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Abstract In new generation social networks, we expect that the paradigm of Social
Internetworking Scenarios (SISs) will be more and more important. In this new
scenario, the role of Social Network Analysis is of course still crucial but the
preliminary step to do is designing a good way to crawl the underlying graph. While
this aspect has been deeply investigated in the field of social networks, it is an open
issue when moving towards SISs. Indeed, we cannot expect that a crawling strategy,
good for social networks, is still valid in a Social Internetworking scenario, due
to the specific topological features of this scenario. In this paper, we first confirm
the above claim and then, define a new crawling strategy specifically conceived for
SISs, which overcomes the drawbacks of the state-of-the-art crawling strategies.
After this, we exploit this crawling strategy to investigate SISs to understand their
main properties and features of their main actors (i.e., bridges).

1 Introduction

In recent years, (online) social networks (OSN, for short) have become one of the
most popular communication media on the Internet [31]. The resulting universe is
a constellation of several social networks, each forming a community with specific
connotations, also reflecting multiple aspects of people personal life. Despite this
inherent heterogeneity, the possible interaction among distinct social networks is
the basis of a new emergent internetworking scenario enabling a lot of strategic
applications whose main strength will be just the integration of possibly different
communities yet preserving their diversity and autonomy. This concept is very
recent and only a few commercial attempts to implement Social Internetworking
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Scenarios (SISs, for short) have been proposed [9, 10, 21, 22, 24, 51]. In this new
scenario, the role of Social Network Analysis [4, 15, 34, 44, 53, 57, 62] is of course
still crucial in studying the evolution of structures, individuals, interactions, and so
on, and in extracting powerful knowledge from them. But an important prerequisite
is to have a good way to crawl the underlying graph. In the past, several crawling
strategies for single social networks have been proposed. Among them, the most
representative ones are Breadth First Search (BFS, for short) [62], Random Walk
(RW, for short) [41] and Metropolis-Hastings Random Walk (MH, for short) [27].
They were largely investigated for single social networks highlighting their pros and
cons [27, 36]. But, what happens when we move towards Social Internetworking
Scenarios? In fact, the question opens a new issue that, to the best our knowledge,
has not been investigated in the literature. Indeed, this issue is far from being trivial,
because we cannot expect that a crawling strategy, good for social networks, is still
valid in a Social Internetworking Scenario, due to the specific topological features
of this scenario.

This paper gives a contribution in this setting. In particular, through a deep
experimental analysis of the above existing crawling strategies, conducted in a
multi-social-network setting, it reaches the conclusion that they are little adequate
to this new context, enforcing the need of designing new crawling strategies specific
for SISs. Starting from this result, this paper gives a second important contribution,
consisting in the definition of a new crawling strategy, called Bridge-Driven Search
(BDS, for short), which relies on a feature strongly characterizing a SIS. Indeed
BDS is centered on the concept of bridge, which represents the structural element
that interconnects different social networks. Bridges are those nodes of the graph
corresponding to users who joined more than one social network and explicitly
declared their different accounts. By an experimental analysis we show that BDS
fits the desired features, overcoming the drawbacks of existing strategies.

As a third important contribution, with the support of such a crawler specifically
designed for SISs, we extract data from SISs to detect the main properties of this new
kind of scenario and, especially of its main actors, which are bridges. The analysis of
bridges, aiming at estimating both classical Social Network Analysis parameters and
new specific ones, is conducted in such a way as to discover the nature of bridges in
a very deep fashion. For this purpose, a large number of experiments is performed,
to derive knowledge about the following topics:

• distribution of the contact number of bridges (hereafter, bridge degree) and non-
bridges;

• correlation between bridges and power users (i.e., nodes having a very high
degree, generally higher than the average degree of the social network joined
by them);

• existence of preferential ties among bridges;
• centrality of bridges in a SIS and in its single social networks.

The results of our analysis provide knowledge about these topics with a strong
experimental support and discover even unexpected conclusions about bridges and,
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in general, a complete knowledge of these crucial elements of Social Internetwork-
ing Scenarios.

The plan of this paper is as follows: in Sect. 2, we present related literature. In
Sect. 3, we illustrate and validate our Bridge Driven Search approach. In Sect. 4, we
describe our experiences devoted to define the main features of SISs and of bridges.
Finally, in Sect. 5, we draw our conclusions and we present possible future issues in
this research field.

2 Related Literature

In this section, we survey the scientific literature related to our paper. In particular,
we first describe the most known techniques proposed to crawl social networks and
then we focus on the approaches proposed for Social Network Analysis.

Concerning the former issue, we observe that with the increase in both the
number and the dimension of social networks, the development of approaches
to sample social networks has become a very challenging issue. The problem of
sampling from large graphs is discussed in [38]. In this paper, the authors aim at
answering questions such as: (1) which sampling method to use; (2) how small
can the sample size be; (3) how to scale up the measurements of the sample to
get estimates for larger graphs; (4) how success can be measured. In their activity
they consider several sampling methods and check the goodness of their sampling
strategies on several datasets.

A technique based on both sampling and the randomized notion of focus is
proposed in [52]. This method stores samples in a relational database and favors
the visualization of massive networks. In this work, the authors specify features fre-
quently characterizing massive networks and analyze the conditions allowing their
preservation during the sampling task. An investigation of the statistical properties
of sampled scale-free networks is proposed in [37]. In this paper, the authors present
three sampling methods, analyze the topological properties of obtained samples,
and compare them with those of the original network. Furthermore, they explain
the reasons of some emerged biased estimations and provide suitable criteria to
counterbalance them.

Methods to produce a small realistic sample from a large real network are
presented in [33]. Here, the authors show that some of the proposed methods
maintain the key properties of the initial graph even with a sample size down to
30 %. In [62], the social network graph crawling problem is investigated in such a
way as to answer questions such as: (1) how fast crawlers into consideration discover
nodes/links; (2) how different social networks and the number of protected users
affect crawlers; (3) how major graph properties are studied. All these investigations
are performed by analyzing samples derived from four social networks, i.e. Flickr,
LiveJournal, Orkut and YouTube.

A framework of parallel crawlers based on BFS and operating on eBay is
described in [14]. This framework exploits a centralized queue. The crawlers operate
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independently from each other so that the failure of one of them does not influence
the others. In spite of this, no redundant crawling occurs. In [36], the impact of
different graph traversal techniques (namely, BFS, DFS, Forest Fire and Snowball
Sampling) on the computation of the average node degree of a network is analyzed.
In particular, the authors quantify the bias of BFS in estimating the node degree
w.r.t. the fraction of sampled nodes. Furthermore, they show how this bias can be
corrected. An analysis of the Facebook friendship graph is proposed in [27]. In this
activity, the authors examine and compare several candidate crawling strategies,
namely BFS, Random Walk, Metropolis-Hastings Random Walk and Re-Weighted
Random Walk. They investigate also diagnostics to assess the quality of the samples
obtained during the data collection process.

Concerning the main difference between the new crawler BDS proposed in our
paper and the above crawling techniques, we highlight the fundamental difference
is that the above techniques are not specifically designed to operate effectively on a
SIS. This will be confirmed by the experimental analysis provided in Sect. 3.2.

As far as the latter issue dealt with in this section (i.e., Social Network
Analysis) is concerned, we observe that studies on Social Networks attracted mainly
sociologists. For instance, [58] introduced the six-degrees of separation and the
small-world theories. The effects of these theories are analyzed in [19]. Granovetter
[28] showed that a Social Network can be partitioned into “strong” and “weak” ties,
and that strong ties are tightly clustered. In a second time, with the development of
OSNs, Social Network Analysis attracted computer scientists and many studies have
been proposed, which investigate the features of one OSN or compare more OSNs.
Most of them collect data from one or more OSNs, map these data onto graphs and
analyze their structural properties. These approaches are based on the observation
that topological properties of graphs may be reliable indicators of the behaviors of
the corresponding users [31].

Studies about how an attacker discovers a social graph can be found in [7, 32].
The sole purpose of the attacker is to maximize the number of nodes/links that can
be discovered. As a consequence, these two papers do not examine other issues,
such as biases.

In [2], the authors compare the structures of Cyworld, MySpace and Orkut. In
particular, they analyze the degree distribution, the clustering property, the degree
correlation and the evolution over time of Cyworld. After this, they use Cyworld to
evaluate the snowball sampling method exploited to sample MySpace and Orkut.
Finally, they perform several interesting analyses on the three social networks.

Given a communication network, the approach of [26] aims at recognizing the
network topology and at identifying important nodes and links in it. Furthermore, it
proposes several compression schemes exploiting auxiliary and purely topological
information. Finally, it examines the properties of such schemes and analyzes what
structural graph properties they preserve when applied to both synthetic and real-
world networks.

In [43], the authors present a deep investigation of the structure of multiple OSNs.
For this purpose, they examine data derived from four popular OSNs, namely Flickr,
YouTube, LiveJournal and Orkut. Crawled data regard publicly accessible user links
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on each site. Obtained results confirm the power law, small-world and scale-free
properties of OSNs and show that these contain a densely connected core of high-
degree nodes.

In [35], the authors focus on analyzing the giant component of a graph.
Moreover, they define a generative model to describe the evolution of the network.
Finally, they introduce techniques to verify the reliability of this model. In [3],
the authors investigate the main features of groups in LiveJournal and propose
models that represent the growth of user groups over time. In [40], data crawled
from LiveJournal are examined to investigate the possible correlations between
friendship and geographic location in OSNs. Moreover, the authors show that this
correlation is strong. Carrington et al. [12] proposes a methodology to discover
possible aggregations of nodes covering specific positions in a graph (e.g., central
nodes), as well as very relevant clusters. Still on clustering, De Meo et al. [18]
recently proposed an efficient community detection algorithm, particularly suited
for OSNs, and tested its performance against a large sample of Facebook (among
other OSN samples), observing the emergence of a strong community structure.
In [50], the authors propose Social Action, a system based on attribute ranking
and coordinated views to help users to systematically examine numerous Social
Network Analysis measures. In [13], the authors present an analysis of Facebook
devoted to investigate the friendship relationships in this OSN. To this purpose, they
examine the topological properties of graphs representing data crawled from this
OSN by exploiting two crawling strategies, namely BFS and Uniform Sampling. A
further analysis of Facebook can be found in [59]. In this paper, the authors crawled
Facebook by means of BFS and formalized some properties such as assortativity
and interaction. These can be verified in small regions but cannot be generalized to
the whole graph.

Monclar et al. [45], Ghosh and Lerman [23], Onnela and Reed-Tsochas [49], and
Romero et al. [54] present approaches for the identification of influential users, i.e.
users capable of stimulating others to join OSN activities and/or to actively operate
in them. In [1,39,55], the authors suitably model the blogosphere to perform leader
identification. In [42], the authors first introduce the concept of starters (i.e., users
who generate information that catches the interest of fellow users/readers) and, then,
adopt a Random Walk technique to find starters. The authors of [47] analyze the
main properties of the nodes within a single OSN that connect the peripheral nodes
and the peripheral groups with the rest of the network. The authors call these nodes
bridging nodes or, simply, bridges. Clearly, here, the term “bridge” is used with
a meaning totally different from that adopted in our paper. The authors base their
analysis on the study of the theoretical properties of their model. In [25], the authors
propose a predictive model that maps social media data to tie strength. This model
is built on a dataset of social media ties and is capable of distinguishing between
strong and weak ties with a high accuracy. Moreover, the authors illustrate how
tie strength modeling can improve social media design elements, such as privacy
controls, message routing, friend introductions and information prioritization. The
authors of [60] present a model for predicting the closeness of professional and
personal relationships of OSN users on the basis of their behavior in the OSNs
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joined by them. In particular, they analyze how the behavior of users on an OSN
reflects the strength of their relationships with other users w.r.t. several factors, such
as profile commenting and mutual connections.

A preliminary study about SISs and bridges has been done in [11]. However, it
has been carried out by investigating samples extracted through classical crawling
techniques. Berlingerio et al. [5, 6], Dai et al. [17], Mucha et al. [46], and Kazienko
et al. [30] present approaches in the field of multidimensional networks. These net-
works can be seen as a specific case of a SIS in which each social network is specific
for one kind of relationship and social networks strongly overlap. Multidimensional
social networks are known as multislice networks in the literature [46].

Concerning the originality of our paper w.r.t. the above literature, we note that
none of the above studies analyzes the main features of SIS. By contrast, in our
paper, we provide a deep analysis on bridges, which are the key concept of a SIS.

3 The Bridge Driven Search Crawler

As pointed out in the introduction, the first main purpose of this paper is to
investigate crawling strategies for a SIS. These must be able to extract not only
connections among the accounts of different users in the same social network
but also interconnections among the accounts of the same user in different social
networks. Several crawling strategies for single social networks have been proposed
in the literature. Among these strategies, two very popular ones are BFS [62] and
RW [41]. The former implements the classical Breadth First Search visit, the latter
selects the next node to be visited uniformly at random among the neighbors of the
current node. A more recent strategy is MH [27]. At each iteration it randomly
selects a node w from the neighbors of the current node v. Then, it randomly
generates a number p belonging to the real interval Œ0; 1�. If p � � .v/

� .w/
, where � .v/

(� .w/, resp.) is the outdegree of v (w, resp.), then it moves from v to w. Otherwise,
it stays in v. The pseudocode of this algorithm is shown in Algorithm 1. Observe
that the higher the degree of a node, the higher the probability that MH discards it.

In the past, these crawling strategies were deeply investigated when applied on a
single social network. This analysis showed that none of them is always better than
the others. Indeed, each of them can be the optimal one for a specific set of analyses.
However, no investigation about the application of these strategies in a SIS has been
carried out. Thus, we have no evidence that they are still valid in this new context. To
reason about this, let us start by considering a structural peculiarity of a SIS, i.e. the
existence of bridges, which, we recall, are those nodes of the graph corresponding
to users who joined more than one social network and explicitly declared their
different accounts. We expect that these nodes play a crucial role in the crawling
of a SIS as they allow the crossing of different social networks, discovering the SIS
intrinsic nature (related to interconnections). Bridges are not “standard” nodes, due
to their role; thus, we cannot see a SIS just as a huge social network. Besides these
intuitive considerations about bridges, we can help our reasoning also with two
results obtained in [11], for which: Fact (i) the fraction of bridges in a social network
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Algorithm 1: MH
Notation We denote by � .x/ the outdegree of the node x
Input s: a seed node
Output SeenNodes, VisitedNodes: a set of nodes
Constant nit {The number of iterations}
Variable v; w: a node
Variable p: a number in the real interval (0,1)
1: SeenNodes:=;, VisitedNodes:=;
2: insert s into SeenNodes and VisitedNodes
3: insert all the nodes adjacent to s into SeenNodes
4: v D s
5: for i WD 1 to nit do
6: let w be one of the nodes adjacent to v selected uniformly at random
7: generate uniformly at random a number p in the real interval (0,1)
8: if (p � � .v/

� .w/
) then

9: v D w
10: insert w into VisitedNodes
11: insert all the nodes adjacent to w into SeenNodes
12: end if
13: end for

is low, and Fact (ii) bridges have high degrees on average. This is confirmed by the
experimental results presented in Table 8.

Now, the question is: What about the capability of existing crawling strategies
of finding bridges? The deep knowledge about BFS, RW and MH, provided by the
literature, allows us to draw the following conjectures:

• BFS tends to explore a local neighborhood of the seed it starts from. As a
consequence, if bridges are not present in this neighborhood or their number
is low (and this is highly probable due to Fact (i)), the crawled sample fails in
covering many social networks. Furthermore, it is well known that BFS tends to
favor power users and, therefore, presents bias in some network parameters (e.g.,
the average degree of the nodes of the crawled portions are overestimated [36]).

• Differently from BFS, RW does not consider only a local neighborhood of the
seed. In fact, it selects the next node to be visited uniformly at random among
the neighbors of the current node. Again, due to Fact (i), the probability that
RW selects a bridge as the next node is low. As a consequence, the crawled
sample does not cover many social networks and, if more than one social
network is represented in it, the coupling degree of the crawled portions of social
networks is low. Finally, analogously to BFS, RW tends to favor power users and,
consequently, to present bias in some network parameters [36]. This feature only
marginally influences the capability of RW to find bridges because, in any case,
their number is very low.

• MH has been conceived to unfavor power users and, more in general, nodes
having high degrees, which are, instead, favored by BFS and RW. It performs
very well in a single social network [27] especially in the estimation of the
average degree of nodes. However, due to Fact (ii), it will penalize bridges. As
a consequence, the sample crawled by MH does not cover many social networks
present in the SIS.
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In sum, from the above reasoning, we expect that both BFS, RW and MH are
substantially inadequate in the context of SISs. As it will be described in Sect. 3.2,
this conclusion is fully confirmed by a deep experimental campaign, which clearly
highlights the above drawbacks. Thus, we need to design a specific crawling strategy
for SISs. This is a matter of the next section.

3.1 BDS Crawling Strategy

In the design of our new crawling strategy, we start from the analysis of some
aspects limiting BFS, RW, and MH in a SIS, to overcome them. Recall that BFS
performs a Breadth First Search on a local neighborhood of a seed. Now, the average
distance between two nodes of a single social network is generally less than the
one between two nodes of different social networks. Indeed, to pass from a social
network to another, it is necessary to cross a bridge, and as bridges are few, it may
be necessary to generate a long path before reaching one of them. As a consequence,
the local neighborhood considered by BFS includes one or a small number of social
networks. To overcome this problem, a Depth First Search, instead of a Breadth
First Search, can be done. For this purpose, the way of proceeding of RW and MH
may be included in our crawling strategy. However, because the number of bridges
in a social network is low, the simple choice to go in-depth blindly does not favor
the crossing from a social network to another. Even worse, because MH penalizes
the nodes with a high degree, it tends to unfavor bridges, rather than to favor them.
Again, in the above reasoning, we have exploited Facts (i) and (ii) introduced in the
previous section.

A solution that overcomes the above problems consists in implementing a “non-
blind” depth first search in such a way as to favor bridges in the choice of the next
node to visit. This is the choice we do, and the name we give to our strategy, i.e.,
Bridge-Driven Search (BDS, for short), clearly reflects this approach. However, in
this way, it becomes impossible to explore (at least partially) the neighborhood of
the current node because the visit proceeds in-depth very quickly and, furthermore,
as soon as a bridge is encountered, there is a cross to another social network. The
overall result of this way of proceeding is an extremely fragmented crawled sample.
To address this problem, given the current node, our crawling strategy explores a
fraction of its neighbors before performing an in-depth search of the next node to
visit.

To formalize our crawling strategy, we need to introduce the following parame-
ters:

• nf (node fraction). It represents the fraction of the non-bridge neighbors of
the current node that should be visited. It ranges in the real interval (0,1]. For
example, when nf is equal to 1, our strategy selects all the neighbors of the
current node except the bridge ones. This parameter is used to tune the portion
of the current node neighborhood that has to be taken into account and, hence, it
balances the breadth and depth of the visit.
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Algorithm 2: BDS
Notation We denote by N.x/ the function returning the number of the non-bridge neighbors of the node x, and

by B.x/ the function returning the number of the bridges belonging to the neighborhood of x
Input s: the seed node
Output SeenNodes, VisitedNodes: a set of nodes
Constant nit {The number of iterations}
Constant nf {The node fraction parameter}
Constant bf {The bridge fraction parameter}
Constant btf {The bridge tuning factor parameter}
Variable v; w: a node
Variable p: a number in the real interval (0,1)
Variable c: an integer number
Variable NodeQueue: a queue of nodes
Variable BridgeSet: a set of bridge nodes
1: SeenNodes:=;, VisitedNodes:=;, NodeQueue:=;, BridgeSet:=;
2: insert s into NodeQueue
3: for i WD 1 to nit do
4: poll NodeQueue and extract a node v
5: insert v into VisitedNodes
6: insert all the nodes adjacent to v into SeenNodes
7: if (B.v/ � 1/ then
8: clear NodeQueue
9: c D 0

10: while .c < dbf � B.v/e/ do
11: let w be one of the bridge nodes adjacent to v not in BridgeSet selected uniformly at random
12: generate uniformly at random a number p in the real interval (0,1)

13: if
�
p � btf � N.v/

N.w/

�
then

14: insert w into NodeQueue and BridgeSet
15: c D c C 1
16: end if
17: end while
18: else
19: c D 0
20: while .c < dnf � N.v/e/ do
21: let w be one of the nodes adjacent to v selected uniformly at random
22: generate uniformly at random a number p in the real interval (0,1)

23: if
�
p � N.v/

N.w/

�
then

24: insert w into NodeQueue
25: c D c C 1
26: end if
27: end while
28: end if
29: end for

• bf (bridge fraction). It represents the fraction of the bridge neighbors of the
current node that should be visited. Like nf , it ranges in the real interval (0,1].
Clearly, this parameter is greater than 0 to allow the visit of at least one bridge
(if any), resulting in crossing to another social network.

• btf (bridge tuning factor). It is a real number belonging to [0,1] that allows the
filtering of the bridges to be visited among the available ones, on the basis of
their degree. Its role will be better explained in the following.

For instance, in a configuration with nf D 0:10 and bf D 0:25, our strategy
visits 10 % of the non-bridge neighbors of the current node and 25 % of the bridge
neighbors of the current node.

We are now able to formalize our crawling strategy. Its pseudo-code is shown in
Algorithm 2.
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The algorithm exploits two data structures: a queue NodeQueue of nodes and a
set BridgeSet of bridges. The former contains the nodes detected during the crawling
task and that should be visited later; the latter contains the bridges that have been
already met during the visit. BDS starts its visit from a seed node s that is added
into NodeQueue. At each iteration, a new node v is extracted from NodeQueue;
v is inserted into VisitedNodes, whereas all the nodes adjacent to v are put into
SeenNodes (Lines 4–6). After this, if v has at least one bridge as neighbor, then
the visit proceeds towards one or more of the bridge neighbors of v, thus switching
the current social network. For this reason, NodeQueue is cleared (Line 8). This is
necessary because, if the next nodes are polled from NodeQueue, the visit is brought
back to the old social network improperly.

Now, in Line 10, the algorithm computes how many bridges must be selected
on the basis of its setting. After this, each of these bridges, say w, is selected
uniformly at random among those not previously met in the visit; w is added into
NodeQueue and into BridgeSet if and only if the ratio between the v’s outdegree and
w’s outdegree is greater than or equal to p � btf , where p is a real random number in
[0,1] (Line 13). Observe that this condition is similar to that adopted by MH to drive
the selection of nodes on the basis of their degrees. In particular, when btf D 1, this
condition coincides with the one of MH, disadvantaging high-degree bridges; when
btf D 0, no filtering on the bridge degree is done. Clearly, values ranging from
0 to 1 result in an intermediate behavior. If no bridge has been discovered, then
dnf � N.v/e non-bridges adjacent to v are randomly selected (Lines 20 and 21). Such
nodes are selected according to the policy of MH. They are added into NodeQueue.
The algorithm terminates after nit iterations.

As for Lines 20–27, it is worth pointing out that, differently from MH, which
selects only one neighbor for each node (thus, performing an in-depth visit), BDS
has also a component (i.e., nf ), which allows it to select more than just one neighbor
in such a way as to make it able to take the neighborhood of the current node into
account. In this way, it solves one of the problems of RW and MH discussed above.

3.2 Experiments

In this section, we present our experiment campaign conceived to determine the
performances of BDS and to compare it with BFS, RW and MH when they
operate in a SIS. As we wanted to analyze the behavior of these strategies on
a SIS, we had to extract not only connections among the accounts of different
users in the same social network but also connections among the accounts of the
same user in different social networks. To encode these connections, two standards
encoding human relationships are generally exploited. The former is XFN (XHTML
Friends Network) [61]. XFN simply uses an attribute, called rel, to specify the
kind of relationship between two users. Possible values of rel are me, friend,
contact, co-worker, parent, and so on. A (presumably) more complex
alternative to XFN is FOAF (Friend-Of-A-Friend) [8]. A FOAF profile is essentially
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an XML file describing people, their links to other people and their links to
created objects. The technicalities concerning these two standards have not to be
handled manually by the user. As a matter of fact, each social network has suitable
mechanisms to automatically manage them in a way transparent to users, who have
simply to specify their relationships in a friendly fashion.

In our experiments, we consider a SIS consisting of four social networks, namely
Twitter, LiveJournal, YouTube and Flickr. They are compliant with the XFN and
FOAF standards and have been largely analyzed in Social Network Analysis in the
past [15, 34, 44, 62]. We argue that the relatively small number of involved social
networks, as a first investigation, is adequate, expecting that the more this number,
the higher the gap between standard and specific crawling strategies.

For our experiments, we exploited a server equipped with a 2 Quad-Core E5440
processor and 16 GB of RAM with the CentOS 6.0 Server operating system.
Collected data can be found at the URL http://www.ursino.unirc.it/ebsnam.html.
(The password to open the archive is “84593453”.)

3.2.1 Metrics

A first needed step was to define reasonable metrics able to evaluate the perfor-
mances of crawlers operating on a SIS. Even though this point may appear very
critical and prone to unfair choices, it is immediate to realize that the following
chosen metrics are a good way to highlight the desired features of a crawling strategy
operating in a SIS:

1. Bridge Ratio (BR): this is a real number in the interval [0,1] defined as the ratio
of the number of the bridges discovered to the number of all the nodes in the
sample.

2. Crossings (CR): this is a non-negative integer and measures how many times the
crawler switches from one social network to another.

3. Covering (CV): this is a positive integer and measures how many different social
networks are visited by the crawler.

4. Unbalancing (UB): this is a non-negative real number and is defined as the
standard deviation of the percentages of nodes discovered for each social network
w.r.t. the overall number of nodes discovered in the sample. Observe that
Unbalancing ranges from 0, corresponding to the case in which each social
network is sampled with an equal number of nodes, to a maximum value (for
instance, 50 in case of 4 social networks), corresponding to the case in which all
sampled nodes belong to a social network. For example, in a SIS consisting of
four social networks, if the overall discovered nodes are 100 and the number of
nodes belonging to each of the four social networks is 40, 11, 30, and 19, resp.,
then UB is equal to 12.68.

5. Degree Bias (DB): this is a real number computed as the root mean squared
error, for each social network of the SIS, of the average node degree estimated
by the crawler and that estimated by MH, which is considered the best one in

http://www.ursino.unirc.it/ebsnam.html
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estimating the node degree for a social network in the literature [27, 36]. If the
crawled sample does not cover one or more social networks, then these are not
considered in the computation of the Degree Bias.

As for the first three metrics, the higher their value, the higher the performance
of the crawling strategy. By contrast, as for the fourth and the fifth metric, the
lower their values, the higher the performance of the crawling strategy. Observe
that Covering is related to the crawler capability of covering many social networks.
Unbalancing measures the crawler capability of uniformly sampling all the social
networks. Furthermore, observe that, even though one may intuitively think that
a fair sampling should sample different social networks proportionally to their
respective overall size, a similar behavior of the crawler results in incomplete
samples in case of high variance of these sizes. Indeed, it may happen that small
social networks are not represented in the sample or represented in an insufficient
way. Bridge Ratio and Crossing are related to the coupling degree, while Degree
Bias to the average degree. Finally, we note that the defined metrics are not
completely independent from each other. For instance, if BR D 0, then CR and
CV are also 0. Analogously, the value of CR influences both CV and UB.

Besides the evaluation of the crawling strategies on each of the above metrics,
separately considered, it is certainly important to define a synthetic measure capable
of capturing a sort of “overall” behavior of the strategies, possibly modulating the
importance of each metric. A reasonable way to do this is to compute a linear
combination of the five metrics, in which the coefficients reflect the importance
associated with them. We call Average Crawling Quality (ACQ) this measure and
define it as:

ACQ D wBR � BR

BRmax
C wCR � CR

CRmax
C wCV � CV

CVmax
C wUB � .1 � UB

UBmax
/

C wDB � .1 � DB

DBmax
/

where BRmax (CRmax, CVmax, UBmax, DBmax, resp.) are upper bounds of Bridge
Ratio (Crossings, Covering, Unbalancing, Degree Bias, resp.) that, in a comparative
experiment, can be set to the maximum value obtained by the compared techniques,
whereas wBR; wCR; wCV ; wUB, and wDB are positive real numbers belonging to Œ0; 1�

such that wBR C wCR C wCV C wUB C wDB D 1. Below, we deal with the problem of
setting the values of these parameters.

3.2.2 Analysis of BFS, RW and MH

In this section, we analyze the performances of BFS, RW and MH, when applied
on a SIS. For this purpose, we randomly chose four seeds, each belonging to one
of the social networks of our SIS, and, for each crawling strategy, we run the
corresponding crawler one time for each of the four seeds. The number of iterations
of each crawling run was 5,000. The overall numbers of seen nodes returned by MH,
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Table 1 Performances of MH, BFS and RW

Twitter YouTube Flickr LiveJournal Overall

MH Bridge Ratio 0.0028 0.0038 0.0 0.0024 0.0025
Crossing 5 3 0 4 3
Covering 2 2 1 3 2
Unbalancing 32.5503 40.6103 50 31.1253 38.5715
Degree Bias 0
Twitter Avg. Deg. 37.9189 37.0789 – 38.2842 37.76067
YouTube Avg. Deg. 9.6064 10.0379 – 10.4144 10.01957
Flickr Avg. Deg. – – 104.3497 – 104.3497
LiveJournal Avg. Deg. – – – 40.5604 40.5604

BFS Bridge Ratio 0.0008 0.0054 0.0 0.0 0.0016
Crossing 7 43 0 0 12.5
Covering 2 3 1 1 1.75
Unbalancing 49.9350 42.0286 50 50 47.9909
Degree Bias 103.9339
Twitter Avg. Deg. 21.92 – – – 21.92
YouTube Avg. Deg. – 9.5106 – – 9.5106
Flickr Avg. Deg. – – 311.6118 – 311.6118
LiveJournal Avg. Deg. – – – 40.0136 40.0136

RW Bridge Ratio 0.0 0.00067 0.0 0.0 0.00017
Crossing 0 4 0 0 1
Covering 1 3 1 1 1.5
Unbalancing 50 40.1363 50 50 47.5341
Degree Bias 180.8260
Twitter Avg. Deg. 39.0 41.9489 – – 40.4745
YouTube Avg. Deg. – 12.5081 – – 12.5081
Flickr Avg. Deg. 476.6446 455.3002 – 465.9724
LiveJournal Avg. Deg. – – – 43.3333 43.3333

RW and BFS were 135,163, 941,303 and 726,743, respectively. The high variance
of these numbers is not surprising because it is intrinsic in the way of proceeding of
these algorithms.

In Table 1, we show the values of our metrics, along with the values of the
other parameters we consider particularly significant (i.e., the average degree of
the nodes of each social network), obtained for the four runs of MH, BFS and RW,
respectively.

From the analysis of this table, we can draw the following conclusions:

• The value of BR is very low for all the crawling strategies. For MH there are
on average 2.5 bridges for each 1,000 crawled nodes. BFS behaves worse than
MH, and RW is the worst one. This behavior can be explained by the theoretical
observations about BFS, MH and RW provided in Sect. 3.

• The value of CR is generally low for all the crawling strategies. RW shows again
the worst value. This result is clearly related to the low value of BR, because the
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few discovered bridges do not allow the crawlers to sufficiently cross different
social networks.

• The value of CV is quite low for all the strategies. On average only two of the
social networks of the SIS are visited. Also this result is related to the low values
of BR and CR.

• Even though BR, CR and CV are generally low for all social networks, this trend
is mitigated for YouTube when BFS and RW are adopted. This can be explained
by the fact that the central concept in YouTube is channel, rather than profile. A
channel has generally associated the links with the profiles of the corresponding
owners present in the other social networks. As a consequence, YouTube tends to
behave as a “hub” among the other social networks. This implies that the number
of bridges in YouTube is higher than in the other social networks; in its turn,
this implies an increase in BR, CR and CV . This trend is not observed for MH
because this crawling technique tends to unfavor high-degree nodes, and often
bridges have this characteristic (see Fact (ii) in Sect. 3).

• The value of UB is very high for all the strategies, very close to the maximum
one (i.e., 50). This indicates that, as far as this metric is concerned, they behave
very badly. Indeed, it happens that they often stay substantially bounded in the
social network of the starting seed. This result can be explained (i) by the fact
that UB is influenced by CR, which, in turn, is influenced by BR, and (ii) by the
previous conclusions about BR and CR.

• As for the average degrees of nodes, it is well known that MH is the crawling
strategy that best estimates them in a single social network [27, 36]. From the
analysis of Table 1, we observe that when MH starts from a seed it generally stays
for many iterations in the corresponding social network (this is witnessed by the
high values of UB). As a consequence, we can assume that the average degrees
are those of reference for the social networks of the SIS, provided that at least
one run of MH starting from each social network is performed. This conclusion
is further enforced by observing that (as shown in Table 1) MH is capable of
estimating the average degree of nodes even for social networks different from
that of the seed (whose number of nodes in the sample is quite low). Basing on
these reference values, we detect that BFS presents a high value of DB. This is
well known in the literature for a scenario consisting of a single social network
[36], and we confirm this conclusion also in the context of SISs. The performance
of RW is even worse than that of BFS.

In sum, we may conclude that the conjectures given above about the unsuitability
of BFS, MH and RW to operate on a SIS are fully confirmed by our experiments.
Now we have to see how our crawling strategy performs in this scenario. This is the
matter of the next section.
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Table 2 Performances of BDS for different values of nf

bf D 0:25, btf D 0:25 nf D 0:02 nf D 0:10 nf D 0:25 nf D 0:50

Bridge Ratio 0.0488 0.0965 0.1516 0.0814
Crossing 28 286 639 410
Covering 3 4 4 4
Unbalancing 26.1299 13.5103 12.2921 42.2080
Degree Bias N.A. 19.0145 68.7413 123.705
Twitter Avg. Deg. 40.5714 42.0383 41.0812 42.1161
YouTube Avg. Deg. 12.079 11.9278 12.8508 14.3556
Flickr Avg. Deg. 240.8333 129.5833 153.6764 331.5379
LiveJournal Avg. Deg. N.A. 68.6234 168.8152 138.3333

3.2.3 Analysis of BDS

To analyze BDS we performed a large set of experiments. In this section, we
present the most significant ones to evaluate the impact of nf , bf and btf . In the
configurations considered in these experiments we performed 5,000 iterations. The
number of obtained seen nodes ranges from 15,585 to 473,122.

Impact of nf

We first evaluate the role of nf on the behavior of BDS. For this purpose we have
fixed the other two parameters bf and btf to 0.25, and we have assigned to nf the
following values: 0.02, 0.10, 0.25 and 0.50 (the reasons underlying the choice of
discarding lower or higher values will be clear below). The results of this experiment
are shown in Table 2. From the analysis of this table we observe that very low
values of nf (i.e., nf about 0.02) lead to a significant decrease in BR and CR.
Furthermore not all the social networks of the SIS are sampled. This behavior can be
explained by the fact that, when nf is very low, BDS behaves as RW. This has a very
negative influence on UB, because BR and CR influence UB, and does not allow the
computation of DB, because not all social networks of the SIS are covered. As a
consequence, we have decided not to report values of nf lower than 0.02.

By contrast, for high values of nf (i.e., nf about 0.50) we observe that BR, CR
and CV show satisfying values. However, in this case, we obtain the worst values of
UB and DB, registering for these metrics a behavior of BDS similar to that of BFS
(as a matter of fact, nf D 0:50 implies that 50 % of the non-bridge neighbors of each
node are visited). The high UB is explained by the fact that, even though the visit
involved all the four social networks, this did not happen in a uniform fashion and
some social networks have been sampled much more than the others. As for DB, in
this case, BDS shows a behavior even worse than BFS because the presence of a
high number of bridges in the sample causes the increase in the estimated average
degree of the social networks (recall Fact (ii) introduced in Sect. 3). For this reason
we do not report values of nf higher than 0.50.
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Table 3 Performances of BDS for different values of bf

nf D 0:10, btf D 0:25 bf D 0:25 bf D 0:50 bf D 0:75 bf D 1:00

Bridge Ratio 0.0965 0.0875 0.0815 0.0824
Crossing 286 264 270 266
Covering 4 4 4 4
Unbalancing 13.5103 18.4622 8.4756 16.1804
Degree Bias 19.0145 21.8163 53.9505 50.8895
Twitter Avg. Deg. 42.0383 40.76 40.4362 40.3348
YouTube Avg. Deg. 11.9278 12.2291 11.9679 11.7807
Flickr Avg. Deg. 129.5833 147.428 157.427 156.6471
LiveJournal Avg. Deg. 68.6234 46.4071 134.4459 127.82

The reasoning above suggests that, to cover all the social networks of the SIS,
nf should be higher than 0.02. However, to obtain acceptable DB values, it should
be lower than 0.50. For this reason, we decided to fix nf to the intermediate value
0.10 in the study of bf and btf . In fact, this value shows a good tradeoff w.r.t. all
considered metrics.

Impact of bf

To evaluate the impact of bf on the behavior of BDS we fixed nf to 0.10 and btf to
0.25. We assigned to bf the following values: 0.25, 0.50, 0.75 and 1. We set 0.25
as the lower bound for bf because, by a direct analysis on the sample obtained by
setting bf D 1, we saw that the maximum number of bridges adjacent to a node was
4. The values of the metrics obtained in this case are reported in Table 3.

From the analysis of this table we can observe that, as for the first four metrics,
the obtained results are satisfying and comparable for each value of bf . This is
a further confirmation that fixing nf D 0:10 allows BDS to cover all the social
networks of the SIS in a satisfactory way. The only discriminant for bf seems to be
DB because the increase in bf leads to an increase in the average node degree. This
trend can be explained as follows. When a user has more adjacent bridges (less than
4, in our sample), for bf D 0:25, BDS selects only one of them. In this case, with the
highest probability, the selected bridge will be the one with the lowest degree (see
Line 13 in Algorithm 2). In the same case, if bf D 1, then BDS selects all adjacent
bridges and, therefore, also those having the highest degrees. From the assortativity
property [48], it is well known that high-degree users are often connected with other
high-degree users. All these facts imply that the average degree of the sampled nodes
increases. This explains the seemingly “strange” decrease in BR observed when bf
increases. In fact, because the number of adjacent bridges is very limited, when the
number of adjacent nodes increases, the fraction of bridges present in it (i.e., BR)
decreases. All these reasonings suggest that an increase in bf causes an increase in
DB and a decrease in BR. All the other metrics do not show significant variations.
For this reason, in these experimental campaigns, we fixed bf to 0.25.
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Table 4 Performances of BDS for different values of btf

nf D 0:10, bf D 0:25, btf D 0:00 btf D 0:25 btf D 0:50 btf D 0:75 btf D 1:00

Bridge Ratio 0.0771 0.0965 0.0715 0.07612 0.0705
Crossing 245 286 226 258 183
Covering 4 4 4 4 4
Unbalancing 20.1134 13.5103 9.9273 11.8239 14.8959
Degree Bias 140.4817 19.0145 32.8467 48.7946 29.8698
Twitter Avg. Deg. 40.2287 42.0383 39.7203 39.0245 39.6141
YouTube Avg. Deg. 11.8225 11.9278 11.1113 11.5115 11.3697
Flickr Avg. Deg. 379.377 129.5833 118.1566 124.1844 133.0608
LiveJournal Avg. Deg. 97.9286 68.6234 104.7473 136.0927 92.8981

Impact of btf

In this experimental campaign, we fixed nf to 0.10 and bf to 0.25. We considered the
following values for btf : 0, 0.25, 0.50, 0.75, and 1. btf can be seen as a filter on the
bridge degrees. In particular, if btf D 0, then there is no constraint on the degrees
of the bridges to select. If btf D 1, then BDS behaves as MH and, therefore, favors
the selection of those bridges whose degree is lower than or equal to that of the
current node. The other bridges are selected with a probability that decreases with
the increase in their degree. The values of the metrics measured in this experimental
campaign are reported in Table 4.

From the analysis of this table, it is evident that, when btf D 0, DB is high.
This can be explained by the fact that, in this case, all bridges (even those with
very high degree) may be equally selected. For the other values of btf , the overall
performances of BDS do not present significant differences because all these values
allow high-degree bridges to be filtered out. From a direct analysis on our samples
we verified that the average degree of bridges is at most four times that of non-
bridges. Setting btf D 0:25 allows that, even in the worst case (i.e., p D 1

in Line 13 of Algorithm 2), the bridges having a degree lower than or equal to
the average degree of non-bridges are generally selected. This way, high-degree
bridges are unfavored whereas the others are highly favored. For this reason, in
these experimental campaigns, we fixed btf to 0.25.

3.2.4 Average Crawling Quality

So far we have analyzed the behavior of BDS w.r.t. the five metrics separately
considered. To compare our strategy with the other three ones, it is more important
to study their “overall” behavior by using the metric ACQ, which aggregates all
the five metrics considered previously. Here, we have to deal with the problem of
setting the coefficients of the linear combination, namely wBR; wCR; wCV ; wUB , and
wDB, present in the definition of ACQ.
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Table 5 ACQ for the different parameter configurations of BDS

ACQ ACQ
Configuration (same weights) (different weights)

nf = 0.02 bf = 0.25 btf = 0.25 0.42 0.36
nf = 0.10 bf = 0.25 btf = 0.00 0.48 0.42
nf = 0.10 bf = 0.25 btf = 0.25 0.84 0.86
nf = 0.10 bf = 0.25 btf = 0.50 0.67 0.57
nf = 0.10 bf = 0.25 btf = 0.75 0.66 0.57
nf = 0.10 bf = 0.25 btf = 1.00 0.64 0.55
nf = 0.10 bf = 0.50 btf = 0.25 0.68 0.63
nf = 0.10 bf = 0.75 btf = 0.25 0.68 0.59
nf = 0.10 bf = 1.00 btf = 0.25 0.64 0.57
nf = 0.25 bf = 0.25 btf = 0.25 0.73 0.67
nf = 0.50 bf = 0.25 btf = 0.25 0.46 0.44

We start by assigning the same weight to all metrics, i.e., we set wBR D wCR D
wCV D wUB D wDB D 0:2. Then, we measure the value of ACQ for all the
configurations of the parameters of BDS examined in Tables 2, 3 and 4. Obtained
values are reported in the second column of Table 5. From the analysis of this
column, we can verify that the configuration of BDS that guarantees the best tradeoff
among the various metrics is nf D 0:10, bf D 0:25, btf D 0:25.

Observe that, at the beginning of Sect. 3.2 we showed that the defined metrics
are not completely independent of each other. In fact, BR influences CR and CV ,
whereas CR influences CV and UB. As a consequence, it is reasonable to associate
different weights with the various metrics by assigning the higher values to the
most influential ones. To determine these values, we use an algorithm that takes
inspiration from the Kahn’s approach for topological sorting of graphs [29]. In
particular, we first construct the metric Dependency Graph. It has a node nMi for
each metric Mi . There is an edge from nMi to nMj if the metric Mi influences the
metric Mj . A weight is associated with each node. Initially, we set all the weights
to 0.20 (Fig. 1). We start from a node having no outgoing edges and split its weight
(in equal parts) among itself and the nodes it depends on.1 Then, we remove all the
incoming edges. We repeat the previous tasks until all the nodes of the graph have
been processed. By applying this approach we obtain the following configuration
of weights: wBR D 0:45, wCR D 0:18, wCV D 0:07, wUB D 0:10, wDB D 0:20.
Observe that the node processing order is not unique because more than one node
with no outgoing edge exists. However, it is easy to verify that the final metric
weights returned by our algorithm do not depend on the adopted node processing
order.

1Clearly, if a node has no incoming edges, it maintains its weight.
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Fig. 1 The Dependency Graph concerning our metrics

Table 6 Values of ACQ for
the different crawling
techniques

ACQ ACQ
Technique (same weights) (different weights)

MH 0.34 0.26
BFS 0.18 0.12
RW 0.08 0.03
BDS 0.84 0.86

Now, we measure ACQ with this new weight setting. The obtained results are
reported in the third column of Table 5. Also in this experiment, the setting nf D
0:10, bf D 0:25, btf D 0:25 of the parameters of BDS shows the best performance.

However, with regard to this result, there are applications in which some metrics
are more important than the others. BDS is highly flexible and, in these cases,
allows the choice of the configuration that favors those metrics. For instance, if a
user performs link mining in a SIS, the most important metric is CR because it is
an index of the number of links between different social networks present in the
crawled sample. By contrast, DB does not appear particularly relevant. In this case,
the configuration nf D 0:25, bf D 0:25, btf D 0:25, is chosen because it guarantees
the maximum CR even though the corresponding Bias Degree is quite high (see
Table 2). As a second example, if it is desired a crawled sample in which all the
social networks of the SIS are represented in the most uniform way, it is suitable to
adopt the configuration nf D 0:10, bf D 0:75, btf D 0:25 that guarantees the best
UB (see Table 3).

We now compare BDS, BFS, RW, and MH when they operate on a SIS. In this
comparison, as for BFS, RW and MH we selected the overall values (see the last
column of Table 1). As for BDS we adopted the configuration nf D 0:10, bf D 0:25,
btf D 0:25. The results of this comparison, obtained by computing ACQ with the
two weight settings, are reported in Table 6.

Interestingly enough, even the lowest value of ACQ obtained for BDS (obtained
with the configuration nf D 0:02; bf D 0:25; btf D 0:25) is higher than that
obtained for MH and much higher than those obtained for BFS and RW. This shows
that BDS guarantees always the best performance.

From the analysis of these values and of those reported in Tables 1, 2, 3, and
4, it clearly emerges that, when operating on a SIS, BDS highly outperforms
the other approaches. The only exception is MH for DB because, according to
[27, 36], we have assumed that MH is the best method to estimate the average node
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degree. However, also for this metric, BDS obtains very satisfactory results. As a
final remark we highlight that, besides the capability shown by BDS of crossing
through different social networks, overcoming the drawbacks of compared crawler
strategies, BDS presents a good behavior also from an intra-social-network point
of view. This claim is supported from both the results obtained for DB, and the
consideration that our crawling strategy, in absence of bridges, can be located
between BFS and MH, producing intra-social-network results that reasonably
cannot differ significantly from the above strategies.

4 Experiences

As pointed out in the introduction, the second main purpose of this paper is to
exploit BDS for investigating the main features of bridges and SISs. This section
is devoted to this analysis and is organized in such a way that each subsection
investigates a specific aspect of SISs, namely the degree of bridges and non-bridges,
the relationships between bridges and power users, the possible existence of a bridge
backbone and the analysis of bridge centrality.

To perform the analyses of this section, we collected ten samples using BDS.
We performed each investigation described below on each sample and, then, we
averaged the obtained values on all of them. Therefore, each measure reported below
is the average of the values obtained on each sample.

4.1 Distributions of Bridge and Non-bridge Degrees

In this section, we analyze the distributions of node degrees. For this purpose, we
compute the Cumulative Distribution Function (CDF) of the degree of bridges and
non-bridges. This function describes the probability that the degree of a node is less
than or equal to a given value x. The CDFs for bridges and non-bridges are shown
in Fig. 2.

By analyzing this figure, we can see that, fixed a degree d , the probability that a
bridge has more than d contacts is higher than that of a non-bridge, for any d . As
a consequence, we can state that a bridge has more contacts than a non-bridge, in
average.

Again, observing the CDF trend for both bridges and non-bridges, it seems that
the corresponding degrees follow a power law distribution. To verify this conjecture,
in Fig. 3 we plot the Probability Distribution Function (PDF) of the degree of bridges
and non-bridges. A visual analysis of the PDF trend already confirms our conjecture.
To refine our analysis, we compute the best power law fit using the maximum
likelihood method [16]. Table 7 shows the estimated power law coefficients, along
with the Kolmogorov-Smirnov goodness-of-fit metrics, for the distributions into
consideration. In particular, ˛ is the exponent of the theoretical power law function
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Table 7 Power law
coefficient estimation for the
PDF of bridges and
non-bridges

˛ D

Non-bridges 2.18 0.09
Bridges 2.31 0.15

that best approximates the real one, whereas D is the maximum distance between
the theoretical function and the real one. The shown results, and in particular the low
value of the Kolmogorov-Smirnov goodness-of-fit metric, confirm that the degrees
of bridges and non-bridges follow a power law distribution.

To deepen our analysis, we compute the average degrees of bridges and non-
bridges, along with the corresponding standard deviations, for each social network
of the SIS. The obtained results are presented in Table 8. From the analysis of this
table we can observe that: (1) the standard deviations of bridges and non-bridges are
generally high; this can be explained by the power law distribution of PDF; (2) both
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Table 8 Analysis of bridge and non-bridges degrees for the whole SIS and its social networks

AVG STD

Bridges Non-bridges Bridges Non-bridges

YouTube 15:13 11.67 9:00 8:30

Flickr 315:47 97.01 834:41 119:96

LiveJournal 159:93 49.21 145:75 59:66

Twitter 44:21 41.75 20:84 19:73

All 66:69 26.82 282:10 41:13

the average degree and the degree standard deviation of bridges are higher than the
corresponding ones of non-bridges for all the social networks of the SIS; in other
words, this trend, valid for the SIS in the whole, is general and not specific for some
social network.

In other words, BDS confirms the same results obtained in [11] with the other
crawling techniques, and, in turn, this represents a further confirmation of Fact (ii)
introduced in Sect. 3.

Continuing the analysis of Fig. 2, we can observe a relevant discontinuity of the
CDF for both bridges and non-bridges around the degrees 35–40. Indeed, we have
that the probability to find a bridge with less than 35 contacts is about 0.5, and that
this probability becomes 0.75 for bridges with less than 40 contacts. The same trend
occurs for non-bridges. This may be explained by considering that there exist two
typologies of social network users. The former is composed by users who joined a
social network for a short time, adding a limited (less than 40) number of friends.
The latter refers to users who are active and, therefore, have an increasing number of
contacts. The former typology raises the CDF values in the initial range (say 0–40),
generating the observed discontinuity.

4.2 Bridges and Power Users

As seen in the previous section, bridges have an average degree higher than that of
non-bridges. A question arises spontaneously: Are bridges power users? As a matter
of fact, according to the definition given in [56], power users are nodes having a
degree higher than the average degree of the other nodes. Indeed, if bridges were
power users, for their detection it is possible to exploit the techniques for power
user extraction already proposed in the literature. In the previous experiment, we
measured that average degree of bridges is 66.69, whereas that of non-bridges is
26.82. The average degree of all nodes is 30.67, which is the reference value for
classifying a node as power users. Looking at the average degrees, we may expect
that bridges are actually power users. However, because degrees follow a power law
distribution, this conjecture may be wrong.

To solve this question, we have to understand how much the set of power users
and that of bridges overlap. Specifically, we denote by P the set of power users and
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by B the set of bridges. Then, we measure the fraction of bridges that are power
users and the fraction of power users that are bridges. The obtained results are:
jP \Bj

jBj D 0:49 and jP \Bj
jP j D 0:14. They show that half of bridges are power users,

whereas only few power users are bridges.
To better understand this phenomenon, we extend the concept of power user by

introducing the notion of the strength of a power user. In particular, we say that
a power user is an s-strength power user if its degree is s times higher than the
average degree of nodes. Clearly, a standard power user corresponds to a 1-strength
power user. Now, we compute jP \Bj

jBj and jP \Bj
jP j for increasing values of the strength

of power user. The results of this experiment are shown in Fig. 4.
Here, it is possible to see that initially half of the bridges are power users.

However, the percentage of bridges that are s-strength power users decreases as
s increases. This allows us to conclude that bridges are not “strong” power users.
Viceversa, the percentage of power users that are bridges increases as s increases.
This allows us to conclude that the probability of finding a bridge among the
strongest power users is higher than that of finding a bridge among the weak power
users. However, this probability is never higher than 0.35.

In any case, both the (decreasing) trend of jP \Bj
jBj and the low values of jP \Bj

jP j
allow us to conclude that there does not exist a meaningful correlation between
bridges and power users.

4.3 Ties Among Bridges and Non-bridges

In this analysis, we aim at studying whether bridges have preferential ties among
them, i.e., whether they are more likely to be connected to each other than to non-
bridges. A possible way to carry out this verification is to compute the distribution of
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the lengths of the shortest paths among bridges and among nodes in the SIS. Indeed,
if these distributions are similar and the maximum lengths of the shortest paths
connecting two nodes and two bridges are comparable, it is possible to conclude
that no preferential tie exists among bridges. By contrast, if the maximum length
of the shortest paths connecting two bridges is less than that of the shortest paths
connecting two nodes and/or the distributions are dissimilar in the sense that the one
of bridges raises much faster than the one of non-bridges, it is possible to conclude
that bridges are likely to be connected to each other. The results of this experiment
are shown in Fig. 5.

From the analysis of this figure, we can see that the distribution of bridge distance
follows the same trend of that of node distance. Moreover, the effective diameter
(90-th percentile of the distribution of the lengths of the shortest paths) measured
for nodes and bridges is about 12 and 11, respectively. This allows us to conclude
that no preferential connection favoring the link among bridges exists.

Interestingly enough, this experiment supplies us a further hint about the node to
be used as seed in a crawling task for a SIS: Indeed, we cannot rely on a particular
seed to enhance the percentage of bridges in a crawled sample, because a backbone
among bridges does not exist.

4.4 Bridge Centrality

This experiment is devoted to analyze the centrality of bridges in a SIS. Centrality
is one of the most important measures adopted in Social Network Analysis to
investigate the features of nodes in a social network. Basically, there are four main
centrality metrics, namely degree, betweennes, closeness and eigenvector [20]. In
this experiment, we focus on betweenness because it computes the centrality of a
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Table 9 Centrality of
bridges and non-bridges

Bridges Non-bridges

Twitter 2,404 2,758
Flickr 643 652
LiveJournal 33 36
YouTube 3,779 5,685
All 23,100 12,156

node by quantifying how much it is important in guaranteeing the communication
among other nodes and, therefore, how much it acts as bridge along the shortest
paths of other nodes.

We expect that bridges have a high betweenness value in the whole SIS. In this
experiment, we aim at verifying this intuition and, in the affirmative case, at studying
if they maintain this property in the single social networks they joined.

For this purpose, we compute the betweennes of each node in our samples
by means of SNAP (Stanford Network Analysis Platform) [56] and we average
the corresponding values for bridges and non-bridges. The results are reported in
Table 9.

By analyzing this table, we can observe that the intuition about the high
betweennes of bridges in the whole SIS is fully confirmed. By contrast, in the single
social networks, the values of betweennes of bridges are comparable or less than
those of non-bridges. At a first glance, this result is unexpected because it appears
immediate to think that a bridge can maintain its role of connector also in the single
social networks joined by it. Actually, a more refined reasoning leads us to conclude
that often bridges, just for their role, are at the borders of their social networks, and
this partially undermines their capability to be central.

5 Conclusion

In this paper, first we have investigated the problem of crawling Social Internetwork-
ing Scenarios. We have started from the consideration that existing crawling strate-
gies are not suitable for this purpose. In particular, we have analyzed the state-of-the-
art techniques, which are BFS, RW and MH, showing experimentally that the above
claim is true. On the basis of this result, by analyzing the reasons of the drawbacks
of existing crawling strategies, we have designed a new one, called BDS (Bridge-
Driven Search), specifically conceived for a SIS. We have conducted several exper-
iments showing that, when operating in a SIS, BDS highly outperforms BFS, RW
and MH, and arguing that BDS presents a good behavior also in intra-social-network
crawling. Besides the overall conclusion mentioned above, we have seen that BDS
is highly flexible as it allows a metric to be privileged over another one. After having
validated BDS, we have exploited it to explore the emergent scenario of Social Inter-
networking from the perspective of Social Network Analysis. Being aware that the
complete investigation of all the aspects of SISs is an extremely large task, we have
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identified the most basic structural peculiarity of these systems, i.e. bridges, and we
have deeply studied it. We argue that most of the knowledge about the structural
properties of SISs, and possibly about the behavioral aspects of users, starts from
the adequate knowledge of bridges, which are the structural pillars of SISs.

We think that SIS analysis is a very promising research field and so we plan
to perform further research efforts in the future. In particular, one of the most
challenging issue is the improvement of the BDS crawling strategy in such a
way that the values of nf , bf and btf dynamically change during the crawling
activity to adapt themselves to the specificities of the crawled SIS. Moreover, we
plan to investigate the possible connections of our approach with the information
integration ones, as well as to deal with the privacy issue arising when crawling
SISs. Another important future development regards the exploitation of BDS
(or its evolutions) to perform a deeper investigation of SISs. In this context, it
appears extremely promising to apply Data Warehousing, OLAP and Data Mining
techniques on SIS samples derived by applying BDS to derive knowledge patterns
about SISs.
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