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Alessia Amelio and Clara Pizzuti

Abstract The detection of overlapping communities is a challenging problem
which is gaining increasing interest in recent years because of the natural attitude
of individuals, observed in real-world networks, to participate in multiple groups
at the same time. This review gives a description of the main proposals in the
field. Besides the methods designed for static networks, some new approaches that
deal with the detection of overlapping communities in networks that change over
time, are described. Methods are classified with respect to the underlying principles
guiding them to obtain a network division in groups sharing part of their nodes. For
each of them we also report, when available, computational complexity and web
site address from which it is possible to download the software implementing the
method.

1 Introduction

Complex networks constitute an efficacious formalism to represent the relationships
among objects composing many real world systems. Collaboration networks, the
Internet, the world-wide-web, biological networks, communication and transport
networks, social networks are just some examples. Networks are modeled as graphs,
where nodes represent objects and edges represent interactions among these objects.
One of the main problems in the study of complex networks is the detection of
community structure, i.e. the division of a network into groups (clusters or modules)
of nodes having dense intra-connections, and sparse inter-connections. In the last
few years many different approaches have been proposed to uncover community
structure in networks.
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Much of the effort in defining efficient and efficacious methods for community
detection has been directed on finding disjoint communities. However, communities
may overlap, i.e. some nodes may belong to more than one group. The membership
of an entity to many groups is very common in real world networks. For example, in
a social network, a person may participate in several interest groups, in collaboration
networks a researcher may collaborate with many groups, in citation networks
a paper could involve more than one topic, in biological networks proteins play
different roles in the cell by taking part in several processes.

In this review a description of the most recent proposals for overlapping
community detection is given, and a classification in different categories is provided.
Algorithms have been classified by taking into account the underlying principles
guiding the methods to obtain network division in groups sharing part of their nodes.

Many recent reviews describing community detection algorithms have been
published [7,11,12,20,38]. However, our review differs from those of [7,11,12,20]
since we focus only on overlapping approaches, and from [38] because also dynamic
approaches are described.

The paper is organized as follows. The next section gives some preliminary
definitions necessary for the description of the approaches. Section 3 introduces the
method categorization proposed in this review. Section 3.1 describes node seeds
and local expansion methods. Section 3.2 considers clique expansion methods.
Section 3.3 describes link clustering algorithms. Section 3.4 presents label prop-
agation approaches. Methods for which a categorization in one of the defined
classes was not possible are reported in Sect.3.5. Section 3.6 considers the more
recent proposals for dynamic networks. Section 4 gives some information regarding
benchmarks that can be used to test algorithm performance. Finally, Sect.5 gives
some final considerations on the described methods and concludes the paper.

2 Preliminaries

In this section some basic definitions, necessary for a clear understanding of the
concepts described in the survey, are given.

A network .4/ can be modeled as a graph G = (V, E) where V is a set of
n =| V | objects, called nodes or vertices, and E is a set of m =| E | links,
called edges, that connect two elements of V. A community in a network is a
group of vertices (i.e. a subgraph) having a high density of edges among them,
and a lower density of edges between groups. In [11] it is observed that a formal
definition of community does not exist because this definition often depends on
the application domain. Nevertheless, an impressive number of methods has been
proposed to detect communities in complex networks. Before starting with the
description of overlapping approaches, it is necessary to introduce the concept of
modularity because of its popularity and large use among researchers.

The concept of modularity has been originally defined by Girvan and Newman
[26] as quality function to evaluate the goodness of a partition. Along the years,
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however, it has been accepted as one of the most meaningful measures to partition
a network, that more closely agrees with the intuitive concept of community on a
wide range of real world networks.

The idea underlying modularity is that a random graph has not a clustering
structure, thus the edge density of a cluster should be higher than the expected
density of a subgraph whose nodes are connected at random. This expected edge
density depends on a chosen null model. Modularity can be written in the following
way:

1
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where A is the adjacency matrix of the graph G, m is the number of edges of G,
and P; is the expected number of edges between nodes i and j in the null model.
§ is the Kronecker function and yields one if i and j are in the same community,
zero otherwise. When it is assumed that the random graph has the same degree
distribution of the original graph, P; = ]L’]:f, where k; and k; are the degrees of

2
nodes i and j respectively. Thus the modularity expression becomes:
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Since only the pairs of vertices belonging to the same cluster contribute to the sum,
modularity can be rewritten as

S d
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where k is the number of modules found inside a network, / is the total number of
edges joining vertices inside the module s, and d; is the sum of the degrees of the
nodes of s. Thus the first term of each summand is the fraction of edges inside a
community, and the second one is the expected value of the fraction of edges that
would be in the network if edges fell at random without regard to the community
structure. Values approaching 1 indicate strong community structure.

3 Methods

In this section, methods for the detection of overlapping communities are described.
They have been classified in six different categories on the base of the methodology
employed to identify communities. The categories are the following:

* Node seeds and local expansion
* Clique expansion



108 A. Amelio and C. Pizzuti

* Link clustering

» Label propagation
¢ Other approaches
* Dynamic networks

For each category, a short description of the main common features among
algorithms of that class is provided.

3.1 Node Seeds and Local Expansion

The idea underlying these approaches is that starting from a node or a small set
of nodes, a community can be obtained by adding neighboring nodes that improve
a quality function. The quality function characterizes the structure of the obtained
clustering.

Baumes et al. [4] introduced the concept of density function and defined a
community as a subgraph that is locally optimal with respect to this density function.
The internal p;, and external p,, edge intensities of a community C are defined as

' _ L _ Eour(c)
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where E(C) is the number of internal edges of C and E,,(C) is the number of
edges from nodes of C towards nodes not belonging to C. Three weight or metric
functions are defined to assign a weight to a graph. The internal edge probability

W, = pin(C) ®)
that coincides with the internal edge density, the edge ratio
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and the intensity ratio
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These metrics measure the intensity of communication within the clusters, and can
be efficiently updated when a new node is added or removed from the cluster.
Finally, to measure the difference between two clusters, the Hamming, or edit
distance, and the percentage of non-overlap are defined.

In order to find overlapped communities, the authors proposed two methods. The
first algorithm, Iterative Scan (IS), starts by choosing an edge at random, called seed,
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and adds or removes one vertex at a time until the chosen density metric improves.
When no more improvement can be obtained, the algorithm stops and it is restarted
with a new seed. Overlapping is possible because the restart process can reassign
nodes already present in a cluster to another new forming community.

The second algorithm, Rank Removal (RaRe), assumes that there are some high-
ranking nodes which, when removed from the graph, disconnect the graph into
smaller connected components, called cores. The deleted nodes are then added to
one or more cores. This means that the overlapping between two clusters is possible
only through these vertices.

To validate the methods, the Hamming distance between each cluster of the true
clustering and the obtained clustering is computed, then the average of all these
distances is considered.

The choice of a random edge can negatively influence the result of /.S. Thus the
same authors modified their Iterative Scan method and proposed a more efficient
algorithm for finding overlapping communities [3], named /S?2, that combines
IS and RaRe. IS? also relies on a new strategy for initializing seed clusters able
to compute the ranking of each node only once. The strategy is based on the
observation that the only nodes capable of increasing cluster density are either the
members of the cluster itself or members of the immediate neighborhood clusters,
where neighboring clusters are those containing nodes adjacent to a node inside the
cluster. Thus, rather than visiting each node for each iteration, nodes not belonging
to one of these two groups can be skipped over.

Another variation of the /.S method, that ensures connectivity of the detected
communities, is described in [15].

Lancichinetti et al. [21] proposed a method to detect overlapping and hierarchical
community structure, in the following referred as LFM, based on the concept of
fitness of nodes belonging to a community S. Let k() and k?/(S) be the internal
and external degrees of the nodes belonging to a community S. The fitness of S is
then defined as
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where «, called resolution parameter, is a positive real-valued parameter controlling
the size of the communities. When k*/(S) = 0 Vi, % reaches its maximum value
for a fixed «. The community fitness has been used in [21] to find communities one
at a time. Node fitness with respect to a community S is defined as the variation of
community fitness of S with and without the node i, i. e.

Fs = Fsoy — Fs—iiy ©)]
The method starts by picking a node at random, and considering it as a commu-

nity S. Then a loop over all the neighbor nodes of S, not included in S, is performed
in order to choose the neighbor node to be added to S. The choice is done by
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computing the node fitness for each node, and augmenting S with the node having
the highest value of fitness. At this point the fitness of each node is recomputed,
and if a node turns out to have a negative fitness value it is removed from S. The
process stops when all the not yet included neighboring nodes of the nodes in S
have a negative fitness. Once a community has been obtained, a new node is picked
and the process restarts until all the nodes have been assigned to at least one group.
The authors found that the divisions obtained for the resolution parameter ¢ = 1
are relevant. However, they introduce a criterion to choose a clustering based on the
concept of stability. A clustering is considered stable if it is delivered for a range of
values of . The length of this range determines the more stable division, which is
deemed the best result.

A different approach is applied by Lancichinetti et al. in [23] to choose the
neighbor of a node to add to a cluster S. In fact, a method called OSLOM uses
a statistical test to grow a community S by evaluating the statistical significance
of a node. The intuition under the approach is that, if a vertex v shares many more
edges with the nodes of S than expected in the null model, then the relationship
between v and S is unexpectedly strong, thus v can be included in S.

DOCS (Detecting Overlapping Community Structures) [36] is a method based
on an approach of global division followed by local expansion. DOCS uses classical
spectral graph partitioning and random walk techniques. It first applies a spectral
bi-section method with multi-level recursion to generate seed groups, and then
employs a process of local expansion to add a vertex to the current cluster. The local
optimization process randomly walks over the network from the seeds. In particular,
the locally-optimal expansion process is based on the concept of modularity Q. At
each time step, the scanned vertices are sorted in descending order with the degree
normalized probabilities. If a vertex brings better O change to the community
candidates, it may be absorbed as a new member of the community structure.
Furthermore, the algorithm, besides trying to achieve a good Q value, takes also
into account the overlapping rate of the discovered communities. The user must fix
a threshold #, and the expansion is continued until the overlapping rate is beyond
the ¢ value.

Moses [25] is a greedy algorithm that optimizes a global objective function based
on a statistical network model. In this model a graph is represented by a random
symmetric adjacency matrix. The objective function computes the maximum like-
lihood estimators from the observed likelihood. Moses selects an edge (u,v) at
random and the community C = {u, v} constituted by the two corresponding nodes
is built by expanding it with new nodes taken from the set of neighboring nodes not
yet added to C. Nodes are selected such that the objective function is maximized,
and expansion continues until the highest value of the objective is obtained. Since
edges are chosen at random with replacement, the same edge could be selected many
times, and expanded in different communities. The algorithm periodically checks
for all the communities found so far if the removal of one community improves
the objective function. Furthermore, a tuning phase at the end of the expansion is
performed. In this phase each node is removed from all the communities it has been
assigned, and added to the communities to which it is connected by an edge. The
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change is accomplished only if the objective function increases. Moses has been
compared with the methods LFM of Lancichinetti et al. [20], COPRA of Gregory
[18], Iterative Scan (IS) of Baumes et al. [4], GCE of Lee et al. [24], CFinder of
Palla et al. [29] . The authors performed experiments by varying the overlap to
range from one to ten communities per node, i.e. a node can participate from one
until ten communities. They found that when the average overlap increases, Moses
is able to recover community structure better than the other methods.

3.2 Clique Expansion

Clique expansion methods are similar to the approaches described in the previous
section. However, they consider as seed cores highly connected sets of nodes
constituted by cliques, and then generate overlapping communities by merging these
cliques, applying different criteria.

CFinder [1] is a system to identify and visualize overlapped, densely connected
groups of nodes in undirected graphs. It also allows to navigate the original
graph and the communities found. The search algorithm CFinder uses the Clique
Percolation Method [29] to find k-clique percolation clusters. A k-clique is a
complete subgraph constituted by k nodes. Two cliques are said adjacent if they
share exactly k — 1 nodes. A k-clique percolation cluster is defined as the union
of all k-cliques that can be reached from each other through a series of adjacent
k-cliques. The parameter k has to be provided in input. The higher the value of
k, the smaller the size of the highly dense groups. The authors suggest that a value
between 4 and 6 gives the richest group structure. CFinder works as follows. First of
all, the community finding algorithm extracts all the maximal complete subgraphs,
i.e. the cliques. Then a clique-clique overlap matrix is prepared. In this matrix each
row (and column) corresponds to a clique, the diagonal contains the size of the
clique, while the value contained in the position (i, j) is the number of common
nodes between the cliques i and j. K-clique communities are obtained by deleting
every element on the diagonal smaller than k, and every element off the diagonal
smaller than k — 1, replacing the remaining elements by one, and finally finding the
connected components in the modified matrix.

Shen et al. [35] proposed a hierarchical agglomerative algorithm named EAGLE
(agglomerativE HierarchicAL clusterinG based on maximaL cliquE) to uncover
hierarchical and overlapping community structure in networks. The method is based
on the concepts of maximal cliques, i.e. cliques that are not a subset of another
clique, and subordinate maximal cliques, i.e. maximal cliques whose vertices
are contained in some other larger maximal clique. Fixed a threshold k, all the
subordinate maximal cliques with size smaller than k are discarded. The deletion
of these cliques implies that some vertices do not belong to any maximal clique.
These vertices are called subordinate vertices. The algorithm starts by considering
as initial communities the maximal cliques and the subordinate vertices. Then,
for each couple of communities, the similarity between them is computed and
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the two groups with maximum similarity are merged. This process is repeated
until only one community remains. The similarity M between two communities
is defined by specializing the concept of modularity, introduced by Newmann, for
two communities Cy and C;:

1 kyky
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where m is the total number of edges in the network, A is the adjacency matrix of
the network, k, is the degree of node v. The evaluation of the results obtained is
performed by computing an extended modularity value EQ that takes into account
the number of communities a node belongs to. This value is computed as follows:

1 1 k.k,
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where O, is the number of communities to which v belongs. The value of EQ is
used by the authors to cut the generated dendrogram and to select the community
structure having the maximum extended modularity value. Experiments on two real
life networks show that the results obtained are meaningful.

Greedy Clique Expansion (GCE) is a community detection algorithm proposed
by Lee at al. [24] that assigns nodes to multiple groups by expanding cliques of
small size. A clique is considered as the seed or core of a community C, and it is
used as starting point to obtain C by greedily adding nodes that maximize a fitness
function. The fitness function adopted is that proposed by Lancichinetti et al. [20].
The algorithm first finds the maximal cliques contained in the graph G representing
the network, with at least & nodes. Then it creates a candidate community C’ by
selecting the largest unexpanded seed and adding the nodes contained in the frontier
that maximize the fitness function. This expansion is continued until the inclusion
of any node would lower the fitness. At this point GCE checks if the community
C’ is near-duplicate, i.e. C’ is compared with all the already obtained communities,
and it is accepted only if it is sufficiently different from these communities. All
the steps are repeated until no seeds remain to be considered. In order to decide
if a community is near-duplicate, a distance measure between communities, based
on the percentage of uncommon nodes, is introduced. This measure is defined as
follows. Given two communities .S and S’,

| SNS|
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This measure can be interpreted as the proportion of nodes belonging to the smaller
community that are not members of larger community. Fixed a parameter € as the
minimum community distance, and a set of communities W, the near-duplicates of
S are all the communities in W that are within a distance € from S.
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GCE has been compared with other state-of-the-art overlapping community
detection methods, and, analogously to Moses, it performs better when the number
of communities that a node can belong to increases from 1 to 5.

3.3 Link Clustering

Link clustering methods propose to detect overlapping communities by partitioning
the set of links rather than the set of nodes. To this end, the line graph is used.
The line graph L(G) of an undirected graph G is another graph L(G) such that
(1) each vertex of L(G) represents an edge of G, and (2) two vertices of L(G)
are adjacent if and only if their corresponding edges share a common endpoint
in G. Thus a line graph represents the adjacency between edges of G. The main
advantage of applying clustering to the line graph is that it produces an overlapping
graph division of the original interaction graph, thus allowing nodes to be present in
multiple communities.

Pereira et al. [30] have been the first in using the line graph to find overlapping
modules for protein—protein interaction networks. To this end they applied a well
known method (MCL [8]) for protein interaction networks to the line graph.

Evans and Lambiotte [10] argued that any algorithm that partitions a network
can be applied to partition links for discovering overlapping community structure.
They first reviewed a definition of modularity which uses statistical properties of
dynamical processes taking place on the edges of a graph, and then proposed link
partitioning by applying the new modularity concept. In particular, the traditional
modularity Q is defined in terms of a random walker moving on the links of the
network. Such a walker would therefore be located on the links instead of the nodes
at each time 7, and its movements are between adjacent edges, i.e. links having
one node in common. Three quality functions for partitioning links of a network G
have been proposed. Each formalizes a different dynamical process and explores the
structure of the original graph G in a different way.

In the first dynamical process, Link-Link random walk, the walker jumps to any
of the adjacent edges with equal probability. In the second process, Link-Node-Link
random walk, the walker moves first to a neighboring node with equal probability,
and then jumps to a new link, chosen with equal probability from those new edges
incident at the node. In the last process, the dynamics are driven by the original
random walk but are projected on the links of the network. The stabilities of the
three processes have been defined by generalizing the concept of modularity to paths
of arbitrary length, in order to tune the resolution of the optimal partitions. The
optimal partitions of these quality functions can be discovered by applying standard
modularity optimization algorithms to the corresponding line graphs. An extension
to deal with weighted line graphs is reported in [9].

GA-NET+ is amethod proposed by Pizzuti [31] that employs Genetic Algorithms
[14]. A Genetic Algorithm (GA) evolves a constant-size population of elements
(called chromosomes) by using the genetic operators of reproduction, crossover and
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mutation. Each chromosome represents a candidate solution to a given problem and
it is associated with a fitness value that reflects how good it is, with respect to the
other solutions in the population. The method uses the concept of community score
to measure the quality of the division in communities of a network. Community
score is defined as follows.

Let u; denote the fraction of edges connecting node i to the other nodes in a
community S. More formally

1
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where | S | is the cardinality of S, and k/"(S) = ZjeS Aj; is the number of edges
connecting i to the other nodes in S.
The power mean of S of order r, denoted as M(.S) is defined as
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The volume vg of a community S is defined as the number of edges connecting
vertices inside S, i.e the number of 1 entries in the adjacency sub-matrix of A4
corresponding to S, vs = 3, ;e Aj.

The score of S is defined as score(S) = M(S) x vs. The community score of a
clustering {S1, ... Sk} of a network is defined as

k
€S = Zscore(S,-) (14)

Community score gives a global measure of the network division in communities
by summing up the local score of each module found. The problem of community
identification can then be formulated as the problem of maximizing ..

The algorithm tries to maximize %% by running the genetic algorithm on the
line graph L(G) of the graph G modeling the network. As already pointed out, a
main advantage in using the line graph is that the partitioning of L(G) obtained
by GA-NET+ corresponds to an overlapping graph division of G. The method uses
the locus-based adjacency representation. In this representation an individual of the
population consists of N genes g1, ..., gn and each gene can assume allele values j
in the range {1, ..., N }. Genes and alleles represent nodes of the graph G = (V, E)
modelling a network .4, and a value j assigned to the ith gene is interpreted as a
link between the nodes i and j of V, thus in the clustering solution found i and j
will be in the same cluster. GA-NET+ starts by generating a population initialized
at random with individuals representing a partition in subgraphs of the line graph
L(G). After that, the fitness of the individuals from the original graph must be
evaluated and a new population of individuals is created by applying uniform
crossover and mutation. The dense communities present in the network structure
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are obtained at the end of the algorithm, without the need to know in advance the
exact number of groups. This number is automatically determined by the optimal
value of the community score.

Ahn et al. [2] proposed a hierarchical agglomerative link clustering method to
group links into topologically related clusters. The algorithm applies a hierarchical
method to the line graph by defining two concepts: link similarity and partition
density. Link similarity is used during the single-linkage hierarchical method to
find the pair of links with the largest similarity in order to merge their respective
communities. This similarity measure is defined as follows. Let a node i be given,
the inclusive neighbors of i are

ny(i) ={x[d(i.x) =1} 5)

where d (i, x) is the length of the shortest path between nodes i and x. Thus n4 (i)
contains the node itself and its neighbors. Then, the similarity S between two links
ej; and ej; can be defined by using the Jaccard index:

e () Nng(j) |
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The similarity between links is also extended to networks with weighted, directed,
or signed links (without self-loops). The agglomerative process is repeated until
all links belong to a single cluster. To find a meaningful community structure, it is
necessary to decide where the built dendrogram must be cut. To this end, the authors
introduce a new quantity, the partition density D, that measures the quality of a link

partitioning.
Partition density is defined as follows. Let m be the number of links of a given
network, and { Py, ..., Pc} the partition of the links in C subsets. Each subset P.

has m, =| P, | links and n, =| U,,ep i, j} | nodes. Then

me— (n, —1) o, me—(nc—1)
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is the normalization of the number of links m, by the minimum and maximum
number of possible links between n. connected nodes. It is assumed that D, = 0
when n, = 2. The partition density D is the average of the D., weighted by the
fraction of present links:

2 me — (ne — 1)
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The authors, in order to compare their approach with other state-of-the-art methods,

introduce four measures. Two measures, community quality and overlap quality, are

based on metadata known possessed by some networks studied in the literature.

These metadata consist of a small set of annotations or tags attached to each node.
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The other two measures, community coverage and overlap coverage, consider the
amount of information extracted from the network. Community coverage counts the
fraction of nodes that belong to at least one community of three or more nodes,
called nontrivial communities. The authors state that this measure provides a sense
of how much of the network is analyzed. Overlap coverage counts the average
number of membership per nodes to nontrivial communities. When the communities
are not overlapping, the two coverage measures give the same information.

3.4 Label Propagation

In label propagation approaches a community is considered a set of nodes which are
grouped together by the propagation of the same property, action or information in
the network.

Gregory in [19] proposed the algorithm COPRA (Community Overlap PRopaga-
tion Algorithm), as an extension of the label propagation technique of Raghavan et
al. [32]. The main modification consists in assigning multiple community identifiers
to each vertex. The method, thus, associates with each vertex x a set of couples
(c, b), where ¢ is a community identifier and b is a belonging coefficient expressing
the strength of x as member of community ¢. COPRA starts by giving to each
vertex a single label with belonging coefficient set to 1. Then, repeatedly, each
vertex x updates its labels by summing and normalizing the belonging coefficients
of its neighboring nodes. The new set of x’s labels is constituted by the union
of its neighbor labels. However, in order to limit the number of communities a
vertex can participate, a parameter v must be given in input. In particular, the
labels whose belonging coefficient is less that 1/v are deleted. COPRA has a
nondeterministic behavior when all the belonging coefficients corresponding to the
labels associated with a vertex are the same, but below the threshold. In such a
case a randomly selected label is maintained, while the remaining are discarded.
Finally, communities totally contained in others are removed, and disconnected
communities that could be generated are split in connected ones.

Wau et al. in [37] pointed out that the input parameter v makes COPRA unstable
since it is a global vertex-independent parameter not taking into account that, often,
most nodes are non-overlapping, while few nodes participate in many communities.
Thus an appropriate choice of v is difficult and it induces the non-determinism
described above. To overcome this shortcoming, Wu et al. proposed BMLPA
(Balanced Multi-Label Propagation Algorithm), a method based on a new label
update strategy that computes balanced belonging coefficients, and does not limit
the number of communities a node can belong to. A balanced belonging coefficient
is computed by normalizing each coefficient by the maximum value a vertex has,
and retaining it only if its normalized value is above a fixed threshold p. Another
characteristic introduced by BMLPA is the initialization process of vertex labels
based on the extraction of overlapping rough cores. Such cores allow BMLPA to
efficiently assign labels to each node, and to effectively update labels since the
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threshold p, independently the value chosen, would make the new update strategy
not work well because each node would retain all the labels of its neighbors.

SLPA [39, 40] is another extension of the label propagation technique of
Raghavan et al. [32] that adopts a speaker—listener based information propagation
process. Each node is endowed with a memory to store the labels received. It can
have both the role of listener and speaker. In the former case it takes labels from the
neighbors and accepts only one following a listening rule, such as the most popular
observed at the current step. If it is a speaker, it sends a label to the neighboring
listener node by choosing a label with respect to a certain speaker rule, such as
single out a label with probability proportional to its frequency in the memory. The
algorithm stops when a fixed number ¢ of iterations has been reached.

3.5 Other Approaches

In this section methods which could not be categorized in one of the above classes
are reported.

Zhang et al. [41] developed an algorithm for detecting overlapping community
structure by combining modularity concept, spectral relaxation and fuzzy c-means.
In particular, a new modularity function extending the Newman’s modularity
concept is introduced to take into account soft assignments of nodes to commu-
nities. The problem of maximizing the modularity function is reformulated as an
eigenvector problem. Fixed an upper bound to the number k of communities, the top
k —1 eigenvectors of a generalized eigen system are computed, and a mapping of the
network nodes into a d -dimensional Euclidean space is performed, where d < k—1.
After that, fuzzy c-means clustering is applied to group nodes by maximizing the
modified modularity function.

In [16] Gregory presented a hierarchical, divisive approach, based on Girvan
and Newman’s algorithm (GN) [13], but extended with a novel method of splitting
vertices. CONGA (Cluster-Overlap Newman Girvan Algorithm ) adds to the GN
algorithm the possibility to split vertices between communities, based on the
concept of split betweenness. This concept allows to choose either to split a vertex
or remove an edge. The edge betweenness of an edge e is the number of shortest
paths, between all pairs of vertices, that pass along e. A high betweenness indicates
that the edge acts as a bottleneck between a large number of vertex pairs and
suggests that it is an inter-cluster edge. The split betweenness of a vertex v is the
number of shortest paths that would pass between the two parts of v if it were split.
A vertex can be split in many ways; the best split is the one that maximizes the split
betweenness. An approximate, efficient algorithm has been presented for computing
split betweenness and edge betweenness at the same time. In CONGA, a network
is initially considered as a single community, assuming it is connected. After one
or more iterations, the network is subdivided into two components (communities).
Communities are repeatedly split into two until only singleton communities remain.
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If binary splits are represented as a dendrogram, the network can be divided into
any desired number of communities.

CONGA has a complexity of O(m?), where m is the number of edges, thus it is
rather inefficient. A faster implementation of CONGA, named CONGO, that uses
local betweenness and runs in O(m log m) is proposed by the same author in [17].

Chen et al. in [6] proposed an approach to find communities with overlaps
and outlier nodes based on visual data mining. They consider a community as a
network partition whose entities share some common features and a relationship
metric is adopted to evaluate the proximity of the entities each other. Such metric
is based on the notion of random connections useful to identify communities
which are considered as non-random structures. Furthermore, it takes into account
the neighborhood around any two nodes in order to evaluate their relationship.
An algorithm that generates an ordering of the network nodes according to their
relation scores is presented. From this ordered list of nodes, communities are
obtained by considering a consecutive group of nodes with high relation score. A 2D
visualization of these scores shows peaks and valleys, where a sharp drop of relation
scores after a peak is interpreted as the end of a community, while the valleys
between two peaks represent a set of hubs which belong to several communities.
By this visualization a user is requested to fix a community threshold and an outlier
threshold that allow the algorithm to decide whether a node should be considered
an outlier or be added to the current community. The authors state that the main
advantage of this visual mining approach is that a user can easily provide input
parameters that allow the method to find communities, hub nodes, and outliers.

Rees and Gallagher [33] proposed an approach to discover communities based
on the collective viewpoint of individuals. The base concept is that each node in
the network knows, by way of its egonet, the members of its friendship group.
An egonet is an induced subgraph composed of a central node, its neighbors,
and all edges among nodes in the egonet that are also links in the main graph.
Therefore, by merging each individual’s views of friendship groups, communities
can be discovered. The friendship groups represent the small clusters, extracted from
egonets, composed of the central node and connected neighbors. More friendship-
groups can be combined to create a community. The algorithm consists of two steps;
the first one is the detection of friendship groups, while the second step comprises
the merging of friendship groups into communities. In step one, the algorithm
iterates through every node in the graph, centering on the selected vertex and
computing the egonet. After that, friendship groups are extracted from that egonet,
and the central node is eliminated, since it is known to exist in multiple friendship
groups. Consequently, the graph breaks into multiple connected components. The
central vertex is then added back to each connected component obtained to create
the friendship groups. The output of the first phase is a set of friendship groups,
from an egocentric point of view. The second step consists in merging the groups
into communities. This process is done by first merging all exact matches, i.e. groups
that are complete or proper subsets of other groups. Finally, groups that are relatively
close, i.e. groups that match all but one element from the smaller group, are merged.
The process is repeated until no more merges can be performed.
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The same authors, in [34] presented a swarm intelligence approach for overlap-
ping community detection. A network is considered as a set of agents corresponding
to nodes characterized by neighbors. Each agent interacts with its social groups.
The agent knows the set of its friends and even which of their friends are also
friends. Friends agree on a common community ID inside the different social
groups or friendship groups. The algorithm consists of the following steps. First
of all, each agent is assigned an identifier ID. It determines a complete map of its
neighborhood and builds an egonet. Starting from the egonet, the friendship groups
can be extracted by a union-find algorithm. Each friendship group is identified by a
unique ID, composed by the base agent ID and a unique incrementing decimal value.
Secondly, within each friendship group, the agent will ask to its neighbors their
views of the friendship group (which can be various from different perspectives)
in order to identify the non-propagating nodes (nodes whose views differ from the
agent view and consequently their information is not further propagated). Finally,
the assigned friendship groups IDs are propagated. In particular, if the ID value on
one of the friendship groups has been modified, the new ID value will be spread to
the nodes inside the friendship group. The process is repeated until the convergence
in propagation has been reached. At the end of the process, each agent will have a
list of assigned communities. Communities can be easily detected because they are
groups of agents that share a common ID value.

3.6 Dynamic Networks

The methods described so far do not take into account an important aspect charac-
terizing networks: i.e. the evolution they go through over time. The representation
of many complex systems through a static graph, even when the temporal dimension
describing the varying interconnections among nodes is available, does not allow to
study the network dynamics and the changes it incurs over time.

Dynamic networks, instead, capture the modifications of interconnections over
time, allowing to trace the changes of network structure at different time steps.
Analyzing networks and their evolution is recently receiving an increasing interest
from researchers. However, there have been few proposals for the detection of
overlapping communities in dynamic social networks. In the following the more
recent methods aiming to seek out dynamic communities are described.

Palla et al. [28] have been among the first researchers to introduce an approach
that allows to analyze the time dependence of overlapping communities on a
large scale and as such, to uncover basic relationships characterizing community
evolution. Actually they argued that at each time step communities can be extracted
by using the Clique Percolation Method (CPM) [29]. The events that characterize
the life time of a community are growth or contraction, at each time step a new
community can appear, while others can disappear. Furthermore groups can merge
or split. In order to identify community evolution along time, the authors proposed
to merge networks of two consecutive time steps ¢ and # + 1, and then apply the CPM
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method to extract the new community structure of the joint network. Since the joined
graph contains the union of the links of the two graphs, any community from time
step f to t +1 can only grow, merge or remain unchanged, more than one community
can be merged into a single community, but no community may loose members.
Consequently, any community in one of the original networks can be contained
in exactly one community of the joined network. Communities in the joint graph
provide a way to match communities between time steps ¢ and ¢ + 1. If a community
in the joint graph contains a single community from 7 and a single community from
t + 1, then they are matched. If the joint group contains more than one community
from either time steps, the communities are matched in descending order of their
relative node overlap. Overlap is computed for every pair of communities from the
two time steps as the fraction of the number of common nodes to the sum of number
of nodes of both communities. Experiments on two real-life networks showed that
large groups remain alive if they undergo dynamic changes. On the contrary, small
groups survive if they are stable.

Cazabet et al. [5] introduced the concepts of intrinsic community and longitu-
dinal detection, and proposed an algorithm named iLCD (intrinsic Longitudinal
Community Detection) to discover highly overlapping groups of nodes. An intrinsic
community is considered one that owns a characteristic deemed meaningful, such
as for example being a 4-clique. Longitudinal detection means that, starting from
an intrinsic community, new members join gradually like the snowball effect. iLCD
considers the list of edges ordered with respect to the time they appeared, and, for
each edge(u, v) of the set of edges E; created at time ¢, it performs three steps. First,
for each community C which u (resp. v) belongs to, it tries to add v (resp. u), as
explained below. Then, if # and v do not already belong to any community, it tries to
create a new one; finally, similar communities are merged. The first step of updating
existing communities by the addition of new nodes is realized by estimating, for
each community, the mean number of second neighbors EMSN, i.e. nodes that
can be reached with a path of length 2 or less, and the mean number of robust
second neighbors EMRSN, i.e. nodes that can be reached with at least two paths
of length 2 or less. A new node is accepted in the community if the number of its
neighbors at rank 2 is greater than EMSN, or the number of its robust neighbors
at rank 2 is greater than EMRSN. The second step of creating a new community
checks whether the couple of nodes (u, v) constitutes a minimal predefined pattern,
like a 4-clique. This intrinsic property must be predetermined. Finally merging is
executed by fixing an overlap threshold, and when two communities have an overlap
above the threshold, the smaller is deleted and the greater is retained. This choice, as
the authors point out, limits the use of uncertain heuristics. Comparison with other
methods shows that this approach outperforms CPM only if the network is highly
dense.

Another recent proposal to detect overlapping communities in dynamic networks
is described in [27] by Nguyen et al. The method, named AFOCS (Adaptive Finding
Overlapping Community Structure), consists of two phases. In the first phase local
communities are obtained by searching for all the groups of nodes C whose internal
density
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where C ™ is the number of internal connections of C, i.e. the number of links having
both endpoints in C, is higher than a threshold t(C') defined as
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The local communities are then merged provided that their overlapping score is
higher than a value given as input parameter. The second phase adaptively updates
the communities obtained in the first step, by considering how the network evolves
over time. The authors individuate four major changes a network can incur: a new
node and its adjacent edges are either added or removed to/from the network; a
new edge connecting two existing nodes is added or an existing edge is removed.
The algorithm is able to obtain the new community structure by adopting the more
apt strategy to determine whether a community will split, or two communities will
merge. A comparison with existing approaches showed that AFOCS performances
are competitive with other methods, mainly as regards running time.

4 Benchmarks for Testing Algorithms

The capability of an algorithm in detecting community structure is usually validated
by testing the method on artificial or real world networks for which the division in
communities is known. Since the availability of ground-truth community structure
for large real networks is rather difficult, synthetic benchmarks built by specifying
parameters to characterize network structure are preferred.

One of the most known benchmarks for non-overlapping networks has been
proposed by Girvan and Newan in [13]. The network consists of 128 nodes divided
into four communities of 32 nodes each. Edges are placed between vertex pairs at
random but such that z;, + z,,, = 16, where z;, and z,,,,; are the internal and external
degree of a node with respect to its community. If z;, > z,,, the neighbors of a node
inside its group are more than the neighbors belonging to the other three groups,
thus a good algorithm should discover them. This benchmark, as observed in [20],
however, is rather simple since it is characterized by non-overlapping communities
having all the same size and by nodes having the same expected degree. Thus,
Lancichinetti et al. [22] proposed a new class of benchmarks that extends the Girvan
and Newman’s benchmark by introducing power law degree distributions, different
community size, and percentage of overlap between communities.
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Table 1 A summarization of the reviewed methods. For EAGLE, # is the number of pairs of
maximal cliques which are neighbors, and s is the number of maximal cliques; for GCE, / is the
number of cliques; for Ahn and AFOCS, d,,,,, is the maximum node degree; for GA-NET+ ¢ is the
number of generations and p the population size; for SLPA ¢ is the number of iterations performed

by the algorithm

Approach Method Reference Complexity
Node seeds and IS, RaRe Baumes et al.
local expansion IS%, CIS [3,4,15] O(mk + n)
LFM Lancichinetti et al.
OSLOM [21,23] on?)
DOCS Wei et al. [36] -
Moses McDaid and Hurley on?)
[25]
Clique CFinder Palla et al. O(m gt )
expansion CPM [1,29]
EAGLE Shen et al. [35] o>+ (n + h)s)
GCE Lee et al. [24] O(mh)
Line graph Evans Evans and Lambiotte O(2mk log n)
[9,10]
GA-NET+ Pizzuti [31] O(tp(m + m log m)
Ahn Ahn et al. [2] O(nd?,)
Label COPRA Gregory [19] O(vm log(vm/n))
propagation BMLPA Wu et al. [37] O(n log n)
SLPA Xie et al. [39,40] O(tm)
Dynamic CPM Palla et al. [29]
methods iLCD Cazabet et al. [5] O(nk?)
AFOCS Nguyen et al. [27] O(dypaem) + 0(n?)
Other FCM Zhang et al. [41] O (nk?)
methods CONGA Gregory [16] o(m?)
CONGO Gregory [17] O(m log m)
ONDOCS Chen et al. in [6] -
Egonet Rees and Gallagher [33]  O(n(log n)> + n? log n)
Swarm egonet Rees and Gallagher [34]  O(n log® n)
The benchmark is also characterized by the mixing parameter © = —“— that

ZintZour

gives the ratio between the external degree of a node and the total degree of the
node. When p < 0.5 the communities are well defined, thus a good algorithm
should discover them. The software is public and can be downloaded from http://
sites.google.com/site/andrealancichinetti/software.

5 Discussion and Conclusions

The paper reviewed state-of-the-art approaches for the detection of overlapped com-
munities. Methods have been classified in different categories. Node seed and local
expansion methods together with clique expansion approaches are characterized by


http://sites.google.com/site/andrealancichinetti/software
http://sites.google.com/site/andrealancichinetti/software
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Table 2 Methods for which it is possible to download the software

Reference Software

Lancichinetti et al. [21,23] https://sites.google.com/site/andrealancichinetti/software
McDaid and Hurley [25] https://sites.google.com/site/aaronmcdaid/downloads
Palla et al. [1,29] http://www.cfinder.org

Lee et al. [24] https://sites.google.com/site/greedycliqueexpansion
Evans and Lambiotte [9, 10] https://sites.google.com/site/linegraphs/

Pizzuti [31] http://www.icar.cnr.it/pizzuti/codes.html

Ahn et al. [2] https://github.com/bagrow/linkcomm

Gregory [19] http://www.cs.bris.ac.uk/~steve/networks/copra/

Wau et al. [37] http://dev.bjtu.edu.cn/bmlpa/

Xie et al. [39,40] https://sites.google.com/site/communitydetectionslpa
Cazabet et al. [5] http://cazabetremy.fr/Cazabet_remy/iLCD.html
Gregory [16] http://www.cs.bris.ac.uk/~steve/networks/congapaper/
Gregory [17] http://www.cs.bris.ac.uk/~steve/networks/congopaper/

the same idea of starting with a node (in the former case), or a group of nodes (in the
latter case) and then expanding the current cluster until the adopted quality function
increases. Link clustering methods detect overlapping communities by partitioning
the set of links rather than the set of nodes by using the line graph corresponding
to the network under consideration. Since generally the number of edges is much
higher than the number of nodes, these methods are computationally expensive.
Label propagation approaches are among the most efficient since they start from
a node and visit neighboring nodes to propagate class label. Approaches reported
in Sect.3.5 to find overlapping communities adopt strategies that substantially
differ from the others. Thus Zhang et al. [41] use modularity, spectral relaxation
and fuzzy c-means, Gregory [17] relies on the concept of split betweenness to
duplicate a node, Chen et al. [6] propose an interactive approach based on visual
data mining, Rees and Gallagher [33,34] use the concept of egonet and apply swarm
intelligence. Dynamic approaches try to deal with the problem of network evolution
and constitute a valid help in understanding changes a network might undergo over
time.

A summarization of the described methods is reported in Table 1. For each
method, when known, the computational complexity is reported. Furthermore, in
Table 2, a link to the web site from which it is possible to download the software
implementing the algorithm is given.

Though the number of approaches present in the literature is notably, the results
obtained by each of them are substantially different, thus there is no a universal
method that is competitive with respect to all the others for networks having
different characteristics such as sparsity, degree distribution, overlap percentage
among communities, and so on. As pointed out in [38], there are two questions
that researchers should focus on: “when to apply overlapping methods and how
significant the overlapping is”. Investigation on these issues and extensions to
weighted networks constitute open problems for future research.
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