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Abstract This contribution intends to present a rational method-
ology for mechanical systems with a variable mass, represented by
a supply of mass. Special emphasis is given to the relations of bal-
ance and jump for such systems. In these relations, we also allow
for other types of additional, non-classical supplies, e.g., supplies of
linear and angular momentum. In doing so, we aim at completing
and substantially extending formulations laid down in the famous
article by Truesdell and Toupin (1960), who stated local relations of
balance of mass and linear momentum in the presence of sources of
mass, and, among other formulations with relevance to the present
article, gave fundamental formulations for the case that a flow of
mass through the surface of the system is present in the global re-
lations of balance.

Our presentation is organized as follows: We remain in the
framework of non-relativistic mechanics, referring to a common in-
ertial frame. Throughout the Chapter, we formulate our relations in
the Euler or spatial description, in which every entity is understood
as a function of the instantaneous place of the material particles un-
der consideration, and of time. In Section 1, the general equation of
balance is stated and is applied to the model of a single mass point
with a variable mass. This general equation is specified for the fun-
damental relations of balance of mass, linear momentum, angular
momentum and total energy first. The variable mass is associated
with a supply of mass. Afterwards, as mathematical consequences
of the fundamental statements, we derive the statements of balance
of moment of momentum, intrinsic spin, kinetic energy and internal
energy for the single mass point. As a rational procedure for formu-
lating the additional, non-classical supplies that are present in the
relations of balance, we assume that the single mass point is gaining
or losing differential masses by means of continuous impacts, which
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are again studied in the framework of the general equation of bal-
ance. The outcomes of this procedure include a Seeliger-Meschersky
type additional supply of linear momentum.

In Section 2, theorems on balance of mass, linear momentum,
moment of momentum and kinetic energy for deformable bodies of
finite extension with a variable mass are presented. Among these,
the first two can be considered as fundamental, while balance of
moment of momentum and kinetic energy are derived from balance
of mass and linear momentum as mathematical consequences. The
supply of mass is associated with distributed sources of mass at-
tached to the material particles, which we call material sources of
mass. Both global and local relations of balance are considered,
including global and local non-classical supplies of mass and linear
momentum. The supplies of moment of momentum and kinetic en-
ergy follow as mathematical consequences. A Seeliger-Meschersky
type local model for the non-classical supply of linear momentum
is presented. Due to limited space, the fundamental relations of
balance of angular momentum and total energy for bodies of finite
extension are not considered. However, useful global relations con-
cerning the notion of center-of-mass are given, introducing the no-
tions of center-of-mass linear momentum and relative linear momen-
tum, center-of-mass moment of momentum and relative moment of
momentum, as well as center-of-mass kinetic energy and relative
kinetic energy. Our relations extend some formulations that are
well-known for bodies in the absence of a supply of mass. The cor-
responding relations of balance again follow as mathematical con-
sequences of the fundamental ones, including non-classical supply
terms related to the non-classical supplies of mass and linear mo-
mentum. In Section 3, global relations of balance for open systems
are studied, and are set into analogy to the results of Section 2. An
open system is represented by a non-material control volume, the
surface of which moves at a velocity different from the velocity of the
material particles instantaneously located on that surface, such that
a flow of mass takes place. Supplies of mass and linear momentum
due to this flow of mass are shown to be analogous to the supplies
introduced in Section 2. The theoretically as well as practically
important special case of a rigid body that experiences a surface
growth is exemplarily treated. Section 4 deals with extended rela-
tions of jump for systems with a variable mass. Relations of jump
are needed, when certain entities suffer considerable changes across
some region of transition. This region of transition is replaced by
an equivalent singular surface, for which relations of jump are for-
mulated by including additional non-classical surface supply terms,
such as surface supply of mass and linear momentum. Other sur-
face supply terms are derived as mathematical consequences of the
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latter. As an example for the formulations presented in Sections 3
and 4, the problem of a chain heaped up on a table, the hanging
part of the chain being set into motion, is considered in Section 5.
It is believed that the corresponding formulation can explain some
seemingly controversial results from the literature.

It should be mentioned that our emphasis lies on a rational
treatment of the topics under consideration. While our methodol-
ogy has many important predecessors, but appears to be novel in
the systematic manner here presented, we do not intend to give a
historical review on the topic due to the limited space available. For
the latter, the reader is referred to reviews by Mikhailov (1975), his-
torical presentations to be found, e.g., in the important works of Eke
(1998) and Cveticanin (1998), as well as to a review by Irschik and
Holl (2004) on balance of mass and momentum for systems with
a variable mass. (An extended review by the latter authors con-
cerning balance of moment of momentum and kinetic energy for
variable mass systems is being prepared since and hoped to be fin-
ished soon). Last but not least, the reader is referred to the other
chapters of the present book.

1 An introductory example: The single mass point

with a continual time-variation of mass.

1.1 The general and the differential relations of balance

In this Section, we present introductory material on the relations of
balance for mechanical systems with a variable mass. The general equation
of balance for any system can be written as:

Q(t+Δt)−Q(t) =

t+Δt∫
t

R (τ) dτ (1)

In (1), Q denotes some physical meaningful quantity that properly de-
scribes the system within the time interval t ≤ τ ≤ t + Δt, and R is the
physical cause that is responsible for a time change of Q, also denoted as
the source of that time change. When Q(t+Δt) = Q(t), i.e., when the
integral at the right hand side of (1) does vanish, then Q(t) is said to be
conserved with respect to the time instant t + Δt. When the right hand
side of (1) does not vanish, Q is said to be balanced by the integral of the
source R over the time interval under consideration.

Eq. (1) represents the most general statement of balance; in order to
make physical sense, it is only necessary to require that Q has unique values
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at the instants t and t + Δt, and that the integral over the source R does
exist, but the source R itself does not need to be continuous in time.

A large part of the history of mechanics (and of physics as a whole)
can be understood as an intense struggle for finding physically meaningful
quantities Q and corresponding physically meaningful sources R that do sat-
isfy (1). In the Newtonian theory of mechanics, which is used subsequently,
time t and quantities Q are defined with respect to an inertial frame, and
Q basically stands for the notions of mass, momentum and energy. The
notion of energy directly connects the fields of mechanics and thermody-
namics, the latter bringing into the play the additional notion of entropy,
which, however, will not be addressed in the following due to limited space.

In case R is continuous and bounded, it makes sense to consider an
infinitesimal time interval, Δt → dt. Then the finite statement in (1) can
be replaced by the following differential relation of balance:

Q(t+ dt)−Q(t) = dQ = Rdt (2)

In the following Subsections 1.2–1.5, we apply the differential state-
ment (2) to the model of a single mass point, also denoted as a point mass, a
problem that is elementary for the dynamics of mechanical systems. In the
present context, (2) is specified for several relations of balance for the single
mass point with a time-varying mass, m = m(t). The source that is respon-
sible for the change in mass will be denoted as a supply of mass. We start
with the fundamental relations of balance of mass, and discuss the relations
of linear momentum, angular momentum and total energy afterwards. Into
these relations, we incorporate further supply terms, additional to classical
formulations. For a comprehensive representation of the classical balance
statements of mechanics, see, e.g., Ziegler (1998). To add non-classical sup-
ply terms to the classical statements can be motivated, e.g., by the theory
of multiphase mixtures, in which it is assumed that a particle of a single
constituent exchanges mass, momentum and energy with the particles of
the other constituents of the mixture, and thus is being supplied with the
latter entities, see, e.g., the book by Hutter and Jöhnk (2004).

A continuous impact model then is presented in order to express the
non-classical supplies of linear momentum, angular momentum and energy.
This model assures that mass, linear momentum and energy is continu-
ously gained from differential masses at an own velocity. As a special case,
the Seeliger-Meshchersky formulation for the supply of linear momentum is
contained therein.

Having stated the fundamental relations of balance of mass, linear mo-
mentum, angular momentum and total energy for a single mass point with a
supply of mass and other non-classical supplies, we proceed to consequences
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of the latter fundamental statements, and derive the statements of balance
of moment of momentum, intrinsic spin, kinetic energy and internal energy.
All the above mentioned relations of balance will be referred to a common
inertial frame without further reference.

1.2 Balance of mass

For balance of mass, (2) reads

Q (t+ dt)−Q (t) = dQ = dm, R = s [m] (3)

The supply of mass from or to the environment is denoted as s [m]. If mass
is added to the point mass, then s [m] > 0, and if mass is ejected from the
point mass, there is s [m] < 0. Note that the notation s [λ], say, reads “the
supply of λ”, where the physical dimension of s [λ] is the dimension of λ per
dimension of time. Using (2) and (3), balance of mass becomes:

dm

dt
= s [m] (4)

1.3 Balance of linear momentum

The vector of linear momentum is defined as

j = mv (5)

where the absolute velocity vector is v = dp/dt, and p is the position vector
of the single mass point with respect to the origin of the inertial frame. For
linear momentum j, the quantities in (2) are:

dQ = dj, R = F + s [j] (6)

The resultant of imposed and restoring forces that acts upon the single mass
point is the vector F , and the vector s [j] stands for a non-classical (addi-
tional) supply of momentum. Utilizing balance of mass (4), the following
relation of balance of linear momentum for a single mass point is obtained
from (2) and (6):

dj

dt
= m

dv

dt
+ s [m] v = F + s [j] (7)

1.4 Balance of angular momentum

The vector of angular momentum is defined as

α = p×mv + l (8)
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where the vector product p×mv is called the moment of (linear) momentum,
and the vector l denotes an intrinsic spin of the point mass. For angular
momentum, the quantities in (2) are:

dQ = dα, R = p× F +M + s [α] (9)

The resultant of imposed and restoring couples that act upon the mass
point is abbreviated by the (free) vector M . The notions of intrinsic spin l
and the resultant couple M , while often not taken into account in the me-
chanics of single mass points, have been introduced in (9) in order to render
balance of angular momentum a relation of balance in its own right, bring-
ing additional physical notions into the play that are not present in balance
of linear momentum (7). Motivations for introducing l and M can be taken,
e.g., from the model of material particles in a continuous polar medium. For
a recent comprehensive representation of the theory of micro-polar media,
see the book by Eremeyev et al. (2012). Another example is the case that
a single mass point shall be used to model the rotational motion of a rigid
body of finite extension. From these examples, it makes sense to set

l = J · ω (10)

where J is the symmetric second order tensor of inertia, and ω is the angular
velocity vector of the mass point. Note that we use the simple single dot
product operation that has been introduced in the exposition on tensor
fields by Ericksen (1960). Introducing a non-classical (additional) supply of
angular momentum s [α], using balance of mass (4), and substituting (10),
the relation of balance of angular momentum is obtained from (2) and (9)
as

dα

dt
= p×m

dv

dt
+ J ·

dω

dt
+ p× s [m] v +

dJ

dt
· ω = p× F +M + s [α] (11)

1.5 Balance of total energy

The total energy E of the mass point is defined as the sum

E = Ekin + Eint (12)

where the kinetic energy of the mass point is given by

Ekin =
1

2
(mv · v + ω · (J · ω)) (13)

The internal energy, a notion that stems from thermodynamics, is abbrevi-
ated by Eint. For total energy, the quantities in (2) are:

dQ = dE, R = F · v +M · ω + r + s [E] (14)
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where r stands for non-mechanical sources of total energy, and s [E] is a
non-classical (additional) supply of energy. Using balance of mass (4), and
substituting (10) and (13), the relation of balance of total energy is obtained
from (2) and (12) as

dE

dt
= mv ·

dv

dt
+ ω ·

(
J ·

dω

dt

)
+

1

2

(
s [m] v · v + ω ·

(
dJ

dt
· ω

))
+

dEint

dt

= F · v +M · ω + r + s [E] (15)

Balance of total energy is also known as the First Law of Thermodynamics ;
the relation in (14) accounts for the case of a variable mass and an additional
supply of total energy.

1.6 A rational procedure for obtaining expressions for the addi-
tional supplies

Additional modeling is necessary in order to describe the supply of mass
s [m]. The same is true for the non-classical supplies s [j], s [α] and s [E]. In
the present subsection, we introduce a rational model, in which the latter
supplies can be expressed using the former. This model may be called an
extension of the continuous impact model by Cayley (1856), who assumed
that the single mass under consideration “is continually taking into connex-
ion with itself particles of infinitesimal mass [...], so as not itself to undergo
any abrupt change of velocity, but to subject to abrupt changes of velocity
the particles so taken into connexion.”

Hence, consider a mass point with an infinitesimal mass of amount dm̄ =
dm = s [m] dt, with s [m] > 0. Assume that, at the time instant t, the
linear momentum of the infinitesimal mass is dmu, the intrinsic spin is
dJ ·Ω, and the internal energy is dĒint, where u is the velocity vector of the
infinitesimal mass, and Ω is the angular velocity vector of the infinitesimal
mass at time t. Assume further that this infinitesimal mass dm̄ is absorbed
during the time-interval dt by the mass point with finite mass m, where
the linear momentum, angular momentum and energy of the infinitesimal
mass are completely transferred to the mass m at time t+dt. In accordance
with (2), the equations of balance for dm̄ become:

Balance of linear momentum

dQ = Q (t+ dt)−Q (t) = 0− dmu = −dmu, R = s [j̄] (16)

⇒
dm

dt
u = s [m] u = −s [j̄] (17)
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Balance of angular momentum

dQ = −p× dmu− dJ · Ω, R = s [ᾱ] (18)

⇒ p×
dm

dt
· u+

dJ

dt
· Ω = p× s [m] · u+

dJ

dt
· Ω = −s [ᾱ] (19)

Balance of energy

dQ = −
1

2
(dmu · u+Ω · (dJ · Ω))− dĒint, R = s

[
Ē
]

(20)

⇒
1

2
s [m]u · u+

1

2
Ω ·

(
dJ

dt
· Ω

)
+ dĒint = −s

[
Ē
]

(21)

Above, no imposed or reactive forces and couples or non-mechanical sources
of energy have been considered for the infinitesimal mass for the sake of
brevity. Requiring that the supplies for m and dm̄ must be mutual, we
obtain:

s [j] = −s [j̄] = s [m]u (22)

s [α] = −s [ᾱ] = p× s [m]u+
dJ

dt
· Ω (23)

s [E] = −s
[
Ē
]
=

1

2
s [m]u · u+

1

2
Ω ·

(
dJ

dt
· Ω

)
+ dĒint (24)

Substituting into the fundamental equations of balance of linear momentum,
angular momentum and total energy stated in Subsections 1.3–1.5, these
relations become:

dj

dt
= m

dv

dt
+ s [m] v = F + s [m]u (25)

dα

dt
= p×m

dv

dt
+ J ·

dω

dt
+ p× s [m] v +

dJ

dt
· ω

= p× F +M + p× s [m]u+
dJ

dt
· Ω (26)

dE

dt
= mv ·

dv

dt
+ω ·

(
J ·

dω

dt

)
+

1

2

(
s [m] v · v + ω ·

(
dJ

dt
· ω

))
+

d

dt
Eint

= F · v +M · ω + r +
1

2

(
s [m]u · u+Ω ·

(
dJ

dt
· Ω

))
+

d

dt
Ēint (27)
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For the sake of comparison with the literature, the relation of balance of
linear momentum is re-written as

m
dv

dt
= F + s [m] (u− v) (28)

The term s [m] (u− v) dates back to Seeliger (1890) andMeshchersky (1897);
it is called the Meshchersky reactive force, while (28) as a whole is denoted
as the Tsiolkovsky-Meshchersky rocket equation. Tsiolkovsky in 1897 inde-
pendently derived the solution for the case of a constant relative velocity
u−v, cf. Kosmodemyansky (2000). For historical expositions, see Mikhailov
(1975) and Irschik and Holl (2004). The results in (13)–(17) also hold for the
case s [m] < 0. We then assume that the infinitesimal mass dm̄ = −dm > 0
is ejected during the time-interval dt from the mass point m, where momen-
tum, angular momentum and energy of the infinitesimal mass have been
completely released from m at time instant t + dt. E.g., balance of linear
momentum for the infinitesimal mass reads, cf. (2):

dQ = Q (t+ dt)−Q (t) = dm̄ u− 0 = −dm u, R = s [j̄] (29)

which again yields (17).
It must be emphasized that the above continuous impact model does

result in balance relations that are invariant with respect to a change of the
common inertial frame. In these relations, we may add a constant position
vector to the vector p, a constant velocity vector to v and u, etc., and
then subtract the results from the original formulations without obtaining
any discrepancies. E.g., adding a constant position vector to p in (26), the
difference of the result with respect to the original relation (26) vanishes,
since (25) holds. Of course, the supply of mass s [m] itself and the internal
energies must also be formulated accordingly.

1.7 Consequences of the fundamental relations of balance

The fundamental relations of balance can be mathematically manipu-
lated in order to obtain further relations of balance. This will be done in
the following Subsection using the continuous impact model presented in
Subsection 1.6 above, i.e., by studying mathematical consequences of the
relations stated in (25)–(27). Particularly, we derive balance relations for
moment of momentum, intrinsic spin, translational and rotational kinetic
energy and internal energy from the fundamental relations. The additional
supply terms in the latter derived relations are expressed by the supply
terms in the fundamental relations of balance, as it should be. For a sys-
tematic treatment of relations between non-classical supply or growth terms



10 H. Irschik and A. Humer

in the framework of continuum mechanics, the reader is referred to Irschik
(2005, 2007).

Balance of moment of momentum Performing the vector product of
the balance of linear momentum (25) with the position vector p yields

p×m
dv

dt
+ p× s [m] v =

d

dt
(p×mv) = p× F + p× s [m]u (30)

Introducing the moment of momentum as

α∗ = p×mv = α− l (31)

we obtain:

dα∗

dt
= p×m

dv

dt
+ p× s [m] v = p× F + s [α∗] (32)

with the non-classical supply of moment of momentum

s [α∗] = p× s [m] u = p× s [j] (33)

Balance of intrinsic spin Subtracting (32) from balance of angular mo-
mentum (26) gives:

dl

dt
= J ·

dω

dt
+

dJ

dt
· ω = M + s [l] (34)

with the non-classical supply of intrinsic spin

s [l] =
dJ

dt
· Ω (35)

Balance of translational kinetic energy Performing the scalar prod-
uct of the balance of linear momentum (25) with the velocity v yields

v ·m
dv

dt
+ v · s [m] v =

d

dt

(
1

2
mv · v

)
+ s [m]

1

2
v · v = F · v+ s [m]u · v (36)

Introducing the translational kinetic energy as

Etr

kin =
1

2
mv · v (37)

we obtain:

dEtr

kin

dt
= v ·m

dv

dt
+

1

2
s [m] v · v = F · v + s

[
Etr

kin

]
(38)

with the non-classical supply

s
[
Etr

kin

]
= s [m]

(
u−

1

2
v

)
· v (39)
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Balance of rotatory kinetic energy Performing the scalar product of
the balance of intrinsic spin (34) with the angular velocity ω yields

ω ·
dl

dt
= ω ·

(
J ·

dω

dt

)
+ ω ·

(
dJ

dt
· ω

)

=
d

dt

(
1

2
ω · (J · ω)

)
+

1

2
ω ·

(
dJ

dt
· ω

)
= M · ω + ω ·

(
dJ

dt
· Ω

)
(40)

Introducing the rotational kinetic energy as

Erot

kin =
1

2
ω · (J · ω) (41)

we obtain:

dErot

kin

dt
= ω ·

(
J ·

dω

dt

)
+

1

2
ω ·

(
dJ

dt
· ω

)
= M · ω + s

[
Erot

kin

]
(42)

with the non-classical supply of rotatory kinetic energy

s
[
Erot

kin

]
= ω ·

(
dJ

dt
·
(
Ω−

ω

2

))
(43)

Balance of internal energy Subtracting the relations of balance for
kinetic energy, (38) and (42), from the relation of balance of total energy in
the form of (27), we obtain:

dEint

dt
= r + s [Eint] (44)

with the non-classical supply of internal energy

s [Eint] =
1

2
s [m] (u− v)·(u− v)+

1

2
(Ω− ω)·

(
dJ

dt
· (Ω− ω)

)
+

d

dt
Ēint (45)

2 Balance relations for bodies of finite extension with

a variable mass

So far, we have dealt with the relations of balance for a single mass point
with a variable mass. In the following, we extend these considerations to
the case of a material body of finite size. Hence, we subsequently deal
with a mechanical system that consists of an infinite set of continuously
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distributed material particles, for which mass is not conserved. Due to lim-
ited space, we remain in the framework of purely mechanical notions in the
present section, dealing with balance of mass, linear momentum, moment
of momentum and kinetic energy, the latter two as consequences of mathe-
matical manipulations of the former ones. This restriction is also motivated
by a remark of Truesdell and Toupin (1960), who stated that the concepts
of linear momentum, moment of momentum and kinetic energy of a finite
body are “the stuff of which classical mechanics is made”, and that they
“deserve the most minute analysis”. It is the scope of the present section
to present a rational methodology for formulating relations of balance for
these quantities, considering the case of a body with variable mass and a
finite extension.

The relations of balance in their most basic form, see (2), are to be
referred to the total of a system under consideration, in the present case by
integrating over the finite volume of the body. In order to highlight this fact,
the corresponding balance equations are also denoted as global relations of
balance. Considering the so-called localization argument, i.e., requiring that
the relations of balance must hold for any sub-volume of the body, the global
relations can be localized under obvious continuity conditions to so-called
local relations of balance.

We start our considerations by dealing with global and local balance of
mass. For writing global relations, we consider balance with respect to a
material volume at first, in other words, for a finite volume with a surface
that moves together with the particles instantaneously located in it. This
material volume constitutes the material body under consideration. As the
reason for a variable mass of the so defined material body, we assume that
the elementary masses carried by the particles of the body do change in
time. In order to characterize this situation, we say that material sources of
mass are attached to the particles. In our subsequent balance formulations,
these sources are associated with global and local supplies of mass, the
latter being spatially distributed. Since these supplies are absent in classical
formulations of continuum mechanics, we talk about non-classical supplies.

In a next step, the notion of the center of mass is introduced in the
presence of material sources of mass, which, to a certain extent, connects
the formulation for the single mass point in Section 1 above with the problem
of a material body of finite spatial extension. Some useful global relations in
connection with the notion of center of mass are presented, introducing the
notions of center-of-mass linear momentum and relative linear momentum,
center-of-mass moment of momentum and relative moment of momentum,
as well as center-of-mass kinetic energy and relative kinetic energy. The
corresponding relations extend some formulations well-known for bodies in
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the absence of a supply of mass. The global and local relations of balance of
linear momentum are then discussed, where non-classical supplies of linear
momentum are additionally introduced. The global relation of balance of
linear momentum can be replaced by a center-of-mass oriented form, from
which a relation of balance of relative linear momentum follows. The global
relations of balance of moment of momentum, center-of-mass moment of
momentum and relative moment of momentum are afterwards derived as
consequences of mathematical manipulations of the local relation of linear
momentum. The same strategy is used for deriving the global relations of
balance of kinetic energy, center-of-mass kinetic energy and relative kinetic
energy. In all of these derived relations of balance, additional, non-classical
supply terms emerge. These, however, are expressed by the non-classical
supplies of mass and linear momentum, and which vanish when the latter
two are absent. From this, one can conclude that the notion of a non-
classical supply as such is necessary in order to ensure consistency of the
various relations of balance.

A problem oriented constitutive modeling is needed, in order to properly
formulate the non-classical supply terms for mass and linear momentum.
In order to provide a rational formulation for the global and local relations
of balance of linear momentum, a simple local model for the non-classical
supply of linear momentum is presented, which, in a continuum mechan-
ics framework, was suggested by Irschik (2005) for bodies with a growing
mass. In this model, mass is locally added to (or removed from) the parti-
cles at an own velocity and at a rate equal to the local non-classical supply
of mass. For a system consisting of several distinct single mass points, an
analogous model was considered by Federhofer (1922). The model assures
the invariance of the global and local relations of balance of linear momen-
tum with respect to a Galilean transformation of the inertial frame. Due to
the apparent analogy to the relation of balance of linear momentum for the
single mass point (28), it can be called a model of the Seeliger-Meshchersky
type, cf. Section 1. Using this particular model, the relations of balance
of global and center-of-mass moment of momentum and kinetic energy are
exemplarily re-formulated.

2.1 Variable mass due to material sources of mass in the interior
of a material volume

The instantaneous total mass m of a deformable body of finite extension
that occupies the volume V in the current configuration is denoted as

m =

∫
V

ρ dV (46)
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In (46), ρ denotes the current mass density, i.e., the local mass per unit
volume in the current configuration, and V is assumed to be a material
volume, i.e., a volume that moves together with the particles instantaneously
located in it. The case of a flow of mass through the surface of V , i.e., the
case of a non-material volume, will be studied in Section 3 below. As the
reason for a non-vanishing time-rate of the total mass, for the moment
being we assume that distributed sources (sinks) of mass are assigned to
the particles in V , where the change of mass is not understood as a change
in the number of particles in V , but as a change of the elementary mass of
the particles contained in V . We therefore talk about material sources of
mass, which result in a non-classical supply of mass, the latter being absent
in classical formulations dealing with mechanical systems with a conserved
mass. We start our considerations with balance of mass.

2.2 Global and local relations of balance of mass

Assume that the material body under consideration is subjected to a
continual, non-classical supply of mass due to material sources of mass.
From the general balance relation (2), and in analogy to the relation (4),
which has been stated above for a single point mass, we write the global
statement of balance of mass as

dm

dt
=

d

dt

∫
V

ρ dV = s [m] (47)

where s [m] is the total supply of mass of the body due to the material
sources of mass. We now introduce a local supply of mass s [1] by setting

s [m] =

∫
V

s [1] ρ dV (48)

Interchanging the time derivative and the integral in (47), and requiring
that this relation must hold for any sub-volume of the material volume V ,
the following relation for the time rate of the elementary mass carried by a
particle is obtained:

d

dt
(ρ dV ) = s [1] ρ dV (49)

An example for the material frame indifferent constitutive modeling of s [1]
can be found in the chapter written by D. Indeitsev in the present book,
where the case of a single constituent of a binary mixture is studied.

The left hand side of (49) can be transformed to

d

dt
(ρ dV ) =

dρ

dt
dV + ρ

d

dt
(dV ) (50)
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The place of the particles is characterized by their position vectors p
with respect to an inertial frame. Particularly, for the mass density we
write ρ = ρ (p, t). The material time derivative of the mass density in (50)
then becomes

d

dt
ρ (p, t) =

∂ρ

∂t
+ v · grad ρ (51)

where the absolute velocity of the particles with respect to the inertial frame
is denoted as v = dp/dt. The divergence and gradient operators with respect
to the place of the particles in the current configuration are written as “div”
and “grad”, respectively. Utilizing the Euler expansion formula for the time
rate of the elementary volume carried by a particle,

d

dt
(dV ) = (div v) dV (52)

together with the following vector identity,

div (ρ v) = ρ div v + v · grad ρ (53)

we can put (50) into the form

d

dt
(ρ dV ) =

(
∂ρ

∂t
+ div (ρ v)

)
dV (54)

Substituting (54) into (49) yields the local equation of balance of mass in
the presence of material sources of mass:

∂ρ

∂t
+ div (ρ v) = s [1] ρ (55)

Note that the term s [1] ρ in (55) is denoted as J in D. Indeitsev’s Chapter
of the present book.

2.3 Some useful relations involving the center of mass

The position vector c of the instantaneous center of mass from the origin
of the inertial frame is defined by

cm =

∫
V

p ρ dV (56)

where p is the position vector of a particle currently having the elementary
mass ρ dV . Setting

p = c+ p′ (57)



16 H. Irschik and A. Humer

with the position vector p′ relative to the center of mass, it follows from (56)
with (46) that ∫

V

p′ρ dV = 0 (58)

Time-wise differentiation of (56) gives, recall that v = dp/dt and s[m] =
dm/dt, and see (49):

d

dt
(mc) = m

dc

dt
+ s [m] c =

d

dt

⎛
⎝∫

V

p ρ dV

⎞
⎠

=

∫
V

v ρ dV +

∫
V

p
d

dt
(ρ dV ) =

∫
V

v ρ dV +

∫
V

p s[1] ρ dV (59)

Note that the center of mass defined in (56) is not to be confused with the
place of some material particle, which instantaneously might coincide with
it. Indeed, the center of mass might not even be situated within the body,
think, e.g., of a hollow sphere. Hence, the velocity dc/dt of the center of
mass in general will be different from the velocity of a material particle that
instantaneously might be located at the place of the center of mass. (One
may ask, why dp/dt in (59) has been identified as the absolute velocity
v of a material particle. The reason is that the position of the center of
mass of the elementary mass ρ dV carried by that material particle is given
by its position vector p, which, however, does not move relative to the
particle. Hence, the time derivatives are consistently applied in the various
expressions presented in (59).)

Now, a further characteristic place c̃ is introduced by defining

s [m] c̃ =

∫
V

p
d

dt
(ρ dV ) =

∫
V

p s [1] ρ dV (60)

Substituting into (59) yields
∫
V

v ρ dV = m
dc

dt
+ s [m] (c− c̃) = m

dc

dt
−

∫
V

p′s[1] ρ dV (61)

The left hand side of (61) represents the total linear momentum j of the
body, being defined as

j =

∫
V

v ρ dV = m
dc

dt
+

∫
V

v′ρ dV = m
dc

dt
+ s [m] (c− c̃) (62)
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In (62), use has been made of the relation

v =
dp

dt
=

dc

dt
+ v′ (63)

The velocity v′ = dp′/dt in (63) represents the difference between the veloc-
ity of some material particle and the velocity of the center of mass, dc/dt.
With (63), the total linear momentum in (62) can be decomposed into

j = jc + j′ (64)

with the pseudo- or center-of-mass linear momentum

jc = m
dc

dt
(65)

and the relative linear momentum

j′ =

∫
V

v′ρ dV = s [m] (c− c̃) = −

∫
V

p′s[1] ρ dV (66)

which follows by comparison of (64) with (61). Hence, the relative linear
momentum in a body with a non-vanishing supply of mass s [m] in general
does not vanish. The relation in (66) thus extends a theorem on the center
of mass by Thomson and Tait (1867), who treated bodies without a supply
of mass. Note from (48), (57), (58) and (60) that c = c̃, when s [1] is
uniformly distributed over the body, i.e., j′ = 0 in (66).

The total moment of momentum of the body with respect to the origin
of the inertial frame is defined as

α∗ =

∫
V

p× v ρ dV (67)

Substituting (57), (58), (63) and (66), we get

α∗ =

∫
V

p×
dc

dt
ρ dV +

∫
V

p× v′ρ dV

= c×m
dc

dt
+ c×

∫
V

v′ρ dV +

∫
V

p′ × v′ρ dV = αc + α′ + c× s [m] (c− c̃)

(68)

The center-of-mass moment of momentum is

αc = c× jc = c×m
dc

dt
(69)
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and the relative moment of momentum reads

α′ =

∫
V

p′ × v′ρ dV (70)

Hence, the total moment of momentum of a body with a non-vanishing
supply of mass s [m] in general is not represented by the sum of the center-
of-mass moment of momentum and the relative moment of momentum only.
Instead, the last term in (68) needs to be taken into account, in which
c× s[m] c = 0 holds, of course, but which is kept for formal reasons.

The total kinetic energy of the of the body in the absence of an intrinsic
spin of the particles is defined as

Ekin =
1

2

∫
V

v · v ρ dV (71)

Substituting (57), (63) and (66), we obtain

Ekin =
1

2
m
dc

dt
·
dc

dt
+

dc

dt
·

∫
V

v′ρ dV +
1

2

∫
V

v′ · v′ρ dV

= Ec

kin + E′
kin +

dc

dt
· s [m] (c− c̃) (72)

with the center-of-mass kinetic energy

Ec

kin =
1

2
m
dc

dt
·
dc

dt
(73)

and the relative kinetic energy

E′
kin =

1

2

∫
V

v′ · v′ρ dV (74)

Hence, the total kinetic energy of a body with a non-vanishing supply of
mass s [m] in general is not given by the sum of the center-of-mass kinetic
energy and the relative kinetic energy, but the last term in (72) must be
taken into account. This represents an extension of a theorem on the center
of mass by König (1751), who treated bodies without a supply of mass.

2.4 Global and local balance of linear momentum

We now specialize the general equation of balance (2) for the linear
momentum defined in (62). This yields

dQ = dj = d

⎛
⎝∫

V

v ρ dV

⎞
⎠ , R = F + s [j] (75)
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where

F =

∫
V

b dV +

∫
S

σn dS (76)

The imposed body forces per unit current volume are denoted by b, and the
surface tractions are given by the stress vector σn. The latter is connected
to the stress tensor by Cauchy’s fundamental law, which describes the stress
vector at the current material surface S of V as the linear mapping

σn = n · Σ (77)

The unit outer normal vector at S is denoted by n, and the Cauchy stress
tensor is written as Σ. The resultant of the body forces and the surface
tractions is the vector F . In (75), the total non-classical supply of linear
momentum is defined as

s [j] =

∫
V

s [v] ρ dV (78)

with the local non-classical supply of linear momentum per unit mass de-
noted by s [v]. We thus deduce from (75) that the relation of global balance
of linear momentum reads

dj

dt
=

d

dt

⎛
⎝∫

V

v ρ dV

⎞
⎠ = F + s [j] =

∫
V

b dV +

∫
V

(div Σ) dV +

∫
V

s [v] ρ dV

(79)
Noting from (49) that

d

dt

⎛
⎝∫

V

v ρ dV

⎞
⎠ =

∫
V

d

dt
(v ρ dV )

=

∫
V

dv

dt
ρ dV +

∫
V

v
d

dt
(ρ dV ) =

∫
V

(
dv

dt
+ s [1] v

)
ρ dV (80)

the global statement (79) localizes to

ρ
dv

dt
+ s [1] ρ v = b+ div Σ + s [v] ρ (81)

This equation represents the local relation of balance of linear momentum
in the presence of a supply of mass and a non-classical supply of linear
momentum. Note that in the Chapter by D. Indeitsev, the term s [1] ρ v is
denoted as J v, and s [v] ρ is written as R.
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2.5 Balance of center-of-mass linear momentum

As a center-of-mass oriented formulation of balance of linear momentum,
using (64) and (66), in (2) we can also write

dQ = dj = d (jc + s [m] (c− c̃)) (82)

With (65), the relation of balance of linear momentum (79) can be replaced
by the following center-of-mass oriented form:

djc

dt
= m

d2c

dt2
+ s [m]

dc

dt
= F + s [jc] (83)

with the non-classical supply of center-of-mass linear momentum

s [jc] = −
d

dt
(s [m] (c− c̃)) + s [j] = −s [m]

(
dc

dt
−

dc̃

dt

)
−

d2m

dt2
(c− c̃) + s [j]

(84)
The relation in (83) provides a formulation of balance of center-of-mass
linear momentum. Subtracting (83) from (79) with (64), it is found that

dj′

dt
=

dj

dt
−

djc

dt
= s [m]

(
dc

dt
−

dc̃

dt

)
+

d2m

dt2
(c− c̃) (85)

2.6 Balance of relative linear momentum

Using (64), a relation of balance of relative moment of momentum,
see (66), is directly obtained from (85):

dj′

dt
= s [j′] (86)

with the non-classical supply term

s [j′] = s [j]− s [jc] = s [m]

(
dc

dt
−

dc̃

dt

)
+

d2m

dt2
(c− c̃) (87)

Note that the time rate of the relative linear momentum in general does
not vanish if a supply of mass is present. Only if m is conserved, or in the
exceptional case of c = c̃, dj′/dt = 0 holds.

2.7 Balance of moment of momentum

Performing the vector product of the local form of balance of linear
momentum (81) with the position vector p and integrating over the volume
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V gives

∫
V

p×
d

dt
(v ρ dV ) =

d

dt

∫
V

p× ρ v dV =

∫
V

p× (b+ div Σ + s [v] ρ) dV

(88)

Substituting (67) and (80), and using an extended divergence theorem, this
can be re-written as:

dα∗

dt
=

∫
V

p×

(
ρ
dv

dt
+ s [1] ρ v

)
dV

=

∫
V

p× (b− Σ×) dV+

∫
S

p× σndS + s [α∗] (89)

The so-called Gibbsian cross-vector of the Cauchy stress tensor is denoted
as Σ×. It is twice the axial vector of the skew-symmetric part of the Cauchy
stress tensor Σ, and thus vanishes if Σ is symmetric. With (57), the non-
classical supply of moment of momentum in (89) becomes

s [α∗] =

∫
V

p× s [v] ρ dV = c× s [j] +

∫
V

p′ × s [v] ρ dV (90)

Note that (89) and (90) represent pure consequences of a mathematical ma-
nipulation of the local relation of balance of linear momentum (81). Now,
in the absence of an intrinsic spin and of applied body and surface couples,
the fundamental relation of balance of angular momentum in principle does
coincide with balance of moment of momentum (89), compare the analogous
relation (32) for the angular momentum of a single mass point. The only
exceptions are that the term with Σ× is not present in the relation of bal-
ance of angular momentum, and that the non-classical supply of moment of
momentum s [α∗] is to be replaced by a possibly different non-classical sup-
ply of angular momentum. Hence, if the non-classical supplies of moment
of momentum and of angular momentum can be assumed to be equal, it
follows that the volume integral over Σ× in (89) vanishes. The localization
argument then leads to the conclusion that the stress tensor must be sym-
metric, such that Σ× = 0 in (89). This can be considered as an extension of
an axiom for non-polar bodies without a supply of mass, see Ziegler (1998)
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2.8 Balance of center-of-mass moment of momentum

Performing the vector product of the center-of-mass form of balance of
linear momentum (83) with c gives

c×
djc

dt
=

d

dt

(
c×m

dc

dt

)
= c× F + c× s [jc] (91)

Substituting (69), this can be re-written into the following relation of bal-
ance for the center-of-mass moment of momentum:

dαc

dt
= c×m

d2c

dt2
+ c× s [m]

dc

dt
= c× F + s [αc] (92)

with the non-classical supply, see (84),

s [αc] = c× s [jc] (93)

Subtracting (92) from (89), cf. (84) and (85), gives

dα∗

dt
−

dαc

dt
=

∫
V

p′ × b dV+

∫
S

p′ × σndS −

∫
V

p× Σ×dV

+ c×
d

dt
(s [m] (c− c̃)) +

∫
V

p′ × s [v] ρ dV (94)

2.9 Balance of relative moment of momentum

Utilizing (68), a relation of balance of relative moment of momentum,
see (70), is obtained from (94):

dα′

dt
=

∫
V

p′ × b dV+

∫
S

p′ × σndS −

∫
V

p× Σ×dV + s [α′] (95)

with the non-classical supply term

s [α′] = −
dc

dt
× s [m] (c− c̃) +

∫
V

p′ × s [v] ρ dV (96)

2.10 Balance of kinetic energy

Performing the scalar product of the local relation of balance of linear
momentum (81) with the absolute velocity vector v, and integrating over
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the material volume V yields

∫
V

v ·
dv

dt
ρ dV +

∫
V

s [1] v · v ρ dV

=
d

dt

⎛
⎝∫

V

1

2
v · v ρ dV

⎞
⎠+

∫
V

1

2
s [1] v · v ρ dV

=

∫
V

(b · v + v · div Σ + ρ s [v] · v)dV (97)

Using (71) and an extended divergence theorem, we obtain the relation of
balance of kinetic energy as

dEkin

dt
=

∫
V

v · b dV +

∫
S

v · σndS −

∫
V

tr (Σ · gradv) dV + s [Ekin] (98)

The trace of a second order tensor is denoted by “tr”. Using (63), the
relation in (98) can be re-written to

dEkin

dt
= F ·

dc

dt
+

∫
V

v′ · b dV +

∫
S

v′ · σndS −

∫
V

tr (Σ · gradv′) dV + s [Ekin]

(99)
The non-classical supply of kinetic energy in (98) and (99) turns out to be

s [Ekin] = −
1

2

∫
V

v · v s [1] ρ dV +

∫
V

v · s [v] ρ dV (100)

Again with (63), this becomes

s [Ekin] = −
1

2
s [m]

dc

dt
·
dc

dt
−

dc

dt
·

∫
V

v′s [1] ρ dV

−

∫
V

1

2
v′ · v′s [1] ρ dV +

dc

dt
· s [j] +

∫
V

v′ · s [v] ρ dV (101)
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2.11 Balance of center-of-mass kinetic energy

The scalar product of the center-of-mass form of balance of linear mo-
mentum (83) with the absolute velocity of the center of mass, dc/dt, gives

dc

dt
·m

d2c

dt2
+ s [m]

dc

dt
·
dc

dt
=

d

dt

(
1

2
m
dc

dt
·
dc

dt

)
+

1

2
s [m]

dc

dt
·
dc

dt

= F ·
dc

dt
+ s [jc] ·

dc

dt
(102)

Using (73), we obtain the following relation of balance for the center-of-mass
kinetic energy:

dEc

kin

dt
= F ·

dc

dt
+ s [Ec

kin] (103)

with the non-classical supply of the center-of-mass kinetic energy

s [Ec

kin] = −
1

2
s [m]

dc

dt
·
dc

dt
+ s [jc] ·

dc

dt
(104)

Substituting (84), this can be re-written to

s [Ec

kin] = −s [m]

(
3

2

dc

dt
−

dc̃

dt

)
·
dc

dt
−

d2m

dt2
(c− c̃) ·

dc

dt
+ s [j] ·

dc

dt
(105)

Subtracting (103) from (99), cf. (101) and (105), it is found that

dEkin

dt
−

dEc

kin

dt
=

∫
V

v′ · b dV +

∫
S

v′ · σndS

−

∫
V

tr (Σ · grad v′) dV + s [m]

(
dc

dt
−

dc̃

dt

)
·
dc

dt

+
d2m

dt2
(c− c̃) ·

dc

dt
−

dc

dt
·

∫
V

v′s [1] ρ dV

−

∫
V

1

2
v′ · v′s [1] ρ dV +

∫
V

v′ · s [v] ρ dV (106)

2.12 Balance of relative kinetic energy

Using (72), a relation of balance of relative kinetic energy, see (74), is
obtained from (106):

dE′
kin

dt
=

∫
V

v′ · b dV +

∫
S

v′ · σndS −

∫
V

tr (Σ · gradv′) dV + s [E′
kin] (107)
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with the non-classical supply of relative kinetic energy

s [E′
kin] = −s [m]

d2c

dt2
· (c− c̃)−

dc

dt
·

∫
V

v′s [1] ρ dV

−

∫
V

1

2
v′ · v′s [1] ρ dV +

∫
V

v′ · s [v] ρ dV (108)

2.13 Material volume with distributed material sources of mass
of the Seeliger-Meshchersky type

Motivated by the procedure for obtaining a rational expression for the
additional, non-classical supply of linear momentum presented in Subsec-
tion 1.3 above, see (17), we set

s [v] = s [1]u (109)

where the velocity u, at which mass is locally gained or lost by the particles,
in general will be different from the particle velocity v. The local relation
of balance (81) then can be written as

ρ
dv

dt
= b+ div Σ + s [1] ρ (u− v) (110)

The relation of balance of global linear momentum (79) follows to

∫
V

dv

dt
ρdV =

∫
V

b dV +

∫
S

σn dS +

∫
V

s [1] (u− v) ρ dV (111)

The continuum mechanics based model for the additional supply of lin-
ear momentum in (109) was suggested and embedded into the literature
by Irschik (2005) in the framework of growing materials. Due to the appar-
ent analogy to the relation of balance of linear momentum for the single mass
point, (27), we denote it as a model of the Seeliger-Meshchersky type. Note
that this model meets the requirements of the so-called Galileian invariance
of the relations of balance of linear momentum in (110) and (111). In other
words, seen from an observer, who moves with a constant velocity relative
to the global inertial frame, the relations given in (110) and (111) do re-
main invariant. The same remains true, if a translational rigid-body motion
with constant velocity is superimposed upon the actual motion. Moreover,
would we add to the model in (109) some vector, which does not depend
on the velocity but acts like a body force, this term could be treated as an
additional body force and would not interfere with the Galileian invariance.
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Introducing (109) into (90), the relation of balance of moment of mo-
mentum (89) becomes

∫
V

p× ρ
dv

dt
dV =

∫
V

p× (b − Σ×) dV+

∫
S

p× σndS

+

∫
V

p× s [1] (u− v)dV (112)

In order to write down further global statements, we now introduce another
characteristic velocity w as

s [m]w = s [j] =

∫
V

s [v] ρ dV =

∫
V

s [1]u ρ dV (113)

With the definition stated in (113), the various relations of balance, which
have been presented above, reduce to the following useful forms:

Balance of total linear momentum, see (79):

dj

dt
= F + s [m]w (114)

This coincides with the Seeliger-Meshchersky relation (25) for the single
point mass.

Balance of center-of-mass linear momentum, see (83) and (84):

djc

dt
= F + s [m]

(
w −

dc

dt
+

dc̃

dt

)
+

d2m

dt2
(c̃− c) (115)

With (65), this becomes

m
d2c

dt2
= F + s [m]

(
w − 2

dc

dt
+

dc̃

dt

)
−

d2m

dt2
(c̃− c) (116)

Note that this relation is Galilei-invariant. For c = c̃, (116) reduces to (27)
for the single mass point. For a mechanical system consisting of a set of
discrete mass points, (116) is due to Federhofer (1922).
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Balance of moment of momentum, see (89) and (90):

dα∗

dt
= c× F +

∫
V

p′ × (b − Σ×) dV+

∫
S

p′ × σndS

+ c× s [m]w +

∫
V

p′ × s [1]u ρ dV (117)

If the material volume V shrinks to a single mass point, such that the relative
position vectors p′ shrink to zero, this Galilei-invariant form reduces to (32).

Balance of center-of-mass moment of momentum, see (92), (93)
and (84):

dαc

dt
= c× F + c× s [m]

(
w −

dc

dt
+

dc̃

dt

)
+ c×

d2m

dt2
(c̃− c) (118)

or, substituting (69),

c×m
d2c

dt2
= c× F + c× s [m]

(
w − 2

dc

dt
+

dc̃

dt

)
+ c×

d2m

dt2
(c̃− c) (119)

When c = c̃, this reduces to (32).

Balance of kinetic energy, see (99)–(101):

dEkin

dt
= F ·

dc

dt
+

∫
V

v′ · b dV +

∫
S

v′ · σndS −

∫
V

tr (Σ · grad v′) dV

+ s [m]

(
w −

1

2

dc

dt

)
·
dc

dt
−

dc

dt
·

∫
V

v′s [1] ρ dV +

∫
V

v′ · s [1]

(
u−

1

2
v′
)
ρ dV

(120)

When V shrinks towards a single mass point, this reduces to the balance of
translational kinetic energy (38).

Balance of center-of-mass kinetic energy, see (103)–(105):

dEc

kin

dt
= F ·

dc

dt
+ s [m]

(
w −

3

2

dc

dt
+

dc̃

dt

)
·
dc

dt
−

d2m

dt2
(c− c̃) ·

dc

dt
(121)

When c = c̃, this reduces to (38).
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3 Global relations of balance written for a non-

material control volume

3.1 The Reynolds transport theorem

We now release the assumption of a material volume V that moves to-
gether with the material particles contained in it. Instead, we consider a
so-called open system with a non-material control volume V , the surface
S of which moves at a velocity u that is different from the velocity v of
the material particles instantaneously located on that non-material control
surface S. In this situation, a flow of mass through S will be present im-
plying that the total mass contained in V in general will not be conserved.
As is shown below, the above methodology for taking into account material
sources of mass inside a material volume can be adopted in the present case
by analogy. Moreover, the presence of material sources of mass as well as of
non-classical supply terms for other entities can be additionally taken into
account, when there is a flow of mass through the non-material control sur-
face S. In demonstrating this, we use the transport theorem by Reynolds
(1903), cf. Truesdell and Toupin (1960). As has been discussed in some
detail by Irschik and Holl (2004), the transport theorem can be put into a
form that involves both, the rate of the total of some entity contained in a
non-material control volume, as well as the rate of this entity contained in
the material volume that instantaneously coincides with the non-material
control volume.

In a generalized form, this version of the Reynolds transport theorem
can be stated as follows. Consider a scalar or vector quantity Ψ, which is
the total of a local entity ψ ρ carried by the particles in the volume V under
consideration:

Ψ =

∫
V

ψ ρ dV (122)

Then the transport theorem can be written as

du
dt

Ψ =
dΨ

dt
+ su [Ψ] (123)

with the non-classical supply

su [Ψ] =

∫
S

n · (u− v)ψ ρ dS (124)

The operator du/dt in (123) indicates that the time-rate refers to the motion
of the non-material control volume V , while d/dt means the time rate con-
sidering the motion of the material volume that instantaneously coincides
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with the latter. The surface integral in (124) vanishes, when V is a material
volume, since then u = v. Various useful versions of (123) and (124) are
listed below, where the rates with respect to the motion of the material
volume, dψ/dt in (123), can be substituted directly from the equations of
balance presented above in Subsections 2.2–2.12. Note that additional con-
siderations are needed in the presence of a singular surface, on which ψ ρ
takes on different values at the two sides of this surface. This case will be
discussed in Section 4 below.

3.2 Balance of mass

For balance of mass, there is ψ = 1, Ψ = m, see (46). With (47), we
obtain from (123) and (124) that

du
dt

m = s [m] + su [m] (125)

with the additional, non-classical supply of mass

su [m] =

∫
S

n · (u− v)ρ dS (126)

3.3 Balance of linear momentum

With the definition of total linear momentum j stated in (62), we set
ψ = v, Ψ = j in (123) and (124). Substituting (79), this yields

du
dt

j =
d

dt
j + su [j] = F + s [j] + su [j] (127)

with the additional non-classical supply of linear momentum

su [j] =

∫
S

n · (u− v)ρ v dS (128)

The apparent analogy between the global equations of balance of mass
and linear momentum for a material volume with material sources of mass
and for a non-material control volume with a flow of mass trough its surface
along with various applications, particularly in fluid mechanics and rock-
etry, has been discussed in the review by Irschik and Holl (2004). Note that
the cases of material sources of mass in the interior and of a flow of mass
through the surface have been treated separately in Irschik and Holl (2004).
In the present case of taking into account both, material sources in the in-
terior and a flow of mass through the surface, in the equations of balance
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presented above in Subsections 2.2–2.12, it is only necessary to replace the
time rate dΨ/dt by duΨ/dt, in order to indicate that there is a flow of mass
through the surface S, and to replace s [Ψ] by the sum s [Ψ] + su [Ψ]. This
is subsequently shown for various relations of balance. A further remark
seems to be in order: It is evident from (127) that a relation of balance
for a non-material control volume with a flow of mass through the surface
can be brought into the form valid for the material volume that instanta-
neously coincides with the former non-material volume. This follows from
the canceling of the non-classical supply su[Ψ] in (127). However, in many
practical applications it is necessary to compute the time rate duΨ/dt, fol-
lowing the motion of the volume with a flow of mass through the surface,
instead of dΨ/dt.

3.4 Balance of moment of momentum

We set ψ = p× v and Ψ = α∗ in (123) and (124). Using (89), this gives

du
dt

α∗ =
d

dt
α∗ + su[α

∗]

=

∫
V

p× (b − Σ×) dV +

∫
S

p× σndS + s [α∗] + su [α
∗] (129)

with the additional non-classical supply of moment of momentum

su [α
∗] =

∫
S

n · (u− v) p× ρ v dS (130)

3.5 Balance of kinetic energy

Setting ψ = v·v/2 and Ψ = Ekin in (123) and (124) and substituting (98)
gives:

du
dt

Ekin =
d

dt
Ekin + su [Ekin]

=

∫
V

v · b dV +

∫
S

v · σndS −

∫
V

tr (Σ · gradv) dV + s [Ekin] + su [Ekin] ,

(131)

with the non-classical additional supply of kinetic energy

su [Ekin] =

∫
S

n · (u− v)
1

2
ρ v · v dS (132)
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Similar extensions can be written down for the center-of-mass oriented rela-
tions of balance stated above. Particularly, balance of center-of-mass linear
momentum has been treated in some detail in Irschik and Holl (2004), but
separately from the case of sources of mass in the interior. In the following,
we give extended and additional relations.

3.6 Some useful relations involving the center of mass

Subsequently, we repeatedly utilize balance of mass in the form (123)–
(124). The definition of the position vector c of the instantaneous center of
mass from the origin of the inertial frame stated above in (56), the split of
the position vector in (57) and its consequence (58) remain unchanged.

Time-wise differentiation of (56) in the presence of a flow of mass through
the surface gives

du
dt

(mc) =
du
dt

∫
V

c ρ dV = m
dc

dt
+ (s [m] + su [m]) c

=
du
dt

⎛
⎝∫

V

p ρ dV

⎞
⎠ =

d

dt

⎛
⎝∫

V

p ρ dV

⎞
⎠+

∫
S

n · (u− v) ρ p dS

=

∫
V

v ρ dV +

∫
V

p s [1] ρ dV +

∫
S

n · (u− v) ρ p dS (133)

The transport theorem (125) and (126) has been used for expressing the
time-rate of the volume integral in (133). Analogous to (60), a further
characteristic place c̃ is introduced by defining

(s [m] + su [m]) c̃ =

∫
V

p s [1] ρ dV +

∫
S

n · (u− v) ρ p dS

= (s [m] + su [m]) c+

∫
V

p′s [1] ρ dV +

∫
S

n · (u− v) ρ p′dS (134)

see (49). Substituting into (133) yields

∫
V

v ρ dV = m
dc

dt
+ (s [m] + su [m]) (c− c̃)

= m
dc

dt
−

∫
V

p′s [1] ρ dV −

∫
S

n · (u− v) ρ p′dS (135)
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Recalling that the split of the absolute velocity in (63), the resulting rep-
resentation of the linear momentum in (62), as well as the definition of the
center-of-mass linear momentum in (65) and the split of the linear momen-
tum in (64) remain unchanged, we now have, in extension of (62):

j =

∫
V

v ρ dV = m
dc

dt
+

∫
V

v′ρ dV

= m
dc

dt
+ (s [m] + su [m]) (c− c̃) = jc + j′ (136)

The relative linear momentum becomes

j′ =

∫
V

v′ρ dV = (s [m] + su [m]) (c− c̃)

= −

∫
V

p′s [1] ρ dV −

∫
S

n · (u− v) ρ p′dS (137)

Analogously, we get for the total moment of momentum of the body with
respect to the origin of the inertial frame, see (67):

α∗ = αc + α′ + c× (s [m] + su [m]) (c− c̃) (138)

The definitions of the center-of-mass and the relative moment of mo-
mentum in (69) and (70) remain unchanged.

The total kinetic energy of the body in the absence of an intrinsic spin
of the particles, see (71), becomes

Ekin = Ec

kin + E′
kin +

dc

dt
· (s [m] + su [m]) (c− c̃) (139)

with the center-of-mass and the relative kinetic energy as given in (73)
and (74).

3.7 Balance of center-of-mass linear momentum

Using the definition of the center-of-mass linear momentum in (65) and
substituting (136), the relation of balance of linear momentum (127) can be
reformulated to the following form:

du
dt

j =
du
dt

(jc + (s [m] + su [m]) (c− c̃)) = F + s [j] + su [j] (140)



A Rational Treatment of the Relations of Balance 33

Performing the operation du/dt, we obtain the following center-of-mass ori-
ented formulation of balance of linear momentum:

du
dt

jc = m
d2c

dt2
+ (s [m] + su [m])

dc

dt
= F + s [jc] + su [j

c] (141)

with the non-classical supply of center-of-mass linear momentum

su [j
c] = −su [m]

(
dc

dt
−

dc̃

dt

)
−

(
d

dt
su [m]

)
(c− c̃) + su [j] (142)

For the case without a flow of mass through the surface, see (84). Having
derived (141)–(142) in some detail, we subsequently list additional results
by direct analogy to the equations of balance, which have been presented
above in Subsections 2.2–2.12 for the case without a flow of mass through
the surface.

3.8 Balance of relative moment of momentum

du
dt

j′ = s [j′] + su [j
′] (143)

su [j
′] = su [j]− su [j

c] = su [m]

(
dc

dt
−

dc̃

dt

)
+

(
d

dt
su [m]

)
(c− c̃) (144)

with su [j
c] of (142).

3.9 Balance of center-of-mass moment of momentum

du
dt

αc = c ×m
d2c

dt2
+ c × (s [m] + su [m])

dc

dt
= c × F + s [αc] + su [α

c]

(145)

su [α
c] = c× su [j

c] (146)

with su [j
c] of (142).

3.10 Balance of relative moment of momentum

du
dt

α′ =

∫
V

p′ × b dV+

∫
S

p′ × σndS −

∫
V

p× Σ×dV + s [α′] + su [α
′] (147)

su [α
′] = −

dc

dt
× (su [m] (c− c̃)) +

∫
S

n · (u− v) p′ × ρ v dS (148)
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3.11 Balance of center-of-mass kinetic energy

du
dt

Ec

kin = F ·
dc

dt
+ s [Ec

kin] + su [E
c

kin] (149)

su [E
c

kin] = −su [m]

(
3

2

dc

dt
−

dc̃

dt

)
·
dc

dt
−

(
d

dt
su [m]

)
(c− c̃) ·

dc

dt
+ su [j] ·

dc

dt
(150)

3.12 Balance of relative kinetic energy

du
dt

E′
kin =

∫
V

v′ · b dV +

∫
S

v′ · σndS

−

∫
V

tr (Σ · grad v′) dV + s [E′
kin] + su [E

′
kin] (151)

su [E
′
kin] = −su [m]

d2c

dt2
· (c− c̃)

−

∫
S

n · (u− v) ρ v′dS −

∫
S

n · (u− v) ρ

(
1

2
v′ · v′

)
dS (152)

3.13 Application to rigid bodies

The above formulations do hold irrespective of the specific deformation
behavior of the bodies under consideration. As a theoretically as well as
practically important special case, which also allows an exemplary compar-
ison of our formulations with results from the literature, we consider a rigid
body in what follows. An interesting case is represented, e.g., by the prob-
lem of a rigid body that experiences a surface growth, see Ong and O’Reilly
(2004). In this case, the surface of the body moves at a velocity u that
in general is different from the velocity v of the particles instantaneously
located on it. Thus, our above methodology is applicable. For a rigid body,
the velocity of a material particle is given by the Euler velocity formula,
see Ziegler (1998):

v = vc + ω × p′ (153)

Here, vc denotes the velocity vector of the material particle, which “instan-
taneously coincides with the position vector c of the center of mass”. Of
course, it is a delicate matter to talk about such a particle, since the center
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of mass may not even be situated inside the body, see the remarks given
above. However, for a rigid body it is quite straightforward to consider a
fictitious rigid extension of the body towards the instantaneous location of
the center of mass. In general, the velocity vc is different from the velocity
of the center of mass, dc/dt. The angular velocity of the rigid body in (153)
is denoted as ω.

We first present some useful formulas involving the velocity of the mate-
rial particle that instantaneously coincides with the center of mass c. Sub-
stituting (153) into (62), we obtain for the linear momentum of the rigid
body

j =

∫
V

v ρ dV = mvc + ω ×

∫
V

p′ρ dV = mvc (154)

which coincides with (4.2) of Ong and O’Reilly (2004).

Moreover, substituting (153) into (67), the moment of momentum for
the rigid body becomes

α∗ =

∫
V

p× v ρ dV = c ×m vc +

∫
V

p′ × (ω × p′) ρ dV = c × j + J ′ · ω

(155)

with

J ′ =

∫
V

((p′ · p′) I − p′ ⊗ p′) ρ dV (156)

The tensor of inertia relative to the center of mass is denoted as J ′, see Ziegler
(1998), compare (10) for the single mass point. Note that (155) coincides
with (4.4) and (4.6) of Ong and O’Reilly (2004).

For kinetic energy, substituting (153) into (71) yields

Ekin =
1

2

∫
V

v · v ρ dV =
1

2
mvc · vc + vc · ω ×

∫
V

p′ρ dV

+
1

2

∫
V

(ω × p′) · (ω × p′) ρ dV =
1

2
mvc · vc +

1

2
(J ′ · ω) · ω (157)

see (4.8) of Ong and O’Reilly (2004).

It is to be noted that the relations (154)–(157) are well-known for rigid
bodies without sources of mass in the interior and without a flow of mass
trough the surface, cf. Ziegler (1998). In order to establish a connection
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to the more general relations stated above, we equate (153) and (63), from
which it is found that

v′ = vc + ω × p′ −
dc

dt
(158)

Substituting into the relation for the relative linear momentum (137) yields

j′ =

∫
V

v′ρ dV = m

(
vc −

dc

dt

)
= (s [m] + su [m]) (c− c̃) (159)

from which it follows that

mvc = m
dc

dt
+ (s [m] + su [m]) (c− c̃) (160)

This is also obtained from a direct comparison of (136) and (154).
Having stated the useful expressions (154)–(157) for linear momentum,

moment of momentum and kinetic energy, which are based on the entities
vc, J

′ and ω of the rigid body, we proceed with formulating the relations of
balance taking into account the assumption of rigidity.

Balance of linear momentum With (154), the time rate of linear mo-
mentum in the presence of sources of mass in the interior and a flow of mass
through the surface can be formulated as

du
dt

j =
du
dt

(mvc) =
du
dt

∫
V

vc ρ dV

=
d

dt

∫
V

vc ρ dV +

∫
S

n · (u− v) ρ vc dV = m
dvc
dt

+ (s [m] + su [m]) vc

(161)

where the transport theorem (123), (124) has been utilized. Equating (161)
and (127), we obtain

m
dvc
dt

+ (s [m] + su [m]) vc = F + s [j] + su [j] (162)

Substituting the Euler velocity formula (153), the non-classical supplies of
momentum su [j], see (128), for the rigid body becomes:

su [j] = vc

∫
S

n · (u− v) ρ dS + ω ×

∫
S

n · (u− v) ρ p′dS

= vc su [m] + ω ×

∫
S

n · (u− v) ρ p′dS (163)
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Relation (162) thus reduces to

m
dvc
dt

+ s [m] vc = F + s [j] + ω ×

∫
S

n · (u− v) ρ p′dS (164)

This coincides with (7.3) and (7.4) of Ong and O’Reilly (2004) for the case
of s [m] = 0 and s [j] = 0. Now, since vc is the velocity of the material
particle that instantaneously coincides with the center of mass, and since
the latter in general is moving with respect to the rigid body, the time
derivative dvc/dt in general can not be expected to coincide with the ac-
celeration ac of the material point that instantaneously is located at the
center of mass. A further clarification of the mechanical meaning of the
derivative dvc/dt therefore is deemed desirable. For that sake, we use the
Euler formula for the acceleration a of a material particle of a rigid body,
see Ziegler (1998):

a =
dv

dt
= ac + β × p′ + ω × (ω × p′) (165)

The angular acceleration of the body is denoted as β, and ac is the absolute
acceleration of the material particle that instantaneously is situated at the
place of the center of mass. Utilizing (80), the relation of balance of linear
momentum (127) becomes:

du
dt

j =
d

dt
j + su [j] =

∫
V

dv

dt
ρ dV +

∫
V

v s [1] ρ dV + su [j] = F + s [j] + su [j]

(166)
Cancelling out the non-classical supply su [j], substituting (166) and (153)
and noting (58) yields

mac + s [m] vc = F + s [j]− ω ×

∫
V

p′s [1] ρ dV (167)

Comparing (164) and (167), the following illustrative explanation of the
difference between ac and dvc/dt is obtained:

mac −m
dvc
dt

= −ω ×

⎛
⎝∫

V

p′s [1] ρ dV +

∫
S

n · (u− v) ρ p′dS

⎞
⎠

= ω × j′ = ω × (s [m] + su [m]) (c− c̃) (168)

see (137) for the relative linear momentum j′. Only when ω × j′ vanishes,
this difference disappears.
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A further remark seems to be in order. As already discussed above, a
relation of balance can be brought into a form, in which the non-classical
supply due to the flow of mass through the surface formally cancels out.
This is demonstrated for balance of relative moment of momentum next.

Balance of relative moment of momentum For comparison’s sake,
we study balance of moment of momentum relative to the canter of mass.
From (155), it is immediately seen that the relative moment of momen-
tum (70) for the rigid body is

α′ =

∫
V

p′ × (ω × p′) ρ dV = J ′ · ω (169)

This follows by substituting (156) into (70), and noting (58). Using Ψ =
p′ × (ω × p′) in (123)–(124), the transport theorem yields the relation of
balance of relative moment of momentum as

du
dt

α′ =

∫
V

p′ × b dV+

∫
S

p′ × σndS −

∫
V

p× Σ×dV

+ s [α′] +

∫
S

n · (u− v)ρ (p′ × (ω × p′)) dS (170)

where the non-classical supply due to a flow of mass through the surface in
case of a rigid body is given by

su[α
′] =

∫
S

n · (u − v)ρ (p′ × (ω × p′)) dS (171)

For this relation, compare (6.10) of Ong and O’Reilly (2004), and the liter-
ature cited there. For the rigid body, we moreover obtain

d

dt
α′ =

d

dt
(J ′ · ω) =

(
d

dt
J ′

)
· ω + J ′ · ω̇, (172)

see (156) and (169). Taking into account (49), the time derivative of the
tensor of relative inertia J ′ can be written as

d

dt
J ′ =

d

d

∫
V

((p′ · p′) I − p′ ⊗ p′) ρ dV

= ω × J ′ + ω ·

∫
V

((p′ · p′) I − p′ ⊗ p′) s[1]ρ dV (173)
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We thus can re-write (170) in the following form, which no longer con-
tains su[α

′]:

(
d

dt
J ′

)
·ω+′ ·ω̇ =

∫
V

p′× b dV +

∫
S

p′×σndS−

∫
V

p×Σ×dV + s[α′] (174)

In case of Σ× = 0, s[1] = 0 and s [α′] = 0, this coincides with (7.7)
of Ong and O’Reilly (2004). Analogous derivations can be performed for
the other relations of balance, e.g., for balance of kinetic energy.

Balance of kinetic energy For the rigid body, using (153) and (58)
and some vector algebra, the relation of balance of kinetic energy in (131)
reduces to

du
dt

Ekin =
d

dt
Ekin + su[Ekin]

= vc · F + ω ·

⎛
⎝∫

V

p′ × b dV +

∫
S

p′ × σndS

⎞
⎠+ s[Ekin] + su[Ekin] (175)

Setting s[Ekin] = 0, and substituting su[Ekin] of (130), this coincides with
(8.3) and (8.5) of Ong and O’Reilly (2004).

4 Presence of a singular surface in a material volume

So far, we have tacitly assumed that the entities under consideration are
distributed continuously throughout the volume V . Now assume that a
(smooth) singular surface S̄ is present within V , such that S̄ subdivides V
into two non-material sub-volumes. At a singular surface S̄, certain local
entities ρψ, e.g., mass and linear momentum, and their supplies may take
on different values at the two sides of the singular surface S̄. Moreover, the
points of S̄ may move at a velocity w, which in general is different from
the velocities of the particles that instantaneously are located at the two
sides of S̄. In order to connect the local forms of the balance relations at
the two sides of the singular surface, jump relations are needed. A classical
strategy for deriving jump relations was presented by Truesdell and Toupin
(1960): The Reynolds transport theorem is applied to the two non-material
sub-volumes, taking into account the motion of S̄ relative to the material
particles and adding the results. The volume V then is shrunken down
to the singular surface S̄, assuming that the integrands of the respective
volume integrals remain bounded, and letting the surface S̄ be finite in the
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limit. The result of this procedure is the jump relation of Kotchine (1926).
The Kotchine jump relation takes into account the jump of the entity ρψ
across S̄ in a straightforward manner, however, this procedure is at the
cost of not considering the particles that instantaneously are passing the
singular surface S̄, as well as some non-classical concentrated supplies that
may travel with S̄. This conceptual drawback can be removed by applying
the following more general strategy, which was described in some detail
by Irschik (2003). This strategy is discussed and adopted for variable mass
systems in the following.

4.1 On a generalized form of the general relation of jump at a
singular surface

The methodology proposed by Irschik (2003) consists of several steps.
First, instead of starting with the assumption of a singular surface, one stud-
ies a non-material shell-type layer of transition, within which the entity ρψ
and its sources are subjected to considerable changes in their spatial distri-
bution. One then replaces the shell-type layer of transition by an equivalent
singular surface S̄, where several terms in the transport theorem for the non-
material layer are represented by surface supply terms that equivalently de-
scribe the behavior of the respective quantity contained in the non-material
shell-type layer. Motivated by fundamental studies of Slattery (1990) on
interfacial transport theorems, a rational mechanical and thermodynamic
formulation for this general strategy was presented in Irschik (2003), see
also Irschik (2004) and Irschik (2007). This formulation contains the clas-
sical Kotchine jump relation as a special case. The additional equivalent
surface supply terms have been denoted as surface growth terms by Irschik
(2003). In the following, we shortly review the latter rational formulation
with special emphasis on the presence of both, a surface supply of mass and
linear momentum at the equivalent singular surface S̄, and we demonstrate
that and show how a surface supply of kinetic energy must be introduced
for the sake of consistency, even when the surface supplies of mass and lin-
ear momentum do vanish. In the subsequent Section 5, we will exemplarily
apply these extended jump relations to the case of a chain heaped up on the
edge of a table, the hanging part of the chain being set into motion. In this
study, the transition from the heaped part to the moving part of the chain
is described by the extended jump relations, while the equation of motion
for the moving part is obtained by the relations of balance written for a
non-material control volume, which have been stated in Section 3 above.
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4.2 Jump of mass

The extended relation of jump of mass at an equivalent singular surface S̄
as derived by Irschik (2003) can be written as

nS̄ · (iS̄ [ρ] + [[(v − w) ρ ]]) = 0 (176)

The outer unit normal vector at the equivalent singular surface is nS̄ , and
the vector iS̄ [ρ] represents the non-classical equivalent surface supply of
mass at S̄. Note that the dimension “dim” of any non-classical surface
supply iS̄ [k], say, is given by:

dim (iS̄ [k]) =
dim (k)

dim (time) dim (area)
(177)

The jump operator at S̄ is defined as the difference of the entities k at the
two sides of:

[[k ]] = k+ − k− (178)

In the following, the unit outer normal vectors at the two sides of S̄ are
taken such that n+ = nS̄ and n− = −nS̄ .

4.3 Jump of linear momentum

The extended relation of jump of linear momentum reads

nS̄ · (iS̄ [ρ v] + [[(v − w)⊗ ρ v − Σ]]) = 0 (179)

where the second-order tensor iS̄ [v ρ] represents the non-classical equivalent
surface supply of linear momentum at S̄.

4.4 Jump of kinetic energy

The extended relation of jump of kinetic energy reads

nS̄ ·
(
iS̄

[
ρ
v · v

2

]
+
[[
(v − w) ρ

v · v

2
− v · Σ

]])
= 0 (180)

The non-classical surface supply of kinetic energy at S̄ is a vector denoted
as iS̄ [ρ v · v/2]. It has been shown by Irschik (2003) that the non-classical
surface supplies of mass, linear momentum and kinetic energy are not inde-
pendent. Rather, iS̄ [ρ v · v/2] must obey the following relation:

nS̄ · iS̄

[
ρ
v · v

2

]
=

(
〈v · v〉

2
− 〈v〉 · 〈v〉

)
nS̄ · iS̄ [ρ ]

+ 〈v〉 · (nS̄ · iS̄ [ρ v]) + [[v]] · (nS̄ · 〈Σ〉) (181)
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The mean value operator of some entity k across S̄ is given by

〈k〉 =
1

2

(
k+ + k−

)
(182)

It is seen from (181) that, even if the non-classical equivalent surface sup-
plies of mass and linear momentum are absent, it is generally necessary to
consider a non-classical equivalent surface supply of kinetic energy. Sub-
sequently, we give an example, in which a non-classical equivalent surface
supply of mass must be introduced for modeling reasons.

5 Example for the formulations in Sections 3 and 4:

Caley’s chain set into motion

The example of a chain heaped up on a table with the hanging part being set
into motion has been chosen by Cayley (1856) in a fundamental contribution
on the dynamics of what he called continuous impact problems, see Fig. 1
for a sketch.

s = s(t)

Figure 1. Chain hanging over the edge of a table.

Cayley wrote: “A problem of the sort arises when a portion of a heavy
chain hangs over the edge of the table, the remainder of the chain being
coiled or heaped up close to the edge of the table, the part hanging over
constitutes the moving system, and in each element of time the system takes
into connexion with itself, and sets into motion with a finite velocity an
infinitesimal length of the chain.” Cayley used this problem in order to
demonstrate the application of a novel variational formulation, as well as of
a corresponding extended form of Lagrange’s equations. For a contemporary
discussion on Cayley (1856), see Irschik (2012).

Subsequently, we use Cayley’s example of a chain set into motion in
order to apply the formulations stated in Sections 3 and 4. For extended
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forms of Lagrange’s equations for mechanical systems with a variable mass,
see Irschik and Holl (2002), Pesce (2003) and the Chapter by Pesce in the
present book.

5.1 The hanging part of the chain as a system with a time-
varying mass

The chain is assumed to be inextensible and to be coiled up loosely at
the table, the hanging part having the instantaneous length s = s(t). In
a first step, the hanging part of the chain is described as an open system.
For that sake, it is enclosed by a non-material control surface S, see the
dashed surface in Fig. 2. For this surface, the formulas of Section 3 above
do apply. The upper horizontal part of S is located immediately under
the edge of the table and is fixed in space, such that there is u = 0; the
particles of the inextensible chain enter there the control volume at the
velocity v = (ds/dt)ex = ṡ ex, see Fig. 2. The outer unit normal vector n at
this location is opposite to the global x-direction, n = −ex; a superimposed
dot denotes the time derivative. Hence, there is n · (u − v) = ṡ in (124).
Note that the chain in general is stressed at this upper horizontal location
of the control surface S. Denoting the mass of the chain per unit length
as μ, and the tensile force in the chain at the upper horizontal part of
the control surface as N , Cauchy’s fundamental theorem on stresses yields
n ·Σ = −N(ρ/μ)ex. The lower horizontal part of the control surface moves
together with the tip of the chain, u = v = ṡ ex, such that there is u−v = 0
in (124); also, the chain is free of stress there, n · Σ = 0, see Fig. 2. The
vertical portions of S do not contribute to the relations of balance, since no
material is present there.

The instantaneous mass of the hanging part of the chain is m = μ s,
such that

du
dt

m = μ ṡ (183)

Recall that the operator du/dt means that we consider the motion of the
non-material control volume; in other words, s = s(t) in m = μ s is not kept
fixed, which leads to (183). The additional, non-classical supply of mass
due to the flow of mass through the control surface becomes, see (126),

su[m] =

∫
S

n · (u− v)ρ dS = μ ṡ (184)

Further recall that only the upper part of the control surface in Fig. 2
contributes to the surface integral. Substituting (183) and (184), it is seen



44 H. Irschik and A. Humer

s = s(t)

ex

S

u = v = 0, n = ex, n · Σ = 0

u = 0, v = ṡ ex, n = −ex, n · Σ = −N
ρ

μ
ex

Figure 2. Non-material control volume S enclosing the hanging part of the
inextensible chain.

that balance of mass (125) indeed is satisfied. No sources of mass in the
interior are present, s[m] = 0.

We now proceed to balance of linear momentum (127) which we apply
for the open system depicted in Fig. 2. The instantaneous linear momentum
of the hanging part of the chain in x-direction is

j = μ s ṡ ex (185)

such that

ex ·
du
dt

j = μ s s̈+ μ ṡ2 (186)

For the additional, non-classical supply of linear momentum due to the
flow of mass through the control surface, see (128), one obtains analogous
to (184) that

ex · su[j] = ex ·

∫
S

n · (u − v)ρ v dS = μ ṡ2 (187)

The resultant force acting upon the hanging part of the chain is

ex · F = −N + μ g s (188)

where the last term represents the instantaneous weight of the hanging part
and g denotes the gravitational acceleration. With s[j] = 0, the relation
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of balance of linear momentum (127) thus yields the following equation of
motion:

μ s (s̈− g) +N = 0 (189)

Under the assumptions of an inextensible homogeneous chain in a vertical
motion due to its own weight, this relation is to be considered as exact;
however the normal force N in the chain at the upper horizontal part of the
control surface in Fig. 2 is yet unspecified.

5.2 Modeling of the region of transition between the moving and
resting parts of the chain by an equivalent singular surface

In order to set up an additional relation for N , the region of transition
between the part of the chain in motion and the heaped up part at rest now
is modeled by means of an equivalent singular surface S̄, see the dashed line
in Fig. 3, where the region of transition with the two outer surfaces S+ and
S− is also sketched.

S−

S+

N, ṡ

S̄ : w = 0

Figure 3. Equivalent singular surface modeling the region of transition
between the moving and the resting parts of the chain.

Since the equivalent singular surface S̄ is at rest, there is w = 0 in
the formulas of Section 4 above. Outer unit normal vectors, velocities and
stresses of the particles at the two sides of S̄ are as follows, see also Fig. 4:

S̄ : w = 0, nS̄ = n+ = ex,

S− : v− = 0, n− = −ex, n− · Σ− = 0,

S+ : v+ = ṡ ex, n+ · Σ+ = N
ρ

μ
ex

(190)

The heaped part of the chain, which is at rest, can be taken as unstressed
for the present purpose, N = 0 at S−, while the force in the chain at the side
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S−

S+

S̄ : w = 0
singular
surface

n− = −ex, v = 0

n+ = nS̄ = ex, v = ṡ ex

Figure 4. Details of equivalent singular surface.

S+ is N . For the situation sketched in Fig. 4, (190) yields for the relation
of jump of mass (176) that

nS̄ · iS̄ [ρ] = −ρ ṡ (191)

Note that nS̄ ·iS̄ [ρ] only vanishes, if the hanging part is at rest. This example
clearly demonstrates the necessity of extending the classical Kotchine-type
relations of jump by non-classical equivalent surface supply terms, as pro-
posed by Irschik (2003).

The next step is the relation of jump of linear momentum. (179). Sub-
stituting (190), one obtains for the non-classical equivalent surface supply
of linear momentum

ex · iS̄[ρ v] =

(
−ρ ṡ2 +N

ρ

μ

)
ex (192)

Analogously, the relation of jump of kinetic energy (180) gives for the non-
classical equivalent surface supply of kinetic energy that

ex · iS̄

[
ρ
v · v

2

]
= −

ρ ṡ3

2
+

N ρ

μ
ṡ (193)

It is easily checked that (181), which states the relation between the surface
supplies of mass, linear momentum and kinetic energy derived by Irschik
(2003), indeed is satisfied, since, at the equivalent singular surface S̄, there
is

S̄: [[v]] = ṡ ex, 〈v〉 =
ṡ

2
ex, 〈v · v〉 =

ṡ2

2
, [[v]] · (nS̄ · 〈Σ〉) =

N ρ

μ

ṡ

2
(194)

We now may distinguish two special cases: The first is obtained by
assuming that there is no non-classical surface supply of linear momentum,

ex · iS̄ [ρ v] = 0 (195)
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in (192), from which the chain force N becomes

N = Nnc = μ ṡ2 (196)

Substituting into the equation of motion (189) gives

μ snc (s̈nc − g) + μ ṡ2nc = 0 (197)

The solution with homogeneous intial conditions is

snc =
g t2

6
(198)

The solution stated in (197) and (198) has been obtained by Cayley (1856)
in the framework of another methodology. In the literature, this type of so-
lution has been called a non-conservative solution, see, e.g., Wong and Yasui
(2006). From this naming, the index “nc” has been introduced in (196)–
(198). Indeed, substituting (196), from (193) we obtain the following equiv-
alent surface supply of kinetic energy:

ex · iS̄nc

[
ρ
v · v

2

]
= ρ ṡ3 (199)

On the other hand, if we assume that the equivalent surface supply of kinetic
energy vanishes,

ex · iS̄

[
ρ
v · v

2

]
= 0 (200)

then (193) yields

N = Nc = μ
ṡ2

2
(201)

Substituting into the equation of motion (197), we now obtain

μ sc (s̈c − g) +
1

2
μ ṡ2c = 0 (202)

The solution for homogeneous initial conditions this time becomes

sc =
g t2

4
(203)

This solution, which predicts a fall of the chain faster than Cayley’s non-
conservative solution (198), has been called a conservative solution in the
literature, see Wong and Yasui (2006). Note, however, that this conservative
solution is associated with a non-classical supply of linear momentum, which
follows by substituting (201) into (192):

ex · iS̄c

[ρ v] =
ρ ṡ2

2
ex (204)
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The discrepancy between conservative and non-conservative solutions in
Cayley’s problem, as well as in related problems of falling chains, ropes,
cables and strings, has given raise to a long-term controversy in the liter-
ature. Here, we mention the more recent theoretical and/or experimental
works by Tomaszewski et al. (2006), Wong and Yasui (2006), Wong et al.
(2007), Grewal et al. (2011) and Irschik (2012).

It is hoped that the rational methodology given in the present section,
which is based on relations of balance of mass, linear momentum and ki-
netic energy for open systems, and on generalized corresponding relations
of jump, will contribute to a further clarification of the different results
in the literature. It should have become clear from our reasoning that a
more detailed modeling of the region of transition between the heaped and
the moving parts of the chain in general will lead to both, a non-vanishing
equivalent surface supply of linear momentum, as well as a non-vanishing
equivalent surface supply of kinetic energy, and thus will give raise to solu-
tions different from the above discussed two cases, cf. O’Reilly and Varadi
(1999) for a study on shocks.
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