (Franovic et al. 2007), and
was then seen for other growth factor receptors such as PDGF receptor alpha and
IGF1 receptor (Uniacke et al. 2012). These are all examples of growth factor
receptors important in human cancers, and upregulation by HIF2a activity, induced
due to hypoxia or oncogenic events, could contribute to cell proliferation, cell
survival and tumour progression.

4.2.7 HIFla, HIF2a and p53

Another important non-transcriptional HIF activity is the interplay between HIF1a
and the tumour suppressor p53. As mentioned above, p53 accumulates in response
to hypoxic stress. In normal cells, MDM2 regulates p53 levels by binding and
inducing p53 to be ubiquitinated. HIF1a binds the MDM2/p53 complex and skews
the effect of MDM2 to instead promote p53 activity (An et al. 1998; Sanchez-Puig
et al. 2005; Chen et al. 2003). However, the association of HIF1a with the MDM2/
pS53 complex provides a negative feedback on HIFla by MDM2-dependent
ubiquitination of HIFla which targets it for proteasomal degradation (Ravi
et al. 2000).

HIF2a does not associate with MDM?2 or p53 but counteracts p53 activity by a
number of pathways affecting p53 phosphorylation (Bertout et al. 2009) as well as
via induced expression of growth factors like PDGF-beta and TGF-alpha. This
activity of HIF2a would further contribute to proliferation under hypoxic
conditions.

4.2.8 Effects of Hypoxia and the HIF's on the Oncogene MYC

The MYC oncogene, overexpressed to varying degrees in many cancers, is a
transcription factor of the bHLH family belonging to the leucine zipper group
and is transcriptionally active as a heterodimer with MAX (MYC is covered in
detail in Chap. 5). MYCN is a MYC homologue identified through its
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overexpression and amplification in neuroblastoma. Generally, MY C promotes cell
proliferation, anabolic metabolism and protein synthesis.

HIF1a mediates hypoxia-induced proliferation suppression by inhibiting MYC
activity (Koshiji et al. 2004). MYC activity is dependent on binding SP1, but under
hypoxic conditions, HIFla sequestration of SP1 leads to disruption of the
MYC/MAX complex and displacement of MYC from numerous target gene pro-
moters (Dang et al. 2008). Furthermore, HIF1a induces the transcription of MXI1, a
MAX-binding transcriptional repressor and negative regulator of MYC (Corn
et al. 2005). At hypoxia, the HIFla-induced MYC repression counteracts protein
synthesis and proliferation in favour of glycolysis providing ATP. HIF2a is not able
to interact with SP1 due to specific phosphorylation at the HIF2a PAS domain
(Mylonis et al. 2006). HIF2a can bind to MAX and this stabilises the MYC/MAX
complex promoting proliferation under hypoxic conditions (Gordan et al. 2007).

The levels of HIF1a, HIF2a and MYC influence the effect of hypoxia on MYC
activity. The increased MYC levels in tumours range widely from moderate
upregulation to very high levels resulting from mutation or gene amplification. At
very high MYC or MYCN levels, as a consequence of gene amplification, HIFla
cannot repress MYC activity (Kim et al. 2007; Qing et al. 2010), and under such
conditions, MYC and HIF1a can both contribute to induced glycolysis by induced
expression of glycolytic proteins (HK2, PDK1, PGK1) and also to VEGF
expression.

4.2.9 Hypoxia, HIFs and microRNA

The expression of a number of small non-protein-coding RNAs, microRNAs (miR),
is modified by hypoxia. The microRNAs influence cell phenotype and behaviour by
post-transcriptional regulation of gene expression. Altered microRNA expression is
reported in several malignancies and affects patient outcome. Expression of many
microRNAs in cancer is linked to hypoxic conditions, HIF activity and angiogenesis
(Kulshreshtha et al. 2007). The pro-oncogenic miR-21 (Moriyama et al. 2009) was
induced in hypoxic breast cancer cells (Kulshreshtha et al. 2007), and miR-21
overexpression induced HIF1 and angiogenesis (Liu et al. 2011). Another
hypoxia-induced microRNA is miR-210 (Kulshreshtha et al. 2007; Camps
et al. 2008; Chan and Loscalzo 2010; Gee et al. 2010; Puissegur et al. 2011;
Quero et al. 2011; Huang et al. 2009), which also contributes to angiogenesis by
promoting VEGF expression in an HIF1-dependent manner (Quero et al. 2011;
Devlin et al. 2011). The p53-regulated miR-107, which has tumour-suppressing
effects, is induced under hypoxic conditions and has a suppressing effect on HIF1
and tumour angiogenesis (Yamakuchi et al. 2010).
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4.2.10 Hypoxic Modulation of Wnt/Beta-Catenin Activity

The Wnt-signalling pathway is an important positive regulator of cell proliferation,
growth, differentiation, (cancer) stem cells and the EMT phenotype (Reya and
Clevers 2005; Anastas and Moon 2013). Wnt/beta-catenin signalling is distorted
in several cancers (Anastas and Moon 2013). The interaction between HIF- and
Wht-signalling pathways is complex and not completely delineated. HIFla can
bind to beta-catenin, thereby competing for its transcriptional cofactor TCF4 and
leading to hypoxic downregulation of beta-catenin activity (Kaidi et al. 2007). On
the other hand, beta-catenin can augment HIF-induced transcription promoting
cellular adaptation to hypoxic conditions (Kaidi et al. 2007; Lim et al. 2008). In a
number of studies on embryonic stem cells and in cancer, Wnt/beta-catenin activity
was augmented in an HIFla-dependent manner (Mazumdar et al. 2010; Jiang
et al. 2007; Genetos et al. 2010; Giles et al. 2006; Zhao et al. 2011).

4.2.11 HIFla and Notch Signalling

Notch signalling is instrumental in embryogenesis and organ development. When
Notch transmembrane receptors bind to Notch ligand expressed on adjacent cells,
the Notch intracellular domain (NICD) is cleaved and translocates to the nucleus
where it acts as a transcription modulator (Ranganathan et al. 2011). Among the
first to link Notch stem cell pathway to HIF activity were Gustafsson and colleagues
(Gustafsson et al. 2005) who showed the association between HIFla and NICD
stability and transcriptional activity. The positive effect of hypoxia on the Notch
pathway is in line with the higher levels of Notch protein that we detected in
hypoxic neuroblastoma cells with a stem cell-like phenotype (Jogi et al. 2002).
Another mechanism whereby HIF1 and hypoxia promote Notch signalling is the
induction of expression of APH1-A encoding a component of the gamma-secretase
complex, which cleaves Notch during activation (Wang et al. 2006).

It was recently shown in breast cancer cells that the Notch ligand Jagged?2 is
induced by hypoxia in an HIFla-dependent manner contributing to hypoxia-
induced Notch signalling (Pietras et al. 2011). Watabe et al. showed that Jagged2
was upregulated by hypoxia in the invasive front of breast tumours promoting
breast cancer CSCs, EMT and metastasis (Xing et al. 2011). FIH-1 interaction with
Notch provides an additional cross-linking between Notch and hypoxic signalling
(Zheng et al. 2008).
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4.3 Tumour Hypoxia, HIF Signalling and Patient Outcome

Numerous publications support a link between low oxygenation of the primary
tumour and poor patient outcome. High levels of HIFla (Jubb et al. 2010) (a meta-
analysis) (Bos et al. 2003; Kronblad et al. 2006) and HIF2a (Helczynska et al. 2008;
Holmquist-Mengelbier et al. 2006; Li et al. 2009; Chen et al. 2011) have been
linked to increased metastasis and poor survival as mentioned above. Furthermore,
increased expression of the HIF target gene VEGF correlates to poor prognosis
(Gasparini et al. 1997; Linderholm et al. 2000) through its ability to drive angio-
genesis and induce vascular permeability and by acting as a cell growth and
survival factor (Hamerlik et al. 2012; Goel and Mercurio 2013). Also the HIF target
gene carbonic anhydrase IX (CAIX) has been linked to poor patient survival
(Brennan et al. 2006; Chia et al. 2001), and the conjunct acidification of the tumour
extracellular environment can contribute to inflammation and a pro-invasive
tumour phenotype (see Chap. 9). BNIP3 is another HIF-induced protein linked to
tumour recurrence and decreased patient survival (Giatromanolaki et al. 2004; Tan
et al. 2007). Expression of this factor in tumour cells reflects HIF activity, but
despite being generally viewed as pro-apoptotic, BNIP3 adjusts cell metabolism to
hypoxia and contributes to cancer cell survival under hypoxic conditions by
inducing mitophagy (Zhang et al. 2008). Moreover, HIFla-induced autophagy
promoted a CSC phenotype in pancreatic cancer cells (Zhu et al. 2013).

4.4 Tumour Hypoxia and Tumour Progression

Progressive tumour disease includes tumour growth, tumour recurrence after ther-
apy, invasive growth and/or metastasis. Numerous processes are involved in tumour
progression and metastasis. For tumour progression, vascularisation must be
induced to provide the proliferating cells with nutrients and oxygen and remove
waste products (Naumov et al. 2006a, b) as well as to provide disseminating cancer
cells access to the circulation. When metastasis takes place, epithelial-derived
cancer cells in the primary tumour acquire motility by the process of EMT (Polyak
and Weinberg 2009; Kalluri and Weinberg 2009; Thiery et al. 2009). TGF-beta
signalling is well established to induce EMT in epithelial and cancer cells (Katsuno
et al. 2013; Morrison et al. 2013). EMT traits are loss of polarity and cell—cell
contact between the epithelial cells, marked by loss of cell surface E-cadherin and
gain of mesenchymal markers such as N-cadherin and vimentin. The motile mesen-
chymal phenotype allows the cancer cells to migrate and reach the vasculature and
then intra-vasate into the circulatory system. Tumour establishment at the meta-
static site involves the reversed process; mesenchymal-to-epithelial transition
(MET) and the metastases reexpress E-cadherin (Hugo et al. 2007).

The CSC theory postulates that only a subpopulation of cancer cells has the
ability to propagate the tumour and that these tumour cells possess properties
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similar to stem cells (Visvader and Lindeman 2012). The embryonal and adult
tissue stem cells reside in the so-called niches, locations where the microenviron-
ment perfectly supports the needs of these cells to remain in a stem cell state
(Spradling et al. 2001). Differentiation of daughter cells is accompanied by migra-
tion out of the specific niche. In many cases, these stem cell niches are locations of
specific oxygen access; a well-studied example is the haematopoietic stem cells
(HSCs) that reside in the most hypoxic regions of the bone marrow and have a
glycolytic metabolism. Their differentiation is concurrent with leaving this niche
and increased oxygenation (Cipolleschi et al. 1993; Parmar et al. 2007). Other HSC
markers showed localisation of a stem cell niche close to endothelial cells that are
likely to be well oxygenised (Kiel et al. 2005), suggesting that different stem cell
populations reside in different niches with diverging oxygen microenvironments
ranging from hypoxic to perivascular. With the similarities between normal stem
cells and CSCs came the proposal that also the CSCs reside in niches and that
oxygen levels are an important part of the microenvironment of the niches.

The properties that define a CSC are self-renewal, pluripotency and the ability to
initiate tumour formation (after introduction in immune compromised mice).
Because of the latter criteria, such cells are often referred to as tumour-initiating
cells (TICs). This nomenclature also acknowledges that CSCs may arise from
transformation of a stem or progenitor cell, but just as well, through dedifferenti-
ation or by other means acquiring this phenotype in a more differentiated cell. CSCs
were first identified in leukaemia (Lapidot et al. 1994) where HSC markers are well
defined. Cancer cell subpopulations with CSC properties have since been identified
in a number of solid tumours, e.g. brain (Singh et al. 2004), breast (Al-Hajj
et al. 2003), colon (O’Brien et al. 2007; Ricci-Vitiani et al. 2007), lung (Eramo
et al. 2008), melanoma (Schatton et al. 2008), neuroblastoma (Hansford
et al. 2007), ovarian (Alvero et al. 2009), pancreas (Hermann et al. 2007) and
prostate (Patrawala et al. 2006).

Importantly, cancer cells undergoing EMT can acquire CSC traits and increased
tumour-initiating ability through this process (Mani et al. 2008; Morel et al. 2008).
Moreover, CSCs express less adhesion molecules such as E-cadherin. There is thus
overlap in the protein expression patterns associated with EMT and the CSC
phenotype, respectively, i.e. in two central concepts in cancer progression.

4.4.1 Tumour Hypoxia Induces Angiogenesis and Metastasis

Hypoxia and HIF-induced pro-angiogenic molecules, primarily VEGF, are instru-
mental in the development of the tumour (-induced) vasculature (Semenza 2003).
Hypoxic conditions contribute to the tissue remodelling necessary for angiogenic
sprouting, e.g. by inducing expression of extracellular proteases such as the
metalloproteinases MMP2 and MMP9 (Yang et al. 2010) and components of the
plasminogen activating cascade (Buchler et al. 2009; Oszajca et al. 2008; Tacchini
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et al. 2003). The remodelling of the extracellular matrix may furthermore release
more pro-angiogenic components located there.

Hypoxic conditions in the tumour also affect the stromal cells. Infiltrating
immune cells and fibroblasts react by producing pro-angiogenic factors as well as
cytokines which modulate the immune response and ECM components contributing
to fibrosis. The many and complex effects of hypoxia on immune cells will not be
covered here. The endothelial cells are also influenced by hypoxia; VEGF induces
angiogenic processes and promotes vascular permeability allowing serum with
liquid and proteins to enter the tissue and tumour cells to enter circulation
(Garcia-Roman and Zentella-Dehesa 2013). Recently, HIF1a in endothelial cells
was shown to contribute to tumour metastasis by promoting tumour cell passage
over the endothelial barrier in a mouse breast cancer model (Branco-Price
et al. 2012).

The tumour vascularity, i.e. the endothelial cells, is instrumental in the establish-
ment of niches providing the specific microenvironment including cell—cell inter-
actions, soluble factors, ECM and oxygen conditions necessary for maintaining the
pool of tumour propagating cells referred to as CSCs (Kiel et al. 2005; Ghajar
et al. 2013; Infanger et al. 2013; Beck et al. 2011; Calabrese et al. 2007).

Breast cancer cells that have undergone experimentally induced EMT have a
high expression of VEGF, which caused their increased ability to form tumours
(Fantozzi et al. 2014). Such high VEGF expression was also found in patient-
derived cancer cells with a CSC phenotype (Fantozzi et al. 2014), further linking
expression of the HIF-target gene VEGF to EMT and CSC phenotype. Moreover, as
mentioned above, VEGF promotes cancer cell survival and progression and glioma
CSC viability (Hamerlik et al. 2012; Goel and Mercurio 2013).

4.4.2 Hypoxic Induction of EMT

Hypoxia can induce EMT in normal (Higgins et al. 2007) as well as cancer cells
derived from various tumour types (Chen et al. 2010; Zhang et al. 2013; Chang
et al. 2011; Sahlgren et al. 2008; Krishnamachary et al. 2003, 2006). Several
pathways contributing to EMT are influenced by low oxygenation. Hypoxia pro-
moted EMT can be achieved through the direct transcriptional action of HIF
(Higgins et al. 2007), as the EMT-inducing bHLH transcription factor Twist is a
direct transcriptional target of HIFla (Yang et al. 2008; Sun et al. 2009). Twist
represses E-cadherin and Twist overexpressing breast cancer cells are more motile
and invasive (Mironchik et al. 2005). In a mouse lung cancer model, HIF2a was
shown to induce EMT, with induced expression of Snail and vimentin, and cancer
invasion (Kim et al. 2009). Hypoxia-induced EMT can also be mediated via
induction of Notch signalling in cultured breast cancer cells (Sahlgren
et al. 2008) including upregulation of Jagged proteins similar to what has been
described for CSC regulation (see below). During EMT, the loss of cell surface-
associated E-cadherin allows beta-catenin to translocate to the nucleus and involve
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in transcriptional signalling that modulates cell growth (Bienz and Clevers 2003).
Wht/beta-catenin signalling is implicated in EMT as well as the CSC phenotype
(Katoh and Katoh 2007; Takebe et al. 2011; Liu et al. 2005; de Sousa et al. 2011)
and this can be induced through HIF1a (Jiang et al. 2007). In human prostate cancer
cells, HIF1-induced EMT showed concurrent increased Wnt signalling (Jiang
et al. 2007). Furthermore, knockdown of beta-catenin reversed HIF1-induced
EMT and metastatic potential (Zhao et al. 2011). HIF-induced VEGF, discussed
above, can in addition to contributing to angiogenesis and cell survival induce EMT
(Gonzalez-Moreno et al. 2010; Yang et al. 2006).

4.4.3 Tumour Hypoxia and HIFs Promote Stem Cell
Phenotype

Oxygen gradients and hypoxia arise naturally during embryogenesis and organ
development and regeneration (Simon and Keith 2008). Both HIFla and HIF2a
are expressed during embryonal development with different but overlapping
expression patterns (Jain et al. 1998). Gene targeting of either HIFla or HIF2a
results in mid-gestation lethality. Embryos lacking HIFla show severe
malformations affecting the vasculature, somite formation and the neural fold
(Ryan et al. 1998). More than 30 years ago it was shown that low oxygen levels
were necessary for proper development of the neural folds and neural crest in rat
embryos in vitro (Morriss and New 1979). Furthermore, culture of bovine blasto-
cysts (Harvey et al. 2004) and human embryonic stem (ES) cells (Ezashi et al. 2005)
at physiological to mildly hypoxic conditions compared to air oxygen levels
showed maintained undifferentiated morphology and marker expression at the
lower oxygen levels (2-7 % oxygen). However, the comparison to hyperoxic
conditions makes it difficult to ascertain if these effects are due to hypoxic or rather
to near-physiologic oxygen conditions maintaining stem cell populations.

Loss of HIF2a has been reported to affect function of the sympathetic ganglia
and paraganglia (Tian et al. 1997), the circulatory system (Peng et al. 2000), lung
maturation (Compernolle et al. 2002) and pathology of multiple organs including
retinopathy, hepatic steatosis, cardiac hypertrophy and skeletal myopathy
(Scortegagna et al. 2003) in different mouse strains. We showed expression of
HIF2a in human foetal paraganglia at 8.5-week gestation (Nilsson et al. 2005).
Taken together, these reports suggest important developmental roles for the HIFs
and presumably hypoxia in embryogenesis and organ development.

We showed that neuroblastoma cells under hypoxic conditions dedifferentiated
and acquired stem cell-like traits both in vitro and in vivo (Jogi et al. 2002, 2004). In
breast cancer, ductal carcinoma in situ, we found that cancer cells residing in the
perinecrotic areas were more immature and expressed the early luminal keratin K19
(Helczynska et al. 2003). In oestrogen receptor (ER) positive lesions, the expression
of ER was lost in hypoxic and HIFla-expressing cells, further emphasising their
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loss of differentiation (Helczynska et al. 2003). Furthermore, in in vitro studies of
primary human breast cells and MCF10 cells in three-dimensional culture, we
found that hypoxia increased the protein levels of HIF1a and HIF2a and hindered
ECM-induced differentiation (Vaapil et al. 2012). Notably, the hypoxic cells
remained proliferative, whereas the normoxic cells entered a differentiated post-
mitotic state upon ECM stimulation (Vaapil et al. 2012).

Neuroblastoma cells with stem cell traits in patient tumour specimens were
found to reside adjacent to vessels and have high protein levels of HIF2a, but not
HIFla (Pietras et al. 2008). Forced downregulation of HIF2a in patient-derived
cells grown in vitro led to partial differentiation and loss of VEGF expression
(Pietras et al. 2009). Rich and colleagues showed that glioblastoma stem cells
express high levels of HIFs, especially HIF2a, and VEGF and that hypoxic condi-
tions contribute to maintaining and expanding the glioblastoma CSC population as
well as the tumour-inducing capacity of these cells (Li et al. 2009). In addition,
hypoxia or induced expression of HIF2a induced stem cell phenotype including
self-renewal, in non-stem glioblastoma cells, and this was accompanied by expres-
sion of the important stem cell transcription factors Oct-4 (Tai et al. 2005; Nichols
et al. 1998; Hochedlinger et al. 2005), Nanog (Hart et al. 2004) and MYC
(Heddleston et al. 2009). Of these, Oct-4 was shown to be a direct HIF2a transcrip-
tional target (Covello et al. 2006). Indeed, induced HIF activity increased stem cell
marker expression in cancer cells derived from prostate, brain, kidney, cervix, lung,
colon, liver and breast tumours (Mathieu et al. 2011), further strengthening for the
link between the HIFs and CSCs.

The Rich lab showed that glioma CSC proliferation and tumour growth are
promoted by iNOS (Eyler et al. 2011) and iNOS is another transcriptional target of
HIF2a (Yang et al. 2010). Also in glioma, HIFa-expressing cells with CSC pheno-
type were found in at least two different niches, perinecrotic and perivascular
(Heddleston et al. 2010), suggesting that both hypoxic- and non-hypoxic HIFa
expression contribute to the CSC phenotype. Landberg et al. report an increased
CSC population in oestrogen receptor alpha (ER) positive breast cancer cells after
exposure to hypoxia, but not in ER negative cells (Harrison et al. 2013). The
hypoxic effect on CSC fraction was dependent on HIFla and Notch (Harrison
et al. 2013). Notch signalling maintains the Notch-expressing cells in a stem or
progenitor state (Artavanis-Tsakonas et al. 1999; Hansson et al. 2004), and Notch-
induced inhibition of differentiation is reported in a number of progenitor cell
types: myogenic, haematopoietic and neuronal (Nofziger et al. 1999; Dahlqvist
et al. 2003; Varnum-Finney et al. 2000; de la Pompa et al. 1997). As described
above, HIFla enhances Notch signalling and thus contribute to maintaining an
undifferentiated state.
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Fig. 4.3 Hypoxia, HIF1la and HIF2a are drivers behind tumour progression. HIFla and HIF2a
modulate the phenotype of cancer cells, including metabolism, angiogenesis and EMT and CSC
phenotype directly as well as indirectly

Concluding Remarks

Hypoxia is common in solid tumours, and both HIF1a and HIF2a, the primary
mediators of the hypoxic response, are widely expressed in human cancers.
The HIFs are accumulated and activated by hypoxia, but can also be induced
by oncogenic events. Tumour hypoxia and HIFla and HIF2a activity are
linked to tumour progression and poor prognosis. The HIFs play key roles in
cancer progression and metastasis by inducing cell survival, adapted meta-
bolism, angiogenesis, EMT and CSC phenotype (Fig. 4.3). This occurs in a
complex interplay between HIF1a and HIF2a, in which these factors can join
forces as well as oppose each other. Furthermore, the HIFs interact with other
signalling pathways such as those of MYC, p53, Notch and Wnt/beta-catenin
and can modulate their effects on tumour characteristics. The interplay
between these important signalling pathways in cancer progression remains
to be fully delineated.

Because hypoxic signalling correlates to and even drives core processes of
tumour progression and is also confined to the tumour, it is an appealing
target for tumour therapy. However, the partially diverging roles of HIF1 and
HIF2 and the various responses to hypoxia in different cells and settings
remain a challenge.
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5.1 Introduction

The field of cancer metabolism has grown rapidly over the last decade as more links
between oncogenes and metabolism are uncovered 90 years after Otto Warburg
made his seminal observations that many cancers consume vast amounts of glucose
and convert it to lactate (Vander Heiden et al. 2009; Koppenol et al. 2011; Cantor
and Sabatini 2012). To grow, proliferate, and survive, cancer cells exhibit different
metabolic programs including the Warburg effect. However, the Warburg effect per
se is insufficient to provide cancer cells with all the substrates for growth and
survival. In the past decade, many genetic changes in cancers have been linked to
the Warburg effect, glutaminolysis, carbohydrate, and fatty acid metabolism.
Among the genetic alterations, oncogenic MYC stood out as a canonical oncogene
that was first to be linked mechanistically to altered glucose metabolism, when it
was discovered to transactivate LDHA, encoding lactate dehydrogenase A (Shim
et al. 1997). MYC is now known to amplify the expression of thousands of genes,
with the bulk involved in various aspects of cell metabolism including glycolysis,
glutaminolysis, nucleotide, protein, and fatty acid metabolism (Dang 2012). MYC
is also involved in mitochondrial and ribosome biogenesis. In this chapter, we will
provide an overview of key roles of MYC in regulating metabolism and how they
contribute to cancer development and progression.

5.2 MYC and Cancer

Cell growth or the increase in cell mass required for cell proliferation involves the
import of nutrients and their conversion to cell mass and ATP. MYC and the mTOR
pathway are critical for cell growth. Discovery of the retroviral v-MYC oncogene
(Duesberg and Vogt 1979) led to the identification of its cellular homologue termed
c-MYC (Vennstrom et al. 1982). Herein, the human gene will be termed MYC
(italicized) and the protein termed MYC. The normal proto-oncogene MYC is
downstream of many growth factor signaling pathways, including receptor tyrosine
kinase pathway, T cell receptor pathway, and WNT signaling pathways that
regulated its expression through sensing extracellular cues (Dang 2012). The
MYC proto-oncogene is a member of the MYC family, which includes MYCN and
MYCL. While MYCN is commonly amplified in neuroblastoma, an aggressive
childhood cancer, MYCL is only occasionally amplified in some human small cell
lung cancer (Brodeur et al. 1984; Nau et al. 1985).

The MYC proto-oncogene is activated by chromosomal translocations in human
Burkitt’s lymphoma (Dalla-Favera et al. 1982; Taub et al. 1982). The juxtaposition
of MYC to one of three immunoglobulin enhancers via chromosomal translocations
deregulates its expression. MYC is now found to be one of the most frequently
amplified human oncogene among many different types of cancers, illustrating its
central role in human cancer development (Beroukhim et al. 2010; Atlas 2012a, b;
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Fig. 5.1 MYC alterations in human cancer and cancer cell lines. TCGA data are displayed
through cBioPortal. Note that MYC is largely amplified across multiple human cancers

Cancer Genome Atlas Research N 2012; Cancer Genome Atlas Research N
et al. 2013) (Fig. 5.1).

Furthermore, loss of upstream regulators such as APC in the WNT pathway can
also lead to deregulated MYC gene expression in cancers (Beroukhim et al. 2010;
He et al. 1998). In addition to its important role in cancer, MYC plays a pivotal role
in maintaining the pluripotency of stem cells (Varlakhanova et al. 2010). Notably,
MYC is also one of the four transcription factors that can induce pluripotency in
human skin fibroblast (Takahashi and Yamanaka 2006). These observations suggest
that MYC’s contribution to cellular dedifferentiation might be central to its neo-
plastic transforming activity.

Given its important role in growth, MYC expression is tightly regulated in
non-transformed cells such that its acute overexpression results in activation of
cell cycle checkpoints such as ARF and p53 (Dang 2012). Hence in normal cells,
overexpressed MYC leads to cell growth arrest or apoptosis. Unlike their normal
counterparts, many cancers with deregulated MYC lose these checkpoints such as
loss of p53 in human Burkitt’s lymphoma (Schmitz et al. 2012, 2014).

The role of MYC in tumorigenesis has been extensively studied in a number of
human cell lines and transgenic mouse models. While overexpression of MYC in
cells that have lost checkpoints results in tumorigenesis, loss of MYC can trigger
cell death in a Burkitt’s lymphoma model cell line with a tetracycline-regulated
MYC transgene (Yustein et al. 2010). Activation of an MYC transgene specifically
in the liver of a mouse model induced the formation of large liver tumors, which
also exhibited the so-called oncogene addiction. Being addicted, these tumors
regressed upon silencing of the MYC transgene (Felsher 2010). These findings
suggest that MYC is important in tumor initiation and maintenance. Once these
tumors are established, they can also be addicted to MYC, perhaps partially via the
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metabolic pathways that MYC regulates. Indeed, we hypothesize that deregulated
MYC results in deregulated cell growth signaling that requires a commensurate
constitutive source of bioenergetic nutrients, such that the MY C-transformed cell
becomes addicted to glucose, glutamine, and other nutrients (Fig. 5.2). In this
regard, we will review in this chapter the connections between MYC, cell growth,
proliferation, and metabolism as they are related to cancer biology and therapy.

5.3 Function of MYC

MYC protein is composed of a transactivation domain at N-terminal and a helix-
loop-helix leucine zipper domain at C-terminal for DNA binding (Baudino and
Cleveland 2001). Upon induction, MYC heterodimerizes with its partner MAX,
which is also a helix-loop-helix leucine zipper protein, to bind the consensus DNA
sequence (CACGTG or E-box) or its variants and alter gene expression (Dang
2012).

The oncoprotein MYC has many binding targets, perhaps up to 15 % of genes
(Fernandez et al. 2003; Cawley et al. 2004). Global mapping of MYC binding sites
in the human genome using human Burkitt’s model lymphoma cells had demon-
strated that approximately 3,000 genes are associated with MYC (Zeller
et al. 2006). Among these 3,000 MYC-bound genes, 688 that were found to have
altered are involved in protein synthesis and cell metabolism, suggesting that MYC
activates metabolic reprogramming in cancer cells to fulfill the increased metabolic
needs required for rapid growth. Subsequent global mapping of MYC binding sites
has broadened the number of putative MYC targets, but expression analysis shows
that many key metabolism genes are among the most upregulated genes.

Recent studies have suggested that MYC is a universal amplifier of gene
expression through the release of RNA Pol II promoter pausing (Lin et al. 2012;
Nie et al. 2012). However, MYC does not uniformly upregulate all genes to the
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same degree, suggesting that there is a hierarchy to global MYC regulation. That is,
MYC regulates specific genes to different degrees depending on their specific
cellular function. For example, MYC would not amplify tumor suppressor genes
to the same extent as it would amplify the expression of growth-promoting genes in
a cell stimulated to grow. Further, these observations could not explain MYC-
mediated suppression. For instance, a few studies showed that MYC suppresses
cyclin-dependent kinase inhibitors pl5 and p21 by recruiting Miz-1 (Seoane
et al. 2001, 2002; Staller et al. 2001). For cancer cells to proliferate, the balance
between the expression of growth-promoting genes and growth-arresting genes
needs to be maintained.

5.4 Role of MYC in Cell Growth and Proliferation

MYC consistently alters specific groups of genes that are involved in metabolism,
protein biosynthesis, cell cycle regulation, angiogenesis, and apoptosis
(Prendergast 1999; Nilsson and Cleveland 2003; Baudino et al. 2002). We will
not discuss all of MYC’s target genes, but three functions relevant to cancer
proliferation stand out: cell cycle, protein synthesis, and metabolism. While these
roles of MYC have been studied separately, these processes are inextricably linked
with metabolism, fueling MYC-driven cell growth and proliferation.

MYC has been shown to drive the cell cycle through E-box-dependent promoter
regulation of cyclins D1 and D2, CDK4, and cyclin B1 (Fernandez et al. 2003;
Bouchard et al. 2001; Menssen and Hermeking 2002; Hermeking et al. 2000). Via
inhibiting Mizl, MYC can enhance the cell cycle through repression of CDK
repressors p21 and p151NK4A (Wu et al. 2003; Seoane et al. 2001).

Cell cycle progression requires that cells attain a certain cell size before initiat-
ing DNA replication and the ensuing cell division to produce two daughter cells. In
addition to accelerating the progression of the cell cycle, MYC also accelerates
protein synthesis and increases cell size. Indeed, MYC overexpressing fibroblasts
show protein synthesis that is about threefold higher than in MYC knockout
fibroblasts (Mateyak et al. 1997). MYC plays a key role in regulating ribosome
biogenesis (Kim et al. 2000; Schlosser et al. 2003; Poortinga et al. 2004). Studies
have also shown that Drosophila mutants for these ribosomal protein genes have
smaller body size which phenocopies a natural Drosophila MYC mutant fly, termed
diminutive (Orian et al. 2003; Fernandez et al. 2003). Conversely, overexpressing
MYC in Drosophila (which is called dMYC) increases their cell size, thus increas-
ing the size of body parts (when dMYC is expressed in a tissue-specific fashion)
(de la Cova et al. 2004; Moreno and Basler 2004; Secombe et al. 2004). Not only do
dMYC-overexpressing cells grow bigger, but they competitively induce apoptosis
on their surrounding cells which have lower levels of dMYC (de la Cova
et al. 2004). In vertebrates, overexpression of MYC in the liver caused liver
hypertrophy (Kim et al. 2000) and in B cells caused enlarged lymphocytes (Iritani
et al. 2002). MYC is unique among transcription factors in that it can activate
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transcription mediated by all three RNA polymerases I, II, and III to drive ribo-
somal biogenesis and protein synthesis (Gomez-Roman et al. 2003). MYC binds to
pol IlI-transcribed tRNA and 5S rRNA promoter genes which all play a major role
in protein synthesis. MYC also directly stimulates rRNA transcription (Arabi
et al. 2005; Grandori et al. 2005; Grewal et al. 2005). All these studies suggest
several ways by which MYC increases cell size via ribosome biogenesis and protein
synthesis. Taken together these studies show that MYC increases cell size and
protein synthesis by driving ribosome synthesis, necessitating the increased uptake
or synthesis of nucleotides and amino acids. Below we will discuss how MYC
reprograms metabolism to work hand in hand with cell cycle and ribosome bio-
genesis to drive cancer cell growth and proliferation.

5.5 MYC and Metabolism

Cancer cells exhibit profound metabolic changes, promoting the synthesis of
cellular building blocks to support cellular growth, proliferation, and survival
(Ward and Thompson 2012). Cancer cells must produce sufficient lipids and
phospholipids to build cellular and organelle membranes and sufficient nucleotides
to replicate DNA, increase mRNA and build ribosomes, and acquire and produce
sufficient amino acids to fuel protein synthesis.

The most noted change in cancer metabolism has been aerobic glycolysis or the
Warburg effect, first noted by Otto Warburg in his landmark studies beginning in
the 1920s (Koppenol et al. 2011; Warburg et al. 1927). In contrast to non-cancer
cells where pyruvate derived from glucose via glycolysis enters the mitochondria
and is oxidatively metabolized to maximize ATP production, proliferating cancer
cells primarily convert pyruvate to lactate even in the presence of oxygen. Although
aerobic glycolysis sacrifices ATP production per molecule of glucose, the increase
of glucose flux in aerobic glycolysis provides the opportunity for cancer cells to
maximize cellular building blocks via shunting of glycolytic intermediates into
biosynthetic pathways. Glycolytic intermediates provide fuel for the pentose phos-
phate pathway, which provides ribose or nucleotide synthesis and NADPH for
cellular reducing power; the serine biosynthesis pathway, which plays a critical
role in nucleotide synthesis; and glycerol, which plays a key role in triglyceride
metabolism (Ward and Thompson 2012).

In addition to glucose metabolism, cancer cells show additional metabolic
changes. Many cancer cells become markedly dependent on glutamine for gluta-
thione, protein, and nucleotide synthesis. Cancer cells often boost nucleotide
metabolism, upregulating the synthesis of purine and pyrimidines to support
DNA and RNA synthesis. Additionally, cancer cells reprogram how they synthesize
and take up nonessential and essential amino acids.

One of the great advances in our understanding of cancer metabolism over the
last 15 years is relationship between the recurrent genetic changes observed in
cancer and the metabolic phenotypes of the resultant cancers. The p53 protein, one
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Fig. 5.3 MYC stimulates genes involved in glycolysis, glutaminolysis, lipid, and amino acid
synthesis as well as mitochondrial and ribosomal biogenesis. Glucose and glutamine are depicted
to be transported and catabolized through glycolysis and the mitochondrion to produce ATP and
the building blocks for nucleotide, lipid, and protein synthesis. The mitochondrion is depicted as a
central biosynthetic organelle in addition to its function in oxidative phosphorylation. FA fatty
acid, MCTI monocarboxylate transporter 1

of the most frequently mutated or lost genes in cancer, has been shown to be a key
regulator of glucose, glutamine, and amino acid metabolism (Bensaad et al. 2006;
Hu et al. 2010; Jiang et al. 2011; Maddocks et al. 2013). The mammalian/mecha-
nistic target of rapamycin (mTOR) complex 1, which serves as both a metabolic
sensor and regulator, is recurrently activated in cancers via constitutive activation
of growth factor/PI3K/AKT signaling pathways via activating mutations or loss of
inhibitors such as PTEN, LKBI1, or tuberous sclerosis complex proteins (Laplante
and Sabatini 2012; Willems et al. 2012; Fresno Vara et al. 2004; Rodon et al. 2013;
Atlas 2012a, b; Song et al. 2012; Sanchez-Cespedes 2011; Luo et al. 2010). Com-
mon KRAS mutations have been reported to activate glucose, glutamine, and
nucleotide metabolism (Son et al. 2013; Gaglio et al. 2011; Ying et al. 2012).
However, the oncogene that has perhaps the best studied role in metabolism is
MYC (Dang 2012). Expression of MYC induces profound metabolic
reprogramming in cancer, controlling glucose, glutamine, nucleotide, lipid, and
amino acid metabolism (Fig. 5.3).
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5.5.1 MYC, the Warburg Effect, and Mitochondria

Aerobic glycolysis or the Warburg effect relies on increased uptake and retention of
glucose and increased glycolysis to convert this glucose to pyruvate and, conse-
quently, to lactate. In cancer cells, MYC controls a transcriptional program to
promote the Warburg effect. Glycolysis requires the uptake of glucose into the
cell by glucose transporters. MYC can directly upregulate the glucose transporter
GLUT1 (Osthus et al. 2000). After uptake by transporters, glucose is phosphory-
lated by hexokinases and becomes trapped in the cell. Hexokinase II has been
shown to be overexpressed in cancer and can be induced by MYC (Kim et al. 2004).
MYC also shows almost uniform upregulation of glycolytic genes, including
phosphoglucose isomerase, phosphofructokinase, glyceraldehyde-3-phosphate
dehydrogenase, phosphoglycerate kinase, and enolase, binding to the promoters
of these genes in upregulating them (Osthus et al. 2000; Kim et al. 2004). By
upregulating almost the entire pathway, MYC is capable of enhancing the Warburg
effect.

In certain experimental systems, MYC can induce the expression of PKM2 as
well as influencing the splicing of the PKM transcript to PKM2 by upregulating the
RNA binding splicing proteins HNRNPA1 and HNRNPA2 (David et al. 2010).
PKM?2 is an important enzyme in cancer metabolism, which differs from its
alternative splice form PKM1 in its ability to promote the Warburg effect, regulate
pentose phosphate pathway flux, regulate serine biosynthesis, and bind
phosphotyrosines (Ye et al. 2012; Anastasiou et al. 2011; Christofk et al. 2008;
Chaneton et al. 2012). Upon phosphorylation by ERK, PKM2 but not PKMI
appears to translocate to the nucleus and phosphorylates H3 tyrosine 11 at the
MYC promoter, enhancing MYC expression (Yang et al. 2012).

Aerobic glycolysis requires the glycolytic cofactor NAD™ for the activity of
GAPDH. Cancer cells can regenerate NAD* from NADH by converting pyruvate to
lactate via the enzyme lactate dehydrogenase. MYC directly upregulates the lactate
dehydrogenase A (LDHA), promoting the conversion of pyruvate to lactate (Shim
et al. 1997). Inhibiting LDHA genetically or pharmacologically diminishes the
growth of MYC-dependent cancer cell lines (Le et al. 2010). The buildup of lactate
can be toxic to cells, so cancer cells undergoing aerobic glycolysis need to excrete
lactate. MYC upregulates the monocarboxylate transporter 1 (MCT1/SLC16A1),
which transports lactate out of the cells. Inhibiting lactate export via MCTI
inhibition can result in cell death in MYC-dependent cells (Doherty et al. 2014).

Mitochondria, being the powerhouses of cellular metabolism, are also affected
by MYC. Genes involved in mitochondrial biogenesis are upregulated by MYC in
both mammals and Drosophila (Orian et al. 2003; O’Connell et al. 2003; Morrish
et al. 2003; Wonsey et al. 2002; Li et al. 2005). MYC also targets ferritin, IRP1,
IRP2, and transferrin receptor (TFRC1) which are all genes involved in iron
metabolism largely involving the mitochondrion (O’Connell et al. 2003; Bowen
et al. 2002; Wu et al. 1999; O’Donnell et al. 2006). In addition to iron metabolism,
nucleotide synthesis genes are also upregulated by MYC, including carbamoyl
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phosphate synthetase, aspartate transcarbamoylase, dihydroorotase (CAD), and
ornithine decarboxylase (ODC) (Bello-Fernandez et al. 1993; Miltenberger
et al. 1995; Liu et al. 2008). Specifically, DHODH, which is a target of MYC,
requires a functional mitochondrial electron transport chain for its catalytic con-
version of orotate to dihydroorotate in nucleotide synthesis. Hence many pathways
influenced by MYC require the function of mitochondria to support cell growth and
metabolism.

Although MYC plays an important role in inducing glycolysis and mitochondrial
function, tumor cells are often hypoxic due to the imperfect neo-vasculature found
in solid tumors. The hypoxia-inducible factor (HIF1) inhibits pyruvate conversion
to acetyl-CoA, by shunting it to lactate via activation of lactate dehydrogenase A
(LDHA) and pyruvate dehydrogenase kinase (PDK1) that inhibits pyruvate dehy-
drogenase (PDH). This activation of LDHA, and suppression of PDH by HIF1,
stops glucose from supplying carbons to the TCA cycle (Kim et al. 2006). Surpris-
ingly, glutamine’s involvement in the TCA cycle persists under hypoxia
(Le et al. 2012).

5.5.2 MYC and Glutamine Metabolism

Glutamine is another major bioenergetic source for tumor cells, especially as a
source of nitrogen and carbon for nucleotide and amino acid synthesis. Glutamine is
imported to the cells through glutamine transporter (e.g., ASCT2). Glutamine is
then converted to glutamate by glutaminase. Glutamate can be further metabolized
to a-ketoglutarate (¢KG) through glutamine dehydrogenase, glutamine pyruvate
transaminase (GPT), or glutamine oxaloacetate transaminase (GOT) to enter TCA
cycle and be catabolized by the mitochondria.

Cancer cells are addicted to glutamine, which was documented few decades ago,
for the following reasons (Reitzer et al. 1979). First, glutamine helps to feed TCA
cycle and results in a truncated TCA cycle, which allows acetyl-CoA from glyco-
lytic pathway to be used for de novo fatty acid synthesis and cholesterol synthesis
instead of making citrate with oxaloacetate. Fatty acids and cholesterols are impor-
tant for building new cell membrane. Other intermediates of TCA cycle can also be
used for biosynthesis under the constant supply of aKG from glutamine. The role of
glutamine to replenish the intermediates in TCA cycle is far more critical in cancer
cells than normal cells due to increased biosynthesis. Second, glutamine and its
derivatives glutamate and aspartate are source for nucleotide synthesis, which is
also increased in proliferated cancer cells.

MYC drives glutamine metabolism by targeting a number of genes that are
involved in the pathway. For instance, MYC directly binds to the promoter region
of two high-affinity glutamine importers ASCT2 and SN2 and upregulated their
mRNA expression to increase glutamine import (Wise et al. 2008). To also increase
flux from glutamine to glutamate, MYC activates glutaminase (GLS) both tran-
scriptionally and posttranscriptionally (Wise et al. 2008; Gao et al. 2009). In both
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P493 Burkitt’s lymphoma and PC3 prostate cancer cell line, MYC activation
increases GLS protein at a much higher level compared to mRNA expression,
suggesting that MYC regulates mitochondrial GLS indirectly (Gao et al. 2009).
Further investigation showed that MYC suppresses miR-23a and miR-23b,
resulting in a derepressed GLS protein translation from miR-23a/b (Gao
et al. 2009). As a result, elevated GLS facilitates glutamine to enter TCA cycle in
the mitochondria.

MYC-overexpressed cells often exhibit addiction to glutamine. High level of
MYC appears to prime fibroblast to a glutamine-dependent state (Yuneva
et al. 2007). Upon glutamine deprivation, cells underwent apoptosis. This observa-
tion, however, can be rescued by oxaloacetate and pyruvate, suggesting TCA cycle
intermediate depletion leads to apoptosis (Yuneva et al. 2007). Similar observations
were made in glioma cells. Using small-interference RNA (siRNA) targeting MYC
helps glioma cells to develop resistance to glutamine deprivation (Wise et al. 2008).

MYC-dependent glutaminolysis is observed to be a critical alternative energy
source pathway in nutrient-limiting environment, specifically under glucose and
oxygen deprivation conditions (Le et al. 2012). C'3-labeled glutamine was used to
track the flux of glutamine metabolism in P493 B cell in the presence and absence
of glucose. Interestingly, under glucose-deprived condition, much higher levels of
these labeled isotopologues of TCA cycle intermediates, such as fumarate, malate,
and aspartate, were found compared to glucose-abundant condition (Le et al. 2012).
This observation suggests that while glucose is still a preferable carbon source of
TCA cycle, glutamine can virtually replace glucose in the absence of glucose.
Nevertheless, under glucose-abundant condition, glutamine is used for glutathione
synthesis to reduce oxidative stress (Le et al. 2012). Flux analysis using C'*, N'?
glutamine as a tracer in another study has documented that glutamine can also
contribute to proline biosynthesis (Liu et al. 2012). A recent study using
hyperpolarized C'*-pyruvate magnetic resonance spectroscopic imaging (MRSI)
to visualize tumor formation and regression in an MYC-inducible mouse hepato-
cellular carcinoma cancer model has observed that glutamine is converted to aKG
through increased flux from pyruvate to alanine in premalignant stage
(Hu et al. 2011).

A tissue-specific relationship and MYC and glutamine metabolism have been
demonstrated in MYC-driven liver cancer versus lung cancer (Yuneva et al. 2012).
Differential expression of glutamine synthetase determines the direction of gluta-
mine metabolism (Yuneva et al. 2012). For instance, with low glutamine synthetase
expression, MYC-induced liver tumors exhibit increased glutamine catabolism
(Yuneva et al. 2012). In contrast, glutamine accumulation found in MYC-induced
lung cancers is possibly associated with elevated glutamine synthetase (Yuneva
et al. 2012). As tissue origins of tumors can dictate the expression of metabolic
pathways, the fate of glutamine can be varied based on the tissue of origin even on
the same oncogenic background.

Given that MYC-induced tumors rely on glutamine metabolism for cell growth
and survival, targeting glutaminase appears to be a feasible way to treat MYC-
overexpressed cancer. In fact, BPTES, a glutaminase inhibitor, has been shown to
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effectively slow down tumor growth in P493 B cells as well as MYC-induced tumor
xenografts (Le et al. 2012; Wang et al. 2010).

5.5.3 MYC and Amino Acid Transporters and Synthesis

MYC plays a key role in the acquisition and uptake of the amino acids required for
cell growth. MYC stimulates the uptake and catabolism of glutamine by
upregulating glutamine transporters and the enyzme glutaminase. As discussed
above, MYC can drive the synthesis of serine and glycine from glucose via
upregulation of key enzymes. Additionally, MYC-driven increase in glutamine
metabolism can promote the synthesis of alanine and aspartate, as glutamine-
derived glutamate is used to transaminate pyruvate to produce alanine and oxalo-
acetate to produce aspartate. MYC also promotes the synthesis of proline from
glutamine by upregulating proline synthesis genes and indirectly downregulating
genes that degrade proline (Liu et al. 2012).

Leucine plays a key role in cancer metabolism through its key role in the
regulation of mTORCT1 activity (Nicklin et al. 2009). Glutamine can be exchanged
through the L-type amino acid transporter (LAT1 composed of SLC7AS and
SLC3A2) for leucine, with glutamine uptake being the rate-limiting step (Nicklin
et al. 2009). MYC promote the uptake of glutamine through the regulation of
SLC1AS and then stimulate its exchange for leucine by upregulating SLC7AS
(Gao et al. 2009; Hayashi et al. 2012). While MYC activation has been shown to
stimulate leucine uptake (Murphy et al. 2013), the crosstalk between SLCIAS,
SLC7AS5, MYC, and mTOR remains to be fully elucidated (Sinclair et al. 2013).

5.5.4 Fatty Acid Metabolism

Glucose first enters the cell via glucose transporters and is retained intracellularly
once it is phosphorylated by hexokinases. This six-carbon phosphate then is
phosphorylated again and split into two three-carbon structures that can then be
converted to glycerol. This glycerol can either be used for lipogenesis or to make
pyruvate. In the case of its transformation to pyruvate (the process of glycolysis),
the pyruvate is then transaminated to alanine with glutamate derived from gluta-
mine as the nitrogen donor or converted to acetyl-CoA in the Krebs cycle. Acetyl-
CoA is then transformed into citrate and oxaloacetate, completing the Krebs cycle,
generating ATP, carbon dioxide, and other carbon substrates for other pathways.
For example, citrate could be exported into the cytoplasm and converted to acetyl-
CoA by ATP citrate lyase (ACLY) for lipogenesis.

The pathway for fatty acid synthesis takes place in the cytoplasm. Citrate from
the Krebs cycle in mitochondria is first released into the cytoplasm and converted
into acetyl-CoA by ATP citrate lyase (ACLY). The production of malonyl-CoA by
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acetyl-CoA carboxylase (ACACA) is the first committed step of fatty acid synthe-
sis. Acetyl-CoA carboxylase (ACACA) is the major site of regulation of fatty acid
synthesis. Fatty acid synthase (FASN) then converts the malonyl-CoA into a
16-carbon palmitate. Tracing glucose in MYC-induced cells has been shown to
be incorporated into increased acetyl-CoA production and in turn increased palmi-
tate synthesis, consistent with the metabolic pathway of glucose conversion to
acetyl-CoA and then in turn to palmitate (Morrish et al. 2010). Though this
shows the involvement of MYC in lipid metabolism, this also has epigenetic
implications, because the traced acetyl-CoA is shown to be incorporated into the
acetylation of H4K16.

This upregulation of the lipogenesis pathway by MYC was found in Burkitt’s
lymphoma, hepatocellular carcinoma, and osteocarcinoma cell lines. However, not
all cancers induce lipogenesis. Many prostate cancers oxidize lipids to make ATP
(Tennakoon et al. 2013). Others have also shown that pharmaceutical inhibition of
lipid oxidation in N-MYC-amplified neuroblastoma cells leads to cell cycle arrest,
apoptosis, and neuronal differentiation (Zirath et al. 2013). This differentiation is
accompanied with lipid accumulation. Gene expression analysis shows inhibition
of MYC'’s correlation with decreased expression of oxidative phosphorylation and
fatty acid oxidation genes (Zirath et al. 2013). These observations suggest that
cancer metabolic networks depend on the specific cell type, the driving oncogene
(s), and the tumor microenvironment.

5.5.5 MYC and Nucleotide Biosynthesis

MYC drives glucose and glutamine metabolism to provide carbon sources for
biosynthesis and continually generate ATP to support tumor cell growth and
survival. However, for cancer cells to proliferate (increase cell numbers), sufficient
supply of nucleotides is equally crucial. Global mapping of MYC target genes using
ChIP-PET has indicated that many genes that are involved in nucleotide synthesis
pathway are direct MYC targets (Zeller et al. 2006). For instance, the enzymes that
are involved in ANTP metabolism, such as inosine monophosphate dehydrogenase
(IMPDH), thymidylate synthase (TS), and phosphoribosyl pyrophosphate synthe-
tase 2 (PRPS2), were found to be induced by MYC (Mannava et al. 2008; Liu
et al. 2008). Targeting IMPDH by its specific inhibitor mycophenolic acid (MPA)
results in apoptosis and S phase arrest in P493 B cells, which can be rescued by
exogenous guanosine (Liu et al. 2008).

Despite direct regulation of nucleotide synthesis pathway, MYC also promotes
the channeling of glycolytic intermediates to make amino acids that are required for
nucleotide synthesis, such as serine and glycine (Vazquez et al. 2011). Glycolytic
intermediate 3-phosphoglycerate is oxidized by phosphoglycerate dehydrogenase
(PHGDH) and then converted to serine in a series of reactions that are catalyzed by
phosphoserine aminotransferase 1 (PSAT1) and phosphoserine phosphatase
(PSPH). Further, serine hydroxymethyltransferase (SHMT) can convert serine to
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glycine while simultaneously converting tetrahydrofolate to 5,10 methylenetetra-
hydrofolate. Several studies have shown PHGDH, and PSPH can be induced by
MYC (Vazquez et al. 2011). In addition, both mitochondrial and cytoplasmic
SHMTs that were documented are direct MYC targets (Nikiforov et al. 2002).
However, decreased tumor burden was not found when breed Burkitt’s lymphoma
mouse model expresses human MYC transgenes with inactivated alleles of PHGDH
or SHMT, suggesting that target genes that are involved in serine and glycine
pathway individually may not be sufficient (Nilsson et al. 2012).

5.5.6 MYC and Oncometabolites

While altered metabolism in cancers is often thought of as downstream of onco-
genes, recent studies have shown that metabolites themselves can contribute to
tumor formation most likely through alterations in the cancer epigenome. Muta-
tions in TCA cycle enzymes can lead to the accumulation of succinate and fuma-
rate, which are believed to promote cancer through alteration of epigenetic state and
reactive oxygen species (Letouze et al. 2013; Sullivan et al. 2013). As MYC can
increase the amount of glutamine entering the TCA cycle, it is possible that the
MYC activation could stimulate succinate and fumarate accumulation in the TCA
cycle mutant cell lines.

The most studied oncometabolite to date is 2-hydroxyglutarate. Isocitrate dehy-
drogenase (IDH) catalyzes the formation of alpha-ketoglutarate from isocitrate in
the TCA cycle. Mutants IDH1 and IDH2, which are recurrently mutated in several
types of cancer including leukemia and gliomas, produce 2-hydroxyglutarate.
2-Hyrdroxyglutarate can inhibit alpha-ketoglutarate-dependent  histone
demethylases (Chowdhury et al. 2011; Lu et al. 2012) and DNA demethylase
Tet2, causing epigenetic changes which inhibit cellular differentiation (Figueroa
et al. 2010). However, recent studies suggest that mutant IDH is not the only source
of 2-hydroxyglutarate in cancer. A recent study showed the accumulation of
2-hydroxyglutarate in triple negative breast cancers lacking an IDH mutation
(Terunuma et al. 2014). These high 2-hydroxyglutarate breast cancers, which
exhibited a hypermethylation, showed strong overexpression of MYC and had an
MYC expression signature. Knockdown of MYC in these breast cancer cell lines
decreased levels of 2-hydroxyglutarate. MYC increased the metabolism of gluta-
mine, which was the source of carbons used to produce the 2-hydroxyglutatarate.
While this study suggests that MYC may upregulate 2-hydroxyglutarate, it is not
yet known whether this applies to tissues beyond breast cancer.
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5.6 MYC-Driven Metabolism and Cancer Therapy

Although MYC is an intriguing therapeutic target, for example, via bromodomain
inhibitors, its downstream transcriptional targets and altered metabolism offer
additional therapeutic opportunities (Loven et al. 2013; Delmore et al. 2011).
Increased understanding of the reliance of cancer on altered metabolism and the
mutations that underlie metabolic reprogramming have driven interest in using anti-
metabolism therapies to treat cancer. However, once these therapies reach the
clinic, it will be challenging to predict which tumors respond to which therapies.
Although MYC status will likely not be sufficient to predict therapeutic response to
antimetabolic therapies in all cases due to tissue- and tumor-specific effects,
MYC-driven metabolic reprogramming provides intriguing therapeutic targets.
MYC drives nucleotide metabolism, which is the target of some of the oldest and
most successful chemotherapies. Blocking glucose metabolism by inhibiting glu-
cose uptake and glycolysis is challenging due to the reliance of the vast majority of
non-cancer cells on glucose. Targeting aerobic glycolysis through inhibition of
lactate dehydrogenase or monocarboxylate transporter-dependent lactate export is a
potentially viable target; the lack of high-quality inhibitors and the dependence of
rapidly growing non-cancer cells on aerobic glycolysis present challenges in
targeting aerobic glycolysis (Doherty et al. 2014; Le et al. 2010). Glutamine
metabolism was first tried in the clinic using nonspecific amino acid analogues
which alter the activity of a large variety of enzymes, leading to off-target effect of
lack of efficacy (Rajagopalan and DeBerardinis 2011; Shapiro et al. 1979). How-
ever, the identification of allosteric inhibitors of glutaminase have opened the door
to a less toxic inhibition of glutamine metabolism (Robinson et al. 2007,
Le et al. 2012). A glutaminase inhibitor began clinical trials in early 2014 (Gross
et al. 2014).

Conclusion

MYC has been studied over the years as a master oncogenic regulator,
especially because it regulates many genes that are crucial for cancer cell
growth and proliferation. Among many of its activities, three major functions
of MYC were discussed: cell cycle, protein synthesis, and metabolism. In
concert with MYC’s ability to induce cell proliferation, MYC also
upregulates many cellular metabolic pathways that are involved in nutrient
import and macromolecular biosynthesis. In essence, MYC is an amplifier of
gene expression that coordinates the import of nutrients and the bioenergetics
demands of replicating a cell, shunting nutrients into cell biomass. Glucose,
glutamine, and lipid metabolic pathways are regulated by MYC in various
cells to support the increased demand for energy and raw building blocks of
proliferating cells. Normal proliferating cells depend on similar metabolic
pathways; however, normal MYC expression is dependent on external cues

(continued)
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and growth factors, such that altered metabolism induced by MYC is depen-
dent on these external cues. Normal MYC expression is attenuated by the
absence of growth factors or nutrients. By contrast, cancer cells with
deregulated MYC expression that no longer requires external cues are forced
to undergo cell growth independent of nutrient sensing. In this regard,
MYC-dependent cancer cells are addicted to nutrients, such as glucose and
glutamine. Insights into these metabolic pathways and how MYC regulates
them allow for the identification of new therapeutic targets and provide the
hope that new therapies might emerge in the clinic for different types of
cancers.
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6.1 Introduction

Glycolysis pathway contains three irreversible and rate-limiting reactions; of these,
the last step involves pyruvate kinase, which catalyzes the irreversible transpho-
sphorylation from phosphoenolpyruvate (PEP) to ADP, producing pyruvate and
ATP. The presence of pyruvate kinase (PK) in mammals as four isozymes depends
upon the metabolic requirements of a tissue. The four isozymes are M1, M2, L, and
R (encoded by two genes, PKM and PKLR, respectively). The L-type isozyme
(PKL) has the lowest affinity for its substrate PEP and is expressed in tissues
showing high rate of gluconeogenesis, such as the liver (parenchyma cells), kidney
(proximal renal tubules), and intestine (Steinberg et al. 1999; Brinck et al. 1994).
The R isozyme of pyruvate kinase (PKR) is expressed in red blood cells (RBCs)
which lack mitochondria (Rodriguez-Horche et al. 1987). The non-allosteric, high-
affinity M1 isozyme (PKM1) is expressed in energy-requiring tissues like muscle,
heart, and brain (Yamada and Noguchi 1999b; Reinacher et al. 1979). The M2
isozyme of pyruvate kinase (PKM?2) is typically present in normal proliferating
cells, embryonic cells, and tumor cells. However, few differentiated tissues like the
adipose, lung, distal renal tubules, Henle’s loops, collecting tubules of the renal
medulla, retina, and pancreatic islets also express M2 isozyme (Reinacher and
Eigenbrodt 1981; Reinacher et al. 1979; Brinck et al. 1994; Steinberg et al. 1999;
Yamada and Noguchi 1999a; Eigenbrodt et al. 1992) (Fig. 6.1).

The PKM gene is located on chromosome 15q22 position and has been largely
conserved throughout evolution. M1 and M2 isozymes are the product of alternate
splicing where mutually exclusive incorporation of exon 9 makes M1, while exon

FBP binding pocket

1 44 16 218 200 432437 ¢ 531
M A1l B1 A2 =coor
J—« 378 434 51 21
Active site Sequence difference between  FBP activating
PEM1 & PKM2 (I5CD) loop

Fig. 6.1 Domain structure of PKM2 subunit
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10 incorporation makes M2 isozyme. The exon that is exchanged because of
alternative splicing encodes 56 amino acids, in which a total of 22 amino acids
differ within a length of 45 residues between domain A2 and C, generally known as
inter-subunit contact domain (ISCD) (Fig. 6.1). The enzyme is usually a homo-
tetramer composed of four identical subunits, each containing four domains: the A-,
B-, C-, and N-terminal domain. Domain A is subdivided into A1 and A2 and shares
PEP binding site with B1 domain; however, FBP binding pocket is shared by A- and
C-terminal domains as shown in Fig. 6.1. B is the most mobile domain of the
enzyme and responds highly towards ligand binding (Larsen et al. 1998).

Expression
Enzyme | Isoforms Km (mM) in cancer Remarks References
Pyruvate | Ml PEP |0.11 |Reduced High affinity and non-
kinase ADP |0.28 cooperative binding
with PEP. Expressed in
muscle, heart, and brain
M2 Increased Prototype, expressed in | (Mazurek
Tetrameric | PEP | 0.03 proliferating cells and et al. 2005;
ADP | 0.25 tumor cells in particular | Gupta and
Dimeric PEP |0.46 1238 i?;;zal
ADP |0.29
L PEP |0.75 |Reduced Allosteric binding with
ADP |0.56 PEP, expressed in the
liver
R PEP |1.10 |Reduced Allosteric binding with
ADP |0.18 PEP, expressed in RBC

Fundamental differences between M1 and M2 isozymes of PK enable these to
perform isozyme-specific functions. X-ray crystallographic analyses have shown
that the inter-subunit contact is actually responsible for the inter-subunit commu-
nication, required for allosteric cooperativity in M2 isoenzyme (Muirhead 1990;
Muirhead et al. 1986); however, the sequence difference between M1 and M2 in
ISCD region renders M1 isoenzyme totally noncooperative and non-allosteric. The
structure of human PKM?2 has been determined in complex with inhibitors where
each subunit (monomer) has individual site for substrate (PEP), allosteric-activator
(FBP), and ADP binding (Dombrauckas et al. 2005). In a typical allosteric protein
binding of the substrate at one site increases its affinity to other sites in the same
molecule, providing a typical sigmoidal curve; however, upon binding of activator
like FBP, the enzyme loses its allosteric property, and all substrate binding sites
show equal and noncooperative affinity towards the substrate. The same is true with
PKM?2, where a unique FBP activating loop (517-521) surrounds the FBP binding
pocket, and hence the FBP molecule itself results in partial closed conformation of
allosteric site; however, in case of rabbit muscle PK which does not respond to FBP,
the loop is located away from FBP binding site. Binding of FBP alters the confor-
mation of FBP activating loop, which in turn impacts the inter-subunit contacts.
Hence, the unique orientation of FBP activating loop is perhaps the most significant
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difference between M1 and M2 isoforms of PK, which possibly leads to the absence
and presence of allostericity in the two isoforms, respectively.

6.2 Regulation of Pyruvate Kinase M2

Expression and functional behavior of PK is regulated at multiple levels (Fig. 6.2).
As far as genetic mutations controlling PK expression and stability are concerned,
PKLR gene on chromosome 1q21—q22 is known for frequent mutations (Tani
et al. 1987; Satoh et al. 1988). These include missense, nonsense, deletion, and
frame shift mutations (Lenzner et al. 1997; Kanno et al. 1997, Van Wijk
et al. 2009), distributed throughout the worldwide population (Pissard et al. 2006)
with diverse phenotypic implications (University et al.). Many of these mutations
negatively regulate the expression level in PKLR, leading to PK deficiency in red
blood cells, a source of hereditary nonspherocytic hemolytic anemia. A very
frequent mutation within PKLR gene among the Northern European population is
a single amino acid substitution (R510Q), which is associated with PKLR degra-
dation and PK deficiency (Wang et al. 2001). However, unlike PKLR gene, with
multiple documented widespread mutations, there is only one report about muta-
tions within the M gene in the cell lines and a patient of Bloom syndrome (Anitha
et al. 2004). These missense mutations (H391Y and K422R) were observed within
the inter-subunit contact domain of the PKM?2 protein (coded by exon 10) involved
in allosteric signal transduction from one to another subunit (Fig. 6.2). Without
affecting the stability or expression level of the PKM2 protein, the two mutations
had differential impacts over the activity and allosteric behavior of PKM?2 (Akhtar
et al. 2009; Webb et al. 2011). In addition, the H391Y and K422R mutations have
been shown to promote the subunit exchange between wild-type and mutant mono-
mers of PKM2, thereby generating different kinds of hetero-oligomers which
promoted cellular growth and polyploidy in an ex vivo model (Gupta et al. 2010).

Genetic Mutations  ypanccrintion factors

HaRINRI2 im (SPT.SPZHIFT)  Apternative Splicing

(hnRN Pﬁl, A2, PTB, SRSF3)

miRNA
a"(133a,b, 326)

Protein interaction

Fig. 6.2 Regulation of PKM2 expression and functions
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The other but generalized level of regulation, which occurs in pyruvate kinase, is
the alternate splicing that vastly affects the preferred expression of isozyme of
choice, i.e., M1 or M2. The M1- and M2-type pyruvate kinase isozymes are
different splicing products (exon 9 for PKM1 and exon 10 for PKM2) of the M
gene (Noguchi et al. 1986). It has been shown that c-Myc favors exon 10 inclusion
by controlling the expression of the splicing factors heterogeneous nuclear ribonu-
cleoproteins Al and A2 (hnRNPA1, hnRNPA2) and polypyrimidine tract protein
(PTB) (David et al. 2010). A recent report also has suggested the involvement of
another factor, SRSF3 (serine/arginine (SR)-rich family of pre-mRNA splicing
factors), which triggers exon 10 expression and promotes cellular proliferation
and aerobic glycolysis. Transcription factors, like SP1, SP3, and the hypoxic
inducible factor 1 (HIF1), are also known to control PKM2 expression. SP1 has
been described as a regulator of PKM expression modulated by cell state, with
increased glucose and decreased reactive oxygen species-related PKM promoter
activity (Schafer et al. 1996, 1997). HIF1a induces PKM2 expression by binding to
hypoxia response element in PKM2 gene in response to the receptor tyrosine
kinase/PI3K/AKT/mTOR signaling cascade, which also upregulates c-Myc expres-
sion (Fig. 6.3) (Sun et al. 2011; Igbal and Bamezai 2012). MicroRNAs, a class of
small noncoding RNAs, are also known to affect PKM expression, either through
promoting RNA degradation or by repressing translation (Pillai 2005). Computa-
tional target gene prediction has revealed PKM2 as a target of microRNA326
(Kefas et al. 2010). In glioma cells, high levels of PKM2 correlated with low levels
of microRNA326. Similarly, in tongue squamous cell carcinoma (SCC),
downregulation of computationally predicted microRNA133a and 133b promoted
PKM?2 overexpression. These microRNAs were suppressed in tongue carcinoma
cells as compared to tongue epithelial cells of the same patient.

Moreover, transfection of tongue SCC cell lines with microRNA133a and 133b
led to an inhibition of cell proliferation (Wong et al. 2008). Once the PKM2 protein
is synthesized in the cell, there are various levels of regulation. PKM2 is present in
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the cells in multimeric forms: catalytically active tetrameric form and catalytically
inactive dimeric, trimeric, and monomeric forms. For instance, dimeric form is
present in relatively higher amount in proliferating cells as compared to the
quiescent cells. There are many known methods triggered by exogenous signaling
which modify the relative ration of dimer and tetramer, and hence the net PKM2
activity in cells decides the cell fate. For example, FBP is known to regulate the
process of switching the multimeric forms of PKM2. It is known that in the
presence of fructose-1,6-bisphosphate (FBP), the affinity for PEP for all subunits
within the tetramer becomes independent of each other and increases tremendously
(Dombrauckas et al. 2005), and the enzyme tends to stay in tetrameric form.
Conversely, when FBP levels drop below a certain level, the tetrameric form
dissociates to the dimeric form. Furthermore, some amino acids, such as L-serine,
have also been shown to regulate PKM?2 activity. L-Serine increases the affinity of
PKM2 to its substrate PEP and reduces the amount of FBP necessary for
tetramerization (Eigenbrodt et al. 1992). However, PKM2 activity is inhibited by
L-alanine, L-cysteine, L-methionine, L-phenylalanine, L-valine, L-leucine, L-isoleu-
cine, and L-proline as well as saturated and monounsaturated fatty acids (Marchut
et al. 1986; Eigenbrodt et al. 1992). Nonetheless, there are varieties of posttransla-
tional modifications, which PKM2 undergoes, resulting in modulated activity and
subunit dissociation. This includes tyrosine, serine, and threonine phosphorylation,
lysine acetylation, proline hydroxylation, as well as cysteine oxidation (Hitosugi
et al. 2009; Presek et al. 1988; Eigenbrodt and Glossmann 1980; Eigenbrodt
et al. 1998). The tyrosine-105 phosphorylation of PKM2 by oncogenic tyrosine
kinases (e.g., FGFR1) has been shown to inhibit its activity by causing the release of
its allosteric-activator FBP (Hitosugi et al. 2009). In another study by Lv et al,,
acetylation of PKM2 at lysine-305 was found responsible for downregulation of
PKM2 activity. Both phosphorylation and acetylation induced inhibition of PKM2
activity resulted in enhanced Warburg effect and tumor growth (Luo et al. 2011).
(Anastasiou et al. 2011) have shown remarkable role of oxidized PKM2 in enduring
oxidative stress in cancer cells. In this paper, the authors report that intracellular
reactive oxygen species (ROS)-induced oxidation of cysteine-358 decreases its
activity to divert glucose flux into anabolic PPP, thereby generating sufficient
reducing potential in the form of NADPH for detoxification of ROS (Jiang
et al. 2010). Moreover, the authors show that oxidized PKM2, by virtue of its
lower activity, promotes tumor growth, which was inhibited when mice were fed on
N-acetyl-L-cysteine (NAC; scavenger of ROS). This report extended the relevance
of PKM2 to cancer cells and also emphasized the critical role of this enzyme in
cancer. Furthermore, low activity PKM2 has been reported to promote de novo
serine biosynthesis by causing accumulation of glycolytic intermediate
3-phosphoglycerate (Ye et al. 2012). Recently, insulin has been shown to exert
contrasting effects on PKM2 expression and activity through PI3K/mTOR/HIF1a-
and ROS-dependent mechanisms, respectively (Igbal et al. 2013).
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6.3 Canonical and Noncanonical Functions of PKM?2

The primary role of PKM2 is to produce net ATP from glycolysis; however, due to
its unique positioning at the crossroads of glycolysis, TCA cycle makes it a
potential metabolic tuner in dividing cells. When quiescent cells expressing other
pyruvate kinase isozymes enter the cell cycle, the M2 type of pyruvate kinase is
reexpressed (Mazurek et al. 2005; Yamada and Noguchi 1999b; Reinacher and
Eigenbrodt 1981; Reinacher et al. 1979; Yamada and Noguchi 1999a; Bluemlein
et al. 2010); Eigenbrodt et al. 1992). Recent discoveries of novel proteins
interacting with PKM2 have confirmed its key function during cell division,
tumor metabolism, and cancer growth.

6.3.1 Pyruvate Kinase M2, Warburg Effect, and Cancer Cell
Metabolism

In the absence or scarce oxygen, normal cells convert glycolytic pyruvate into
lactate (anaerobic glycolysis; e.g., in the skeletal muscle during strenuous exercise),
thus preventing pyruvate to enter mitochondrial oxidative phosphorylation. As a
result, rapid but limited ATP production takes place, generating only two moles of
ATP per mole of glucose. When oxygen is abundant, normal cells perform mito-
chondrial oxidative phosphorylation and generate 36 moles of ATP per glucose
mole. However, cancer and normal proliferating cells convert pyruvate into lactate
irrespective of the presence of oxygen, a phenomenon termed as Warburg effect or
aerobic glycolysis, bypassing mitochondrial oxidative phosphorylation (Vander
Heiden et al. 2009a). Warburg postulated that high lactate production is due to
mitochondrial dysfunction in cancer cells. However, it proved unfitting in later
studies (Frezza and Gottlieb 2009). In fact, in some cases, mitochondria play a
contributory role in cancer progression (Weinberg et al. 2010; Funes et al. 2007).

6.3.2 Why the Aerobic Glycolysis?

To explain why cancer cells switch to aerobic glycolysis, which is less efficient in
terms of ATP production, several explanations have been proposed. Gatenby and
Gillies in their review entitled Why Do Cancer Cells Have High Aerobic Glycol-
ysis? argue that aerobic glycolysis is an adaptation to hypoxic (low-oxygen)
conditions existing in premalignant phase of tumor development (Gatenby and
Gillies 2004). As a result, cancer cells produce ATP even in the absence of oxygen.
High lactate production causes acidification of microenvironment and eventually
results in evolution of acid-resistant cell type, which grows uncontrollably. In
addition, it has been proposed that aerobic glycolysis fulfills the need of cancer
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cells to synthesize raw material (nucleotides, amino acids, and phospholipids) for
their daughter cells (Lunt and Vander Heiden 2011). Even when it comes to ATP
generation, glycolysis is known to produce ATP at a much faster rate than mito-
chondrial oxidative phosphorylation and therefore may be preferred to meet the
energy demands of cancer cells (Pfeiffer et al. 2001). Due to anabolic obligations,
cancer cells preferably utilize glucose for macromolecular synthesis (Vander
Heiden et al. 2009a). Aerobic glycolysis provides the platform for macromolecular
synthesis through two ways: first, high rates of glucose uptake (Hume and
Weidemann 1979) and, second, prevention of entry of pyruvate into mitochondria
by its conversion into lactate (Vander Heiden et al. 2009a). Moreover, high lactate
production is critical in regulation of glucose flux into biosynthetic pathways,
through faster incorporation of carbon into biomass which in turn facilitates rapid
cell division (Lunt and Vander Heiden 2011) and also creates acidic environment
required for invasiveness and metastasis (Robey and Martin 2011). Recent evi-
dences demonstrate role of remarkable role of aerobic glycolysis in modulating
immune response against cancer cells (Husain et al. 2013; Chang et al. 2013).

Warburg’s observation of upregulation of glycolysis in cancer even in the
presence of O, had highlighted the exclusive importance of glycolytic pathway in
dividing cells (Warburg 1956; Ferguson and Rathmell 2008). A dividing cell has
dual dependence on glycolysis for (1) energy and (2) the glycolytic intermediates
(phosphometabolites) required as precursors for the synthesis of nucleic acids,
amino acids, and lipids (Mazurek et al. 1997). This dual dependence ensures the
activation of synthetic processes, only when the source of energy (glucose) is
sufficient in microenvironment to maintain the “metabolic homeostasis” of the
cell. Since accumulation of synthetic precursors and availability of energy from
glycolysis are mutually exclusive (one at a time), the dividing cell efficiently
coordinates both pathways in a cyclic manner, where PKM2 plays a major role
because of its positioning at the last step of glycolysis (Mazurek et al. 2005). Hence,
expression of PKM2 isoform in a dividing cell is a metabolic requirement, and its
presence at the last step of glycolysis decides the fate of glucose carbons to channel
either in synthetic pathway (nucleogenic) or for energy production (glycogenic).
The destined ATP is produced by maintaining an active tetramer state of the
enzyme (PKM2); however, when the cell senses the requirement of precursors,
especially during cell division, the activity of this enzyme is downregulated
(by subunit dissociation) in a reversible manner, to block the glycolytic flux
towards pyruvate production. This allows accumulation of the glycolytic interme-
diates used further as synthetic precursors of nucleic acid, lipid, and amino acid
synthesis (Eigenbrodt et al. 1992) (Fig. 6.3). Thus, understanding of nucleogenic
and glycogenic cycles in cancer cells vis-a-vis fast dividing normal cells (e.g., stem
cells and activated lymphocytes) and the stabilization of irreversible subunit dis-
sociation of the PKM2 tetramer in a cancer cell require focused attention. Identi-
fying the molecules and associated phenomenology would pave the way for clear
understanding of aerobic glycolysis and specific therapeutic interventions.

The subunit dissociation (tetramer to dimer) is a well-known process for activity
downregulation when the availability of FBP is low under physiological conditions



6 Pyruvate Kinase M2: A Metabolic Tuner 131

(Mazurek et al. 2005). Binding of FBP is known to tetramerize the enzyme, while
its release causes dissociation to dimer. However, as in vitro the purified protein is a
homo-tetramer even in the absence of FBP, the exact mechanism of dimerization/
tetramerization under physiological condition is yet not known. The role of PKM2
in tumor development was earlier indicated by the fact that many oncogenic viral
pathogens during evolution have chosen PKM?2 for their phenotypic effect by
inducing its dissociation into dimer after physical interaction (Zwerschke
et al. 1999; Presek et al. 1988). Some proteins known for cellular growth and
proliferation like A-Raf (Mazurek 2007; Mazurek et al. 2007) and PML
(promyelocytic leukemia protein) (Shimada et al. 2008) are known to downregulate
PKM2 activity by interacting with it. Interaction of PKM2 with growth factor
receptor like FGFR-1 (fibroblast growth factor receptor-1), receptor tyrosine kinase
like FIT3, JAK-2, and oncogenes like BCR-ABL further supports to the proposed
potential (Hitosugi et al. 2009). Lysophosphatidic acid (LPA), a mitogenic factor,
also interacts with PKM2 (Desmaret et al. 2005), and Oct4 (octamer-4), a
homeodomain transcription factor expressed in normal embryonic stem cells, has
been reported as PKM2 interacting partner. Oct4 is involved in stem cell self-
renewal, and its knockdown is reported to induce cell differentiation (Niwa
et al. 2000). A physical interaction of PKM2 with Oct4 probably indicates their
auxiliary function to induce cell division and tumor sustenance under
malfunctioning conditions, especially when PKM?2 is already known to promote
cancer of adult germ cells (Lee et al. 2008).

Change in the expression of pyruvate kinase isoform is a consistent observation,
which is coupled to metabolic transformation in cancer cells. Tissue-specific iso-
enzymes like PKM1 in the brain and PKL in the liver are replaced by tumor-specific
isoenzyme PKM2 (Reinacher and Eigenbrodt 1981; Eigenbrodt et al. 1992;
Guminska et al. 1997; Hacker et al. 1998; Steinberg et al. 1999; Mazurek 2011b).
Immunohistological, blood, and stool analyses of cancer patients have revealed the
presence of dimeric PKM2, thus emphasizing the role of this enzyme in cancer
(Schneider et al. 2002; Hugo et al. 1999; Tonus et al. 2012). However, PKM2 as a
tumor-promoting enzyme gained enormous attention when two articles from
Christofk et al. appeared in Nature. In these papers, the authors have elegantly
shown that replacement of PKM2 with PKM1 isoform in cancer cells significantly
reduced cancer metabolism. They further demonstrated that tumor growth dimin-
ished when PKM2 was replaced by its isoform PKMI, thereby concluding that
switch to PKM2 is indeed critical for cancer metabolism and tumor growth
(Christofk et al. 2008a). In another paper, the authors have shown that PKM?2 is a
phosphotyrosine-binding protein and binding of tyrosine phosphorylated protein
decreases PKM2 activity (Christofk et al. 2008b). Interestingly, decrease in PKM2
activity benefits cancer cells as it results in pooling of the glycolytic intermediates,
which are precursors for major biosynthetic pathways like pentose phosphate
pathway (PPP) (Christofk et al. 2008b; Mazurek 2011b; Mazurek et al. 2005)
(Fig. 6.4).
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Fig. 6.4 Regulation of pyruvate kinase M2 expression and activity and its implications

6.3.3 Non-metabolic Functions

Besides its metabolic role, PKM2 is reported to support tumorigenesis through its
critical “non-metabolic” attributes. In a noteworthy study published by Luo et al.,
PKM2 has been shown to interact inside the nucleus with its transcriptional
activator HIFla. This interaction increases transcriptional activity of HIFla,
which results in higher expression of its (HIFla) target genes, e.g., GLUTI1
(glucose transporter), LDHA (lactate dehydrogenase A), and PKM. The authors,
thus, provided a possible explanation to previous observations of increased glucose
uptake and lactate production (aerobic glycolysis) on switch to PKM2 expression
and unraveled a “positive feedback loop” mechanism that reprograms the glucose
metabolism (Luo et al. 2011). Yang et al. showed that activation of epidermal
growth factor receptor (EGFR) resulted in translocation of PKM2 into nucleus
where it associated with phosphorylated p-catenin to form a complex, which
enhanced cyclin D1 and c-Myc expression (Yang et al. 2011). PKM2-dependent
transactivation of B-catenin is critical for EGFR-promoted tumor cell proliferation
and development. Upregulation of c-Myc by PKM2 forms a “positive feedback
loop” as c-Myc regulates alternative splicing in favor of PKM2 (David et al. 2010).
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Another recent article reported that PKM2 dimer is a protein kinase and that it
regulates gene transcription by activating the transcription of MEKS5 through Stat3
phosphorylation (Gao et al. 2012). The authors demonstrated that PKM2 dimer is
an active protein kinase (with PEP as phosphate donor), while PKM2 tetramer is a
pyruvate kinase. Further, they showed that expression of PKM?2 mutant that existed
as dimer promoted cellular proliferation, indicating that protein kinase ability is
important in cellular proliferation. This study revealed an important link between
metabolic transformation and gene expression. Recently, ERK2-dependent phos-
phorylation and nuclear translocation of PKM2 are reported to promote
upregulation of glycolytic genes, such as GLUT1 and LDHA, and thus the Warburg
effect (Yang et al. 2012b). Although PKM2 has been linked tightly with cancer
metabolism and tumor growth, there are reports where the role of PKM?2 has been
challenged. Bluemlein et al. observed that PKM?2 is also a predominant isoform in
tissue-matched controls, besides being predominant in cancer tissues. This study
challenged the notion of PKM1 to PKM2 switching during cancer progression and
also questioned the image of PKM2 as cancer-specific enzyme (Bluemlein
et al. 2011). Another recent article showed that PKM2 silencing did not completely
inhibit tumor growth, suggesting the presence of other metabolic pathway that
bypasses its function (Cortes-Cros et al. 2013).

Interaction of PKM2 with an analogue of growth inhibiting hormone (somato-
statin) is known to cause caspase-independent cellular apoptosis by interacting and
localizing the PKM2 in nucleus (Stetak et al. 2007), while some cytokines were
found to enhance cellular proliferation involving PKM?2 in a similar way (Hoshino
et al. 2007). In a report, PKM2 showed immunomodulatory effects by interacting
with SOCS3 (suppressor of cytokines signaling 3) resulting in disruption of antigen
presenting ability of dendritic cells (Zhang et al. 2010).

6.3.4 PKM?2 and Epigenetics

There are evidences showing how metabolism leads to epigenetic modulation
affecting gene expression and subsequent pathways. A recent study showed
PKM2 reportedly localizes into the nucleus and directly phosphorylates histone
H3 at threonine 11, upon epidermal growth factor stimulation. This is required for
the dissociation of HDAC3 from the cyclin D1 (CCNDI1) and Myc promoter
regions and also subsequent acetylation of histone H3 at K9 (lysine 9) and tran-
scriptional initiation. According to a recent report, a positive correlation was also
found between PKM2 nuclear localization and histone H3 T11 phosphorylation in
glioma malignancy grades (Yang et al. 2012a), and this function appears to be
specific to the M2 isoform of PK. PKM2 has also been shown to interact with and
modulate an array of transcription factors, including HIF1a, $-catenin, Oct4, and
Stat3 (Lee et al. 2008; Luo et al. 2011; Yang et al. 2011; Gupta and Bamezai 2010),
as mentioned earlier, indicating its potential role in epigenetic modulations.
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6.4 PKM2 and Cancer Therapeutics

Due to indispensable reliance of cancer cells on their metabolic requirements,
metabolism of cancer cells is now perceived as a crucial therapeutic target. Prolif-
eration only proceeds when the metabolism of the cells is able to provide a budget
of metabolic intermediates that is high enough to ensure both energy generation and
synthesis of cell building blocks in sufficient amounts (Mazurek 2011a). As the last
enzyme in glycolytic pathway, PKM2 plays a key role in determining whether
glucose carbons are used for glycolytic energy generation or are channeled into
synthetic processes. Therefore, a balanced regulation of PKM?2 activity is crucial
for proliferating cells to survive under varying nutrient supply, since any change in
the activity of PKM2 above or below a required threshold may block cell prolifer-
ation. Hyperactivation of PKM2 inhibits the fueling of synthetic pathways gener-
ating cell building blocks, while complete inhibition could potentially cause ATP
crises in a dividing cell especially under hypoxic conditions when glutaminolysis,
the second main pillar of energy regeneration in proliferating cells is inhibited
(Eigenbrodt et al. 1994; Mazurek 2011a; Mazurek et al. 2005). If cells are not
limited for ATP, they may still require production of pyruvate for entry into the
TCA cycle or for generation of NAD" by lactate dehydrogenase. Importantly, an
alternative mechanism for pyruvate generation when PKM2 activity is low has
recently been described. This mechanism involves direct transfer of phosphate from
PEP onto the enzyme phosphoglycerate mutase (PGAM), thus allowing generation
of pyruvate in the absence of ATP production (Vander Heiden et al. 2011).
Together, this data suggests that PKM2 activity must remain flexible in order to
optimally support proliferation and that fixation of PKM2 either in the nearly
inactive dimeric form or in the highly active tetrameric form may inhibit cancer
growth. Hence, it is possible that either inhibiting or activating PKM2 could be
viable therapeutic strategies for cancer.

6.4.1 Therapeutic Modulation of PKM?2 Activity

In the quest of identifying new lead structures that target PKM2, one of the first
compounds described was A771726, which is the active metabolite of leflunomide,
a well-known inhibitor of dihydroorotate dehydrogenase, a key enzyme in pyrim-
idine synthesis. Binding of A771626 to PKM2 is known to induce inactivation by
dimerization of enzyme, resulting in inhibition of cell proliferation in rat Novikoff
hepatoma cells (Muellner et al. 2006). Another inhibitor was identified in a high-
throughput screen of 107,360 small molecules. These compounds were tested in a
lactate dehydrogenase-coupled kinetic PK assay to identify inhibitors of PKM2
(Vander Heiden et al. 2009b). The compound which showed inhibition of PKM2
with the lowest IC50 value, termed compound 3 (N-(3-carboxy-4-hydroxy)phenyl-
2,5-dimethylpyrrole), was tested in the human non-small cell lung carcinoma cell
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line H1299, engineered to express either PKM1 or PKM2. Furthermore, shikonin, a
component of zicao (dried root of Lithospermum erythrorhizon), a Chinese herbal
medicine, was recently identified as a natural inhibitor of PKM2 with an IC50 value
of 0.3 pM (Chen et al. 2011). Two other studies investigated the effect of PKIM2
silencing in combination with docetaxel and cisplatin, respectively. Moreover,
there are few cases of synthetic lethality where silencing of PKM2 in combination
of docetaxel (2 pg/ml) treatment resulted in higher intracellular drug concentration,
due to an inhibition of the ATP binding cassette transporters by the decrease of ATP
levels (Shi et al. 2010). Reduction in xenograft tumor growth by docetaxel was
significantly greater in PKM2 downregulated tumors in comparison to control
tumors (Shi et al. 2010). Similarly, cisplatin also showed a greater inhibition of
xenograft tumor growth when PKM?2 was silenced, and no increase in toxicity was
observed (Guo et al. 2011). Collectively, these studies showed that PKM?2 inhibi-
tion could potentially be used in combination with chemotherapy drugs to enhance
their antitumor activity.

Not even inhibition, but activation of PKM2 may also be a strategy for inhibition
of tumor growth. High-throughput screening of ~300,000 small molecules of the
NIH Molecular Libraries identified two types of lead structures including
substituted thieno[3,2-b]pyrrole[3,2-d]pyridazinonel (Jiang et al. 2010) and
substituted N,N'-diarylsulfonamide 2 (Boxer et al. 2010) which activate PKM2. It
has been shown that N,N'-diarylsulfonamide 2 mimics FBP action by reducing the
K., of PKM2 for PEP to 1/10 without affecting Vmax. Different analogues of the
lead structure were synthesized which were found to be selective for PKM2 as
compared to the other isozymes.

Another chemotype of PKM?2 activators are 2-Oxo-N-aryl-1,2,3,4-tetrahydro-
quinoline-6-sulfonamides (Walsh et al. 2011). The compounds were also identified
in a high-throughput screen of nearly 300,000 small molecules of the NIH Molec-
ular Libraries using pyruvate kinase-luciferase-coupled assay. Most of the ana-
logues studied showed a high selectivity for PKM2. Compound 66, which reduced
Km of PKM2 for PEP to 1/5, had an AC50 of 90 nM and was cell permeable (Walsh
et al. 2011). Effects of these activators on cell proliferation remain to be studied. In
addition to a direct interaction with pyruvate kinase type M2 also, indirect targeting
may affect the activity of the enzyme. For example, targeting of the tyrosine kinases
BCR-ABL by imatinib, JAK2 by AG490, and FLT3 by TKI258 decreased phos-
phorylation of PKM2 on Y105, which resulted in an activation of PKM2 (Hitosugi
et al. 2009). The approaches summarized above suggest that in principle both
inhibition and an activation of PKM2 could be a viable strategy for cancer treat-
ment. However, when targeting tumor metabolism, possible metabolic escape
mechanisms have to be taken under consideration. In another piece of study,
peptide aptamers known to specifically bind to PKM2 and induce a dimerization
and inactivation of PKM2 have been shown to inhibit cell proliferation, in high
glucose conditions. However, these peptide aptamers promoted cell proliferation
and inhibited apoptosis when the cells were cultured in low glucose (Spoden
et al. 2008, 2009). It was explained mechanistically that at high glucose concen-
trations glycolysis is the main energy source. Therefore, the peptide aptamer
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induced fixation of PKM2 in the almost inactive dimeric form, inhibited glycolysis
and the cell proliferation due to energy deficiency. At low glucose supply, when
glutaminolysis ensures energy, fixation of PKM2 in the inactive dimeric form is an
advantage in that way that the less glucose available is completely channeled into
the synthetic pathways of cell building blocks (Spoden et al. 2008, 2009).

6.4.2 Non-metabolic Functions of PKM?2

As described above, most of therapeutic strategies targeting PKM2 have been
focused at the cytosolic enzyme; however, PKM2 is also known to be present in
the nucleus where it has been shown to promote proliferation through phosphory-
lation of the e-amino group of histone H1 or by serving as a coactivator of the
transcription factors Oct4 and HIF1 (Guminska et al. 1988; Lee et al. 2008; Luo
et al. 2011; Ignacak and Stachurska 2003). Also, a seven-amino acid somatostatin
analogue, TT232 (or TNL232), was shown to trigger nuclear translocation of
PKM2, where PKM2 induced caspase-independent apoptosis (Stetak et al. 2007).
The latter was independent of PKM2 catalytic activity since a catalytic inactive
mutant of PKM2 (Lys*** mutated) also produced a comparable result. TLN232
(NCTO00735332) is under phase II clinical trials for treating renal cell carcinoma,
metastatic melanoma, and pancreatic cancer (Thallion et al.). There is another
known strategy, which is based on the interaction of tumor endothelial marker
protein-8 (TEMS) with PKM2. TEMS is located on the cell surface and plays a role
in angiogenesis. It is shown that PKM?2 released from tumors into the blood stream
may stimulate angiogenesis by binding to TEMS. In that case, a synthetic antibody-
like molecule which consists of the N-terminal 200 amino acids of human TEMS,
linked to the 232 amino acids of the FC1 portion of human IgG1, was found to bind
to amino acid residues 379-385 of PKM2 and to suppress the growth and metastasis
of xenograft tumors in mice (Duan et al. 2007).

6.4.3 PKM?2 and Cancer Diagnostics

Detection of dimeric PKM2 protein is also used for cancer diagnosis. It is known
that the expression of dimeric form of PKM2 in cancer cell is so high that it gets
released from tumors into the blood of the patients and can be quantified in plasma
using an ELISA, which specifically recognizes the dimeric form of PKM2. Levels
of dimeric PKM?2 in plasma have been shown to positively correlate with tumor
stage in multiple tumor types tested, including the thyroid, lung breast, esophageal,
stomach, pancreatic, colorectal, ovarian, cervical, kidney, and skin (Ahmed
et al. 2007; Kaura et al. 2004; Kumar et al. 2007; Luftner et al. 2000; Ugurel
et al. 2005; Wechsel et al. 1999; Schneider et al. 2002). A major field of application
of the plasma PKM2 test is the follow-up studies to carefully monitor the success or
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failure of therapy. In a recent study, elevated circulating plasma PKM?2 levels in
human samples preceded breast cancer diagnosis (Ladd et al. 2013). Commercial
kits (ELISA based) are also available to quantify dimeric PKM2 in stool of patients
with colorectal cancer with a sensitivity of 80 % and specificity of more than 90 %
(Tonus et al. 2012).
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7.1 The Pentose Phosphate Pathway in Cell Metabolism

The pentose phosphate pathway (PPP) was first described in 1926 and constitutes an
essential metabolic pathway involved in the synthesis of nucleic acid precursors
and in the generation of reducing power, both indispensable to the maintenance of
cell integrity. It is classically divided into two parts, known as the oxidative
(ox-PPP) and the nonoxidative (nonox-PPP) branches (see Fig. 7.1). The ox-PPP
catalyses the irreversible transformation of glucose-6-phosphate into ribulose-5-
phosphate with the subsequent production of important amounts of NADPH and
CO,. The nonox-PPP branch is a reversible pathway that interconverts pentose
phosphate and other sugar phosphate, contributing to the synthesis of ribose-5-
phosphate as well as to the redirection of the excess of pentose phosphate towards
glycolysis. It has been estimated that the percentage of glucose metabolized
through PPP ranges from 5 to 30 % depending on the tissue, with higher percent-
ages in lipid-synthesizing tissues (such as the liver, white adipose tissue, lactating
mammary glands, adrenal glands, and gonads) and in red blood cells (Luzzatto and
Notaro 2001; Riganti et al. 2012). Throughout the next pages, a detailed view of the
PPP and the function that this pathway plays in cancer will be provided, with
particular emphasis in the role of the main enzymes of PPP in cancer cell biology.

7.1.1 The Oxidative Branch of the Pentose Phosphate
Pathway

The oxidative branch of the pentose phosphate pathway is a major source of
metabolic precursors for biosynthetic processes (i.e. for nucleic acid synthesis)
and reducing power (i.e. for lipid synthesis, maintenance of reduced pool of
glutathione, etc). It operates as an irreversible pathway which produces ribulose-
5-phosphate, NADPH, and CO, by consuming glucose-6-phosphate and NADP™,
This pathway consists of three metabolic reactions which are considered to operate
as depicted in Fig. 7.1.

The first enzyme of the ox-PPP is glucose-6-phosphate dehydrogenase
(G6PD; EC 1.1.1.49). It catalyses the oxidation of glucose-6-phosphate to 6-
phosphoglucono-8-lactone, a cyclic and unstable lactone ester of phosphogluconic
acid. This irreversible reaction produces NADPH from NADP* and is highly
regulated, among others, by NADPH and palmitoyl-CoA both negatively modulat-
ing G6PD enzymatic activity (Fig. 7.2). G6PD can be active in human cells as a
dimer or tetramer (formed by the association of two dimers), each inactive mono-
mer being composed of 515 amino acids (Au et al. 2000; Riganti et al. 2012). The
amount of NADP™ is critical for the activity of this enzyme, since it is necessary for
stabilizing the dimer (Au et al. 2000). On the contrary, NADPH lacks stabilizing
effects (Kotaka et al. 2005) and its binding to G6PD instead of NADP™ leads to a
reduction of G6PD activity. Therefore, G6PD activity is directly modulated by the
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Fig. 7.1 Reaction scheme of the pentose phosphate pathway

NADP/NADPH ratio. Here, it is worth noting that G6PD usually works at 1-2 %
of its maximal potential in healthy subjects, because of the high concentration of
NADPH in resting conditions. Upon NADPH oxidation, NADP*/NADPH ratio

increases and G6PD shifts to the most active state, increasing ox

-PPP flux (Eggle-

ston and Krebs 1974). Consistent with the role of GO6PD in the synthesis of NADPH
for lipogenesis, a negative regulation of this enzyme by the lipid intermediate
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Fig. 7.2 Main regulatory mechanisms of G6PD. G6PD is positively and negatively modulated
by different mechanisms. The figure shows simply the main positive and negative regulators of
G6PD as well as the transitions between the monomeric-dimeric-tetrameric states of the enzyme.
Dotted lines indicate indirect effects on the enzyme by the involvement of additional effectors.
G6P glucose-6-phosphate, 6PG 6-phosphogluconate, R5P ribose-5-phosphate, F6P fructose-
6-phosphate, G3P glyceraldehyde-3-phosphate, DHEA dehydroepiandrosterone, EGF epidermal
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palmitoyl-CoA has also been described (Asensio et al. 2007; Kawaguchi and Bloch
1974; Taketa and Pogell 1966). Accordingly, G6PD deficiency, which is the most
common enzyme deficiency in the world (Cappellini and Fiorelli 2008; Luzzatto
and Notaro 2001), yields a diminution of NADPH and a subsequent decrease in
cholesterol synthesis (Rawat et al. 2012) and protection under oxidative stress
(Rajasekaran et al. 2007) due to a lower production of reduced glutathione from
NADPH. Besides regulation by direct binding of cofactors, G6PD is also modulated
by signalling pathways. Thus, G6PD activity is upregulated by the action of EGF
and PDGF (Tian et al. 1994; Stanton et al. 1991), whereas G6PD mRNA levels are
increased through the action of insulin via PI3K activation (Talukdar et al. 2005;
Wagle et al. 1998).

The second enzyme of the ox-PPP is 6-phosphogluconolactonase (6PGL; EC
3.1.1.31), which accelerates the spontaneous ring-opening hydrolysis of
6-phosphoglucono-6-lactone to produce 6-phosphogluconate.

Finally, 6-phosphogluconate dehydrogenase (6PGD; EC 1.1.1.44) catalyses the
oxidative decarboxylation of 6-phosphogluconate and yields ribulose-5-phosphate,
CO,, and NADPH. The resulting ribulose-5-phosphate can be then converted into
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ribose-5-phosphate by a reversible reaction of the nonox-PPP (see next section) and
used for the synthesis of nucleotides.

7.1.2 The Nonoxidative Branch of the Pentose Phosphate
Pathway

The nonoxidative branch of the pentose phosphate pathway is a reversible pathway
that interconverts different carbon length sugar phosphate by two- and three-carbon
unit exchange. This pathway includes four reversible enzymatic reactions.

Ribose-5-phosphate isomerase (RPI, EC 5.3.1.6.) interconverts ribulose-
5-phosphate and ribose-5-phosphate via production of an enediol intermediate.
Ribose-5-phosphate produced in this reaction is used in the biosynthesis of coenzymes
(including NADH, NADPH, FAD, and B12) and nucleic acids (DNA and RNA).

Ribulose-5-phosphate-3-epimerase (RPE, EC 5.1.3.1.) interconverts ribulose-5-
phosphate to another ketose, xylulose-5-phosphate. This reaction, as the previously
described one, proceeds also by an enediol intermediate.

Transketolase (TKT; EC 2.2.1.1.) is a thiamine pyrophosphate-dependent
enzyme that acts in two steps of the nonox-PPP transferring in both steps
two-carbon units from one sugar phosphate (donor) to another (acceptor). Its
mechanism of action involves the binding of a ketose phosphate substrate
(xylulose-5-phosphate), expulsion of the glyceraldehyde-3-phosphate product,
and transfer of the two-carbon unit to an aldose phosphate (ribose-5-phosphate),
yielding a molecule of sedoheptulose-7-phosphate. Transketolase can process a
variety of 2-keto sugar phosphates in a similar manner.

Transaldolase (TA, EC 2.2.1.2) reaction is similar to the glycolytic aldolase
reaction of glycolysis and catalyses the transference of three-carbon units. Its
mechanism of action involves the binding of a ketose phosphate substrate
(sedoheptulose-7-phosphate), expulsion of the erythrose-4-phosphate product, and
transfer of the three-carbon unit to an aldose phosphate (glyceraldehyde-3-phosphate)
to yield the product fructose-6-phosphate.

Despite the PPP was described almost a century ago, the precise reaction scheme
of the nonox-PPP remains controversial and incompletely understood. '*C-isotope
labelling experiments demonstrated that the degree of '*C-isotope incorporation in
carbon atoms of fructose-6-phosphate and its distribution differs from what is
predicted by the proposed scheme of individual reactions (Horecker et al. 1954).
Indeed, Horecker, who originally discovered the reactions of the nonox-PPP, wrote:
“From the results with labelled pentose phosphate, it is apparent that the
transketolase-transaldolase sequence of reactions is by itself insufficient to account
for the hexose monophosphate formation, since the distribution of isotope in the
product differs from that predicted by these reactions”. The discrepancies between
the widely accepted reaction scheme of the PPP and the observed experimental
results suggest that this pathway has not been properly characterized yet.
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Transketolase enzyme reaction is the rate-limiting step of the nonox-PPP
(Comin-Anduix et al. 2001; Sabate et al. 1995). The characterization of the reaction
modus and substrate specificity of TKT is of utmost interest to resolve the discre-
pancy between experimental results and PPP reaction schemes presented in text-
books. One possible explanation might lie on the existence of additional nonox-PPP
enzymes not yet considered in the reaction schemes, such as TKT isoforms, which
may carry out non-standard transketolase reactions. Throughout evolution of higher
vertebrates, genome duplication led to duplication of the TKT gene giving rise to
the transketolase-like 1 (TKTLI) precursor gene. This duplication was followed by
an integration of the TKTL1 precursor mRNA into the genome leading to the
intronless transketolase-like 2 gene (TKTL2). After this, the TKTLI precursor
gene mutated creating the recent TKTLI gene (Coy et al. 2005). In comparison to
known transketolase proteins, the TKTLI gene encodes for TKTL1 protein isoform
harbouring a 38-amino acid deletion due to deletion of original TKT gene exon
3. This deletion results in the generation of a transketolase protein similar to His103
yeast mutant, which has been reported to be capable of catalysing one-substrate
reaction as well as to display a reduced affinity to thiamine (Selivanov et al. 2004).
This reaction transforms a five-carbon molecule into three- and two-carbon mole-
cules (Coy et al. 2005). Therefore, it is speculated on the possibility that TKTL1
enzyme catalyses also this reaction, although this hypothesis requires further
research. Thus, the existence of different TKT isoforms provides a greater com-
plexity in the operating modus of the nonox-PPP.

Several studies examined the effect of TKTL1 protein suppression on the total
transketolase enzyme activity of different cell lines and tissues (Hu et al. 2007;
Zhang et al. 2007; Yuan et al. 2010; Xu et al. 2009). In these studies, expression of
human TKTL1 protein was inhibited by RNA interference in different cell models
and a significant inhibition of transketolase reaction and/or associated glucose
metabolism was found. Therefore, these findings demonstrate that TKTL1 is an
active enzyme that clearly contributes to total transketolase activity in mammalian
cells. Moreover, several in vivo studies using RNA inhibitory experiments and
TKTLI1 knockout mice clearly demonstrated at the highest level of evidence that
TKTLI has an important function in colon mucosal repair (Bentz et al. 2011). Thus,
knockout of TKTL1 in mice led to suppression of mucosal repair and aggravates
murine experimental colitis (Bentz et al. 2011). Also, it has been reported that
TKTLI plays an important and protective role against ROS allowing the mainte-
nance of redox homeostasis in vitro (Xu et al. 2009; Wanka et al. 2012) and in vivo
(Bentz et al. 2011). Recently, it has been demonstrated that downregulation of the
Werner syndrome protein (WRN) induced an increase in oxidative stress accom-
panied by the downregulation of TKTLI, as well as of G6PD, and isocitrate
dehydrogenase 1 (IDH1), further supporting the role of TKTL1 in redox homeo-
stasis (Baomin et al. 2014; Li et al. 2009). This data is also in line with the strong
expression of TKTL1 in germ cells (Rolland et al. 2013), the protective role of
TKTLI in the brain (Wanka et al. 2012; Coy et al. 2005), and the evolution of
cognitive functions during transition from Neanderthals to Homo sapiens (Green
et al. 2010; Priifer et al. 2014; Padbo 2014).
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Depending on the cellular needs, the PPP can operate in different modus, and its
two branches (ox-PPP and nonox-PPP) can be partially decoupled. When both
ribose-5-phosphate and NADPH are needed, the main flux of carbons is driven
through the ox-PPP. However, when the need of ribose-5-phosphate is greater than
the need of NADPH, the carbon flux can be driven in a greater extent through the
nonox-PPP. On the contrary, when there is a high demand of NADPH but not that of
ribose-5-phosphate, the excess of this metabolite is directed towards glycolysis
through the nonox-PPP. In the same line, when both NADPH and ATP are needed,
but ribose-5-phosphate is not, glycolytic carbons are shunted into the ox-PPP and
subsequently into the nonox-PPP and glycolysis.

7.2 The Role of the Pentose Phosphate Pathway in Cancer
Metabolism

The widely recognized as the main characteristic of tumour cells is its accelerated
and uncontrolled proliferation. Accordingly, the requirements of nutrients are
particularly high in proliferating and tumour cells, since they need not only to
preserve their integrity and perform their physiological functions but also to
generate a new daughter cell. Then, as cancer is a tissue-proliferation disorder, it
is expected that cancer cells rewire metabolism at the service of proliferation to
provide themselves with energy and precursors of macromolecules (Ward and
Thompson 2012; Schulze and Harris 2012). Furthermore, development of malig-
nancy involves a metabolic reprogramming closely related to the acquisition of the
well-known cancer hallmarks, extending thus the role of metabolism beyond
growth and proliferation (Kroemer and Pouyssegur 2008; Hanahan and Weinberg
2011).

The metabolic feature associated to cell malignant transformation that has been
known for the longest time is the enhanced aerobic glycolysis, consisting in an
increased metabolism of glucose to lactate even in the presence of oxygen. This
phenomenon is commonly referred to as the “Warburg effect” due to Otto Warburg,
who first described it in the 1920s (Warburg et al. 1924, 1927). Although this
adaptation accounts for one of the essential metabolic requirements of cancer cells,
the high production of energy, two additional metabolic requirements must be
fullfilled by cancer cells to survive and proliferate: biosynthesis of macromolecules
and maintenance of redox homeostasis (Cantor and Sabatini 2012), two metabolic
processes in which PPP importantly participates in. In brief, cell division requires
high amounts of nucleic acids for DNA replication and significant synthesis
of lipids for membrane duplication. The former are produced from the pentose
phosphate generated through the PPP, and the latter are synthesized from acetyl-
CoA and NADPH partly produced by the ox-PPP. Thus, the PPP promotes nucleo-
tide and lipids synthesis but also allows carbon recirculation through nonox-PPP to
glycolysis in order to preserve the formation of other molecules with a significant



150 A. Benito et al.

role in tumour physiology such as ATP, amino acids, or lactate. Moreover, the
capacity of ox-PPP of producing NADPH allows the maintenance of the redox
balance, which is widely accepted to be altered in cancer cells and requires
additional mechanisms to be maintained (Trachootham et al. 2009; Sosa
et al. 2013).

7.2.1 Oxidative Branch of the Pentose Phosphate Pathway
in Cancer

As described earlier, the ox-PPP is an irreversible metabolic pathway driven by
GPGD, 6PGL, and 6PGD. Given that this pathway is involved in two cellular
essential processes related to anabolism and redox homeostasis (synthesis of ribose
and NADPH), the role of the ox-PPP and its constituent enzymes in tumour biology
has been mainly studied in the context of cell proliferation, transformation, and
maintenance of redox state of cancer cells.

7.2.1.1 Glucose-6-Phosphate Dehydrogenase

G6PD usually works at a low basal rate in non-transformed cells (Riganti
et al. 2012). Nevertheless, it can exert a strong proliferative role when it becomes
deregulated. The key role of G6PD in tumorigenesis is supported by the fact that
GO6PD gene overexpression transforms NIH3T3 cells and induces tumours in nude
mice (Kuo et al. 2000). In accordance, it has also been described that cells
overexpressing GO6PD proliferate more than wild-type cells, suggesting that
G6PD levels correlates with cell proliferation rate (Tian et al. 1999; Leopold
et al. 2003).

As described earlier, the ox-PPP branch is one of the main metabolic pathways
involved in the production of NADPH, which is essential to the maintenance of the
reduced antioxidant pool, such as reduced glutathione. In this sense, the essential
role of the enzyme GO6PD in protection against oxidative stress is sturdily
documented (Gao et al. 2009; Ho et al. 2007; Cheng et al. 2004). Cells lacking
G6PD show increased propensity for oxidant-induced senescence and increased
sensitivity to diamide-induced oxidative damage. In fact, in an attempt to separately
evaluate the role of G6PD in ribose synthesis and redox homeostasis, it has been
concluded that G6PD is dispensable for pentose synthesis but essential to defence
against oxidative stress (Pandolfi et al. 1995). In this regard, it is widely accepted
that most tumours deal with increased levels of reactive oxygen species (ROS),
leading to conditions of high oxidative stress. Compared to normal cells, malignant
cells display higher levels of endogenous oxidative stress in vitro and in vivo
(Szatrowski and Nathan 1991; Kawanishi et al. 2006). Breast tumours are a
paradigmatic example, since they are characterized by persistent ROS generation
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(Brown and Bicknell 2001; Kang 2002) and reliance on ox-PPP branch to modulate
oxidative stress. In these tumours, markers of constitutive oxidative stress have
been detected in samples from in vivo breast carcinomas (Toyokuni et al. 1995;
Portakal et al. 2000) as well as elevated levels of 8-hydroxy-2'-deoxyguanosine,
one of the major oxidatively modified DNA base products, compared with normal
control samples from the same patient (Toyokuni et al. 1995). Consequently, breast
tumours also display greater reliance on ROS detoxification systems, which
increases gradually as tumour progresses. Advanced breast tumours display an
increased need to detoxify ROS as demonstrated by the higher expression of the
ox-PPP enzymes detected in a genome-scale study based on the gene expression
analysis of a large cohort of clinical samples (Jerby et al. 2012). Also, metastases of
breast cancer display an increased expression of enzymes of the PPP such as G6PD
and 6PGL (Chen et al. 2007), and breast cancer cells MCF7 (derived from meta-
static pleural effusion) have an increased expression of G6PD compared with the
near-normal breast cancer cells MCF10 (Drabovich et al. 2012).

Given the important role of G6PD in healthy and cancer cell physiologys, it is not
surprising that G6PD expression and activity is regulated by some of the most
important oncogenes and tumour suppressor genes. G6PD upregulation has been
reported in NIH3T3 fibroblast transfected with a mutated copy of K-RAS gene
(de Atauri et al. 2011; Vizan et al. 2005), indicating that K-RAS regulates G6PD
expression by a yet not described mechanism. Also, as mentioned above, G6PD is
positively regulated by PI3K, one of the most frequently activated oncogenes in
various types of cancer (Samuels et al. 2004; Luo et al. 2003). On the contrary,
G6PD activity is negatively regulated by tumour suppressor gene P53, which
impairs dimer formation by direct binding to the enzyme, therefore decreasing
GO6PD activity (Jiang et al. 2011). However, tumour-associated P53 mutants lack
the G6PD-inhibitory activity, enhancing ox-PPP flux. Therefore, enhanced PPP
glucose flux due to P53 inactivation increases glucose consumption and direct
glucose towards biosynthesis in tumour cells. According to the role of G6PD in
oxidative stress, G6PD is also regulated by transcription factors involved in
response to cellular stress, such as NRF2, which has been recently described to
play a key role in tumorigenesis (DeNicola et al. 2011; Mitsuishi et al. 2012). This
transcription factor is frequently upregulated in various types of human cancers,
resulting in an overactivation of its target genes and providing cells with additional
capabilities of malignance (Singh et al. 2006; Solis et al. 2010; Tsai et al. 2008). A
significant portion of the NRF2 target genes are metabolic genes involved in PPP
and NADPH production, such as G6PD, PGD (phosphoglycerate dehydrogenase),
TKT, TALDOI (transaldolase), MEI (malic enzyme 1), and IDHI, all of them
containing antioxidant response element (ARE) sequences in their promoters.
This provides additional evidence of the relevant function that PPP and NADPH
production have in tumorigenesis.
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7.2.1.2 6-Phosphogluconate Dehydrogenase

The role of 6PGD in cancer was initially related to the detection and prognosis of
tumours. High 6GPD activity in primary breast tumours was associated to poor
relapse-free survival times when compared with those with low 6GPD activity
(Brocklehurst et al. 1986; Kolstad et al. 1967). More recently, several reports have
described a functional role of this enzyme in cancer pathogenesis. 6PGD inhibition
in lung cancer cell lines resulted in tumour growth inhibition by senescence
induction both in vitro and in vivo, what may be partly due to accumulation of
growth-inhibitory metabolic intermediates (Sukhatme and Chan 2012). Further-
more, it has been also described that 6PGD inhibition downregulate c-Met receptor
activation by inhibiting the phosphorylation of activating tyrosine residues. This
downregulation of c-Met receptor subsequently inhibited cell migration in vitro,
providing a functional role of 6PGD in cancer cell migration and c-Met signalling
(Chan et al. 2013).

7.2.2 Nonoxidative Branch of the Pentose Phosphate
Pathway in Cancer

As described above, the nonox-PPP is a metabolic pathway that consists of two
reversible enzymatic reactions: transketolase (TKT) and transaldolase (TA). It has
been reported that the TKT family includes genes encoding two other TKT-like
proteins (TKTL1 and TKTL?2) in addition of TKT. Among them, TKTL1 has been
reported to be overexpressed in several cancer cell lines and tissues such as the
colon, lung bladder, thyroid, breast, liver larynx and brain (Langbein et al. 2006;
Zerilli et al. 2008; Zhang et al. 2007; Foldi et al. 2007; Volker et al. 2007) and its
expression correlates with poor prognosis of patients (Langbein et al. 2006;
Schwaab et al. 2011; Lange et al. 2012; Kayser et al. 2011; Volker et al. 2007;
Grimm et al. 2013) and resistance to radio- and chemotherapy (Schwaab et al. 2011).
The reversibility of this branch confers great versatility to the pathway, allowing
the cell to activate ribose-5-phosphate synthesis or glycolytic recirculation of
the PPP intermediates depending on its metabolic requirements. Thereby, if
ox-PPP is active and nucleotide precursors are synthesized efficiently, nonox-PPP
is able to reincorporate the excess of pentose phosphate into the glycolytic pathway,
guaranteeing energy obtaining and the supply of many metabolic precursors
(glycerol, amino acids, acetyl-CoA, ...) essential to cell proliferation. On the
other hand, if the ox-PPP is not active, the nonox-PPP can produce the required
amount of ribose-5-phosphate. However, if the activation of the ox-PPP is not
accompanied by the activation of the nonox-PPP, pentose phosphate may accumu-
late, and tumour requirements would not be fulfilled. Therefore, nonox-PPP, apart
from playing its own role, is important to enable the activation of the ox-PPP during
tumorigenesis.
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Given the reversibility of the reactions involved in the nonox-PPP, the Warburg
effect can enhance the use of this branch (Pelicano et al. 2006). In experiments
in vitro using pancreatic adenocarcinoma cells, around 85 % of the ribose has been
reported to be synthesized through the nonox-PPP (Boros et al. 1997). Accordingly,
in experiments in vivo using pancreatic ductal adenocarcinoma mouse model,
ribose biogenesis is mainly carried out through the nonox-PPP, being this pathway
essential to tumour progression in vivo (Ying et al. 2012). Furthermore, the function
of the nonox-PPP in cancer is also demonstrated by additional studies reporting
the involvement of this pathway in oncogenic transformation (Smith et al. 2009;
Xu et al. 2009; Sun et al. 2010) and several processes accompanying it, such as
metabolic reprogramming, uncontrolled tumour cell proliferation invasiveness and
metastasis (Frederiks et al. 2008; Kohrenhagen et al. 2008; Krockenberger et al.
2007; Langbein et al. 2006, 2008; Schwaab et al. 2011; Kayser et al. 2011; Zerilli
et al. 2008). The specific role of each enzyme is described below.

7.2.2.1 Transaldolase

The role of TA in cancer cells remains unclear, since available data supports both
pro- and anti-tumorigenic role of this enzyme. Higher rates of TA expression have
been reported in specific groups of head and neck squamous cell carcinoma
(HNSCC) (Chung et al. 2004) and in lung epithelium of smokers in comparison
with non-smokers (Hackett et al. 2003). A role of TA, but not necessarily its
overexpression, has also been described in many other tumours (Samland and
Sprenger 2009). Furthermore, it has been reported that in vivo, TA forms a complex
with two enzymes of the ox-PPP, G6PD and 6PGD, being this complex upregulated
in cancer (Huang et al. 2005). This finding led some researchers to propose the
overexpression of TA as a biomarker for cancer development (Riganti et al. 2012).
However, the overexpression of TA in the above-mentioned tumours is frequently
related to better prognosis and recurrence-free survival rate (Chung et al. 2004).
Thus, despite the enzymatic complex in which TA has been identified might be
involved in carcinogenesis, the presence of G6PD in the complex might largely
explain the role of this complex in carcinogenesis, while TA might be a mere
bystander. In accordance with this reasoning, TA overexpression led to contrary
metabolic effects than those induced by G6PD overexpression, i.e. it accelerated the
turnover of NADPH, decreased the amount of reduced glutathione, and increased
the cell sensitivity to ROS-induced apoptosis (Banki et al. 1996). According to this
data, a tumour suppression role of TA is more likely than an oncogenic role. In fact,
TALDOI is located in chromosome 11 (11p15.5-p15.4) (Banki et al. 1997), a
region containing tumour suppressor genes that is frequently deleted in cancers,
such as oesophageal cancer (Lam et al. 2002), and its expression has been reported
in differentiating and maturating processes that are totally opposed to malignant
transformation (Grossman et al. 2004). In conclusion, there are indications that may



154 A. Benito et al.

lead to suggest a possible role of TA as tumour suppressor gene; however, further
studies are required in order to validate this hypothesis.

7.2.2.2 Transketolases

The role of transketolases in cancer development has been more clearly described
than TA’s. TKT activity has been reported as the PPP enzymatic activity with the
highest control coefficient of tumour growth in mice with Ehrlich’s ascites tumour
(Comin-Anduix et al. 2001) as well as to be increased in (pre)neoplastic lesions in
rat liver (Frederiks et al. 2008). Also, inhibition of TKT by oxythiamine led to a
decrease of 90 % in final tumour mass in mice hosting Ehrlich’s ascites tumour
(Boros et al. 1997). These findings clearly prove the essential role that TKT plays in
tumorigenesis.

From the two active transketolases described in tumours, TKT and TKTL1, the
latter has been suggested as novel candidate oncogene (Smith et al. 2009) and a
putative drug target for those tumours in which it is overexpressed (Riganti
et al. 2012; Sun et al. 2010). Moreover, increased TKTL1 is activated by
hypomethylation (Sun et al. 2010), and its levels correlate with activated prolifer-
ation and tumour progression (Diaz-Moralli et al. 2011; Krockenberger et al. 2010;
Zerilli et al. 2008; Langbein et al. 2008), whereas TKTL1 silencing leads to
inhibition of glucose metabolism, cell proliferation, and tumour growth
(Hu et al. 2007; Zhang et al. 2007; Xu et al. 2009; Sun et al. 2010). Also a protective
role for TKTL1 under starvation conditions has been reported. Recently, Wanka
et al. demonstrated that Tp53-induced glycolysis and apoptosis regulator (TIGAR)
protect glioma cells from starvation-induced cell death only when TKTL1 protein is
present (Wanka et al. 2012).

The role of transketolases in cancer cells has been related to the hypoxia-
inducible factor la (HIF-1a), the master regulator of the response to hypoxia that
is deeply involved in tumour physiology (Sun et al. 2010; Zhao et al. 2010). It has
been reported that TKT participates in a component of HIF-1a-dependent imatinib
(Gleevec) resistance in chronic myeloid leukaemia cells (Zhao et al. 2010). The
inhibition of TKT expression by shRNA in imatinib-resistant cells led to their
resensitization, whereas the same treatment in cells overexpressing TKTL1 was
ineffective. These results showed that both TKT and TKTL1 play a similar role in
conferring resistance to imatinib (Zhao et al. 2010). Moreover, it has been also
reported a collaborative role of HIF-la and TKTL1 in the metabolic
reprogramming of TKTL1-mediated head and neck squamous cell carcinoma
tumorigenesis, where TKTL1 contributes to carcinogenesis through increased
aerobic glycolysis and HIF-1a stabilization (Sun et al. 2010), reinforcing the idea
of a physiological connection between transketolases and HIF-1a in cancer. Also,
hypoxia (Bentz et al. 2013) as well as chemotherapy (Wanka et al. 2012) induce the
expression of TKTLI.
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7.3 The Pentose Phosphate Pathway as Potential Cancer
Therapeutic Target

The significance of cancer and its worldwide impact have revealed the need of
developing effective therapies to fight against this fatal disease. As mentioned
above, one of the first and most obvious cancer features is the accelerated and
uncontrolled proliferation of tumour cells. Given that cell division requires genome
replication, researchers have developed pharmacologic strategies targeted to hinder
the synthesis of nucleotides in order to impair tumour growth (Farber and Diamond
1948; Heidelberger et al. 1957). Molecules such as aminopterin, methotrexate, and
5-fluorouracil have been long and widely used in cancer therapy due to the
capability of these molecules of inhibiting either nucleotide synthesis or DNA
replication, thus impairing primarily cancer cell proliferation (Farber and Diamond
1948; Heidelberger et al. 1957). Their effectiveness opened the door to study other
potential therapeutic targets in the pathway of synthesis of the sugar component of
nucleotides, as is the PPP. This pathway has been considered a rational therapeutic
target because it meets two essential requirements of cancer cells: ribose synthesis
for nucleotides production and NADPH synthesis for redox homeostasis mainte-
nance and lipogenesis (Butler et al. 2013; Vander Heiden 2011). Accordingly, the
main enzymes of the PPP, G6PD, and TKT have been proposed as potential
therapeutic targets in cancer (Boros et al. 1997; de Atauri et al. 2011; Rais
et al. 1999; Ramos-Montoya et al. 2006), and inhibitors of the two enzymes have
been designed and assessed. Therefore, the inhibitor of G6PD, dehydroepiandro-
sterone (DHEA), and the inhibitor of TKT, oxythiamine (OT), have been described
as potential antitumoral agents (Rais et al. 1999; Ramos-Montoya et al. 2006;
Cascante et al. 2002).

Deficiency in G6PD is found in approximately 400 million people worldwide,
with patients suffering mild anaemia but no other serious health issues, which opens
a potential therapeutic window for inhibition of this enzyme in cancer treatment.
The reduction of G6PD levels seems to exert different effects on cell proliferation.
In cancer cells, inhibition of G6PD leads to a clear decrease in proliferation
(Li et al. 2009). Also, G6PD inhibition in human foreskin fibroblast reduces cell
growth and induces cellular senescence (Ho et al. 2007). Nevertheless, the complete
absence of the enzyme in G6PD-deleted embryonic stem cells does not reduce
proliferation, but makes cells more sensitive to strong antioxidants (Fico
et al. 2004). In accordance to that, the inhibition of the ox-PPP is especially
attractive since it not only targets the production of nucleotide precursors but also
the ROS protection system of cancer cells. Targeting cancer cells with
ROS-mediated mechanisms has been proposed as an interesting therapeutic
approach. As mentioned earlier, cancer cells usually work with increased levels
of ROS and acquire protective and compensating mechanisms by activation of ROS
detoxification mechanisms. Moderate levels of ROS can promote many aspects of
tumour biology (Cairns et al. 2011). However, a delicate balance exists between
ROS-producing and ROS-removing reactions. Since this equilibrium is forced in
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cancer cells, they are more sensitive to further external insults affecting this
balance, promoting ROS formation, inhibiting ROS removal reactions, or both
actions simultaneously (Trachootham et al. 2009). Thus, given the role of G6PD
in ROS detoxification, inhibition of this enzyme is likely to break this equilibrium,
dismantling the ROS adaptive response and causing cell death. This hypothesis is
fully supported by the fact that G6PD-deficient cells show enhanced oxidative
stress and increased sensitivity to oxidative damage, indicating that G6PD plays a
fundamental role in controlling ROS levels, and that it might be a potential target in
a ROS-based cancer therapy approach (Cheng et al. 2004; Gao et al. 2009; Ho
et al. 2007).

The above-mentioned crucial roles of G6PD in cell physiology have led
researchers to assess the efficacy of the G6PD inhibitor DHEA against breast cancer
by performing several clinical trials (search for clinical trial identifier
NCT00972023 and NCT02000375 at www.clinicaltrials.gov/ct2/search).

Also, TKT has been explored as potential therapeutic target. It has been
observed that inhibition of the nonox-PPP provokes a greater decrease in tumour
proliferation than the inhibition of the ox-PPP. In vivo testing of OT and DHEA in
C57BL/6 mice hosting Ehrlich’s ascites tumour cells revealed a 90.4 and a 46 %
decrease in the final tumour mass, respectively, after 3 days of treatment (Boros
et al. 1997). Likewise, the administration of OT and DHEA resulted in cell cycle
arrest in Ehrlich’s ascites tumour in vivo, and the combined administration of both
drugs displayed a synergic effect (Rais et al. 1999).

However, several limitations complicate the interpretation of OT-mediated TKT
inhibition experiments as well as hinder the efficacy of OT in cancer treatment:
first, the lack of specificity caused by the fact that OT is an antimetabolite of
thiamine that potentially affects all thiamine-dependent enzymatic activities, such
as pyruvate dehydrogenase and a-ketoglutarate dehydrogenase; second, the versa-
tility of the nonox-PPP and the bidirectional activity catalysed by TKT, which
means that the inhibition of the enzyme does not necessarily lead to an inhibition of
the synthesis of pentose phosphates; and third, the above-mentioned evidence that
the transketolase mainly overexpressed in cancer cells might be TKTL1, whose
activity is not clearly reported to be thiamine dependent and, therefore, might be
insensitive to OT-mediated inhibition. To overcome the lack of specificity of OT,
recently, diphenyl urea derivatives have also been reported as transketolase inhi-
bitors by likely interfering with the enzyme dimerization. This new family of
inhibitors represent a new avenue for the design of more selective inhibitors of
TKT/TKTL1 with a novel binding mode, which is not based on mimicking the
thiamine pyrophosphate cofactor binding (Obiol-Pardo et al. 2012).

On the other hand, clinical and experimental data support the requirement of
thiamine to sustain enhanced nonox-PPP flux in tumours, being this fact further
supported by the signs of thiamine deficiency in cancer patients. Thus, it has been
hypothesized that thiamine supplementation in cancer patients may promote
tumour growth (Boros et al. 1998). Certainly, evidence of significant stimulatory
effect on tumour proliferation by thiamine supplementation has been provided
using an Ehrlich’s ascites tumour mouse model (Comin-Anduix et al. 2001).
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Interestingly, it has also been reported in this study that overdoses of thiamine
(2,500 times the recommended dietary intake (RDI)) slightly decreases tumour cell
proliferation, suggesting that cancer patients requiring thiamine to treat thiamine
deficiency should receive overdoses of thiamine to avoid the range of thiamine
concentrations that supports proliferation. Other studies in breast cancer also have
shown that tumour latency was significatively longer in animals fed with a
low-thiamine diet compared with animals with normal-thiamine diet (Daily
et al. 2012). The importance of the thiamine availability in cancer and its relation
with tumour growth through promoting TKT and other thiamine-dependent path-
ways is an open area of research that might bring new opportunities for therapeutic
intervention and dietary modification to reduce disease progression in cancer
patients (Zastre et al. 2013).

Conclusion

In summary, an evolving body of evidence indicates that PPP plays a funda-
mental role both in healthy and cancer cells physiology. However, given the
particular metabolic requirements and biochemical architecture of cancer
cells, ox- and nonox-PPP are likely to play a critical role in some types of
tumours. A better knowledge of the biochemistry and regulation of PPP in
cancer cells as well as the identification of those tumours largely reliant on
PPP will surely culminate in novel and interesting findings with clinical
relevance. Also, further research on the promising role of TKTLI in cancer
biology will likely provide new and interesting knowledge of the mechanisms
underlying tumour metabolic reprogramming.
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8.1 6-Phosphofructo-1-Kinase

6-Phosphofructo-1-kinase (PFK, EC 2.7.1.11) catalyses the ATP-dependent phos-
phorylation of fructose 6-P to fructose 1,6-P2 within the glycolytic pathway
(Fig. 8.1). In differentiated cells, PFK is the bottleneck within the glycolytic
sequence, which is regulated by the so-called Pasteur effect. High rates of mito-
chondrial ATP regeneration inhibit PFK and glucose consumption rates. Hypoxia-
induced inhibition of mitochondrial ATP production corresponds to an increase in
AMP levels, which in turn activates PFK and increases the conversion rates of
glucose. PFK is a tetrameric protein which may consist of three different subunits:
subunit M, which is mainly expressed in the muscle; subunit L, which is charac-
teristic for the liver; and subunit P, which is mainly found in platelets. The different
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Fig. 8.1 Glycolytic enzymes with specific changes in tumour metabolism

isoenzymes of PFK differ in the composition of the three subunits, whereby
homomeres but also heteromeres are described. In tumours, an upregulation of
the subunits L and P is described. Based on the observation that plasma samples of
cancer patients inhibit PFK activity, a PFK inhibition test has been developed and
evaluated by the same research group in patients with gastric cancer, pancreatic
cancer and lung cancer several years ago (Nakamura et al. 1987). Although there
were promising results and there is still a lack of routine markers in some of these
entities today, there are no established commercial tests of PFK inhibition used in
clinical routine cancer management to date.

8.2 Fructose-Bisphosphate Aldolase

Fructose-bisphosphate aldolase (EC 4.1.2.13) catalyses the cleavage of fructose
1,6-P2 into glyceraldehyde 3-P dehydrogenase and dihydroxyacetone P within the
glycolytic sequence (Fig. 8.1). There are three different isoforms of fructose-
bisphosphate aldolase: type A is found in muscle cells and red blood cells, type B
is expressed in liver cells, and type C is mainly found in neuronal cells. In serum
samples of patients with hepatocellular carcinoma or stomach cancer, increased
levels of the aldolase isoenzyme type A are described. In addition, preliminary
results showed that the quantification of aldolase type A mRNA may allow dis-
crimination between hepatocellular carcinoma and liver cirrhosis (Castaldo
et al. 2000). However, neither strategy has been used in clinical routine in the
following years, and they do not play a relevant role in cancer management at
present.



8 Enzymes of the Tumour Metabolome in Diagnostic Applications 167
8.3 Enolase

Enolase (EC 4.2.1.11), which catalyses the conversion of glycerate 2-P to phos-
phoenolpyruvate, consists of two subunits (Fig. 8.1). These subunits are encoded by
three different genes and are termed enolase subunit type a, type p and type y. The
combination of the different subunits results in different isoforms of enolase. The
isoform that consists of two o subunits is called non-neuronal enolase, while the
enolase isoenzymes type ay and yy are termed neuron-specific enolase (NSE). NSE
is normally found in neuronal cells of the central, as well as the peripheral, nervous
system. Furthermore, it is present in neuroendocrine tissues, e.g. within APUD
cells. The measurement of plasma NSE levels has been established in clinical
practice years ago as a marker of neurologic outcome after cardiac arrest (Shinozaki
et al. 2009).

In addition, NSE was found to be elevated in small cell lung cancer. The
quantification of NSE in serum became a valuable standard marker in the treatment
and follow-up of small cell lung cancer. The application of NSE quantification in
serum has also been discussed in the context of neuroblastoma, melanoma and
seminoma (Cooper 1994). In some cases of colorectal cancer and liver cancer, the
plasma levels were reduced (Paus and Myklebust 1996). However, there is no role
for enolase measurements in CRC.

8.4 Pyruvate Kinase (M2-PK, PKM2)

Pyruvate kinase (EC 2.7.1.40) is a key enzyme within glycolysis which catalyses
the ATP-producing conversion of phosphoenolpyruvate (PEP) to pyruvate
(Fig. 8.1). Specific isoenzymes of pyruvate kinase are expressed in different tissues
according to their metabolic function (type L, M1, M2 and R). In normal cells, these
isoenzymes consist of four subunits. In tumour formation, the tissue-specific iso-
enzymes disappear, and the pyruvate kinase isoenzyme type M2 (M2-PK, PKM2) is
expressed (Mazurek 2011). M2-PK may occur in a highly active tetrameric form,
which is responsible for glycolytic energy production, as well as in a dimeric form
with a low activity which favours the channelling of glucose carbons into synthetic
processes (i.e. nucleic acids, amino acids and fatty acids) (Fig. 8.2). In tumours,
direct interaction with different oncoproteins, including pp60v-src-kinase, onco-
genic fibroblast growth factor 1 and human papilloma virus 16 E7, induces a
dimerisation of M2-PK. Consequently, in tumours the dimeric form is predominant
(Mazurek 2011). Tumours may release the dimeric form of M2-PK into the blood
(Wechsel et al. 1999; Liiftner et al. 2000; Schneider et al. 2000; Kaura et al. 2004;
Ugurel et al. 2005; Ahmed et al. 2007; Kumar et al. 2007; Hardt et al. 2000);
additionally, dimeric M2-PK excreted by mucosal tumours can also be detected in
bile (Dhar et al. 2013), faeces (Mazurek et al. 2000; Moreadith and Lehninger 1984)
and urine (Hardt, unpublished data).
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An enzyme-linked immunosorbent assay (ELISA) which allows the specific
quantification of the dimeric form of M2-PK was developed several years ago
(ScheBo Biotech AG, Giessen, Germany). The initial studies concentrated on the
plasma levels of M2-PK and since 1997 more than 40 studies have been published
for this application. These studies include melanoma, thyroid cancer, breast cancer,
lung cancer, kidney cancer, oesophageal cancer, gastric cancer, pancreatic cancer,
colorectal cancer (CRC), ovarian cancer, cervical cancer and renal cell cancer. In
all these cancers, a significant increase in M2-PK blood levels has been shown,
frequently in correlation with tumour staging (Wechsel et al. 1999; Liiftner
et al. 2000; Schneider et al. 2000; Kaura et al. 2004; Ugurel et al. 2005; Ahmed
et al. 2007; Kumar et al. 2007; Hardt et al. 2000). The quantification of M2-PK in
EDTA-plasma has been proposed as a relevant follow-up tool for various cancer
therapies (Wechsel et al. 1999; Schneider et al. 2000). The use of the plasma
M2-PK test as a general screening marker is not recommended since plasma
M2-PK levels may also increase in cases of severe inflammation (Hardt
et al. 2000). Measurement of M2-PK in bile revealed a sensitivity of 90.3 % for
biliary tract cancer with a specificity of 84.3 U/ml using a cut-off value of 24.4 U/ml
(Dhar et al. 2013).

Very recently, there have been two new studies that suggested M2-PK measure-
ment in serum as a primary screening tool for CRC screening (Demir et al. 2013,
Meng et al. 2012). Despite the fact that measurements in serum have a lower
specificity when compared to EDTA-plasma (Oremek et al. 2003), the papers
deserve some attention as the concept of measurement in blood samples might be
of interest as a screening concept in certain regions of the world. One study carried
out in a limited number of CRC patients, adenoma patients and controls reported a
very good overall performance and suggested that the plasma test might be suitable
for mass screening (Meng et al. 2012). If population-based prospective studies
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would reproduce these results, M2-PK measurement in the plasma might serve as a
tool for mass screening in populations or countries were colonoscopy is not easily
available. Potentially greater patient acceptance of a blood test (rather than a stool
test) might also be worthy of consideration to increase participation rates in some
screening programmes.

In CRC and adenoma, M2-PK is also released into the patients’ faeces
(Hardt et al. 2003). A sandwich ELISA based upon two monoclonal antibodies,
which specifically recognise the dimeric form of M2-PK, is commercially available
for the quantification of M2-PK in stool. More recently, a point of care rapid test
based on the same specific antibodies has also been developed by the same
company. The faecal M2-PK test has now been evaluated for CRC screening in
more than fifteen different studies. A meta-analysis of seventeen published studies
on this topic was published by Tonus et al. in 2012 (Tonus et al. 2012). The authors
re-analysed data from 704 CRC patients and 11,407 healthy controls. The mean
sensitivity and specificity of faecal M2-PK was 80.3 % and 95.2 %, respectively. In
head-to-head comparison with the guaiac-based faecal occult blood test (gFOBT)
(four studies), the mean sensitivity of faccal M2-PK was 81.1 % compared to
36.9 % for the gFOBT. The sensitivity of faecal M2-PK for adenoma depends on
the tumour size (eight studies): adenoma <1 cm in diameter, 25 %; adenoma
>1 cm, 44 %; and adenoma of unspecified diameter, 51 %. The authors conclude
that faecal M2-PK should be recommended as a routine test for CRC screening
because it detects bleeding as well as non-bleeding tumours and adenoma with high
sensitivity and specificity, whereas tests for the detection of blood (gFOBT and
iFOBT/FIT) are restricted to detecting bleeding lesions.

8.5 Lactate Dehydrogenase

Lactate dehydrogenase (LDH) (EC 1.1.1.27) catalyses the reduction of pyruvate to
lactate (Fig. 8.1). The tetrameric protein may consist of the following subunits: type
H (heart muscle type, also termed type B), type M (skeletal muscle type, also
termed type A) and type C (exclusively expressed in the testes). Depending upon
the oxygen supply and metabolic functions of the tissues, different hybrid forms
appear: isoenzyme 1, H4; isoenzyme 2, MH3; isoenzyme 3, M2H2; and isoenzyme
4, M4. In tumours, an increased expression of the M type is described, which is
characterised by a high affinity to pyruvate and an optimal adaption for survival in
hypoxic conditions.

The measurement of LDH in serum serves as an indicator of cell damage and is
widely used in clinical routine. In cases of increased serum LDH levels, an analysis
of the different isoforms allows the localisation of the cell damage: LDH-1 and
LDH-2 are elevated in myocardial infarction or haemolysis. Damage to liver cells
results in an elevation of LDH-5.

Besides being established as a marker of cell damage, serum LDH has been
studied in breast cancer, myeloma, melanoma, adenocarcinoma of the lung,
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testicular cancer and lymphoma. Especially for lymphoma, serum LDH became an
important part of the “IPI score” (international prognostic score) that is used in
classification and patient follow-up. However, serum LDH does not have a relevant
role in screening or differential diagnosis of cancer entities because of its very low
specificity.

8.6 Malic Enzyme

NADP-dependent malic enzyme (EC 1.1.1.40) is a glutaminolytic enzyme involved
in the degradation of glutamine to lactate. It has been shown to be over-expressed in
human colon tumours when compared to normal colon tissue (Mazurek et al. 2000),
and it has also been purified from breast cancer cells (Moreadith and Lehninger
1984). Along with NADP-dependent isocitrate dehydrogenase, which is also
upregulated in cancer cells, it plays an important role in the detoxification of
drugs used in cancer therapy, and it appears to be involved in the prevention of
apoptosis in tumour cells [21]. Malic enzyme might therefore be of interest not only
as a classical tumour marker but also as a parameter to help guide personalised
cancer chemotherapy. However, the determination of malic enzyme has not yet
gained a role in clinical routine.

Conclusion

A number of relevant laboratory tests for the screening and/or follow-up of
cancer patients have been derived from metabolic research. Some of the most
promising markers originate from enzymes involved in the glycolytic path-
way. In cancer patients, specific enzyme isoforms may be elevated in samples
of blood, bile or faeces and may serve as laboratory markers in clinical
routine practice. LDH was established decades ago in clinical practice as a
marker of cellular damage and tumour burden. Enolase has been used in the
follow-up of small cell lung cancer. M2-PK in plasma can be applied for
follow-up studies, and it might play a role in future screening concepts.
Faecal M2-PK has proven a very good performance in CRC screening
when compared to established alternatives. In future, more specific studies
will show whether metabolic markers in body fluids and stool may serve as a
basis for individualised tumour therapeutic approaches.
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9.1 Introduction

Deregulated pH in tumor cells and in the tumor microenvironment is an established
feature of most cancers, a common characteristic shared by solid tumors with
different genetic signatures and different tissue origins. Generally, the intracellular
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pH (pHi) in normal differentiated adult cells is about 7.2, so slightly lower than the
extracellular pH (pHe) of body fluids and tissues which is 7.4. In contrast, cancer
cells are characterized by a reversed pHi—pHe gradient since the pHi is higher than
pHe, with pHi values ranging from 7.2 to 7.7 and pHe values ranging from 6.0-6.2
to 6.8-7.1 (Gillies et al. 2002; Gallagher et al. 2008; Chiche et al. 2010). The
intracellular alkalization of tumor cells is triggered by the overexpression and/or the
increased activity of membrane-bound ion pumps and transporters able to enhance
H* removal from cytoplasm: a process that, overall, has to be extraordinarily
efficient considering that high proliferative and metabolic rates generate increased
metabolic acids. The maintenance of a more alkaline pHi is important for supporting
cellular growth (Pouysségur et al. 1985; Webb et al. 2011) and increasing resistance
to apoptosis (Matsuyama et al. 2000; Lagadic-Gossmann et al. 2004); moreover,
controlled and spatially organized regulation of pHi and pHe is essential for efficient
cell migration and invasive growth (Stock and Schwab 2009; Webb et al. 2011). The
acidic pH of the interstitial space is maintained by a combination of causes: high
proliferative rate, increased efflux of intracellular H*, and low perfusion, leading to
both oxygen shortage and limited capacity to disperse the acidic byproducts of
metabolism. Cancer entrenchment and progression is overall greatly influenced by
the decreased pHe of tumor tissues, due to its impact on all the cellular components of
the microenvironment (i.e., cancer cells, immune cells, endothelial cells, cancer-
associated fibroblasts, mesenchymal stem cells, extracellular matrix, secreted factors).

In this chapter, we will discuss what causes tumor acidosis and the main
molecular players related to pH regulation in cancer. The biological effects trig-
gered by low pH will be outlined in the context of the complexity of tumor
microenvironment.

9.2 Metabolic Sources of Acidity in Tumors

The phenomenon most commonly associated with the onset of acidosis during
cancer progression is hypoxia due to its impact on energy metabolism (Gatenby
and Gillies 2004; Chiche et al. 2010): the switch to a glycolytic O,-independent
production of energy leads to the final formation of high amount of lactate and
protons (see below). A significant part of the metabolic reprogramming that cells
undergo to cope with oxygen shortage is mediated, at the molecular level, by
hypoxia-inducible factor 1 (HIF-1) (Semenza 2013). Moreover, as observed by
Otto Warburg for the first time over 80 years ago, cancer cells produce excessive
lactate also in the presence of oxygen, a state termed ‘“aerobic glycolysis” or
“Warburg effect” (Warburg 1956; Vander Heiden et al. 2009). Highly proliferating
normal cells also show such enhancement in the non-oxidative/glycolytic energy
production, irrespective of oxygen tension and despite the much lower efficiency in
terms of ATP produced per single molecule of glucose consumed (Newsholme
et al. 1985). High glycolytic flux, together with increased glutamine metabolism,
provides an effective strategy to direct available nutrients into the synthesis of new
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biomolecules (Newsholme et al. 1985; Helmlinger et al. 2002). The advantage of
this phenotype in relation to a high rate of cell division is supported by its
conservation through evolution (Vander Heiden et al. 2009). Conversely, the
oxidative metabolism represents the pathway of choice in nonproliferating/differ-
entiated tissues and in conditions of nutrient limitation (Vander Heiden et al. 2009).
Besides HIF-1, important oncogenes like c-Myc, AKT, RAS, and p53 have key
roles in the metabolic reprogramming that confer on cancer cells the crucial
plasticity needed to survive and proliferate in a hypoxic, harsh, and quickly
changing microenvironment (Fan et al. 2010; Chen and Russo 2012). Indepen-
dently of the mechanisms and the advantage of upregulated glycolysis, the “lactic
acid” produced by hypoxic/high glycolytic cells is widely assumed to be the major
cause of acidosis in the tumor microenvironment (Chiche et al. 2010). The involved
glucose metabolism steps will be briefly summarized below.

In normoxic conditions, the cytosolic glycolytic pathway transforms glucose
into pyruvate. None of the glycolytic enzymatic reactions requires oxygen. The
global equation can be written as follows:

Glucose + 2ADP?*~ + 2HPO,*~ + 2NAD™
— 2Pyruvate” + 2ATP*~ + 2NADH + 2H" + 2H,0 (9.1)

Pyruvate fuels the mitochondrial process of the tricarboxylic acid cycle (TCA cycle
or Krebs cycle) that oxidizes pyruvate to CO, and water through the reduction of
NAD™ and FAD coenzymes. These reduced coenzymes will be re-oxidized in the
coupled mitochondrial process of oxidative phosphorylation (OXPHOS) through an
electron transfer chain (or respiratory chain) that requires O, as final electron
acceptor, eventually producing water. The proton gradient that the respiratory
chain creates in the intermembrane mitochondrial space during OXPHOS is
exploited by the ATP synthase to produce ATP molecules.

In hypoxic conditions, the mitochondrial oxidative process is impaired or
strongly decreased, with a consequent accumulation of pyruvate from glycolysis.
Nonetheless, the glycolytic pathway is upregulated in order to supply the cell with
the required ATP, which cannot be provided by OXPHOS. Pyruvate accumulates
and, instead of entering the TCA cycle, is reduced to lactate by the enzyme lactate
dehydrogenase (LDH), which entails the oxidation of NADH to NAD™ that allows
glycolysis to be refueled:

LDH
2pyruvate” + 2NADH + 2H" ----- " -----> 2lactate” + 2NAD™ (9.2)

Lactate can be removed from the cell through (a class of proteins called)
monocarboxylate transporters (MCTs, see later). This transport is carried out in a
coordinate manner with a proton. Such cotransport of 1H" per lactate molecule that
crosses the plasma membrane has led to the wide use of the term lactic acid. The net
effect of the lactate removal is the concurrent removal of one proton, which will
eventually contribute to tissue acidification.
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What we have described so far is the traditional interpretation of acidosis in the
tumor microenvironment, where the upregulation of the glycolytic pathway
(to different extents due to hypoxic conditions or to the Warburg effect) leads to
a high LDH activity and considerable export of lactic acid into the extracellular
milieu. Hence, a more pronounced glycolytic phenotype is what is usually referred
to as the source of acidity.

However, we would like to question this concept and show that metabolic acids
are produced abundantly by “highly proliferating” cells and that glycolytically
produced “lactic acid” is not the only source of acidosis in tumors. The two
moles of glycolysis-derived H" [see (9.1)], when not fully consumed in the LDH
reaction, are usually imported into mitochondria and/or in general do not represent
a challenge for the buffering capacity of a cell. The stoichiometry of the LDH
enzymatic reaction (9.2) clearly shows that protons are consumed (in the same
amount that is produced through the glycolytic pathway) and that lactic acid is
never produced as an acid inside the cell. In fact, the reaction catalyzed by LDH
does not affect the carboxylic group of pyruvate (always deprotonated itself) but
only the keto group —C=O in position two, which is reduced to a -CHOH
(Quaytman and Schwartz 2007). Moreover, the pKa value of lactic acid is 3.87 at
37 °C, so even at a physiologically “extreme” pH 6.0, the acid form would represent
less than 1 % of the total (Lane et al. 2009). The co-removal via MCTs of one H*
with one lactate molecule from the cytoplasm does contribute to extracellular
acidification, but it does not imply that the source of acidity is intracellularly
produced lactic acid or that the “proton-producing pathway” has to be strictly
glycolysis. While lactate overproduction is clearly a direct indication that glyco-
Iytic flux is enhanced and that pyruvate is transformed into lactate, the classical
biochemical equations as reported above would question the “message” that, in the
presence of a high LDH activity, the majority of protons responsible for acidifica-
tion of the extracellular compartment come from glycolysis (Robergs et al. 2004).

Then, where do the protons come from? In our opinion, they are produced inside
the cell as a result of the “normal” multiple metabolic processes, not only glycol-
ysis, ending with CO, production. Due also to the presence of intracellular isoforms
of carbonic anhydrases (Supuran 2008), CO, contributes to the shift of the equilib-
rium of the main buffering system according to the reaction
CO,+H,0 — HCO;™ +H" (a spontaneous reaction that would occur, at a slower
rate, also without any enzymatic catalysis). CO, is overall the final product of
human metabolism, so it is reasonable to think that in high-proliferating cancer
cells, protons arise from such “physiological,” though enhanced and deregulated,
metabolism. Assuming a proportional expression of MCTs to export lactate, a
higher or lower Warburg phenotype would mainly affect the overall efficiency of
H* removal from the cytosol, not the H* formation. In this perspective, the reaction
(9.2) would be beneficial not only for the restoration of NAD" equivalents imme-
diately available to the upstream glycolytic enzymes but also for the clearance of
metabolically produced H*. At the tumor site, however, when the mass has grown
and vascularization is scarce and malfunctioning, the decreased O, delivery also
implies an inefficient removal of the locally produced CO, and H*, which normally
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would be buffered in the bloodstream. Thus, both the higher activity of proton
extruders and CA isoforms expressed in cancer cells (see below) and the lack of
efficient removal of metabolic acids from the tumor tissue contribute to a more
acidic pHe in comparison to normal tissues.

9.3 Role of Glycolysis and Oxidative Phosphorylation
In Vivo

In vivo investigations aimed at understanding acidosis within solid tumors have not
focused on the “lactic acid” interpretation, which, as such (and to the best of our
knowledge), has not been extensively challenged. It is not trivial to experimentally
distinguish the fact that the tumor microenvironment is acidic and with a high
concentration of lactate from the fact that “lactic acid” produced via glycolysis is
not responsible for the development of tumor acidity, especially if expression of
lactate transporters and other proton transporters is not closely regulated and
comparable. In this perspective, CCL39 cells (ras-transfected Chinese hamster
lung fibroblasts) deficient in glucose transport and phosphoglucose isomerase
have been used to analyze changes in tumor pHe in nude mice in comparison to
parental cells (Newell et al. 1993; Chiche et al. 2012). Tumors derived from
parental and glycolysis-deficient cells showed minimal differences in growth rate,
no differences in the measured pHe, and no correlation between “lactic acid”
content and acidosis. In a study with ras-transfected CHO (Chinese hamster
ovarian) cells, an LDH-deficient subline was found to give rise to tumors with
mean pHe values comparable to those measured in tumors originated from the
parental cell line (and in both cases lower than that of normal tissue) (Yamagata
et al. 1998). With the same approach, a CCL39 model was used to show that CO; is
a significant factor contributing to acidification in the glycolysis-impaired tumors
(Helmlinger et al. 2002). These results show that the glycolysis-produced “lactic
acid” interpretation does not explain tumor acidosis. Nonetheless, such experimen-
tal observations, despite the limitation of the model used, challenge an assumption
too often taken for granted. Thus, it becomes reasonable to question whether other
murine or human models would show the same behavior. For instance, a study
carried out on rat gliomas (Provent et al. 2007) also pointed out that lactate
distribution does not match the H* distribution in vivo. Generally, proton extrusion
seems to represent the most important factor regulating acidosis to an extent far
more significant than glycolytic phenotype per se.

The moment it was established that lactate is produced in normal skeletal muscle
cells also in “resting conditions” and under normal values of O, tension (Miller
et al. 2002; Brooks 2009), a new way of thinking about lactate started. Nowadays,
lactate is widely considered not simply an unwanted byproduct of anaerobiosis but
an important player as a both metabolic fuel and signaling molecule. This holds true
in different areas of physiology (brain, cardiac and skeletal muscle, and liver) and is
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strongly emerging also in the context of cancer (Passarella et al. 2008; Dhup
et al. 2012). The value of lactate as biomarker associated with high risk of
metastasis and tumor recurrence and with chemo- and radioresistance has been
well known for many years (Walenta et al. 2000; Brizel et al. 2001; Quennet
et al. 2006). Moreover, exogenous lactate was demonstrated to affect the immune
response at the tumor site (Fischer et al. 2007; Husain et al. 2013) and cellular
motility (Walenta and Mueller-Klieser 2004) and to stimulate revascularization
(Hunt et al. 2007).

More importantly, new aspects of this ongoing “lactate paradigm shift” have
been recently proposed by two independent groups (Dhup et al. 2012; Pavlides
et al. 2012). The work from Sonveaux’s lab supports the idea of a “cooperative
model” between glycolytic and oxidative tumor cells (Sonveaux et al. 2008). This is
a model in which oxidative and glycolytic tumor cells are “metabolic symbionts,”
and the glucose consumption of a subset of glycolytic cancer cells produces the
lactate that becomes the fuel for another subset of oxidative tumor cells. Lisanti’s
lab, on the other hand, identifies lactate as a mediator of the so-called reverse
Warburg effect (Pavlides et al. 2009). According to this model, the tumor-
associated fibroblasts of the stroma are highly glycolytic, and their production of
metabolites including lactate represents the fuel for the oxidative cancer cells.

An emerging aspect of the importance of lactate in cancer metabolism concerns
the compelling evidence that mitochondria have a role in lactate metabolism due to
the existence of a mitochondrial form of LDH (mLDH). Included in the mitochon-
drial proteome database MitoCarta (Pagliarini et al. 2008), mLDH has been proven
to exist in a variety of mammalian mitochondria and recently also in cancer cell
lines from different tissues (De Bari et al. 2010; Hussien and Brooks 2011; Pizzuto
et al. 2012). Briefly, it was shown that lactate was entering (in a carrier-mediated
fashion) mitochondria of both normal prostate cells (PNT1A) and tumor cells
(PC3). The reports provided evidence for mLDH localization in the inner mem-
brane and for specific kinetic features compared to the cytoplasmic isoenzymes and,
furthermore, also for different activity in normal cells and cancer cells. More
recently, the presence of mLDH in HepG2 cells was confirmed
(by immunoblotting, confocal microscopy, and enzymatic assays) and the inner
mitochondrial membrane localization confirmed as well (Pizzuto et al. 2012).
However, other studies have questioned the existence of mLDH (Gladden 2004)
and the debate will likely continue. The data on a direct movement of lactate into
mitochondria are fairly in line with the “intracellular lactate shuttle hypothesis”
(ILS) proposed for skeletal muscle cells (Brooks 1998). ILS posits that lactate
produced as the result of glycolysis and glycogenolysis in the cytosol is balanced by
oxidation in mitochondria of the same cell (Brooks et al. 1999).

All these studies clearly need to be expanded to different models, considering the
variability of cancer types, so to test the existence of a “general” mitochondrial
lactate metabolism and a lactate-mediated cooperation between tumor cells and
between tumor cells and stromal cells. Such evidence would open up new scenarios
to the understanding of energy metabolism especially in the context of the tumor
“Warburg phenotype.”
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9.4 Regulation of pH in Tumor Cells

Because of the importance of pH in cellular processes like protein structure and
function, enzymatic activities, cell signaling, and intracellular organelle function
and traffic, cells have developed several systems to finely regulate intracellular pH
in response to changes in pHe or intracellular accumulation of acidic metabolites.
The pHe in blood and tissues under physiological conditions is maintained around
7.3-7.4, while pHi is slightly more acidic being in the range 7.1-7.3. The more
acidic pHi relies on passive transport of protons through the plasma membrane
(negative electrical potential inside) and the production of acid equivalents through
glycolysis, oxidative phosphorylation, glutaminolysis, and ATP hydrolysis. In
physiological conditions, the pH buffering capacity of cells depends on the con-
centration of weak acids or bases and the spontaneous hydration of CO, (physico-
chemical buffers) (Roos 1978; Roos and Boron 1981). However, adaptation or
response to prolonged stress affecting pHi homeostasis requires more advanced and
diversified pH-regulating cellular systems. We describe below the role of such
systems and their function and contribution to tumor pH modulation and disease
progression.

9.4.1 Carbonic Anhydrases

Carbonic anhydrases (CA) belong to a family of metalloenzymes that reversibly
catalyze the hydration of carbon dioxide into bicarbonate and protons
(CO,+H,0 + HCO3~ +H"), thus mediating acid-base balance in the cells and
tissues. The 16 mammalian a-CA isoenzymes show different subcellular localiza-
tion and tissue distribution. Since the CA system is involved in homeostatic
regulation of pH and carbon dioxide, it has fundamental implications in tissue
physiology and in several pathological conditions (Supuran 2008). The expression
of the transmembrane isoenzyme CA9 is increased in many tumors and functions as
marker of disease progression and response to therapy (Generali et al. 2006; Tan
et al. 2009; Zheng et al. 2010). CA9 is normally expressed in the stomach but its
expression is very strongly upregulated by HIF-1 in many types of tumors, and it is
also constitutively expressed in tumors defective for the von Hippel-Lindau (VHL)
protein, such as renal cell carcinoma. CA12 is also localized on the plasma
membrane and overexpressed in tumors. CA9 and CA12 are crucial proteins
regulating pHi and display a fundamental role in extracellular acidification of
tumor tissues, contributing to confer a survival advantage to cancer cells exposed
to hypoxic and acidic environment (Wykoff et al. 2000; Hussain et al. 2007; Chiche
et al. 2009).
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9.4.2 MCT Transporters

The monocarboxylate transporters (MCTs) more relevant for the topic of pH
regulation are the MCT1-4 of the SLC16A family. They catalyze the H*-linked
cotransport of monocarboxylates such as lactate, pyruvate, and ketone bodies
across the plasma membrane. Of the naturally occurring MCT substrates (lactate,
pyruvate, hydroxybutyrate, and acetoacetate), lactate is quantitatively the most
important. Among the four members of the group, MCT2 has the highest affinity
for most of the substrates (Halestrap 2013) but it has a low expression level in most
human tissues. MCT4 has a lower affinity for monocarboxylate species (Dimmer
et al. 2000) and is strongly expressed only in glycolytic tissues that must export
large amounts of lactate and protons. MCT3, less well characterized, is mainly
expressed in the retinal pigment epithelium. Conversely, MCT1 is almost ubiqui-
tously expressed (Halestrap and Meredith 2004). MCT1 and MCT#4 in particular
have an increased expression and/or activity in cancer. The preferential
overexpression of MCT4 in malignant cells is a characteristic shared with activated
lymphocytes, astrocytes, and white muscle fibers that are highly dependent on
glycolysis and need to handle large amounts of lactate (Halestrap 2012). It is well
established that HIF-1 regulates the expression of MCT4 but not of MCT1 (Ullah
et al. 2006).

MCT1 and MCT4 have been considered markers of poor prognosis in colorectal
cancer (Nakayama et al. 2012), and they have been correlated to invasiveness and
aggressiveness of different types of malignancies (Pinheiro et al. 2010a; Izumi
et al. 2011; Miranda-Gongalves et al. 2013); moreover, MCT4 expression in
stromal cells predicts poor outcome in triple-negative breast cancer (Witkiewicz
et al. 2012). In a study on melanoma, MCT1 and MCT4 were shown to increase in
expression during progression from nevi to advanced melanoma (Ho et al. 2012).

A further interesting question to be addressed about MCTs is related to the
previously described ILS hypothesis. Originally proposed in skeletal muscle cells
(Brooks 1998), the possible role of MCTs in the mitochondrial translocation of
lactate in cancer cells is an issue that needs to be further investigated. In a recent
study, MCT2 and MCT4 localization in mitochondria (as well as on the plasma
membrane) has been observed in MCF7 and MDA-MB-231 breast carcinoma cell
lines (Hussien and Brooks 2011).

The “spatial organization” of proton efflux and consequently of MCTs (together
with the other H" transporters) is another active area of investigation whose findings
are expected to have profound implications for the understanding of cell migration,
invasiveness, and the overall development of a metastatic malignancy (Cardone
et al. 2005; Grillon et al. 2011).

Lastly, the association of MCT with chaperone proteins in order to obtain a fully
active efflux/influx of substrates is now well established. CD147 (or basigin)
association with MCT1 and MCT4 is better characterized and many recent reports
are available (Muramatsu and Miyauchi 2003; Hashimoto et al. 2006; Gallagher
et al. 2007; Le Floch et al. 2011; Walters et al. 2013). Some reports also include
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CD44 (or hyaluronan receptor) as a chaperone protein associated to MCT
(Slomiany et al. 2009; Pinheiro et al. 2010b).

9.4.3 Sodium-Hydrogen Exchanger

Sodium-hydrogen exchanger (NHE-1) is a transmembrane protein with ubiquitous
expression and which exchanges intracellular protons for extracellular sodium. At
physiological pH, NHE-1 is quiescent but becomes activated during cytosolic
acidification via increased affinity of the intracellular allosteric proton-binding
site (Cardone et al. 2005). During mitogenic stimulation and oncogenic transfor-
mation, the protein is hyperactive and contributes to extracellular acidification and
maintenance of a more alkaline pHi, normally conducive for growth. NHE-1
expression is often polarized in the leading edge of invadopodia providing localized
pH regulation: increased pHi triggers changes in the cytoskeleton aiding cell
extension and migration, while acidification of pHe facilitates ECM degradation
and local invasion (Stock and Schwab 2009). NHE-1-dependent cellular alkalini-
zation during neoplastic transformation was reported to drive aerobic glycolysis,
proliferation, and serum- and anchorage-independent growth (Reshkin et al. 2000).

9.4.4 Vacuolar-ATPase

Vacuolar-ATPase (V-ATPase) is a transmembrane proton ATPase expressed in
vesicles from the endo-lysosomal compartment and on the plasma membrane of
osteoclasts and renal intercalated cells (Nishi and Forgac 2002; Forgac 2007). ATP
hydrolysis is mediated by the catalytic complex (V1) facing the cytosolic site, while
proton translocation occurs via the transmembrane complex (VO0), providing
intraluminal acidification. The activity and expression of V-ATPase are important
for regulation of intracellular vesicular functions and traffic, both in normal and
tumor cells (Nishi and Forgac 2002; Marshansky and Futai 2008). V-ATPase can be
functionally expressed on the plasma membrane of human tumor cells where they
provide protons extrusion leading to extracellular acidification, thus contributing to
tumor invasion and growth (Martinez-Zaguilan et al. 1993, 1999; Hinton
et al. 2009; Avnet et al. 2013). Furthermore, V-ATPase has been involved in the
acquisition of the multidrug resistance phenotype, and molecular or pharmacolog-
ical inhibition of the V-ATPases may reverse resistance to chemotherapy
(Raghunand et al. 1999b; You et al. 2009; Fais 2010; Fan et al. 2013) and retard
tumor growth in vivo (Lu et al. 2005; Xu et al. 2012a). This protein is also a crucial
regulator of autophagy since by providing lysosomal acidification, it regulates the
degradation rate of the autophagic cargo (Codogno and Meijer 2005; Meijer and
Codogno 2009).



182 A. Strambi and A. De Milito

Additional systems like the HCOj3- transporters, the anion exchangers, and the
aquaporins may have a role in pH regulation in normal cells, but their contribution
to regulation of tumor cell pHi has not yet been fully established (Parks et al. 2011).

9.5 Tumor-Supportive Effects of Altered pH

The effects of acidosis on several aspects of tumor biology have been investigated
since the early 1980s. An acidic microenvironment is a common feature of solid and
some hematological tumors (Vaupel et al. 1989; Gillies et al. 1994; Mortensen
et al. 1998). The acidic environment of tumors contributes to several features of
malignancy which include migration and invasive capacity, angiogenesis, resistance
to cell death, anchorage-independent growth, genetic instability, and immune escape
(Morita et al. 1992; Yuan et al. 2000; Orive et al. 2003; Gatenby and Gillies 2008;
Calcinotto et al. 2012). An interesting and growing research area focuses on identi-
fying pH sensors that mediate the response and the metabolic adaptation of cancer
cells to acidic conditions. Some interest was generated by the finding that G-protein-
coupled receptors (GPR) are involved in pH homeostasis by acting as proton sensors
and may be important for promoting tumor growth (Ludwig et al. 2003; Thara
et al. 2010; Ryder et al. 2012). We will now discuss several biological processes
involved in malignant progression and regulated by tumor pH alterations (Fig. 9.1).

9.5.1 Invasion/Migration

Invasion of the extracellular matrix (ECM) is the first step of the complex meta-
static process. Among the factors regulating tumor cell migration and invasion are
integrins and ECM-degrading proteolytic enzymes like cathepsins, matrix
metalloproteases (MMPs), and serine proteases (Mohamed and Sloane 2006; Friedl
and Wolf 2009). The acidic extracellular environment actively promoted by tumor
cells significantly contributes to degradation and remodelling of the ECM (Gatenby
et al. 2006). Acidic pH stimulates the secretion and activity of several proteases like
cathepsins B, L, and D and MMP-2 and MMP-9 (Kato et al. 1992; Bourguignon
et al. 2004; Lu et al. 2005; Rofstad et al. 2006; Giusti et al. 2008). As a conse-
quence, tumor cells exposed to acidic conditions acquire a more aggressive pheno-
type characterized by increased migratory and invasive capacity in vitro (Martinez-
Zaguilan et al. 1996; Lu et al. 2005; Rofstad et al. 2006; Moellering et al. 2008) and
increased metastatic behavior in vivo (Rofstad et al. 2006; Moellering et al. 2008).
The acid-mediated invasion hypothesis has also been supported by observations
made in a model of colon carcinoma, indicating that peritumoral regions charac-
terized by an acidic pH represented also sites of local invasion (Estrella et al. 2013).
Notably, tumor acidosis has often been considered to be a direct consequence of the
glycolytic switch promoted by HIF-1a, leading to the assumption that hypoxic
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Fig. 9.1 The reported tumor-supportive effects of disrupted proton dynamics. References for the
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areas and acidic areas are colocalized within a tumor. Although a high glycolytic
rate is considered as a major source of acidity, other metabolic pathways (like
glutaminolysis and the TCA cycle) contribute to proton production and may explain
why the distribution of oxygen pressure and pH in vivo is not always correlated
(Helmlinger et al. 1997, 2002; Yamagata et al. 1998; Provent et al. 2007).

As mentioned above, several pH-regulating proteins are upregulated in tumors
exposed to acidosis and control the pH-dependent invasive phenotype. The most
important proteins mediating such effect are the NHE-1 (Stock et al. 2005; Stock
and Schwab 2009; Lee et al. 2010; Steffan et al. 2010), the V-ATPase (Chung
et al. 2011; Wiedmann et al. 2012; Xu et al. 2012b; Hendrix et al. 2013), and the
CA-IX (Svastova et al. 2012). Interestingly, pseudopodia of invasive cancer cells
were found to be enriched in beta-actin and in glycolytic enzymes, suggesting the
close association of a localized acid-producing mechanism with the extracellular
acidification provided by NHE-1 or other systems (Nguyen et al. 2000; Beckner
et al. 2005; Brisson et al. 2012).

Besides the role in ECM degradation, an acidic environment also stimulates
angiogenesis by inducing the release of pro-angiogenic factors (VEGF and IL-8),
thus contributing to tumor cell dissemination (Xu and Fidler 2000; Fukumura
et al. 2001; Xu et al. 2002; Rofstad et al. 2006; Taraboletti et al. 2006; Giusti
et al. 2008). Therefore, inhibition of tumor acidic pHe regulation may represent a
tool in limiting dissemination of cancer cells and formation of metastases, either by
directly targeting the pH-regulating systems (Fais et al. 2007; Supuran 2008; Neri
and Supuran 2011; Porporato et al. 2011) or by chemical buffering of the tumor pH,
as also recently suggested by studies using sodium bicarbonate (Robey et al. 2009;
Silva et al. 2009).
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9.5.2 Resistance to Cell Death

While normal cells are sensitive to acidosis-induced cell death, cancer cells have
adapted to the acidic environment and exploit this condition as a mechanism for
resistance to various cytotoxic insults including nutrient deprivation, radiotherapy,
and chemotherapy (Okada et al. 2001; Reichert et al. 2002; Thews et al. 2006; Parks
et al. 2011; De Milito et al. 2012). Different signaling and metabolic pathways
contribute to adaptation to acidosis (Parks et al. 2011; Wojtkowiak et al. 2011). For
example, lymphoma cells cultured under acidic conditions (pH 6.5) were resistant
to apoptosis induced by deprivation of glucose or glutamine, a process mediated by
the upregulation of Bcl-2 and the activity of GPR65 (Ryder et al. 2012). As
mentioned above, an important consequence of the accumulation of acids in cancer
cells is the increased proton efflux through the plasma membrane, which causes a
shift in intracellular pH towards more alkaline values. This has been reported for
several human tumors in vitro including breast carcinoma (Raghunand
et al. 1999a), B- and T-cell leukemia (Rich et al. 2000), and melanoma (Wahl
et al. 2002; De Milito et al. 2010) and further confirmed by magnetic resonance
imaging (MRI) studies in vivo in several animal models (Gillies et al. 1994, 2002,
2008; De Milito et al. 2010; Hjelmeland et al. 2011).

Changes in the pH gradient between the extracellular environment and the cell
cytoplasm and/or in the pH gradient between the cell cytoplasm and the lysosomal
compartments are common in many tumors (Simon et al. 1994; Mahoney
et al. 2003). Since the entry of drugs into the cell may be dependent on both
concentration gradients and pH gradients, the reversed pH gradients of tumors
may affect drug distribution, uptake, and activity (Altan et al. 1998; Gerweck
1998; Raghunand and Gillies 2000; De Milito and Fais 2005b; Gerweck
et al. 2006; Tredan et al. 2007). Drugs that behave as weak bases (including
doxorubicin, mitoxantrone, chloroquine, vincristine, vinblastine) are protonated
in the acidic tumor environment, and in their charged form, their membrane
permeability is strongly reduced, with decreased cellular uptake as a consequence
(Jensen et al. 1994; Raghunand et al. 2003; Tredan et al. 2007; Pellegrini
et al. 2014). Similarly, weakly basic drugs crossing the plasma membrane can
accumulate within acidic organelles (lysosomes, endosomes, secretory vesicles)
(Ouar et al. 1999; Raghunand et al. 1999b; De Milito and Fais 2005a), where they
become sequestered and/or secreted. Indeed, alkalinization of tumor pHe and
increase of endosomal pH augment the uptake, retention, and cytotoxic activity
of several weakly basic chemotherapeutics (Raghunand et al. 1999a, 2003; Luciani
et al. 2004; Patel et al. 2013). Acidic pH was also shown to increase P-glycoprotein
activity in human and rat prostate carcinoma cells, which may in part contribute to
drug resistance in hypoxic/acidic tumor regions (Thews et al. 2006; Sauvant
et al. 2008).

Malignant and drug-resistant cancer cell lines are characterized by a slightly
more alkaline intracellular pH than drug-sensitive cells (Simon et al. 1994;
Belhoussine et al. 1999; Miraglia et al. 2005). Besides the role of alkaline pHi in
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determining the fate of weakly basic drugs, such conditions also affect the activity
of proapoptotic compounds. An early event during apoptosis induced by several
agents is the rapid acidification of intracellular pH (Gottlieb et al. 1996; Goossens
et al. 2000; Marches et al. 2001; Nilsson et al. 2006). Acidification of the intracel-
lular environment may also enhance the effect of proapoptotic drugs (Li and
Eastman 1995; Park et al. 1996). Drug-induced hydrogen peroxide production
was reported to induce intracellular acidification and release of cytochrome C,
thereby creating an intracellular environment permissive for caspase activation
(Hirpara et al. 2001). It is important to mention that a more alkaline pHi confers
cancer cells with an increased proliferative capacity, rendering them more respon-
sive to growth factors (L’Allemain et al. 1984; Paris and Pouyssegur 1984).
Moreover, pHi regulation is also important for cell cycle control (Pouysségur
et al. 1985; Lagadic-Gossmann et al. 2004; Webb et al. 2011), whereby acidifica-
tion of pHi may inhibit mTOR and protein synthesis (Pouysségur et al. 1985; Balgi
et al. 2011).

9.5.3 Immune Escape

Metabolic acidosis and other forms of clinical acidemia are often associated with
immunodeficiency status. Immune cells represent a major cell population within a
tumor tissue and include macrophages, dendritic cells, neutrophils, NK cells, B and
T lymphocytes. Tumor metabolic adaptation and reprogramming is thought to
impact on the antitumor immune response (Lardner 2001; Kareva and Hahnfeldt
2013), with acidity and lactate accumulation being major consequences of the
metabolic alterations affecting immune cells within tumors. Moreover, inflamma-
tory sites are normally characterized by local acidosis contributed by anaerobic
glycolysis of infiltrated immune cells and by bacterial metabolism. Recently, it was
suggested that extracellular acidosis also functions as danger signal for the innate
immune system, thus contributing to chronic inflammatory diseases (Rajamaki
et al. 2013). Acidic environment was reported to inhibit human lymphokine-
activated killer (LAK) cells (Severin et al. 1994), mouse NK cells (Loeffler
et al. 1991), and IL-2-stimulated lymphocytes (Loeffler et al. 1992). The activity
of mouse cytotoxic T lymphocytes (CTL) is significantly hampered at low pH
conditions (Redegeld et al. 1991), and culturing tumor-specific mouse and human T
lymphocytes at pH 6.0-6.5 induces anergy (Calcinotto et al. 2012), with impaired
cytolytic activity and cytokine secretion and reduced expression of IL-2Ra (CD25)
and T-cell receptors (TCR). Normalization of tumor pH using the proton pump
inhibitor esomeprazole not only normalized T-cell functions but also increased the
efficacy of active and adoptive immunotherapy (Calcinotto et al. 2012). Moreover,
tumor-derived lactic acid inhibits proliferation, cytokine production, and cytotox-
icity of human T lymphocytes (Fischer et al. 2007) and also inhibits dendritic cell
functions (Gottfried et al. 2006). Thus, both acidosis and lactic acidosis are
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considered important immune escape mechanisms (Lardner 2001; Bellone
et al. 2013; Kareva and Hahnfeldt 2013).

9.5.4 Modulation of Autophagy

The cellular homeostasis pathway known as autophagy (we refer to
macroautophagy) normally provides a survival advantage to cells subjected to
nutrient limitation, oxygen shortage, or chemotherapy insult (Meijer and Codogno
2009). Autophagy involves the degradation of cytosolic material and organelles via
the lysosomal digestion system, and the role of autophagy in cancer is extensively
described in a chapter of this book. A sustained autophagy plays a relevant role in
cancer progression, and it has been reported that the ability of lactic acidosis to
confer resistance to glucose deprivation was associated with elevated autophagy in
a model of breast carcinoma (Wu et al. 2012). In line with this, chronic autophagy
was observed in breast cancer cell lines adapted to grow in acidic conditions
(Wojtkowiak et al. 2012) and also in several human melanoma cell lines exposed
to chronic or transient acidic stress (Marino et al. 2012), indicating that autophagy
may contribute to cancer cells’ adaptation to chronic acidosis. However, inhibition
of autophagy by the use of chloroquine is not achieved in low pH-adapted cancer
cells because of the low chloroquine uptake in acidic conditions (Pellegrini
et al. 2014).

9.5.5 Extracellular Vesicles

Extracellular vesicles (EVs) are different types of membrane vesicles that can be
released from both healthy and tumor cells. Exosomes and microvesicles
(endosomal and plasma membrane origin, respectively) carry proteins, DNAs,
mRNAs, and microRNAs able to affect cell functions in autocrine and paracrine
modes, ultimately playing a role also in tumor progression and response to micro-
environment stressors (Kharaziha et al. 2012; Kucharzewska and Belting 2013).
Interest in their roles in mediating cell-cell communication and tumor progression
is on the increase (Al-Nedawi et al. 2009; Hendrix et al. 2010; Kucharzewska and
Belting 2013). Interestingly, acidic pH has been identified as a key factor for
exosome traffic and release in tumor cells (Parolini et al. 2009). Moreover, in
EVs from ovarian cancer cells, low pH has been suggested to trigger VEGF release
(Taraboletti et al. 2006) and to enhance their cathepsin B-mediated invasiveness
(Giusti et al. 2008). Collectively, these data indicate that the signaling/mediator
action exerted by EVs in relation to the acidic tumor microenvironment requires
further studies, possibly expanding the investigation to EVs of different origin (i.e.,
malignant cells and different stromal cells populating the tumor
microenvironment).
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9.6 Targeting pH Modulation in Cancer Therapy

Targeting the unique reversed pH gradient observed in cancer represents an impor-
tant and tantalizing strategy in cancer therapy. Although the therapeutic aspects are
not the focus of this book, we find it interesting that therapeutic efforts to reduce
tumor growth and metastasis by pH modulation are ongoing in preclinical and
clinical settings. We refer the interested readers to a series of updated review
articles focusing on such approach (Fais 2010; Neri and Supuran 2011; Webb
et al. 2011; De Milito et al. 2012; Parks et al. 2013).
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