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PREFACE

This Book is a result of the Advanced School entitled “Dynamics of
Mechanical Systems with Variable Mass”, which took place in the
International Centre for Mechanical Sciences (CISM), Udine, Italy,
in September 2012.

The fundamental equations of classical mechanics were originally
formulated for the situation that mass is conserved in the mechanical
system under consideration. Mass is generally not conserved when a
supply of mass is present, or when open systems with a flow of mass
through their surface are to be considered. Mass of the mechanical
system then is said to be variable. In such a situation, the general
methodological approaches of mechanics have to be properly modified.
In fluid mechanics, open systems are encountered when studying a
non-material control volume. In solid mechanics, systems with a vari-
able mass appear as the result of a problem-oriented modelling, e.g.,
when mass is expelled or captured by a structure or machine. This
again leads to the treatment as an open system, or to the assumption
that mass is explicitly dependent on the position. In solid mechan-
ics as well as in fluid mechanics, it is often appropriate to model
the exchange of mass between the system under consideration and the
environmental world by means of a supply of mass in the interior.
This is of particular interest in the continuum theory of mixtures,
for which mass and other entities are exchanged between the various
components.

It is the goal of the book to present up-to-date and unifying for-
mulations for treating the dynamics of different types of mechanical
systems with variable mass. The book is opened with an overview of
the continuum mechanics relations of balance and jump for open sys-
tems. Afterwards, at the level of analytical mechanics, extended La-
grange and Hamiltonian formulations approaches are presented. The
dynamics of multi-body mechanical systems with a continual and dis-
continual variation of mass is treated in detail. Another chapter is
devoted to axially moving structures, like belts and chains, and on
pipes with an axial flow of fluid, where the stability of motion is also
considered. Constitutive relations appearing in the dynamics of me-
chanical systems with variable mass are studied with particular refer-
ence to the modelling of multi-component mixtures, in which damage



of steel structures in the form of hydrogen diffusion is also addressed.
Last not least, fluid-structural coupling is studied, where novel finite
element formulations for open systems are presented. As a whole, the
book should be of interest not only in the fields of civil and mechanical
engineering, but also in mechatronics.

In more detail, the material presented in the book is organized as
follows. In the introductory Chapter by H. Irschik and A. Humer, a
rational treatment of the relations of balance and jump for mechani-
cal systems with a time-variable mass and other non-classical supplies
is presented. This presentation starts from the proper extensions of
the fundamental relation of balance of mass, linear and angular mo-
mentum, and total energy. Relations for balance of moment of mo-
mentum, intrinsic spin, translational and rotational kinetic energy,
and internal energy are derived afterwards, as mathematical conse-
quences of the former fundamental relations. First, a single mass
point with an intrinsic spin is treated, which then is extended to a
deformable body with a finite extension, where special emphasis is
laid upon the consequences of balance of mass and linear momentum.
Center-of-mass oriented formulations are presented in some detail,
a formulation for non-classical supplies in extension of the so-called
Meshchersky reaction force is given, and a specialization to rigid bod-
ies with a surface growth is studied. Continual variations of mass due
to both, sources of mass in the interior and a flow of mass through the
surface of a non-material control volume are studied, and analogies
between these two cases are worked out. Jump relations for the case
that a singular surface is travelling through the variable mass system
are presented in an extended form, which takes into account concen-
trated surface supplies. The Cayley example of a chain hanging over
the edge of the table and set into motion is used as an illustrative
example.

In the following Chapter by C.P. Pesce and L. Casetta, the impor-
tant case of variable mass systems, in which mass explicitly depends
on position, and thus is variable in the course of the motion, is studied
from the point of view of analytical mechanics. It is pointed out that
for this case the Lagrange equation has to be carefully re-interpreted,
since an extra non-conservative generalized force term, linearly pro-
portional to the mass gradient and quadratic on velocities, turns out
to emerge from first variational principles. In this chapter, a cor-



rect extended form of the Lagrange equation is derived through the
Lagrangean and Hamiltonian approaches, and is discussed in detail.
Various illustrative and practical examples from offshore engineering
and civil engineering are presented, such as the reel laying opera-
tion of marine cables, the dynamics of a water column inside a free
surface piercing open pipe, and the hydrodynamic impact of a solid
body against a free surface of water. Also, the governing equation
of motion of vertically collapsing towers is properly derived in the
framework of the extended Lagrange equation.

The Chapter by L. Cveticanin addresses the dynamics of the body
with time variable mass and time variable moment of inertia. The
discontinual and the continual cases of variations of mass and mo-
ment of inertia are considered. The basic laws of dynamics are ex-
tended to the case in which the mass is varying in time. The princi-
ples of momentum and angular momentum are applied to obtain the
velocity and angular velocity of the body after discontinual mass vari-
ation. The dynamics of mass addition is treated as the plastic impact.
In addition to the reactive force, the reactive torque is introduced for
the case of the continual time-variation of the mass and the moment
of inertia. The free motion and the vibration of the mass variable
body are treated as special cases. The influence of the reactive force
on the vibration properties of the body is analyzed.

The Chapter prepared by D. Indeitsev and Yu. Mochalova deals
with the dynamics of the material with complex internal structure.
A two-component continuum model is utilised to this end. The ap-
proach allows one to describe the internal evolution processes in ma-
terials basing on the Euler equations and the mass balance equations
containing the source terms is proposed. The influence of exchange
mass between the components on the internal structure of the mate-
rials is investigated. The source terms determining the mass transfer
between material components are defined. The following examples
are delivered: the structured liquids in nanochannels, the metals with
impurities and dissolved hydrogen.

The Chapter by A. Zilian is devoted to mechanics of coupled sys-
tems with mass which is dependent on structural motion and defor-
mation; the effects of added mass, damping, stiffness; the models
for fluid-structure interaction of discrete and distributed mass sys-
tems. In this contribution, concepts for modelling the interaction of



structures and fluids are presented. Starting from excitation mecha-
nisms and associated classifications, various model depth approaches
are compared. Among them, the use of added coefficients for quasi-
steady problems is discussed. On the basis of potential flow theory,
the different approaches for determining fluid-induced additional mass
are established and illustrated by using an analytical example. Given
the limitations of simplifying the engineering models, the second part
of the chapter provides a brief overview on computational methods
for fluid-structure interaction and presents a monolithic modelling ap-
proach using space-time finite elements for discretisation of both fluid
and structure. Applications from aero- and hydro-elasticity show the
applicability of computational methods for problems involving flow-
induced added mass, damping, and stiffness.

The Chapter by A.K. Belyaev is predominantly concerned with
a special case of dynamics of the engineering systems with variable
mass, namely open systems with moving continua. A characteris-
tic feature of these systems is that a material enters the system and
leaves the system. The transported material itself is assumed to be
deformable and under some conditions the entire system exhibits un-
stable behaviour in the transverse direction. The intent of the present
chapter is to demonstrate that the systems with axially moving ma-
terial are inherently unstable. Dynamics and stability are known to
be strongly related to each other, for this reason the study of dynam-
ics and stability for each engineering system under consideration is
carried out in the framework of the same approach. The chapter is
opened with a general discussion and notion of the static and dy-
namics stability. A number of special cases important for mechani-
cal engineering are considered. Some of these belong to the class of
problems of fluid-structure interaction, in particular, dynamics and
stability of the fluid conveying pipes and the shaft rotating in oil film
plain bearings. The dynamics and stability of belts and chains are
studied in detail, too.

It is a great pleasure for the editors to acknowledge the signifi-
cant contributions made to the CISM Advanced School “Dynamics
of Mechanical Systems with Variable Mass” and to this book by Pro-
fessors Livija Cveticanin from Serbia, Dmitry Indeitsev from Rus-
sia, Celso Pesce from Brazil and Andreas Zilian from Luxembourg.
They delivered excellent lectures in Udine in September 2012, and



they contributed chapters to this book making our joint project a truly
international effort. We also wish to thank them for their invaluable
contributions.

The school brought together of about 40 participants from 7 coun-
tries. We are grateful to all participants for their interest and the
numerous discussions that took place during and after the lectures.
We are particularly thankful to the Scientific Council of CISM for
supporting this Advanced School and recognizing the importance of
the topic. The continuous support of the co-operation of the under-
signed Editors in the framework of the Austrian Comet K2-Center of
Excellence in Mechatronics ACCM is gratefully acknowledged.

Hans Irschik and Alexander K. Belyaev
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A rational treatment of the relations of
balance for mechanical systems with a time-
variable mass and other non-classical supplies

Hans Irschik* and Alexander Humer*,†

* Institute of Technical Mechanics, Johannes Kepler University Linz, Austria
† Linz Center of Mechatronics, Austria

Abstract This contribution intends to present a rational method-
ology for mechanical systems with a variable mass, represented by
a supply of mass. Special emphasis is given to the relations of bal-
ance and jump for such systems. In these relations, we also allow
for other types of additional, non-classical supplies, e.g., supplies of
linear and angular momentum. In doing so, we aim at completing
and substantially extending formulations laid down in the famous
article by Truesdell and Toupin (1960), who stated local relations of
balance of mass and linear momentum in the presence of sources of
mass, and, among other formulations with relevance to the present
article, gave fundamental formulations for the case that a flow of
mass through the surface of the system is present in the global re-
lations of balance.

Our presentation is organized as follows: We remain in the
framework of non-relativistic mechanics, referring to a common in-
ertial frame. Throughout the Chapter, we formulate our relations in
the Euler or spatial description, in which every entity is understood
as a function of the instantaneous place of the material particles un-
der consideration, and of time. In Section 1, the general equation of
balance is stated and is applied to the model of a single mass point
with a variable mass. This general equation is specified for the fun-
damental relations of balance of mass, linear momentum, angular
momentum and total energy first. The variable mass is associated
with a supply of mass. Afterwards, as mathematical consequences
of the fundamental statements, we derive the statements of balance
of moment of momentum, intrinsic spin, kinetic energy and internal
energy for the single mass point. As a rational procedure for formu-
lating the additional, non-classical supplies that are present in the
relations of balance, we assume that the single mass point is gaining
or losing differential masses by means of continuous impacts, which

H. Irschik, A. K. Belyaev (Eds.), Dynamics of Mechanical Systems with Variable Mass, 
CISM International Centre for Mechanical Sciences DOI 10.1007/ 978-3-7091-1809-2_1 
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2 H. Irschik and A. Humer

are again studied in the framework of the general equation of bal-
ance. The outcomes of this procedure include a Seeliger-Meschersky
type additional supply of linear momentum.

In Section 2, theorems on balance of mass, linear momentum,
moment of momentum and kinetic energy for deformable bodies of
finite extension with a variable mass are presented. Among these,
the first two can be considered as fundamental, while balance of
moment of momentum and kinetic energy are derived from balance
of mass and linear momentum as mathematical consequences. The
supply of mass is associated with distributed sources of mass at-
tached to the material particles, which we call material sources of
mass. Both global and local relations of balance are considered,
including global and local non-classical supplies of mass and linear
momentum. The supplies of moment of momentum and kinetic en-
ergy follow as mathematical consequences. A Seeliger-Meschersky
type local model for the non-classical supply of linear momentum
is presented. Due to limited space, the fundamental relations of
balance of angular momentum and total energy for bodies of finite
extension are not considered. However, useful global relations con-
cerning the notion of center-of-mass are given, introducing the no-
tions of center-of-mass linear momentum and relative linear momen-
tum, center-of-mass moment of momentum and relative moment of
momentum, as well as center-of-mass kinetic energy and relative
kinetic energy. Our relations extend some formulations that are
well-known for bodies in the absence of a supply of mass. The cor-
responding relations of balance again follow as mathematical con-
sequences of the fundamental ones, including non-classical supply
terms related to the non-classical supplies of mass and linear mo-
mentum. In Section 3, global relations of balance for open systems
are studied, and are set into analogy to the results of Section 2. An
open system is represented by a non-material control volume, the
surface of which moves at a velocity different from the velocity of the
material particles instantaneously located on that surface, such that
a flow of mass takes place. Supplies of mass and linear momentum
due to this flow of mass are shown to be analogous to the supplies
introduced in Section 2. The theoretically as well as practically
important special case of a rigid body that experiences a surface
growth is exemplarily treated. Section 4 deals with extended rela-
tions of jump for systems with a variable mass. Relations of jump
are needed, when certain entities suffer considerable changes across
some region of transition. This region of transition is replaced by
an equivalent singular surface, for which relations of jump are for-
mulated by including additional non-classical surface supply terms,
such as surface supply of mass and linear momentum. Other sur-
face supply terms are derived as mathematical consequences of the
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latter. As an example for the formulations presented in Sections 3
and 4, the problem of a chain heaped up on a table, the hanging
part of the chain being set into motion, is considered in Section 5.
It is believed that the corresponding formulation can explain some
seemingly controversial results from the literature.

It should be mentioned that our emphasis lies on a rational
treatment of the topics under consideration. While our methodol-
ogy has many important predecessors, but appears to be novel in
the systematic manner here presented, we do not intend to give a
historical review on the topic due to the limited space available. For
the latter, the reader is referred to reviews by Mikhailov (1975), his-
torical presentations to be found, e.g., in the important works of Eke
(1998) and Cveticanin (1998), as well as to a review by Irschik and
Holl (2004) on balance of mass and momentum for systems with
a variable mass. (An extended review by the latter authors con-
cerning balance of moment of momentum and kinetic energy for
variable mass systems is being prepared since and hoped to be fin-
ished soon). Last but not least, the reader is referred to the other
chapters of the present book.

1 An introductory example: The single mass point

with a continual time-variation of mass.

1.1 The general and the differential relations of balance

In this Section, we present introductory material on the relations of
balance for mechanical systems with a variable mass. The general equation
of balance for any system can be written as:

Q(t+Δt)−Q(t) =

t+Δt∫
t

R (τ) dτ (1)

In (1), Q denotes some physical meaningful quantity that properly de-
scribes the system within the time interval t ≤ τ ≤ t + Δt, and R is the
physical cause that is responsible for a time change of Q, also denoted as
the source of that time change. When Q(t+Δt) = Q(t), i.e., when the
integral at the right hand side of (1) does vanish, then Q(t) is said to be
conserved with respect to the time instant t + Δt. When the right hand
side of (1) does not vanish, Q is said to be balanced by the integral of the
source R over the time interval under consideration.

Eq. (1) represents the most general statement of balance; in order to
make physical sense, it is only necessary to require that Q has unique values
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at the instants t and t + Δt, and that the integral over the source R does
exist, but the source R itself does not need to be continuous in time.

A large part of the history of mechanics (and of physics as a whole)
can be understood as an intense struggle for finding physically meaningful
quantities Q and corresponding physically meaningful sources R that do sat-
isfy (1). In the Newtonian theory of mechanics, which is used subsequently,
time t and quantities Q are defined with respect to an inertial frame, and
Q basically stands for the notions of mass, momentum and energy. The
notion of energy directly connects the fields of mechanics and thermody-
namics, the latter bringing into the play the additional notion of entropy,
which, however, will not be addressed in the following due to limited space.

In case R is continuous and bounded, it makes sense to consider an
infinitesimal time interval, Δt → dt. Then the finite statement in (1) can
be replaced by the following differential relation of balance:

Q(t+ dt)−Q(t) = dQ = Rdt (2)

In the following Subsections 1.2–1.5, we apply the differential state-
ment (2) to the model of a single mass point, also denoted as a point mass, a
problem that is elementary for the dynamics of mechanical systems. In the
present context, (2) is specified for several relations of balance for the single
mass point with a time-varying mass, m = m(t). The source that is respon-
sible for the change in mass will be denoted as a supply of mass. We start
with the fundamental relations of balance of mass, and discuss the relations
of linear momentum, angular momentum and total energy afterwards. Into
these relations, we incorporate further supply terms, additional to classical
formulations. For a comprehensive representation of the classical balance
statements of mechanics, see, e.g., Ziegler (1998). To add non-classical sup-
ply terms to the classical statements can be motivated, e.g., by the theory
of multiphase mixtures, in which it is assumed that a particle of a single
constituent exchanges mass, momentum and energy with the particles of
the other constituents of the mixture, and thus is being supplied with the
latter entities, see, e.g., the book by Hutter and Jöhnk (2004).

A continuous impact model then is presented in order to express the
non-classical supplies of linear momentum, angular momentum and energy.
This model assures that mass, linear momentum and energy is continu-
ously gained from differential masses at an own velocity. As a special case,
the Seeliger-Meshchersky formulation for the supply of linear momentum is
contained therein.

Having stated the fundamental relations of balance of mass, linear mo-
mentum, angular momentum and total energy for a single mass point with a
supply of mass and other non-classical supplies, we proceed to consequences
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of the latter fundamental statements, and derive the statements of balance
of moment of momentum, intrinsic spin, kinetic energy and internal energy.
All the above mentioned relations of balance will be referred to a common
inertial frame without further reference.

1.2 Balance of mass

For balance of mass, (2) reads

Q (t+ dt)−Q (t) = dQ = dm, R = s [m] (3)

The supply of mass from or to the environment is denoted as s [m]. If mass
is added to the point mass, then s [m] > 0, and if mass is ejected from the
point mass, there is s [m] < 0. Note that the notation s [λ], say, reads “the
supply of λ”, where the physical dimension of s [λ] is the dimension of λ per
dimension of time. Using (2) and (3), balance of mass becomes:

dm

dt
= s [m] (4)

1.3 Balance of linear momentum

The vector of linear momentum is defined as

j = mv (5)

where the absolute velocity vector is v = dp/dt, and p is the position vector
of the single mass point with respect to the origin of the inertial frame. For
linear momentum j, the quantities in (2) are:

dQ = dj, R = F + s [j] (6)

The resultant of imposed and restoring forces that acts upon the single mass
point is the vector F , and the vector s [j] stands for a non-classical (addi-
tional) supply of momentum. Utilizing balance of mass (4), the following
relation of balance of linear momentum for a single mass point is obtained
from (2) and (6):

dj

dt
= m

dv

dt
+ s [m] v = F + s [j] (7)

1.4 Balance of angular momentum

The vector of angular momentum is defined as

α = p×mv + l (8)
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where the vector product p×mv is called the moment of (linear) momentum,
and the vector l denotes an intrinsic spin of the point mass. For angular
momentum, the quantities in (2) are:

dQ = dα, R = p× F +M + s [α] (9)

The resultant of imposed and restoring couples that act upon the mass
point is abbreviated by the (free) vector M . The notions of intrinsic spin l
and the resultant couple M , while often not taken into account in the me-
chanics of single mass points, have been introduced in (9) in order to render
balance of angular momentum a relation of balance in its own right, bring-
ing additional physical notions into the play that are not present in balance
of linear momentum (7). Motivations for introducing l and M can be taken,
e.g., from the model of material particles in a continuous polar medium. For
a recent comprehensive representation of the theory of micro-polar media,
see the book by Eremeyev et al. (2012). Another example is the case that
a single mass point shall be used to model the rotational motion of a rigid
body of finite extension. From these examples, it makes sense to set

l = J · ω (10)

where J is the symmetric second order tensor of inertia, and ω is the angular
velocity vector of the mass point. Note that we use the simple single dot
product operation that has been introduced in the exposition on tensor
fields by Ericksen (1960). Introducing a non-classical (additional) supply of
angular momentum s [α], using balance of mass (4), and substituting (10),
the relation of balance of angular momentum is obtained from (2) and (9)
as

dα

dt
= p×m

dv

dt
+ J ·

dω

dt
+ p× s [m] v +

dJ

dt
· ω = p× F +M + s [α] (11)

1.5 Balance of total energy

The total energy E of the mass point is defined as the sum

E = Ekin + Eint (12)

where the kinetic energy of the mass point is given by

Ekin =
1

2
(mv · v + ω · (J · ω)) (13)

The internal energy, a notion that stems from thermodynamics, is abbrevi-
ated by Eint. For total energy, the quantities in (2) are:

dQ = dE, R = F · v +M · ω + r + s [E] (14)
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where r stands for non-mechanical sources of total energy, and s [E] is a
non-classical (additional) supply of energy. Using balance of mass (4), and
substituting (10) and (13), the relation of balance of total energy is obtained
from (2) and (12) as

dE

dt
= mv ·

dv

dt
+ ω ·

(
J ·

dω

dt

)
+

1

2

(
s [m] v · v + ω ·

(
dJ

dt
· ω

))
+

dEint

dt

= F · v +M · ω + r + s [E] (15)

Balance of total energy is also known as the First Law of Thermodynamics ;
the relation in (14) accounts for the case of a variable mass and an additional
supply of total energy.

1.6 A rational procedure for obtaining expressions for the addi-
tional supplies

Additional modeling is necessary in order to describe the supply of mass
s [m]. The same is true for the non-classical supplies s [j], s [α] and s [E]. In
the present subsection, we introduce a rational model, in which the latter
supplies can be expressed using the former. This model may be called an
extension of the continuous impact model by Cayley (1856), who assumed
that the single mass under consideration “is continually taking into connex-
ion with itself particles of infinitesimal mass [...], so as not itself to undergo
any abrupt change of velocity, but to subject to abrupt changes of velocity
the particles so taken into connexion.”

Hence, consider a mass point with an infinitesimal mass of amount dm̄ =
dm = s [m] dt, with s [m] > 0. Assume that, at the time instant t, the
linear momentum of the infinitesimal mass is dmu, the intrinsic spin is
dJ ·Ω, and the internal energy is dĒint, where u is the velocity vector of the
infinitesimal mass, and Ω is the angular velocity vector of the infinitesimal
mass at time t. Assume further that this infinitesimal mass dm̄ is absorbed
during the time-interval dt by the mass point with finite mass m, where
the linear momentum, angular momentum and energy of the infinitesimal
mass are completely transferred to the mass m at time t+dt. In accordance
with (2), the equations of balance for dm̄ become:

Balance of linear momentum

dQ = Q (t+ dt)−Q (t) = 0− dmu = −dmu, R = s [j̄] (16)

⇒
dm

dt
u = s [m] u = −s [j̄] (17)



8 H. Irschik and A. Humer

Balance of angular momentum

dQ = −p× dmu− dJ · Ω, R = s [ᾱ] (18)

⇒ p×
dm

dt
· u+

dJ

dt
· Ω = p× s [m] · u+

dJ

dt
· Ω = −s [ᾱ] (19)

Balance of energy

dQ = −
1

2
(dmu · u+Ω · (dJ · Ω))− dĒint, R = s

[
Ē
]

(20)

⇒
1

2
s [m]u · u+

1

2
Ω ·

(
dJ

dt
· Ω

)
+ dĒint = −s

[
Ē
]

(21)

Above, no imposed or reactive forces and couples or non-mechanical sources
of energy have been considered for the infinitesimal mass for the sake of
brevity. Requiring that the supplies for m and dm̄ must be mutual, we
obtain:

s [j] = −s [j̄] = s [m]u (22)

s [α] = −s [ᾱ] = p× s [m]u+
dJ

dt
· Ω (23)

s [E] = −s
[
Ē
]
=

1

2
s [m]u · u+

1

2
Ω ·

(
dJ

dt
· Ω

)
+ dĒint (24)

Substituting into the fundamental equations of balance of linear momentum,
angular momentum and total energy stated in Subsections 1.3–1.5, these
relations become:

dj

dt
= m

dv

dt
+ s [m] v = F + s [m]u (25)

dα

dt
= p×m

dv

dt
+ J ·

dω

dt
+ p× s [m] v +

dJ

dt
· ω

= p× F +M + p× s [m]u+
dJ

dt
· Ω (26)

dE

dt
= mv ·

dv

dt
+ω ·

(
J ·

dω

dt

)
+

1

2

(
s [m] v · v + ω ·

(
dJ

dt
· ω

))
+

d

dt
Eint

= F · v +M · ω + r +
1

2

(
s [m]u · u+Ω ·

(
dJ

dt
· Ω

))
+

d

dt
Ēint (27)
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For the sake of comparison with the literature, the relation of balance of
linear momentum is re-written as

m
dv

dt
= F + s [m] (u− v) (28)

The term s [m] (u− v) dates back to Seeliger (1890) andMeshchersky (1897);
it is called the Meshchersky reactive force, while (28) as a whole is denoted
as the Tsiolkovsky-Meshchersky rocket equation. Tsiolkovsky in 1897 inde-
pendently derived the solution for the case of a constant relative velocity
u−v, cf. Kosmodemyansky (2000). For historical expositions, see Mikhailov
(1975) and Irschik and Holl (2004). The results in (13)–(17) also hold for the
case s [m] < 0. We then assume that the infinitesimal mass dm̄ = −dm > 0
is ejected during the time-interval dt from the mass point m, where momen-
tum, angular momentum and energy of the infinitesimal mass have been
completely released from m at time instant t + dt. E.g., balance of linear
momentum for the infinitesimal mass reads, cf. (2):

dQ = Q (t+ dt)−Q (t) = dm̄ u− 0 = −dm u, R = s [j̄] (29)

which again yields (17).
It must be emphasized that the above continuous impact model does

result in balance relations that are invariant with respect to a change of the
common inertial frame. In these relations, we may add a constant position
vector to the vector p, a constant velocity vector to v and u, etc., and
then subtract the results from the original formulations without obtaining
any discrepancies. E.g., adding a constant position vector to p in (26), the
difference of the result with respect to the original relation (26) vanishes,
since (25) holds. Of course, the supply of mass s [m] itself and the internal
energies must also be formulated accordingly.

1.7 Consequences of the fundamental relations of balance

The fundamental relations of balance can be mathematically manipu-
lated in order to obtain further relations of balance. This will be done in
the following Subsection using the continuous impact model presented in
Subsection 1.6 above, i.e., by studying mathematical consequences of the
relations stated in (25)–(27). Particularly, we derive balance relations for
moment of momentum, intrinsic spin, translational and rotational kinetic
energy and internal energy from the fundamental relations. The additional
supply terms in the latter derived relations are expressed by the supply
terms in the fundamental relations of balance, as it should be. For a sys-
tematic treatment of relations between non-classical supply or growth terms
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in the framework of continuum mechanics, the reader is referred to Irschik
(2005, 2007).

Balance of moment of momentum Performing the vector product of
the balance of linear momentum (25) with the position vector p yields

p×m
dv

dt
+ p× s [m] v =

d

dt
(p×mv) = p× F + p× s [m]u (30)

Introducing the moment of momentum as

α∗ = p×mv = α− l (31)

we obtain:

dα∗

dt
= p×m

dv

dt
+ p× s [m] v = p× F + s [α∗] (32)

with the non-classical supply of moment of momentum

s [α∗] = p× s [m] u = p× s [j] (33)

Balance of intrinsic spin Subtracting (32) from balance of angular mo-
mentum (26) gives:

dl

dt
= J ·

dω

dt
+

dJ

dt
· ω = M + s [l] (34)

with the non-classical supply of intrinsic spin

s [l] =
dJ

dt
· Ω (35)

Balance of translational kinetic energy Performing the scalar prod-
uct of the balance of linear momentum (25) with the velocity v yields

v ·m
dv

dt
+ v · s [m] v =

d

dt

(
1

2
mv · v

)
+ s [m]

1

2
v · v = F · v+ s [m]u · v (36)

Introducing the translational kinetic energy as

Etr

kin =
1

2
mv · v (37)

we obtain:

dEtr

kin

dt
= v ·m

dv

dt
+

1

2
s [m] v · v = F · v + s

[
Etr

kin

]
(38)

with the non-classical supply

s
[
Etr

kin

]
= s [m]

(
u−

1

2
v

)
· v (39)
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Balance of rotatory kinetic energy Performing the scalar product of
the balance of intrinsic spin (34) with the angular velocity ω yields

ω ·
dl

dt
= ω ·

(
J ·

dω

dt

)
+ ω ·

(
dJ

dt
· ω

)

=
d

dt

(
1

2
ω · (J · ω)

)
+

1

2
ω ·

(
dJ

dt
· ω

)
= M · ω + ω ·

(
dJ

dt
· Ω

)
(40)

Introducing the rotational kinetic energy as

Erot

kin =
1

2
ω · (J · ω) (41)

we obtain:

dErot

kin

dt
= ω ·

(
J ·

dω

dt

)
+

1

2
ω ·

(
dJ

dt
· ω

)
= M · ω + s

[
Erot

kin

]
(42)

with the non-classical supply of rotatory kinetic energy

s
[
Erot

kin

]
= ω ·

(
dJ

dt
·
(
Ω−

ω

2

))
(43)

Balance of internal energy Subtracting the relations of balance for
kinetic energy, (38) and (42), from the relation of balance of total energy in
the form of (27), we obtain:

dEint

dt
= r + s [Eint] (44)

with the non-classical supply of internal energy

s [Eint] =
1

2
s [m] (u− v)·(u− v)+

1

2
(Ω− ω)·

(
dJ

dt
· (Ω− ω)

)
+

d

dt
Ēint (45)

2 Balance relations for bodies of finite extension with

a variable mass

So far, we have dealt with the relations of balance for a single mass point
with a variable mass. In the following, we extend these considerations to
the case of a material body of finite size. Hence, we subsequently deal
with a mechanical system that consists of an infinite set of continuously
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distributed material particles, for which mass is not conserved. Due to lim-
ited space, we remain in the framework of purely mechanical notions in the
present section, dealing with balance of mass, linear momentum, moment
of momentum and kinetic energy, the latter two as consequences of mathe-
matical manipulations of the former ones. This restriction is also motivated
by a remark of Truesdell and Toupin (1960), who stated that the concepts
of linear momentum, moment of momentum and kinetic energy of a finite
body are “the stuff of which classical mechanics is made”, and that they
“deserve the most minute analysis”. It is the scope of the present section
to present a rational methodology for formulating relations of balance for
these quantities, considering the case of a body with variable mass and a
finite extension.

The relations of balance in their most basic form, see (2), are to be
referred to the total of a system under consideration, in the present case by
integrating over the finite volume of the body. In order to highlight this fact,
the corresponding balance equations are also denoted as global relations of
balance. Considering the so-called localization argument, i.e., requiring that
the relations of balance must hold for any sub-volume of the body, the global
relations can be localized under obvious continuity conditions to so-called
local relations of balance.

We start our considerations by dealing with global and local balance of
mass. For writing global relations, we consider balance with respect to a
material volume at first, in other words, for a finite volume with a surface
that moves together with the particles instantaneously located in it. This
material volume constitutes the material body under consideration. As the
reason for a variable mass of the so defined material body, we assume that
the elementary masses carried by the particles of the body do change in
time. In order to characterize this situation, we say that material sources of
mass are attached to the particles. In our subsequent balance formulations,
these sources are associated with global and local supplies of mass, the
latter being spatially distributed. Since these supplies are absent in classical
formulations of continuum mechanics, we talk about non-classical supplies.

In a next step, the notion of the center of mass is introduced in the
presence of material sources of mass, which, to a certain extent, connects
the formulation for the single mass point in Section 1 above with the problem
of a material body of finite spatial extension. Some useful global relations in
connection with the notion of center of mass are presented, introducing the
notions of center-of-mass linear momentum and relative linear momentum,
center-of-mass moment of momentum and relative moment of momentum,
as well as center-of-mass kinetic energy and relative kinetic energy. The
corresponding relations extend some formulations well-known for bodies in
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the absence of a supply of mass. The global and local relations of balance of
linear momentum are then discussed, where non-classical supplies of linear
momentum are additionally introduced. The global relation of balance of
linear momentum can be replaced by a center-of-mass oriented form, from
which a relation of balance of relative linear momentum follows. The global
relations of balance of moment of momentum, center-of-mass moment of
momentum and relative moment of momentum are afterwards derived as
consequences of mathematical manipulations of the local relation of linear
momentum. The same strategy is used for deriving the global relations of
balance of kinetic energy, center-of-mass kinetic energy and relative kinetic
energy. In all of these derived relations of balance, additional, non-classical
supply terms emerge. These, however, are expressed by the non-classical
supplies of mass and linear momentum, and which vanish when the latter
two are absent. From this, one can conclude that the notion of a non-
classical supply as such is necessary in order to ensure consistency of the
various relations of balance.

A problem oriented constitutive modeling is needed, in order to properly
formulate the non-classical supply terms for mass and linear momentum.
In order to provide a rational formulation for the global and local relations
of balance of linear momentum, a simple local model for the non-classical
supply of linear momentum is presented, which, in a continuum mechan-
ics framework, was suggested by Irschik (2005) for bodies with a growing
mass. In this model, mass is locally added to (or removed from) the parti-
cles at an own velocity and at a rate equal to the local non-classical supply
of mass. For a system consisting of several distinct single mass points, an
analogous model was considered by Federhofer (1922). The model assures
the invariance of the global and local relations of balance of linear momen-
tum with respect to a Galilean transformation of the inertial frame. Due to
the apparent analogy to the relation of balance of linear momentum for the
single mass point (28), it can be called a model of the Seeliger-Meshchersky
type, cf. Section 1. Using this particular model, the relations of balance
of global and center-of-mass moment of momentum and kinetic energy are
exemplarily re-formulated.

2.1 Variable mass due to material sources of mass in the interior
of a material volume

The instantaneous total mass m of a deformable body of finite extension
that occupies the volume V in the current configuration is denoted as

m =

∫
V

ρ dV (46)
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In (46), ρ denotes the current mass density, i.e., the local mass per unit
volume in the current configuration, and V is assumed to be a material
volume, i.e., a volume that moves together with the particles instantaneously
located in it. The case of a flow of mass through the surface of V , i.e., the
case of a non-material volume, will be studied in Section 3 below. As the
reason for a non-vanishing time-rate of the total mass, for the moment
being we assume that distributed sources (sinks) of mass are assigned to
the particles in V , where the change of mass is not understood as a change
in the number of particles in V , but as a change of the elementary mass of
the particles contained in V . We therefore talk about material sources of
mass, which result in a non-classical supply of mass, the latter being absent
in classical formulations dealing with mechanical systems with a conserved
mass. We start our considerations with balance of mass.

2.2 Global and local relations of balance of mass

Assume that the material body under consideration is subjected to a
continual, non-classical supply of mass due to material sources of mass.
From the general balance relation (2), and in analogy to the relation (4),
which has been stated above for a single point mass, we write the global
statement of balance of mass as

dm

dt
=

d

dt

∫
V

ρ dV = s [m] (47)

where s [m] is the total supply of mass of the body due to the material
sources of mass. We now introduce a local supply of mass s [1] by setting

s [m] =

∫
V

s [1] ρ dV (48)

Interchanging the time derivative and the integral in (47), and requiring
that this relation must hold for any sub-volume of the material volume V ,
the following relation for the time rate of the elementary mass carried by a
particle is obtained:

d

dt
(ρ dV ) = s [1] ρ dV (49)

An example for the material frame indifferent constitutive modeling of s [1]
can be found in the chapter written by D. Indeitsev in the present book,
where the case of a single constituent of a binary mixture is studied.

The left hand side of (49) can be transformed to

d

dt
(ρ dV ) =

dρ

dt
dV + ρ

d

dt
(dV ) (50)
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The place of the particles is characterized by their position vectors p
with respect to an inertial frame. Particularly, for the mass density we
write ρ = ρ (p, t). The material time derivative of the mass density in (50)
then becomes

d

dt
ρ (p, t) =

∂ρ

∂t
+ v · grad ρ (51)

where the absolute velocity of the particles with respect to the inertial frame
is denoted as v = dp/dt. The divergence and gradient operators with respect
to the place of the particles in the current configuration are written as “div”
and “grad”, respectively. Utilizing the Euler expansion formula for the time
rate of the elementary volume carried by a particle,

d

dt
(dV ) = (div v) dV (52)

together with the following vector identity,

div (ρ v) = ρ div v + v · grad ρ (53)

we can put (50) into the form

d

dt
(ρ dV ) =

(
∂ρ

∂t
+ div (ρ v)

)
dV (54)

Substituting (54) into (49) yields the local equation of balance of mass in
the presence of material sources of mass:

∂ρ

∂t
+ div (ρ v) = s [1] ρ (55)

Note that the term s [1] ρ in (55) is denoted as J in D. Indeitsev’s Chapter
of the present book.

2.3 Some useful relations involving the center of mass

The position vector c of the instantaneous center of mass from the origin
of the inertial frame is defined by

cm =

∫
V

p ρ dV (56)

where p is the position vector of a particle currently having the elementary
mass ρ dV . Setting

p = c+ p′ (57)
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with the position vector p′ relative to the center of mass, it follows from (56)
with (46) that ∫

V

p′ρ dV = 0 (58)

Time-wise differentiation of (56) gives, recall that v = dp/dt and s[m] =
dm/dt, and see (49):

d

dt
(mc) = m

dc

dt
+ s [m] c =

d

dt

⎛
⎝∫

V

p ρ dV

⎞
⎠

=

∫
V

v ρ dV +

∫
V

p
d

dt
(ρ dV ) =

∫
V

v ρ dV +

∫
V

p s[1] ρ dV (59)

Note that the center of mass defined in (56) is not to be confused with the
place of some material particle, which instantaneously might coincide with
it. Indeed, the center of mass might not even be situated within the body,
think, e.g., of a hollow sphere. Hence, the velocity dc/dt of the center of
mass in general will be different from the velocity of a material particle that
instantaneously might be located at the place of the center of mass. (One
may ask, why dp/dt in (59) has been identified as the absolute velocity
v of a material particle. The reason is that the position of the center of
mass of the elementary mass ρ dV carried by that material particle is given
by its position vector p, which, however, does not move relative to the
particle. Hence, the time derivatives are consistently applied in the various
expressions presented in (59).)

Now, a further characteristic place c̃ is introduced by defining

s [m] c̃ =

∫
V

p
d

dt
(ρ dV ) =

∫
V

p s [1] ρ dV (60)

Substituting into (59) yields
∫
V

v ρ dV = m
dc

dt
+ s [m] (c− c̃) = m

dc

dt
−

∫
V

p′s[1] ρ dV (61)

The left hand side of (61) represents the total linear momentum j of the
body, being defined as

j =

∫
V

v ρ dV = m
dc

dt
+

∫
V

v′ρ dV = m
dc

dt
+ s [m] (c− c̃) (62)
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In (62), use has been made of the relation

v =
dp

dt
=

dc

dt
+ v′ (63)

The velocity v′ = dp′/dt in (63) represents the difference between the veloc-
ity of some material particle and the velocity of the center of mass, dc/dt.
With (63), the total linear momentum in (62) can be decomposed into

j = jc + j′ (64)

with the pseudo- or center-of-mass linear momentum

jc = m
dc

dt
(65)

and the relative linear momentum

j′ =

∫
V

v′ρ dV = s [m] (c− c̃) = −

∫
V

p′s[1] ρ dV (66)

which follows by comparison of (64) with (61). Hence, the relative linear
momentum in a body with a non-vanishing supply of mass s [m] in general
does not vanish. The relation in (66) thus extends a theorem on the center
of mass by Thomson and Tait (1867), who treated bodies without a supply
of mass. Note from (48), (57), (58) and (60) that c = c̃, when s [1] is
uniformly distributed over the body, i.e., j′ = 0 in (66).

The total moment of momentum of the body with respect to the origin
of the inertial frame is defined as

α∗ =

∫
V

p× v ρ dV (67)

Substituting (57), (58), (63) and (66), we get

α∗ =

∫
V

p×
dc

dt
ρ dV +

∫
V

p× v′ρ dV

= c×m
dc

dt
+ c×

∫
V

v′ρ dV +

∫
V

p′ × v′ρ dV = αc + α′ + c× s [m] (c− c̃)

(68)

The center-of-mass moment of momentum is

αc = c× jc = c×m
dc

dt
(69)



18 H. Irschik and A. Humer

and the relative moment of momentum reads

α′ =

∫
V

p′ × v′ρ dV (70)

Hence, the total moment of momentum of a body with a non-vanishing
supply of mass s [m] in general is not represented by the sum of the center-
of-mass moment of momentum and the relative moment of momentum only.
Instead, the last term in (68) needs to be taken into account, in which
c× s[m] c = 0 holds, of course, but which is kept for formal reasons.

The total kinetic energy of the of the body in the absence of an intrinsic
spin of the particles is defined as

Ekin =
1

2

∫
V

v · v ρ dV (71)

Substituting (57), (63) and (66), we obtain

Ekin =
1

2
m
dc

dt
·
dc

dt
+

dc

dt
·

∫
V

v′ρ dV +
1

2

∫
V

v′ · v′ρ dV

= Ec

kin + E′
kin +

dc

dt
· s [m] (c− c̃) (72)

with the center-of-mass kinetic energy

Ec

kin =
1

2
m
dc

dt
·
dc

dt
(73)

and the relative kinetic energy

E′
kin =

1

2

∫
V

v′ · v′ρ dV (74)

Hence, the total kinetic energy of a body with a non-vanishing supply of
mass s [m] in general is not given by the sum of the center-of-mass kinetic
energy and the relative kinetic energy, but the last term in (72) must be
taken into account. This represents an extension of a theorem on the center
of mass by König (1751), who treated bodies without a supply of mass.

2.4 Global and local balance of linear momentum

We now specialize the general equation of balance (2) for the linear
momentum defined in (62). This yields

dQ = dj = d

⎛
⎝∫

V

v ρ dV

⎞
⎠ , R = F + s [j] (75)
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where

F =

∫
V

b dV +

∫
S

σn dS (76)

The imposed body forces per unit current volume are denoted by b, and the
surface tractions are given by the stress vector σn. The latter is connected
to the stress tensor by Cauchy’s fundamental law, which describes the stress
vector at the current material surface S of V as the linear mapping

σn = n · Σ (77)

The unit outer normal vector at S is denoted by n, and the Cauchy stress
tensor is written as Σ. The resultant of the body forces and the surface
tractions is the vector F . In (75), the total non-classical supply of linear
momentum is defined as

s [j] =

∫
V

s [v] ρ dV (78)

with the local non-classical supply of linear momentum per unit mass de-
noted by s [v]. We thus deduce from (75) that the relation of global balance
of linear momentum reads

dj

dt
=

d

dt

⎛
⎝∫

V

v ρ dV

⎞
⎠ = F + s [j] =

∫
V

b dV +

∫
V

(div Σ) dV +

∫
V

s [v] ρ dV

(79)
Noting from (49) that

d

dt

⎛
⎝∫

V

v ρ dV

⎞
⎠ =

∫
V

d

dt
(v ρ dV )

=

∫
V

dv

dt
ρ dV +

∫
V

v
d

dt
(ρ dV ) =

∫
V

(
dv

dt
+ s [1] v

)
ρ dV (80)

the global statement (79) localizes to

ρ
dv

dt
+ s [1] ρ v = b+ div Σ + s [v] ρ (81)

This equation represents the local relation of balance of linear momentum
in the presence of a supply of mass and a non-classical supply of linear
momentum. Note that in the Chapter by D. Indeitsev, the term s [1] ρ v is
denoted as J v, and s [v] ρ is written as R.
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2.5 Balance of center-of-mass linear momentum

As a center-of-mass oriented formulation of balance of linear momentum,
using (64) and (66), in (2) we can also write

dQ = dj = d (jc + s [m] (c− c̃)) (82)

With (65), the relation of balance of linear momentum (79) can be replaced
by the following center-of-mass oriented form:

djc

dt
= m

d2c

dt2
+ s [m]

dc

dt
= F + s [jc] (83)

with the non-classical supply of center-of-mass linear momentum

s [jc] = −
d

dt
(s [m] (c− c̃)) + s [j] = −s [m]

(
dc

dt
−

dc̃

dt

)
−

d2m

dt2
(c− c̃) + s [j]

(84)
The relation in (83) provides a formulation of balance of center-of-mass
linear momentum. Subtracting (83) from (79) with (64), it is found that

dj′

dt
=

dj

dt
−

djc

dt
= s [m]

(
dc

dt
−

dc̃

dt

)
+

d2m

dt2
(c− c̃) (85)

2.6 Balance of relative linear momentum

Using (64), a relation of balance of relative moment of momentum,
see (66), is directly obtained from (85):

dj′

dt
= s [j′] (86)

with the non-classical supply term

s [j′] = s [j]− s [jc] = s [m]

(
dc

dt
−

dc̃

dt

)
+

d2m

dt2
(c− c̃) (87)

Note that the time rate of the relative linear momentum in general does
not vanish if a supply of mass is present. Only if m is conserved, or in the
exceptional case of c = c̃, dj′/dt = 0 holds.

2.7 Balance of moment of momentum

Performing the vector product of the local form of balance of linear
momentum (81) with the position vector p and integrating over the volume
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V gives

∫
V

p×
d

dt
(v ρ dV ) =

d

dt

∫
V

p× ρ v dV =

∫
V

p× (b+ div Σ + s [v] ρ) dV

(88)

Substituting (67) and (80), and using an extended divergence theorem, this
can be re-written as:

dα∗

dt
=

∫
V

p×

(
ρ
dv

dt
+ s [1] ρ v

)
dV

=

∫
V

p× (b− Σ×) dV+

∫
S

p× σndS + s [α∗] (89)

The so-called Gibbsian cross-vector of the Cauchy stress tensor is denoted
as Σ×. It is twice the axial vector of the skew-symmetric part of the Cauchy
stress tensor Σ, and thus vanishes if Σ is symmetric. With (57), the non-
classical supply of moment of momentum in (89) becomes

s [α∗] =

∫
V

p× s [v] ρ dV = c× s [j] +

∫
V

p′ × s [v] ρ dV (90)

Note that (89) and (90) represent pure consequences of a mathematical ma-
nipulation of the local relation of balance of linear momentum (81). Now,
in the absence of an intrinsic spin and of applied body and surface couples,
the fundamental relation of balance of angular momentum in principle does
coincide with balance of moment of momentum (89), compare the analogous
relation (32) for the angular momentum of a single mass point. The only
exceptions are that the term with Σ× is not present in the relation of bal-
ance of angular momentum, and that the non-classical supply of moment of
momentum s [α∗] is to be replaced by a possibly different non-classical sup-
ply of angular momentum. Hence, if the non-classical supplies of moment
of momentum and of angular momentum can be assumed to be equal, it
follows that the volume integral over Σ× in (89) vanishes. The localization
argument then leads to the conclusion that the stress tensor must be sym-
metric, such that Σ× = 0 in (89). This can be considered as an extension of
an axiom for non-polar bodies without a supply of mass, see Ziegler (1998)
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2.8 Balance of center-of-mass moment of momentum

Performing the vector product of the center-of-mass form of balance of
linear momentum (83) with c gives

c×
djc

dt
=

d

dt

(
c×m

dc

dt

)
= c× F + c× s [jc] (91)

Substituting (69), this can be re-written into the following relation of bal-
ance for the center-of-mass moment of momentum:

dαc

dt
= c×m

d2c

dt2
+ c× s [m]

dc

dt
= c× F + s [αc] (92)

with the non-classical supply, see (84),

s [αc] = c× s [jc] (93)

Subtracting (92) from (89), cf. (84) and (85), gives

dα∗

dt
−

dαc

dt
=

∫
V

p′ × b dV+

∫
S

p′ × σndS −

∫
V

p× Σ×dV

+ c×
d

dt
(s [m] (c− c̃)) +

∫
V

p′ × s [v] ρ dV (94)

2.9 Balance of relative moment of momentum

Utilizing (68), a relation of balance of relative moment of momentum,
see (70), is obtained from (94):

dα′

dt
=

∫
V

p′ × b dV+

∫
S

p′ × σndS −

∫
V

p× Σ×dV + s [α′] (95)

with the non-classical supply term

s [α′] = −
dc

dt
× s [m] (c− c̃) +

∫
V

p′ × s [v] ρ dV (96)

2.10 Balance of kinetic energy

Performing the scalar product of the local relation of balance of linear
momentum (81) with the absolute velocity vector v, and integrating over
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the material volume V yields

∫
V

v ·
dv

dt
ρ dV +

∫
V

s [1] v · v ρ dV

=
d

dt

⎛
⎝∫

V

1

2
v · v ρ dV

⎞
⎠+

∫
V

1

2
s [1] v · v ρ dV

=

∫
V

(b · v + v · div Σ + ρ s [v] · v)dV (97)

Using (71) and an extended divergence theorem, we obtain the relation of
balance of kinetic energy as

dEkin

dt
=

∫
V

v · b dV +

∫
S

v · σndS −

∫
V

tr (Σ · gradv) dV + s [Ekin] (98)

The trace of a second order tensor is denoted by “tr”. Using (63), the
relation in (98) can be re-written to

dEkin

dt
= F ·

dc

dt
+

∫
V

v′ · b dV +

∫
S

v′ · σndS −

∫
V

tr (Σ · gradv′) dV + s [Ekin]

(99)
The non-classical supply of kinetic energy in (98) and (99) turns out to be

s [Ekin] = −
1

2

∫
V

v · v s [1] ρ dV +

∫
V

v · s [v] ρ dV (100)

Again with (63), this becomes

s [Ekin] = −
1

2
s [m]

dc

dt
·
dc

dt
−

dc

dt
·

∫
V

v′s [1] ρ dV

−

∫
V

1

2
v′ · v′s [1] ρ dV +

dc

dt
· s [j] +

∫
V

v′ · s [v] ρ dV (101)
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2.11 Balance of center-of-mass kinetic energy

The scalar product of the center-of-mass form of balance of linear mo-
mentum (83) with the absolute velocity of the center of mass, dc/dt, gives

dc

dt
·m

d2c

dt2
+ s [m]

dc

dt
·
dc

dt
=

d

dt

(
1

2
m
dc

dt
·
dc

dt

)
+

1

2
s [m]

dc

dt
·
dc

dt

= F ·
dc

dt
+ s [jc] ·

dc

dt
(102)

Using (73), we obtain the following relation of balance for the center-of-mass
kinetic energy:

dEc

kin

dt
= F ·

dc

dt
+ s [Ec

kin] (103)

with the non-classical supply of the center-of-mass kinetic energy

s [Ec

kin] = −
1

2
s [m]

dc

dt
·
dc

dt
+ s [jc] ·

dc

dt
(104)

Substituting (84), this can be re-written to

s [Ec

kin] = −s [m]

(
3

2

dc

dt
−

dc̃

dt

)
·
dc

dt
−

d2m

dt2
(c− c̃) ·

dc

dt
+ s [j] ·

dc

dt
(105)

Subtracting (103) from (99), cf. (101) and (105), it is found that

dEkin

dt
−

dEc

kin

dt
=

∫
V

v′ · b dV +

∫
S

v′ · σndS

−

∫
V

tr (Σ · grad v′) dV + s [m]

(
dc

dt
−

dc̃

dt

)
·
dc

dt

+
d2m

dt2
(c− c̃) ·

dc

dt
−

dc

dt
·

∫
V

v′s [1] ρ dV

−

∫
V

1

2
v′ · v′s [1] ρ dV +

∫
V

v′ · s [v] ρ dV (106)

2.12 Balance of relative kinetic energy

Using (72), a relation of balance of relative kinetic energy, see (74), is
obtained from (106):

dE′
kin

dt
=

∫
V

v′ · b dV +

∫
S

v′ · σndS −

∫
V

tr (Σ · gradv′) dV + s [E′
kin] (107)
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with the non-classical supply of relative kinetic energy

s [E′
kin] = −s [m]

d2c

dt2
· (c− c̃)−

dc

dt
·

∫
V

v′s [1] ρ dV

−

∫
V

1

2
v′ · v′s [1] ρ dV +

∫
V

v′ · s [v] ρ dV (108)

2.13 Material volume with distributed material sources of mass
of the Seeliger-Meshchersky type

Motivated by the procedure for obtaining a rational expression for the
additional, non-classical supply of linear momentum presented in Subsec-
tion 1.3 above, see (17), we set

s [v] = s [1]u (109)

where the velocity u, at which mass is locally gained or lost by the particles,
in general will be different from the particle velocity v. The local relation
of balance (81) then can be written as

ρ
dv

dt
= b+ div Σ + s [1] ρ (u− v) (110)

The relation of balance of global linear momentum (79) follows to

∫
V

dv

dt
ρdV =

∫
V

b dV +

∫
S

σn dS +

∫
V

s [1] (u− v) ρ dV (111)

The continuum mechanics based model for the additional supply of lin-
ear momentum in (109) was suggested and embedded into the literature
by Irschik (2005) in the framework of growing materials. Due to the appar-
ent analogy to the relation of balance of linear momentum for the single mass
point, (27), we denote it as a model of the Seeliger-Meshchersky type. Note
that this model meets the requirements of the so-called Galileian invariance
of the relations of balance of linear momentum in (110) and (111). In other
words, seen from an observer, who moves with a constant velocity relative
to the global inertial frame, the relations given in (110) and (111) do re-
main invariant. The same remains true, if a translational rigid-body motion
with constant velocity is superimposed upon the actual motion. Moreover,
would we add to the model in (109) some vector, which does not depend
on the velocity but acts like a body force, this term could be treated as an
additional body force and would not interfere with the Galileian invariance.
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Introducing (109) into (90), the relation of balance of moment of mo-
mentum (89) becomes

∫
V

p× ρ
dv

dt
dV =

∫
V

p× (b − Σ×) dV+

∫
S

p× σndS

+

∫
V

p× s [1] (u− v)dV (112)

In order to write down further global statements, we now introduce another
characteristic velocity w as

s [m]w = s [j] =

∫
V

s [v] ρ dV =

∫
V

s [1]u ρ dV (113)

With the definition stated in (113), the various relations of balance, which
have been presented above, reduce to the following useful forms:

Balance of total linear momentum, see (79):

dj

dt
= F + s [m]w (114)

This coincides with the Seeliger-Meshchersky relation (25) for the single
point mass.

Balance of center-of-mass linear momentum, see (83) and (84):

djc

dt
= F + s [m]

(
w −

dc

dt
+

dc̃

dt

)
+

d2m

dt2
(c̃− c) (115)

With (65), this becomes

m
d2c

dt2
= F + s [m]

(
w − 2

dc

dt
+

dc̃

dt

)
−

d2m

dt2
(c̃− c) (116)

Note that this relation is Galilei-invariant. For c = c̃, (116) reduces to (27)
for the single mass point. For a mechanical system consisting of a set of
discrete mass points, (116) is due to Federhofer (1922).
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Balance of moment of momentum, see (89) and (90):

dα∗

dt
= c× F +

∫
V

p′ × (b − Σ×) dV+

∫
S

p′ × σndS

+ c× s [m]w +

∫
V

p′ × s [1]u ρ dV (117)

If the material volume V shrinks to a single mass point, such that the relative
position vectors p′ shrink to zero, this Galilei-invariant form reduces to (32).

Balance of center-of-mass moment of momentum, see (92), (93)
and (84):

dαc

dt
= c× F + c× s [m]

(
w −

dc

dt
+

dc̃

dt

)
+ c×

d2m

dt2
(c̃− c) (118)

or, substituting (69),

c×m
d2c

dt2
= c× F + c× s [m]

(
w − 2

dc

dt
+

dc̃

dt

)
+ c×

d2m

dt2
(c̃− c) (119)

When c = c̃, this reduces to (32).

Balance of kinetic energy, see (99)–(101):

dEkin

dt
= F ·

dc

dt
+

∫
V

v′ · b dV +

∫
S

v′ · σndS −

∫
V

tr (Σ · grad v′) dV

+ s [m]

(
w −

1

2

dc

dt

)
·
dc

dt
−

dc

dt
·

∫
V

v′s [1] ρ dV +

∫
V

v′ · s [1]

(
u−

1

2
v′
)
ρ dV

(120)

When V shrinks towards a single mass point, this reduces to the balance of
translational kinetic energy (38).

Balance of center-of-mass kinetic energy, see (103)–(105):

dEc

kin

dt
= F ·

dc

dt
+ s [m]

(
w −

3

2

dc

dt
+

dc̃

dt

)
·
dc

dt
−

d2m

dt2
(c− c̃) ·

dc

dt
(121)

When c = c̃, this reduces to (38).
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3 Global relations of balance written for a non-

material control volume

3.1 The Reynolds transport theorem

We now release the assumption of a material volume V that moves to-
gether with the material particles contained in it. Instead, we consider a
so-called open system with a non-material control volume V , the surface
S of which moves at a velocity u that is different from the velocity v of
the material particles instantaneously located on that non-material control
surface S. In this situation, a flow of mass through S will be present im-
plying that the total mass contained in V in general will not be conserved.
As is shown below, the above methodology for taking into account material
sources of mass inside a material volume can be adopted in the present case
by analogy. Moreover, the presence of material sources of mass as well as of
non-classical supply terms for other entities can be additionally taken into
account, when there is a flow of mass through the non-material control sur-
face S. In demonstrating this, we use the transport theorem by Reynolds
(1903), cf. Truesdell and Toupin (1960). As has been discussed in some
detail by Irschik and Holl (2004), the transport theorem can be put into a
form that involves both, the rate of the total of some entity contained in a
non-material control volume, as well as the rate of this entity contained in
the material volume that instantaneously coincides with the non-material
control volume.

In a generalized form, this version of the Reynolds transport theorem
can be stated as follows. Consider a scalar or vector quantity Ψ, which is
the total of a local entity ψ ρ carried by the particles in the volume V under
consideration:

Ψ =

∫
V

ψ ρ dV (122)

Then the transport theorem can be written as

du
dt

Ψ =
dΨ

dt
+ su [Ψ] (123)

with the non-classical supply

su [Ψ] =

∫
S

n · (u− v)ψ ρ dS (124)

The operator du/dt in (123) indicates that the time-rate refers to the motion
of the non-material control volume V , while d/dt means the time rate con-
sidering the motion of the material volume that instantaneously coincides
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with the latter. The surface integral in (124) vanishes, when V is a material
volume, since then u = v. Various useful versions of (123) and (124) are
listed below, where the rates with respect to the motion of the material
volume, dψ/dt in (123), can be substituted directly from the equations of
balance presented above in Subsections 2.2–2.12. Note that additional con-
siderations are needed in the presence of a singular surface, on which ψ ρ
takes on different values at the two sides of this surface. This case will be
discussed in Section 4 below.

3.2 Balance of mass

For balance of mass, there is ψ = 1, Ψ = m, see (46). With (47), we
obtain from (123) and (124) that

du
dt

m = s [m] + su [m] (125)

with the additional, non-classical supply of mass

su [m] =

∫
S

n · (u− v)ρ dS (126)

3.3 Balance of linear momentum

With the definition of total linear momentum j stated in (62), we set
ψ = v, Ψ = j in (123) and (124). Substituting (79), this yields

du
dt

j =
d

dt
j + su [j] = F + s [j] + su [j] (127)

with the additional non-classical supply of linear momentum

su [j] =

∫
S

n · (u− v)ρ v dS (128)

The apparent analogy between the global equations of balance of mass
and linear momentum for a material volume with material sources of mass
and for a non-material control volume with a flow of mass trough its surface
along with various applications, particularly in fluid mechanics and rock-
etry, has been discussed in the review by Irschik and Holl (2004). Note that
the cases of material sources of mass in the interior and of a flow of mass
through the surface have been treated separately in Irschik and Holl (2004).
In the present case of taking into account both, material sources in the in-
terior and a flow of mass through the surface, in the equations of balance
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presented above in Subsections 2.2–2.12, it is only necessary to replace the
time rate dΨ/dt by duΨ/dt, in order to indicate that there is a flow of mass
through the surface S, and to replace s [Ψ] by the sum s [Ψ] + su [Ψ]. This
is subsequently shown for various relations of balance. A further remark
seems to be in order: It is evident from (127) that a relation of balance
for a non-material control volume with a flow of mass through the surface
can be brought into the form valid for the material volume that instanta-
neously coincides with the former non-material volume. This follows from
the canceling of the non-classical supply su[Ψ] in (127). However, in many
practical applications it is necessary to compute the time rate duΨ/dt, fol-
lowing the motion of the volume with a flow of mass through the surface,
instead of dΨ/dt.

3.4 Balance of moment of momentum

We set ψ = p× v and Ψ = α∗ in (123) and (124). Using (89), this gives

du
dt

α∗ =
d

dt
α∗ + su[α

∗]

=

∫
V

p× (b − Σ×) dV +

∫
S

p× σndS + s [α∗] + su [α
∗] (129)

with the additional non-classical supply of moment of momentum

su [α
∗] =

∫
S

n · (u− v) p× ρ v dS (130)

3.5 Balance of kinetic energy

Setting ψ = v·v/2 and Ψ = Ekin in (123) and (124) and substituting (98)
gives:

du
dt

Ekin =
d

dt
Ekin + su [Ekin]

=

∫
V

v · b dV +

∫
S

v · σndS −

∫
V

tr (Σ · gradv) dV + s [Ekin] + su [Ekin] ,

(131)

with the non-classical additional supply of kinetic energy

su [Ekin] =

∫
S

n · (u− v)
1

2
ρ v · v dS (132)
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Similar extensions can be written down for the center-of-mass oriented rela-
tions of balance stated above. Particularly, balance of center-of-mass linear
momentum has been treated in some detail in Irschik and Holl (2004), but
separately from the case of sources of mass in the interior. In the following,
we give extended and additional relations.

3.6 Some useful relations involving the center of mass

Subsequently, we repeatedly utilize balance of mass in the form (123)–
(124). The definition of the position vector c of the instantaneous center of
mass from the origin of the inertial frame stated above in (56), the split of
the position vector in (57) and its consequence (58) remain unchanged.

Time-wise differentiation of (56) in the presence of a flow of mass through
the surface gives

du
dt

(mc) =
du
dt

∫
V

c ρ dV = m
dc

dt
+ (s [m] + su [m]) c

=
du
dt

⎛
⎝∫

V

p ρ dV

⎞
⎠ =

d

dt

⎛
⎝∫

V

p ρ dV

⎞
⎠+

∫
S

n · (u− v) ρ p dS

=

∫
V

v ρ dV +

∫
V

p s [1] ρ dV +

∫
S

n · (u− v) ρ p dS (133)

The transport theorem (125) and (126) has been used for expressing the
time-rate of the volume integral in (133). Analogous to (60), a further
characteristic place c̃ is introduced by defining

(s [m] + su [m]) c̃ =

∫
V

p s [1] ρ dV +

∫
S

n · (u− v) ρ p dS

= (s [m] + su [m]) c+

∫
V

p′s [1] ρ dV +

∫
S

n · (u− v) ρ p′dS (134)

see (49). Substituting into (133) yields

∫
V

v ρ dV = m
dc

dt
+ (s [m] + su [m]) (c− c̃)

= m
dc

dt
−

∫
V

p′s [1] ρ dV −

∫
S

n · (u− v) ρ p′dS (135)
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Recalling that the split of the absolute velocity in (63), the resulting rep-
resentation of the linear momentum in (62), as well as the definition of the
center-of-mass linear momentum in (65) and the split of the linear momen-
tum in (64) remain unchanged, we now have, in extension of (62):

j =

∫
V

v ρ dV = m
dc

dt
+

∫
V

v′ρ dV

= m
dc

dt
+ (s [m] + su [m]) (c− c̃) = jc + j′ (136)

The relative linear momentum becomes

j′ =

∫
V

v′ρ dV = (s [m] + su [m]) (c− c̃)

= −

∫
V

p′s [1] ρ dV −

∫
S

n · (u− v) ρ p′dS (137)

Analogously, we get for the total moment of momentum of the body with
respect to the origin of the inertial frame, see (67):

α∗ = αc + α′ + c× (s [m] + su [m]) (c− c̃) (138)

The definitions of the center-of-mass and the relative moment of mo-
mentum in (69) and (70) remain unchanged.

The total kinetic energy of the body in the absence of an intrinsic spin
of the particles, see (71), becomes

Ekin = Ec

kin + E′
kin +

dc

dt
· (s [m] + su [m]) (c− c̃) (139)

with the center-of-mass and the relative kinetic energy as given in (73)
and (74).

3.7 Balance of center-of-mass linear momentum

Using the definition of the center-of-mass linear momentum in (65) and
substituting (136), the relation of balance of linear momentum (127) can be
reformulated to the following form:

du
dt

j =
du
dt

(jc + (s [m] + su [m]) (c− c̃)) = F + s [j] + su [j] (140)
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Performing the operation du/dt, we obtain the following center-of-mass ori-
ented formulation of balance of linear momentum:

du
dt

jc = m
d2c

dt2
+ (s [m] + su [m])

dc

dt
= F + s [jc] + su [j

c] (141)

with the non-classical supply of center-of-mass linear momentum

su [j
c] = −su [m]

(
dc

dt
−

dc̃

dt

)
−

(
d

dt
su [m]

)
(c− c̃) + su [j] (142)

For the case without a flow of mass through the surface, see (84). Having
derived (141)–(142) in some detail, we subsequently list additional results
by direct analogy to the equations of balance, which have been presented
above in Subsections 2.2–2.12 for the case without a flow of mass through
the surface.

3.8 Balance of relative moment of momentum

du
dt

j′ = s [j′] + su [j
′] (143)

su [j
′] = su [j]− su [j

c] = su [m]

(
dc

dt
−

dc̃

dt

)
+

(
d

dt
su [m]

)
(c− c̃) (144)

with su [j
c] of (142).

3.9 Balance of center-of-mass moment of momentum

du
dt

αc = c ×m
d2c

dt2
+ c × (s [m] + su [m])

dc

dt
= c × F + s [αc] + su [α

c]

(145)

su [α
c] = c× su [j

c] (146)

with su [j
c] of (142).

3.10 Balance of relative moment of momentum

du
dt

α′ =

∫
V

p′ × b dV+

∫
S

p′ × σndS −

∫
V

p× Σ×dV + s [α′] + su [α
′] (147)

su [α
′] = −

dc

dt
× (su [m] (c− c̃)) +

∫
S

n · (u− v) p′ × ρ v dS (148)
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3.11 Balance of center-of-mass kinetic energy

du
dt

Ec

kin = F ·
dc

dt
+ s [Ec

kin] + su [E
c

kin] (149)

su [E
c

kin] = −su [m]

(
3

2

dc

dt
−

dc̃

dt

)
·
dc

dt
−

(
d

dt
su [m]

)
(c− c̃) ·

dc

dt
+ su [j] ·

dc

dt
(150)

3.12 Balance of relative kinetic energy

du
dt

E′
kin =

∫
V

v′ · b dV +

∫
S

v′ · σndS

−

∫
V

tr (Σ · grad v′) dV + s [E′
kin] + su [E

′
kin] (151)

su [E
′
kin] = −su [m]

d2c

dt2
· (c− c̃)

−

∫
S

n · (u− v) ρ v′dS −

∫
S

n · (u− v) ρ

(
1

2
v′ · v′

)
dS (152)

3.13 Application to rigid bodies

The above formulations do hold irrespective of the specific deformation
behavior of the bodies under consideration. As a theoretically as well as
practically important special case, which also allows an exemplary compar-
ison of our formulations with results from the literature, we consider a rigid
body in what follows. An interesting case is represented, e.g., by the prob-
lem of a rigid body that experiences a surface growth, see Ong and O’Reilly
(2004). In this case, the surface of the body moves at a velocity u that
in general is different from the velocity v of the particles instantaneously
located on it. Thus, our above methodology is applicable. For a rigid body,
the velocity of a material particle is given by the Euler velocity formula,
see Ziegler (1998):

v = vc + ω × p′ (153)

Here, vc denotes the velocity vector of the material particle, which “instan-
taneously coincides with the position vector c of the center of mass”. Of
course, it is a delicate matter to talk about such a particle, since the center
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of mass may not even be situated inside the body, see the remarks given
above. However, for a rigid body it is quite straightforward to consider a
fictitious rigid extension of the body towards the instantaneous location of
the center of mass. In general, the velocity vc is different from the velocity
of the center of mass, dc/dt. The angular velocity of the rigid body in (153)
is denoted as ω.

We first present some useful formulas involving the velocity of the mate-
rial particle that instantaneously coincides with the center of mass c. Sub-
stituting (153) into (62), we obtain for the linear momentum of the rigid
body

j =

∫
V

v ρ dV = mvc + ω ×

∫
V

p′ρ dV = mvc (154)

which coincides with (4.2) of Ong and O’Reilly (2004).

Moreover, substituting (153) into (67), the moment of momentum for
the rigid body becomes

α∗ =

∫
V

p× v ρ dV = c ×m vc +

∫
V

p′ × (ω × p′) ρ dV = c × j + J ′ · ω

(155)

with

J ′ =

∫
V

((p′ · p′) I − p′ ⊗ p′) ρ dV (156)

The tensor of inertia relative to the center of mass is denoted as J ′, see Ziegler
(1998), compare (10) for the single mass point. Note that (155) coincides
with (4.4) and (4.6) of Ong and O’Reilly (2004).

For kinetic energy, substituting (153) into (71) yields

Ekin =
1

2

∫
V

v · v ρ dV =
1

2
mvc · vc + vc · ω ×

∫
V

p′ρ dV

+
1

2

∫
V

(ω × p′) · (ω × p′) ρ dV =
1

2
mvc · vc +

1

2
(J ′ · ω) · ω (157)

see (4.8) of Ong and O’Reilly (2004).

It is to be noted that the relations (154)–(157) are well-known for rigid
bodies without sources of mass in the interior and without a flow of mass
trough the surface, cf. Ziegler (1998). In order to establish a connection
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to the more general relations stated above, we equate (153) and (63), from
which it is found that

v′ = vc + ω × p′ −
dc

dt
(158)

Substituting into the relation for the relative linear momentum (137) yields

j′ =

∫
V

v′ρ dV = m

(
vc −

dc

dt

)
= (s [m] + su [m]) (c− c̃) (159)

from which it follows that

mvc = m
dc

dt
+ (s [m] + su [m]) (c− c̃) (160)

This is also obtained from a direct comparison of (136) and (154).
Having stated the useful expressions (154)–(157) for linear momentum,

moment of momentum and kinetic energy, which are based on the entities
vc, J

′ and ω of the rigid body, we proceed with formulating the relations of
balance taking into account the assumption of rigidity.

Balance of linear momentum With (154), the time rate of linear mo-
mentum in the presence of sources of mass in the interior and a flow of mass
through the surface can be formulated as

du
dt

j =
du
dt

(mvc) =
du
dt

∫
V

vc ρ dV

=
d

dt

∫
V

vc ρ dV +

∫
S

n · (u− v) ρ vc dV = m
dvc
dt

+ (s [m] + su [m]) vc

(161)

where the transport theorem (123), (124) has been utilized. Equating (161)
and (127), we obtain

m
dvc
dt

+ (s [m] + su [m]) vc = F + s [j] + su [j] (162)

Substituting the Euler velocity formula (153), the non-classical supplies of
momentum su [j], see (128), for the rigid body becomes:

su [j] = vc

∫
S

n · (u− v) ρ dS + ω ×

∫
S

n · (u− v) ρ p′dS

= vc su [m] + ω ×

∫
S

n · (u− v) ρ p′dS (163)
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Relation (162) thus reduces to

m
dvc
dt

+ s [m] vc = F + s [j] + ω ×

∫
S

n · (u− v) ρ p′dS (164)

This coincides with (7.3) and (7.4) of Ong and O’Reilly (2004) for the case
of s [m] = 0 and s [j] = 0. Now, since vc is the velocity of the material
particle that instantaneously coincides with the center of mass, and since
the latter in general is moving with respect to the rigid body, the time
derivative dvc/dt in general can not be expected to coincide with the ac-
celeration ac of the material point that instantaneously is located at the
center of mass. A further clarification of the mechanical meaning of the
derivative dvc/dt therefore is deemed desirable. For that sake, we use the
Euler formula for the acceleration a of a material particle of a rigid body,
see Ziegler (1998):

a =
dv

dt
= ac + β × p′ + ω × (ω × p′) (165)

The angular acceleration of the body is denoted as β, and ac is the absolute
acceleration of the material particle that instantaneously is situated at the
place of the center of mass. Utilizing (80), the relation of balance of linear
momentum (127) becomes:

du
dt

j =
d

dt
j + su [j] =

∫
V

dv

dt
ρ dV +

∫
V

v s [1] ρ dV + su [j] = F + s [j] + su [j]

(166)
Cancelling out the non-classical supply su [j], substituting (166) and (153)
and noting (58) yields

mac + s [m] vc = F + s [j]− ω ×

∫
V

p′s [1] ρ dV (167)

Comparing (164) and (167), the following illustrative explanation of the
difference between ac and dvc/dt is obtained:

mac −m
dvc
dt

= −ω ×

⎛
⎝∫

V

p′s [1] ρ dV +

∫
S

n · (u− v) ρ p′dS

⎞
⎠

= ω × j′ = ω × (s [m] + su [m]) (c− c̃) (168)

see (137) for the relative linear momentum j′. Only when ω × j′ vanishes,
this difference disappears.
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A further remark seems to be in order. As already discussed above, a
relation of balance can be brought into a form, in which the non-classical
supply due to the flow of mass through the surface formally cancels out.
This is demonstrated for balance of relative moment of momentum next.

Balance of relative moment of momentum For comparison’s sake,
we study balance of moment of momentum relative to the canter of mass.
From (155), it is immediately seen that the relative moment of momen-
tum (70) for the rigid body is

α′ =

∫
V

p′ × (ω × p′) ρ dV = J ′ · ω (169)

This follows by substituting (156) into (70), and noting (58). Using Ψ =
p′ × (ω × p′) in (123)–(124), the transport theorem yields the relation of
balance of relative moment of momentum as

du
dt

α′ =

∫
V

p′ × b dV+

∫
S

p′ × σndS −

∫
V

p× Σ×dV

+ s [α′] +

∫
S

n · (u− v)ρ (p′ × (ω × p′)) dS (170)

where the non-classical supply due to a flow of mass through the surface in
case of a rigid body is given by

su[α
′] =

∫
S

n · (u − v)ρ (p′ × (ω × p′)) dS (171)

For this relation, compare (6.10) of Ong and O’Reilly (2004), and the liter-
ature cited there. For the rigid body, we moreover obtain

d

dt
α′ =

d

dt
(J ′ · ω) =

(
d

dt
J ′

)
· ω + J ′ · ω̇, (172)

see (156) and (169). Taking into account (49), the time derivative of the
tensor of relative inertia J ′ can be written as

d

dt
J ′ =

d

d

∫
V

((p′ · p′) I − p′ ⊗ p′) ρ dV

= ω × J ′ + ω ·

∫
V

((p′ · p′) I − p′ ⊗ p′) s[1]ρ dV (173)
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We thus can re-write (170) in the following form, which no longer con-
tains su[α

′]:

(
d

dt
J ′

)
·ω+′ ·ω̇ =

∫
V

p′× b dV +

∫
S

p′×σndS−

∫
V

p×Σ×dV + s[α′] (174)

In case of Σ× = 0, s[1] = 0 and s [α′] = 0, this coincides with (7.7)
of Ong and O’Reilly (2004). Analogous derivations can be performed for
the other relations of balance, e.g., for balance of kinetic energy.

Balance of kinetic energy For the rigid body, using (153) and (58)
and some vector algebra, the relation of balance of kinetic energy in (131)
reduces to

du
dt

Ekin =
d

dt
Ekin + su[Ekin]

= vc · F + ω ·

⎛
⎝∫

V

p′ × b dV +

∫
S

p′ × σndS

⎞
⎠+ s[Ekin] + su[Ekin] (175)

Setting s[Ekin] = 0, and substituting su[Ekin] of (130), this coincides with
(8.3) and (8.5) of Ong and O’Reilly (2004).

4 Presence of a singular surface in a material volume

So far, we have tacitly assumed that the entities under consideration are
distributed continuously throughout the volume V . Now assume that a
(smooth) singular surface S̄ is present within V , such that S̄ subdivides V
into two non-material sub-volumes. At a singular surface S̄, certain local
entities ρψ, e.g., mass and linear momentum, and their supplies may take
on different values at the two sides of the singular surface S̄. Moreover, the
points of S̄ may move at a velocity w, which in general is different from
the velocities of the particles that instantaneously are located at the two
sides of S̄. In order to connect the local forms of the balance relations at
the two sides of the singular surface, jump relations are needed. A classical
strategy for deriving jump relations was presented by Truesdell and Toupin
(1960): The Reynolds transport theorem is applied to the two non-material
sub-volumes, taking into account the motion of S̄ relative to the material
particles and adding the results. The volume V then is shrunken down
to the singular surface S̄, assuming that the integrands of the respective
volume integrals remain bounded, and letting the surface S̄ be finite in the
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limit. The result of this procedure is the jump relation of Kotchine (1926).
The Kotchine jump relation takes into account the jump of the entity ρψ
across S̄ in a straightforward manner, however, this procedure is at the
cost of not considering the particles that instantaneously are passing the
singular surface S̄, as well as some non-classical concentrated supplies that
may travel with S̄. This conceptual drawback can be removed by applying
the following more general strategy, which was described in some detail
by Irschik (2003). This strategy is discussed and adopted for variable mass
systems in the following.

4.1 On a generalized form of the general relation of jump at a
singular surface

The methodology proposed by Irschik (2003) consists of several steps.
First, instead of starting with the assumption of a singular surface, one stud-
ies a non-material shell-type layer of transition, within which the entity ρψ
and its sources are subjected to considerable changes in their spatial distri-
bution. One then replaces the shell-type layer of transition by an equivalent
singular surface S̄, where several terms in the transport theorem for the non-
material layer are represented by surface supply terms that equivalently de-
scribe the behavior of the respective quantity contained in the non-material
shell-type layer. Motivated by fundamental studies of Slattery (1990) on
interfacial transport theorems, a rational mechanical and thermodynamic
formulation for this general strategy was presented in Irschik (2003), see
also Irschik (2004) and Irschik (2007). This formulation contains the clas-
sical Kotchine jump relation as a special case. The additional equivalent
surface supply terms have been denoted as surface growth terms by Irschik
(2003). In the following, we shortly review the latter rational formulation
with special emphasis on the presence of both, a surface supply of mass and
linear momentum at the equivalent singular surface S̄, and we demonstrate
that and show how a surface supply of kinetic energy must be introduced
for the sake of consistency, even when the surface supplies of mass and lin-
ear momentum do vanish. In the subsequent Section 5, we will exemplarily
apply these extended jump relations to the case of a chain heaped up on the
edge of a table, the hanging part of the chain being set into motion. In this
study, the transition from the heaped part to the moving part of the chain
is described by the extended jump relations, while the equation of motion
for the moving part is obtained by the relations of balance written for a
non-material control volume, which have been stated in Section 3 above.
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4.2 Jump of mass

The extended relation of jump of mass at an equivalent singular surface S̄
as derived by Irschik (2003) can be written as

nS̄ · (iS̄ [ρ] + [[(v − w) ρ ]]) = 0 (176)

The outer unit normal vector at the equivalent singular surface is nS̄ , and
the vector iS̄ [ρ] represents the non-classical equivalent surface supply of
mass at S̄. Note that the dimension “dim” of any non-classical surface
supply iS̄ [k], say, is given by:

dim (iS̄ [k]) =
dim (k)

dim (time) dim (area)
(177)

The jump operator at S̄ is defined as the difference of the entities k at the
two sides of:

[[k ]] = k+ − k− (178)

In the following, the unit outer normal vectors at the two sides of S̄ are
taken such that n+ = nS̄ and n− = −nS̄ .

4.3 Jump of linear momentum

The extended relation of jump of linear momentum reads

nS̄ · (iS̄ [ρ v] + [[(v − w)⊗ ρ v − Σ]]) = 0 (179)

where the second-order tensor iS̄ [v ρ] represents the non-classical equivalent
surface supply of linear momentum at S̄.

4.4 Jump of kinetic energy

The extended relation of jump of kinetic energy reads

nS̄ ·
(
iS̄

[
ρ
v · v

2

]
+
[[
(v − w) ρ

v · v

2
− v · Σ

]])
= 0 (180)

The non-classical surface supply of kinetic energy at S̄ is a vector denoted
as iS̄ [ρ v · v/2]. It has been shown by Irschik (2003) that the non-classical
surface supplies of mass, linear momentum and kinetic energy are not inde-
pendent. Rather, iS̄ [ρ v · v/2] must obey the following relation:

nS̄ · iS̄

[
ρ
v · v

2

]
=

(
〈v · v〉

2
− 〈v〉 · 〈v〉

)
nS̄ · iS̄ [ρ ]

+ 〈v〉 · (nS̄ · iS̄ [ρ v]) + [[v]] · (nS̄ · 〈Σ〉) (181)
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The mean value operator of some entity k across S̄ is given by

〈k〉 =
1

2

(
k+ + k−

)
(182)

It is seen from (181) that, even if the non-classical equivalent surface sup-
plies of mass and linear momentum are absent, it is generally necessary to
consider a non-classical equivalent surface supply of kinetic energy. Sub-
sequently, we give an example, in which a non-classical equivalent surface
supply of mass must be introduced for modeling reasons.

5 Example for the formulations in Sections 3 and 4:

Caley’s chain set into motion

The example of a chain heaped up on a table with the hanging part being set
into motion has been chosen by Cayley (1856) in a fundamental contribution
on the dynamics of what he called continuous impact problems, see Fig. 1
for a sketch.

s = s(t)

Figure 1. Chain hanging over the edge of a table.

Cayley wrote: “A problem of the sort arises when a portion of a heavy
chain hangs over the edge of the table, the remainder of the chain being
coiled or heaped up close to the edge of the table, the part hanging over
constitutes the moving system, and in each element of time the system takes
into connexion with itself, and sets into motion with a finite velocity an
infinitesimal length of the chain.” Cayley used this problem in order to
demonstrate the application of a novel variational formulation, as well as of
a corresponding extended form of Lagrange’s equations. For a contemporary
discussion on Cayley (1856), see Irschik (2012).

Subsequently, we use Cayley’s example of a chain set into motion in
order to apply the formulations stated in Sections 3 and 4. For extended
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forms of Lagrange’s equations for mechanical systems with a variable mass,
see Irschik and Holl (2002), Pesce (2003) and the Chapter by Pesce in the
present book.

5.1 The hanging part of the chain as a system with a time-
varying mass

The chain is assumed to be inextensible and to be coiled up loosely at
the table, the hanging part having the instantaneous length s = s(t). In
a first step, the hanging part of the chain is described as an open system.
For that sake, it is enclosed by a non-material control surface S, see the
dashed surface in Fig. 2. For this surface, the formulas of Section 3 above
do apply. The upper horizontal part of S is located immediately under
the edge of the table and is fixed in space, such that there is u = 0; the
particles of the inextensible chain enter there the control volume at the
velocity v = (ds/dt)ex = ṡ ex, see Fig. 2. The outer unit normal vector n at
this location is opposite to the global x-direction, n = −ex; a superimposed
dot denotes the time derivative. Hence, there is n · (u − v) = ṡ in (124).
Note that the chain in general is stressed at this upper horizontal location
of the control surface S. Denoting the mass of the chain per unit length
as μ, and the tensile force in the chain at the upper horizontal part of
the control surface as N , Cauchy’s fundamental theorem on stresses yields
n ·Σ = −N(ρ/μ)ex. The lower horizontal part of the control surface moves
together with the tip of the chain, u = v = ṡ ex, such that there is u−v = 0
in (124); also, the chain is free of stress there, n · Σ = 0, see Fig. 2. The
vertical portions of S do not contribute to the relations of balance, since no
material is present there.

The instantaneous mass of the hanging part of the chain is m = μ s,
such that

du
dt

m = μ ṡ (183)

Recall that the operator du/dt means that we consider the motion of the
non-material control volume; in other words, s = s(t) in m = μ s is not kept
fixed, which leads to (183). The additional, non-classical supply of mass
due to the flow of mass through the control surface becomes, see (126),

su[m] =

∫
S

n · (u− v)ρ dS = μ ṡ (184)

Further recall that only the upper part of the control surface in Fig. 2
contributes to the surface integral. Substituting (183) and (184), it is seen
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s = s(t)

ex

S

u = v = 0, n = ex, n · Σ = 0

u = 0, v = ṡ ex, n = −ex, n · Σ = −N
ρ

μ
ex

Figure 2. Non-material control volume S enclosing the hanging part of the
inextensible chain.

that balance of mass (125) indeed is satisfied. No sources of mass in the
interior are present, s[m] = 0.

We now proceed to balance of linear momentum (127) which we apply
for the open system depicted in Fig. 2. The instantaneous linear momentum
of the hanging part of the chain in x-direction is

j = μ s ṡ ex (185)

such that

ex ·
du
dt

j = μ s s̈+ μ ṡ2 (186)

For the additional, non-classical supply of linear momentum due to the
flow of mass through the control surface, see (128), one obtains analogous
to (184) that

ex · su[j] = ex ·

∫
S

n · (u − v)ρ v dS = μ ṡ2 (187)

The resultant force acting upon the hanging part of the chain is

ex · F = −N + μ g s (188)

where the last term represents the instantaneous weight of the hanging part
and g denotes the gravitational acceleration. With s[j] = 0, the relation
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of balance of linear momentum (127) thus yields the following equation of
motion:

μ s (s̈− g) +N = 0 (189)

Under the assumptions of an inextensible homogeneous chain in a vertical
motion due to its own weight, this relation is to be considered as exact;
however the normal force N in the chain at the upper horizontal part of the
control surface in Fig. 2 is yet unspecified.

5.2 Modeling of the region of transition between the moving and
resting parts of the chain by an equivalent singular surface

In order to set up an additional relation for N , the region of transition
between the part of the chain in motion and the heaped up part at rest now
is modeled by means of an equivalent singular surface S̄, see the dashed line
in Fig. 3, where the region of transition with the two outer surfaces S+ and
S− is also sketched.

S−

S+

N, ṡ

S̄ : w = 0

Figure 3. Equivalent singular surface modeling the region of transition
between the moving and the resting parts of the chain.

Since the equivalent singular surface S̄ is at rest, there is w = 0 in
the formulas of Section 4 above. Outer unit normal vectors, velocities and
stresses of the particles at the two sides of S̄ are as follows, see also Fig. 4:

S̄ : w = 0, nS̄ = n+ = ex,

S− : v− = 0, n− = −ex, n− · Σ− = 0,

S+ : v+ = ṡ ex, n+ · Σ+ = N
ρ

μ
ex

(190)

The heaped part of the chain, which is at rest, can be taken as unstressed
for the present purpose, N = 0 at S−, while the force in the chain at the side
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S−

S+

S̄ : w = 0
singular
surface

n− = −ex, v = 0

n+ = nS̄ = ex, v = ṡ ex

Figure 4. Details of equivalent singular surface.

S+ is N . For the situation sketched in Fig. 4, (190) yields for the relation
of jump of mass (176) that

nS̄ · iS̄ [ρ] = −ρ ṡ (191)

Note that nS̄ ·iS̄ [ρ] only vanishes, if the hanging part is at rest. This example
clearly demonstrates the necessity of extending the classical Kotchine-type
relations of jump by non-classical equivalent surface supply terms, as pro-
posed by Irschik (2003).

The next step is the relation of jump of linear momentum. (179). Sub-
stituting (190), one obtains for the non-classical equivalent surface supply
of linear momentum

ex · iS̄[ρ v] =

(
−ρ ṡ2 +N

ρ

μ

)
ex (192)

Analogously, the relation of jump of kinetic energy (180) gives for the non-
classical equivalent surface supply of kinetic energy that

ex · iS̄

[
ρ
v · v

2

]
= −

ρ ṡ3

2
+

N ρ

μ
ṡ (193)

It is easily checked that (181), which states the relation between the surface
supplies of mass, linear momentum and kinetic energy derived by Irschik
(2003), indeed is satisfied, since, at the equivalent singular surface S̄, there
is

S̄: [[v]] = ṡ ex, 〈v〉 =
ṡ

2
ex, 〈v · v〉 =

ṡ2

2
, [[v]] · (nS̄ · 〈Σ〉) =

N ρ

μ

ṡ

2
(194)

We now may distinguish two special cases: The first is obtained by
assuming that there is no non-classical surface supply of linear momentum,

ex · iS̄ [ρ v] = 0 (195)
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in (192), from which the chain force N becomes

N = Nnc = μ ṡ2 (196)

Substituting into the equation of motion (189) gives

μ snc (s̈nc − g) + μ ṡ2nc = 0 (197)

The solution with homogeneous intial conditions is

snc =
g t2

6
(198)

The solution stated in (197) and (198) has been obtained by Cayley (1856)
in the framework of another methodology. In the literature, this type of so-
lution has been called a non-conservative solution, see, e.g., Wong and Yasui
(2006). From this naming, the index “nc” has been introduced in (196)–
(198). Indeed, substituting (196), from (193) we obtain the following equiv-
alent surface supply of kinetic energy:

ex · iS̄nc

[
ρ
v · v

2

]
= ρ ṡ3 (199)

On the other hand, if we assume that the equivalent surface supply of kinetic
energy vanishes,

ex · iS̄

[
ρ
v · v

2

]
= 0 (200)

then (193) yields

N = Nc = μ
ṡ2

2
(201)

Substituting into the equation of motion (197), we now obtain

μ sc (s̈c − g) +
1

2
μ ṡ2c = 0 (202)

The solution for homogeneous initial conditions this time becomes

sc =
g t2

4
(203)

This solution, which predicts a fall of the chain faster than Cayley’s non-
conservative solution (198), has been called a conservative solution in the
literature, see Wong and Yasui (2006). Note, however, that this conservative
solution is associated with a non-classical supply of linear momentum, which
follows by substituting (201) into (192):

ex · iS̄c

[ρ v] =
ρ ṡ2

2
ex (204)
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The discrepancy between conservative and non-conservative solutions in
Cayley’s problem, as well as in related problems of falling chains, ropes,
cables and strings, has given raise to a long-term controversy in the liter-
ature. Here, we mention the more recent theoretical and/or experimental
works by Tomaszewski et al. (2006), Wong and Yasui (2006), Wong et al.
(2007), Grewal et al. (2011) and Irschik (2012).

It is hoped that the rational methodology given in the present section,
which is based on relations of balance of mass, linear momentum and ki-
netic energy for open systems, and on generalized corresponding relations
of jump, will contribute to a further clarification of the different results
in the literature. It should have become clear from our reasoning that a
more detailed modeling of the region of transition between the heaped and
the moving parts of the chain in general will lead to both, a non-vanishing
equivalent surface supply of linear momentum, as well as a non-vanishing
equivalent surface supply of kinetic energy, and thus will give raise to solu-
tions different from the above discussed two cases, cf. O’Reilly and Varadi
(1999) for a study on shocks.
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Systems with mass explicitly dependent on
position

Celso Pupo Pesce∗ and Leonardo Casetta†
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Abstract This chapter addresses an interesting type of variable
mass systems. Those in which mass may be explicitly written as
function of position. Two perspectives can be followed: systems
with a material type of source, attached to particles continuously
gaining or loosing mass and systems for which the variation of mass
is of a “control volume type”, mass trespassing a control surface.
This is the case if, for some theoretical or practical reason, par-
titions into sub-systems are considered. Whenever mass depends
explicitly on position, the Lagrange equation has to be carefully
re-interpreted. As a matter of fact, an extra non-conservative gen-
eralized force term, linearly proportional to the mass gradient and
quadratic on velocities, emerges from first variational principles.
Ignoring this term has been the cause of misleading derivations
of equations of motions and even of many misinterpretations, not
rarely provoking claims of false paradoxes. The present chapter
derives such an extended form of the Lagrange equation, through
Lagrangean and Hamiltonian approaches. Illustrative and practical
examples are taken from two engineering fields, offshore engineer-
ing and civil engineering. In the first category are included: (i)
the reel laying operation of marine cables; (ii) the dynamics of a
water column inside a free surface piercing open pipe (and the anal-
ogous moon pool problem) and (iii) the hydrodynamic impact of a
solid body against a free surface of water. In the second category,
the governing equation of motion of vertically collapsing towers is
properly derived.

1 Introduction

According to Mikhailov (1975), in his work on the history of variable mass
system dynamics, early in the nineteenth century the Czech scientist Buquoy
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proposed a generalization of the laws of dynamics to account for what he
named “possibility of continuous variation of the masses of parts of the
system”1. Buquoy noted that the classical form of Newton’s law is only valid
for the case of constant mass, the consideration of an extra term related to
the time rate of change of momentum of the system being necessary when
dealing with the case of mass variation. In the specialized literature, this
term is known as Meshcherski’s reactive force. In particular, Meshcherski’s
Master Thesis (Meshcherski (1897)), and his subsequent work Meshcherski
(1904), have been ever since recognized in the Russian technical literature
as the limestone in the study of variable mass systems within the context
of Classical Mechanics; see, e.g., Targ (1976), page 394 or Starjinski (1986),
page 498.

From Buquoy to Meshcherski, important period when the mechanics of
systems with variable mass started to be recognized as a particular branch of
mechanics, other important names, as Poisson (1819), Tait & Steele (1856),
Cayley (1857), contributed to the comprehension of the physical effects that
were involved in the process of mass variation of a system; see Mikhailov
(1975). Those authors independently suggested possible modifications and
interpretations in the classical formalism of mechanics in order to have vari-
able mass effects coherently taken into account. In fact, this is the prime
difficult in the proposition of a proper formalism for variable mass systems,
since the classical form of the fundamental principles and equations of me-
chanics were originally conceived to account for well defined bodies and
particles of constant mass. However, although this may be seen as an inter-
esting and challenging aspect, apart from few others, as Levi-Civita (1928),
and Agostinelli (1936), the subject did not attract too much attention of
their foregoers2.

A renewed interest in this subject strongly reappeared in the 1950’s and
1960’s, motivated by the “rocket problem” and the emerging Aerospace
Engineering. As a matter of fact, an interesting debate took place among
American scholars on how to properly interpret and teach variable mass sys-
tem dynamics in engineering education; see, e.g., Meriam (1960), Thorpe
(1962), Arons & Bork (1964), Bork & Arons (1964), Pomeranz (1964),
Van de Akker (1964), Gadsden (1966), Copeland (1982), Calkin & March
(1989a,b), Keifer (2001), Eke & Mao (2002), Chicon (2003), Wong & Yasui
(2006), Grewal et al (2011); see also Plastino & Muzzio (1992), Pesce &
Casetta (2007).

1In Buquoy’s terminology.
2The superb book by Dugas (1988) does not give too much emphasis on the variable

mass problem.
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The theoretical formalism concerning variable mass systems mechanics
regained vigor in the 1970’s, after Truesdell & Toupin (1960) and the work
by McIver (1973), followed, from the 90’s on, by a number of fundamental
articles, as those by Cvetićanin (1993, 2009), Irschik & Holl (2002, 2004),
Mušicki (1999, 2000, 2004), Shao-kai & Feng-xiang (1992) and Shan-jun et
al (2005). See also the recent contributions by Irschik (2012), Casetta &
Pesce(2012, 2013a,b).

Such a renewed interest followed the analysis and solution of practical
problems, which do represent important aspects of technology advances as
well as industrial necessities. This scenario can be featured, for example,
by the study of industrial coiling processes and variable mass machinery
dynamics, Cvetićanin (1998),Cveticanin & Kovacic (2007), Holl et al (2006)
and Holl & Hammelmuller (2011); or by the aerospace industry, in particular
motivated by tethered satellites dynamics, Janssens et al (1995); Crellin et
al (1997), Schwarzbart et al (2009). Applications and analogies within other
fields of sciences and engineering are also encountered, as in surface growth
mechanisms, Ong & O’Reilly (2004), or in the dynamics of electrical circuits,
Jeltsema & Doria-Cerezo (2011), Jeltsema (2012).

However, the comprehension of the adequate extension of the funda-
mental principles of mechanics to variable mass systems has shown to be
a process with many subtleties. Not surprisingly, controversial results and
paradoxes, even concerning apparently simple problems, as is the case of the
classic falling chain and rope problems, have been and still are discussed;
see, e.g., Calkin & March (1989a,b), Casetta (2008), Casetta & Pesce (2013)
Chicon (2003),Grewal et al (2011), Jimenez et al (2012), Keifer (2001),
Prato & Gleiser (1982), Schagerl et al (1997), Šima & Podolsky (2005),
Tomaszewski et al (2006), Wong & Yasui (2006), Wong et al (2007). Anal-
ogously, this is also the case of the vertically collapsing towers problem; see,
e.g., Bažant & Verdure (2007), Bažant et al (2008), Bažant & Le (2008),
Beck (2007, 2008), Pesce et al (2012), Seffen (2008). All those problems
are usually formulated under a special form of mass variation: the explicit
dependence on position.

However, whenever mass depends explicitly on position, the application
of the Lagrange equation has to be carefully re-interpreted. As a matter
of fact, an extra non-conservative generalized term, linearly proportional
to the mass partial derivative with respect to generalized coordinates and
quadratic on velocities, emerges from first variational principles; Cvetićanin
(1993), Pesce (2003). Ignoring this term may be attributed as the main
cause of misleading derivations and of many misinterpretations, Šima &
Podolsky (2005), Tomaszewski et al (2006), usually provoking claims of ap-
parent paradoxes, as those contained in Wong & Yasui (2006), later proven
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false by the same authors, in a meritorious scientific attitude; see Wong et
al (2007).

The present chapter derives such an extended form of the Lagrange equa-
tion, through Lagrangean and Hamiltonian approaches. Illustrative and
practical examples are addressed in two engineering fields, offshore and civil
engineering. In the first category are included: (i) the reel laying operation
of marine cables; (ii) the dynamics of a water column inside a free surface
piercing open pipe (and the analogous moon pool problem) and (iii) the
hydrodynamic impact of a solid body against a free surface of water. In the
second category, the governing equation of motion of vertically collapsing
towers is properly derived.

2 The Extended Lagrange Equations for Variable
Mass Systems

In this section, not only explicitly dependence on time and position but,
for completeness, a possible mass variation dependence on velocities is also
considered. A previous and independent derivation, restricted to the case of
explicit mass dependences on position and time may be seen in Cvetićanin
(1993, 1998). Two perspectives are followed: Lagrangean and Hamiltonian.
For completeness sake, the prologue and the following first subsection, corre-
sponding to the Lagrangean approach, are essentially recovered from Pesce
(2003) - almost in its totality3. The second subsection addresses the prob-
lem from a Hamiltonian point of view for dissipative systems and is, indeed,
new material.

Prologue

Kinetic energy, T = T (qj ; q̇j ; t), is, by definition, at least a bi-linear
form of generalized velocities, q̇j , and also, in many cases, a function of the
generalized coordinates, . However, physically speaking, there is a rather
large distinction between being the kinetic energy an explicit or an implicit
function of the kinematic state of the system, the latter through a possible
dependence of mass, in the form mi(qj ; q̇j ; t). Whenever this is the case,
the mechanical system does not obey the usual form of the classical Euler-

Lagrange equations d
dt

(
∂T
∂q̇j

)
− ∂T

∂qj
= Qj , unless non-conservative terms

associated to fluxes of mass are already considered included in Qj , as those
usually referred to as Mescherski’s reactive forces. Otherwise, the derived
equations of motion take an erroneous form. It could be argued that the

3Under kind permission of ASME - the American Society of Mechanical Engineers.
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usual Lagrange equations would be suitable to the case for which m =
m(t), mass varying solely as an explicit function of time. This is true,
however, only if mass is gained or lost at zero-velocity with respect to an
inertial frame of reference, as assumed by Agostinelli (1936), page 257, who
concluded being the Lagrange equations invariant for holonomic variable-
mass systems. In that particular work, Levi-Civita’s special form of the
momentum equation, ṗ = f , was used4, with no reference to any reactive
force proportional to the velocity of the particle that is being expelled from
or accreted to the system.

The reason for these subtle distinctions, concerning how mass changes,
if as an explicit or an implicit function of time, is shown next. The answer
hides behind the derivation of the most general form of the Lagrange equa-
tions, as presented, e.g., in Cvetićanin (1993). For now, it is pointed out
that, in systems with mass explicitly dependent on position, a naive appli-
cation of the usual Lagrange equations, without any special consideration
on generalized forces, leads to erroneous equations of motions which lack
terms of the form 1

2
∂m
∂q q̇

2.

The Lagrangean approach5

Consider a system of N particles of mass mi; i = 1, . . . , N . Let Pi be the
corresponding position in a given inertial frame of reference and pi = mivi

the momentum. By extending Levi-Civita’s form of Newton’s law to cases
when mass is gained or lost with no null velocity, D’Alembert’s Principle
can be written ∑

i

(ṗi − Fi).δPi = 0 (1)

where

Fi = fi + hi (2)

being fi the sum of all active forces acting on Pi, and

hi = ṁiwi (3)

a non conservative force, proportional to the rate of variation of mass
with respect to time and to the velocity of the expelled (or gained) mass.

4Dot designates the total derivative with respect to time, as usual.
5From another perspective, the inverse problem of Lagrangian mechanics for Meshch-

erski’s equation has been recently worked out in Casetta & Pesce (2013b), in which a

principle of stationary action is constructed from the equations of motion, by applying

the method of Darboux.
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Eq.1 is the so-called first form of the fundamental equation for a system of
discrete particles, which, according to Pars (1965), is a generalization both
of the virtual work principle as well as of D’Alembert principle. Mikhailov
(1975) attributes this form to Poisson. Concisely, it will be simply referred
to as D’Alembert principle.

Note that the reactive force known as Meshcherski’s is usually written
as function of relative velocities, in the form

Φi = ṁi(wi − vi) = hi − ṁivi (4)

making the first form of the fundamental equation, Eq.1, to be equiva-
lently written (see, e.g., Cvetićanin (1993))∑

i

(miai − (fi +Φi)).δPi = 0 (5)

with ai = v̇i, the acceleration. Consider virtual displacements δPi , and
a n-set of generalized coordinates qj (for simplicity, the system is considered
holonomic) such that.

δPi =
∑
j

∂Pi

∂qj
.δqj (6)

The velocities vi = vi(qj ; q̇j ; t); j = 1, . . . , n are, as usual, considered as
functions of generalized coordinates and derivatives, as well of time. The
following common and straightforwardly derivable kinematic relations, see,
e.g., Targ (1976), page 508, will be used as well:

∂vi

∂qj
=

d

dt

(
∂Pi

∂qj

)
(7)

∂vi

∂q̇j
=

∂Pi

∂qj
(8)

and

ai.
∂Pi

∂qj
=

dvi

dt
.
∂Pi

∂qj
=

d

dt

(
1

2

∂vi
2

∂q̇j

)
− ∂

∂qj

(
1

2
vi

2

)
(9)

We also define the generalized, non-conservative force, which already
includes the non conservative force hi = ṁiwi, as

Qj =
∑
i

Fi.
∂Pi

∂qj
=

∑
i

(fi + hi).
∂Pi

∂qj
(10)
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The simplest case of systems of particles with constant mass

For systems of constant mass, the kinetic energy Ti = 1
2mivi

2 of a given
particle Pi is, apart the mass mi, identified in both terms of equation 9,
such that

mi
dvi

dt
.
∂Pi

∂qj
=

d

dt

(
1

2

∂mivi
2

∂q̇j

)
− ∂

∂qj

(
1

2
mivi

2

)
=

d

dt

(
∂Ti

∂q̇j

)
− ∂Ti

∂qj
(11)

Observing that, in this simplest case, ṁi = 0 , such that ṗi = miai,
substituting (6) and (111) in the fundamental equation (1), and observing
that the generalized forces Qj reduce, from (10), to the usual form

Qj =
∑
i

fi.
∂Pi

∂qj
(12)

one easily obtains the usual Lagrange equations

d

dt

∂T

∂q̇j
− ∂T

∂qj
= Qj ; j = 1, . . . , n (13)

for a system where all particles have invariant mass.

Systems of particles with mass as explicit function of time mi =
mi(t)

Before discussing the more general case, where mi = mi(qj ; q̇j ; t), it is di-
dactic to consider the case where mass is solely an explicit function of time,
mi = mi(t) . The fundamental equation 1 reads,

∑
i

(ṗi− (fi + hi)).δPi =
∑
j

∑
i

(miai+ ṁivi− (fi + hi)).
∂Pi

∂qj
δqj = 0 (14)

The first term transforms as follows (see equation 9)
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miai.
∂Pi

∂qj
= mi

dvi

dt
.
∂Pi

∂qj
=

=
d

dt

(
1

2
mi

∂vi
2

∂q̇j

)
− dmi

dt

(
1

2

∂vi
2

∂q̇j

)
− ∂

∂qj

(
1

2
mivi

2

)
=

=
d

dt

(
1

2

∂mivi
2

∂q̇j

)
− dmi

dt

(
∂

∂q̇j

(
∂

∂mi

(
1

2
mivi

2

)))
− ∂

∂qj

(
1

2
mivi

2

)
=

=
d

dt

(
∂Ti

∂q̇j

)
− dmi

di

(
∂

∂q̇j

(
∂Ti

∂mi

))
− ∂Ti

∂qj
(15)

Observing equation 8, the second term in equation 14 transforms as,

ṁivi.
∂Pi

∂qj
=

dmi

dt
vi.

∂Pi

∂qj
=

dmi

dt
vi

∂vi

∂t
=

=
1

2

dmi

dt

∂vi
2

∂q̇j
=

dmi

dt

(
∂

∂q̇j

(
∂Ti

∂mi

)) (16)

This latter expression is the most general and concise form for the parcel
that depends on the variation of mass in the momentum time derivative.
Note that this form is exactly the opposite of the second term appearing on
the right hand side of equation 15. They cancel each other when (15) and
(16) are substituted into Eq. (14), leading to an equation of motion which
has the same form as (13), with the generalized forces extended as given by
(10).

This is a very subtle step which explains why a system of particles with
variable mass, but given solely as an explicit function of time, mi = mi(t),
obey the same form of Lagrange Equations that govern a system of parti-
cles of invariant mass. This is essentially Agostinelli (1936) result, page 257,
now having the generalized forces extended according to equation (10), by
including the nonconservative forces defined by (3).

Systems of particles with variable mass as function of time, gen-
eralized coordinates and velocities, mi = mi(qj ; q̇j ; t)

As before, use is made of the fundamental equation, in the form (14) besides
equations (7) - (10). In this general case the first term in (14) is given as
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mi
dvi

dt
.
∂Pi

∂qj
=

d

dt

(
1

2
mi

∂vi
2

∂q̇j

)
− 1

2

dmi

dt

(
∂vi

2

∂q̇j

)
−

− ∂

∂qj

(
1

2
mivi

2

)
+

1

2

∂mi

∂qj
vi

2 =

=
d

dt

(
1

2

∂mivi
2

∂q̇j

)
− 1

2

d

dt

(
∂mi

∂q̇j
vi

2

)
− 1

2

dmi

dt

(
∂vi

2

∂q̇j

)
−

− ∂

∂qj

(
1

2
mivi

2

)
+

1

2

∂mi

∂qj
vi

2 =

=
d

dt

(
∂Ti

∂q̇j

)
− 1

2

d

dt

(
∂mi

∂q̇j
vi

2

)
− dmi

dt

(
∂

∂q̇j

(
∂Ti

∂mi

))
− ∂Ti

∂qj
+

1

2

∂mi

∂qj
vi

2

(17)

This is the most general form for the parcel that depends on the accel-
eration in the momentum time derivative. Taking both most general forms,
(16) and (17), and substituting in (14), with the generalized forces given by
(10), one finally obtains6

d

dt

∂T

∂q̇j
− ∂T

∂qj
= Qj +

∑
i

(
1

2

d

dt

(
∂mi

∂q̇j
vi

2

)
− 1

2

∂mi

∂qj
vi

2

)
; j = 1, . . . , n

(18)

These are the dynamic equations for a system of particles with variable
mass in the form mi = mi(qj ; q̇j ; t). Or, simply, the extended Lagrange
equations. The last two terms can be interpreted as additional parcels of
the momentum time rate, caused by the changes in mass as functions of po-
sition and velocities. Alternatively, they could be interpreted as additional
nonconservative generalized forces which take into account the variation of
mass of each particle in the system. By properly defining a total noncon-
servative generalized force, Q̂j , equation (18) can finally be written in the
compact form,

d

dt

∂T

∂q̇j
− ∂T

∂qj
= Q̂j ; j = 1, . . . , n

Q̂j =
∑
i

(fi + ṁiwi).
∂Pi

∂qj
+

∑
i

{
1

2

d

dt

(
∂mi

∂q̇j
vi

2

)
− 1

2

∂mi

∂qj
vi

2

} (19)

6Recall that vi = vi(qj ; q̇j ; t); j = 1, . . . ,M
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Moreover, if the active forces fi are split into

fi = fci + fnci (20)

being fci conservative and fnci non-conservative parcels, respectively, and
such that

∑
i

fci .δPi = −
∑
j

∂V

∂qj
δqj (21)

being V the potential energy function, equation (19) can be written in
the convenient form,

d

dt

∂L

∂q̇j
− ∂L

∂qj
= Q̂nc

j ; j = 1, . . . , n

Q̂nc
j =

∑
i

(fnci + ṁiwi).
∂Pi

∂qj
+

∑
i

{
1

2

d

dt

(
∂mi

∂q̇j
vi

2

)
− 1

2

∂mi

∂qj
vi

2

} (22)

where L = T −V is the Lagrangean function. As a matter of fact, prob-
lems in classical mechanics where mass is an explicit function of velocities
are not so common, to say the least. Therefore, if just time and position
dependence is considered, one obtains,

d

dt

∂L

∂q̇j
− ∂L

∂qj
= Q̂nc

j ; j = 1, . . . , n

Q̂nc
j =

∑
i

(fnci + ṁiwi).
∂Pi

∂qj
−

∑
i

{
1

2

∂mi

∂qj
vi

2

} (23)

Equation (23) can be verified to agree with the derivation by Cvetićanin
(1993), for the practical case where mass is solely dependent on time and
on generalized coordinates (not in velocities). It must be observed that the
first term appearing in Cvetićanin’s equation (8) is exactly our term given
by equation (16). In the present derivation, the Meshcherski’s reactive force
has been split in the form Φi = ṁi(wi − vi) = hi − ṁivi, such that the
term given by equation (16) ends up to be cancelled out, as observed before,
turning the final equation (23) somewhat simpler in form.
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The Hamiltonian approach7

As pointed out by Cvetićanin (1993), depending on the form of the variable
mass reactive force, two types of systems may be considered: (i) those com-
pletely describable by means of a Lagrangean, despite the mass variation,
pertaining to the Levi-Civita case; (ii) those which are not, being purely
nonconservative in nature. In the second type, strictly speaking, Hamilton’s
action integral does not generally exits what turns the problem much more
complex. Cvetićanin (1993, 1998) takes D’Alembert’s differential variational
principle as being a basic physical invariant and obtains conservation laws
for this kind of systems.

On the other hand, following Pars (1965) words, “the beautiful theo-
rem known as Hamilton’s principle is, en essence, only an integrated form
of the fundamental equation, being the deduction of Lagrange’s equation
from this principle essentially the same process as that used in the deduc-
tion from the fundamental equation itself”. In this respect, the extended
form of Hamilton’s principle for dissipative systems, primarily conceived for
constant mass systems, is, see, e.g., Meirovitch (2003), page 68,

∫ t2

t1

(δT +
∑
j

Qjδqj)dt = 0 (24)

where δ(.) is the usual variational derivative operator; see, e.g., Gelfand
& Fomin (2000). The particular notation, δT , present in 24, refers to the
first variation of the kinetic energy of an invariant mass system. In the
scenario of discrete systems of variable mass, this form would represent the
first variation of the kinetic energy as if the particles of the system had, in-
stantaneously, invariant mass - it is here referred to as the “instantaneous”8

variational derivative; see Appendix. As shown below, in the most general
case, mi(qk, q̇k, t) , the extended Hamilton’s principle also follows from the
integration of the fundamental equation.

Firstly, notice that, Eq. (19) assumes what is sometimes called a fourth
fundamental form,

7From another perspective, a comprehensive account of Lagrange’s equation, from the

point of view of open systems, or non material volumes, may be found in Irschik &

Holl, 2004. Accordingly, a recent new derivation, from a Hamiltonian approach applied

to non material volumes, may be found in Casetta & Pesce(2013a).
8This term, though concise, may sound somewhat ambiguous, if virtual dislocations are

concerned.



62 C.P. Pesce and L. Casetta

∑
j

(
d

dt

∂T

∂q̇j
− ∂T

∂qj
− Q̂j

)
δqj = 0; j = 1, . . . , n

with

Q̂j =
∑
i

(fi + ṁiwi).
∂Pi

∂qj
+

∑
i

{
1

2

d

dt

(
∂mi

∂q̇j
vi

2

)
− 1

2

∂mi

∂qj
vi

2

} (25)

On the other hand, as shown in the Appendix, the “instantaneous” vari-
ational derivative of the kinetic energy of the variable mass system turns to
be

δT = δT −
∑
i

1

2
δmivi

2 =

=
∑
j

(
− d

dt

∂T

∂q̇j
+

∂T

∂qj
+

∑
i

(
d

dt

(
1

2

∂mi

∂q̇j
vi

2

)
− 1

2

∂mi

∂qj
vi

2

))
δqj+

+
∑
j

d

dt

(
∂T

∂q̇j
δqj

)
−

∑
j

∑
i

d

dt

(
1

2

∂mi

∂q̇j
vi

2δqj

) (26)

which, for the simpler time-dependent case, mi = mi(t) , simplifies as

δT =
∑
j

{
− d

dt

∂T

∂q̇j
+

∂T

∂qj

}
δqj +

d

dt

∑
j

(
∂T

∂q̇j
δqj

)
= δT (27)

By using the fourth fundamental form, (25), the variational derivative,
(26), reads

δT +
∑
j

Qjδqj −
∑
j

d

dt

(
∂T

∂q̇j
δqj

)
+

∑
j

∑
i

d

dt

(
1

2

∂mi

∂q̇j
vi

2δqj

)
= 0

with

Qj =
∑
i

(fi + ṁiwi).
∂Pi

∂qj

(28)

Equation (28) may be further integrated from instant t1 to t2, leading
to the same integral form given by (24). In fact, notice that the third and
fourth terms in the left-hand side of Eq. (28) integrates to zero, under the
usual assumption of prescribed configurations for the system at the instants
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of time t1 and t2; i.e., δqj |t1,t2 = 0. Conversely, for independent variations
δqj , and considering (26) - or the simpler form (27), valid for the case
mi = mi(t) - equation (24) leads to the extented Lagrange’s equation, (19)
(or to the corresponding simpler form), as expected9.

Applications

Attention is now turned on to some applications. Illustrative examples are
addressed in two engineering fields, offshore and civil engineering. In the
first category are included: (i) the reel laying operation of marine cables;
(ii) the dynamics of a water column inside a free surface piercing open pipe
(and the analogous moon pool problem) and (iii) the hydrodynamic impact
of a solid body against a free surface of water. In the second category,
the governing equation of motion of vertically collapsing towers is properly
derived. At last, considerations on the classical falling chain problem are
made.

Ocean Engineering problems

The Ocean Engineering field is an extraordinary source of interesting
dynamical problems. In this section three idealized problems are selected
to illustrate how the extended Lagrange Equations can help modeling tasks
and interpretations. They are ordered in an increasing degree of physical
complexity. The text below is essentially based on Pesce (2003), Pesce et al
(2006) and Casetta et al (2011)10.

The reeling cable deployed from a laying ocean barge

A common task in ocean and offshore engineering is the deployment of
cables on the sea bottom. Power supply, umbilical and telecommunication
cables are just few examples to be mentioned. Usually, the cable is deployed
from a reel, installed on the deck of a laying-vessel, sometimes through a
moon-pool, as schematically illustrated in Figure 1. The cable is supposed
to be acted on by the vessel, ocean current, sea waves, buoyancy and grav-
ity. Initially, and for simplicity, consider only buoyancy and gravity actions.
Also for simplicity, the suspended part of the cable is considered fully im-

9Generalized canonical equations of Hamilton can be also worked out, by adapting

Kozlov’s technique Kozlov (1998); see, e.g., Casetta & Pesce (2012) for the mi(t) case.
10Respectively, under kind permission of: ASME - the American Society of Mechanical

Engineers; ABCM - the Brazilian Society of Mechanical Sciences and Engineering;

SOBENA - the Brazilian Society of Naval Architects.
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(a) (b)

Figure 1. Figure 1. (a) Cable being deployed from a barge, through a
moon-pool. (b) The laying reel. From Pesce et al (2006).

mersed into the water. The reel radius is R and its moment of inertia
around the axis of rotation is I. Let μ be the mass per unit of length of
the cable, supposed non-extensible and infinitely flexible. Let θ be the gen-
eralized coordinate, measured, without loss of generality, from horizontal,
such that at a given instant t the suspended length is l(θ) = Rθ. Let also
L be the total length of the cable such that m = μL is the total mass of
the cable. For simplicity, take the cable diameter very small compared to
the radius of the reel such that the winding pitch is small enough for all
the turns be considered accommodated into a single winding layer. Let also
ms(θ) = μl(θ) = μRθ and mR(θ) = m−ms(θ) = μ(L−θR) be, respectively,
the suspended and the wound masses of the cable.

Obviously, for this particular problem, the best and shortest way to di-
rectly apply the Lagrange equation would be to consider the whole (invariant
mass) system. In this case, kinetic energy is simply

T =
1

2
(I +mR2)θ̇2 (29)

Accordingly, potential energy is given by,

V = −g
∫ Rθ

0

(μ− ρA)ζdζ = −1

2
(μ− ρA)R2θ2 =

− 1

2
((ms(θ)− ρARθ)gRθ) = −1

2
(1− β)μgR2θ2

(30)

where ρ is the density of water, A the area of the cross section of the
cable and β = ρA/μ is the mass density ratio. An extra non-conservative
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force has to be considered to model the hydrodynamic friction force acting
along the cable during the free-falling deployment. Otherwise, no limit
speed would be achieved, and the rotation speed of the reel would increase
indefinitely. This force may be written in the form

Ff (θ, θ̇) = −1

2
CdρD(Rθ̇)2l(θ) = −1

2
CfρDR3θθ̇2 (31)

with the viscous friction force nondimensional coefficient Cf = O(10−3).
The direct application of the usual Lagrange equation to this invariant mass
system, in the form,

d

dt

(
∂T

∂θ̇

)
− ∂T

∂θ
+

∂V

∂θ
= Qθ = FfR (32)

leads to the consistent equation of motion

(I +mR2)θ̈ − (1− β)μR2θ = Ff (θ, θ̇)R (33)

Suppose now that, for some practical reason, the analyst decides to take
a sub-system composed by the reel and by the wound part of the cable,
considering the suspended part of the cable as a second sub-system. Note
that the suspended part of the cable can be considered as a material point
gaining mass at rate ṁs(θ) , with velocity w = Rθ̇. The resultant of the
active forces applied to the suspended part is, therefore,

f(θ) = (ms(θ)− ρARθ)g − τ(θ) (34)

being τ(θ) the traction force at the upper section. Applying the extended
Levi-Civita form of Newton’s law to the suspended part, it is easily obtained

d

dt
(ms(θ)Rθ̇) = (1− β)μRθg − τ(θ) + ṁs(θ)Rθ̇ + Ff (θ, θ̇) (35)

Hence, the traction applied by the wound part to the suspended part of
the cable is simply

τ(θ) = μRθ((1− β)g −Rθ̈) + Ff (θ, θ̇) (36)

Let, now, J = I+MR(θ)R
2 = I+μR2(L−Rθ) be the moment of inertia

of the first sub-system (reel + wound cable), such that the corresponding
kinetic energy is given by T1 = 1/2Jθ̇2 . Note that mass exits the wound
part with velocity w = Rθ̇, at a rate ṁR(θ) = −μRθ̇. If, erroneously, the
usual Lagrange equation is applied to the first sub-system in the form,
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d

dt

(
∂T1

∂θ̇

)
− ∂T1

∂θ
= Q̂θ;

with

Q̂θ = R(τ(θ) + ṁR(θ)Rθ̇)

(37)

the following and obviously incorrect equation of motion is obtained
(compare it with (33)),

(I +mR2)θ̈ +
1

2
μR3θ̇2 − (1− β)μgR2θ = Ff (θ, θ̇)R (38)

Note the presence of an erroneous quadratic term in velocity, namely,
1/2μR3θ̇2. This term is quadratic in the angular velocity of the reel. There-
fore, apart the conceptual error, it could lead to significant discrepancies in
the calculated traction, if the rotation speed were large enough. On the
other hand, if the correct form, the extended Lagrange equation, given by
(19) or (23), is applied to this variable mass sub-system, i.e.,

d

dt

(
∂T1

∂θ̇

)
− ∂T1

∂θ
= Q̂θ

with

Q̂θ = (τ(θ) + ṁR(θ)Rθ̇)R− 1

2

dmR

dθ
R2θ̇2

(39)

the consistent equation of motion, Eq. (33), previously derived when
the whole system was considered, is readily recovered.

As an example, the case of a multi-functional electric cable being de-
ployed vertically in deep water is taken. The cable has a diameter D =
100mm and a weight per unit length, γ = 0.15kN/m. The reel has radius
R=1.0m and inertia I = 4t.m2. The total length of the cable is L = 3000m.
Figure 2 shows the simulation of an “immersed-free-fall” deployment. The
depth is supposed to be 1500m and the simulation is carried out up to the
instant the cable touches the soil. The solution, θ̇(t) and τ(t), obtained
from both equations, the consistent and the erroneous ones, are compared.
Initial conditions were chosen as θ̇(0) = 0 and l(θ(0)) = 10m (the initial
suspended length). As can be noticed, there is not a significant difference
between both results, as the quadratic term in velocity is not dominant for
this operation, rendering, the importance of the present analysis much more
theoretical than practical.
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Figure 2. The ”free-fall” deployment of a multi-functional electric cable
from a reel barge. Wave and ocean current actins not considered. From
Pesce et al (2006).

The dynamics of the water column in a free-surface piercing tube
and the moon-pool problem

Moon-pools are commonly found in many floating offshore structures as
in pipe-laying and work barges. Figure 3.a presents a mono-column oil
production platform, with a cylindrical moon-pool. Pipes and cables are
suspended through the moon-pool to the sea bottom. The main purpose
is to provide safer operational conditions, regarding the action of waves.
Nevertheless, the water column inside the moon-pool may resonate due to
the wave action and to the motions of the floating platform. Resonance in
this case should be avoided. Another interesting analogous problem is the
dynamics of free surface piercing pipes used as elements of hydro-electrical
power devices driven by the action of waves. In this latter case, however,
resonance is the key to a good performance.

Either case, the nonlinear dynamics of the water column must be mod-
eled properly. For the purpose of the present text, just the simplest case of
a free-surface piercing pipes opened to the atmosphere is considered. Only
the unforced problem is addressed. The forced problem, due to the action
of ocean waves, might then be readily assessed. A full account of the mono-
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(a) (b)

Figure 3. (a) A mono-column, floating oil production platform. The risers
and umbilical cables that connect the production plant to the well heads are
suspended from the platform through the moon-pool. (b) The free surface
piercing, open pipe problem. Unit normal vectors are positive outwards the
surfaces which enclose the mass of water inside the pipe. From Pesce et al
(2006).

column platform moon-pool problem may be found in the master thesis by
Torres (2007).

Consider an open vertical circular pipe of internal radius R piercing
a quiescent external free surface of an incompressible and inviscid liquid.
Let H be the draft of the pipe. Let g be the acceleration of gravity. For
simplicity, let ζ(t) describe the position of the free surface of the column of
liquid in the interior of the pipe. Clearly, a simplified model with just one
degree of freedom (one generalized coordinate) can be used, ζ(t). Other free
surface vibration modes are not considered in this simplified model.

Before the Lagrangean approach is applied, the equation of motion is
derived from the point of view of potential theory in hydrodynamics. This
equation will serve as a basis of comparison.

The classical hydrodynamic approach

Take the material sub-system as composed solely by the liquid inside the
pipe. That is, the liquid that in a given instant fills the volume bounded
by ∂Ω = SF ∪ SR ∪ SW . SF is the (material and non-permeable) free
surface, z = ζ(t). SW is the material, fixed and non-permeable surface,
corresponding to the interior wetted surface of the pipe and SR the non-
material (permeable) fixed control surface at the lower end of the pipe,
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given by zR = −H . An exchanging flux of mass clearly exists between the
sub-system and the external fluid. Note that the vertical components of the
outwardly positive normal unit vector are nz = 1 on SF and nz = −1 on
SR. Let the flow be non-rotational and φ(z) the potential velocity function.
The kinematic (Neumann) boundary condition on SF is

∂φ

∂z
=

∂ζ

∂t
= ζ̇ (40)

The velocity potential, inside the pipe, can then be written

φ(x, y, z, t) = zζ̇ (41)

Note that φt = zζ̈. Let the fluid be unbounded in the far field. The
dynamic pressure on SR is given by

pD(x, y)
∣∣
SR

= −1

2
ρζ̇2 (42)

Pressure on SF is taken as null, as usual. Therefore, from momentum
considerations, the dynamic equation for ζ(t) is readily derived. In fact, let
pz be the linear momentum of the fluid inside the pipe. Then, from classical
potential hydrodynamics, see, e.g. Newman (1978),

dpz
dt

= ρ
d

dt

∫
S

φnzdS = FH + FD − ψ (43)

where

FH = −ρgAζ

FD = −
∫
SR

pD(x, y, z, t)nzdS = −ρA1

2
ζ̇2

(44)

are respectively the forces due to the differential hydrostatic pressure
and to the hydrodynamic pressure applied to the water column, on SR, and

ψ = ρ

∫
SR

∂φ

∂z

(
∂φ

∂n
− Un

)
dS = −ρ

∫
SR

(
∂φ

∂z

)2

dS = −ρAζ̇2 (45)

is the flux of linear momentum across the fluid boundary, SR. The mass
of fluid inside the pipe at a given instant is an explicit function of position,
M = ρA(ζ +H). Therefore, the time rate of linear momentum inside the
pipe can be directly calculated,
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dpz
dt

=
d

dt
(ρA(ζ +H)ζ̇) = ρA(ζ +H)ζ̈ + ρAζ̇2 (46)

Note that this result could also be obtained by recalling that the deriva-
tive and integral signs are interchangeable on the fixed control surface SR.
Therefore,

dpz
dt

= ρ
d

dt

∫
S

φnzdS =

= ρ
d

dt

∫
SF

φnzdS + ρ
d

dt

∫
SR

φnzdS =

= ρ
d

dt

∫
SF

φdS − ρ
d

dt

∫
SR

φdS = ρ
d

dt

∫
SF

φdS − ρ

∫
SR

∂φ

∂t
dS =

= ρ
d

dt

∫
SF

ζζ̇dS + ρ

∫
SR

Hζ̈dS =

= ρA(ζζ̈ + ζ̇2 +Hζ̈) = ρA(ζ +H)ζ̈ + ρAζ̇2

(47)

Collecting terms, from (43) - (46), one obtains

ρA(ζ +H)ζ̈ + ρAζ̇2 = −ρAgζ − 1

2
ρAζ̇2 + ρAζ̇2 (48)

This reduces to the following nonlinear homogeneous equation

ζ̈ +
1

2

ζ̇2

(ζ +H)
+ g

ζ

(ζ +H)
= 0 (49)

Let η = ζ/H be the dimensionless free surface position. Scaling nondi-
mensional time with t′ = ωt, with ω =

√
g/H, Eq. (49) may be written in

dimensionless form as,

η̈ +
1

2

η̇2

η + 1
+

η

η + 1
= 0 (50)

The constant ω can be readily recognized as the dimensional natural fre-
quency of the corresponding linear oscillator η̈ + η = 0 , obtained from Eq.
(50) in the case of small displacements and small velocities. Note also that
the term that is quadratic in velocity is, in fact, conservative. Notice also
that Eq. (50) is valid for η > −1. A singular behavior, leading to infinity
acceleration, arises when η = −1 , i.e. ζ = −H. Physically, this corresponds
to the water-column surface reaching the bottom of the pipe, the mass of
the system becoming zero. Beyond this point, a cavity would form, and a
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proper modeling should consider this other highly nonlinear phenomenon.

The Lagrange equation approach

From another point of view, the dynamics of the fluid inside the pipe may
be modeled as a single degree of freedom (hydro-) mechanical system. The
kinetic energy is then given by

T =
1

2
ρA(ζ +H)ζ̇2 (51)

In this case, where effluxes of mass and kinetic energy do exist from the
domain under analysis (the fluid inside the pipe), one must use the extended
Lagrange equation (19). One obtains

d

dt

∂T

∂ζ̇
= ρA(ζ +H)ζ̈ + ρAζ̇2

∂T

∂ζ
=

1

2
ρAζ̇2

(52)

Note that, if the system were defined starting from the kinetic energy,
the mass dependence on position could not be promptly recognized. As can
be clearly seen, the quantity

d

dt

∂T

∂ζ̇
− ∂T

∂ζ
= ρA

(
(ζ +H)ζ̈ +

1

2
ρAζ̇2

)
(53)

that arises when the usual Lagrange equation is applied, is not the time
rate of change of linear momentum inside the pipe, which is given by Eq.
(46). To this quantity it should be added 1

2ρAζ̇
2, that is exactly the quantity

one would obtain from the additional term 1
2

∑
i
∂mi

∂ζ vi
2, that appears on

the right hand side of equation (19). In fact,

1

2

∑
i

∂mi

∂ζ
vi

2 =
1

2

∑
i

∂mi

∂ζ
ζ̇2 =

1

2

∂

∂ζ

(∑
i

mi

)
ζ̇2 =

=
1

2
ρA

∂

∂ζ

(∫ ζ

−H

dz

)
ζ̇2 =

1

2
ρA

∂

∂ζ
(ζ +H) ζ̇2 =

1

2
ρAζ̇2

(54)

To consistently apply the extended Lagrange Equation, one must con-
sider the equivalent non-conservative generalized force, according to Eq.
(19b), that in this case reads,



72 C.P. Pesce and L. Casetta

F̂z = f + ṁw − 1

2

∑
i

∂mi

∂ζ
vi

2 = (FH + FD) + ṁw − 1

2

∂m

∂ζ
ζ̇2 =(

−ρAgζ − 1

2
ρAζ̇2

)
+ (ρAζ̇2)−

(
1

2
ρAζ̇2

)
= −ρAgζ

(55)

Note that, in this case, the term given by Eq. (44.b) is, quantitatively,
half the momentum flux and exactly the same as that corresponding to the
dynamic pressure. Note also that, curiously, only the (conservative) hydro-
static term is left. Collecting results, (53) - (55), recovers the consistent
dynamic equation, given by Eqs. (49) or (50). Otherwise, disregarding the
term given by Eq. (54) would lead to the erroneous equation of motion,

η̈ +
η̇2

η + 1
+

η

η + 1
= 0 (56)

Apart the conceptual correctness, from the point of view of practical ap-
plication, significant differences between Eq. (50) and Eq. (56) arise only if
the motion is large enough. Figure 4 presents a comparison between results
obtained by using Eq. (50) and the erroneous Eq. (56). The phase trajec-
tories are closed curves, since no dissipation was considered. The quadratic
terms in velocity are conservative, as already anticipated. For all initial
displacements, the acceleration attains a maximum when the water column
level reaches its minimum value (mass inside the pipe is minimum), as al-
ready mentioned. This is qualitatively observed in reality.

The vertical hydrodynamic impact problem

Consider a body impacting a quiescent free surface of a liquid. In the
offshore engineering context, important examples that could be mentioned
are the deployment of lifeboats from platforms, ship slamming and wave im-
pacts against structures. Von Kármán (1929) first addressed the simplest
problem (of an impacting rigid body), in order to estimate the loading on
seaplane floaters during “landing”.

The duration of the impact is so short that inertia forces dominate other
ones. This makes consistent to treat the problem within potential flow the-
ory. As well known, it is usual practice to treat potential hydrodynamic
problems involving motion of solid bodies within the frame of system dy-
namics. This is done whenever a finite number of generalized coordinates
can be used as a proper representation for the motion of the whole fluid.
Terming this approach as ’hydro mechanical’ the impact force acting upon
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(a) (b)

Figure 4. (a) Phase portraits of the water column dynamics. Compari-
son between results from the consistent (left) and the erroneous equations
(right). Initial conditions: η(0) = −0.99; · · · − 0.5;η̇(0) = 0. From Pesce et
al (2006).

the body, for a purely vertical impact, is simply written, in the manner of
Von Kármán - see, e.g., Faltinsen (1990), chapter 9,

Fz = − d

dt
(MzzW ) (57)

being W the vertical velocity, positively oriented downwards, and Mzz

the corresponding added mass.
Note that, in this case, the added mass may be written as an explicit

function of the position of the body and has to be determined at each instant
of time, during the impact phenomenon. This is not an easy task, as the
hydrodynamic problem is geometrically nonlinear due to the presence of the
free surface and the moving body. Usually in hydrodynamics, the added-
mass is defined only in the bulk of fluid, excluding the jets. In this case,
an efflux of kinetic energy does exist from the domain under analysis (the
bulk of fluid) to the jets. In other words, there is an effective loss of energy
gauged by a “loss in the added mass” through the jets. The extended
Lagrange equation is the one that should be used. Otherwise, if the added
mass is defined considering the whole liquid, including the bulk and the jets,
there is no loss of kinetic energy, or equivalently, “no loss of added-mass”,
the usual Lagrange equation should be used instead.

The formulation of the impact problem under the Lagrangean formal-
ism, should recall the explicit added mass dependence on the position of
the body. However, restraining the analysis to the bulk of the fluid, an
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Figure 5. A convex and axisymmetric rigid body vertically impacting a
quiescent free surface of a liquid. From Pesce et al (2006).

erroneous equation of motion would be obtained if the Lagrange equation
were not properly applied, namely, the extended form given by Eq. (19) or
(23). This subtle aspect has been the source of controversies and discussions
on false paradoxes by many authors in the specialized literature; see, e.g.,
Cointe et al (2004), Molin & Cointe (1996), Wu (1998), with contributions
by the present authors in Casetta & Pesce (2005, 2006, 2007) and Pesce
(2003). Those and other theoretical issues are discussed in Casetta et al
(2011), where Analytical Mechanics arguments, based on both discrete and
continuum representations - with the application of the Reynolds transport
theorem - enabled a deeper analysis, accounting for energy balance and
confirming the proper formulation of the problem.

Take, for simplicity, the purely vertical impact case of an axisymmetric
rigid body against a free surface and let ζ be defined as the (positive down-
ward) vertical displacement of the body into the water, measured from the
quiescent free surface. Let W (t) be the downward vertical velocity. The
kinetic energy in the bulk of the liquid may be written as

T =
1

2
MzzW

2

Mzz = Mzz(ζ)

ζ =

∫ t

0+
Wdt

(58)

The added mass, consistently defined in the bulk of the liquid, at each
instant of time, takes into account the so-called wetted correction, due to
the marching of the jet root. In this case, as already observed, the correct
Lagrange equation approach is to use Eq. (19), restricted to position depen-
dence of mass only, such that the total vertical force applied by the body
(and the jets) on the bulk of the fluid is given by
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−FB
z = − d

dt

(
∂T

∂W

)
+

∂T

∂ζ
− 1

2

dMzz

dζ
W 2 (59)

Notice that the added mass is supposed to be accreted at null velocity.
The force applied by the bulk of fluid on the body is then, simply,

Fz = −FB
z = − d

dt

(
∂T

∂W

)
+

∂T

∂ζ
− 1

2

dMzz

dζ
W 2 (60)

Equation (60) transforms, as expected, into

Fz = − d

dz
(MzzW ) +

1

2
W 2 dMzz

dζ
− 1

2

dMzz

dζ
W 2 = − d

dt
(MzzW ) (61)

The third term appearing on the right hand side of Eq. (60), if not
considered, would lead to an erroneous assertive, according to which,

Fz = −1

2

Mzz

dt
W −Mzz

dW

dt
(62)

As mentioned, Eq. (60) recovers the simple expected result. Note that
in the present case the changing in the added mass is due to an actual
changing of size and shape of the body in contact with the liquid.

Equation (62) would be correct in form, however, if the analysis had
considered the whole fluid domain, including not only the bulk but also the
jets. In that case the added mass = Mzz = Mwfd

zz should be interpreted as
a measure of kinetic energy of the whole fluid domain; see Casetta & Pesce
(2006) and Casetta et al (2011). Obviously, in that case, there would be no
efflux of kinetic energy - neither an “efflux of added mass”. The extended
Lagrange equation, for systems with mass explicitly dependent on position
would be no longer applicable. One should then apply the usual form of the
Lagrange equation, as in Lamb (1932), art. 137. In this latter case the com-
putation of the added mass corresponding to the whole fluid domain, Mwfd

zz ,
would be even more difficult than that corresponding to the bulk of the fluid.

A Rayleigh-like dissipation function

Note that, generally, for a single degree of freedom model, with mass explic-
itly dependent on position, in this case, Mzz(ζ) = Mb(ζ) , where b denotes
“bulk of liquid”, a Rayleigh-like function could be defined as

R(ζ, ζ̇) =
1

2
C(ζ, ζ̇)ζ̇2 (63)
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with

C(ζ, ζ̇) =
1

3

∂Mb

∂ζ
ζ̇ =

1

3
Ṁb (64)

i.e.;

R(ζ, ζ̇) =
1

6

∂Mb

∂ζ
ζ̇3 (65)

such that its partial derivative with respect to the generalized velocity
would then be given by

∂R

∂ζ̇
=

1

2

∂Mb

∂ζ
ζ̇2 (66)

Clearly, R(ζ, ζ̇) is a non conservative function, draining energy from the

system or feeding energy to it, depending on if Ṁb =
(

∂Mb

∂ζ ζ̇
)
is positive

(added mass accreted to the system) or negative (added mass “expelled”
from the system). In the present case Ṁb(t) > 0 , always. The energy is
drained to the jets. The extended Lagrange equation for the impact problem
might then be written in a usual Rayleighian form,

Fz = −
(

d

dt

∂T

∂ζ̇
− ∂T

∂ζ
+

∂R

∂ζ̇

)
(67)

It should be remarked however that the Rayleigh-like function has not
been introduced in an ad-hoc manner. It has been defined after the ex-
tended dissipative generalized force term, − 1

2
∂Mb

∂ζ ζ̇2 , already present in

Eq. (60), was derived from fundamental variational principles. The intro-
duction of such a Rayleigh-like function should here be taken just as an
additional physical interpretation to the problem, from the point of view of
energy dissipation: the energy drained from the bulk of the liquid to the jets.

The impacting sphere

To finalize the present analysis, an analytical result will be shown, applying
a still very useful approximate approach due to Wagner (1931)11. In this
approach the added mass is defined in the bulk of the fluid only and the
flux of kinetic energy to the jets must be properly considered.

11A comprehensive classification on analytical methods to deal with the hydrodynamic

impact problem is given in Korobkin (2004).
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The impacting surface of the body is taken as the equivalent surface of
a “time-varying floating plate”. In other words, the interaction problem is
treated as the “continuous impact of a floating plate” whose area changes
in time. The usual free-surface condition is replaced by an equipotential
boundary condition, φ = 0, that corresponds to the limit of infinity fre-
quency in the sense of the wave radiation problem.

At the very start stage, the condition ∂φ
∂z = 0 is valid on an equipo-

tential control surface that replaces the actual free surface, except at the
surface-body intersection, where jets are formed. Actually, to impose such
a condition everywhere, even at the body intersection, is equivalent to dis-
regard the flux of kinetic energy through the jets. A more detailed analysis
is presented in Casetta et al (2011) and Pesce (2005).

As a simple example, we take the case of a sphere of radius R and mass
m, reaching the free surface with initial velocity W0. Let the dimensionless
time be defined as

t = W0t/R (68)

such that the dimensionless position, velocity and acceleration are given
by

η = ζ/R; η̇ =
dη

dt
=

1

W0

dζ

dt
; η̈ =

d2η

dt2
=

R

W 2
0

d2ζ

dt2
(69)

The dimensional hydrodynamic impact force is then written,

Fz = −mD
W 2

0

R

d

dt′
(μb(η)η̇) (70)

where μb(η) = Mb(ζ)/mD is the “specific added mass”, i.e., a nondi-
mensional form of the added mass with respect to mD = 4πR3/3 , the mass
of liquid displaced by a totally immersed sphere. Since no external force
is considered impressed to the body other than the hydrodynamic impact
force itself, the equation of motion may be easily derived in nondimensional
form as,

η̈ +
1

β + μb(η)

dμb

dη
η̇2 = 0 (71)

where β = m/mD is the specific mass of the sphere.
If the erroneous Eq. (62) were supposed to hold, the nondimensional

form for the equation of motion would read, instead,

η̈ +
1

2

1

β + μb(η)

dμb

dη
η̇2 = 0 (72)
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Figure 6. Added mass for an impacting sphere: Wagner’s and von Kármán
asymptotic approximation compared to “exact body shape approach” nu-
merical solutions, via WAMIT R©. From Casetta et al (2011).

The dimensionless added mass function μb(η) can be obtained, for ex-
ample, through a numerical procedure. For instance, the added mass for
the penetrating sphere shown in Figure 6 was determined by taking the
infinity frequency limit provided by WAMIT R©12. Notice that, the free
surface boundary condition φ = 0 is the corresponding infinite frequency
asymptotic limit in the usual oscillating floating body problem (see, e.g.,
Newman (1978)).

For bodies of regular shape, as edges, cylinders and spheres, asymptotic
techniques and singular perturbation methods can be applied successfully;
see, e.g., Korobkin (2004). Wagner’s approach leads to the well-known
approximate expression for the added mass of the impacting sphere, see,
e.g, Faltinsen & Zhao (1997),

μb(η) ≈ 3
√
3

π
η3/2 (73)

12 WAMIT R©: ’Wave Analysis Massachusetts Institute of Technology’.
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On the other hand, von Kármán approximation leads to, see, e.g., Casetta
(2004)

μb(η) ≈ 2
√
2

π
η3/2 (74)

Wagner’s approach, together with the generally valid Eq. (71), leads
then to the following consistent dimensionless equation of motion,

η̈ +
9
√
3

2π η1/2η̇2

β + 3
√
3

π η3/2
= 0 (75)

Observe that the specific mass of the sphere, β, is the only parameter
left in Eq. (75). However, if Eq. (72) were supposed to hold, the equation
of motion would read,

η̈ +
1

2

9
√
3

2π η1/2η̇2

β + 3
√
3

π η3/2
= 0 (76)

Additionally, notice that the magnitude of the dimensional impacting
force may be written in terms of the body weight as,

Fz(t) =

(
F 2
R

d2η

dt′2
)
mg (77)

where

FR =
W0√
gR

(78)

may be defined as the “impact Froude number”.
Equation (71) was asymptotically derived assuming small submergence,

say η < 0.1 . In this stage the impacting force reaches its maximum value.
Moreover, the impacting force usually dominates the buoyancy force and
that is the reason why buoyancy has not been considered. As can be easily
inspected from Eq. (75), the impacting force peak decreases the mass ratio
and increases with the square of the Froude number. In fact, the impacting
force peak is of order FI = O(β−1F 2

Rmg) = O(F 2
RmDg). On the other

hand, the maximum buoyancy force (totally immersed sphere) is given by
FB = mDg = β−1mg. Therefore, FI/FB ≈ O(F 2

R) >> 1, for high-speed
impacts. As a figure, if the sphere is dropped (in vacuum) to the free surface,
from a height H, then F 2

R = 2H/R.
Equation (75) is to be integrated under initial conditions η(0) = 0 and

η̇(0) = 1. Figure 7 exemplifies the large discrepancies existing between the



80 C.P. Pesce and L. Casetta

Figure 7. Dimensionless penetration, velocity and acceleration of an im-
pacting sphere versus dimensionless time. Left: Consistent equation (70).
Right: non-consistent equation (71). Added mass determined through Wag-
ner’s approximation. From Casetta et al (2011).
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results obtained from both equations: the consistent equation, Eq. (75)
and the erroneous one, Eq. (76). In fact, if the erroneous equation is used,
the acceleration peak is approximately 50% smaller, what implies a rather
significant underestimation for the magnitude of the maximum impact force.
Nevertheless, penetration is not affected as much. Note also that, for usual
offshore and naval engineering applications, practical relevance exists for
mass ratio values smaller than 1.

A Civil Engineering problem: the vertically collapsing tower

This section brings a summary of the discussion contained in Pesce et al
(2012), from where reasoning, writing, illustrations, figures and tables are
extracted13. The reader is directed to that reference for details and further
discussions. As a matter of fact, the initial motivation came from two re-
cent papers by Bažant & Verdure (2007), and by Seffen (2008). Within a
simple - though quite representative - single degree of motion modeling, an
interesting conceptual point was raised: what should be the proper form of
the equation of motion which governs the dynamics of vertically collapsing
towers? Apart some differences on the consideration of a parameter known
as the compaction factor, both authors ended up with two distinct equations
of motion, derived by applying either the usual or the extended form of the
Lagrange equation, Eq. (19), this latter by Pesce (2003). The two distinct
equations essentially differ from each other by a term of form 1

2
ẏ
y , similarly

to the previous examples treated in the present text. Such a discussion,
opened and addressed in both papers, was let inconclusive, though. In fact,
a exciting discussion followed, as testimony a series of papers, published
from 2008 on; see, e.g., Bažant et al (2008), Bažant & Le (2008), Beck
(2007, 2008) and Le & Bažant (2010, 2011).

A simple single degree of freedom model

The following model refers to the motion phase preceding the stacking
caused by the accumulation of material collapsed on the ground. This first
phase is named “crush-down”. The second phase, i.e. the stacking of col-
lapsed material, is called “crush-up”14 and is not treated in the present

13Under kind permission of: ASCE - the American Society of Civil Engineers.
14A starting combined crush mode was also investigated in Bažant et al (2008) and in

Bažant & Le (2008). It is shown that, in this combined mode, “crush-down” and

“crush-up” modes may concomitantly exist for a brief period of time. However, the

“crush-up” is arrested before having penetrated upwards a full story height, whereas

the “crush-down” mode persist till the avalanche front reaches the soil.
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text. Similarly to current models, as those by Bažant & Verdure (2007),
by Seffen (2008) or by Beck (2007, 2008), the present model admits that
such breakdown occurs due to gravity, starting from a particular floor whose
structural strength was sufficiently damaged, with an “avalanche front”, or
an instability front, propagating downwards15.

In an arbitrary instant of time, the tower is divided into two main regions,
i.e., the moving and the non-moving ones; see Figure 8. The moving region
is located above the avalanche front and the one at rest lies beneath it. As
the avalanche front propagates, the mass of the region at rest is transferred
to the moving region and compressed behind the “avalanche front”, the
moving part “swallowing” the immobile one, through a moving surface:
the avalanche front, a non material, control surface. The region at rest,
uncompressed, corresponds to a region of (the same) constant density, σnc =
σ0 , but variable volume, so with variable mass. The moving region can,
in turn, be divided in two parts: (i) the compacted one, with density per
unit length σc and variable height, so with variable mass; and (ii) the non-
compacted one, with constant density, σnc = σ0 , and non-variable height,
so non variable mass. The non compacted part of the moving region (ii)
translates downwards as a rigid body.

The density of the compacted region is also assumed constant. Such a
very strong hypothesis implies the existence of a density jump across the
avalanche front. This, in turn, implies that a velocity jump is assumed
across the control surface, a plausible approximation, despite being an un-
usual condition. In other words, the constant density hypothesis ends up
modeling the compacted part of the moving region as a translating and
“growing” rigid body.

Variable mass and kinetic energy

Following Beck (2007), firstly, the mass of the moving region, mmov may be
conveniently expressed as,

mmov =

∫ y−A

yT

σncdy +

∫ y−B

yA

σcdy = σnc(yA − yT ) + σc(yB − yA) (79)

With H as the initial height of the tower, the mass of the non-moving
region, mrest, may be written

15A thorough discussion on the modeling of such a collapse mechanism may be found

in Bažant et al (2008), where supporting arguments are consistently proved; see also

Bažant & Le (2008) and Le & Bažant (2010, 2011).
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Figure 8. Schematics of the vertical collapse of buildings. From Pesce et
al (2012).

mrest =

∫ H

yB

σncdy = σnc(H − yB) (80)

Conservation of mass for the whole tower is written,

M = σncH = mmov +mrest (81)

i.e.,

σnc(yA − yT − yB) + σc(yB − yA) = 0 (82)

Taking h = (yA−yT ) as the constant height of the non-compacted part of
the moving region, such that, ˙yT = ẏA and differentiating (82) with respect
to time leads to the kinematic constraint,

ẏA = (1−K)ẏB (83)

where K is the “compacting factor”, or “compaction coefficient”, defined
as K = σnc/σc . Notice from (82) that yA = (1 − K)yB + Kh and from
(83) that ÿA = (1 − K)ÿB . Also notice that, at t = 0+, yA = yB = h,
irrespective the value of K. As 0 < K < 1, then ẏA < ẏB . In words, the
avalanche front moves faster than the moving region, making the compacted
region to grow, “swallowing” mass initially at rest. The “swallowed” mass
suddenly starts falling as if it were a rigid body. The moving part can then
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be thought of as if it were a translating single particle, accreting mass, as
an explicit function of position. Indeed, from (80) and (81),

mmov = σncyB = σnc

(
yA −Kh

1−K

)
(84)

In other words, the mass of the moving part may be seen as an explicit
linear function of either the generalized coordinates, yA or yB . The latter
gives the position of the avalanche front, which defines the boundary be-
tween the moving and the non moving region. Consistently, during the mass
transfer process through the avalanche front, from the region at rest to the
moving region, the captured particles abruptly change their velocity from
zero to ẏA, in a dissipative and continuous inelastic “impact” approach.

The kinetic energy, Tmov, of the moving part may be then simply ex-
pressed as,

Tmov =
1

2
mmov ẏ

2
A =

1

2
[σncyb]ẏ

2
A =

1

2
σnc

(
yA −Kh

1−K

)
ẏ2A (85)

Obviously, the kinetic energy of the moving part is actually identical to
the kinetic energy of the whole building. From the point of view of the
mechanical system restricted to the moving part, the dependence of the
kinetic energy on position is given in an explicit form, through its variable
mass. This is, in fact, the kind of subtlety already discussed. Alternatively,
using the kinematic relation (83) the kinetic energy of yB ,

Tmov =
1

2
σnc(1−K)2yB ẏ

2
B (86)

The proper and non proper equations of motion

To begin with the equation of motion derivation, let yA be chosen as the
generalized coordinate. We note that yA represents the position of an equiv-
alent accreting mass particle that translates vertically with velocity ẏA and
acceleration ÿA . Obviously, the velocity of the (initially at rest)16 accreted
mass is w=0. The extended Lagrange equation (19) is then written as,

16Notice that the velocity jump would not be mandatory, if the compacted density were

not taken constant along the compacted part of the moving region, what, in turn,

would require an improvement on this simplistic single degree of freedom model.
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d

dt

(
∂Tmov

∂ẏA

)
− ∂Tmov

∂yA
= Q̂A

Q̂A = mmovg − F − 1

2

∂mmov

∂yA
ẏ2A

(87)

In Eq. (87), F models the resistive force applied by the intact region at
rest to the moving region that is represented by the accreting mass particle.
Notice that the dissipative virtual work done by the resistive force17 is given
by δWR = −FδyA = −(1−K)FδyB < 0.

From Eq. (85), and recalling that ∂yB

∂yA
= ∂ẏB

∂ẏA
= (1−K)−1 , it follows

∂Tmov

∂ẏA
= σncyB ẏA = (1−K)σncyB ẏB (88)

such that

d

dt

(
∂Tmov

∂ẏA

)
= σnc

d

dt
(yB ẏA) = (1−K)σnc

d

dt
(yB ẏB) (89)

Also, from Eq. (85), the second term on the left hand side of the extended
Lagrange Equation, Eq. (87), is simply

−∂Tmov

∂yA
= −1

2
σnc

ẏ2A
1−K

= −1

2
(1−K)σncẏ

2
B (90)

which cancels out, exactly, as expected, the term of the extended gener-
alized force, given by:

−1

2

∂mmov

∂yA
ẏ2A = −1

2

σnc

1−K
ẏ2A = −1

2
(1−K)σncẏ

2
B (91)

Using (89)-(91), the extended Lagrange equation (87) simplifies then to,

(1−K)σnc
d

dt
(yB ẏB) = σncgyB − F (92)

with F > 0 , which can be written in the final form,

ÿB =
g

1−K
− ẏ2B

yB
− 1

1−K

F

σncyB
(93)

17For a thorough discussion on the resistive force see Bažant et al (2008), Bažant et al

(2008) and Le & Bažant (2010).
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Equation (93) is the proper equation and can be straightforwardly de-
rived from Newton’s law; see a straightforward derivation in Pesce et al
(2012). If, instead, yB were chosen, at first, as the generalized coordinate,
recalling once more that ∂yB

∂yA
= ẏB

∂ẏA
= (1 −K)−1, the extended Lagrange

equation would read

d

dt

(
∂Tmov

∂ẏB

)
− ∂Tmov

∂yB
= Q̂B

Q̂B = (1−K)σncyBg − (1−K)F − 1

2
(1−K)2

∂mmov

∂yB
ẏ2B

(94)

Note the appearance of the multiplicative factors in the generalized force,
(1 − K), in the first and second terms and (1 − K)2, in the third term.
Proceeding, Eq. (86) gives

∂Tmov

∂ẏB
= σnc(1−K)2yB ẏB (95)

such that

d

dt

(
∂Tmov

∂ẏB

)
= σnc(1−K)2

d

dt
(yB ẏB) (96)

The second term on the left hand side of the Lagrange Equation, Eq.
(94), is simply

−∂Tmov

∂yB
= −1

2
σnc(1−K)2ẏ2B (97)

which, as before, cancels out exactly, the second term of the extended
generalized force, given by − 1

2 (1−K)2 ∂mmov

∂yB
ẏ2B . Eq. 94 simplifies then to,

σnc(1−K)2
d

dt
(yB ẏB) = (1−K)σncyBg − (1−K)F (98)

Eq. (98) recovers, as it should, the proper equation of motion, Eq. (93).
If the usual form of the Lagrange Equation were erroneously applied, not
taking into account the explicit dependence of the mass of the moving part
on the position, the term −∂Tmov

∂yA
in Eq. (87) (or, equivalently, −∂Tmov

∂yB
in

Eq. (94)) would not be canceled out and the following non-proper equation
of motion18 would be obtained,

18The application of the usual Lagrange equation to the whole tower as the system under

analysis leads, as well, to the non proper equation of motion, unless energy loss due to

compaction is introduced. This can be worked out with the introduction of a proper

Rayleigh-like dissipative function; see next section and Pesce et al (2012).
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ÿB =
g

1−K
− 1

2

ẏ2B
yB

− 1

1−K

F

σncyB
(99)

We promptly see that the decelerating term − 1
2
∂ẏ2

B

yB
, present in the non-

proper form (99), is exactly half the corresponding term shown in the proper
form (93), what would give an augment in the acceleration, consequently
leading to an under estimate value for the “crushing-down time”. Interesting
is that, irrespective the equation, (93) or (99), the decelerating term, which
is quadratic in velocity, is not multiplied by any term dependent on the
compaction factor parameter. It is inherent to both equations and given
solely in terms of the kinematic state (yB , ẏB) of the system.

Going back and taking yA as the generalized coordinate, the proper
equation, (93), and the non proper one, (99), may be written,

ÿA = g − ẏ2A
yA −Kh

− (1−K)F

σnc(yA −Kh)
(100)

and

ÿA = g − 1

2

ẏ2A
yA −Kh

− (1−K)F

σnc(yA −Kh)
(101)

At t = 0+, as yA = h and ẏA = 0, both equations give the same initial
acceleration,

ÿA(0
+) = g

(
1− F

σnchg

)
(102)

an expected result, clearly showing that, ÿA < g at t = 0+. Notice also
that ÿA(0

+) = g(1 − ε), 0 < ε << 1, ε = F (σncgh)
−1 , if the magnitude of

the resistive force is very small compared to the initial weight of the moving
region. Obviously, the initial acceleration of the avalanche front is larger
than ÿA(0)

+) and is given by ÿB(0
+) = (1−K)−1ÿA(0

+).
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A Rayleighian approach

As observed in the last section, a dissipative Rayleigh-like function could
be introduced in the usual Lagrange equation formulation, to deal with the
energy loss due to compaction. Let a Rayleigh-like function be defined as

R(yA, ẏA) =
1

2
f(yA, ẏA)ẏ

2
A

f(yA, ẏA) =
1

3
ṁmov =

1

3

∂mmov

∂yA
ẏA

(103)

or, equivalently, as

R(yB , ẏB) =
1

2
g(yB , ẏB)ẏ

2
B

with

g(yB , ẏB) =
1

3
(1−K)2ṁmov =

1

3
(1−K)2

∂mmov

∂yB
ẏB

(104)

Equation (94) could then be promptly re-written in the form,

d

dt

(
∂Tmov

∂ẏB

)
− ∂Tmov

∂yB
= Q̂B

Q̂B = (1−K)(σncyBg − F )− ∂R

∂ẏB

(105)

In fact, the Rayleighian-like dissipative generalized force,

− ∂R

∂ẏB
= −1

2
(1−K)2ṁmov ẏB = −1

2
(1−K)2

∂mmov

∂yB
ẏ2B = −1

2
σncẏ

2
B(1−K)2

(106)
cancels out, precisely, the term given by Eq. (97), recovering once more

the proper equation (93). Notice that (104) (or (103)) is absolutely similar
to the Rayleigh-like function introduced in the hydrodynamic impact prob-
lem, equations (63-64). Both Rayleighians represent energy dissipation: in
the impact problem, the energy drained to the jets; in the vertical collapsing
problem, the energy drained trough compaction. And the extended form
of the Lagrange equation inherently takes into account such energy loss,
through the term of mass depending explicitly on position. In fact, this
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term naturally appears in the derivation of the extended form of the La-
grange equation, irrespective how smooth the velocity transition might be
and may be interpreted as derived from the Rayleigh-like function. This
is a rather subtle aspect, indeed, also present in the classic falling chain
problems.

Illustrative example - the WTC towers

Let y∗ = yB/H, t∗ = t
√

g/H and Φ = F/(σncgH) = F/P be, respectively,
the dimensionless variables giving, the position of the avalanche front, time
and the resistive force to collapse19. The resistive force naturally appears
normalized by the intact building weight, P = Mg = σncHg. The proper
and the non-proper equations of motion, respectively equations (93) and
(99), can be written in dimensionless form:

ÿ∗ =
1

1−K

(
1− Φ

y∗

)
− ẏ∗2

y∗
(107)

and

ÿ∗ =
1

1−K

(
1− Φ

y∗

)
− 1

2

ẏ∗2

y∗
(108)

According to Seffen (2008), the compacting factor in the case of the
WTC towers may be approximately evaluated as K ≈ 0.2. Both papers,
by Bažant & Verdure (2007) as well as by Seffen (2008), present parametric
analyses, varying the magnitude of the resistive force to collapse between
zero, Φ = 0, (free-fall hypothesis) and a representative limit value ΦL, which
would completely refrain the collapse initiation. As the initial conditions
are, always, y∗(0) = h∗; ẏ∗(0) = 0, then, ΦL = h∗. Moreover, the initial
acceleration ÿ∗(0) = a∗(0) will, therefore, decrease linearly with Φ, with
rate (1 −K)−1, being equal to (1 −K)−1 if “free fall” is assumed (Φ = 0)
and equal to zero, if ΦL = h∗. Notice that due to the initial condition
ẏ∗(0) = 0 , the initial acceleration is the same for both equations (107) or
(108). This is illustrated in Figure 9.

Taking the following data: H = 407m, σnc = 770 × 103t/m and P =
3.073GN , Bažant & Verdure (2007) point typical values of the resistive
force in the interval 0 < Φ < 0.21. Those authors suggest, as a good first
estimate, an average value Φ ≈ 0.044 (4.4% of the tower weight). Figure
10 illustrates the downward propagation of the avalanche front, during the
crushing-down phase, computed with both equations: the proper (107) and

19Same nomenclature, but not to be confused with Meshcherski’s force.
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Tower 1 Tower 2

Figure 9. Initial acceleration of the avalanche front, a∗(0), normalized
with respect to gravity, as function of the resistive force, normalized with
respect to the tower weight. K is the compaction factor. WTC: Tower 1:
y∗(0) = h∗ = 0.1364; Tower 2: y∗(0) = h∗ = 0.2545. From Pesce et al
(2012).

the non proper one (108). Position, velocity and acceleration are shown as
function of the non dimensional time.

Both towers had 110 stores. The graphs on the left refer to tower number
1. According to Seffen (2008), the collapse initiated at the floor 95◦, i.e.,
y∗(0) = h∗ = (110 − 15)/110 = 0.1364. The graphs on the right refer
to tower number 2, for which the collapse initiated at the floor 82◦, i.e.,
y∗(0) = h∗ = (110 − 28)/110 = 0.2545. The collapse front reaches the soil
when y∗ = 1. Both references, Bažant & Verdure (2007) and Seffen (2008),
report collapse times of order 11 seconds for tower 1. As shown in Table
1, Eq. (107) - the proper one - predicts this event at t∗ = t∗C ≈ 1.75, for
the tower 1 and t∗ = t∗C ≈ 1.45, for the tower 2. Such values correspond to
crush-down times of tC ≈ 11.3s and tC ≈ 9.3s, respectively. On the other
hand, Eq. (108) - the erroneous one - predicts, respectively, t∗ = t∗C ≈ 1.55
and t∗ = t∗C ≈ 1.32, i.e., t∗C ≈ 10.0s and tC ≈ 8.5s, values substantially
smaller than those predicted by Eq. (107).

It is clear that parameter uncertainties, regarding not only the resistive
collapse load but also the compacting factor, may induce a relatively large
range of variation for the crushing-down time. This is illustrated in Figure
12, where the non dimensional “crush-down” time is plotted as a function
of Φ, considering four distinct values of the compaction factor, including a
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Table 1. “Crush-down” time. WTC: towers 1 and 2. Comparing the results
from equations (107) and (108), the proper and non proper ones. Adapted
from Pesce et al (2012).

K = 0.2 Φ = 0.044 K = 0.2 Φ = 0
Tower Equation t∗C tC(s) t∗C tC(s)

1 107 - proper 1.75 11.3 1.59 10.2
1 108 - non-proper 1.55 10.0 1.39 9.0
2 107 - proper 1.45 9.3 1.36 8.8
2 108 - non-proper 1.32 8.5 1.23 7.9

hypothetical lower limit, K = 0. Results from both equations, (107) and
(108), are compared.

For reference sake, simulations of the “free-fall case”, Φ = 0, with the
same compaction factor (K = 0.2), are shown in Figure 11.
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Tower 1 Tower 2

Figure 10. Time simulation of the avalanche front propagation. Downward
(dimensionless) position, velocity and acceleration. Comparing solutions of
the proper (107) and the non proper (108) equations. Typical representative
parameters values: K = 0.2, Φ = 0.044. WTC: Tower 1: y∗(0) = h∗ =
0.1364; Tower 2: y∗(0) = h∗ = 0.2545. From Pesce et al (2012).
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Tower 1 Tower 2

Figure 11. Time simulation of the avalanche front propagation. Hypo-
thetical lower bound: Φ = 0. Downward (dimensionless) position, veloc-
ity and acceleration. Comparing solutions of the proper (107) and the
non proper (108) equations. Typical representative parameters values:
K = 0.2, Φ = 0.044. WTC: Tower 1: y∗(0) = h∗ = 0.1364; Tower 2:
y∗(0) = h∗ = 0.2545. From Pesce et al (2012).
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Tower 1 Tower 2

Figure 12. Non dimensional “crush-down” time, t∗C , as function of the non
dimensional resistive force, Φ. Comparing results from simulations with the
proper Eq. (107) (upper graphs) and the non proper Eq. (108) (bottom
graphs); compaction factor K as parameter, including a hypothetical lower
limit, K = 0. WTC: Tower 1: y∗(0) = h∗ = 0.1364; Tower 2: y∗(0) = h∗ =
0.2545. From Pesce et al (2012).
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(a) (b) (c)

Figure 13. The classic “falling chains”. (a)The U-chain; (b) the bottom-
pile chain (Buquoy’s) and (c) the top-pile chain (Cayley’s).

Similarity with the classic falling chain problem

The technical literature on this classic problem is vast. Extensive discus-
sion has been done since the 18th century, with a renewed interest after
the American scholar debate, in the 1960′s, and even in the latest twenty
years. Apparent paradoxes are discussed, back and forth, arguing on en-
ergy conservation, rejecting old arguments and sometimes defending and
introducing erroneous ones.

One of the last accounts on the subject is due to Grewal et al (2011),
motivated by intriguing questionings from whom they called ’the persistent
student’. In that paper, motivated by didactic aspects, the authors make
a detailed description on the three classic cases: (a) the U-chain, (b) the
bottom-pile chain and(c) the falling top-pile chain and . The first and
second cases are divided in two sub-cases, according if the tip is lifted or
lowered. After questioning common assumptions, they dedicated a part of
the analysis to the falling-bottom pile chain, discussing internal reactions
involving the colliding link. The authors end up with the design of special
falling chains, whose links collide against the soil obliquely, accelerating
downwards due to linear momentum fed by the angular momentum variation
involved in the collision.

It is not the aim of the present discussion to present a historic perspec-
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tive, neither to promote a full discussion on the subject, but only to point
out the existent similarity with the problem under analysis: the vertically
collapsing towers.

To be remarked, apart the compaction phenomenon, exactly the same
kind of ’apparent paradox’ involving two distinct equations of motion has
been the focus of recent discussion on the classical and well known “falling
chain problem”; see, e.g., Šima & Podolsky (2005),Wong & Yasui (2006)
and Wong et al (2007).

Of particular interest of the present text - the similarity with the verti-
cally collapsing tower problem - if, both, K and F are taken to be null, the
proper equation (93) takes exactly the same form of Cayley’s equation of
motion,

ÿ = g − ẏ2

y
(109)

being y(t) the position of the lower tip of the chain, falling from a ta-
ble. On the other hand, taking z(t) as the vertical position of the upper
tip of a coiled chain being pulled from or falling on a table, positively ori-
ented contrary to gravity, equation (93) takes exactly the form of Buquoy’s
equation,

z̈ = −g − ż2

z
(110)

As a matter of fact, Šima & Podolsky (2005), as well as Wong & Yasui
(2006), based on the same erroneous approach, questioned the classical solu-
tion by Cayley to the falling chain problem. By applying the usual Lagrange
equation, they obtained the non proper equation that is also promptly ob-
tained from Eq. (99) with both, K and F , nulls:

ÿ = g − 1

2

ẏ2

y
(111)

Not surprisingly, just one year later, Wong et al (2007), presented an
experimental evidence of the correctness of the classical Cayley solution,
contradicting their own previous claim made in 2006, in a meritorious sci-
entific attitude. They measured the asymptotic value of the acceleration
as ¨ylim = (0.3204 ± 0.0010)g. The value predicted by Cayley’s solution is
¨ylim = g/3! However, the value predicted by their own equation, which

coincides with that of Šima & Podolsky (2005), is ¨ylim = g/2. It appears
that those authors were not aware of the work by Cvetićanin (1993)- or of
that by Pesce (2003)- and, as a consequence, could not be conclusive on the
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(subtle) reasons hidden behind their own mistake. A full discussion of the
general falling chain problem is left to further publications.

Concluding remarks

This chapter aimed at presenting a didactic perspective on the subtleties
hidden behind the application of the Lagragian formalism to mechanical
systems with explicit mass dependence on position. Rather than introduc-
ing new material, the authors preferred to present a step-by-step derivation
of the extended Lagrange equation, recollecting, from their own previous
publications, some one-degree-of-freedom examples inspired in practical en-
gineering applications.

Many formal points still deserve attention, as those related to open sys-
tems, see, Irschik & Holl (2004), or to classical procedures, Casetta & Pesce
(2012). Those are left for further analysis and publications and as motivat-
ing issues for the interested readers.
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Appendix-Complementary to the Hamiltonian
approach

Fundamental principles of Mechanics were primarily conceived for constant
mass systems. Thus, within that original scenario, let δT refer to the first
variation of the kinetic energy,

δT = δ
∑
i

1

2
miv

2
i =

∑
i

miviδvi

with

mi = const., ∀i

(112)

However, when considering a discrete system of variable mass, such that
mi = mi(qk, q̇k, t), the virtual variation of the kinetic energy should, instead,
be written as

δT = δ
∑
i

1

2
miv

2
i =

∑
i

1

2
δmiv

2
i +

∑
i

mivi.δvi (113)

With no loss of generality, take the instant of time τ at whichmi(qk(τ), q̇k(τ), τ) =
mi, i = 1, . . . , N . In this sense, equations (112) and (113) lead to

δT = δT −
∑
i

1

2
δmivi

2 (114)

For conciseness sake this is here called the “instantaneous” first variation.
The reader may notice that, when dealing with the particular case in which
mi = mi(t), Eq. (114) is obviously simplified as

δT = δT (115)

Equation (114) shows that, in the most general case, i.e.,mi = mi(qk, q̇k, t),
the original form of Hamilton’s principle turns to be

∫ t2

t1

(δT +
∑
j

Qjδqj)dt =

∫ t2

t1

(δT −
∑
i

1

2
δmivi

2 +
∑
j

Qjδqj)dt = 0 (116)



Systems with Mass Explicitly Dependent on Position 105

with Qj as in Eq. (28), therefore already including Mescherski’s forces.
However, in terms of generalized coordinates,

δT =
∑
j

(
∂T

∂qj
δqj +

∂T

∂q̇j
δq̇j

)
(117)

Moreover, the following identity also holds true,

d

dt

∑
j

∂T

∂q̇j
δqj =

∑
j

(
d

dt

(
∂T

∂q̇j

)
δqj +

∂T

∂q̇j
δq̇j

)
(118)

Analogously,∑
i

1

2
δmiv

2
i =

∑
j

∑
i

((
1

2

∂mi

∂qj
v2
i

)
δqj +

(
1

2

∂mi

∂q̇j
v2
i

)
δq̇j

)
(119)

and

d

dt

∑
j

∑
i

(
1

2

∂mi

∂q̇j
v2
i δqj

)
=

∑
j

∑
i

(
d

dt

(
1

2

∂mi

∂q̇j
v2
i

)
δqj +

1

2

∂mi

∂q̇j
v2
i δq̇j

)
(120)

Substituing (117)-(120)

δT = δT −
∑
i

1

2
δmiv

2
i =

∑
j

(
− d

dt

∂T

∂q̇j
+

∂T

∂qj

)
δqj +

d

dt

∑
j

(
∂T

∂q̇j
δqj

)
+

−
∑
j

∑
i

(
− d

dt

(
1

2

∂mi

∂q̇j
v2
i

))
δqj − d

dt

∑
j

∑
i

(
1

2

∂mi

∂q̇j
v2
i δqj

)
(121)

Or, rearranging terms,

δT = δT −
∑
i

1

2
δmiv

2
i =

∑
j

(
− d

dt

∂T

∂q̇j
+

∂T

∂qj
+

∑
i

(
d

dt

(
1

2

∂mi

∂q̇j
v2
i

)
− 1

2

∂mi

∂qj
v2
i

))
δqj

+
∑
j

d

dt

(
∂T

∂q̇j
δqj

)
−

∑
j

∑
i

d

dt

(
1

2

∂mi

∂q̇j
v2
i δqj

) (122)
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By usual procedures, substituting Eq. (122) into (116) leads to the
extended form of the Hamilton principle, Eq. (24) and, therefore, to the
corresponding extended Lagrange’s equation, (25), or (19).
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Abstract In this Chapter the dynamics of the body with time vari-
able mass and time variable moment of inertia is treated. The both
cases of mass and moment of inertia variation are considered: the
discontinual and the continual. The basic lows in dynamics are ex-
tended to the case when the mass is varying in time. The principle
of momentum and of angular momentum are applied to obtain the
velocity and angular velocity of the body after discontinual mass
variation. The same results are applied analytically by introduc-
ing the procedures of analytical mechanics. The dynamics of mass
addition is treated as the plastic impact, and of the separation as
the inverse process to plastic impact. For the case of the continual
variation of the mass and of the moment of inertia in time, beside
the reactive force, the reactive torque is introduced. The case of
the free motion of the mass variable body is investigated. The La-
grange’s equations of motion are derived. As the special motion
of the mass variable body, the vibration is considered. The main
attention is given to approximate solving of the strong non-linear
differential equations of motion. The influence of the reactive force
on the vibration properties of the body is analyzed.

1 Introduction

The problem of the motion of mass variable systems is evident since the
17th century. Galileo discovered the anomaly in the Moon motion which he
believed is the function of the system mass variation. Lately, Laplace theo-
retically explained the phenomena of the secular acceleration of the Moon.
Dufour, 1886, explained that the mass of the earth varies continuously due
to the falling shooting-stars and also due to combustion or spending in the
atmosphere. He found that the dust of shooting-stars which fall on the sur-
face of France in one year can cover a volume of 0.1 m3. Oppalzer, 1884,
was the first to analyze the reason for secular acceleration of the Moon as
the result of Earth and Moon mass increase. Namely, during a hundred year
a 2.8 mm dust layer is formed on the Earth. Gylden, 1884, extended the
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previous investigations in celestial mechanics by analyzing of the relative
motion of two variable mass systems under influence of the Newton force.
Meshchersky, 1893, continued the investigation and found that the body
with variable mass would move along a spiral, tending toward zero, or it
would increase the distance to the other mass variable system.

Cayley in his works (Cayley, 1857; 1858) was the first to consider the in-
fluence of the continual mass variation on the motion of the body. The class
of the dynamic problem he studied was the ’continuous reactive problem’,
i.e., the problem when continuously the infinitesimal small mass is added to
a system which causes the velocity of the system continuously to be changed
for a definite value. The two most widely discussed examples were (see Cay-
ley, 1859): one, the chain is on the table and is dropping vertically down
from the table, and the second, the chain is moving straightforward on a
horizontal plane without friction under the influence of a mass M which is
fixed at the end of a chain which is rolling around a drum and changing the
length during motion.

At the end of the nineteenth century and at the beginning of the twen-
tieth Meshchersky (1897) laid the foundations of the modern dynamics of a
particle with variable mass. After that publication numerous investigations
have been done and the dynamics of variable mass systems is developed. In
the ’variable mass systems’ particles are expelled and /or captured during
motion.

Two kinds of systems are identified:
- ’continuously’ particle-ejecting systems, where the mass variation is a

continual function of the time, position (see Grudtsyn, 1972) or velocity of
the particle, and

- ’discretely’ particle-ejecting systems, where the mass variation is a
discontinual function (for example, automatic weapons that fire rounds,
one at a time).

For the case of discontinual mass variation Meshchersky (1952) calcu-
lated velocity of the particle after mass variation. The finite discontinual
mass variation in a very short time was not of special interest for a long
time and was not intensively discussed. Meshchersky was the first to con-
sider the velocity change of a translatory moving body during step-like mass
variation. Mass which is separated or added has a finite amount and the
mass variation of the body is discontinual. The theory is mostly applied for
solving of the Keplerian two-body problem (see Luk’yanov, 2005), and also
the three and four-body problems (Cveticanin, 2007).

The motion of the continuously mass variable systems is much more in-
vestigated due to its application in rocket theory (Meirovitch, 1970; Cormel-
isse et al, 1979; Tran & Eke), astronomy (Kayuk & Denisenko, 2004), for
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charged particle motion in a magnetic field with decreasing mass and charge
(Howard, 2007), in robotics (McPhee & Djerassi, 1991; Djerassi, 1998) in
machinery (Cveticanin, 1984; 1988; 1989; 1991; 19931; 19932; 1995; 19981;
2001) etc. The motion is described with differential equations with variable
parameters (Kayuk & Tivalov, 1987; Wang & Eke, 1995; Eke & Mao, 2002;
Pesce, 2003). The effect of expulsion and /or capture of particles on the
motion of the continuously mass variable system is evident as changes in
the integration variables of the governing dynamic equations. In spite of
that the variable mass systems may be conservative (Leubner & Krumm,
1990; Cveticanin, 1994) and with non-holonomic properties (Ge & Cheng,
1982; Ge, 1984). For the case when the mass is continually varying in time,
the influence of the reactive force on the motion (see Apykhtin & Jakovlev,
1980; Azizov, 1986; Cveticanin, 1992; 19933; 2004) and also on the stability
(Ignat’yev, 1991; Cveticanin, 19961; 19962) were investigated. The reactive
force is mathematically the product of the mass variation function and the
relative velocity of mass separated or added to the particle. Usually, two
special cases were considered: first, the relative velocity is zero and second,
the absolute velocity of separated or added mass is zero. If the relative
velocity is zero, i.e., the absolute velocity of the separated or added particle
is equal to the velocity of the basic particle, then the reactive force is also
zero. Levi-Civita, 1928, investigated the motion of the particle for the case
when the absolute velocity of the separated or added mass is zero and the
reactive force exists. The most comprehensive consideration of the dynam-
ics of the body with variable mass is given in the books of Bessonov, 1967,
Conelisse et al., 1979, and Cveticanin, 19982.

Based on the Dynamics of the particle with time variable mass and the
basic laws of dynamics, in this Chapter the theoretical consideration of the
dynamics of the body with time variable mass is given. The Chapter is
divided into following Sections:

After the Introduction, the linear momentum and the angular momen-
tum of the body with variable mass and moment of inertia is considered.
The linear and angular momentum of the body before and after mass mod-
ification due to adding or separating of the mass is determined.

The obtained linear and angular momentum relations are applied for
calculation of the velocity and angular velocity of the body when the body
separation or augmentation is discontinual. The principles of momentum
and angular momentum are used as the basic ones. The special case of
the in-plane separation is considered. Depending on the type of motion
of the separated body, the kinematic properties of the remainder body are
discussed.

The dynamics of the discontinual mass variation is also treated by ana-
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lytical approach using the principles of analytical mechanics. An analytical
procedure for the velocity and angular velocity determination of a body in
the process of mass variation is developed. The main attention is given
to the case when no external forces and torques act. The process of body
addition is treated as the plastic impact and the separation as an inverse
process of the plastic impact of bodies.

In the next section, we express the free motion of the body with continual
time variation of the mass and moment of inertia. Due to mass and also
moment of inertia variation, beside the reactive force, the reactive torque
acts. In this section the main attention is directed toward investigation of
the influence of these two physical actions. As a special type of motion the
in-plane motion of the body is considered. The obtained theory is applied
for analyzing of the plane motion of the rotor on which the band is winding
up.

The Lagrange’s equations of the motion for the body with continual
variation of mass and moment of inertia is derived. The generalized forces
due to the reactive force and the reactive torque are defined. The obtained
Lagrange’s equations represent the analytical description of the free motion
of the body with variable mass.

As a special type of the motion, the vibrations of the body with vari-
able mass are investigated. Based on the general equations of motion given
in the previous section, the mathematical model for the oscillatory motion
is formed. The main attention is directed to approximate solution proce-
dures for solving the strong nonlinear differential equations with slow-time
variable parameters describing the vibrations of various kinds of oscillators.

The Chapter ends with the Reference list.

2 Linear and angular momentums for the mass
variable body

Let us consider the discontinual mass variation caused by the body separa-
tion or augmentation. The initial body has the mass M and the moment of
inertia IS with respect to the mass centre S whose position vector due to
the fixed point O is rS (see Fig.1).

The linear velocity of the mass centre is vS and the angular velocity of
the initial body around the mass centre S is Ω. The position vector of the
mass centre S to the fixed point O is rS . The separating or adding body has
mass m and the mass centre S2 . Moment of inertia of that body is IS2 with
respectto the mass centre S2.The absolute velocity of the mass center S2 is
vS2 while the angular velocity of the body with respect to point of rotation
S2 is Ω2. The position vector of the mass centre S2 according to the fixed
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Figure 1. Position vectors, velocities and angular velocities of the system:
a) body separation, b) body augmentation.

point O at the moment of adding or separating is rS2. If the separation
of the body occurs, the remainder body has the mass (M −m) and if the
augmentation occurs the mass is (M + m). The moment of inertia of the
final body is IS1 due to the mass centre S1 whose position to the fixed point
O is given with the vector rS1. The unknown linear and angular velocity
of the body after mass variation are vS1 and Ω1. The Nomenclature is as
follows:

Initial Final Separated/
body body Added body

Index - 1 2
Mass center S S1 S2

Position of mass center SS1 SS2

Position vector of mass center rS rS1 rS2

Mass M M ∓m ∓m
Absolute velocity of mass center vS vS1 vS2

Relative velocity of mass center vr1 vr

Absolute angular velocity Ω Ω1 Ω2

Relative angular velocity Ωr1 Ωr

Moment of inertia tensor IS IS1 IS2

Linear momentum K K1 K2

Angular momentum relating to O LO LO1 LO2

Angular momentum relating to
mass center

LS LS1 LS2
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The linear momentum of the initial body with mass M and velocity of
mass center vS is

K = MvS . (1)

If the separated or added mass m has the velocity vS2, its linear momentum
is

K2 = mvS2. (2)

After process of separation or addition the final mass is M ∓m, where
the minus sign is for mass separation and plus sign for mass addition.

Remark 2.1. In general in this Chapter in any relation, the minus sign is
for change of some quantity caused by mass separatiom and the plus sign
is for mass addition.

The unknown velocity of the mass centre S1 is vS1 and the corresponding
linear momentum is

K1 = (M ∓m)vS1. (3)

Introducing the assumption that the bodies during the mass separation
or addition belong to an unique system (see Fig.1), we obtain the linear
momentums Kb before and Ka after mass variation:

for mass separation

Kb = K = MvS , Ka = K1 +K2 = mvS2 + (M −m)vS1, (4)

for mass augmentation

Kb = K+K2 = MvS +mvS2, Ka = K1 = (M +m)vS1, (5)

The difference between the linear momentums before and after mass varia-
tion is

ΔK = M(vS1 − vS)±m(vS2 − vS1). (6)

The angular momentum of the initial body before mass variation with
respect to the fixed point O (Fig.1) is

LO = rS ×MvS + LS . (7)

After mass variation the angular of the final body relating to the fixed point
O is

LO1 = rS1 × (M ∓m)vS1 + LS1. (8)

The angular momentum of the separated or added body is

LO2 = rS2 ×mvS2 + LS2. (9)
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Dependently on the type of mass variation the angular momentums before
LOb and after LOa mass variation are:

for mass separation

LOb = LO = rS ×MvS + LS , (10)

LOa = LO1 + LO2 = rS1 × (M −m)vS1 + LS1 + rS2 ×mvS2 + LS2,

for mass addition

LOb = LO + LO2 = rS ×MvS + LS + rS2 ×mvS2 + LS2, (11)

LOa = LO1 = rS1 × (M +m)vS1 + LS1.

Based on (10) and (11), the difference between the angular momentums is

ΔLO = LS1±LS2−LS+rS1×(M∓m)vS1±rS2×mvS2−rS×MvS . (12)

The relation (6) and (12) are the basic ones for dynamic analysis of the
mass variation problems.

For the position of the system mass center S

rS =
M ∓m

M
rS1 ± m

M
rS2, (13)

and position vectors rS1 and rS2 (Fig.1)

rS1 = rS + SS1, rS2 = rS + SS2, (14)

we obtain
(M ∓m)SS1 = ∓mSS2, (15)

Substituting (14) into (12) we obtain

ΔLO = LS1 ± LS2 − LS + SS1 × (M ∓m)vS1 ± SS2 ×mvS2. (16)

Introducing the relation (6) into (16) it is

ΔLO = LS1 ± LS2 − LS + rS ×ΔK ∓ SS2 ×m(vS1 − vS2). (17)

Due to (15) the relation (16) transforms into

ΔLO = LS1 − LS ± LS2 ∓ SS2 × (vS1 − vS2)m, (18)

i.e.,

ΔLO = IS1Ω1 − ISΩ± IS2Ω2 ∓ SS2 × (vS1 − vS2)m, (19)
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where LS = ISΩ is the known angular momentum of the initial body before
mass variation, LS1 = IS1Ω1 depends on the angular velocityΩ1 of the final
body with respect to S1 and is proportional to the moment of inertia IS1

for S1 and LS2 = IS2Ω2 is the known angular momentum of the separated
or added body with the angular velocity Ω2 with respect to S2 and moment
of inertia IS2 for S2.

3 Dynamics of the body with discontinual mass
variation

Dynamics of the discontinual mass variation requires some assumptions dur-
ing the process of body separation or addition and are as follows (Cveticanin
& Djukic, 2008):

1. The separated and the final body, and also the initial body and the
added body, form a unique system during mass variation (see Fig. 1);

2. The separated body leaves the system after the process of separation.
The added body gets into the system before mass augmentation;

3. Separation or adding of the body is done in a very short time interval
τ ;

4. The considered bodies are rigid during mass separation;
5. Due to the assumption 1) we can regard the two parts of the body

as a complex system, where the reaction forces and torques between these
parts are internal within the system;

6. During the process of mass variation the external forces Fi and torques
Mj , which act on the system, produce the impulses.

Let Fr be the resultant force of all external activ forces and constraint
reactions, which are acting on the bodies. According to the principle of the
momentum, the variation of the linear momentum (6) for the time interval
from τ = Δt is equal to the impulse IFr of the resultant force Fr

ΔK = FrΔt ≡ IFr. (20)

Substituting (6) into (20) it is

M(vS1 − vS)±m(vS2 − vS1) = IFr. (21)

According to the principle of the angular momentum, the variation of
the angular momentum (19) in the time interval Δt is equal to the impulse
IM which is the sum of the impulse of the moment of resultant force for
the point O, MFr

0 , and of the impulse of the resultant torque M, caused by
activ torque and reaction torque, i.e.,

ΔLO = (MFr
0 +M)Δt = IM . (22)
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Substituting (16) into (22) we have

LS1 ± LS2 − LS + SS1 × (M ∓m)vS1 ± SS2 ×mvS2 = IM . (23)

Usually, the impulses of the external forces and torques are quite small
due to the short time τ. It is the reason, that the system is usually assumed
to be without action of the external forces and torques. Then, the linear
momentum of the system before and after mass variation remains invariable.
The same conclusion is valid also for the angular momentum.

3.1 Velocity of the body after mass variation

According to (21) the velocity of the body after mass variation is

vS1 =
1

(M ∓m)
(MvS ∓mvS2 + IFr). (24)

Using the fact that the absolute velocity of the mass center S2 of the sep-
arated or added body is the sum of the dragging velocity of S2 and the
relative velocity vr of the point S2 with respect to the point S. The drag-
ging velocity of S2 has two components: translatory vS and velocity of
rotation Ω × SS2 of the point S2 with respect to point S. The absolute
velocity of the point S2 for mass varaiation is

vS2= vS +Ω× SS2 + vr. (25)

The absolute velocity of the mass center S1 of the final body after mass
variation has the form

vS1 = vS +Ω× SS1 + vr1, (26)

where vS and velocity of rotation Ω×SS1 are the translatory and rotational
components of velocity of mass center S1 and vr1 is the relative velocity of
the point S1. Substituting (25) and (26) into (24), the following relation is

(M ∓m)vr1 ±mvr = ∓m(Ω× SS2)−Ω× (M ∓m)SS1) + IFr. (27)

The relations (27) and (15) give the relative velocity of the mass center S1

of the final body
(M ∓m)vr1 = IFr ∓mvr, (28)

and the corresponding absolute velocity

vS1 = vS +Ω× SS1 +
IFr ∓mvr

(M ∓m)
. (29)
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Let us assume the system without external forces. In that case the
linear momentum of the system is same before and after mass variation,
hence ΔK = 0. According to the relation (29), we determine the velocity
of mass center S1 of the body after mass variation as

vS1 = vS +Ω× SS1 ∓ mvr

(M ∓m)
. (30)

For the case when the separation of the body occurs, the velocity of the
body after mass transformation is due to (30)

vS1 = vS +Ω× SS1 − m

M −m
vr. (31)

3.2 Angular velocity of the body after mass variation

Using the relations (22) and (19), it follows

IS1Ω1 = IM + ISΩ∓ IS2Ω2 ± SS2 × (vS1 − vS2)m. (32)

The relation is suitable for calculation of the angular velocity Ω1 of the final
body after mass variation.

Using the assumption 1) that two bodies form one unique system and
no external forces and torques act, it is stated that the angular momentums
of the body before and after mass variation are invariable, i.e., ΔLO = 0,
and due to (32) the angular velocity Ω1 is

IS1Ω1 = ISΩ∓ IS2Ω2 ± SS2 × (vS1 − vS2)m. (33)

For the case when mass separation occurs, the angular velocity of the final
body is

IS1Ω1 = ISΩ− IS2Ω2 + SS2 × (vS1 − vS2)m, (34)

where vS1 satisfies the Eq. (31).
The value of the angular velocity Ω1 and the velocity of mass center

after mass variation vS1 represent the initial values for the motion of the
final body.

Remarks Due to the assumptions and the relations (31) and (34), it can
be concluded:

Remark 3.1. During the process of mass variation, which lasts for the
infinitesimal time interval, t ∈ [t1, t1 + τ ] , the interaction of the separated
and final body or initial and added bodies results in a finite change of the
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linear and the angular velocity of the body parts. The linear momentum
and the velocity of the final body and also the angular momentum and
the angular velocity of the final body receive finite increments during the
infinitesimal time, that is, these quantities change in a jump-like manner.

Remark 3.2. According to the assumption 3), during the process of mass
variation the position change of the bodies is negligible, i.e., the position
vectors of mass centers and the angle position of bodies are not varying
during mass variation.

Remark 3.3. Due to the aforementioned Remarks it is concluded that the
body additon corresponds to the perfect plastic impact where the relative
velocity of the adding body is zero.

Remark 3.4. Accordint to here obtained results it is obvious that the body
separation is the inverse process to the perfectly plastic impact where the
relative velocity of the separated body is zero. As for the plastic impact the
restitution coefficient is zero, the same is evident for the body separation.
It means that the motion does not depend on the geometric and dynamical
properties of the separation surface.

Remark 3.5. In this Chapter more attention is given to the mass sepa-
ration as the dynamics of mass augmentation can be treated as the plastic
impact.

3.3 In-plane separation of the body

Consider the body which moves in-plane before and after body sepa-
ration. The absolute velocity of the initial body, remainder (final) and
separated body are defined by (24) and (28), with projections

vS = vSxi+ vSyj, vS1 = vS1xi+ vS1yj, vS2 = vS2xi+ vS2yj, (35)

where i and j are unit vectors in the plane of motion (Fig.2).
For the in-plane motion the angular moments of the initial body, sepa-

rated body and remainder body are

LS1 = IS1Ω1k, LSb = ISΩk, LS2 = IS2Ω2k, (36)

where k is the unit vector orthogonal to the plane of motion. Substituting
(36) into (34) we obtain the angular velocity of the remainder body as a
function of the angular velocity of the separated body

IS1Ω1k = ISΩk− IS2Ω2k+ SS2 × (vS1 − vS2)m, (37)
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Figure 2. Position vectors of the plane body centers S, S1 and S2 with
respect to a fixed point O.

where
SS2 = SS2xi+ SS2yj, (38)

In relation (37) the absolute angular velocity of the remainder body is the
function of the absolute angular velocity of the separated body.

Introducing (25) and (26) and also (36) into (32) leads to

ISΩk = IS1Ω1k+ SS1 × (M −m)(vS +Ω× SS1 + vr1) (39)

+IS2Ω2k+ SS2 ×m(vS +Ω× SS2 + vr).

Using the relation (15), the Stainer formulas for the moment of inertia for
the axis in S parallel to the axis in S1 and S2

IS1 = I1 + (SS1)
2(M −m), IS2 = I2 + (SS2)

2m, (40)

and the relative angular velocities

Ω1 = Ω+ Ωr1, Ω2 = Ω+ Ωr, (41)

the relation (39) yields

IS1Ωr1k =− IS2Ωrk− SS2 ×m(vr − vr1). (42)

For the difference of the relative velocities

vr − vr1 = (vrx − vr1x)i+ (vry − vr1y)j, (43)
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and (42), the relative angular velocity of the remainder body is obtained

Ωr1=
m

IS1
[SS2y(vrx − vr1x)− SS2x(vry − vr1y)]− IS2

IS1
Ωr. (44)

The relations (28) and (44) define the relative velocity and angular ve-
locity of the remainder body during in-plane body separation.

Some special cases Depending on the velocity and the angular velocity
of the separated body, the various cases of body motion are possible. In the
following Tables some special cases of body separation are shown, together
with the corresponding properties of the remainder body, calculated on the
bases of (28) and (42).

TRANSLATION OF THE WHOLE BODY
vS �= 0, Ω = 0.
No. Separated body Remainder body
1 vS2 �= 0, Ω2 �= 0 vr1 = − m

M−mvr, IS1Ω1k =

SS2 × (vS1 − vS2)m− IS2Ω2k
2 vS2 �= 0, Ω2 = 0 vr1 = − m

M−mvr, IS1Ω1k =

SS2 × (vS1 − vS2)m
3 vS2 = 0, Ω2 �= 0 vS1 = M

M−mvS , IS1Ω1k =
Mm
M−mSS2 × vS − IS2Ω2k

4 vS2 = 0, Ω2 = 0 vS1 = M
M−mvS ,

IS1Ω1k = Mm
M−mSS2 × vS

5 vS2 �= 0, vS1 = vS − m
M−mvr,

Ω2k = − mM
IS2(M−m)SS2 × vr Ω1 = 0

6 vS2 = M
m vS , Ω2 �= 0 vS1 = 0, IS1Ω1k =

−M(SS2 × vS)− IS2Ω2k

7 vS2 = M
m vS , Ω2k = M(vS×SS2)

IS2
vS1 = 0, Ω1 = 0

8 vS2 = vS , (vr = 0), Ω2 �= 0 vS1 = vS , IS1Ωr1k = −IS2Ωrk

Table 1.

Table 1. provides properties of the remainder body for the case when
the initial body is in translation. Subcases for various absolute velocity vS2

of mass center and absolute angular velocity Ω2 of the separated body are
considered.

In Table 2. the velocity and the angular velocity of the remainder body
for the case when the initial body is rotating are shown. Subcases are



120 L. Cveticanin

ROTATING OF THE WHOLE BODY
vS = 0, Ω �= 0.
No. Separated body Remainder body
1 vr �= 0, Ωr �= 0 vS1 = Ω× SS1 − m

M−mvr,

Ωr1k = M(SS1×vr)
IS1

− IS2

IS1
Ωrk

2 vr = 0, Ωr �= 0 vS1 = Ω× SS1,
Ωr1k = − IS2

IS1
Ωrk

3 vr = 0, Ωr = 0 vS1 = Ω× SS1,
Ωr1 = 0, Ω1 = Ω

4 vr ‖ SS1, Ωr �= 0 vS1 = Ω× SS1 − m
M−mvr,

Ωr1k = − IS2

IS1
Ωrk

5 vS2 = Ω× SS2 + vr, vS1 = − m
M−mvS2, IS1Ω1k =

Ωr = −Ω, (Ω2 = 0) ISΩk− Mm(SS2×vS2)
M−m

6 vr = M−m
m (Ω× SS1), vS1 = 0, Ωr1 =

Ωr �= 0 M
IS1

M−m
m Ω(SS1)

2 + IS2

IS1
Ωr

7 vr �= 0, IS2Ωrk = vS1 = Ω× SS1 − mvr

M−m ,

M(SS1 × vr) + IS1Ωk Ωr1 = 0, Ω1 = Ω
8 vr = M−m

m (Ω× SS1), vS1 = 0,

Ωr = ( IS1

IS2
− M(M−m)

m
SS2

1

IS2
)Ω Ωr1 = 0, Ω1 = Ω

Table 2.

considered with respect to various values of the relative velocity vr of mass
center and the relative angular velocity Ωr of the separated body.

Table 3. provides properties of the remainder body for the case when
the whole body has the plane motion.

Analyzing the results in the Tables 1-3 the following is concluded:
1. If the relative velocity and the relative angular velocity of body sep-

aration are zero, the relative velocity and the relative angular velocity of
the remainder body are also zero, independently of the type of motion of
the initial body (see Table 1 case 4, Table 2 case 3 and Table 3 case 5).
The absolute velocity of mass center of the remainder body is equal to the
dragging velocity of S1 before body separation. The angular velocity of the
remainder body is equal to the angular velocity of the initial body before
separation.

2. If the motion of the initial body and of the separated body is transla-
tory with velocity vS (the relative velocity vr is zero), the velocity of mass
center of the remainder body is also vS . This result was previously obtained
by I.V. Meshchersky, 1896, for the continual mass variation of the transla-
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PLANE MOTION OF THE WHOLE BODY
vS �= 0, Ω �= 0.
No. Separated body Remainder body
1 vr = SS2 ×Ω, vr1 = SS1 ×Ω,

(vS2 = vS), (vS1 = vS),
Ω2 �= 0 Ω1 = IS

IS1
Ω− IS2

IS1
Ω2.

2 vr = SS2 ×Ω, Ω2 = (IS/IS2)Ω vS1 = vS , Ω1 = 0.
3 vr = SS2 ×Ω, Ω2 = 0 vS1 = vS ,

Ω1 = (IS/IS1)Ω.
4 vr = SS2 ×Ω, Ωr = 0 vS1 = vS ,

Ω1 = Ω, Ωr1 = 0.
5 vr = 0, Ωr = 0 vr1 = 0, Ωr1 = 0.

Table 3.

tory moving particle. Namely, due to the fact that the relative velocity of
mass separation is zero, the reactive force is also zero and the equation of
motion is the same as for the body without mass change.

3. If the motion of the initial body is translatory with the velocity vS

and the absolute velocity and the absolute angular velocity of separation
of the body are zero, the absolute velocity of mass center of the remainder
body differs from the velocity of the initial body. The velocity depends on
the mass which is separated: for the higher value of separated mass m i.e.,
for smaller value of the remainder mass, the velocity is higher. The solution
of the Levi-Civita equation (Levi Civita, 1928)

v =
Q

M
, (45)

shows that if mass decreases the velocity of motion increases. Q is a constant
which depends on the velocity properties of the system.

4. If the motion of the initial body is translatory, the relative angular
velocity and the absolute angular velocity of the remainder body are equal
(see Table 1).

3.4 Conclusion

Based on the general laws of dynamics, the procedure for obtaining the
velocity and the angular velocity of the final body for discontinual mass
variation is developed. It is concluded that the position and the angular
position of the body during separation is approximately unchanged. The
velocity and the angular velocity of the body has a jump-like variation
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during the process of body variation which is caused by mass and geometry
variation of the body. The determined velocity of the mass center and
the angular velocity of the final body represent the initial values for its
further motion. If the relative velocity and the relative angular velocity of
the separated or added body are zero, the relative velocity and the relative
angular velocity of the final body are also zero, independently of the type
of motion of the initial body.

4 Analytical procedures applied in dynamics of the
body with discontinual mass variation

In this Section, applying the procedures of analytical dynamics the results
obtained previously are rederived.

Let us start with the Lagrange-D’Alambert principle. Here, δrS is virtual
displacement of position of the mass center S and .δφ is virtual change of
the angle position φ of the initial body

Multiplying the Eq. (21) with a virtual displacement δrS and using the
relations (14), we obtain

δrS1 = δrS + δφ× SS1, δrS2 = δrS + δφ× SS2, (46)

and

IFrδrS = ±mvS2δrS2 + (M ∓m)vS1δrS1 − (M ∓m)vS1(δφ× SS1) (47)

∓mvS2(δφ× SS2)−MvSδrS .

Multiplying the Eq. (23) with δφ and using the relations LS1 = IS1Ω1,
LS2 = IS2Ω2 and LS = ISΩ, we have

IS1Ω1δφ1 ± IS2Ω2δφ2 + SS1 × (M ∓m)vS1δφ±
SS2 ×mvS2δφ− ISΩδφ = IMδφ, (48)

where φ1 = φ2 = φ and the angle variations are δφ1 = δφ2 = δφ. Adding
the equations (47) and (48), we obtain

IFrδrS + IMδφ = ±mvS2δrS2 ± IS2Ω2δφ2 + (M ∓m)vS1δrS1 (49)

+IS1Ω1δφ1 − (MvSδrS − ISΩδφ.

Introducing the generalized coordinates qi where i = 1, 2, ..., N , and assum-
ing that all quantities rS , rS1, rS2, φ,, φ1, φ2 are functions of the generalized
coordinates we have
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δrS =

N∑
i=1

∂rS
∂qi

δqi, δrS1 =

N∑
i=1

∂rS1

∂qi
δqi, δrS2 =

N∑
i=1

∂rS2

∂qi
δqi, (50)

δφ =
N∑
i=1

∂φ

∂qi
δqi, δφ1 =

N∑
i=1

∂φ1

∂qi
δqi, δφ2 =

N∑
i=1

∂φ2

∂qi
δqi. (51)

Using the relations (50), (51) and the equalities

∂rS
∂qi

=
∂ṙS
∂q̇i

=
∂vS

∂q̇i
,

∂rS1

∂qi
=

∂ṙS1

∂q̇i
=

∂vS1

∂q̇i
,

∂rS2

∂qi
=

∂ṙS2

∂q̇i
=

∂vS2

∂q̇i
,

(52)

∂φ

∂qi
=

∂φ̇

∂q̇i
=

∂Ω

∂q̇i
,

∂φ1

∂qi
=

∂φ̇1

∂q̇i
=

∂Ω1

∂q̇i
,

∂φ2

∂qi
=

∂φ̇2

∂q̇i
=

∂Ω2

∂q̇i
, (53)

the Eq. (49) becomes

N∑
i=1

(MvS
∂vS

∂q̇i
+ ISΩ

∂Ω

∂q̇i
)δqi −

N∑
i=1

[±(mvS2
∂vS2

∂q̇i
+ IS2Ω2

∂Ω2

∂q̇i
)

+ (M ∓m)vS1
∂vS1

∂q̇i
+ IS1Ω1

∂Ω1

∂q̇i
]δqi

=−
N∑
i=1

{∂rS
∂qi

(FrΔt) + [(MFr
0 +M)Δt]

∂φ

∂qi
}δqi,

i.e.,

N∑
i=1

∂

∂q̇i
[±(1

2
mvS2vS2+

1

2
IS2Ω2Ω2)+(

1

2
(M∓m)vS1vS1+

1

2
IS1Ω1Ω1)]δqi

−
N∑
i=1

∂

∂q̇i
(
1

2
MvSvS +

1

2
ISΩΩ)δqi =

N∑
i=1

(IFr ∂rS
∂qi

+ IM
∂φ

∂qi
)δqi. (54)

The first group of terms on the left side of the equation represent the kinetic
energy of the system after, whereas the second group of terms is equal to
the kinetic energy before mass variation

T1 =
MvSvS

2
+

ISΩΩ

2
, (55)

T2 = ±(mvS2vS2

2
+

IS2Ω2Ω2

2
) +

(M ∓m)vS1vS1

2
+

IS1Ω1Ω1

2
,(56)
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while the terms on the right side of (54) give the generalized impulse

QI
i = IFr ∂rS

∂qi
+ IM

∂φ

∂qi
. (57)

Substituting the notations for the kinetic energy (55) and (56) and also of
the generalized impulse (57) into (54) and separating the equations with
the same variation of the generalized coordinates, the following system of
equations is obtained

∂(T2 − T1)

∂q̇i
= QI

i , i = 1, 2, ..., N.

If the body mass variation is without external impulses, the system of
equations is modified to (see Cveticanin, 20091)

∂(T1 − T2)

∂q̇i
= 0, i = 1, 2, ..., N. (58)

Using these equations, one can calculate the velocity and angular velocity of
the system after mass variation if the velocities and angular velocities before
mass variation are known. In practical applications of these equations the
kinetic energy functions before and after separation have to be differentiable
and continual functions.

Let us consider the case of mass separation when the velocity and an-
gular velocity of the body before mass separation and also the velocity and
angular velocity of the separated mass are given. For the Eq. (58) it follows:
The partial derivative in generalized velocity of the difference of the kinetic
energy of the body before and the sum of kinetic energies of the separated
and remainder bodies after separation is equal to zero.

Let us apply this results to analyze the mass separation for the case of
the free motion of the body. The motion has six degrees of freedom.

The kinetic energy of the initial body with fee motion in the space is

T1 =
M

2
(ẋ2

S + ẏ2S + ż2S) +
1

2
(IxxΩ

2
x + IyyΩ

2
y + IzzΩ

2
z+

2IxyΩxΩy + 2IxzΩxΩz + 2IzyΩzΩy), (59)

where Ixx, Iyy, Izz are axial moments of inertia; Ixy, Ixz, Izy centrifugal mo-
ments of inertia; ẋS , ẏS and żS projections of the velocity vS of mass center;
Ωx, Ωy and Ωz projections of the angular velocity Ω.

For the velocity of the mass center of the separated body

vS2 = vS +Ω× SS2 + u, (60)
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and the angular velocity

Ω2 = Ω+Ω∗, (61)

the kinetic energy of the free motion of separated body is

TS2 =
1

2
m[ẋ2

S + ẏ2S + ż2S + u2
x + u2

y + u2
z + 2ẋSux + 2ẏSuy + 2żSuz

+ (ΩyzSS2 − ΩzySS2)
2 + (ΩzxSS2 − ΩxzSS2)

2

+ (ΩxySS2 − ΩyxSS2)
2

+ 2(ΩyzSS2 − ΩzySS2)ux + 2(ΩzxSS2 − ΩxzSS2)uy

+ 2(ΩxySS2 − ΩyxSS2)uz + 2(ΩyzSS2 − ΩzySS2)ẋS

+ 2(ΩzxSS2 − ΩxzSS2)ẏS + 2(ΩxySS2 − ΩyxSS2)żS ]

+
1

2
[Ixx2(Ωx +Ω∗

x)
2 + Iyy2(Ωy +Ω∗

y)
2 + Izz2(Ωz +Ω∗

z)
2

+ 2Ixy2(Ωx +Ω∗
x)(Ωy +Ω∗

y)

+ 2Ixz2(Ωx +Ω∗
x)(Ωz +Ω∗

z) + 2Izy2(Ωz +Ω∗
z)(Ωy +Ω∗

y)],

(62)

where u is the relative velocity of the separation with projections ux, uy

and uz; Ω
∗ is the relative angular velocity of separation with projections

Ω∗
x, Ω

∗
y and Ω∗

z.
For the velocity of the remainder system

vS1 = vS +Ω× SS1 + v∗, (63)

and the angular velocity

Ω1 = Ω+Ω∗
1, (64)

the kinetic energy of the final (remainder) body in free motion is

TS1 =
1

2
(M −m)(ẋ2

S1 + ẏ2S1 + ż2S1) +
1

2
(Ixx1Ω

2
x1 + Iyy1Ω

2
y1 +

Izz1Ω
2
z1 + 2Ixy1Ωx1Ωy1 + 2Ixz1Ωx1Ωz1 + 2Izy1Ωz1Ωy1), (65)

where Ixx1, Iyy1, Izz1 are the axial moments of inertia; Ixy1, Ixz1, Izy1 are
the centrifugal moments of inertia; v∗ and Ω1 are the unknown velocity
and angular velocity of the remainder body.

The total kinetic energy of the system after the separation is

T2 = TS1 + TS2. (66)
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Taking into account (58) and using the relations (59) and (62), the following
system of equations is obtained

(M −m)ẋS = (M −m)ẋS1 +m(ux +ΩyzS2 − ΩzyS2),

(M −m)ẏS = (M −m)ẏS1 +m(uy +ΩzxS2 − ΩxzS2),

(M −m)żS = (M −m)żS1 +m(uz +ΩxyS2 − ΩyxS2),

0 = −(IxxΩx + IxyΩy + IxzΩz) + Ixx1Ω1x + Ixy1Ω1y + Ixz1Ω1z

+Ixx2(Ωx +Ω∗
x) + Ixy2(Ωy +Ω∗

y) + Ixz2(Ωz +Ω∗
z)

+m[−(ΩzxS2 − ΩxzS2)zS2 + (ΩxyS2 − ΩyxS2)yS2

−zS2(uy + ẏS) + yS2(uz + żS)]

+(M −m)[−(ΩzxS1 − ΩxzS1)zS1 + (ΩxyS1 − ΩyxS1)yS1

−zS1(vy + ẏS) + yS1(vz + żS)],

0 = −(IyyΩy + IxyΩx + IzyΩz) + Iyy1Ω1y + Ixy1Ω1x + Izy1Ω1z

+Iyy2(Ωy +Ω∗
y) + Ixy2(Ωx +Ω∗

x) + Izy2(Ωz +Ω∗
z)

+m[(ΩyzS2 − ΩzyS2)zS2 − (ΩxyS2 − ΩyxS2)xS2

+zS2(ux + ẋS)− xS2(uz + żS)]

+(M −m)[(ΩyzS1 − ΩzyS1)zS1 − (ΩxyS1 − ΩyxS1)xS1

+zS1(vx + ẋS)− xS1(vz + żS),

0 = −(IzzΩz + IxzΩx + IzyΩy) + Izz1Ω1z + Ixz1Ω1x + Izy1Ω1y

+Izz2(Ωz +Ω∗
z) + Ixz2(Ωx +Ω∗

x) + Izy2(Ωy +Ω∗
y)

+m[−yS2(ΩyzS2 − ΩzyS2)

+m[xS2(ΩzxS2 − ΩxzS2)− yS2(ux + ẋS) + xS2(uy + ẏS)]

+(M −m)[−yS1(ΩyzS1 − ΩzyS1) + xS1(ΩzxS1 − ΩxzS1)

−yS1(vx + ẋS) + xS1(vy + ẏS)].

(67)

Using the relations

Ω2x = Ωx +Ω∗
x, Ω2y = Ωy +Ω∗

2y, Ω2z = Ωz +Ω∗
z,

ẋS1 = ẋS + vx + (ΩyzS1 − ΩzyS1), ẏS1 = ẏS + vy + (ΩzxS1 − ΩxzS1),

żS1 = żS + vz + (ΩxyS1 − ΩyxS1), ẋS2 = ẋS + ux + (ΩyzS2 − ΩzyS2),

ẏS2 = ẏS + uy + (ΩzxS2 − ΩxzS2), żS2 = żS + uz + (ΩxyS2 − ΩyxS2),
(68)
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the Eqs. (67) are transformed into

MẋS = mẋS2 + (M −m)ẋS1,

MẏS = mẏS2 + (M −m)ẏS1,

MżS = mżS2 + (M −m)żS1,

IxxΩx + IxyΩy + IxzΩz = Ixx1Ω1x + Ixy1Ω1y + Ixz1Ω1z

+ Ixx2Ω2x + Ixy2Ω2y

+ Ixz2Ω2z + (M −m)(yS1żS1 − zS1ẏS1)

+m(yS2żS2 − zS2ẏS2),

IxyΩx + IyyΩy + IyzΩz = Ixy1Ω1x + Iyy1Ω1y

+ Iyz1Ω1z + Ixy2Ω2x + Iyy2Ω2y

+ Iyz2Ω2z +m(zS2ẋS2 − xS2żS2)

+ (M −m)(zS1ẋS1 − xS1żS1),

IxzΩx + IyzΩy + IzzΩz = Ixz1Ω1x + Iyz1Ω1y + Izz1Ω1z

+ Ixz2Ω2x + Iyz2Ω2y

+ Izz2Ω2z + (M −m)(xS1ẏS1 − yS1ẋS1)

+m(xS2ẏS2 − yS2ẋS2).

(69)

Introducing the projections of the velocities, angular velocities and po-
sition vectors

vS = ẋSi+ẏSj+ żSk, vS1 = ẋS1i+ẏS1j+ żS1k,

vS2 = ẋS2i+ẏS2j+ żS2k,

Ω = Ωxi+Ωyj+Ωzk, Ω1 = Ω1xi+Ω1yj+Ω1zk,

Ω2 = Ω2xi+Ω2yj+Ω2zk,

SS1 = xS1i+yS1j+ zS1k, SS2 = xS2i+yS2j+ zS2k,

(70)

as well as the inertia tensors

IS =

⎡⎣ Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

⎤⎦ , IS1 =

⎡⎣ Ixx1 Ixy1 Ixz1
Iyx1 Iyy1 Iyz1
Izx1 Izy1 Izz1

⎤⎦ , (71)

IS2 =

⎡⎣ Ixx2 Ixy2 Ixz2
Iyx2 Iyy2 Iyz2
Izx2 Izy2 Izz2

⎤⎦ ,

into Eq. (21) and Eq. (23), we obtain the above mentioned Eq. (69).
The solutions of (58) are equal to those obtained from (21) and Eq. (23)
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without external forces and torques. The main advantage of the suggested
analytical procedure is its simplicity for practical use in comparison to the
classical method based on the general principles of dynamics which have the
vectorial form (Cveticanin, 20091).

4.1 Increase of the kinetic energy

Analyzing the relation (58) it can be concluded that the kinetic energy
of the body before separation T1 and the sum of the kinetic energies of
the remainder and separated bodies T2 differs. The difference between the
kinetic energies T1 and T2 is the result of transformation of the deformation
energy of the body into kinetic energies of the separated and remainder
bodies during separation.

Theorem 4.1. In the perfectly plastic separation of a body the increase of
the kinetic energy is equal to the sum of the kinetic energies corresponding to
the relative velocities and angular velocities of the remainder and separated
bodies

ΔT = [
1

2
(M −m)(v∗)2 +

1

2
IS1(Ω

∗
1)

2] + [
1

2
mu2 +

1

2
IS2(Ω

∗)2]. (72)

Proof Using the relations (55) and (56) the difference between the
kinetic energy before separation T1 and after separation T2 is

T2 − T1 = [
1

2
(M −m)vS1vS1 +

1

2
IS1Ω1Ω1 (73)

+(
1

2
mvS2vS2 +

1

2
IS2Ω2Ω2)]− 1

2
MvSvS +

1

2
ISΩΩ,

i.e.

T2 − T1 = [
1

2
(M −m)vS1vS1 −MvSvS +

1

2
mvS2vS2] +

1

2
MvSvS

+[
1

2
IS1Ω1Ω1 − ISΩΩ+

1

2
IS2Ω2Ω2] +

1

2
ISΩΩ. (74)

After some transformation the relation (74) reads

T2 − T1 =
1

2
(M −m)(vS1 − vS)(vS1 − vS)+

1

2
m(vS2 − vS)(vS2 − vS)

−(M −m)(SS1 × vS1)Ω−m(SS2 × vS2)Ω

+
1

2
IS1(Ω1 −Ω)(Ω1 −Ω) +

1

2
IS2(Ω2 −Ω)(Ω2 −Ω). (75)
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Introducing the relations (63) and (60) and also (64) and (61) for the ve-
locities vS1 and vS2 and angular velocities Ω1 and Ω2 into (75) we obtain

T2 − T1 =
1

2
(M −m)(SS1 ×Ω+ v∗)(SS1 ×Ω+ v∗)

+
1

2
m(SS2 ×Ω+ u)(SS2 ×Ω+ u)

−(M −m)(SS1 × (vS + SS1 ×Ω+ v∗))Ω
−m(SS2 × (vS + SS2 ×Ω+ u))Ω

+
1

2
IS1(Ω

∗
1)(Ω

∗
1) +

1

2
IS2(Ω

∗)(Ω∗). (76)

Since the time of separation is negligibly short and the displacements of
mass centers and the angle positions of the bodies during the separation are
also negligibly small we assume that the positions of mass centers and angle
positions of the bodies remain constant during the separation. Using this
assumption that S is the mass center of the body and S1 and S2 are the mass
centers of the remainder and separated body and after some calculation the
relation (76) is simplified to

ΔT = T2 − T1 =
1

2
(M −m)v∗v∗ +

1

2
muu

+
1

2
IS1Ω

∗
1Ω

∗
1 +

1

2
IS2Ω

∗Ω∗. (77)

The theorem is proved.

Remark 4.2. For the perfectly plastic direct central impact of two perfectly
inelastic bodies moving translatory Carnot proved the following theorem
(see Starzhinskii, 1982): There is the loss of kinetic energy which is equal to
the kinetic energy corresponding to the loss of velocities of the two bodies in
impact. Carnot’s theorem talks about the loss of the kinetic energy during
impact, and the suggested theorem (72) about the increase of the kinetic
energy during separation. The perfectly plastic impact of two perfectly
inelastic bodies is opposite to the perfectly plastic separation of the body
into separated and remainder bodies.

4.2 The separation of a pendulum

Let us consider a pendulum with mass M and length L rotating around
a fixed point O (Fig.3).

The aim is to obtain the angular velocity of the remainder pendulum
after the separation of a part whose mass is m and length l.
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Figure 3. Model of the separated pendulum.

For the angular velocity of rotation ϕ̇, the kinetic energy of the motion
is

T1 =
1

2

ML2

3
ϕ̇2. (78)

The part of the pendulum is separating with the velocity u and the angular
velocity Ω and it is moving in the xy plane. Its kinetic energy is

TS2 =
1

2
mv2S2 +

1

2

ml2

12
ϕ̇2
2, (79)

where

ϕ̇2 = ϕ̇+Ω, vS2 = vS2t + u, vS2t = ϕ̇(OS2) = ϕ̇(L− l

2
). (80)

Substituting (80) into (79), we obtain

TS2 =
1

2
m[u2+(ϕ̇+Ω)2(L− l

2
)2−2(ϕ̇+Ω)(uxyS2−uyxS2)]+

1

2

ml2

12
(ϕ̇+Ω)2,

(81)
where

xS2 = (L− l

2
) sinϕ, yS2 = (L− l

2
) cosϕ. (82)

The kinetic energy of the remainder pendulum is

TS1 =
1

2

(M −m)(L− l)2

3
ϕ̇2
1, (83)
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where ϕ̇1 is an unknown angular velocity. The derivation of the kinetic
energies (78), (81) and (83) for the generalized velocity ϕ̇ is done according
to (58). Then, the angular velocity of the remainder pendulum is determined

ϕ̇1 =
ML2ϕ̇− ml2

4 (ϕ̇+Ω)− 3m(ϕ̇+Ω)(L− l
2 )

2 + 3m(uxyS2 − uyxS2)

(M −m)(L− l)2
.

(84)
In order to prove the obtained result (84), the method based on the

angular momentum of the system is considered. The angular momentum of
the pendulum for the fixed point O is

L0 = LS +MrSvS =
1

3
ML2ϕ̇, (85)

where LS = ISϕ̇ is the angular momentum of the pendulum with the mo-
ment of inertia IS = 1

12ML2, the position rS and the velocity of the mass
center vS

rS =
L

2
, vS =

L

2
ϕ̇. (86)

The angular momentum of the separated body is

L2k = LS2k+mrS2vS2k+ rS2 ×mu (87)

= [
1

12
ml2ϕ̇2+m(L− l

2
)(ϕ̇+Ω) +m(xS2uy − yS2ux)]k,

for

LS2 = IS2ϕ̇2 =
1

12
ml2(ϕ̇+Ω), (88)

mrS2vS2 = m(L− l

2
)(ϕ̇+Ω), rS2 ×mu = mk(xS2uy − yS2ux),

where k is the unit vector perpendicular to the xy plane. The angular
momentum of the remainder pendulum is

Lr
0 = LS1 + (M −m)rS1vS1 =

1

3
(M −m)(L− l)2ϕ̇1, (89)

where

LS1 = IS1ϕ̇1 =
1

12
(M −m)(L− l)2ϕ̇1, rS1vS1 =

(L− l)2

4
ϕ̇1. (90)

Using the assumption that the angular momenta of the system before and
after mass separation are equal to each other, the following equation is
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obtained

ML2ϕ̇

3
=

(M −m)(L− l)2

3
ϕ̇1 +

ml2

12
(ϕ̇+Ω)

+m[(ϕ̇+Ω)(L− l

2
)2 − (uxyS2 − uyxS2)]. (91)

Comparing the eq.(84) with (91), it is obvious that they are in agreement.

4.3 Conclusion

The proposed analytical procedure for obtaining the velocity and angu-
lar velocity of the remainder body after the mass separation is based on the
principles of momentum and angular momentum of the body before the sep-
aration and the system of bodies after separation. By using the derivatives
in the velocity of the kinetic energy of the whole body and of the system
of bodies after separation, the required quantities are found. These quan-
tities depend on the velocity and angular velocity of the separated mass,
mass of the body before separation and also on the mass of the separated
body. In addition, these values depend on the moment of inertia of the
whole body, moment of inertia of the separated body and on the position of
the separated part. The procedure given in this paper is of a general type
and applicable to solving all the cases where discontinual mass variation
occurs. The developed analytical method is much more suitable for engi-
neering applications than the direct use of the general vectorial principles
of dynamics. The results obtained with the developed analytical method
are equal to those obtained by using the classical procedure.

The kinetic energy of the system increases during separation in general.
The increase of the kinetic energy of the separated and remainder bodies
during the perfectly plastic separation is equal to the kinetic energies of
relative motion of the two bodies.

As it is stated in the previous Chapter, the dynamics of body separation
represents an inverse process of the perfectly plastic impact of the two per-
fectly inelastic bodies. During the separation, which lasts for a very short
time interval τ , the body undergoes a relaxation which causes the energy of
deformation (potential energy) to be transformed into kinetic energies of the
separated and the remainder bodies. This additional kinetic energy causes
the relative motion of the separated and remainder bodies. The separation
forces and torques which act between the separated and remainder bodies
give the separation impulses and moments of separation impulses. We re-
gard the separated and remainder body as one complex system. Then the
separation impulses and moments between these bodies are internal within
that system. The external forces and torques are assumed to be negligible
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in comparison to those caused by body separation. It is this fact that the
law of conservation of the momentum and angular momentum of the system
can be applied. The linear momentum of the body before the separation
and the sum of the linear momenta of two parts after the separation remain
invariable. Also, the angular momentum of the body before the separation
and the sum of angular momenta of two parts after the separation remain
invariable.

5 Dynamics of the body with continual mass variation

Based on the mathematical expressions of the principle of the momentum
and of the angular momentum, the differential equations of motion of the
continaul mass variation of a body are obtained.

Namely, according to (6) and (20) and the principle of the momentum,
it is

ΔK ≡MΔvS1 ±m(vS2 − vS1) = FrΔt, (92)

where the velocity variation is

ΔvS1 = vS1 − vS . (93)

Substituting the relation (17) into (22), the principle of the angular mo-
mentum has the form

ΔLO ≡ rS×ΔK∓SS2×m(vS1−vS2)+ΔLS±LS2 = (MFr
0 +M)Δt, (94)

where
ΔLS = LS1 − LS , (95)

and
LS2 = IS2Ω2. (96)

Introducing the notation for the adding or separating mass and moment of
inertia and its absolute velocity as

m = ΔM, IS2 = ΔI, vS2 = u, (97)

and also
vS1 = v, (98)

the relations (92) and (94) are transformed

MΔv = FrΔt∓ΔM(u− v), (99)

ΔLS = (MFr
0 +M)Δt− rS ×ΔK ± SS2 ×ΔM(v − u)∓ΔIΩ2. (100)
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By introducing the moment of external forces MFr
S for the mass center of

the body S the connection between the two resultant moments MFr
O and

MFr
S for the two points O and S is

MFr
O = MFr

S + rS × Fr. (101)

Multiplying the Eq. (20) with the position vector rS it is

rS ×ΔK = rS × Fr. (102)

Substituting (101) and (102) into (100) yields

ΔLS = (MFr
S +M)Δt± SS2 ×ΔM(v − u)∓ΔIΩ2. (103)

Dividing the Eqs. (99) and (103) with the infinitesimal time Δt, it is

M
Δv

Δt
= Fr ∓ ΔM

Δt
(u− v), (104)

ΔLS

Δt
= (MFr

S +M)± SS2 × ΔM

Δt
(v − u)∓ ΔI

Δt
Ω2. (105)

For the limit condition, when the infinitesimal time tends to zero, the rela-
tions (104) and (105) transform into

M
dv

dt
= Fr + (∓

∣∣∣∣dMdt
∣∣∣∣)(u− v), (106)

dLS

dt
= (MFr

S +M) + SS2 × (∓
∣∣∣∣dMdt

∣∣∣∣)(u− v) + (∓
∣∣∣∣dIdt

∣∣∣∣)Ω2, (107)

i.e.,

M
dv

dt
= Fr +

dM

dt
(u− v), (108)

dLS

dt
= (MFr

S +M) + SS2 × dM

dt
(u− v) +

dI

dt
Ω2. (109)

Remark 5.1. It must be emphasized that the sign ’minus’ or ’plus’ (∓)
in front of the elementary mass dM and moment of inertia dI have to be
eliminated in the equations which describe the motion of the continually
mass variable bodies. Namely, the sign of the first time derivative of the
mass (dM/dt) and of the moment of inertia (dI/dt) are negative, if the
mass and the moment of inertia are decreasing in time (mass separation),
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and positive, if the mass and the moment of inertia are increasing in time
(mass addition). The sign of these first derivatives is automatically obtained
during the calculation and it availables the elimination of the mentioned
signs in the formulas in front of the time derivatives of the mass and moment
of inertia.

For LS = IΩ where I ≡ IS is the tensor of moment of inertia, and after
some simple modification the differential equations of motion of the body
with continual mass variation follow as

d

dt
(Mv) = Fr +

dM

dt
u, (110)

d

dt
(IΩ) = (MFr

S +M) + SS2 × dM

dt
(u− v) +

dI

dt
Ω2. (111)

For (see for example Goldstein, 1980)

d

dt
(IΩ) = Ω

dI

dt
+ I

dΩ

dt
+Ω× IΩ, (112)

the differential equations of motion transform into

M
dv

dt
= Fr +

dM

dt
(u− v), (113)

I
dΩ

dt
+Ω× IΩ = (MFr

S +M) + SS2 × dM

dt
(u− v) +

dI

dt
(Ω2 −Ω). (114)

The last terms in the Eqs. (113) and (114) represent the reactive force

Φ =
dM

dt
(u− v), (115)

and the reactive torque

R =
dIS
dt

(Ω2 −Ω), (116)

which exist due to variation of mass and moment of inertia of the body.
The reactive force Φ gives the moment due to point S and it is

MΦ
S = SS2 ×Φ. (117)

Substituting (115) - (117) into (113) and (114), we have

M
dv

dt
= Fr +Φ, (118)

I
dΩ

dt
+Ω× IΩ = MFr

S +M+MΦ
S+R. (119)
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The first equation defines the translational motion and the second the ro-
tation around the mass center S.

For practical reasons it is convenient to rewrite the vector differential
equations (118) and (119) into the scalar ones. Introducing the fixed coor-
dinate system Oxyz, the components u, v, w of the velocity v, the compo-
nents u2, v2, w2 of the velocity u and Fx, Fy, Fz the components of the
resultant Fr the vector differential equation of translational motion is given
with three scalar equations

M
du

dt
= Fx +Φx, M

dv

dt
= Fy +Φy, M

dw

dt
= Fz +Φz, (120)

The terms on the right side of (120)

Φx =
dM

dt
(u2 − u), Φy =

dM

dt
(v2 − v), Φz =

dM

dt
(w2 − w), (121)

are called the projections of the reactive force. The reactive force is the con-
sequence of mass variation. This result is published in the paper Cveticanin
& Kovacic, 2007.

For the reference system Sξηζ fixed to the body with the origin in the
center of mass of the body the inertial tensor I has nine components, but
only six of them are independent: Iξξ, Iηη, Iςς , are the moments of inertia
and Iξη, Iξς , Iηςand also Iηξ, Iςξ, Iςη are the products of inertia. If the axes
are principal and products of inertia are zero simultaneously the inertial
tensor I has only three principal moments of inertia Iξξ, Iηη, Iςς . The angular
velocity Ω has three components p, q, r in this frame. If p2, q2, r2 are the
components of the angular velocity Ω2, M

Φ
ξ , MΦ

η and MΦ
ς are the body-

axis components of MΦ
S , Mξ, Mη and Mζ are the body-axis components of

MFr
S and Mξ,Mη and Mζ are the projections of the torque the vector M,

the equation for rotational motion (119) is given with three scalar equations

Iξξ
dp

dt
+ (Iςς − Iηη)qr = Mξ +Mξ+MΦ

ξ + ξ,

Iηη
dq

dt
+ (Iξξ − Iςς)pr = Mη +Mη+MΦ

η + η,

Iςς
dr

dt
+ (Iηη − Iξξ)pq = Mς +Mζ+MΦ

ς + ζ . (122)

The terms on the right side of (122)

ξ =
dIξξ
dt

(p2 − p), η =
dIηη
dt

(q2 − q), ζ =
dIςς
dt

(r2 − r), (123)
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are called the projections of the reactive torque. The reactive torque is the
consequence of variation of moment of inertia of the body.

The Eqs. (120) and (122) are the six scalar differential equations of
motion of the body with variable mass. For the both cases, when mass
is separating or adding, the differential equations of motion have the same
form (120) and (122), but the signs of separating mass dM/dt and separating
moment of inertia dI/dt are negative, while the signs of adding mass dM/dt
and adding moment of inertia dI/dt are positive.

5.1 Discussion of the differential equations of motion

1) Comparing the relations (118) and (119) with those for the free motion
of a body with constant mass (see for example Starzhinskii, 1982)

M
dv

dt
= Fr, I

dΩ

dt
+Ω× IΩ = MFr

S +M, (124)

it is evident that due to variation of the mass and moment of inertia some
additional terms exist which represent the reactive force Φ, its moment MΦ

S

and the reactive torque R.
2) For the case when the relative velocity and angular velocity of mass

and moment of inertia variation is zero, the differential equations of motion
have the form (124), but M and I are time variable. Namely, due to the
fact that u = v and Ω2 = Ω, the reactive force and torque and also the
corresponding moment are zero, i.e.,

Φ = 0, R = 0, MΦ
S = 0. (125)

3) For the case when the absolute velocity u = 0 and the angular velocity
Ω2 = 0 of added or separated mass are zero, the differential equations of
motion transform into

d

dt
(Mv) = Fr, (126)

d

dt
(IΩ) = MFr

S +M+MΦ∗
S , (127)

where the modified reactive force and its moment are

Φ∗ = v
dM

dt
, MΦ∗

S = SS2 ×Φ∗. (128)

The sign of the moment of the reactive force is negative.
Cornelisse et al., 1979, introduce the additional assumption: the moment

of the reactive force is sufficiently small in comparison with other values in
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the system and can be omitted. The differential equations of motion (126)
and (127) simplify into

d

dt
(Mv) = Fr,

d

dt
(IΩ) = MFr

S +M. (129)

In the paper of Meshchersky (1896) this special case is considered for the
rotating body around a fixed axle

d

dt
(Iζr) = MFr

ζ +Mζ . (130)

where Iζ is the time variable moment of inertia, r is the angular velocity,
MFr

ζ is the moment of the resultant force due to the axle ς and Mζ is the
torque rotating the body around the axle ς.

4) Mathematical model of the mass variable body with translatory mo-
tion is equal to that of the particle with variable mass and it is

M
dv

dt
= Fr +Φ. (131)

This relation was for the first time introduced by Meshchersky. Based
on this equation the modern rocket dynamics is developed.

5) If the mass variable body rotates around a fixed axle, the system of
differential equations of motion (120) and (122) simplify into only one

Iς
dr

dt
= Mς +Mζ + ζ , (132)

The reactive torque ζ depends on the variation of the moment of inertia
for the rotation axle and the relative angular velocity which is the difference
between the angular velocity of body rotation and the angular velocity of
the separated or added mass. If the relative angular velocity of the mass
variation is zero, the differential equation of body rotation is

Iς ϕ̈ = Mς +Mζ . (133)

where ϕ̇ = r.and the moment of inertia is time dependent.
6) For the straightforward motion of a mass variable body the differential

equation is according to (131)

M
dv

dt
= Fr +Φ, (134)

where

Φ =
dM

dt
(u− v). (135)
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Comparing (132) and (134) it can be concluded that the differential equa-
tions have the same form, where the reactive force Φ for the translatory
motion corresponds to the reactive torque ζ .

Remark 5.2. Using the principle of solidification Bessonov, 1967, obtained
the differential equations of free motion of the body. Bessonov does not take
the reactive torque into consideration.

5.2 Band is winding up on a drum

Let us consider the in-plane motion of a drum on which the band is
winding up (Fig.4). The differential equations of the motion are according
to (120) and (122)

d

dt
(MẋS1) = Fx +

dM

dt
vxb,

d

dt
(MẏS1) = Fy +

dM

dt
vyb, (136)

d

dt
(IS1ϕ̇) = MS1 +MΦ

S1 +
dIS1

dt
Ωb,

where

MΦ
S1 =

dM

dt
[(S1S2)x(vyb − ẏS1)− (S1S2)y(vxb − ẋS1), (137)

(S1S2)x and (S1S2)y are projections of the position vector of the point
of mass addition due to the mass centre S1, Ωb is the angular velocity of
the winding band, vxb and vyb are the projections of the linear velocity of
the winding band, M is the mass of the drum with band, IS1 is moment
of inertia of the drum with band, ẋS1 and ẏS1 are the projections of the
velocity of the mass center of the drum with band and ϕ̇ is the angular
velocity of the drum with band (Cveticanin & Kovacic, 2007).

The technical requirement for winding up of the band is the absolute
velocity of the band vb to be constant. Only for that condition the rolling
up of the band on the drum is accurate without crumpling of the band or
its plucking. The band is moving translatory with velocity v horizontally,
parallel to y-axle in Fig.4. The projections of the band velocity are

vxb = 0, vyb = v. (138)

The rolling up of one band layer is discussed. The angle of rolling up of the
band is in the interval from ϕ = 0 to ϕ = 2π.
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Figure 4. The model of the rotor on which the band is winding up.

The geometric and physical properties of the drum with band If
the mass of the drum with unrolled band is M0 and the rolling mass is Mr

Mr = μϕ, (139)

where
μ = Rhbρ, (140)

h is the thickness, b is the width and ρ is the density of band, the mass M
variation is a linear function of the angle ϕ

M = M0 +Mr = M0 + μϕ. (141)

The position of mass centre of the drum with unrolled mass is

SS1 =
Mr

M
(SS′), (142)

where SS′ is the distance of the mass centre of the unrolled mass on the
drum

SS′ = R
sin(ϕ/2)

ϕ/2
. (143)

According to the relations (141), (142) and (143) the distance between the
mass centre of the whole system and the rotation centre is obtained

SS1 =
2μ

M0 + μϕ
sin(

ϕ

2
). (144)

The moment of inertia of the drum with the unrolled mass is J0 and the
moment of inertia of the band which is rolling up is

Jr =

ϕ∫
0

R2dMr =

ϕ∫
0

R3hbρdϕ = jϕ, (145)
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where j = R3hbρ = μR2 is the unit moment of inertia. The total moment
of inertia is obtained by superposition the both moments of inertia

JS = J0 + jϕ. (146)

Applying the Steiner theorem the moment of inertia for the parallel axis
settled in the mass centre is obtained

JS1 = JS −M(SS1)
2. (147)

Forces acting on the system During winding up of the band the fol-
lowing forces act: the elastic force of the shaft, the damping torque, the
reactive force and the reactive torque.

The elastic force of the shaft is projected in the fixed coordinate system

Fx = −cxS = −c(xS1−SS1 cos
ϕ

2
), Fy = −cyS = −c(yS1−SS1 sin

ϕ

2
),

(148)
where c is the rigidity of the shaft.

According to (136) and (138) the projections of the reactive force Φ and
the reactive torque � are obtained

Φx =
dM

dt
(−ẋS1), Φy =

dM

dt
(v − ẏS1),  =

dIS1

dt
(−ϕ̇).

If the rotational damping torque acts

MD = −Dϕ̇, (149)

where D is the damping coefficient, and the moment of the reactive force
according to S1 is considered, the differential equations of the plane motion
is obtained

MẍS1 + cxS1 = c(SS1) cos
ϕ

2
+

dM

dt
(−ẋS1),

MÿS1 + cyS1 = c(SS1) sin
ϕ

2
+

dM

dt
(v − ẏS1),

JS1ϕ̈+Dϕ̇ =
dJS1

dt
(−ϕ̇) + xS1c(SS1) sin

ϕ

2
− yS1c(SS1) cos

ϕ

2

+
dM

dt
(v − ẏS1)(S1S2)x − dM

dt
(−ẋS1)(S1S2)y. (150)

It is worth to be mentioned that due to winding up of the band the
symmetry of the disc is disturbed and the products of inertia Jxz and Jxz
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are not zero. As the thickenss of the band which is winding up is quite small,
the mentioned products of inertia are also small and can be neglected.

For the case when the mass centre and the geometric centre of the disc
are quite close and the eccentricity is SS1 ≈ 0, we have the coordinates
xS1 ≈ xS and yS1 ≈ yS . Omitting the terms with SS1 in the equation (150)
and using the relations (141), (146) and (147) the differential equations of
the plane motion of the disc, with variable mass and without the unbalance
force, are obtained

MẍS + cxS = −μϕ̇ẋS , MÿS + cyS = μϕ̇(v − ẏS), (151)

JSϕ̈+Dϕ̇ = −jϕ̇2 + μϕ̇(v − ẏS)(SS2)x + μϕ̇ẋS(SS2)y. (152)

The system of differential equations (151) and (152) is nonlinear.

Shaft is rigid If the shaft of the drum with winding up band is rigid
the motion of the system transforms to a rotation around the rigid axle
(xS = yS = 0)

(J0 + jϕ)ϕ̈+Dϕ̇ = −jϕ̇2 + μϕ̇vR. (153)

Introducing the new variable u(ϕ) = ϕ̇ the differential equation (153) is
transformed to the Bernoulli equation

(J0 + jϕ)
du

dϕ
+ ju = (μvR−D), (154)

whose solution for the initial condition ϕ̇(0) = Ωb has the form

ϕ̇ =
J0Ωb + (μvR−D)ϕ

J0 + jϕ
. (155)

The relation (155) describes the variation of the angular velocity of the
drum when the absolute velocity v of the winding band is constant. The
angular velocity of the drum decreases during winding up of a layer.

Integrating the differential equation (155) for the initial angle ϕ(0) = 0
the time history of angle variation is obtained

ϕ+ (
J0
j
− J0Ωb

μvR−D
) ln

∣∣∣∣1 + ϕ
μvR−D

J0Ωb

∣∣∣∣ = μvR−D

j
t. (156)

This form of solution is not convenient for discussion. Introducing the new
variable

r = 1 +
μvR−D

J0Ωb
ϕ, (157)
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the equation (156) is

r +
D

jΩb
ln r = 1 +

(μvR−D)2

J0jΩb
t. (158)

Let us introduce the new function

w = − ln r − f1
k1

, (159)

where

f1 = 1 +
(μvR−D)2

J0jΩb
t, k1 = −μvR−D − jΩb

jΩb
. (160)

After substituting (159) into (156) and some transformation the obtained
result is

w exp(w) = x, (161)

where

x =
1

k1
exp(−f1

k1
). (162)

The solution w(x) of (161) is the Lambert’s w function (see Weisstein, 2007)

w(x) ≡ lambertw(
1

k1
exp(−f1

k1
)). (163)

Substituting into (159) the solution for r is obtained

r = −k1(lambertw(− 1

k1
exp(−f1

k1
))) ≡ −k1w(x), (164)

which gives the implicit solution for (156)

ϕ = J0(
1

j
− Ωb

μvR−D
)w − J0Ωb

μvR−D
. (165)

For the case when damping is neglected and assuming that v = ΩbR the
relation (156) is simplified and the angle time function is linear

ϕ = Ωbt. (166)

Shaft is elastic Let us transform the differential equations (151) intro-
ducing the variables

xS = x(ϕ), ẋS =
dx

dϕ
ϕ̇, ẍS =

d2x

dϕ2
ϕ̇2 +

dx

dϕ
ϕ̈, (167)

yS = y(ϕ), ẏS =
dy

dϕ
ϕ̇, ÿS =

d2y

dϕ2
ϕ̇2 +

dy

dϕ
ϕ̈, (168)
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The obtained system of differential equations of plane motion is

(M0 + μϕ)ϕ̇2 d
2x

dϕ2
+

dx

dϕ
[μϕ̇2 + (M0 + μϕ)ϕ̈] + cx = 0, (169)

(M0 + μϕ)ϕ̇2 d
2y

dϕ2
+

dy

dϕ
[μϕ̇2 + (M0 + μϕ)ϕ̈] + cy = μϕ̇v, (170)

JSϕ̈+ (D − μvR)ϕ̇+ jϕ̇2 = −μϕ̇2R
dy

dϕ
. (171)

Substituting (155) into (169) and (170), assuming that μ/M0, j/J0, μ/J0
and D/J0Ωb are small parameters, the simplified differential equations are
formed

d2x

dϕ2
+ 2δ

dx

dϕ
+ ω2(ϕ)x = 0, (172)

d2y

dϕ2
+ 2δ

dy

dϕ
+ ω2(ϕ)y =

μ

M0
R, (173)

ϕ̈+
D − μRv

JS
ϕ̇+

j

JS
ϕ̇2 = − μ

J0
Rϕ̇2 dy

dϕ
, (174)

where

2δ = 2
μ

M0
− j

J0
− D

J0Ωb
, ω2(ϕ) ≡ ω2 = k2(1−Aϕ),

k2 =
ω2
1

Ω2
b

, ω2
1 =

c

M0
, A = 3

μ

M0
− 2

j

J0
− D

J0Ωb
.

To obtain the approximate analytic solutions of (172) - (174) the Bogo-
lubov-Mitropolski method is modified for the non-homogenous rheo-linear
differential equations.

Omitting the terms on the right side of the equation (174) as small
values the approximate solution of (174) corresponds to the case of rigid
shaft (155). Substituting (155) into (173) the solution of the differential
equation (173) is assumed as

y = a(ϕ) exp(−δϕ) cosΨ(ϕ) +
1

ω2(ϕ)

μ

M0
R

≡ a exp(−δϕ) cosΨ +
1

ω2(ϕ)

μ

M0
R, (175)

where

Ψ(ϕ) =

∫
ω(ϕ)dϕ+ α(ϕ), (176)
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and the first derivative of the function y

dy

dϕ
= (−δa cosΨ− aω(ϕ) sinΨ) exp(−δϕ)− (

μ

M0
)2

R

k2(1−Aϕ)2
, (177)

with
da

dϕ
cosΨ− a

dα

dϕ
sinΨ = 0. (178)

Eliminating the second order small term in (177) the relation transforms to

dy

dϕ
≈ (−δa cosΨ− aω(ϕ) sinΨ) exp(−δϕ). (179)

Using the relations (175) - (179) the differential equation (173) is trans-
formed into a system of two first order differential equations

da

dϕ
= − a

ω

dω

dϕ
sin2 Ψ,

dα

dϕ
=

1

2ω

dω

dϕ
sin 2Ψ. (180)

It is at this point the averaging procedure 1
2π

2π∫
0

(•)dΨ is introduced and the

relations (180) are simplified into

da

dϕ
= − a

2ω

dω

dϕ
,

dα

dϕ
= 0. (181)

For the initial conditions

ϕ = 0, a = a0, α = α0, (182)

the solution of the equation (173) in the first approximation is

yS = y(ϕ) =
a0

4
√
1−Aϕ

exp(−δϕ) cos(k
√
(1−Aϕ) + α0) +

R

k2
μ

M0
. (183)

According to the suggested procedure the solution of the equation (172) is

xS = x(ϕ) =
b0

4
√
1−Aϕ

exp(−δϕ) cos(k
√
(1−Aϕ) + β0), (184)

where b0 and β0 are initial amplitude and phase. The parameter values
have to satisfy the relation

3
μ

M0
− 2

j

J0
− D

J0Ωb
<

1

2π
. (185)
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The motion of the rotor center depends on the ratio between the small
parameters μ/M0, j/J0 and D/J0Ωb. For small value of the rotational
damping and higher velocity of the rolling band the vibrations decrease.

Using the obtained solution (183) the correction for the angle velocity
(155) can be denoted. Due to the fact that ẏS tends to zero for technical
reasons the relation (155) is guessed to be accurate enough.

5.3 Conclusion

During the process of continual mass variation, the mass and moment
of inertia of the rigid body vary due to adding or separating of mass in the
short infinitesimal time interval: mass but also the form and the volume of
the body are continually varying in time. It causes the body mass center
position variation and also the change of the moment of inertia and the
products of moment of inertia. Due to mass and moment of inertia variation
the reactive force and reactive torque act. Namely, the absolute velocity and
angular velocity of addition or separation differs in general from the velocity
of mass center and angular velocity of the initial body and it causes the
impact to occur. As the mass variation is continual the impact is substituted
with a ”reactive force” and ”reactive torque” which continually act on the
body. The force and torque depend on the absolute velocity of mass centre
and angular velocity of the separated or added body.

For the rolling up of the band on the drum mass and moment of inertia of
the drum with band is varying. Mass and moment of inertia depend on the
angle position of the wounded band. Due to geometry variation of the drum
with band the mass center position inside the system is varying, too. This
variation seems to be small and is neglected in our consideration. During
winding up of the band on the drum the impact occurs due to difference of
velocity and angular velocity of the band and drum. It causes the vibrations
of the mass centre of drum. The vibrations of drum mass centre depend on
the amount on the band winding up on the drum: the higher the amount
of band on the drum the smaller the vibrations. The damping property of
drum also has an influence on the vibrations: the higher the damping the
smaller the vibrations.

The band is winding up with constant velocity. This requires the angle
velocity of drum to vary. The angle velocity variation is the function of the
moment of inertia of the band which is winding up and also of the damping
properties of the system: for higher damping the angle velocity decreases
faster than for the smaller damping; the larger the moment of inertia of the
winding up band the slower the decrease of the angular velocity. This result
is of technical importance for regulating of the rotation of the drum.
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6 Lagrange’s equations of the body with continual
mass variation

Let us rewrite the Eqs. (110) and (111) into the form

d

dt
(Mv) = Fr +Φa, (186)

d

dt
(IΩ) = MFr

S +M+MΦ
S + Ra. (187)

where

Φa =
dM

dt
u, Ra =

dI

dt
Ω2, (188)

and the reactive force Φ and the moment of the reactive force MΦ
S are given

with Eqs. (115) and (117), respectively. Multiplying the Eq. (186) with the
virtual displacement δr, and the Eq. (187) with the virtual angle δΨ and
by adding them, it follows

(Fr+Φa)δr+ (M
Fr
S +M+MΦ

S+Ra)δΨ−M r̈δr−Ṁ ṙδr−IΨ̈δΨ−İΨ̇δΨ = 0,
(189)

where Ψ̇ = Ω and (·)· ≡ d (·) /dt, (·)·· ≡ d2 (·) /dt2.The relation (189) de-
scribes the D’Alambert-Lagrange principle for the body with continual mass
variation: The total virtual work of all active forces and torques (includ-
ing the non-ideal constraint reactions), of the reactive force and torque, of
the moment of the reactive force and of the inertial force and torque is
equal to zero for any virtual displacement and virtual angle of the body.
Mathematically, it is

δAI + δAφa + δARa + δA+ δAMφ = 0, (190)

where
δAI = −(M r̈+Ṁ ṙδr)δr− (IΨ̈+ İΨ̇)δΨ,

δA = Frδr+ (M
Fr
S +M)δΨ,

δARa = RaδΨ

δAMφ = MΦ
SδΨ

δAφa = Φaδr.

(191)

us introduce i = 1, 2, ..., 6 independent generalized coordinates qi. The vir-
tual displacement and the virtual angle are determined by formulas

δr =
6∑

i=1

∂r

∂qi
δqi, δΨ =

6∑
i=1

∂Ψ

∂qi
δqi, (192)
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where δqi is the variation of the generalized coordinate qi. Substituting
(192) into (190) and after some modification we have

6∑
i=1

(Zi +Qφa
i +QRa

i +Qi +QMφ
i )δqi = 0, (193)

where the generalized inertial force Zi, generalized force of the part of the
reactive force Qφa

i and reactive torque QRa
i , generalized force of the active

forces and torques and reactions of non-ideal constraints Qi and the general-
ized force of the moment of the reactive force QMφ

i are calculated according
to following formulas

Zi = −[ d
dt

(Mv)
∂r

∂qi
+

d

dt
(IΩ)

∂Ψ

∂qi
],

Qφa
i = Φa

∂r

∂qi
QRa

i = Ra
∂Ψ

∂qi
,

Qi = Fr
∂r

∂qi
+(M

Fr
S +M)

∂Ψ

∂qi
, QMφ

i = MΦ
S

∂Ψ

∂qi
.

(194)

The generalized inertial force Zi is rewritten as

Zi = − d

dt
[(Mv)

∂r

∂qi
+ (IΩ)

∂Ψ

∂qi
] + [(Mv)

d

dt

∂r

∂qi
+ (IΩ)

d

dt

∂Ψ

∂qi
]. (195)

The position vector r and the angle vector Ψ depend on the generalized
coordinates qi and time t

r = r(qi, t), Ψ = Ψ(qi, t). (196)

As the generalized coordinates also depend on time, the velocity and angular
velocity have the form

v ≡dr

dt
=
∂r

∂t
+

6∑
i=1

∂r

∂qi
q̇i, Ω ≡dΨ

dt
=
∂Ψ

∂t
+

6∑
i=1

∂Ψ

∂qi
q̇i. (197)

Now we take the partial derivatives with respect to q̇i

∂r

∂qi
=

∂ṙ

∂q̇i
=

∂v

∂q̇i
,

∂Ψ

∂qi
=

∂Ψ̇

∂q̇i
=

∂Ω

∂q̇i
. (198)

On the other hand, taking the partial derivatives of both the sides of equal-
ities (197) with respect to qi we obtain

∂v

∂qi
=

∂2r

∂t∂qi
+

6∑
j=1

∂2r

∂qi∂qj
q̇j ,

∂Ω

∂qi
=

∂2Ψ

∂t∂qi
+

6∑
j=1

∂2Ψ

∂qi∂qj
q̇j . (199)
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Directly, the time derivative of (∂r/∂qi) and (∂Ψ/∂qi) is

d

dt

(
∂r

∂qi

)
=

∂2r

∂t∂qi
+

6∑
j=1

∂2r

∂qi∂qj
q̇j ,

d

dt

(
∂Ψ

∂qi

)
=

∂2Ψ

∂t∂qi
+

6∑
j=1

∂2Ψ

∂qi∂qj
q̇j .

(200)
The left sides of the Eqs. (199) and (200) are equal, and consequently,

∂v

∂qi
=

d

dt

(
∂r

∂qi

)
,

∂Ω

∂qi
=

d

dt

(
∂Ψ

∂qi

)
. (201)

Applying (198) and (201), the generalized inertial force (195) is

Zi = − d

dt
[(Mv)

∂v

∂q̇i
+ (IΩ)

∂Ω

∂q̇i
] + [(Mv)

∂v

∂qi
+ (IΩ)

∂Ω

∂qi
]. (202)

After some modification, Eq. (202) transforms into

Zi = − d

dt

∂T

∂q̇i
+

∂T

∂qi
, (203)

where T is the kinetic energy

T =
1

2
Mvv+

1

2
IΩΩ. (204)

Substituting (203) into (193) the general equation of dynamics for mass
variation is

6∑
i=1

[
d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
−

(
Qi +Qφa

i +QRa
i +QMφ

i

)]
δqi = 0 (205)

Since the coordinates qi are independent so are the variations δqi and there-
fore condition (205) implies

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
= Qi +Qφa

i +QRa
i +QMφ

i , i = 1, 2, ..., 6. (206)

The Lagrange’s equations of motion of the variable mass body is given by
Bessonov, , by using the method of solidification. Bessonov’s equations are
not general, as he assumed that the absolute angular velocity of the added
body is zero and the generalized force QRa

i is omitted.

7 Vibration of the body with continual mass variation

As the special type of motion the oscillation of the body with time variable
mass is considered. The motion is bounded, periodical and with monotone
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change of the direction of motion around the equilibrium position or it is
added to the steady state motion of the body. In this Section the vibration
of the one-degree-of-freedom oscillator with variable mass will be considered

Based on the Eq. (120) with (121) and introducing the generalized co-
ordinate x, the mathematical model of the one-degree-of-freedom oscillator
with time variable mass is

Mẍ = Fx +
dM

dt
(ux − ẋ), (207)

where Fx is the resultant force and ux is the absolute velocity of the adding
or separating particle in x direction. In general, the resultant force is a
function of the displacement x, velocity ẋ and time t

Mẍ = Fx(x, ẋ, t) +
dM

dt
(ux − ẋ). (208)

If an elastic force of odd parity acts, i.e.,

Fe(−x) = Fe(−x), (209)

the differential equation (208) is as follows

Mẍ+ Fe(x) = Fx(x, ẋ, t) +
dM

dt
(ux − ẋ). (210)

Eq. (210) describes the vibration of the time variable one-degree-of-freedom
system.

7.1 Oscillator with strong nonlinear deflection

Let us consider the oscillator where:
1. Mass variation is slow and depends on the ’slow time’ τ = εt where

ε << 1 is a small parameter

M = m(τ). (211)

2. The elastic force depends on the nonlinear deflection x |x|α−1
, where

the order of nonlinearity α ∈ R+ is the positive rational number written as
a termination decimal or as an exact fraction,
α ∈ Q+ =

{
m
n > 0 : m ∈ Z, n ∈ Z, n �= 0

}
and Z is integer.

3. The absolute velocity of the adding or separating mass is zero, i.e.,
ux = 0.

4. The additional force which acts on the oscillator is small and is the
function of the deflection x and velocity ẋ : Fx = εf1(x, ẋ).
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The mathematical model for such an oscillator is

m(τ)ẍ+ kαx |x|α−1
= −εdm(τ)

dτ
ẋ+ εf1(x, ẋ), (212)

i.e.

ẍ+ ω2(τ)x |x|α−1
= εf(τ, x, ẋ), (213)

where

εf(τ, x, ẋ) = − ε

m(τ)

dm(τ)

dτ
ẋ+

ε

m(τ)
f1(x, ẋ). (214)

and

ω(τ) =

√
kα

m(τ)
. (215)

Generating solution For ε = 0 the generating equation of (213) is

ẍ+ ω2
0x |x|α−1

= 0, (216)

with initial conditions

x(0) = x0, ẋ(0) = 0, (217)

where ω2
0 ≡ ω2(0) =const.Integrating (216) and using the initial conditions,

the first integral of the energy type is obtained (Cveticanin, 2008)

ẋ2

2
+

c21
α+ 1

|x|α+1
=

c21
α+ 1

|x0|α+1
. (218)

The both terms on the left side are positive and the motion is periodic. (see
for example Cveticanin, 20092; Mickens, 2010; Cveticanin & Pogany, 2012).

For the new variable |x| = |x0| |u|1/(α+1)
the period of vibration is

Tex =
4 |x0|(1−α)/2

c1
√
2(α+ 1)

1∫
0

(1− |u|)−1/2u−α/(α+1)du. (219)

Introducing the Euler beta function B(m,n) (see Rosenberg, 1963)

B(m,n) =

1∫
0

(1− |u|)n−1um−1du, (220)
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the relation (219) can be rewritten as follows

Tex =
4 |x0|(1−α)/2

c1
√
2(α+ 1)

B(
1

α+ 1
,
1

2
). (221)

Due to

B(m,n) =
Γ(m)Γ(n)

Γ(m+ n)
, (222)

the exact period is

Tex =
4 |x0|(1−α)/2

c1
√
2(α+ 1)

Γ( 1
α+1 )Γ(

1
2 )

Γ( 3+α
2(α+1) )

, (223)

where Γ is the Euler gamma function (Abramowitz & Stegun, 1979). Using
Γ( 12 ) =

√
π (see Abramowitz & Stegun, 1979) the period expression is finally

Tex =
1

c1 |x0|(α−1)/2

(
2
√
2π√

(α+ 1)

)(
Γ( 1

α+1 )√
πΓ( 3+α

2(α+1) )

)
. (224)

Using the property of the conservative oscillator (216), for the condition
ẋ = 0, according to the relation (218), the extremal amplitudes during a
period of vibration are obtained as xmax = x0 and xmin = −x0.

Using the exact period (224) and the statement of the constant amplitude
of vibration, it is obvious that the approximate solution of (216) would
satisfy the relation

x(0) = x(Tex) = ... = x(nTex) = x0. (225)

Finally, the approximate solution has to satisfy not only the initial condi-
tions (217) but also the requirements of the exact amplitude and frequency,
i.e. the relation (225) for (224).

Using the procedure published in Cveticanin, 2012, the approximate
solution of (212) is obtained.

The solution of the differential equation (216) with constant parameters
is assumed as a cosine function

x = A cosψ, (226)

where

ψ = θ +Ωt, (227)
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A and θ are arbitrary constants and Ω is the exact frequency of vibration

Ω =
2π

Tex
= Ωαω0A

α−1
2 . (228)

Substituting (226) and its first and second time derivatives

ẋ = −AΩsinψ, (229)

ẍ = −AΩ2 cosψ, (230)

the equation (216) is approximately satisfied

d2

dt2
(A cosψ) + ω2

0(A cosψ)
α−1
2 ≈ 0. (231)

According to the generating solution (226) with (227) of the Eq. (216) and
its first time derivative (229), the trial solution of the Eq.(213) and its time
derivative are assumed as

x = A(t) cosψ(t), (232)

ẋ = −A(t)Ω(τ, A(t)) sinψ(t), (233)

where
ψ̇ = θ̇ +Ω(τ, A(t)), (234)

A(t), θ(t) and ψ(t) are time variable functions and according to (228) it is

Ω(τ, A(t)) = Ωαω(τ)(A(t))
α−1
2 . (235)

Calculating the first time derivative of (232) and equating it with expression
(233), it follows

Ȧ(t) cosψ(t)−A(t)θ̇(t) sinψ(t) = 0. (236)

Substituting (232), (233) and the time derivative of (233) into (213) and
using the relation (231), we obtain

− ȦΩsinψ −AȦ
∂Ω

∂A
sinψ − εA

∂Ω

∂ω

∂ω

∂τ
sinψ −AΩθ̇ cosψ

= εf(τ, A cosψ,−AΩsinψ), (237)

where ω ≡ ω(τ), A ≡ A(t), θ ≡ θ(t), ψ ≡ ψ(t). Hence, two first order
differential equations (236) and (237) replace the second order differential
equation (213). Solving (236) and (237) with respect to Ȧ and θ̇, we have

Ȧ(Ω−A
∂Ω

∂A
sin2 ψ) = −εA∂Ω

∂ω

∂ω

∂τ
sin2 ψ − εf(τ, A cosψ,−AΩsinψ) sinψ,

(238)
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Aθ̇(Ω−A
∂Ω

∂A
sin2 ψ) = −εA∂Ω

∂ω

∂ω

∂τ
sinψ cosψ

− εf(τ, A cosψ,−AΩsinψ) cosψ. (239)

Averaging the differential equations in the period 2π we obtain the following
equations

Ȧ = − 2εA

(5− α)ω

dω

dτ
− 4εA

1−α
2

(5− α)ωΩα

1

2π

2π∫
0

f(τ, A cosψ,−AΩsinψ) sinψdψ,

(240)

Aθ̇ = − 2εA
1−α
2

(5− α)ωΩα

1

2π

2π∫
0

f(τ, A cosψ,−AΩsinψ) cosψdψ, (241)

and from (234) and (235)

ψ̇ = ΩαωA
α−1
2 − 2εA

1−α
2

(5− α)ωΩα

1

2π

2π∫
0

f(τ, A cosψ,−AΩsinψ) cosψdψ. (242)

Solving the averaged differential equation (240) and substituting the
obtained solution for A into (242) the approximate function ψ is obtained
which gives the solution (232).

Small linear damping force acts For the special case when beside the
reactive force also the linear damping force acts

Fx = −εbẋ, (243)

where εb is the small damping coefficient, the function f is

f = −
(

b

m
+

1

m

dm

dτ

)
ẋ. (244)

As the mass variation is slow and the damping coefficient is small, the re-
active and damping force are also small in comparison to the elastic force.
Substituting (215) and (244) into (240) and (242) the differential equation
(212) transforms into a system of two averaged first order differential equa-
tions

Ȧ

A
= − ε

(5− α)m

(
dm

dτ

)
− 2εb

(5− α)m
, (245)
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ψ̇(t) = ΩαA
α−1
2

√
kα
m

, (246)

In general, the averaged amplitude variation is the solution of (245)

A = A0

(m0

m

) 1
5−α

exp

(
− 2εb

5− α

∫
dt

m

)
, (247)

which gives the phase angle function

ψ = ψ0 +Ωα

√
kα

(
A0m

1
5−α

0

)α−1
2

∫
m− α−1

2(5−α)
− 1

2

(
exp

(
− 2εb

5− α

∫
dt

m

))α−1
2

dt. (248)

The amplitude and the phase of vibration vary in time due to damping,
but also due to mass variation. The order of nonlinearity has a significant
influence on the velocity of amplitude and phase increase or decrease.

Linear mass variation Let us consider the case when the mass variation
is linear, as it is suggested by Yuste (1991)

m = m0 +m1τ = m0 + εm1t, (249)

where m1 is a constant and ε is a small parameter. According to (245), we
obtain the differential equation for the amplitude variation

Ȧ

A
= −ε(2b+m1)

(5− α)m
(250)

a) For the special parameter values, when m1/b = −2 the amplitude
of vibration is constant i.e.,

A = A0 = const. (251)

and the relation (248) transforms into

ψ = ψ0 +
2

εm1
ΩαA

α−1
2

0

√
kα

(
m1/2 −m

1/2
0

)
(252)

For this special case in spite of the action of the linear damping the
amplitude of vibration is constant due to the fact that the linear mass
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separation makes the compensation to the effect of damping. Using the
series expansion of the function ψ we have

ψ = ψ0 + 2ΩαA
α−1
2

0

√
kα
m0

t. (253)

The approximate value of the period of vibration is independent on the mass
variation and damping coefficient, and is given as follows

T =
2π

2ΩαA
α−1
2

0

√
kα

m0

. (254)

The approximate period value depends only on the order of nonlinearity.
b) For m1/b �= −2 the amplitude-time and phase-time functions are

A = A0

(
m

m0

)− 1
5−α

(
1+ 2b

m1

)

, (255)

and

ψ =

√
m0kα
εm1

A
α−1
2

0 Ωα

1
2 − α−1

2(5−α)

(
1 + 2b

m1

)
⎛⎝(

m

m0

) 1
2− α−1

2(5−α)

(
1+ 2b

m1

)

− 1

⎞⎠+ ψ0,

(256)
which give the approximate solution (232)

x = A0

( m

m0

)− 1
5−α (1+ 2b

m1
)

cos

(√
m0kα
εm1

A
α−1
2

0 Ωα

1
2 − α−1

2(5−α) (1 +
2b
m1

)

(( m

m0

) 1
2− α−1

2(5−α)
(1+ 2b

m1
) − 1

)
+ ψ0

)
.

(257)

The amplitude and phase variation depend on the relation m1/b, param-
eter m1 and order of nonlinearity α.

Let us consider a numerical example were the order of nonlinearity is
α = 4/3, the rigidity k4/3 = 1 and the mass decrease is m = 1 − 0.01t,
where m0 = 1, m1 = 1 and ε = 0.01. The differential equation of motion is

ẍ+
x |x|1/3
1− 0.01t

= 0.01 (1− b) ẋ, (258)
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Figure 5. The x − t diagrams obtained analytically (a – full line) and
numerically (n – dot line) for: a) b = 0, b) b = 1/2 and c) b = 1.

where b is the damping coefficient. For the initial conditions x(0) = A0 = 0.1
and ẋ(0) = 0 the analytical solution (257) has the form

x =
0.1

(1− 0.01t)
0.27273(1−2b)

(259)

cos

(
66.028

0.5 (1− 0.0909(1− 2b))

(
1− (1− 0.01t)

0.5(1−0.0909(1−2b))
))

.

In Fig.5 the approximate solution (259) and the numerical solution of
(258), obtained by using of the Runge-Kutta procedure, are plotted. The
x− t diagrams for various values of the damping parameter b are shown.

It can be concluded that for b = 1/2 the amplitude of vibration is con-
stant as it is previously stated (see Eq. (248)). For the case when the
damping is neglected (b = 0), due to mass decrease and existence of the
reactive force, the amplitude of vibration increases. For certain damping
(b = 1) which is higher than the limit value (b = 1/2) the amplitude of
vibration decreases. The analytical solution is in a very good relation to
the numeric one in spite of the long time interval of consideration.
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Linear oscillator For the linear oscillator when α = 1

A = A0

(m0

m

) 1
4 (1+

2b
m1

)

(260)

and

ψ =
2
√
k1

εm1

(√
m−√m0

)
+ ψ0 (261)

If the damping parameter is zero, i.e., b = 0, the amplitude variation

is A = A0

(
m0

m

)1/4
. Using the series expansion of the functions in (261) the

approximate frequency of vibration is
√

k1/m0 which corresponds to the
systems with constant mass and without damping.

Influence of the reactive force Let us analyze the influence of the
reactive force described with the function

f = − 1

m

dm

dτ
ẋ. (262)

Substituting (262) into (247) and (248) we obtain the variation of the
amplitude

A = A0

(m0

m

) 1
5−α

, (263)

and of the phase angle function

ψ = ψ0 +Ωα

√
kα

(
A0m

1
5−α

0

)α−1
2

∫
m− α−1

2(5−α)
− 1

2 dt. (264)

For the certain order of nonlinearity α the amplitude of vibration increases
with decreasing of the mass in time. If the mass increases, the amplitude
of vibration decreases for the oscillator of the certain degree of nonlinear-
ity. For the linear oscillator, when α = 1, the amplitude variation is, as
previously published by Bessonov 1967,

A = A0

(m0

m

)1/4

, (265)

and for the pure cubic oscillator with cubic nonlinearity (see Cveticanin,
1992)

A = A0

(m0

m

)1/2

. (266)

If the mass increases, the amplitude decreases faster for higher order of
nonlinearity. If the mass decreases the amplitude increases faster for smaller
order of nonlinearity.
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For the case when the relative velocity of the adding or separated mass
is zero and the reactive force is zero, or for the case when the reactive force
is sufficiently small and can be omitted, the amplitude and phase angle
functions are according to (240), (242) and (215)

Ȧ =
Aṁ

(5− α)m
, (267)

and

ψ̇ = Ωα

√
kα
m

A
α−1
2 . (268)

Integrating the relations (267) and (268) for the initial amplitude A0, phase
angle ψ0 and mass m0, it follows

A = A0

(
m

m0

) 1
5−α

, (269)

ψ = ψ0 +Ωα

√
kα

(
A0m

− 1
5−α

0

)α−1
2

∫
(m)

α−1
2(5−α)

− 1
2 dt. (270)

Due to (232) and the relations (269) and (270), the approximate solution is

x = A0

( m

m0

) 1
5−α cos

(
ψ0 +Ωα

√
kα

(
A0m

− 1
5−α

0

)α−1
2

∫
(m)

α−1
2(5−α)

− 1
2 dt

)
.

(271)
Analyzing the relation (269) it is obvious that for the same order of non-
linearity α, the amplitude of vibration increases by increasing of the mass.
Besides, for the same mass variation, the amplitude increases faster for
higher orders of nonlinearity.

7.2 Conclusion

Due to previous consideration it can be concluded:
1. The vibration of the oscillator with monotone time variable pa-

rameter has time variable amplitude and phase. The free vibrations for
all of the oscillators with a strong nonlinearity of any order and with the
certain monotone slow time variable parameters are qualitatively the same
independently on the order of the nonlinearity. The order of nonlinearity
quantitatively changes the amplitude and the phase of vibrations but has
no influence on the character of vibrations. Namely, for certain parameter
variation the higher the order of nonlinearity, the faster or slower is the
amplitude and phase increase or decrease. The tendency of increase or de-
crease of amplitude and phase i.e., frequency of vibration variation is not
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directed by the order of nonlinearity but with the type of time parameter
variation.

2. It is evident that in the oscillator with variable mass for the special
relation between the coefficient of damping and parameter of mass variation
(which affects the reactive force) the amplitude of vibration is constant, but
the phase angle varies independently on the order of nonlinearity.

3. The approximate solution of the nonlinear differential equation
with strong nonlinearity of any order (integer or non-integer) and time vari-
able parameter can be obtained analytically.

4. The approximate analytic method for solving the differential equa-
tion based on the exact solution of the corresponding differential equation
with constant parameters and strong nonlinearity of any order (integer or
non-integer) gives very accurate results in comparison to the numerical one.

5. The solving method based on the approximate solution with exact
period of vibration of the corresponding oscillator with constant parameter
gives very convenient results for the oscillator with time variable parameters.
For technical purpose the solution is accurate enough and appropriate for
practical use. This solution has the form of trigonometric function and
satisfies the requirements for simplicity and usefulness for application in
techniques.

The vibrations of the mass variable systems are widely investigated by
Leach, 1983; Abdalla, 19861; Abdalla, 19862; Crespo et al., 1990, Xie et
al., 1995; Sanchez-Otiz & Salas-Brits, 1995; Flores et al., 2003., too. The
results published in this Chapter and in the mentioned papers are applied in
dynamics of mechanisms and rotors with time variable mass (see Cveticanin,
19982).
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Abstract An approach for description of internal evolution pro-
cesses in materials basing on the Euler equations and the mass bal-
ance equations containing source terms is proposed. Dynamics of
the complex materials such as structured liquids in nanochannels,
metals with dissolved hydrogen and various impurities are discussed
within a two-component continuum model. The effect of stress state
on the internal structure of the materials is investigated.

1 Motivation and some examples

The classical equations of continuum include the equations of momentum
and mass balance and the equation of state. As a rule, the mass balance
equation after linearization is not used for further solution of problems.
However, in some cases the mass balance equation plays a very important
role. Primarily these are problems examining materials with a complex
internal structure – materials with various impurities, structured liquids
in nanochannels, metals with dissolved hydrogen. In these cases, we must
begin the research with the mass balance equations and the analysis of
source terms.

One of possible approaches, which allows us to consider the influence
of internal degrees of freedom on structural reconstructions at a material,
is the description of unknown particle kinematics of continuous media by
phenomenological transport equations of substance (for example Fick’ laws).
The diffusion equations, that describe the relative motion of particles within
a representative volume, should complement the basic equations of motion
of a continuous media. This usually leads to the following difficulties.

First, the diffusion transfer of mass (which can change the internal struc-
ture of the material) can depend on the stress state of the material. This
leads to necessity to choose diffusion coefficients using experimental data
and thus makes it is impossible to build a general mathematical model de-
scribing materials with complex structures.

H. Irschik, A. K. Belyaev (Eds.), Dynamics of Mechanical Systems with Variable Mass, 
CISM International Centre for Mechanical Sciences DOI 10.1007/ 978-3-7091-1809-2_4 
© CISM Udine 2014



166 D. Indeitsev and Yu. Mochalova

Secondly, it is known that the mass diffusion transfer inside material
can cause changes in the internal structure of the material. It is not de-
rived directly from the phenomenological equations. Usually to describe this
phenomenon, we have to introduce artificial parameters associated with the
concentration change in the equation of state of the material.

The aim of those lectures is to propose a different approach which allows
us to describe internal evolution processes in the material. The approach is
based on usage the Euler equations and the mass balance equations contain-
ing source terms. Choosing by some means the source terms that determine
the mass transfer between a moving substance and the medium, we can de-
rive the equation of state of the substance. Besides the effect of stress state
on evolution processes in the material (the diffusion of impurities) taken
into account by introduction to the basic equations of dissipative term with
a coefficient depending on the spherical part of the strain tensor. Then the
classical evolution equations arise as a particular case within our approach.

In this section we show how this approach may be used to some model
problems. In 1.2 we give a brief exposition of the law of particles conser-
vation. An example of a chemical adsorption of substances is given in 1.3.
Selecting the source terms in the mass balance equation allows us to control
the process of adsorption. In 1.4 we discuss the connection of rheological
models of materials and continuum models and shows how the choice of
the source terms can affect the equation of state of the material. In 1.5
using continuum mechanics we obtain diffusion equation and introduce the
resistance force to the diffusion flux being proportional to its velocity. The
diffusion coefficient depends on the normal deformation basic media.

1.1 Particle balance and mass balance equation

Let η(r, t) be the number density at a given point r of an inertial refer-
ence system. Specifying by dN the number of particles per unit volume dV
we can write

dN = η(r, t)dV, η ≥ 0.

The mass density ρ(r, t) and the number density are connected by the re-
lation

ρ = mη, (1)

where m is the mass of one particle. Let V be a volume in the reference
frame and the boundary of V be a closed surface S = ∂V . It is assuming
that the total number of particles in medium remains unchanged and we
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can formulate the following particle balance equation

d

dt

∫
V

η(r, t)dV = −

∫
S

ηn · vdS = −

∫
V

∇ · (ηv)dV, (2)

where v is the velocity of particles. In the local form equation(2) can be
written

∂η

∂t
+∇ · (ηv) = 0. (3)

Using (1) we can get the mass balance equation

∂ρ

∂t
+∇ · (ρv) = 0. (4)

If the density of particles can be changed, the particle balance equation
should be modified as follows

d

dt

∫
V

η(r, t)dV =

∫
V

χ(r, t)dV −

∫
S

ηn · vdS

=

∫
V

[
χ(r, t)−∇ · (ηv)

]
dV. (5)

Here the function χ is the rate of production (destruction) of particles at a
point of the reference frame. Then equations (3) and (4) take the form

∂η

∂t
+∇ · (ηv) = χ (6)

or
∂ρ

∂t
+∇ · (ρv) = J. (7)

Here the functions χ and J = mχ are co-called source teams and charac-
terize the rate of mass production (destruction) of particles.

Now we present some examples where equation (7) is used for description
of various phenomena.

1.2 Adsorption of impurities

The first example is a chemical adsorption of substances (see Whitham
(1974)). The situation is that a fluid carrying dissolved substances or par-
ticles (impurities) flows through a fixed bed and impurities being carried
is partially adsorbed on the fixed solid material in the bed. The fluid flow
is idealized to have a constant velocity v. Then if ρf is the density of the
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Figure 1. The density of the adsorbed substance: (a) the uniform distri-
bution v = 1, k1 = 4, k2 = 0, A = 0.1, B = 1; (b) the uneven distribution
v = 20, k1 = 4, k2 = 0, A = 0.7, B = 1.

material carried in the fluid, and ρs is the density deposited on the solid,
the conservation equations have the forms

∂ρs
∂t

= J, (8)

∂ρf
∂t

+
∂

∂x

(
ρfv

)
= −J, (9)

where the source term is as follows:

J = k1(A− ρs)ρf − k2ρs(B − ρf ). (10)

The first term of (10) represents deposition from the fluid to the solid at
a rate proportional to the amount in the fluid, but limited by the amount
being already on the solid up to the capacity A. The second term is the
reverse transfer from the solid to the fluid. The numerical solution of the
system (8)–(10) is carried out. Depending on the system parameters, we
have the uniform distribution of the adsorbed substance (Figure 1a) and
the non-uniform distribution of the adsorbed substance (Figure 1b).

Let us find the analytical solution under certain simplifications. The
system (8)–(10) can be rewritten as

∂

∂t

(
ρf + ρs

)
+ v

∂ρf
∂x

= 0,

∂ρs
∂t

= k1ρf (A− ρs) − k2ρs(B − ρf ).

For relatively slow changes in the densities and relatively high reaction rates
k1, k2, the second equation is taken in the approximate quasi-equilibrium
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form in which the ∂ρs/∂t is neglected and

ρs(ρf ) =
k1A

k2B + (k1 − k2)ρf
.

Substituting this expression into the first equation of the system (8)–(10)
yields

∂ρf
∂t

+ c (ρf )
∂ρf
∂x

= 0, c(ρf ) =
v

1 + ∂ρs/∂ρf
.

Thus, the density changes propagate at the speed of c(ρf ). If the densities
concerned are small, the value of c(ρf ) is approximately equal to

c =
k2B

k1A+ k2B
v.

The propagation speed depends on the reaction rates involved, being slower
for substances with larger attraction toward the solid.

1.3 Rheological models of materials. The equations of state and
source terms

The concept of a rheological model of a material is given by Reiner
(1958); Palmov (1998). Rheological models are often used to describe the
materials with complex internal structure, in particular dispersed systems
of two or three phases. Rheology considers such materials as homogeneous,
the mechanical properties of which coincide with the properties of real ma-
terials. A mathematical model of the mechanical properties of the material
is given by the constitutive equation (the equation of state). To compose
the constitutive equations for materials with complex rheological properties
each basic property material is modeled by suitable rheological element. For
example the elasticity is simulated by an elastic spring (the Hooke element),
the viscosity is simulated by a viscous damper (the Newton element) and the
plasticity is simulated by a dry friction damper (the St.Venant element). By
combining the fundamental rheological elements either in series or parallel
we form the rheological model with the complex material properties.

Our aim is to show the connection of rheological models of materials and
continuum models. Consider as an example the Maxwell material. This
viscoelastic material whose rheological model consists of a Hooke element
and a Newton element in series. The constitutive equations for this material
in the simplest one-dimensional case is as follows:

ε̇ =
σ̇

E
+

σ

μ
, (11)
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where ε is the strain, σ is the mean normal stress, E is the elastic modulus, μ
is the viscosity coefficient. It is shown that the rheological equation of state
(11) can be obtained from the mass conservation law (7). The rheological
material has a complex internal structure and the mass exchange between
the material and the medium is possible, for example, due to change in a
phase state of the material. Suppose that the material is initially at rest
with the density ρ0 and the perturbation quantity ρ̃ = ρ−ρ0 and the velocity
v are small. Then, linearizing equation (7) and expressing the velocity in
terms of the displacement u, we obtain

∂ρ̃

∂t
+ ρ0

∂2u

∂x∂t
= J.

Assuming ε = ∂u/∂x, it yields

∂ρ̃

∂t
+ ρ0

∂ε

∂t
= J. (12)

The mean normal stress is assumed to be a function of relative mass density
ρ0/ρ

σ = k

(
1−

ρ

ρ0

)
. (13)

The coefficient k links the stress to a change of mass density. Substituting
equation (13) into (12), we find

ε̇ =
σ̇

k
+

J

ρ0
. (14)

In order to obtain the equation of state of the material we need to define
the source term J . It is done as follows:

J = −αρ̃, α ≥ 0,

where the coefficient α determines the rate of exchange processes between
the material and the medium (in this case dissipation of the material) and,
taking into account equation (13) we arrive at the following expression

J =
αρ0
k

σ,

Then, substituting the last expression in equation (14), we get

ε̇ =
σ̇

k
+

α

k
σ. (15)
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The constitutive equation (15) describes the Maxwell material by using a
mass balance equation. The equation (15) coincides with the rheological
constitutive equation (11), when E = k and μ = k/α. It is noted that
if there are no exchange processes between the material and the medium
α = 0 (J = 0), then (15) is the equation of state describing the Hooke
material.

The rheological constitutive equation for the Kelvin–Voigt material (vis-
coelastic material with the rheological model that represents a parallel con-
nection of a Hooke element and a Newton element) can be obtained from a
continuous two-component model of the media.

1.4 Diffusion equation

Consider a flux of particles moving in a media (the penetration of a
substance, such as a liquid, gas, or vapor, through a solid or another liq-
uid; motion special liquids). Assume that we can neglect the exchange of
particles between the medium and diffusion flux. The diffusion equation is
generally obtained from the law of mass conservation (4), assuming that the
mass diffusion flux is proportional to the density gradient (Fick’s first law)

ρv = −κD∇ρ,

and the corresponding diffusion equation (Fick’s second law) is

∂ρ

∂t
= κD∇

2ρ.

The constant κD is the diffusion coefficient. It depends on the properties
of the media and the type of the diffusion liquid. We obtain the diffusion
equation using the system of equations describing the motion of a homoge-
neous substance (liquid). For this purpose we consider fluxes in which the
entropy of a liquid element is constant. Then, the system of equations of
a flux motion is determined by the law of mass conservation, described by
equation (4), and the equation of dynamics is as follows:

ρ
dv

dt
= ρF −∇p, (16)

where p is the pressure at the point of the diffusion flux, F is the mass ex-
ternal force. Equations (4) and (16) should be supplemented by an equation
of state, defining the density as a function of pressure

ρ = ρ
(
p
)
. (17)
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The specific form of the equation of state is related with the nature of matter
flux. It introduces into equation (16) a dissipative term, i.e. we assume that
the force of interaction between matter flux and the medium is proportional
to the velocity of the flux and equation (16) can be written as

ρ
dv

dt
= ρF −∇p− βv. (18)

The force βv is obtained by linearization of the known formula used in
hydraulics, see Loitsyansky (1987), where the square-law of resistance is
given. The coefficient β, which can depend on the stress state of the medium
(strain field), is defined below. Supposing that the forces of inertia can be
considered as negligibly small (examples of such flows, see Batchelor (1967)),
v is defined by equation (18) and substituting it into equation (3), we can
be obtained

∂ρ

∂t
= ∇ ·

( 1

β
∇p

)
− ρ∇ · F − F · ∇ρ. (19)

Usually the mass external force occurs under the force of gravity ∇ · F = 0
and the last term in equation (19) is negligibly small, then

∂ρ

∂t
= ∇ ·

( 1

β
∇p

)
. (20)

Suppose that the substance is initially at rest with pressure p0 and density
ρ0. Assuming the density values of the perturbation ρ̃ = ρ−ρ0 and pressure
p̃ = p− p0 are small, we can assume that the equation of state has the form

p̃ = c20 ρ̃, (21)

where c0 is speed of propagation of sound waves in the matter flux. Substi-
tuting equation (21) into (20), we obtain

∂ρ

∂t
= ∇ ·

(c20
β
∇ρ

)
, β = k

ρ0
D(ε)

, (22)

where the coefficient k is a dimensionless number which depends on physical
state of the medium, D = D(ε) is the size of through passage section, which
can depend on a stress state of the medium. Indeed, for structures under
uniaxial compression the size of flow section can change and to determine
the dependence D = D(ε) it is necessary to consider the state of stress the
basic medium. Thus, the obtained equation (22) is the diffusion equation of
the flux of matter, taking into account the influence of the stress state of the
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medium. In the absence of deformation of the medium D = D0, equation
(22) coincides with the classical diffusion equation (19), where

κD = k
c20ρ0
D0

. (23)

Introduction of the dissipative terms and the resistance coefficient β are dis-
cussed further in detail to describe the motion of fluid flow in nanochannels
(Section 3) and the motion of mobile hydrogen particles (Section 4).

1.5 Conclusion to section 1

The approach which allows us to describe internal evolution processes
in the material with the help of the Euler equations and the mass balance
equations containing source terms is proposed. Now it is of interest to
extend the results to models of two-component continuum. According to the
remarks from above the lectures are organized as follows. A mechanical two-
component model of the solid of complex structure is presented in Section
2. This model is used in Sections 3 and 4. In Section 3 we propose a
mathematical model of a fluid flow in a two-dimensional nanochannel, which
is caused by the motion of one of the confining walls parallel to the other
immovable wall. The two-component model of the material, in which atomic
hydrogen dissolved, is constructed in Section 4.

2 Two-component model of medium

The rational mechanics of continuous medium ignores such an important
physical property of any real material as its discrete structure. It is clear
that the model of a solid in the framework of the rational mechanics should
have a complex structure in order to reflect the properties of discrete struc-
ture of the matter. Such a complex structure is determined by the presence
of internal degrees of freedom and the influence of dynamics of the material.
The presence of these degrees of freedom can result in change of the basic
macroparameters which are usually used for description of the material by
means of the classical equations of continuum mechanics.

As shown by Sobolev (1991); Sobolev (1997), one of the approaches to
description of the continuous media behaviour is to introduce two-component
models. These models allow one to explain some physical phenomena which
have not been properly understood. In particular, these are the question a
fluid flow behaviour in nanochanels, problem of hydrogen diffusion in met-
als.

The classical approaches usually introduce additional parameters in the
constitutive equations. In this case the required phenomenological relations
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Figure 2. A schematics of the two-component model.

allow determining these new variables. The basic equations for the two-
component model introduced in this section emphasize the essential role of
the internal structure of the material and enable description of the above-
mentioned physical phenomena.

2.1 The basic assumptions and equations

We postulate a model of the material with a carrying medium whose
components are particles described by the displacement vector u1(x, t). An
additional set of particles interacting with each other and with the carrying
medium is attached to the carrying medium. The absolute displacement
of particles of this additional medium is given by vector u2(x, t). Both
sets are supposed to be mutually penetrating continuous media. In other
words, we introduce the concept of the material point that has a complex
structure and consists of two components. In the expressions for displace-
ments the argument x is the position vector of the material point in actual
configuration, i.e. Euler’s description is taken, see Figure 2.

Physically, the different components of the material occupy different
spatial volumes. In this regard there arises a question of the conditions
of interaction of parts of the introduced solid on their internal boundaries.
An axiomatic construction of the model reduces to assignment of interaction
force R and the mass exchange J between the components. Realization of
these representation results in a two-component model.

The law of mass conservation in the local form for each component and
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for the overall material is supposed to hold:

∂ρ1
∂t

+∇ · (ρ1 v1) = J, (24)

∂ρ2
∂t

+∇ · (ρ2 v2) = −J, (25)

∂ρ

∂t
+∇ · (ρv) = 0.

Here ρ1, ρ2, ρ are densities of components and the overall material, respec-
tively. The right hand side of equations in (24), (25) have the source terms
J which point out the possibility of exchange of particles between the com-
ponents.

By virtue of the law of momentum conservation we have

ρv(x, t) = ρ1v1(x, t) + ρ2v2(x, t).

Here and in what follows we assume the following expression for the density
of the overall material: ρ = ρ1 + ρ2.

Velocities of the components and the center of mass of the material point
are expressed as follows:

vi(x, t) =
diui(x, t)

dt
, i = 1, 2, v(x, t) =

du(x, t)

dt
.

Here
di
dt

=
∂

∂t
+ vi(x, t) · ∇,

d

dt
=

∂

∂t
+ v(x, t) · ∇

denote the material derivatives.
The motion of the overall material point is governed by the law of dy-

namics in the local form

∇ · τ + ρF − J
(
v1 − v2

)
= ρ

dv

dt
.

The mass external force F can be given by

ρF = ρ1F 1 + ρ2F 2.

The equation of dynamics is convenient to rewrite in the form of two equa-
tions

∇·τ 1+ρ1F 1+R−Jv1 = ρ1
dv1

dt
, ∇·τ 2+ρ2F 2−R+Jv2 = ρ2

dv2

dt
(26)

whereR is the force of interaction of two components of the material of com-
plex structure. The interaction force R has an expression which is explicitly
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determined by the specific structure of the medium under consideration. In
addition to this, the overall stress tensor of the material point is supposed
to be the sum of the stress tensors of separate components

τ = τ 1 + τ 2.

Let us note that the above equations for the two-component body (the
two-component medium) are in agreement with the equations of mechanics
of continuous heterogeneous media developed for modeling diverse mixtures
(Nigmatulin (1990)).

The basic equations of moment and mass balance can be complemented
by the equations of energy balance and the second law of thermodynam-
ics for the each component. These equations are given by Indeitsev and
Naumov (2009), where the problem of propagation of mechanical and tem-
perature pulses in solids are studied. In the present paper we do not consider
a heat exchange between the components.

Now we construct two-component model for the fluid flows in nanochan-
nels.

3 Features of fluid behaviour in nanochannels

New equations that describe the behavior of fluids in nanochannels and take
into account the molecular structure of the fluid and results of real and nu-
merical experiments are presented. The Poiseuille flows are considered. The
obtained results show that it is possible to describe the structural transfor-
mations in thin layers by using the continuum mechanics methods. New
degrees of freedom of the material are introduced via the second continuum
that makes up for the role of the forming new phase of a state. In the
models considered here, the properties of the new phase are determined by
the influence of rigid boundaries with a different structure.

3.1 Introduction

Fluid flows in micro- and nanochannels are of great interest from both
the viewpoint of fundamental science and practical applications (Drummond
and Israelachvili (2001)). By virtue of this, modeling of such a flow became
one of most quickly developing trends in hydrodynamics. The topicality
of this modeling is also supported by the results of numerous experiments
that have been conducted during last two decades (see, for example Gour-
don and Israelachvili (2003); Thomson and Robbins (1990)) and revealed
great differences between the behavior of fluids in volumes with a size of 50
molecular diameters or smaller and the predictions of classical continuum
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theories. These experiments showed a substantial increase of the effective
viscosity of the fluid in such volumes as compared with its macroscopic
value. Classical hydrodynamics, that does not allow for atomic (molecular)
structure of fluid, does not present adequate description of fluid flows in
nanochannels with a width of 50 molecular diameters or smaller. It is well
known that the classical Poiseuille flow is described by the Navier–Stokes
equations and the velocity profile in this case has a parabolic shape. Nev-
ertheless, the fact that some fluids flowing in rather narrows gaps begin to
feel the boundaries, which leads to restructuring of the profile, have long
attracted the attention of researchers. Moreover, in their numerous studies
Deryagin and Zheleznyi (1974) found that fluids at the boundary with a
solid body form layers with an ordered structure that determines special
features of fluids in these layers.

To study this flow, we suggest new equations that describe the behavior
of fluids and take into account the molecular structure of the fluid and
results of real and numerical experiments. Numerical experiments were
conducted by computer modeling and by the molecular dynamics (MD)
method formulated by Allen and Tilesly (1989).

3.2 Proposed model and main equations

To describe the fluid flow in the channel, we use the two-component
model (see Abramyan (2010)). We assume that the fluid in the channel is
affected by the walls, i.e., has a possibility to be structured. The medium
outside the channel is a usual molecular viscous fluid. The motion of the
latter in the interior of the channel filled with a certain structured medium
is similar to the flow through a ‘sieve’ whose ‘feed through’ cell dimensions
significantly depends on the density of the ordered phase. We assume that,
in the process of the fluid flow, the main resistance force is the reaction
of fluid particle interaction with the structure cells, which is proportional
to the difference of velocities of particles of the interacting components. At
rest, without any applied external loads, the channel is filled with a medium
which is ordered under the action of the channel walls. It is natural to
assume that this phenomenon is inhomogeneous over the layer thickness,
namely, the medium particles in the central part of the layer experience
lesser influence of the walls than the particles on the boundary with the
surfaces. We consider some specific cases in which the influence of the walls
is such that, as a rule, the structures near the walls are more concentrated
than those in the middle. The stressed state of the ordered medium is
modeled as the pure shear stress.

The so-called molecular fluid is fed into the channel, and this fluid in-
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teracts with the structure. This interaction force mainly depends on the
density of the ordered structure, and hence on the so-called flow section (the
distance between particles of the ordered medium). The larger the particle
density, the lesser the flow section through which the incoming particles can
pass, and hence the force of the two media interaction is the largest. Thus,
this interaction of two media, like the viscous friction force, depends on the
difference of their particle velocities: it is the larger the higher the velocity
of motion of one component relative to the other. In this case, it is assumed
that this dependence is linear.

Obviously, as the incoming particles of the molecular fluid move with an
input velocity greater than a certain value, the fluid has the tendency to
pass freely through the immovable structured medium with possible sepa-
ration of particles of the latter. This means that if the input pressure is
sufficiently high, then the fluid medium can ‘destroy’ the structure where
it exists. Otherwise, if the pressure is insufficient, then the velocities of the
applied particles are small, the structure density increases, and the flow rate
of the constantly incoming fluid decreases. If the incoming fluid particles
are sufficiently slow, then the structuring continues until complete sedimen-
tation of fluid particles, i.e., the channel is ‘choked up’ and the fluid cannot
pass through it anymore.

It is important to note that, in the equations of mass balance, there arise
source terms determining the rate of transformation of fluid-like particles
into solid-like particles and conversely. We assume that the sedimentation
rate must be proportional to the particle concentration in the fluid, and the
separation rate must be proportional to the structured medium concentra-
tion. Obviously, as the number of the fluid particles decreases, the number
of solid-like particles increases, and hence the inverse process may occur.

Since an ordered structure is formed for certain pressure and velocities,
the frow rate through each cross-section of the channel decreases in time.
The main effect considered in this problem is the phenomenon of molecu-
lar fluid sedimentation on the structure, which may result in the so-called
‘choking’ effect.

Let us denote the number density of fluid particles per unit volume by
nf , the number density of solid (structured, precipitated) particles per unit
volume by ns, and nf + ns = 1 Then ρs = mns and ρf = mnf are the
density of the solid and fluid particles, m is the mass of particle. Assuming
that the rate of solid particles are close to zero, we write the basic equations
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of moment and mass balance in the form

∇ ·
[
− Ip+ μ

(
∇v + (∇v)T

)]
= ρf

dv

dt
+ Jv +R, (27)

∂ρf
∂t

+∇ ·
(
ρfv

)
= J,

∂ρs
∂t

= −J. (28)

Here p is the pressure of fluid fraction (liquid phase), I is the unit tensor,
v = vf is the velocity vector of the fluid particles, μ is the equivalent
viscosity of fluid fraction, J is the rate of sedimentation (adhesion) and
separation of fluid particles at the checkpoint of the reference system, R is
the force of interaction between the fractions. Using ns = 1−nf , equations
(28) can be rewritten as

∂nf

∂t
= J/m,

∇ ·
(
nfv

)
= 0.

The source terms J has the following form

J =

{
−k1nf , |v| < v∗,
k2(n− nf ), |v| > v∗,

where k1 and k2 are constants obtained experimentally, v∗ is a certain crit-
ical velocity. The source term is defined by to the above-described scenario
of the events. The forces of interaction between the components have the
following form:

R =
knf

D(ns)
v, (29)

where k is the constant obtained from experimental data, D(ns) is the cell
characteristic open area dimension. Taylor series expansion of D(ns) about
the equilibrium point is given by D(ns) = D0 −D1ns. Then equation (29)
has the form

R = k g(nf)v, g(nf) =
nf

D0 −D1(1− nf )
(30)

where D0 is the characteristic open area dimension of the structured cell.
The conditions at the initial time moment are chosen as follows (see

Figure 3):
ns(0, y) = ns0(y), nf (0, y) = nf0(y)

For the problem of the Poiseuille flow we take the following initial and
boundary conditions

p
∣∣
x=0

= p0, p
∣∣
x=L

= 0, v
∣∣
x=0

= v
∣∣
x=L

= 0.
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They correspond to the assumption that the structure is more ordered near
the walls and less ordered near the channel center. As follows from ex-
pression (30), the quantity g(nf ) depends on the molecular fluid fraction in
the entire volume nf and on the values of the coefficients D0 and D1. As
nf → 1, the quantity g → 1/D0 and the value of the characteristic open
area dimension of the structured cell D0 increases. In this case, the quan-
tity R contained in the equation (27) tends to zero, and the equation itself
tends to the classical form.

The solution of the above-posed problem for different sets of parame-
ters confirms the qualitative applicability of the two-component model for
describing the effect under study. The choking effect was investigated for
different types of initial ordering of the medium, i.e., for different characters
of the wall action and for two types of the source term.

Now we consider the obtained diagrams using the mathematical and
computer models. The results given below show that the wall material
structure itself significantly affects the liquid flow.

In the first computer experiment, we considered a channel whose walls
affected by the incoming liquid so that the medium was structured mainly
near the walls and significantly less near the center of the channel. Prescrib-
ing a certain initial pressure at which the liquid particles were incoming and
the other necessary parameters, we observed a regime in which the velocity
profiles and the concentration of each of the media had the form shown in
Figure 4a and Figure 4b.

In the second computer experiment, we considered a channel whose
walls affected the incoming liquid so that the medium was structured very
strongly near the input and the walls and significantly less near the center
of the channel. The character of the observed regime is shown in Figure 5a
for H = 100 nm and L = 200 nm. The diagrams for the two above-
described experiments clearly illustrate the choking regime and show that
the input pressure was insufficient in these experiments, which is testified

y

ns0

y

nf0

Figure 3. Distribution of particles of the structure and molecular fluid.
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by the decrease in the flow rate of the incoming media (see Figure 5b). The
computations showed that by increasing the excess pressure in the channel,
one can obtain the converse effect, namely, the structured media becomes
disordered. We did not calculate how the characteristic open area dimension
affects the flow rate.

In the third computer experiment, we considered a channel in which the
structured medium distribution was similar to the preceding distribution
but the source term in the mass balance equation had the form

J = −k1ρf (A− ρs)H(v∗ − v) + k2ρs(B − ρf )H(v − v∗) (31)

The first term describes the sedimentation (ordering) at a rate proportional
to the quantity of the matter in the liquid and bounded by the quantity of
the already ordered medium till the saturation A. The second term describes
the converse transition. The simulation results are shown in Figure 6. The
results obtained confirm that there is a blocking effect, which is illustrated
by an increase in solid-like phase concentration and a decrease in liquid
flow rate for a certain pressure regime. We note that, under the assumption
of strong effect of the walls strongly on the medium in the channel, this
model more clearly illustrates the action of these forces on the process of
structurization (see Figure 6a).

(a)

(b)

Figure 4. The first experiment. Profiles of velocity and concentration of
particles in each component (a), Concentration of particles of each compo-
nent at different instants of time (b).
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(a)

(b)

Figure 5. The second experiment. Profiles of velocity and concentration of
particles in each component(a), flow rate of molecular fluid in the channel
(b).

All the above experiments describe the choking effect in a plane channel.
This phenomenon, under the assumption that the medium structurization
(sedimentation) must decrease from the walls towards the center of the
channel, is most precisely described by using the source term in the form
(31). The third experiment clearly shows that the particles begin to settle
near the already structured medium. Thus, generalizing all the diagrams
obtained by using the mathematical and computer models, we see that
the claim of this model to describe the choking effect in the channel with
significant influence of its walls taken into account is justified completely.

3.3 Conclusion to section 3

We propose a mathematical model of a fluid flow in a plane nanochan-
nel, that is caused by the motion of one of the confining walls parallel to
the other, immovable wall. The values of the resistance forces acting on
the walls when the distances between them are less than 50 nm, obtained
using the above model, are in good agreement with the experimental results
and predictions by the MD modeling. The obtained results show that it is
possible to describe the structural transformations in thin layers by using
the continuum mechanics methods. We introduce new degrees of freedom
of the material by using the second continuum, which plays the role of the
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(a)

(b)

Figure 6. The third experiment. Profiles of velocity and concentration of
particles in each component (a), flow rate of molecular fluid in the channel
(b).

arising new phase of state. In the models considered above, the properties
of the new phase are determined by the influence of rigid boundaries with a
different structure. The solutions thus obtained depend on macroparame-
ters, which can be determined using experimental data. This is a significant
distinction of this approach from the earlier approaches, where numerous
parameters, which are hard to determine, were introduced in the equations
of state.

We note that the two-component model can describe quite well such
effects as the flow ‘choking’ and the ‘destroyed’ layer reconstruction. This
is because the source terms are introduced in the equation of the particle
number balance of one or the other component. Depending on the scenario
of the events in the material, it is quite possible to control and describe its
state by using a suitable source term.

4 Hydrogen diffusion in the crystal structures

Hydrogen embrittlement of materials under load is one of the most im-
portant problems of the physics and mechanics of materials. Though the
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hydrogen concentration in metals can be very low (about 1 atom of hydro-
gen in 100,000 atoms of the metal matrix), nevertheless its influence on the
mechanical properties of the metals can be of crucial importance. The prob-
lem of the effect of low hydrogen concentrations in metals on the strength
of material nowadays attracts a lot of attention. As a rule, the hydrogen is
accumulated in metals during their exploitation. One of the main sources
for hydrogen appearance in metals is water (or steam); however, hydrogen
diffusion from gas and oil is feasible as well.

In metals, the hydrogen is contained in traps with various bonding ener-
gies. It has been established (see Polyanskiy (2005) and references therein)
that thermo-mechanical loading results in the hydrogen redistribution over
the traps. A number of papers were devoted to the influence of hydrogen
on the mechanical properties of metals, see e.g. Ahn (2007). The majority
of the papers addressing the effect of hydrogen on the strength of materials
utilize primarily phenomenological models and do not discuss the problem
of redistribution of hydrogen over the traps. The degradation of mechanical
properties in these papers is modeled by means of some empirical depen-
dencies. However, there is an open question: how kinetic processes in the
material (such as the redistribution of hydrogen) affect its basic strength
properties under static and dynamic loads? The aim of our study is to
describe the dynamics of the hydrogenated metal and the influence of in-
ternal kinetics on metal macroparameters using the fundamental principles
of rational mechanics. The hydrogen diluted in structural materials can
be conditionally divided into that with low bonding energy and that with
high bonding energy. The hydrogen with low bonding energy is diffuse,
and its interaction with material is very weak (mobil hydrogen). The high
bonded hydrogen interacts with material very intensively. The mechanical
material properties degrade owing to this strong interaction. We suggest
a one-dimensional model of two-component continuum, which allows us to
describe both the hydrogen diffusion and its interaction with the mate-
rial and, therefore, to find the equation of state for hydrogen-containing
medium. The first component is represented by the crystal lattice of the
initial material including stationary hydrogen atoms embedded (attached)
in chemical bonds between atoms (which significantly reduce the strength
of the bonds), the second component is modeled by free mobile hydrogen
atoms dissolved in the material.

4.1 Two-component model

Let us consider the simplest one-dimensional model of a metal rod, in
which atomic hydrogen is dissolved. Let N be the total number of particles
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am0

C

Figure 7. One-dimensional chain of atoms.

per unit volume, N0 be the number of the particles connected by undamaged
bonds per unit volume, N+

H
be the number of hydrogen particles attached

to a lattice per unit volume, N−
H

be the number of mobil hydrogen parti-
cles per unit volume. Furthermore, n0, n

+
H

and n−
H

are the corresponding
concentrations of the above-mentioned particles, respectively.

The first component is a lattice structure with bonded hydrogen (in the
frame of elastic theory). The relation between the strain ε and the stress
σ can be represented as σ = Eε, where E is the equivalent module of the
lattice defined below. We denote the velocity and the density of the first
component by v1 and ρ1 = ρ0 + ρ+

H
. Here ρ0 = m0n0, ρ

+
H

= mHn+
H
, m0,

mH are the mass of lattice atoms and bounded hydrogen atom.
The second component is flow of mobile hydrogen particles of the internal

structure of a material (inviscid compressible liquid) and p is the pressure of
flow, v2, ρ2 = ρ−

H
is the velocity and the density of the second component,

ρ−
H

= mHn−
H
.

Equation of state (rheological model). We consider the lattice as a
one-dimensional chain consisting of identical particles with a mass of m0

(mass of atom in the crystal lattice of the material) which are connected
with each other by identical nonlinear springs with the lengths a, Figure 7.
The equation of movement in the long-wave approximation is as follows
(Zhilin (2006))

m0ü = −a[f(a(1 + u′))]′. (32)

For small strains ε = ∂u/∂x we have the following equation

ü− ϑ2
0u

′′ = 0, ϑ2
0 =

√
C

m0

a,

because f [a(1 + ε)] ≈ −Caε.
It is known that, when hydrogen dissolves in materials, some of the

hydrogen atoms are embedded in existing atomic bonds, breaking them and
creating new bonds, its stiffness is much smaller than the initial stiffness (see
Indeitsev and Semenov (2008)). This effect also takes place for a congestion
of lattice defects: dislocations, vacancies, etc. By combining the elements
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Figure 8. Model of a chain with hydrogen atoms planted on the bonds.

with the old and new bonds in series one obtains the model of the lattice
with bonded hydrogen (see Figure 8). It is possible at the assumption
m0 � mH . Then the equivalent rigidity of the new bond C can be found
from the equation

N

C
=

N0

C0

+
N+

H

CH

, N = N0 +N+
H
,

where C0 is the rigidity of pure material in the absence of hydrogen, CH of
the material with all bonds occupied by hydrogen. The nonlinear force f in
equation (32) can be accepted for small strains as

f = −Caε = −Eε.

Then using n0 = N0/N and n+
H

= N+
H
/N we obtain the constitutive equa-

tion for the lattice structure with bonded hydrogen

σ = Eε, E =
E0EH

n0EH + n+
H
E0

. (33)

The equivalent elastic modulus for the lattice E can decrease essentially,
since EH � E0 (CH � C0) and depends strongly on the concentration of
the attached particles n+

H
(bonded hydrogen). The number of the lattice-

settled hydrogen particles depends on the stress state of the lattice at every
point and, generally, on time. The unknown functional dependence of E
on n+

H
(ε, x, t) should be determined from the model of the two-component

continuum.

Main equations. Substantive provisions of the theory of two-component
continuum can be found in Section 2 (Krivtsov and N.F. Morozov (2001));
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therefore, we are presenting only final equations. The equation of dynamics
for the lattice structure (the first continuum) is given by

∂σ

∂x
= ρ1

∂v1
∂t

+ Jv1 +R. (34)

Equation (34) has new force terms in the right part. Capturing of hydrogen
mobile particles in the lattice practically does not influence the change of
inertial characteristics of the lattice structure, i.e. ρ+

H
= mHn+

H
� ρ0, but

the velocity of the change of those characteristics J results in the occurrence
of jet force Jv1, whose neglecting is impossible. The term R determines the
force of interaction between the first and second components and depends
on internal processes in the material.

The equation of dynamics for the second component (mobile hydrogen
particles) is as follows:

−
∂p

∂x
= ρ2

∂v2
∂t

− Jv2 −R, ρ2 = ρ−
H

= mHn−
H
. (35)

Similarly to a case of compressed liquid, the state equation determining a
connection between pressure p and density ρ−

H
takes the form

p− p0 ∼= c2Hρ−
H
. (36)

The equation of mass balance for the first component is

∂ρ1
∂t

+
∂
(
ρ1v1

)
∂x

= J,

or taking into account an invariance of ρ0 for ρ+
H

we have

∂ρ+
H

∂t
+

∂
(
ρ+
H
v1
)

∂x
= J.

In terms of the concentration of bonded hydrogen the mass balance equation
has the form

∂n+
H

∂t
+

∂
(
n+
H
v1
)

∂x
= J/mH . (37)

Mobil hydrogen obeys the similar equation of mass balance:

∂ρ−
H

∂t
+

∂
(
ρ−
H
v2
)

∂x
= −J or

∂n−
H

∂t
+

∂
(
n−
H
v2
)

∂x
= −J/mH . (38)
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Figure 9. Dependencies of n−
H

and n+
H

on time.

Interaction between the components. Interaction between the sta-
tionary lattice and flow of mobile hydrogen, that has not been attached
yet, is described similarly to the flow of compressed liquid, see Loitsyan-
sky (1987). Since the velocity of the hydrogen particles is very low and
the suggested approach is linear, we assume that the interaction force is
proportional to the difference in the continuum particles velocities:

R = k
ρ−
H

D(ε)

[
v2 − v1

]
. (39)

Here k is determined in terms of the material properties,D(ε) is the effective
cross section of the flow of the second component Indeitsev and Osipova
(2011). The larger is the deformation, the smaller is the quantity D, since
it is more difficult for mobile hydrogen to move in strained medium.

Since the concentrations of hydrogen are low, the source terms J has the
following form

J = αn−
H
− βn+

H
(40)

where α and β are positive parameters determined by interaction between
bonded and mobile particles of hydrogen. The physical meanings of the
coefficients α and β can be defined as follows. For the small velocities v1
and v2 the terms ∂

(
n+
H
v1
)
/∂x and ∂

(
n−
H
v2
)
/∂x in equations (37) and (38)

can be neglected. Than the problem for n−
H

and n+
H

takes form

dn+
H

dt
= αn−

H
− βn+

H
,

dn−
H

dt
= −αn−

H
+ βn+

H
(41)

with the initial conditions

n+
H

∣∣
t=0

= 0, n−
H

∣∣
t=0

= ψ.

The solutions of equations (41) are

n+
H

=
αψ

α+ β

(
1− e−(α+β)t

)
, n−

H
= ψ

[
1−

α

α+ β

(
1− e−(α+β)t

)]
. (42)
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The parameters α and β define the rate of hydrogenation of the lattice
(and its rate of hydrogen loss) and they should be prescribed, e.g. by using
experimental data. The problem (41) describes interchange of hydrogen
particles between the components under the condition that the velocity of
diffuse hydrogen is small. In this case almost all mobile hydrogen is built
in the lattice; hence α� β (see Figure 9).

The complete set of equations. In this section we summarize the equa-
tions derived in previous sections to represent the motion of the metal rod
containing dissolved hydrogen. We have

∂σ

∂x
=

(
ρ0 +mH n+

H

)∂v1
∂t

+ Jv1 +R, σ =
κE0

n+
H
+ κn0

ε, (43)

−
∂p

∂x
= mH n−

H

∂v2
∂t

− Jv2 −R, p− p0 = mHc2Hn−
H
, (44)

∂ρ0
∂t

+
∂
(
ρ0v1

)
∂x

= 0, (45)

∂n+
H

∂t
+

∂
(
n+
H
v1
)

∂x
= J/mH ,

∂n−
H

∂t
+

∂
(
n−
H
v2
)

∂x
= J/mH , (46)

R = k
mH n−

H

D(ε)

[
v2 − v1

]
, J/mH = αn−

H
− βn+

H
. (47)

Here κ = EH/E0. The set of governing equations (43)–(47) is much too
complicated for a direct mathematical analysis and we will restrict our at-
tention by the simplest case – static stress state of the hydrogenated metal
rod under the uniaxial tension/compression.

4.2 Static stress state

We suppose that the first material component (lattice with bonded hy-
drogen) is initially at the static stress state, so that the strain ε0 and the
stress σ0 are related by σ0 = Eε0. The initial static stage is then disturbed
slightly, and we suppose that the perturbation quantities σ̃, ε̃, ṽ1, ñ

+
H
; ñ−

H

and ṽ2 are small in magnitude. Then we find the solution of the problem
in the following form

ε = ε0 + ε̃(x, t), σ = σ0 + σ̃(x, t), v1 = 0 + ṽ1, v2 = v20 + ṽ2 (48)

n+
H

= n+
H0

+ ñ+
H
(x, t), n−

H
= n−

H0
+ ñ−

H
(x, t) (49)
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Substituting equations (48) and (49) into (43)–(47) we obtain the following
linear approximation for the first component

∂σ0

∂x
= 0, σ0 = E0ε0

[
1−

nH0
+

nH0
+ + κ n0

]
, (50)

∂n+
H0

∂t
= αn−

H0 − βn+
H0, (51)

for the second component

c2H
∂nH0

−

∂x
= −k

nH0
−

D(ε0)
v20, (52)

∂n−
H0

∂t
+

∂
(
n−
H0 v20

)
∂x

= −αn−
H0 + βn+

H0. (53)

Equations (51) –(53) can be reduced to the equation for concentration
of bonded hydrogen nH

+
0 that takes form

∂2n+
H0

∂t2
+ (α+ β)

∂n+
H0

∂t
−

c2
H
D(ε0)

k

[
β
∂2n+

H0

∂x2
+

∂3n+
H0

∂x2∂t

]
= 0. (54)

Equation (54) is the equation of the mixed type, it contains terms inherent
in the hyperbolic equation and terms of a parabolic kind. It means that at
the assignment of the finite initial perturbation one should expect a char-
acteristic front of movement of increase (or decrease) in a bonded hydrogen
number density, i.e. an exposed strong dispersion.

Example: approximate analytical solution. Suppose that the lattice
structure does not initially contain bonded hydrogen and mobil hydrogen is
distributed in the material as follows

nH0
−
∣∣
t=0

=
Ψ

2

(
1 + cos

2πx

λ

)
,

where λ is the characteristic size of internal structure (such as the distance
between the lattice atoms). Then we can analyze equation (54) following
the initial conditions

nH0
+
∣∣
t=0

= 0,
∂nH0

+

∂t

∣∣∣
t=0

=
αΨ

2

(
1 + cos

2πx

λ

)
. (55)

Here Ψ is the limit value of the bonded hydrogen density. We seek a solution
in the form

nH0
+ =

Ψ

2

(
1 + cos

2πx

λ

)
q(t), (56)
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Figure 10. Model of closing of channels and places of a congestion of
hydrogen.

and q(t) satisfies the equation:

q̈ +
[
α+ β + γD(ε0)

]
q̇ + βγD(ε0) q = 0, q

∣∣
t=0

= 0, q̇
∣∣
t=0

= α, (57)

where γ = (2πcH)2/3kλ2. Solving equation (57) by assuming that β � α
and α� γD(ε0), we obtain

nH0
+(x, t) =

αΨ

2
(
α+ γD(ε0)

)(1 + cos
2πx

λ

)[
1− exp

{
− (α+ γD(ε0))t

}]
.

(58)
Averaging equation (58) with respect to x, we find the simplified expression
of N+

H0

nH0
+ ≈

αΨ

α+ γD(ε0)
. (59)

For the small deformations we can assume that the value of the flow cross
section D is linearly dependent on ε0 and

D(ε0) = D0 −D1ε0, D1 > 0. (60)

Then the larger is the deformation, the smaller is the value of D. When
ε∗0 = D1/D0 we have D = 0 and any diffusion of mobile hydrogen becomes
impossible, so it goes into a bonded state. The behavior of concentration
of the bonded hydrogen at a tension of a sample depending on the enclosed
strain ε0 (ε10 < ε20 < ... < ε∗0) is shown in Figure 11a.

Stress-strain diagram. Suppose that we have a limiting concentration
of the bounded hydrogen Ψ� κ, where κ = EH/E0 (in particular, for steel
Ψ ≈ 10−6, κ ≈ 10−7 ÷ 10−8). Substituting equations (59) and (60) into
(50) yields

σ0 ≈
κE0ε0

κ + αΨ/
[
α+ γ(D0 −D1ε0)

]
.

(61)
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Figure 11. Behavior of concentration of the bonded hydrogen at a tension
of a sample depending on the enclosed strain (a), the diagram of strain-stress
in view of influence of the bounded hydrogen (b).

Defining the extrema of the function σ0(ε0) we get the critical points of the
stress–strain diagram

εcr0 ≈ ε∗0

[
1−

√
αΨ

κγD0

]
, ε∗0 = D0/D1.

It should be noted that we obtain the equation of state (61) assuming that
the induced strains connected to reorganization of internal structure can be
neglected compared with the homogeneous static field of the strains ε0.

Figure 11b shows the qualitative representation of the stress–strain di-
agram, calculated by equation (61), corresponding to steel and titanium.
The part of σ0(ε0) dependence with dσ0/dε0 < 0 can not be realized. The
growth of ε0 > εcr0 results in hydrogen embrittlement and destruction. How-
ever the hydrogen saturation leads to decreasing of the breaking point σcr

0 .
Similar σ(ε) curves were observed in the experiments with titanium al-
loys having large hydrogen concentration and in high-strength steels under
various immersion times in NH4SCN solution (see Takai and Watanuki
(2003)).

It should be mention that the dependence (61) is looplike and thereby
predicts the first-order phase transition into hydride phase under the load.
The stress–strain equation of state (61) agrees well with the corresponding
results of the model developed on the basis of statistical mechanics (Indeit-
sev and Osipova (2011)).
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4.3 Conclusion to section 4

The two-component model of the material, in which atomic hydrogen
dissolved, has been constructed. It has been shown that the stress-strain
equation of state of the hydrogenated metal is shaped like the Van der
Waals loop; therefor, brittle hydride regions are nucleated in metal by the
mechanism of the first-order phase transition. This allows us to describe
the kinetics of hydrogen in metals, to estimate hydrogen transition from the
mobile into the bonded state depending on the stress state.

5 Conclusion

Dynamics of the material with complex internal structure has been inves-
tigated within a two-component continuum model. The approach which
allows us to describe internal evolution processes in materials basing on the
Euler equations and the mass balance equations containing source terms
has been proposed. The influence of exchange mass between the compo-
nents on the internal structure of the materials has been investigated. The
source terms determining the mass transfer between material components
have been defined. Examples – structured liquids in nanochannels, metals
with dissolved hydrogen – have been considered.
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Modelling of Fluid-Structure Interaction –
Effects of Added Mass, Damping and Stiffness

Andreas Zilian
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Abstract Fluid-flow around mechanical structures can sometimes
lead to catastrophic failures. Improved modelling of fluid/structure
interaction is required for safety and mechanical considerations. In
this contribution, concepts for modelling the interaction of struc-
tures and fluids are presented. Starting from excitation mechanisms
and associated classifications, various model depth approaches are
compared. Among them, the use of added coefficients for quasi-
steady problems is discussed. On the basis of potential flow theory,
different approaches for determining fluid-induced additional mass
are established and illustrated using an analytical example. Given
the limitations of simplifying the engineering models, the second
part of the paper provides a brief overview on computational meth-
ods for fluid-structure interaction and presents a monolithic mod-
elling approach using space-time finite elements for discretisation
of both fluid and structure. Applications from aero- and hydro-
elasticity show the applicability of computational methods for prob-
lems involving flow-induced added mass, damping, and stiffness.

1 Flow-induced vibrations

Flow in and around engineered structures can cause structural vibrations
that may sometimes become dangerous and destructive. Interactions be-
tween fluid flow and structures have become particularly important in light
of the many new materials being used for lighter structures and also impor-
tant for temporary and less robust project states that exist during construc-
tion. The resulting designs are often more sensitive to dynamic excitation,
but generic predictions of the structural response to flow-induced excitation
is often not available.

In civil engineering, the majority of structural designs lead to bluff ob-
jects exposed to the flow of fluids such as air and water. However, common

H. Irschik, A. K. Belyaev (Eds.), Dynamics of Mechanical Systems with Variable Mass, 
CISM International Centre for Mechanical Sciences DOI 10.1007/ 978-3-7091-1809-2_5 
© CISM Udine 2014



196 A. Zilian

civil engineering structures are required to meet criteria such as static re-
sistance and safe response spectra with respect to traffic, machine or earth-
quake excitation. Motivated by a number of spectacular construction fail-
ures that at the time represented the state-of-the-art design, aero-elastic
considerations were introduced into the design of modern flow-exposed light-
weight structures (Scruton (1969); Sockel (1984); Ruscheweyh (1988)). Fur-
ther, aero-elastic safety and aerodynamic optimisation and control are be-
coming critical for the overall design. As a consequence, eligible design rules
and estimates of structural safety with respect to flow-induced vibrations
are now being requested by engineers. However, the complexity of most
fluid-structure interaction phenomena means that it is still very difficult to
determine robust and accurate risk estimates that would be applicable to a
broad band of operational states (see Bisplinghoff et al. (1955); Försching
(1974); Dowell et al. (1989); Blevins (1990)).

The lack of a universal and straightforward model for fluid-structure
interaction (FSI) motivated the establishment of a field of experimental
and numerical investigation of flow-induced vibrations. Today, numerical
simulation is gaining acceptance in wind, coastal, and hydraulic engineering
as it provides important local and global estimates of parameters such as
the stress and deformation state. Those tools, therefore, enable engineers
to gain further insight into the physical mechanisms of coupled problems.

Excitation Mechanisms

Following the classification of fluid-structure interactions that were pro-
posed by Naudascher and Rockwell (1994), three main excitation mech-
anisms of civil engineering structures can be distinguished: extraneous-
flow-induced excitations (EIE), flow-instability-induced excitations (IIE)
and movement-induced excitations (MIE). Herein, the structural compo-
nent may be modelled as single or multiple elastically supported rigid bodies
(e.g. sluice gates, air-foil or hydro-foil sections) or flexible structures (e.g.
cables, pipes, thin-walled structures, long-span bridges, membrane roofs, or
silos). Coupled with surrounding or enclosed fluid flow even these simple
structures can produce very complex and unpredictable dynamic behaviour
of the overall system. Realistic situations of fluid-structure interaction are
often simultaneously driven by several of the excitation mechanisms.

Instability-induced excitation is caused by the intrinsic properties of the
fluid and leads to an unstable flow regime around the structure being con-
sidered. This self-exciting flow instability produces oscillating forces even
if the structure is stationary. A further amplification of the exciting force
is possible for fluid-elastic feedback. Moreover, lock-in of the frequency of
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the exciting fluid force and a structural eigenfrequency may be observed in
a specific range of flow velocities. Shedding vortices in wind and water flow
or unstable free surfaces can result in IIE for a number of civil engineering
structures, e.g. cylinders and marine cables in cross-flow or vibrations of
weir flaps with unstable overfall stream.

Movement-induced excitation is caused by fluctuating flow forces that
result from movements of the vibrating structural component. Small de-
viations from structural equilibrium induce a re-distribution of impacting
fluid forces that further increase the initial disturbances. This effect trans-
fers flow energy to the structural oscillator and is referred to as dynamic
instability. Single or multi mode vibrations may occur due to aero-elastic
phenomena such as flutter or galloping involving one or multiple bodies.
Galloping is a self-excited, transversal oscillation of bluff sections that is
initiated at flow speeds greater than critical flow speeds and has been ob-
served, for example, in ice-coated power cables exposed to cross fluid-flow.
The frequency of the resulting galloping motion is small compared to the
vortex shedding frequency, making the effect distinct from IIE. Flutter may
occur if a slender structure undergoes small heaving or pitching vibrations in
parallel fluid-flow. Periodic structural motion results in movement-induced
vortex shedding at the trailing edge that leads to a phase shift of fluid
loading relative to the structural vibration. In civil engineering, flutter can
cause severe vibrations of bridge decks, fluid-conveying pipes, facade panels,
or cylindrical shells.

Extraneously-induced excitation is caused by periodic or randomly fluc-
tuating flow forces generated by an external energy source. Fluctuations
of flow velocities or pressure may arise from periodic pulsations in pumps,
uniform ocean waves, turbulent wind, gusts, or chaotic sea motions.

For specific problems, engineers have used empirical data to develop suc-
cessful strategies to circumvent unwanted flow-induced excitation of struc-
tures: symmetry-breaking separation by bevelled trailing edges and shrouds,
vortex trapping by concave trailing edges for IIE; or additional damping de-
vices such as dissipative dampers or tuned mass dampers for MIE.

2 Mathematical modelling

A non-negligible number of flow-structure problems in engineering practise
are still subject to thorough scientific investigation and meanwhile treated
in a rule-of-thumb fashion or on the basis of experience and accumulated
expert knowledge. Nevertheless, this expertise serves the key aspect in
phenomenological modelling of FSI: careful identification of the driving in-
teractions for later mathematical formulation of the coupled system.
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The general physical behaviour of coupled systems can often be mathe-
matically described using differential and algebraic equations. The govern-
ing system of equations of the involved continua constitute the conservation
laws for mass, momentum and energy as well as the kinematic relationships
and the material laws. The integration constants are determined by the
boundary conditions. In addition to Dirichlet and Neumann boundary con-
ditions, a formulation of a boundary-coupled multi-field problem requires
the definition of appropriate coupling conditions at the coupling interfaces.
These interface conditions are established on the basis of the conservation
laws and kinematic constraints.

Fully coupled multi-physics. This generic approach –as alternative to
the phenomenological approach– allows the field equations for each con-
tinuum to be independently formulated, while the coupled nature of the
full problem is taken into account by the coupling conditions. The coupled
system can be written in terms of the respective primary field functions
of the structure uS (e.g. structural velocity/displacement) and the flow
uF (e.g. fluid velocity, pressure/density). All spatial and temporal deriva-
tives of the involved physical models for both continua are here supposed
to be incorporated in the operators LSS and LFF while the bi-directional
field-coupling is reflected by operators LSF and LFS , which describe the
quality and strength of the interaction. Volume forces are indicated by the
time-dependent loading functions fS and fF . If it is also assumed that all
essential and natural boundary conditions are already incorporated in the
typically non-linear field operators, one arrives at the full description of the
coupled fluid (F ) and structure (S) problem:

LSS(uS) + LSF (uF ) = fS(t) solid equations (1)

LFS(uS) + LFF (uF ) = fF (t) fluid equations. (2)

An approximate solution of this system of coupled non-linear equations
requires a large number of unknowns in order to achieve the accuracy re-
quired for capturing the most important interaction phenomena. Typically,
discretisation of the structural component involves a degree of freedom on
the order of nS = 103 while the fluid flow field easily requires nF = 107,
especially if the laminar-turbulent transition or the turbulent regime is to
be considered.

Field elimination. If in the multi-physics problem the behaviour of the
structural component is of primary interest, one may (theoretically) per-
form a static condensation of the fluid. Given the invertibility of the fluid
operator, from equation (2) one obtains for the fluid field

uF = L−1
FF (fF (t)− LFS(uS)),
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which allows its elimination in equation (1)

{LSS − LSFL−1
FFLFS}(uS) = fS(t)− LSFL−1

FF (fF (t)). (3)

Equation (3) describes the response of a structure in the presence of motion-
or deformation-dependent fluid loading and fluctuating fluid forces resulting
from flow-intrinsic instabilities (both on the left hand side) as well as time-
dependent extraneous excitations (second term on the right hand side).
Clearly, the above formulation is only of limited practical interest since
the inverse of the fluid operator is unavailable. Nevertheless, the notation
reveals the complexity of identifying a suitable reduced-order description
for a given fluid-structure interaction problem.

Engineering approach/reduction. A common approach to describing
flow-induced loading on structures is to summarize the effects of motion-
dependent fluid loading by using so-called added coefficients in the mod-
elling. Specifically, one assumes that for quasi-steady processes the above
projection can be sufficiently well represented by the operator A

−LSFL−1
FFLFS ≈ A (4)

such that the structure’s field equation reduces to

{LSS +A}(uS , u̇S , üS) = fS(t). (5)

The nonlinear operator A can be approximated by a multi-variate Taylor
series expansion in terms of structural displacement uS , structural velocity
u̇S and structural acceleration üS - neglecting all mixed terms -

A = A(uS , u̇S , üS) := Ak(uS) +Ab(u̇S) +Am(üS) , (6)

which for the structural oscillator results in expressions for the so-called
added fluid stiffness Ak, added fluid damping Ab and added fluid mass Am,
respectively. Consideration of only first order expansions of the functional
A then leads to the often used form of constant added coefficients, which
are generally non-symmetric.

Aerodynamic added mass Am captures the surrounding fluid accelerated
by the structural vibration and always increases total mass. Added aerody-
namic damping Ab can result in increased reduction of structural vibration
amplitudes in addition to structural damping. More importantly, aerody-
namic damping - having negative coefficients - constantly introduces flow
energy to the oscillator with every cycle (self-excitation), giving rise to dy-
namic instabilities. Aerodynamic stiffness Ak may increase or decrease the
total stiffness of the system. The presence of negative added fluid stiffness
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can therefore lead to static divergence if the original structural stiffness is
small.

Unfortunately, the quantification of all types of added coefficients is not
straightforward. For selective simple interaction problems one may find a
set of relevant added coefficients by using analytical approaches and ex-
perimental validation. This approach leads to semi-empirical models of
fluid-structure interaction using aero-elastic coefficients and their derivatives
(Paidoussis (1987); Parkinson (1989)). Alternatively, the quantification of
motion-dependent fluid forces (added effects) can be achieved through nu-
merical simulation of the fluid-structure system.

2.1 Modelling with added coefficients

The steps and implications of modelling with added coefficients are
demonstrated for a simple structure with distributed mass, damping, and
stiffness properties. Separating the temporal and spatial components results
in the equation of motion for the multi degree-of-freedom oscillator

MüS +Bu̇S +KuS = f(t)− fF (üS , u̇S ,uS) (7)

with motion-independent and motion-dependent components in the forcing
terms. The first order Taylor series expansion of the flow-induced force fF

fF =
∂fF
∂üS

üS +
∂fF
∂u̇S

u̇S +
∂fF
∂uS

uS = AmüS +Abu̇S +AkuS (8)

leads to the matrices representing aerodynamic mass, Am, damping, Ab,
and stiffness, Ak, which in the general case are non-symmetric and complex-
valued, because the aerodynamic forces are motion-dependent. The overall
solution of the resulting equation of structural motion

(M+Am)üS + (B +Ab)u̇S + (K+Ak)uS = f(t) (9)

requires an analysis of the particular and homogeneous case. The solu-
tion of the homogeneous equation of motion requires solving the associated
quadratic eigenvalue problem{

λ2(M+Am) + λ(B +Ab) + (K+Ak)
}
ûS = 0 (10)

with partially non-symmetric, and possibly non-positive, complex effective
matrices resulting in 2nS complex-valued eigenvalues with right and left
eigenvectors.

Static divergence is an instability caused by the presence of flow-induced
stiffness that reduces the effective stiffness of the system to zero (e.g. fluid-
conveying elastic tube or torsional vibrations of the section in cross-flow).
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If the fluid stiffness is a function of the approaching flow velocity uF,∞, the
range of critical flow-velocities for which very large structural deformations
occur can be determined with the condition det(K+Ak) = 0.

The Dynamic response of the structural system originates from the forc-
ing term f(t) that may express periodic (e.g. vortex shedding) or non-
periodic (e.g. turbulence, rough sea waves) fluid forces. Such forced vi-
brations can be calculated using standard approaches. If the fluid force
is periodic in time, the structural system may experience parametric reso-
nance: dynamic instability occurs if the frequency of the flow-induced force
is an integer multiple of one of the natural frequencies of the structure.

Dynamic divergence can be caused by internal or external flow at high
velocities (e.g. flutter of fluid-conveying pipes or transversal galloping). In-
stabilities controlled by fluid damping (single mode flutter) are associated
with the symmetric part of the total damping, (B +Ab), which introduces
negative fluid damping and causes permanent transfer of flow energy to
the structural oscillator (self-excitation). Instabilities controlled by fluid
stiffness (coupled mode flutter) are associated with the antisymmetric com-
ponent of the total stiffness, (K+Ak).

From the above discussion it can be concluded that fluid-induced added
mass is not causally involved in the various instability phenomena. Never-
theless, the presence of added mass influences the dynamic characteristics of
the system as the eigenstates depend on the distribution of total mass. The
actual importance of flow-induced mass very much depends on the density
of the fluid but also on the effects of variable fluid boundaries (e.g. free
surfaces of waves) that may interact with the structural motion making the
added fluid mass position-dependent.

2.2 Analytical determination of fluid-induced added mass

Determination of added mass consists of a number of important steps:
specification of the fluid model to be used, description of structural motion
and evaluation of motion-induced fluid forces. The evaluation step involves
the computation of fluid force sensitivities on structural rigid body motion
and deformation modes from the underlying fluid model equations. This
can be achieved by means of approximate solutions or - if the applied fluid
model and the flow domain are not too complicated - by means of analytical
solutions, as they are presented in (Korotkin, 2009) for ship applications.

Modelling of the fluid flow. In order to allow for an analytical in-
vestigation, the fluid here is assumed to be inviscid, incompressible, and
irrotational. With the fluid velocity uF and both the continuity equation



202 A. Zilian

together with the rotation-free condition

∇ · uF = 0 and ∇× uF = 0 (11)

allow the introduction of the potential φ which fulfils the relation uF = ∇φ
and lead to the Laplace equation of potential flow

Δφ = 0 inΩ (12)

with the Neumann boundary condition

(∇φ− u̇S) · nΣ = 0 onΣ (13)

at the fluid-structure interface Σ with the normal vector nΣ pointing out-
wards the fluid domain, representing kinematic compatibility between fluid
and structure in terms of velocity. Similarly, impermeability along the outer
fluid boundary Γ requires

∇φ · nΓ = 0 onΓ. (14)

With the Bernoulli equation for unsteady flows in the absence of volume
forces

∂φ̄

∂t
+

1

2
‖∇φ̄‖22 +

p

ρF
= h(t) , (15)

the pressure state can be expressed by

p = −ρF ∂φ

∂t
− 1

2
ρF ‖∇φ‖22 , (16)

where ρF is fluid density and the level h(t) is incorporated into the potential

by the transformation φ̄ = φ +
∫ t

t0
h(τ) dτ such that ∇φ̄ = ∇φ. The po-

tential φ of the non-oscillatory fluid only depends on time if the boundary
conditions are time-dependent. Here, the velocity at the interface Σ may
vary in time due to the oscillatory behaviour of the structure, which can
be described as a linear combination of its rigid body and flexural modes.
For internal flow situations, the incompressibility of the fluid restricts the
spectrum of admissible structural deformations.

Description of the fluid-structure interface motion. The motion of
the fluid-structure interface Σ, which is equivalent to the motion of the struc-
tural boundary, can be represented by a separation ansatz in space (surface
coordinate s) and time t using the basis of linear independent deformation
modes

uS(s, t) =
∑
k

vk(s) · gk(t) (17)

where vk(s) is the k-th global mode of the interface and gk(t) is the associ-
ated generalised coordinate.



Modelling of Fluid-Structure Interaction 203

Modal decomposition of fluid response. Since the model equations
of the chosen fluid are linear, the fluid velocity potential associated with
each interface mode can be expressed by the modal superposition

φ(x, t) =
∑
k

φk(x) · ġk(t) (18)

and the solution to the governing equation (12) in terms of φk with mode-
specific boundary conditions

(∇φk − vkġk) · nΣ = 0 onΣ and ∇φk · nΓ = 0 onΓ. (19)

Approaches to the derivation of modal added fluid mass. Three
different approaches for determining added mass within the framework of
modal decomposition of the structural motion are considered:

• Direct evaluation of the resultant fluid force fF ;k exerted on the struc-
tural mode k can be achieved by integrating the modal projection of
the interface fluid pressure, such that

fF ;k =

∫
Σ

(vkġk · nΣ) p dΣ (20)

=

∫
Σ

(vkġk · nΣ) ρF

(
−∂φ

∂t
− 1

2
‖∇φ‖22

)
dΣ (21)

=

∫
Σ

(∇φk · nΣ) ρF

(
−
∑
n

∂φn

∂t

)
dΣ (22)

=

∫
Σ

(∇φk · nΣ) ρF

(
−
∑
n

φn · g̈n
)

dΣ (23)

=
∑
n

⎛⎝−ρF ∫
Σ

(∇φk · nΣ)φn dΣ

⎞⎠ · g̈n (24)

=
∑
n

Am;kn · g̈n . (25)

The term related to kinetic flow energy in equation (21) vanishes as the
closed surface integral of the continuous integrand is zero. Expression
(24) for the modal fluid-induced force is a function of the generalized
structural acceleration g̈n of mode n. The final result (25) is achieved
by introducing the added mass coefficient

Am;kn = −ρF
∫
Σ

(∇φk · nΣ)φn dΣ (26)
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of the k-th structural mode due to the action (fluid acceleration) done
by the n-th mode. The added mass coefficients are symmetric

Am;kn = Am;nk. (27)

In a similarly direct fashion the added mass coefficients for fluid-
induced moments can be derived. As denoted in the equilibrium
equation (7), the fluid force vector fF points in the same direction
as the vector of structural inertia forces.

• With the pressure work function on the fluid-structure interface

W =

∫
Σ

(uS · nΣ) p dΣ (28)

=

∫
Σ

(∑
k

(vk · nΣ) gk

)
ρF

(
−∂φ

∂t
− 1

2
‖∇φ‖22

)
dΣ (29)

=

∫
Σ

(∑
k

(∇φk · nΣ) gk

)
ρF

(
−
∑
n

φn · g̈n
)

dΣ , (30)

the force component associated with mode k is determined by the par-
tial derivative of the work function with respect to the k-th generalized
coordinate

fF ;k(g1, g2, . . . ) =
∂W

∂gk
=
∑
n

Am;kn · g̈n . (31)

Again, the use of added mass coefficients allows for directly identify-
ing modal interactions and inter-dependency in terms of fluid-induced
inertial force contributions.

• The evaluation of kinetic fluid energy in the fluid domain,

T =

∫
Ω

1

2
ρF ‖uF ‖22 dΩ =

1

2
ρF

∫
Ω

‖∇φ‖22 dΩ , (32)

induced by a specific structural deformation mode constitutes the
third way of establishing added mass coefficients. Integration by parts
of the above expression leads to

T =
ρF
2

⎡⎣∫
Ω

Δφφ dΩ−
∫
Σ

(∇φ · nΣ)φ dΣ−
∫
Γ

(∇φ · nΓ)φ dΓ

⎤⎦. (33)
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Taking into account the boundary conditions defined in equation (19)
and the validity of equation (12) it follows, that

T = −1

2
ρF

∫
Σ

(∇φ · nΣ)φ dΣ (34)

=
1

2

∫
Σ

−ρF
(∑

k

(∇φk · nΣ) ġk

)(∑
n

φn · ġn
)

dΣ (35)

=
1

2

∑
k

∑
n

ġk · Am;kn · ġn (36)

where Am;kn is defined and interpreted as in equation (26).

Added mass of circular beam structure immersed in potential flow.
The computation of the added mass coefficients is demonstrated for a plane
flexible ring structure (radius a) embedded in a fluid-containing cylinder
(radius b) as shown in Figure 1.

For the structural component, small undamped in-plane motions of an
elastic ring are considered. With the radial displacement v(θ), the angular
displacement u(θ), and the assumption ∂u/∂θ+v = 0 (angular rigidity) the
equation of radial motion is given by

ρSAv̈ +
EI

a4

(
∂4v

∂θ4
+ 2

∂2v

∂θ2
+ v

)
= f(θ, t) (37)

where A is section area, EI represents bending stiffness and f(θ, t) is time-
dependent loading. The conditions on the periodicity of the displacement,
the bending angle, the bending moment and the shear force: ∂mv(0, t)/∂θm =
∂mv(2π, t)/∂θm for m = 0, 1, 2, 3 constitute the boundary conditions. The
eigensolution of the present radial vibration problem

vk1(θ) = αk,1 cos kθ and vk2(θ) = αk,2 sin kθ with k = 0, 1, 2, . . . (38)

proves to have double eigenvalues λk1,2 with two linearly independent phase-
shifted eigenfunctions, vk1,2, per wave number, k.

For potential flow (12), the Laplace equation in polar coordinates (r, θ)

Δφ(r, θ) =
∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2
∂2φ

∂θ2
= 0 for r = [a, b] and θ = [0, 2π] , (39)

is completed by the boundary condition at the interface (13) and outer fluid
boundary (14)

∂φj(r = a, θ)

∂r
= vj(θ) and

∂φj(r = b, θ)

∂r
= 0. (40)
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Figure 1. Circular beam embedded in circular fluid domain: structural
eigensolution (deformation) and associated potential flow field (velocity).

An analytical solution to equation (39) is available through the separation
ansatz φ(r, θ) = η(r) · ξ(θ) which leads to

φ(r, θ) =

∞∑
n=1

ηn(r) · ξn(θ) =
∞∑

n=1

(Anr
n +Bnr

−n) · (cosnθ + sinnθ) (41)

The motion of the ring structure in the k-th eigenmode results in an
associated fluid velocity field whose potential can be expressed by (41) and
for which the coefficients, A and B, can be determined from the boundary
conditions defined in equation (40). Equating coefficients for the structural
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mode, k, and wave number, n, one obtains for i = 1, 2

An

∣∣
vk,i

= −αk,i

k

an+1

b2n − a2n
and Bn

∣∣
vk,i

= b2nAn

∣∣
vk,i

. (42)

The modal added mass coefficient, Am;kn, can now be derived according to
equation (26) as

Am;kn = −ρF
∫
Σ

∂φ(r = a, θ)

∂r
φ(r = a, θ) ds (43)

= −ρF
∫ 2π

0

(αk cos kθ) · (Anr
n +Bnr

−n)(cosnθ) · a dθ (44)

= ρF
αkαn

k
a2

b2k + a2k

b2k − a2k

∫ 2π

0

cos kθ · cosnθ dθ (45)

= ρF
αkαn

k
a2

b2k + a2k

b2k − a2k
π · δkn with δkn =

{
1 ∀k = n
0 ∀k �= n

(46)

For this axially symmetric problem, the added mass coefficients are modally
decoupled. The analytical expression for Am;kn moreover shows the influ-
ence of open/enclosed flow situations on the modal added mass coefficient.
Enclosed incompressible flow (b/a → 1) usually generates increased added
mass compared to open situations (b/a→∞).

2.3 Variable added mass and more advanced situations

The range of applicability of the analytical approach to determination
of added mass is limited by the same simplifications, e.g. restriction to in-
viscid flows, the assumption of small structural motion or changes in the
flow boundaries, that allow linear superposition and closed-form mathemat-
ical solution. In general, the effective added mass is a function of (1) the
geometrical shape and deformability of the structure and its surface, (2)
the geometry of the fluid domain and its boundaries, (3) the relative posi-
tion/motion of the structure to the fluid (Konstantinidis (2013)) and adja-
cent fluid boundaries or free surfaces, (4) for compressible and free surface
flows the propagation of pressure and gravity waves, respectively, giving rise
to a phase shift between body motion and induced fluid force which reveals
the possibility of added fluid damping even if the fluid is inviscid. Com-
putational modelling and approximate numerical solution of fluid-structure
interaction problems can help to overcome certain limitations of the analytic
approach and allow consideration of the above mentioned dependencies not
only for variable added fluid mass but also variable added fluid damping
and stiffness.
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3 Computational Modelling

Computational analysis of fluid-structure interaction requires the solution
of a two-field problem consisting of model equations for structural and fluid
dynamics. These two fields may be accompanied by additional descrip-
tions for the coupling interface and geometrical changes of the fluid do-
main involved. The algorithmic treatment of the coupled problem needs
to consider the dominating coupling characteristics between participating
fields. For both, weakly and strongly coupled systems, very efficient nu-
merical schemes have been developed over the last decades. Comprehensive
overviews are given in the work of Wall (1999) and Steindorf (2002). More
recent developments can be fond in Bungartz and Schäfer (2006), Bungartz
et al. (2012) or Dettmer and Perić (2013).

Figure 2. Coupling: partitioned(weak), partitioned(strong), simultaneous.

Coupling Strategies. Partitioned approaches solve the involved fields
sequentially and are designed for highly modular application of specific dis-
cretisation and solution methods for each sub-problem. Interaction of the
sub-systems fluid and structure is realized by communicating interface con-
straints as boundary conditions and leads to Dirichlet-Neumann methods:
flow interface tractions acting as loads on the structure, structural velocities
at the interface as Dirichlet conditions for the flow field, and structural de-
formations as conditions for mesh motion or re-meshing algorithms. Weakly
coupled solutions in the time domain are carried out if exchange of infor-
mation between the sub-systems takes place only once per time step and
therefore the overall system will not be in a physically consistent state.
While this very popular approach is acceptable for weakly coupled systems,
it cannot be applied successfully for numerical investigations of strong cou-
plings. Strongly coupled solutions are achieved in partitioned methods by
iterated solution of the sub-systems. Different staggered schemes have been
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derived by choosing appropriate orderings in solving the sub-systems (in-
cluding mesh motion etc.) with respect to specific temporal discretization
methods of the solver modules for the structural and fluid part. The consis-
tent state of the coupled system at a time instant is reached, often supported
by selective numerical relaxation during the coupling iteration.

Simultaneous approaches do not apply a strict partitioning of the phys-
ical domain. Such an holistic view requires the solution of the discretised
model equations for solid and fluid in a single algebraic system. The numer-
ical properties of the resulting large system of equations may indicate the
need for specialized preconditioning of iterative solvers. Monolithic schemes
with identical time discretisation of both fields can represent an ideal ba-
sis for conservative and precise transient coupling. For physically strongly
coupled systems, such schemes may provide improved convergence and nu-
merical efficiency compared to partitioned approaches.

Deforming flow domain. In a fluid-structure system, structural motion
causes geometrical changes of the flow domain. The discretisation of the
varying fluid domain has to fulfil compatibility requirements along the in-
terface. The model equations of the fluid are therefore defined and to be
solved on a time-dependent deforming domain. Arbitrary Lagrange-Euler
(ALE) formulations are often applied in semi-discrete methods and intro-
duce the kinematics of an arbitrary reference configuration (e.g. the moving
fluid mesh) to the model equations. Alternatively, uniform discretisation in
space and time allows inherently consistent integration of the weak forms
on the deforming space-time domain of the flow.

If the topology of the flow domain does not change, updated locations of
internal grid nodes can be determined by using a pseudo-structure approach.
The fluid mesh is then seen as a (hyper-)elastic solid subject to boundary dis-
placements according to the current deformation of the physical structure.
While mesh-moving schemes are sufficient to treat moderate displacements
of involved structures, partial re-meshing of the flow discretisation or the ap-
plication of overlapping chimera-techniques become necessary if topological
changes occur. For rotating flow-immersed structures special clicking- and
sliding-mesh techniques were developed that implement consistent coupling
of adjacent but rotating fluid grids.

3.1 FSI with space-time finite elements

The following sections give the mathematical description of the boundary-
coupled fluid-structure problem, involving an elastic structure at large de-
formations and a viscous incompressible fluid in terms of the strong form
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equations. The weak form is derived in context of the space-time finite
element method and a monolithic solution approach. The final weak for-
mulation is based on the velocity state of the involved continua, simplifying
the treatment of coupling conditions considerably.

Strong form of governing equations for fluid and structure.

Structure. The conservation of momentum of a solid body or structure
is described on the material configuration

ρS0v̇ −∇0 · (FS)− f0 = 0 on Q0 (47)

with density, ρS0, and volume force, f0. The domain, Q0 = Ω0 × I, refers
to the space-time continuum under consideration with the spatial reference
domain, Ω0, and time interval, I = [ta, te]. Linear elastic material behaviour
is assumed and given in rate form

C−1 : Ṡ− Ė = 0, (48)

where S, Ė and C are 2nd Piola-Kirchhoff stress, Green-Lagrange strain
rate, and the fourth order elasticity tensor, respectively. The rate of strain
at a material point is a function of deformation and velocity state

Ė(v,u) =
1

2

(∇0v + (∇0v)
T + (∇0u)

T∇0v + (∇0v)
T∇0u

)
. (49)

Dirichlet and Neumann boundary conditions are defined on the outer space-
time boundary P0 = Γ0 × I of the solid body

v − v̄ = 0 on P v
0 and t0 − t̄0 = 0 on P t

0 , (50)

where v̄ and t̄0 are imposed boundary velocities and tractions, respectively.
Moreover, the dynamic problem at hand requires the definition of initial
values for the velocity state

v(x, t = 0)− vta(x) = 0 on Ω0. (51)

Fluid. The incompressible Navier-Stokes equations are used to describe
viscous flow at moderate speeds. Momentum balance is defined on the
current configuration

ρF (v,t + v · ∇v)−∇ ·T− f = 0 on Q (52)

and accompanied by the continuity equation or incompressibility constraint
on the velocity field

∇ · v = 0 on Q. (53)
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Assuming a Newtonian fluid, the constitutive relation,

T = 2μD(v)− pI (54)

between Cauchy stress state T and the rate of strain

D(v) =
1

2

(∇0v + (∇0v)
T
)

(55)

introduces hydrostatic pressure p and viscosity μ of the fluid. Again, Dirich-
let and Neumann boundary conditions are defined on the space-time bound-
ary P = Γ× I of the fluid body

v − v̄ = 0 on P v and t− t̄ = 0 on P t, (56)

where v̄ and t̄ are imposed boundary velocities and tractions, respectively.
Compatible (divergence-free) initial values for the velocity state are to be
defined

v(x, t = 0)− vta(x) = 0 on Ω. (57)

Coupling conditions. Flow domain and structural domain are coupled
along the common space-time boundary R = Σ × I representing the fluid-
structure interface. At the interface no-slip conditions are applied, request-
ing continuity of fluid and structural velocities

vF − vS = 0 on R (58)

and ensuring herewith geometrical conservation. Further, in order to fulfil
momentum balance at the interface, fluid and solid interface tractions have
to be of the same magnitude and opposite in direction

tF +
dΓ0

dΓ
tS = 0 on R. (59)

The referential solid traction tS is projected to the current frame.

Space-time weak form and discretisation. The weighted residual
method is applied to the strong form equations of solid, fluid, and cou-
pling conditions presented in the previous section. The resulting weak form
of the whole coupled system and the space-time domain is then discretised
using the space-time finite element method, see Argyris and Scharpf (1969),
and a discontinuous Galerkin method for integration in time. The basic
idea of a space-time approach is to include the temporal axis in the finite
element discretisation. For numerical efficiency, the space-time domain Q
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Figure 3. Discretisation of the continuous space-time domain using time-
discontinuous space-time finite elements.

is divided into a sequence of N time slabs Qn = Ωn × [tn, tn+1], as shown
in Figure 3, which are solved successively.

At time instant, tn, the energy of the discretised system at the end of
the previous time slab, t−n , must be equal to the energy at the beginning
of the next time step t+n . For time-discontinuous approximations of field
unknowns, this leads to additional jump terms in the weak form. Moreover,
spatial discretisations from t−n and t+n do not need to be conforming. For first
order ordinary differential equations, the resulting time integration scheme
is A-stable and third-order accurate for linear temporal interpolation.

Structure. The stabilized space-time finite element formulation of the
structural component (47)-(51) within the time slab, Qn

0 , including bound-
aries Pn

0 reads∫
Qn

0

δv · ρS0 (v̇ − f0) dQ0 +

∫
Qn

0

Ė(δv,u) : S dQ0 (60a)

+
∑
e

∫
Qn,e

0

δS :
(
C−1 : Ṡ− Ė(v,u)

)
dQ0 (60b)

+

∫
Ω0

δv(t+n ) · ρ0
(
v(t+n )− v(t−n )

)
dΩ0 (60c)

+
∑
e

∫
Ωe

0

δS(t+n ) : C
−1 :

(
S(t+n )− S(t−n )

)
dΩ0 (60d)

+ terms stabilization of momentum equation (60e)

−
∫
Pn,t
0

δv · t̄0 dP0 = 0 ∀ δv, δS . (60f)

In equation (60), line (a) represents the weak form of the momentum con-
servation and line (b) fulfils the constitutive law on element level, leading to
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a mixed-hybrid formulation as presented in (Knippers and Harbord, 1994),
where only the velocities are global degrees of freedom. The jump terms
for velocities (c) and stresses (d) satisfy the initial conditions of the time
slab in integral form. The stabilization mentioned in line (e) is useful for
wave propagation problems. The definition for the stabilization parameter
given in (Hughes and Hulbert, 1988) is used. Interpolation functions for ve-
locities are chosen to be multi-linear in space and linearly discontinuous in
time, while the stress interpolation is discontinuous and incompletely linear
in space and discontinuous linear in time, see (Hübner, 2003). Temporal
integration of the velocities leads to the displacement field u, which is re-
quired for computation of the rate of the Green-Lagrange strain tensor and
for specifying the current position of the fluid-structure interface.

Fluid. The weighted residual formulation of the strong forms of the
incompressible viscous fluid (52)-(57) in a space-time slab Qn

t using the
Galerkin method is∫

Qn
t

δv · ρF (v,t + v · ∇v − f) dQt+∫
Qn

t

D(δv) : 2μD dQt −
∫
Qn

t

∇ · (δv) p dQt (61a)

+

∫
Qn

t

δp∇ · v dQt (61b)

+

∫
Ωn

t

δv(t+n ) · ρ(v(t+n )− v(t−n )) dΩt (61c)

+ terms Galerkin/least squares stabilization (61d)

−
∫
Pn,h

t

δv · t̄ dPt = 0 ∀δv, δp. (61e)

Line (61a) represents the weak form of conservation of momentum, fulfill-
ing the constitutive relation for the Newtonian fluid and the kinematics
exactly. The incompressibility constraint is weighted with the variation of
the pressure in line (61b). Line (61c) ensures the consistent transfer of ki-
netic energy from the previous time slab end at t−n to the current time slab
at t+n . The weighted residual form is stabilized by a Galerkin/least-squares
term (see (Tezduyar et al., 1992; Masud and Hughes, 1997)) of the momen-
tum balance as denoted in line (61d). The Galerkin/least-squares stabiliza-
tion suppresses numerical oscillations in solutions to hyperbolic differential
equations by the introduction of additional numerical diffusion, allowing
herewith the application of equal order approximations of velocities and
pressure for the incompressible flow field. Neumann boundary conditions
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can be imposed in a weak sense by (61e), while (56) is treated a priori as
an essential boundary condition.

Fluid-structure coupling. The space-time finite element formulation of
the coupling conditions (58) and (59) uses boundary traction variables on
the interface in order to fulfil momentum conservation and geometrical con-
tinuity between the structure and the fluid in integral form (see Hübner
et al. (2004)). In particular, the equality of velocity values at the interface
of the fluid and structure is enforced with the fluid interface traction∫

R

δtF · (vF− vS) dR −
∫
R

δvF · tF dR −
∫
R0

δvS ·
(
− dΣt

dΣ0
tF

)
dR0 . (62)

The tractions are projected onto the reference configuration and change
their sign, since the unit outward normal vectors of fluid and structure are
in opposite directions.

As an alternative, one may use a direct coupling of fluid and structural
velocity degree of freedom in the case of fitting mesh discretisations along
the common fluid-structure interface. This enables the feature of an uncon-
strained formulation without Lagrange multipliers (interface traction) and
can improve efficiency in the numerical solution.

Simultaneous solution of the monolithic system of equations. The
monolithic discrete form of fluid, structure, and coupling conditions of one
space-time slab results in a single equation system, shown in Figure 4 (de-
picted without pressure).

Ft
* =

F

Sb

0

bK v

K vSS

F F

F-B

-BT

B

FBT

S

S

*

KF

KS

vF Fb

vS Sb

* =

Figure 4. Structure of algebraic system: use of Lagrange multipliers (left)
and native velocity coupling (right) in a monolithic approach.

The resulting highly non-linear system – describing the behaviour of
both fluid and structure within the time slab n – is solved by the Newton-
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Raphson iteration scheme:

A(xn)xn = b(xn−1) → rni = −A(xn
i )x

n
i + b(xn−1)

AT (x
n
i−1)Δxn = rni

xi+1 = xi +Δx

Non-linearities in the coefficient matrix A are due to non-linear kinematics
of the structure, the convection and stabilization terms of the fluid and the
motion of the fluid space-time mesh. In the considered applications, the it-
eration scheme reaches the coupled monolithic solution to a time slab within
three to four steps only. Within each non-linear iteration step, i, the mono-
lithic linear system of equations is solved with an ILU(k)-preconditioned
GMRES.

For an in-depth description of the design and implementation of the
space-time finite element method for fluid-structure interaction, the in-
terested reader is referred to the following publications: (Hübner et al.,
2004; Walhorn et al., 2005; Hübner and Dinkler, 2005; Zilian and Legay,
2008), which demonstrate the monolithic space-time finite element method
for strongly coupled fluid-structure interaction problems and validate the
model for various applications in aero- and hydro-elasticity.

4 Applications

4.1 Bridge Aero-elasticity

Wind may induce high amplitude vibrations of long-span cable bridges.
Mitigating the effects of winds must be regarded as a major objective in
bridge design. Different excitation mechanisms are possible such as buffet-
ing, vortex shedding, or self-excitation. In the case of self-excited bridge
vibrations, which develop due to the interaction of wind flow and structural
motion, amplitudes may increase up to the point of failure of the bridge. The
dynamic system behaviour becomes unstable, if the energy transfer from the
flow field to the structural oscillator is higher than the dissipation due to
structural damping, averaged over a full period. The most popular example
for such an aero-elastic instability, also called bridge flutter, is the failure
of the Tacoma Narrows Bridge in 1940. In the case of the Tacoma bridge
deck (H-shaped section), flow separation appears at the leading edges, and
vortices, which increase up to the size of the profile height and move with
the mean flow over the profile. At the trailing edges, vortex shedding reap-
pears, leading to a vortex street in the wake of the profile. Large vortices,
moving over the profile, cause strong pressure fluctuations and lead to high
fluid force amplitudes.



216 A. Zilian

In order to investigate the aero-elastic properties of the Tacoma Nar-
rows cross section by numerical simulation (see the comprehensive study
presented in Hübner et al. (2002) and Hübner (2003), which main results
are reflected here), the bridge deck is modelled as plane H-section, fixed only
in in the horizontal direction and spring supported with respect to vertical
and angular motion. Velocity and pressure fields close to the profile are

Figure 5. H-shaped bridge deck in cross flow: velocity and pressure fields.

shown in Figure 5 for half a period of the coupled motion. A vortex which
develops due to flow separation at the upper leading edge of the H-section
is moving over the profile. Thus, the vortex affects a fluctuating moment
acting on the profile, since the distance between profile centre and vortex is
changing with time. When the profile is in a straight position, the vortex
is situated behind the profile centre and causes a moment in the direction
of the rotation. This phase shift between vortex induced moment and pro-
file rotation leads to energy transfer from the flow field into the structural
system. Consequently the profile vibrations increase. The time histories in
Figure 6 (upper left and right) represent the development of resulting fluid
forces and moments acting on the profile in comparison with the respective
spring forces and moments. Since the spring force values give a measure
of the displacement and rotation of the profile, they represent the system
response, while the fluid force values define the magnitude of the impact.

For an inflow velocity of v∞ = 5m/s, vortex shedding causes forced
vertical and torsional vibrations with the shedding frequency fSt = 0.24Hz.
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Vertical and torsional motion are in phase and show a phase shift of φ =
180◦ compared to the excitation forces and moments, since the excitation
frequency is higher than both natural frequencies and structural damping is
not present. Maximum vertical profile displacement and rotation are very
small, but in comparison with the excitation the rotation is clearly higher,
since the related natural frequency is much nearer to the shedding frequency.

In the case of higher inflow velocities the initial system behaviour is dom-
inated by vortex shedding in conjunction with small structural motions. The
shedding frequency of the fixed profile is predominating, but the structural
motions are unsteady and a periodical steady state does not appear. In fact,
the torsional motion increases rapidly after some time of vortex excitation
and the system behaviour becomes unstable. The instability caused by the
interaction of structural motion and viscous fluid flow is characterized by ex-
ponentially increasing amplitudes of profile rotations and a frequency shift.
The dominant frequency changes from the shedding frequency of the fixed
profile, which depends on the inflow velocity, to a coupled motion frequency
of fc = 0.19Hz, which only depends on the structural properties. Due to
a strong interaction of the fluid flow and structural motion, the coupled
system frequency is valid for vertical and torsional motion as well as vortex
shedding phenomena, which cause fluid forces and moments. The torsional
motion is predominating, but the centre of rotation is shifted in upstream
direction, leading to small in-phase oscillations in lift direction and a cou-
pled system frequency, which is slightly smaller than the natural frequency
of angular motion.

The dynamic system behaviour becomes unstable for all inflow velocities
above a critical velocity (v∞ ≈ 7.5m/s for the investigated model set-up).
But for velocities not far above the critical velocity, the increasing torsional
motion is limited, leading to stable limit cycle oscillations with moderate
amplitudes. In the case of higher velocities, the simulation does not predict
limit cycle oscillations in the regarded time domain. For an inflow veloc-
ity of v∞ = 10m/s, rotation and displacement amplitudes increase further.
The investigation of the excitation mechanisms and initiating instabilities is
carried out for the inflow velocity, v∞ = 10m/s. At first, the range of tran-
sition is investigated, where the system behaviour changes completely. The
increasing torsional vibrations become unsteady until the frequency shift
has completed and sinusoidal oscillations appear. The profile motion influ-
ences the fluid flow, and with a time delay, also fluid forces and moments
become irregular and change the frequency. After transition of system prop-
erties has completed, runs of aero-elastic coefficients become more regular
and exciting mechanisms may be identified.

The mechanism of energy transfer is visualized in the left diagram of Fig-
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ure 6 (lower left and right), where the moment coefficient is displayed for a
single period depending on the profile rotation. The enclosed area specifies
an energy input in case of a clockwise direction and an energy output in case
of a counter clockwise direction. The curve around the middle in the left
diagram has a clockwise direction, leading to an excitation of profile vibra-
tions, while the negative directions of the outer areas cause damping. But
for a full period energy input is much higher than damping. The moment

Figure 6. H-shaped bridge deck in cross flow: Time histories of resultant
fluid and structure moment at v∞ = 5m/s and v∞ = 10m/s (upper row).
Aero-elastic moment coefficients (lower row), see (Hübner et al., 2002).

coefficient characteristics can be separated into a mean value, which only
depends on the rotation angle, and a deviating part, which is responsible
for excitation and damping. The deviating part is displayed in the right
diagram depending on the angular velocity. Here, the enclosed area is ap-
proximately zero, leading to a unique correlation between angular velocity
and moment coefficient. Thus, if aero-elastic calculations of a simplified
bridge model consider wind effects as deformation dependent impacts, non-
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linear flow induced stiffness properties can be defined by the slope of the
mean curve in the left diagram and non-linear damping properties by the
slope of the curve in the right diagram of Figure 6 (lower row).

4.2 Wave Impact on Structures

Recent natural hazards emphasize the need for estimating effects gener-
ated by impacting water waves. The destructive power is not only related
to peak forces but also mainly due to flash floods with sedimentation and
debris transport. Since permanent retreat from populated regions that are
at risk is not an option in most affected countries, civil engineers have the
responsibility to take preventative action. In addition to the traditional
coastal engineering solutions, mobile protection devices can provide rapidly
deployable and customizable local safeguarding. An example of such a de-
vice is a modularized array of compliant structures that is able to dissipate
wave energy and at the same time act as a trash-rack for floating debris.

The wave impact onto a deformable structure is an example of fluid-
structure interactions involving a free-surface flow and a considerable amount
of added mass. Characteristic of wave impact is a dominant unidirectional
information transfer and therefore a weak coupling between fluid and struc-
ture. In addition, multiple deformable obstacles can considerably affect
the unsteady flow field and beneficial interaction effects can be expected.
Numerical simulations of wave impact on structures accompany experimen-
tal investigations and allow cost-effective studies of different system set-ups
while providing detailed design quantities. The visualization of a model sit-

Figure 7. Collapse of a water column onto a compliant structure: Com-
parison of experimental and numerical results for the evolving free surface.

uation is shown in Figure 7 with experimental and numerical results (com-
pare (Kölke, 2005) and extensions in (Pasenow et al., 2013)). A water
packet (coloured fluid) is initially restrained in an open tank. In the mid-
dle of the tank a compliant cantilever structure (rubber-like material) is
mounted. The water is released suddenly and collapses due to gravitational
forces. While the fluid body deforms only slightly during the first instants of
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the process, it shows topological changes upon reaching the obstacle. The
characteristics of such free-surface flows are considered in the simulation
by using a two-fluid approach and a level-set representing the fluid-fluid
interface, enabling the capturing of surface separation and merging.

The leading front of the collapsing water column reaches the obstacle
and the elastic structure is deformed mainly by the developing pressure dis-
tribution on its left. The redirection angle of the water forefront is lower
compared to results for a fixed obstacle. The structure reaches its maximum
deflection before the wave hits the right wall of the tank and shows damped
vibrations governed by unsteady dynamics of the viscous free-surface flow.
Figure 8 shows close-up views of both, experimental and numerical inves-
tigations to the deformation of the structure. The above mentioned free-
surface capturing technique is modelled on top of a mesh-moving approach.
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Dynamics and Stability of Engineering
Systems with Moving Continua

Alexander K. Belyaev
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Abstract The present chapter is concerned with a special case of
dynamics of systems with variable mass, namely the engineering
systems with moving continua. A characteristic feature of these sys-
tems is that a material enters the system and leaves the system. The
material itself is assumed to be deformable and under some condi-
tions the entire system exhibits unstable behaviour in the transverse
direction. The intent of the present chapter is to demonstrate that
the systems with axially moving material are inherently unstable.
Dynamics and stability are known to be strongly related to each
other, for this reason the study of dynamics and stability for each
engineering system under consideration is carried out in the frame-
work of the same approach. A number of special cases which are
important for the mechanical engineering are considered. Some of
these belong to the class of problems of fluid-structure interaction,
in particular, dynamics and stability of the fluid conveying pipes
and the shaft rotating in the oil film plain bearings. The dynamics
and stability of the belts and chains are studied in detail, too.

1 Introduction

Dynamics and stability of systems with moving continua is a special case of
the systems with variable mass. A characteristic feature of these systems
is that a material enters the system and leaves the system. Some of these
systems belong to the class of the problems referred to as the fluid-structure
interaction. The purpose of this chapter is to demonstrate as to the axially
moving continua affect the dynamics and stability of carrying structure. In
the problems of unstable pipeline the part of the axially moving continua is
played by fluids whereas the belts and chains members are moving in the
axial direction and shown to be unstable themselves. In addition to this, a
detailed analysis of the problem of vibration and stability of rotors caused
by hydrodynamically induced bearing forces is performed in detail.
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2 Stability of non-conservative systems. General and
specific features

2.1 Determining critical follower force

The objective of this part is determining the critical follower force.
Nonetheless, for the tutorial purpose it is worth to start with consider-
ing a conservative system, namely a cantilever beam subjected to a dead
load F. The beam is shown in Fig. 1. Let us determine the Euler critical
force provided that force F is a dead load.

Figure 1. Cantilever beam subjected to a dead load F

The equilibrium equation for the beam deflection w is as follows

EI
d2w

dx2
+ F (w − w (l)) = 0 (1)

where EI is the bending rigidity and F is the axial compressive force. The
boundary conditions for the cantilever beam under consideration are as
follows

x = 0, w =
dw

dx
= 0; x = l, w = w (l) (2)

The solution to the boundary-value problem is sought in the following
form

w (x) = A sinλx+B cosλx+ w (l) , λ =
√

F/EI
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Satisfying the boundary conditions we arrive at the following system of
equations for the unknown coefficients A, B and w (l)⎧⎨⎩

B + w (l) = 0
Aλ = 0
A sinλl +B cosλl = 0

(3)

It is clear that the problem eigenvalue λ is obtained from the equation
cosλl = 0, i.e. λl = π/2 and it allows us to determine the first (Euler)
critical force which is

Fc =
π2

4l2
EI (4)

This classical result is generally accepted as the first critical force. How-
ever it turned out to be sensitive to the way of loading by force F. Let us
consider a couple of possible technical realization of loading by means of
force F.

The first way of loading is shown in Fig. 2. The transmission of the
dead load F on the end of the cantilever beam is seen to be realised with
the help of a connecting rod of length b.

Figure 2. Cantilever beam subjected to dead load F via connecting rod b
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The equilibrium equation (1) for small deflections w takes now another
form

EI
d2w

dx2
= F (w (l)− w) + F

w (l)

b
(l − x) (5)

The solution is now sought is the form

w (x) = A sinλx+B cosλx+ w (l)

(
1 +

l − x

b

)
(6)

and the same boundary conditions (2) lead to the following system of equa-
tions ⎧⎨⎩

B + w (l) (1 + l/b) = 0
Aλ− w (l) /b = 0
A sinλl +B cosλl = 0

(7)

The condition of vanishing determinant yields the following transcendental
equation for λl

tanλl = λl

(
1 +

b

l

)
(8)

Therefore, eigenvalue λ and thus the critical force depend on the ratio b/l.
We will analyse only two limiting cases: b/l = ∞ and b/l = 0. In the first
case (b/l =∞) the result is λl = π/2 and we have the same critical force (4)
as in the previous analysis. However in the second case (b/l = 0) we have
λl = 0 and thus the critical force is equal to zero. The case of arbitrary
length 0 < l < ∞ yields the critical force having the value between the
above limiting cases, i.e.

0 < Fc <
π2

4l2
EI

The conclusion which can be made from this example is that the way of
imposing a dead load has a crucial influence on the value of the critical
load. Therefore the system proved to be very sensitive to the particular
way of loading. A number of various loading types different from the above
ones are analysed in e.g. Volmir [1967] and Bolotin [1963].

Let us now proceed to the case of follower force depicted in Fig. 3.
The differential equation for small deflection w (x) is now given by

EI
d2w

dx2
= F (w (l)− w)− Fϕ (l) (l − x) ,

where in addition to the previous denotations we introduced the angle of
rotation of the cross-section ϕ (x) = w′ (x). The boundary conditions are
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Figure 3. Cantilever beam loaded by a follower force

x = 0, w =
dw

dx
= 0; x = l, w = w (l) , w′ = ϕ (l) .

We seek the solution in the form

w (x) = A sinλx+B cosλx+ w (l)− ϕ (l) (l − x)

Satisfying the boundary conditions leads to the system of equations⎧⎪⎪⎨⎪⎪⎩
B + w (l)− ϕ (l) l = 0
Aλ+ ϕ (l) = 0
A sinλl +B cosλl = 0
λ (A cosλl −B sinλl) = 0

One can see that the determinant of the third and fourth equations is equal
to unity for any non-zero force F (λ �= 0). Therefore A = B = 0 and from
the remaining two equations we have w (l) = 0, ϕ (l) = 0 which means that
the only solution to the problem is a trivial one, i.e. w (x) ≡ 0. Since
w (x) ≡ 0 for any loading force one could come to the conclusion that the
system was always stable. However it is a wrong conclusion. The right
conclusion is based upon the observation that the follower force is a non-
conservative force, that is, it has no potential. Thus the standard Euler-
Lagrange approach is not applicable here, i.e. the system has no side static
equilibrium state. This is the only conclusion which can be carried out from
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the condition of absence of any critical force. In other words, a dynamic
analysis is needed for this case. About the relationships between the static
and dynamic approaches to stability analysis see Bolotin [1963].

2.2 The Ziegler paradox

This paradox was first reported by Ziegler [1968]. Let us consider a
double pendulum with a follower force acting on the lower pendulum, see
Fig. 4. Each joint has a spring with the angular stiffness c and a dashpot
with the angular resistance factor b. It is assumed that each pendulum has
a lumped mass on its end, i.e. the pendulum rods themselves are assumed
to be massless.

Figure 4. Double pendulum subjected to a follower force F

The Lagrange equation for the system is as follows

d

dt

(
∂T

∂q̇

)
− ∂T

∂q
+

∂Φ

∂q̇
+

∂Π

∂q
= Q (9)

where q denotes the vector of degrees of freedom, that is,

q =

(
ϕ1

ϕ2

)
(10)
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Here ϕ1, ϕ2 designate the angles of the corresponding pendulum to the
vertical. The assumption is made that the angles ϕ1, ϕ2 are small which
implies small displacements of the system elements. In this case the kinetic
energy of the system is given by

T =
1

2
2m (lϕ̇1)

2
+

1

2
m (lϕ̇1 + lϕ̇2)

2
.

The potential energy of the system is

Π =
1

2
cϕ2

1 +
1

2
c (ϕ1 − ϕ2)

2
.

The Rayleigh dissipative function is as follows

Φ =
1

2
cϕ̇2

1 +
1

2
c (ϕ̇1 − ϕ̇2)

2
.

In order to determine the generalized forces corresponding to the generalized
coordinates (10) one has to calculate the virtual work due to the single
external force F. To this aim one calculates the virtual displacement of the
lower end of the second rod

δA = F · δr = Fl(ϕ1 − ϕ2)δϕ1 =

(
Q1

Q2

)
·
(

δϕ1

δϕ2

)
= Q1δϕ1 +Q2δϕ2

It allows one to determine the generalized forces

Q1 = Fl(ϕ1 − ϕ2), Q2 = 0. (11)

Substituting the obtained equations in the Lagrange equations (9) yields
the following system of two linear coupled differential equations for the
generalized coordinates ϕ1, ϕ2

{
2ml2ϕ̈1 +ml2 (ϕ̈1 + ϕ̈2) + b(2ϕ̇1 − ϕ̇2) + c(2ϕ1 − ϕ2)− Fl(ϕ1 − ϕ2) = 0

ml2 (ϕ̈1 + ϕ̈2) + b(ϕ̇2 − ϕ̇1) + c(ϕ2 − ϕ1) = 0
(12)

The solution is sought in the standard form

q =

(
ϕ1

ϕ2

)
=

(
Φ1

Φ2

)
eλt (13)

where Φ1,Φ2 are the eigenvector components and λ is the eigenvalue. In-
serting the last equation into the equations of system (12) we arrive at the
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following system of two linear coupled algebraic equations for the eigenvec-
tor components Φ1,Φ2

{ (
3ml2λ2 + 2bλ+ 2c− Fl

)
Φ1 +

(
ml2λ2 − bλ− c+ Fl

)
Φ2 = 0(

ml2λ2 − bλ− c
)
Φ1 +

(
ml2λ2 + bλ+ c

)
Φ2 = 0

(14)

The nontrivial solution of the system of homogeneous equations (14) is
obtained from the condition that the determinant of the system vanishes,
that is, (

3ml2λ2 + 2bλ+ 2c− Fl
) (

ml2λ2 + bλ+ c
)−

− (ml2λ2 − bλ− c+ Fl
) (

ml2λ2 − bλ− c
)
= 0

This polynomial of the fourth order is the characteristic equation which
can be written in the form

a0λ
4 + a1λ

3 + a2λ
2 + a3λ+ a4 = 0 (15)

where the coefficients are as follows

a0 = 2m2l4

a1 = 7bml2

a2 = 7cml2 + b2 − 2l3mF
a3 = 2bc
a4 = c2

The Routh-Hurwitz criterion provides one with the necessary and sufficient
conditions ensuring the stability. The necessary condition requires that all
the above coefficients must be positive. This condition reduces to a single
one and is satisfied when

7cml2 + b2 − 2l3mF > 0 ⇒ F <
7

2

c

l
+

b2

2l3m
(16)

The sufficient condition operates with the Hurwitz matrix∥∥∥∥∥∥∥∥
a0 a2 a4 0
0 a1 a3 0
0 a0 a2 a4
0 0 a1 a3

∥∥∥∥∥∥∥∥
This condition guarantees the stability provided that all principal minors of
the matrix are positive. Calculation leads to the following conditions



Dynamics and Stability of  Systems with Moving Continua 231

a0 > 0
a0a1 > 0
a3Δ3 > 0
a3 > 0

One can see that these four conditions can be reduced to a single condition
Δ3 > 0 where Δ3 denotes the third principal minor of the Hurwitz matrix.
This minor can be finally rewritten in the form of the inequality for force F

F <
41

28

c

l
+

b2

2l3m
(17)

Comparison of conditions (16) and (17) shows that the latter is stronger
that condition (16). It allows one to introduce a critical force

Fc =
41

28

c

l
≈ 1.464

c

l
(18)

which ensures the system stability even for a vanishingly small damping b.
The latter result demonstrates that the critical force decreases with de-

creasing damping and the smallest force is obtained when the damping
vanishes. This naturally leads to the idea that the damping should be set
to zero from the very beginning and then the critical force should be deter-
mined. There is no need to derive again the characteristic equation since
the equations of motion (12), ansatz (13) and the characteristic equation
(14) are also valid under the additional condition of b=0.

The characteristic equation (14) now becomes a biquadratic equation

a0λ
4 + a2λ

2 + a4 = 0

with the coefficients

a0 = 2m2l4, a2 = 7cml2 − 2l3mF, a4 = c2.

The solution is given by

λ2
1,2 =

− (7cml2 − 2l3mF
)
+
√
Δ

4m2l4
; λ2

3,4 =
− (7cml2 − 2l3mF

)−√Δ

4m2l4

where the discriminant Δ is as follows

Δ =
(
7cml2 − 2l3mF

)2 − 8m2l4c2.

If the discriminant Δ is negative then λ2
1,2 and λ2

3,4 are complex-valued
numbers, and it means that there always exist two eigenvalues (say λ1 and
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λ3) with positive real parts. In turn it implies that the motion is unstable
since the complete solution has exponentially growing unbounded compo-
nents. In other words, the stability condition is equivalent to the condition
of positive coefficient a2 and positive discriminant Δ, that is

a2 = 7cml2 − 2l3mF > 0, Δ =
(
7cml2 − 2l3mF

)2 − 8m2l4c2 > 0.

These conditions are reduced to a single one

F <
7−√8

2

c

l

that enables introduction of the critical force for the undamped system

Fc(undamped) =
7−√8

2

c

l
≈ 2.086

c

l
(19)

It is clearly seen that the latter critical force (19) (i.e. the critical force
for undamped system) does not coincide with the former one (18) (i.e. the
critical force for the system with a vanishingly small damping). This is
the essence of the celebrated Ziegler paradox, cf. Ziegler [1968]. However
one should understand that the very word “paradox” implies a “seeming”
contradiction rather than a real contradiction. In other words, an additional
reasoning is needed in order to remove this “seeming” contradiction. In the
problem under consideration the observed mismatch is due to the fact that
the critical force (18) ensures asymptotic stability whereas the critical force
(19) ensures stability only. Therefore, both results are correct and the
value of the critical force, either (18) or (19), is dependent upon what type
of stability is considered.

3 Dynamics and stability of belts and chains

The systems with axially moving material represent a special class of sys-
tems with variable mass. Stability of motion of such systems is addressed
below on example of timing belt and chains.

3.1 Dynamics and stability of timing belts

Literature on transverse vibrations and stability of axially moving beams
and strings in the vicinity of a steady state motion is presented in a com-
prehensive review paper Chen [2005]. It is also worth mentioning the paper
by Eliseev and Vetyukov [2012] in which the nonlinear dynamics of both
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Figure 5. Timing belt and two gear wheels

synchronous and friction belts is addressed. The schematics of the drive
system with a timing belt (e.g. to drive a camshaft) is shown in Fig. 5.

Since the belt possesses some bending rigidity it can be modeled by a
beam whose parameters and deflection are shown in Fig. 5. In contrast to
a classical beam the belt is moving in axial direction with velocity V and is
pre-tensioned by a tension force F(t). The tension force has two components
(i) a constant pre-tension force and (ii) a time-dependent component due
to the interaction of the gear teeth and belt teeth.

The Hamiltonian variational principle is applied for derivation of the
equations of motion, cf. Hirmann and Belyaev [1997]. To this end, the
expressions for the kinetic and bending strain energies are obtained

T = 1
2

∫ l

0

[
V 2 + (ẏ + V · tan y′)2] ρAdx =

= 1
2

∫ l

0

[
V 2 + ẏ2 + V 2y′2 + 2ẏy′V

]
ρAdx,

Π = 1
2

∫ l

0
EI(y′′)2dx.

(20)

While deriving these expressions we assumed that the deflection y is small.
Work of the external forces and moments is given by

W = −F ∫ l

0
(1− cos y′)dx+M(0, t)y′(0, t) +M(l, t)y′(l, t) =

= −1
2F
∫ l

0
y′2dx+M(0, t)y′(0, t) +M(l, t)y′(l, t)

(21)
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Here the tension force F(t) is assumed to have the same value in each cross-
section. However this force is time-dependent because F(t) describes the
dynamic interaction between the belt and the teeth of the gear wheel. In
other words, the axial wave processes in the belt are neglected here.

Making use of the Hamiltonian variational principle requires the Hamil-
ton function L = T −Π+W and the Hamilton action

S =

∫ t1

t0

Ldt

whose variation must vanish, that is, δS = 0. Realisation of the variational
procedure yields the following equation for the variation δS

δS =

∫ t1

t0

dt

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫ l

0

[−ρAÿ − ρAV 2y′′ − 2V ρAẏ′ − EIy′′′′ + Fy′′
]
δydx+

δy′(0, t) [EIy′′ +M(0, t)] + δy′(l, t) [−EIy′′ +M(0, t)] +

+δy(0, t)
[−V 2ρAy′ − V ρAẏ − EIy′′′ + Fy′

]
+

+δy(l, t)
[
V 2ρAy′ + V ρAẏ + EIy′′′ − Fy′

]

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
The equation in variations δS = 0 is equivalent to the following differ-

ential equation of motion

0 < x < l, ρAÿ + (ρAV 2 − F )y′′ + 2V ρAẏ′ + EIy′′′′ = 0 (22)

and the boundary conditions

EIy′′ = −M(0, t), EIy′′ = M(l, t) (23)

The remaining two boundary conditions are identically satisfied because
y(0, t) = y(l, t) = 0.

The obtained differential equation (22) can be solved by means of Galerkin
approach. To this aim, we make the following substitution

y(x, t) = ϕ(x)q(t) + y0(x, t)

where basic function ϕ(x) satisfies the trivial boundary conditions

ϕ(0) = ϕ(l) = 0, ϕ′′(0) = ϕ′′(l) = 0

The reason for introducing the additional function y0(x, t) is that it should
meet the non-homogeneous boundary condition (23) such that function ϕ(x)
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satisfies only the homogeneous boundary conditions. Following this strategy
we seek the solution in the form

y(x, t) = q(t) sin
πx

l
+

M(t)

6lEI
(2x3 − 3lx2 + l2x) (24)

where the only sought-for function is the generalized coordinate q(t). One
can prove that the boundary conditions (23) are met. Inserting eq. (24) in
the equation of motion (22) we arrive at the following ordinary differential
equation

q̈(t) +
π2

l2

(
1

ρA

(
F + EI

π2

l2

)
− V 2

)
q(t) =

4lV (12− π2)

3EIπ3
Ṁ(t) (25)

Let us now split the tension force F (t) into two parts

F = F0 + F 1Φ(t) (26)

where F0 denotes the initial tension force which does not depend on time
and F 1Φ(t) stands for the periodic component of the tension force. We also
introduce the first Euler critical force Fc = π2EI/l2 which enables us to
rewrite eq. (25) in the following form

q̈(t) + Ω2(1 + 2μ(t))q(t) =
4lV (12− π2)

3EIπ2
Ṁ(t) (27)

Here Ω introduce the “eigenfrequency” of the bending vibration of the belt
and μ is a non-dimensional magnitude of the time-dependent component of
the axial excitation force

Ω2 =
π4

l4
EI

ρA

F0 + Fc − V 2ρA

Fc
, μ =

F1

2 (F0 + Fc − V 2ρA)
(28)

Differential equation (27) is a kind of Hill’s equation with periodic coeffi-
cient represented by function Φ(t). This function has a period T = πr/V z,
where r is the radius of the gear wheel and z denotes the number of teeth
on the wheel.

Let us consider the homogeneous differential equation

q̈(t) + Ω2(1 + 2μ(t))q(t) = 0 (29)

Periodic function Φ(t) can be expanded in Fourier series in terms of the
circular functions, that is,

Φ(t) = Φ1 cos(�t+ α1) + Φ2 cos(2�t+ α2) + ...
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where the frequency � is related to period T by means of the equation
� = 2π/T . Besides, one can always choose the initial time instant such that
α1 = 0. If we limit our consideration only to the first term in the Fourier
series then Hill’s equation (29) takes the form of the Mathieu equation

q̈(t) + Ω2(1 + 2μΦ1 cos(�t+ α1))q(t) = 0 (30)

It is known that this equation has unstable solutions which form the instabil-
ity regions of the parametric resonance. The boundaries of these instability
regions are obtained by the substitution

q(t) = a cos
�t

2
+ b sin

�t

2
(31)

Neglecting the terms with the higher harmonics we arrive at the following
equation

a cos
�t

2

[
−
(�
2

)2
+Ω2 (1 + μ)

]
+ b sin

�t

2

[
−
(�
2

)2
+Ω2 (1− μ)

]
= 0

Figure 6. FE-mesh and the displacement field in the timing belt
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which is equivalent to two algebraic equations

{ −�2/4 + Ω2 (1 + μ) = 0
−�2/4 + Ω2 (1− μ) = 0

since the sine and cosine functions are linearly independent functions. There-
fore the boundaries of the instability region are given by

� = 2Ω
√
1± μ . (32)

The value of the contact force Φ(t) was calculated numerically by means
of the finite element code. Figure 6 displays some details of the FE-mesh
and the displacement field in the belt for some particular parameters of the
belt and pulley.

The results of FE-analysis enables calculation of the contact pressure
distribution and consequently the contact force in the belt which is shown
in Fig. 7.

For this force we can calculate the magnitude of the first harmonics which
allows us to plot the instability regions. The instability regions are displayed
in Fig. 8 in the plane of parameters F0, V . The region of the divergent in-
stability is obtained from the condition that the square of “eigenfrequency”
Ω2 becomes negative. It follows from eq. (28) that it occurs if V > Vcrit

where the critical velocity is given by the equation

Figure 7. Contact force of the timing belt Φ(�t), 0 ≤ �t ≤ 2π
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Vcrit =

√
F0 + Fc

ρA
.

In this case the solution growth exponentially which is typical for the diver-
gence stability.

Figure 8. Instability regions for timing belt

3.2 Dynamics and stability of chains

Another interesting example of axially moving materials is a timing chain
which is schematically shown in Fig. 9.

Stability of the chain drive is carried out in a similar manner in Eglseer
and Belyaev [1997]. However there exists a principal difference between
the excitation of belts and chains. The belt is excited dynamically in axial
direction and the excitation is due to the contact interaction of the belt
teeth and the pulley teeth. The belt possesses a low bending rigidity and
is modeled as a beam in bending. Quite the contrary, the chain is excited
kinematically because of the polygon effect. The latter is caused by the
fact that any chain consists of links which are very stiff and “climb” of
the sprocket-wheel. In addition to this, the chain has in fact zero bending
rigidity, that is, a proper model for studying stability of a chain drive is a
string excited by inertia forces due to the polygon effect on each sprocket.
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Figure 9. Schematic of a timing chain

Equation of the chain motion which is the string equation is as follows

P (t)
∂2W

∂x2
− ρA

(
∂2W

∂t2
+ 2

∂2W

∂x∂t
V +

∂2W

∂x2
V 2 +

∂W

∂x
V

)
= 0 .

Here W denotes the transverse displacement of the chain and V is the axial
velocity of the chain. The tension force in the string P(t) is given by

P (t) = F0 +ml
ω1

2
(Vmax − Vmin) [sin (ω1t)− sin (ω1t+Φ)]

where F0 denotes the pre-tension force, ml denotes the mass of the chain
link, ω1 is the fundamental frequency corresponding to the process of the
single link (similar to frequency � for belt) and Φ stands for the phase shift
between the sprocket-wheels.

The further analysis is similar to the belt analysis and is omitted because
of the lack of space. The stability chart in the plane F0, V is similar to that
shown in Fig. 8, see Eglseer and Belyaev [1997] for detail.

4 Dynamics and stability of pipes conveying fluid

4.1 Dynamics of suspended pipe conveying heavy fluid

A pipe conveying a fluid is shown in Fig. 10. By analogy to the case of
the timing belt we consider the pipe as a beam and derive the equation of
motion which turns out to be very similar to eq. (22), namely
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EI
∂4w

∂x4
+
(
(ρA)p + (ρA)f

) ∂2w

∂t2
+2v (ρA)f

∂2w

∂x∂t
+v2 (ρA)f

∂2w

∂x2
= 0 (33)

Here w denotes the transverse displacement of the pipe, the subscripts p
and f are referred to the pipe and fluid, respectively, and v stands for the
velocity of fluid.

Figure 10. Pipe conveying a fluid

The stability analysis is carried out by means of the substitution w =
W (x) est which leads to the following ordinary differential equation for the
deflection shape W (x)

W IV + as2W + bsW ′ + cW ′′ = 0 (34)

where the newly introduced parameters are as follows

a =
(ρA)p + (ρA)f

EI
, b =

2v (ρA)f
EI

, c =
v2 (ρA)f

EI
.

The further step is looking for the basic functions. Let us assume that the
pipe can be modeled by a simply supported beam. We make use of Galerkin
approach, that is, we suggest the substitution

W (x) = A sin
πx

l
+B sin

2πx

l
(35)

Inserting it into eq. (34), multiplying consequently by sin(πx/l), sin(2πx/l)
and integrating over the beam length we arrive to the system of two equa-
tions for A and B

A

[(π
l

)4
+ as2 − c

(π
l

)2]
− 8

3

bs

l
B = 0

8

3

bs

l
A+B

[
16
(π
l

)4
+ as2 − 4c

(π
l

)2]
= 0

(36)

The nontrivial solution exists provided that the determinant of the system
vanishes which results in the following biquadratic equation
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a2s4 + s2

[
17a
(π
l

)4
− 5ac

(π
l

)2
+

(
8

3

b

l

)2
]
+

+4
(π
l

)4 [(π
l

)2
− c

] [
4
(π
l

)2
− c

]
= 0

(37)

If we introduce

s
l2

π2

√
a = Ω,

cl2

π2
= α,

(ρA)f
(ρA)f + (ρA)p

= β

then eq. (37) takes the form

Ω4 +Ω2

(
17− 5α+

256

9π2
βα

)
+ 4 (1− α) (4− α) = 0 (38)

It was proved numerically that for 0 ≤ α ≤ 1 the roots depend weakly on β
which enables putting β = 0 in eq. (38) and representing the result in the
form

Ω4 +Ω2 (17− 5α)+ 4 (1− α) (4− α) =
[
Ω2 + (1− α)

] [
Ω2 + 4 (4− α)

]
= 0
(39)

i.e. Ω1 = i
√
1− α and Ω2 = 2i

√
4− α. It means that

s1 = i
π2

l2
√
a

√
1− v2

l2 (ρA)f
π2EI

, s2 = i
2π2

l2
√
a

√
4− v2

l2 (ρA)f
π2EI

(40)

hence, we obtain the critical velocity which is

vcrit =
π

l

√
EI

(ρA)f
(41)

If this velocity is exceeded, the pipe becomes unstable.

4.2 Stability of suspended pipe conveying heavy fluid

The system is shown in Fig. 11.
The equation of the pipe bending coincides with that in eq. (33) in

which the inertia term of the pipe is neglected in comparison with that of
the fluid. Under zero initial conditions the Laplace transformation yields

EIw̄IV + (ρA)f v
2w̄II + 2v (ρA)f pw̄

I + (ρA)f p
2w̄ = 0 (42)
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Figure 11. Schematic of suspended pipe conveying fluid

where a bar denotes the Laplace transform of the corresponding quantity.
The solution is sought in the form

w̄ (x, p) = A1 exp (λ1x) +A2 exp (λ2x) +A3 exp (λ3x) +A4 exp (λ4x) (43)

where the eigenvalues λn are solutions of the equation

λ4 + β2
(
2λ
√
n+ β p

)2
= 0, n =

β2v2

4
, β =

4

√
(ρA)f
EI

> 0, (44)

One can prove that the transverse force in the beam at x=0 is given by

Q|x=0 = EI
d3w̄

dx3

∣∣∣∣
x=0

= −EI · [λ3
2A2 + λ3

4A4

]
or after some algebra we become asymptotically

Q̄
∣∣
x=0

= −EI
[
4iβ2p · w̄ (0, p) · (−iβ√p)

]
= −4EIβ3p3/2 · w̄ (0, p) (45)

Under zero initial conditions the equation of motion of mass m in the
Laplace space is given by

mp2ȳ (p) + pbȳ (p) + cȳ (p) = Q̄
∣∣
x=0

+ f̄ (p) (46)

Since y (t) = w (0), i.e. ȳ (p) = w̄ (0), we can substitute eq. (45) in eq. (46),
to have
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mp2ȳ (p) + 4EIβ3p3/2w̄ (0, p) + (b− ρAv)pw̄ (0, p) + cȳ (p) = f (p) (47)

which corresponds to the following ordinary differential equation with a
fractional derivative of order 3/2

m
d2y

dt2
+ 4EIβ3 d

3/2y

dt3/2
+ (b− ρAv)

dy

dt
+ cy = f(t) (48)

This equation governs the motion of the pipe suspension. Introducing a
non-dimensional time τ = kt, k =

√
c/m and the following non-dimensional

system parameters

δ = 2
EIβ3

m
√
k
, ε =

(ρAv − b)

mk

we can set eq. (48) in the following form

D2y + 4δD3/2y + εDy + y = c−1f(τ), D =
d

dτ
. (49)

For handling this semi-differential equation we apply the method by
Suarez and Shokooh [1997].

Eigenvector Expansion Method for solving differential equation
with fractional derivative Equation (49) is an ordinary differential
equations of second order with the derivatives of the order 3/2. For sim-
plicity we consider eq. (49) in the case f(t)=0, that is,

D2y + 4δD3/2y + εDy + y = 0 (50)

and solve it by means of the eigenvector expansion method suggested by
Suarez and Shokooh [1997] for differential equations with fractional deriva-
tives.

This equation can be represented in the normal form of four semi-
differential equations by means of the substitution

z1 = D
3/2y (t) , z2 = Dy (t) , z3 = D

1/2y (t) , z4 = y (t) (51)

i.e. we can rewrite eq. (50) in the matrix form {A}D1/2 {z} = {B} {z}
where {z} denotes the column composed of zn, n = 1, 2, 3, 4 in the latter
equation. Applying the standard methods of linear algebra yields the eigen-
vectors {Ψ}j and eigenvalues λj
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{A} {Ψ}j = λj {B} {Ψ}j (52)

where the eigenvectors are orthonormalized, i.e.

{Ψ}Ti {B} {Ψ}j = δij , {Ψ}Ti {A} {Ψ}j = λjδij . (53)

Let us notice at this place that the eigenvalues λj of the matrix equation (51)
have nothing in common with the eigenvalues of the differential equation
(49). Namely the eigenvalues λj are solutions of equation λ4 + aλ + b = 0
and are given by

λ1 = λ̄2 = p+ iq, λ3,4 = −p± is (54)

where

p =
√
κ, q =

√
κ+

δ

2
√
κ
, s =

√
κ− δ

2
√
κ

(55)

κ =
2
1/3

4

⎡⎣(δ2 +√δ4 − 16

27

)1/3

+

(
δ2 −

√
δ4 − 16

27

)1/3
⎤⎦

By means of the substitution {z} = {Ψ} {h} where matrix {Ψ} is built from
the eigenvectors columns {Ψ}j we arrive at the system of four uncoupled
semi-differential equations

D
1/2hj (t)− λjhj (t) = 0, j = 1, 2, 3, 4 . (56)

Solving these equations with the help of Laplace transformation, applying
the inverse Laplace transformation and satisfying the initial conditions, we
obtain the sought-for result, see Belyaev [2014] for detail.

Obtaining a closed form solution assumes the well-known property of the
Laplace transformation, namely the Laplace transform L [. . .] of a fractional
derivative of order α of function x(t) is as follows

L [Dαϕ (t)] = pαL [ϕ (t)]− C (57)

where C denotes an integration constant. This formula follows from the
formal definition of a fractional derivative of order α which is given by

Dα {ϕ (t)} = d

dt

{
1

Γ (1− α)

∫ t

0

(t− τ)
−α

ϕ (τ) dτ

}
(58)
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see Oldham and Spanier [1974]. Here the integration constant C is deter-
mined by the following condition

C = Dα−1ϕ (t)
∣∣
t=0

. (59)

It is worth mentioning that the value of C is not necessarily equal to zero
even for the zero initial conditions for the system. There exists a seeming
discrepancy between the number of initial conditions in the system (two
initial conditions in the initial-value problem) and the number of the in-
tegration constants in the system (56) of four uncoupled semi-differential
equations (four integration constants). This discrepancy is easily removed
since the general expressions for the displacement and velocity contains some
functions which are unbounded at t→ 0. The requirement that these func-
tions must vanish provide us with two additional conditions, see Suarez and
Shokooh [1997] for detail. Satisfying four conditions (two initial conditions
and two additional conditions of boundness) yields the sought-for integra-
tion constants for any initial conditions, which means that the solution to
the considered problem is obtained.

Numerical analysis of the obtained solution shows that the stability bor-
der is described by the condition ε = δ (the details are omitted).

δ = 2
EIβ3

m
√
k
∼= ε =

(ρAvcrit − b)

mk

Since parameter ε depends on the fluid velocity this condition yields the
critical velocity of the flow that results in the suspension instability

vcrit =
b

ρA
+ 4

√
1

8
· EI

ρA
· c

m
. (60)

If this value is exceeded, i.e. v > vcrit, then the suspension and hence the
pipe are unstable.

5 Dynamics and stability of the rapidly rotating shaft
in floating bearing

A shaft of a rapidly rotating rotor on the plain floating bearing is schemat-
ically depicted in Fig. 12.

5.1 The Reynolds equation with account for the centrifugal force

The nonstationary momentum equation for the oil is given by
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Figure 12. Schematic representation of the bearings with three cylinders:
1 denotes the floating rotor, 2 is the floating bushing (ring), 3 is a fixed
cylinder (bearing housing), 4 stands for the incompressible oil (4-1 is the
internal field and 4-2 is the external field) and ω1, ω2 denote the angular
speed of rotation of the elements 1 and 2, respectively.

∇ · τ − ρv̇ = 0, (61)

where τ is the stress tensor, ρ is the mass density and v denotes the velocity
vector

v = eru+ eϕv + ezw.

where u,v,w are the velocity components in the corresponding direction.
The Hamilton operator in the cylindrical coordinate system is defined as
follows

∇ = er
∂

∂r
+ eϕ

1

r

∂

∂ϕ
+ ez

∂

∂z
,

where r, ϕ, z are cylindrical coordinates.
The oil in the gap is assumed to be a Newtonian fluid, that is,

τ = −pE+ s, s = 2μDev(∇v)S , p ≥ 0,
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where p and s imply the oil pressure and the shear stress tensor correspond-
ingly. Next, μ is the dynamic viscosity and Dev() denotes the deviator. It
is assumed that the deviator contains only the non-diagonal elements. Be-
sides, we assume the incompressible oil and a constant oil viscosity.

The material time-derivative of the velocity is

v̇ =
dv

dt
=

∂v

∂t
+ v · (∇v) = v · (∇v),

i.e. a quasi-stationary flow is assumed.
In what follows we make the following assumptions which are common

in the bearing theory:

1. The gap flow is laminar;
2. u = 0, i.e. the velocity components in the radial direction are ne-

glected since the gap is very narrow;
3. |∂v/∂r| >>

∣∣r−1∂v/∂ϕ
∣∣ , |∂v/∂z| since the gap is very narrow whereas

the velocity in the gap experiences drastic changing. For the same
reason |∂w/∂r| >>

∣∣r−1∂w/∂ϕ
∣∣ , |∂w/∂z|.

Under these assumptions one obtains one vectorial equation which is
equivalent to three scalar equations governing the balance of momentum in
three directions:

r :
∂p

∂r
= ρ

v2

r
,

ϕ :
∂p

∂ϕ
= μ

∂

∂r

(
r
∂v

∂r

)
,

z :
∂p

∂z
= μ

∂2w

∂r2
.

(62)

The radial term ρ v2/r which is referred to as the centrifugal force represents
a considerable generalisation of the existing theories of the flow in gaps. In
the case of high velocities and small gaps this generalisation turns out to be
of crucial importance.

The next step is formulation of the boundary conditions. We assume that
the velocity of flow coincides with velocity of the corresponding boundary
surface, that is,

surface of the shaft (r = r0) : u = 0, v = V = Ω r0, w = 0;

surface of the floating ring: (r = ri = r0 + h) : u = ḣ, v = ω ri, w = 0.

Here V is the tangential velocity of the shaft, h is the gap height, ω and
Ω denote the angular velocity of the ring and shaft respectively, r stands for
the inner radius of the ring. Integration of the first equation in (62) yields
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p = ρ

∫
v2

dr

r
+ P (ϕ, z) , (63)

whereas integrating the second equation in eq. (62) results in the expression
for v

v =
1

μ

∂P

∂ϕ
[r + C1 ln r + C2] .

The integration constants are determined from the boundary conditions
for v, which ensure the coincidence of the velocities of the flow and the wall

v(r = r0) =
1

μ

∂P

∂ϕ
[r0 + C1 ln r0 + C2] = V ,

v(r = r0 + h) =
1

μ

∂P

∂ϕ
[r0 + h+ C1 ln (r0 + h) + C2] = ωri .

The solution is as follows

v =
1

μ

∂P

∂ϕ
f(r) + g(r), (64)

where

f(r) = r +
h ln r + r0 ln(r0 + h)− (r0 + h) ln r0

ln r0
(r0+h)

,

g(r) =
(V − ωri) ln r + ωri ln r0 − V ln(r0 + h)

ln r0
(r0+h)

.

The integration of the third equation in (62) along with the boundary con-
ditions yields

w(r) =
1

2μ

∂P

∂z
(r − r0)(r − r0 − h). (65)

The continuity equation for the fluid with account for stationary flow is
as follows

ρ̇ =
∂ρ

∂t
+∇ · (ρv) = 0 → ∇ · (ρv) = 0

Since we consider the incompressible fluid the latter equations reduces to

∇ · v = 0.



Dynamics and Stability of  Systems with Moving Continua 249

In order to obtain the equation that governs the dynamics of fluid in the
plain bearing we consider the balance of the mass in the control volume, that
is, in the gap r0 ≤ r ≤ r0+h. A control volume approach is an approach to
study systems with variable mass describing the fluid that enters and leaves
the control volume. In order to apply this approach we introduce the fluid
rate in the gap in directions ϕ and z :

Qϕ =

∫ r0+h

r0

vdr, Qz =

∫ r0+h

r0

wdr.

Then the law of mass conservation for the gap which is, in fact, the conti-
nuity equation for the gap takes the following form:

1

r

∂Qϕ

∂ϕ
rdϕdrdz +

∂Qz

∂z
rdϕdrdz +

∂h

∂t
rdϕdrdz = 0.

It can be rewritten as follows:

1

r

∂Qϕ

∂ϕ
+

∂Qz

∂z
+

∂h

∂t
= 0. (66)

Inserting the obtained formulae for v and w, eqs. (64) and (65), into eq.
(66) yields

Qz =

∫ r0+h

r0

wdr =
1

2μ

∂P

∂z

∫ r0+h

r0

(r − r0)(r − r0 − h)dr = − h3

12μ

∂P

∂z

and

Qϕ =

∫ r0+h

r0

vdr =
1

μ

∂P

∂ϕ
Φ(h) + Ψ(h),

where the closed form expressions for Φ(h) and Ψ(h) are as follows

Φ(h) =

∫ r0+h

r0

f(r)dr =

=

∫ r0+h

r0

[
r +

h ln r + r0 ln(r0 + h)− (r0 + h) ln r0
ln r0

(r0+h)

]
dr =

=

[
1

2
r2 + r(ln r − 1)

h

ln r0
(r0+h)

+
r0 ln(r0 + h)− (r0 + h) ln r0

ln r0
(r0+h)

r

] ∣∣∣∣r=r0+h

r=r0
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Ψ(h) =

∫ r0+h

r0

g(r)dr =

=

∫ r0+h

r0

(V − ωri) ln r + ωri ln r0 − V ln(r0 + h)

ln r0
(r0+h)

dr =

=

[
(V − ωri) r (ln r − 1) + {ωri ln r0 − V ln(r0 + h)} r

ln r0
(r0+h)

] ∣∣∣∣r=r0+h

r=r0

.

Substitution of this result in the equation for the mass conservation leads
to the following equation

h3

6

∂2P

∂z2
−1

r

∂

∂ϕ

[
Φ(h)

∂P

∂ϕ

]
= 2μ

[
∂h

∂t
+

1

r

∂Ψ(h)

∂ϕ

]
= 2μ

[
∂h

∂t
+

1

r

∂Ψ(h)

∂h

∂h

∂ϕ

]
This equation is a generalisation of the celebrated Reynolds equation for
the case of considerable centrifugal forces. Since

∂Ψ(h)

∂h
= g(r0 + h)

we arrive at the following form of the generalised Reynolds equation

h3

6

∂2P

∂z2
− 1

r

∂

∂ϕ

[
Φ(h)

∂P

∂ϕ

]
= 2μ

[
∂h

∂t
+

g(r0 + h)

r

∂h

∂ϕ

]
. (67)

5.2 Generalised Reynolds equation in the case of short bearing

This is the case in which the change of the pressure in the circumferential
direction (ϕ) is much smaller than that in the axial direction (z ), i.e.∣∣∣∣∂P∂ϕ

∣∣∣∣ <<

∣∣∣∣∂P∂z
∣∣∣∣ . (68)

This assumption simplifies the Reynolds equation (67) to the following form

∂2P

∂z2
=

12μ

h3

[
∂h

∂t
+

g(r0 + h)

r

∂h

∂ϕ

]
. (69)

Under the assumption that the shaft and the floating ring have circular
forms we can express h(ϕ, t) in terms of the normal gap height h0 = ri−R,
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the eccentricity e(t), coordinate ϕ(t) and the angle γ(t), the latter repre-
senting the angle between the connecting line to the actual center of the
shaft and the ring.

The boundary conditions for a symmetric bearing are given by

z = 0, p = pin,

P (z) = P (−z)
where L stands for the length of the bearing and pin denotes the input
pressure of the oil in the middel of the bearing. Taking into account equa-
tion (63) for p and equation (64) for v we can satisfy the above boundary
conditions by means of the equation

P =
12μ

h3

[
∂h

∂t
+

g(r0 + h)

r

∂h

∂ϕ

](
1

2
z2 + C

)
. (70)

Since the pressure in the gap is given by the formula

p = P + ρ

∫
v2

dr

r
(71)

we obtain the following equation for the integration constantC :

12μ

h3

[
∂h

∂t
+

g(r0 + h)

r

∂h

∂ϕ

]
C + ρ

∫ r0+h

r0

v2
dr

r
= pin .

In turn this yields the following equation for the pressure in the gap

p(r, ϕ, z) = pin − ρ

∫ r0+h

r

v2
dr

r
+

6μ

h3

[
∂h

∂t
+

g(r0 + h)

r

∂h

∂ϕ

]
z2. (72)

In the zones when the pressure is negative it is conventionally assumed that
p = 0.

Integration over z yields the force per length unit. For example, the
force acting on the ring r = r0 + h is as follows

q(h, ϕ)|
r=r0+h

=

∫ L/2

−L/2

p (r, ϕ, z)|
r=r0+h

dz =

= pinL+
μ

2h3

[
∂h

∂t
+

g(r0 + h)

r

∂h

∂ϕ

]
L3, p > 0.

The force on the shaft r = r0 is given by
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q(h, ϕ)|
r=r0

=

∫ L/2

−L/2

p (r, ϕ, z)|
r=r0

dz =

[
pin − ρ

∫ r0+h

r0

v2
dr

r

]
L+

μ

2h3

[
∂h

∂t
+

g(r0 + h)

r

∂h

∂ϕ

]
L3, p > 0 ,

however with a good degree of accuracy we can neglect the first term in eq.
(64), that is, we can take v = g (r) . Besides, the input pressure pin should
be sufficiently high in order to avoid negative pressure which inevitably
leads to cavitation and the fluid model becomes no longer valid.

5.3 Determining angular velocity of the floating bushing in the
bearing

In the framework of the classical theory of short bearing we consider
a rigid rotor rotating in the housing that is fixed in the space. The gap
between the solids is assumed to be filled with incompressible oil, cf. Dubois
and Ocvirk [1953]. We explore a more complicated case of thrust bearings,
which consists of three parts (see Fig. 12): a fixed housing 3, a floating
bushing 2, rotating with angular velocity ω2 and floating shaft (rotor) 1
rotating with an angular velocity speed of ω1. The gaps between the solid
bodies are filled with an incompressible lubricating oil, 4, with 4-1 and 4-2
denoting respectively the internal field and external field of lubricating oil.

We first consider a system of ”floating bushing - rotor.” The coordinate
system is taken to be fixed in the center of the floating bushing. Then
in this system the incompressible oil 4-1 is located in the gap between the
floating bushing (O2, R2) (its rotation axis is fixed in space) and the floating
rotating rotor (O1, R1), see Fig. 13. The floating bushing rotates with
angular velocity ω2 , while the angular velocity of the rotor is ω1.

Let us introduce the following notation: h01 = R2 − R1 is the nominal
gap, e1 = eP1(t) denotes the eccentricity of the center of the floating rotor
and γ1 = γ 1(t) is the angle describing the position of the line between the
centers of the floating rotor and the rotating floating bushing. The motion
of the rotor in the lubricating layer is time-dependent, i.e. the position
and velocity of the center depends on time since the external load and the
response of the lubricating layer depend on time. Let us suppose that at the
time instant t = t0 the center O1 of the rotor is in the position corresponding
to the eccentricity e01 = e 1(t0) and the angle γ01 = γP1(t0) describing the
position of the line between the centers of the floating rotor and the bushing.
Then
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Figure 13. The notation for the system ”floating bushing - rotor”

θ1 = θ1(t0, ϕ) = ϕ− γP1(t0) = ϕ− γ01.

Denoting for the width of the gap (film thickness) as

h1(θ1, t) = h01 − e1(t) cos(θ1)

we introduce the initial gap at t = t0:

h1(θ1, t0) = h01 − e01 cos(θ1) .

Then the force acting on the rotor per length unit is given by

q01 =
1

L

∫ L/2

−L/2

(p01 − p̃01) dz =
μL2(ω1 + ω2)

2h2
01

q01 (73)

where

q01 =

(
2
•
γ1

ω1+ω2
− 1
)
ε1 sin θ1 +

2
•
ε1

ω1+ω2
cos θ1

(1− ε1 cos θ1)
3 , ε1 =

e1
h01

. (74)

and p01 = p01(r, ϕ, z, t) stands for the global pressure in the gap 4-1, p̃01 =
p̃01(r, ϕ, t) denotes the pressure at the ends of the bearing and μ, L are
respectively the dynamic viscosity of lubricant and the bearing length.
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In a local coordinate system (O2ξ1, O2η1), where the direction O2ξ1 cor-
responds to θ1 = 0 (ϕ = γP1), the projections of the force FP

1 acting on
the rotor from the lubricant layer, are as follows:

FP
1ξ = L

∫ θ2

θ1

(R2 − h1)q01 cos θ1dθ1 (75)

FP
1η = L

∫ θ2

θ1

(R2 − h1)q01 sin θ1dθ1 (76)

The question of the boundaries of the lubricating layer is not yet resolved,
cf. Hatakenaka et al. [2012]. The theory of dynamically loaded bearings
usually adopts one of the following two hypotheses:

1. For the angles that determine the beginning and the end of the
lubricating layer, the researchers accept the values, where the excessive
pressure is equal to zero, i.e. at those places where the gap is the narrowest
one and the widest one. Most often is θ1 = 0, θ2 = π, that is, only the half
of the gap is considered.

2. The value of the angles is θ1 = 0, θ2 = 2π, i.e. the lubricating layer
embraces the entire rotor. According to this hypothesis, there is negative
pressure in the gap which is comparable with or even equals in magnitude
the positive one.

In what follows we use the second hypothesis, i.e. the lubricating layer
fills the entire gap, however a comparison with the results from the first
hypothesis will be given, too.

5.4 Distribution of the rotor equilibria in the lubricant layer

Substituting eqs. (73), (74) into eq. (75) we obtain the expression of the
projection of force FP

1 in the direction O2ξ1

FP
1ξ =

μL3(ω1 + ω2)

2h2
01

[∫ 2π

0

R1B cos2 θ1

(1− ε1 cos θ1)
3 dθ1 +

∫ 2π

0

e1B cos3 θ1

(1− ε1 cos θ1)
3 dθ1

]
(77)

where

A =

(
2

•
γ1

ω1 + ω2
− 1

)
ε1, B =

2
•
ε1

ω1 + ω2
.

While deriving eq. (77) we omitted some transformations. In particular,
two integrals (of four ones) vanish since their integrands are odd functions
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of the argument. It is seen from the above formula that the expression of
the projection of force FP

1 on direction O2ξ1 is FP
1ξ and does not contain

the angular velocity
•
γ1. If we would use the first hypothesis, this angular

velocity appeared in the expression for FP
1ξ, then the result was

FP
1ξ =

2μL3 •
ε1

h2
01

[∫ π

0

R1. cos
2 θ1

(1− ε1 cos θ1)
3 dθ1 +

∫ π

0

e1. cos
3 θ1

(1− ε1 cos θ1)
3 dθ1

]
. (78)

Similarly by substituting eqs. (73) and (74) into eq. (76) we obtain the
following expression for the projection of force FP

1 in the direction of O2η1:

FP
1η =

μL3(ω1 + ω2)ε1
h2
01

(
2

•
γ1

ω1 + ω2
− 1

)
×

[∫ π

0

R1 sin
2 θ1

(1− ε1 cos θ1)
3 dθ1 +

∫ π

0

e1 cos θ1 sin
2 θ1

(1− ε1 cos θ1)
3 dθ1

]
. (79)

Let us suppose that the rotor (O1, R1) is loaded by a constant force.
The coordinates of the equilibrium position of the bearing are denoted by

(e∗1, γ
∗
1 ) and (ε∗1, γ

∗
1 ), then

•
ε∗1 = 0,

•
γ∗
1 = 0. It follows from eqs. (78) and

(5.4):

FP
1ξ(ε

∗
1, γ

∗
1 ) = 0, FP

1η(ε
∗
1, γ

∗
1 ) = −μL3(ω1 + ω2)ε

∗
1

h2
01

×
[∫ π

0

R1 sin
2 θ1

(1− ε∗1 cos θ1)
3 dθ1 +

∫ π

0

e∗1 cos θ1 sin
2 θ1

(1− ε∗1 cos θ1)
3 dθ1

]
.

Here (ε∗1, γ
∗
1 ) are obtained from the equilibrium condition:

∣∣∣−→QP
∣∣∣ = ∣∣∣−−−−−−−→FP

1 (ε∗1, γ
∗
1 )
∣∣∣ =√(FP

1ξ(ε
∗
1, γ

∗
1 )
)2

+
(
FP
1η(ε

∗
1, γ

∗
1 )
)2

=

=
μL3(ω1 + ω2)ε

∗
1

h2
01

[∫ π

0

R1. sin
2 θ1

(1− ε∗1 cos θ1)
3 dθ1 +

∫ π

0

e∗1. cos θ1. sin
2 θ1

(1− ε∗1 cos θ1)
3 dθ1

]
(80)

tan θ̃1 =
FP
1η(ε

∗
1, γ

∗
1 )

FP
1ξ(ε

∗
1, γ

∗
1 )

= −∞, (81)
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where θ̃1 = (
−−→
FP
1 ,
−−→
O2ξ1). It is easy to see from eq. (80) that if the rotor

velocity ω1 is constant then unbounded increase of the external force
−→
QP

leads to that the relative eccentricity ε∗1 tends to unity. If we assume that

the external force
−→
QP is directed vertically downwards, then it follows from

eq. (80) that
∣∣∣−→QP

∣∣∣ is proportional to the angular velocity ω1 of the rotor.

The external load can be, for example, the gravity force of the rotor. The

rotor is in a state of equilibrium (ε∗1, γ
∗
1 ), that is, the force

−→
FP
1 must be

directed vertically upwards, i.e.

θ̃1 = (
−−→
FP
1 ,
−−→
O2ξ1) = −γ∗

1 . (82)

It follows from eqs. (81) and (82) that γ∗
1 = π/2.

The set of equilibrium positions of the center of the rotor in the lubri-
cating layer is a horizontal segment O2M (this interval is shown in Fig. 14

in bold), respectively, ε∗1 ∈ [0, 1] depends on the external load
−→
QP on the

rotor. If one uses the first hypothesis, the curve of the equilibrium positions
of the center of the rotor O1 is the semicircle which is shown in Fig. 14 by
dotted lines. Note that O2M = O2M

′ = h01 = R2 −R1, cf. Fig. 14.

Figure 14. The locus of the equilibrium position of the center of rotor



Dynamics and Stability of  Systems with Moving Continua 257

5.5 The distribution of equilibria of the bushing in lubricating
layer in the gap between the bearing housing and the rotor

So far we have only considered the system of ”bushing - rotor” and have
not yet taken into account the effect of an external field of lubrication 4-2.
Now we consider the entire bearing, which consists of three rigid bodies,
as shown in Fig. 15. In order to find the force FB

2 acting on the floating
bushing (O2, R2) from the outer layer of lubricant, we consider a system of
”bearing housing - bushing.” By analogy, we obtain the projection of this
force in the local coordinate system (Oξ2, Oη2)

FB
2ξ = L

∫ 2π

0

(R− h2)q02 cos θ2dθ2,

FB
2η = L

∫ 2π

0

(R− h2)q02 sin θ2dθ2.

in which direction Oξ2 corresponds to θ2 = 0 (ϕ = γB2(t0)), see Fig. 15.

Figure 15. The notion for the bearing with the bushing

Note that the bearing housing (O,R) is fixed which yields the expression
for these projections by analogy:

FB
2ξ =

2μL3 •
ε2

h2
02

∫ π

0

(R2 + ε2 cos θ2) cos
2 θ2

(1− ε2 cos θ2)
3 dθ2, (83)
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FB
2η =

μL3ω2ε2
h2
02

(
2

•
γ2
ω2

− 1

)∫ π

0

(R2 + ε2 cos θ2) sin
2 θ2

(1− ε2 cos θ2)
3 dθ2, (84)

where h02 = R − R2 is the nominal gap of the outer layer of lubricant,
e2 = eB2(t) denotes the eccentricity of the center of the floating bushing,
γ2 = γB2(t) is the angle describing the position of the line between the
centers of the fixed-floating bushing and bearing housing. The motion of the
floating bushing in the lubricating layer is time-dependent, i.e. the position
and the velocity of the center depend on the time since external load and
the response from the outer lubricant layer depends on the time. Suppose
that at the time instant t = t0 the center of the bushing O2 is in the position
corresponding to the eccentricity e02 = eB2(t0) and the angle describing the
position of the line between the centers of the fixed-floating bushing and
bearing housing: γ02 = γB2(t0), then θ2 = θ2(t0, ϕ) = ϕ−γB2(t0) = ϕ−γ02.

The projections of the force FB
1 acting on the floating bushing from the

inner layer of lubricant in the local coordinate system (Oξ2, Oη2) are given
by

FB
1ξ = LR2

∫ 2π

0

q01 cos (θ1 + γ01 − γ02) dθ1, (85)

FB
1η = LR2

∫ 2π

0

q01 sin (θ1 + γ01 − γ02) dθ1. (86)

Inserting eqs. (73), (74) into eqs. (85), (86) we obtain the expression for
the projections of this force FB

1 :

FB
1ξ =

μL3(ω1 + ω2)R2

2h2
01

∫ 2π

0

(A sin θ1 +B cos θ1) cos (θ1 + γ01 − γ02)

(1− ε1 cos θ1)
3 dθ1

(87)

FB
1η =

μL3(ω1 + ω2)R2

2h2
01

∫ 2π

0

(A sin θ1 +B cos θ1) sin (θ1 + γ01 − γ02)

(1− ε1 cos θ1)
3 dθ1

(88)

Let the bushing (O2, R2) be loaded by the constant force
−→
QB . Denoting

the coordinates of the equilibrium position of the bearing by (ε∗2, γ
∗
2 ) we

have
•
ε∗2 = 0,

•
γ∗
2 = 0. It follows from equations (83), (84):
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FB
2ξ(ε

∗
2, γ

∗
2 ) = 0

FB
2η(ε

∗
2, γ

∗
2 ) = −μL3ω2ε

∗
2

h2
02

[∫ π

0

R2 sin
2 θ2

(1− ε∗2 cos θ2)
3 dθ2 +

∫ π

0

e∗2 cos θ2. sin
2 θ2

(1− ε∗2 cos θ2)
3 dθ2

]

Let (ε∗1, γ
∗
1 ) denote the coordinates of the equilibrium position of the center

of the rotor in the bearing, then
•
ε∗1 = 0,

•
γ∗
1 = 0. One obtains from eqs. (87)

and (88):

FB
1ξ(ε

∗
1, γ

∗
1 ) = −μL3(ω1 + ω2)R2

2h2
01

∫ 2π

0

sin θ1 cos (θ1 + γ∗
1 − γ∗

2 )

(1− ε∗1 cos θ1)
3 dθ1,

FB
1η(ε

∗
1, γ

∗
1 ) = −μL3(ω1 + ω2)R2

2h2
01

∫ 2π

0

sin θ1 sin (θ1 + γ∗
1 − γ∗

2 )

(1− ε∗1 cos θ1)
3 dθ1.

The total force acting on the floating bushing from the inner and outer

fields of lubrication is denoted as
−−→
FB
1,2, i.e.

−−→
FB
1,2 =

−→
FB
1 +

−→
FB
2 . The values of

(ε∗2, γ
∗
2 ) are determined from the equilibrium conditions:∣∣∣∣−→QB

∣∣∣∣ = ∣∣∣∣−−→FB
1,2

∣∣∣∣ , tan θ̃2 =
FB
1η(ε

∗
1, γ

∗
1 ) + FB

2η(ε
∗
2, γ

∗
2 )

FB
1ξ(ε

∗
1, γ

∗
1 ) + FB

2ξ(ε
∗
2, γ

∗
2 )

(89)

where θ̃2 = (
−−→
FB
1,2,
−−→
Oξ2) and

∣∣∣∣−−→FB
1,2

∣∣∣∣ =
√(

FB
1ξ(ε

∗
1, γ

∗
1 ) + FB

2ξ(ε
∗
2, γ

∗
2 )
)2

+
(
FB
1η(ε

∗
1, γ

∗
1 ) + FB

2η(ε
∗
2, γ

∗
2 )
)2

If we assume that the external force
−→
QB is also directed vertically down-

wards, then it follows from eq. (89) that
−→
QB is proportional to the rotor

angular velocity ω1 and the angular velocity of the bushing ω2. The bushing

is in equilibrium (ε∗2, γ
∗
2 ), i.e. in addition to eq. (89), force

−−→
FB
1,2 must be

directed vertically upwards, i.e.:

θ̃2 = (
−−→
FB
1,2,
−−→
Oξ2) = −γ∗

2 . (90)

It follows from eqs. (89) and (90):
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tan γ∗
2 = − tan θ̃2 = −FB

1η(ε
∗
1, γ

∗
1 ) + FB

2η(ε
∗
2, γ

∗
2 )

FB
1ξ(ε

∗
1, γ

∗
1 ) + FB

2ξ(ε
∗
2, γ

∗
2 )

.

When the rotor and bushing are in equilibrium, then γ∗
1 = π/2, ε∗1 ∈ [0, 1].

Each equilibrium position of the rotor in the gap (ε∗1, γ
∗
1 ) corresponds to one

curve of the equilibrium positions of the center bushing, which is determined
by the equation:

tan γ∗
2 = −FB

1η(ε
∗
1,

π
2 ) + FB

2η(ε
∗
2, γ

∗
2 )

FB
1ξ(ε

∗
1,

π
2 ) + FB

2ξ(ε
∗
2, γ

∗
2 )

. (91)

5.6 Determination of the constant speed of the bushing rotation
in a plain bearing

Suppose that the rotor (O1, R1) rotates at a given constant angular ve-
locity ω1, whereas the busing (O2, R2) rotates with yet unknown constant
angular velocity ω2. This angular velocity ω2 appears in the expressions for
all the forces acting on the rotor and bushing. In order to determine the
motion of the bearing parts, it is necessary to derive the dependence of the
angular velocity of the floating bushing ω2 on the rotor velocity ω1. Up to
now, the velocity of rotation of the bushing ω2 has been determined only
by means of experimental methods, cf. Lang and Steinhilper [1978], Boyaci
et al. [2009].

In what follows we will obtain an analytic dependence of ω2 on ω1.
We note that the friction moment exists only in the region of the positive

pressure in the lubricant. Since
•
ε∗1 = 0,

•
γ∗
1 = 0,

•
ε∗2 = 0,

•
γ∗
2 = 0 in the

equilibrium position we obtain from eqs. (75) and (76) that the pressure is
positive in the domain θ1 ∈ [π, 2π], and similarly in the domain θ2 ∈ [π, 2π].

In order to derive the equation for the moments acting on the floating
bushing we need the expression for the shear stress in the case of short
journal bearings:

τrϕ = μ

(
∂v

∂r
+

1

r
(
∂u

∂ϕ
− v)

)
∼= μ

(
∂v

∂r
− v

r

)
It allows us to determine the moments from the internal and external

fields of lubricant, respectively

MB
1 = 2μR1L (ω1 − ω2)

∫ 2π

π

dθ1

1−
(

R1

R1+h∗1(θ1)

)2 ,
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MB
2 = − 2μR2Lω2

∫ 2π

π

dθ2

1−
(

R2

R2+h∗2(θ2)

)2 .

The explicit expressions for the shear stresses and the moments can be
found in e.g. Belyaev et al. [2008].

In a steady motion the floating bushing rotates with constant angular
velocity ω2, which implies that the moments acting on the bushing from both
sides are self-equilibrated, that is, MB

1 +MB
2 = 0. The latter condition is

understood as an equation from which we obtain the expression for the ratio
of the angular velocities in closed form

ω2/ω1
=

⎡⎢⎢⎢⎣1 + R2

R1

∫ 2π

π

[
1−
(

R2

R2+h∗2(θ2)

)2]−1

dθ2

∫ 2π

π

[
1−
(

R1

R1+h∗1(θ1)

)2]−1

dθ1

⎤⎥⎥⎥⎦
−1

. (92)

For numerical calculations we assume the following values of the bearing
parameters: Bearing (O, R): R = 0.05 (m), length L = 0.05 (m). Bushing
(O2, R2): R2=0.048 (m), this implies the following nominal gap of the outer
layer of lubricant h02 = R−R2=0.002 (m). Rotor (O1, R1): R1=0.046(m).
We took the nominal gap of the inner layer of lubricant to be h01 = R2 −
R1=0.002(m) and the dynamic viscosity be μ = 1.754 · 10−5(N · s ·m−2).

The result of calculation displayed in Fig. 16 shows that the ratio ω2/ω1

varies between 0.3 and 0.67 depending upon the relationship between the
eccentricities ε∗1, ε

∗
2. It is generally assumed in most studies that the angular

velocity of the floating bushing is equal to or slightly less than half the angu-
lar velocity of the rotor, as it was, for example, established experimentally
in Lang and Steinhilper [1978], Boyaci et al. [2009]. This generally accepted
rule is usually substantiated by a simple reasoning that the floating bushing
is located in the middle of the gap, one wall of which rotates with angular
velocity ω1 while the second one is motionless. However, the present study
shows that this is true only in some special cases, cf. Fig 16.

5.7 Dynamics and stability of the rotor rotation

In the Cartesian frame the governing equations for the rotor dynamics
are as follows

m1 ¨̄x = m1g + FP
1ξ cosφ− FP

1η sinφ ,

m1 ¨̄y = FP
1ξ sinφ+ FP

1η cosφ
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Figure 16. Relative velocity of the bushing for ε∗1 = 0(1 ); 0,2(2 ); 0,5(3 );
0,7(4 ); 0,9(5 )

where (x̄, ȳ) denote the position of the center of gravity G of the rotor, cf.
Fig. 17. An analogy with the governing equations of motion for a pendulum
is evident.

Figure 17. Position of the rotor center in the housing

In the polar system of coordinates the above equations take the following
form
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ë1 − γ̇2
1e1 = −g cos γ1 +m−1F p

1ξ − εω2
1 (cosω1t cos γ1 + sinω1t sin γ1) ,

γ̈1e1 − 2ė1γ̇1 = g sin γ1 +m−1F p
1η + εω2

1 (cosω1t sin γ1 − sinω1t cos γ1) .

We now introducing the small parameters ε11(t), γ11(t) which describe
the motion in the vicinity of the equilibrium position ε∗1, γ

∗
1

ε1 (t) = ε∗1 + ε11 (t) ; γ1 (t) = γ∗
1 + γ11 (t) . (93)

Performing the linearization with respect to these small parameters yields
the following perturbation equations

ε̈11 = − k

m1h01

2T1 (ε
∗
1)

ω1 + ω2
ε̇11 − g

h01
γ11,

γ̈11ε
∗
1 = − k

m1h01

2T2 (ε
∗
1)

ω1 + ω2
γ̇11 +

k

m1h01
T
′
2 (ε

∗
1) ε11

(94)

where the coefficients T1, T2 etc. are obtained from eq. (94) by substituting
eq. (93) and removing the higher order terms.

The characteristic equation for this system of equations is as follows

ε∗1λ
4 +

2k

m1h01 (ω1 + ω2)
[ε∗1T1 (ε

∗
1) + T2 (ε

∗
1)]λ

3+

+

[
2k

m1h01 (ω1 + ω2)

]2
T1 (ε

∗
1)T2 (ε

∗
1)λ

2 +
kg

m1h2
01

T
′
2 (ε

∗
1) = 0

It can be written in the form of the polynomial of fourth order

a0λ
4 + a1λ

3 + a2λ
2 + a3λ+ a4 = 0

where the coefficients are as follows

a0 = ε∗1; a1 =
2k

m1h01 (ω1 + ω2)
[ε∗1T1 (ε

∗
1) + T2 (ε

∗
1)] ;

a2 =

[
2k

m1h01 (ω1 + ω2)

]2
T1 (ε

∗
1)T2 (ε

∗
1) ; a3 = 0; a4 =

kg

m1h2
01

T
′
2 (ε

∗
1) .

The Routh-Hurwitz criterion states that the motion is unstable if

Δ1 = a1 > 0;Δ2 = a1a2−a0a3 > 0;Δ3 = a3Δ2−a21a4 > 0;Δ4 = a4Δ3 > 0.
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Figure 18. First type of unstable motion

Figure 19. Second type of unstable motion

Applying the Routh-Hurwitz criterion convinces that in the case under
consideration the motion of the rotor is unstable since the criterion condi-
tions are not satisfied since a3 = 0. It means that

Δ3 = −a21a4 < 0, Δ4 = a4Δ3 < 0 .

Some characteristic types of unstable motion are calculated by means
of the above equations and shown in Figs. 18–21, cf. Nguyen et al. [2012].
The first plot in each Figure demonstrates a scenario of developing the
self-excited oscillation after only a few rotations whereas the second plot
displays fully developed oscillations of the rotor.
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Figure 20. Third type of unstable motion

Figure 21. Fourth type of unstable motion

6 Conclusions

The intent of the present chapter was to demonstrate that the systems with
axially moving material are inherently unstable. Dynamics and stability
are known to be strongly related to each other, for this reason the study
of dynamics and stability for each engineering system under consideration
was carried out in the framework of the same approach.
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