
Multiscale Crowd Dynamics
Modeling and Theory

Andrea Tosin*

* Istituto per le Applicazioni del Calcolo “M. Picone”
Consiglio Nazionale delle Ricerche, Rome, Italy

Abstract This chapter deals with models of living complex sys-
tems, chiefly human crowds, by methods of conservation laws and
measure theory. We introduce a modeling framework which en-
ables one to address both discrete and continuous dynamical sys-
tems in a unified manner using common phenomenological ideas
and mathematical tools as well as to couple these two descriptions
in a multiscale perspective. Furthermore, we present a basic the-
ory of well-posedness and numerical approximation of initial-value
problems and we discuss its implications on mathematical modeling.

1 Introduction

By living complex systems we mean multi-agent systems composed by living
entities, which take part in group dynamics while trying to chase individ-
ual purposes. Specifically, in this chapter we will be concerned with human
crowds. We will assimilate pedestrians to active particles, the activity being
their ability to set one or more intermediate and final goals (such as e.g,
avoiding collisions with other particles, reaching a destination) and to act
directly on their own dynamics to chase them, without being passively prone
to external influences. This gives rise to collective dynamics based primar-
ily on individual behavioral rules. At times active particles cooperate for
chasing a group goal, like in consensus and rendez-vous problems studied
by Canuto et al. (2012). On other occasions, instead, they do not cooperate
consciously, which makes group dynamics more difficult to be predicted and
nevertheless often surprisingly ordered and coordinated: it is the so-called
self-organization, see Cristiani et al. (2010).

In order to model such systems it is necessary to set up mathematical
structures suitable to cope with their complexity, partly due to that overall
dynamics are ultimately multiscale. In fact, they originate from individual
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behaviors at the microscopic scale of single particles. Next, they are “ampli-
fied” by interactions among particles up to producing collective behaviors
at the macroscopic scale of the group, which cannot be directly deduced
from the knowledge of individual ones. Moreover, the collective state of the
group can in turn impact locally on the behavioral rules adopted by single
particles.

A large class of mathematical models uses conservation (or balance) laws,
expressing the fact that some physical quantities, such as mass, linear mo-
mentum, and energy of the system, either do not change during the evolution
or change in consequence of specific production/destruction mechanisms.
However, living systems can hardly be confined in strict balance principles.
For instance, their ability to elaborate behavioral strategies for chasing a
purpose makes them continuously put and remove energy from the system
in unconventional manners. Indeed entropy principles classically related to
the equiprobability of the states may be questioned, for self-organization
promotes special, usually inhomogeneous, configurations to the detriment
of more generic and homogeneous ones as stated by Schröedinger (1967).
Moreover, it may be difficult to ascribe the variations of linear momentum
to possibly “generalized” forces, because the dynamics of living systems
are not ruled purely by inertia. Of course, active particles do not elude
usual physical laws, rather they can influence them by means of personal
decisions, whose effects are not necessarily describable in terms of exter-
nal force fields. In other words, a straightforward application of the very
same ideas successfully used to describe other kinds of passive systems may
not completely fit active particles, because this analogy would forcedly miss
some distinctive features that heavily differentiate living from inert matter.

Among all classical balance principles mentioned above, probably the less
questionable one for the systems at hand is the conservation of mass: when
describing the evolution in space and time of human crowds it makes sense to
assume that no proliferation or destruction of pedestrians occur. Notice that
this does not imply by itself any specific dynamics of the interactions among
the individuals, it simply requires the conservation of their number. Thus
interactions can still be mechanical or non-mechanical, local or nonlocal,
binary or multiple, and so on.

Starting from the mass conservation principle, in this chapter we de-
scribe a unified mathematical framework which allows one to model crowd
dynamics by embedding the discrete description of individual pedestrians
and the continuous one of the collectivity. The key point is the reinterpreta-
tion of the continuity equation in terms of abstract mass measures featuring
a singular component (Dirac deltas), which represents the discrete level, and
an absolutely continuous one (with respect to the Lebesgue measure), which
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represents the continuous level. In more detail, in Section 2 we first intro-
duce the abstract equation and then specialize it to the case of pedestrian
interaction models. In Section 3 we discuss the use of the measure formu-
lation for obtaining discrete, continuous, and multiscale models, relating
furthermore the structure of the measure and the behavioral strategy of
pedestrians. In Section 4 we present the basic qualitative results concerning
well-posedness and numerical approximation of the Cauchy problem for the
mathematical structures previously deduced. Finally, in Section 5 we discuss
the relevance of these qualitative results as guidelines for the construction
of specific models which are both physically realistic and mathematically
robust.

2 Mathematical models by time-evolving measures

From the mathematical point of view, the mass of a d-dimensional system
(d = 1, 2, 3 for physical purposes) at time t is a Radon positive measure μt :
B(Rd) → R+ defined over the Borel σ-algebra B(Rd) in the physical space
R

d. In our case, for all measurable set E ∈ B(Rd) the number μt(E) ≥ 0
gives an estimate of the crowding of the region E ⊆ R

d at time t (ideally,
it can be thought of as the “average” number of pedestrians occupying the
region E at time t). In particular, if we consider a crowd composed by N
pedestrians then, owing to the mass conservation principle, we must have
μt(R

d) = N for all t. This can be expressed in differential form by saying
that the measure μt satisfies the equation:

∂μt

∂t
+∇ · (μtvt) = 0, (1)

where vt = vt(x) : R
d → R

d is, at time t, a transport velocity field. Equa-
tion (1) is written in a formal fashion but has to be properly understood in
the weak sense of distributions. For all test function φ ∈ C∞

c (Rd) and for
all t ∈ (0, Tmax], Tmax > 0 being a final time, it means:∫

Rd

φ(x) dμt(x) =

∫
Rd

φ(x) dμ0(x) +

∫ t

0

∫
Rd

vs(x) · ∇φ(x) dμs(x) ds, (2)

where μ0 is a positive Radon measure to be assigned, which represents the
initial distribution of the crowd. If the transport velocity is bounded, i.e.,
there exists a constant Vmax > 0 such that

|vt(x)| ≤ Vmax, ∀x ∈ R
d, t ∈ (0, Tmax],

it is not difficult to show that (2) implies indeed μt(R
d) = μ0(R

d) for all t ∈
(0, Tmax], hence actually the conservation of the total number of pedestrians
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Figure 1. a. Example of a desired velocity field vd in a domain formed by
two regions communicating through a narrow corridor. b. “True” velocity
v (cf. Equation (3)) when the interaction velocity vi among pedestrians is
added to the desired velocity. c. Crowd density field with generates the
true velocity illustrated in b.

as fixed at the initial time. It is sufficient to take a sequence {φm}m≥1 ⊆
C∞

c (Rd) of test functions such that 0 ≤ φm(x) ≤ 1 for all x ∈ R
d and all

m ≥ 1, with in addition φm(x)→ 1 and ∇φm(x)→ 0 pointwise for m→∞,
and then invoke the Dominated Convergence Theorem (the existence of such
a sequence is guaranteed by Uryshon’s Lemma).

2.1 Modeling pedestrian interactions

Equation (1), or alternatively (2), gives the time evolution of the crowd
distribution μt provided a transport velocity is assigned. Recalling the
discussion set forth in the Introduction, given the lack of a balance of linear
momentum to be coupled to the mass conservation it is necessary to model
directly the field vt.
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Other crowd models available in the literature follow similar ideas, see
e.g., Coscia and Canavesio (2008); Colombo and Rosini (2009). Typically,
pedestrian velocity is obtained from an empirical constitutive relationship,
the so-called fundamental diagram, which expresses it as a known function of
the distribution in space of the crowd in (locally) stationary homogeneous
conditions. Here we propose instead a modeling of vt more focused on
pedestrian interactions, in order to ground the dynamics directly on the
idea of active behavior discussed in the Introduction.

We write the velocity as the sum of two contributions:

vt(x) := vd(x) + vi[μt](x), (3)

where square brackets indicate a functional dependence on the measure μt.
The function vd : Rd → R

d is the desired velocity, i.e., the velocity at
which an isolated pedestrian would head for her destination. It is inde-
pendent of the system dynamics, being determined a priori only by the
geometry of the domain, including the presence of possible obstacles viewed
as holes in R

d, namely regions that pedestrian cannot access (Figure 1a).
Conversely, the function vi[μt] : R

d → R
d is the interaction velocity, i.e., the

correction that pedestrians make to the desired velocity due to mutual in-
teractions. It takes into account that individuals generally aim at avoiding
crowded areas, hence it adds a repulsive contribution to vd (Figures 1b-c).
Moreover, its effect is nonlocal, because pedestrians anticipate their own
decisions through a process of synthesis of the information about the crowd
distribution in the immediate vicinity. Out of these arguments, we set:

vi[μt](x) =

∫
Rd

K(x, y)ηS(x)(y) dμt(y), (4)

where:
• K : R

d × R
d → R

d is the interaction kernel, which describes the
repulsion acting on the individual in x, called test pedestrian, because
of the presence of an individual in y, called field pedestrian. Generally,
recalling also the Galileian invariance, the function K depends on x,
y through their distance |y − x| along the segment connecting them.
A prototypical example is:

K(x, y) ∼ − 1

|y − x| ·
y − x

|y − x|

for |y − x| “not too” small, whereas for y → x it may be necessary
to introduce a regularization in order to avoid singularities (cf. Sec-
tion 5);
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vd(x)

x

dμt(y) y

Figure 2. Sensory region of the test pedestrian in x.

• ηS(x) : Rd → R+ is a cut-off function limiting the influence on the
test pedestrian in x to field pedestrians within her sensory region
S(x) ⊂ R

d. Typically, ηS(x) is smooth and compactly supported in
S(x) (for instance, it can be a mollified version of the characteristic
function of the set S(x)). A prototypical sensory region is a circular
sector centered in x, symmetric with respect to the local direction of
the desired velocity vd(x), and oriented along the latter (Figure 2).
This models anisotropic interactions: the test pedestrian is affected
by field pedestrians ahead but not behind. The radius of the circular
sector is the maximal distance at which a field pedestrian can have an
influence on the test pedestrian, while the angle of the sector identifies
the visual cone of the latter.

3 Multiscale approach

Equations (1), (3), (4) provide a unified modeling framework which com-
prises both discrete and continuous dynamics. The key point is the spatial
structure of the measure μt.

Discrete dynamics are obtained if the spatial structure of μt is discrete:

μt =

N∑
i=1

δxi(t), (5)

{xi(t)}Ni=1 ⊂ R
d being the set of all and only points where pedestrians are

distributed at time t. Plugging (5) into (2), (4) yields:

ẋi = vd(xi) +

N∑
j=1

K(xi, xj)ηS(xi)(xj) (i = 1, . . . , N), (6)
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which completely characterizes the evolution of the crowd distribution.
Continuous dynamics are instead obtained if the spatial structure of μt

is continuous, i.e., if mass and volume are proportional (in the sense of
Radon-Nikodym’s Theorem):

dμt(x) = ρt(x) dx, (7)

where now ρt : R
d → R+ is the mass density of the crowd distribution at

time t, such that
∫
Rd ρt(x) dx = N (thus, in particular, ρt ∈ L1(Rd) for all

t). In this frame, the support of ρt in R
d is conceptually the counterpart

of the set {xi(t)}Ni=1 above. Inserting (7) in (2), (4) gives (actually a weak
form of):

∂

∂t
ρt(x) +∇ ·

[
ρt(x)

(
vd(x) +

∫
Rd

K(x, y)ηS(x)(y)ρt(y) dy

)]
= 0, (8)

namely a conservation law with nonlocal flux, which in turn characterizes
completely the evolution of the distribution of pedestrians.

Do Equations (6), (8) describe the same system and the same dynam-
ics? Yes and no. They formalize two different mathematical models of the
same physical system, which however originate from the common abstract
structure (1)–(4). Therefore they share the phenomenological description
of the individual microscopic interactions, expressed by the kernel K and
by the cut-off function ηS(·), but can predict different collective macroscopic
effects because the latter depend on the spatial structure of the measure μt

in Equation (4).
More precisely, it is useful to understand the spatial structure of μt as

the modeling counterpart of the perception of the test pedestrian, which
affects the way the latter reacts to surrounding individuals. A discrete
perception can be typical of sparse crowds or of leisure-type travel pur-
poses, when pedestrians are more sensitive to the one-by-one distribution
of their neighbors. Conversely, a continuous perception can be typical of
dense crowds or of business-type travel purposes (e.g., commuters in rush
hours), when pedestrians tend to interact with subgroups of other walkers
as a whole. This corresponds to the expression of a behavioral strategy,
which can impact in a non-negligible manner on the classical laws of mo-
tion (see also Bruno et al. (2011) for a different modeling approach to the
concept of perception, however always related to the expression of a behav-
ioral strategy by pedestrians). Therefore, although the elementary pairwise
interaction rules are always the same, their collective effect can be greatly
different due to the “filtering” operated by perception. Such a phenomenol-
ogy is possible because crowds are granular living systems: the number of
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pedestrians is locally always finite and “small” (at least compared to the
order of magnitude of the Avogadro’s number in classical gas dynamics),
which makes large-scale dynamics rather sensitive to individual behaviors
on smaller scales.

The concept of perception can be formalized in the model by means of
a parameter θ ∈ [0, 1], which determines a scale of spatial structures of the
measure μt:

μt = θ

N∑
j=1

δxj(t) + (1− θ)ρtLd, (9)

Ld being the Lebesgue measure in R
d. By plugging this representation into

Equation (4) we see that the transport velocity (3):

vt(x) = vd(x) + θ

N∑
j=1

K(x, xj)ηS(x)(xj)

+ (1− θ)

∫
Rd

K(x, y)ηS(x)(y)ρt(y) dy (10)

depends now on a weighted contribution of discrete and continuous dynam-
ics. Clearly, the two choices discussed above correspond to the particular
cases θ = 0 (continuous dynamics) and θ = 1 (discrete dynamics). Nev-
ertheless, if 0 < θ < 1 this formalism allows one to deal, more in general,
with hybrid dynamics which are neither fully discrete nor fully continuous
(cf. the case studies presented in Figures 3, 4). Moreover, the transport
of the measure (9) by means of Equation (1) with the velocity field (10)
allows also for a purely continuous representation of the crowd distribu-
tion evolving according to genuinely discrete dynamics or, conversely, a
purely discrete representation evolving according to genuinely continuous
dynamics. Finally, if the perception parameter θ changes in space, i.e., it is
converted into a function of x, then the model enables one to have different
types of dynamics in different sub-domains (see e.g., Cristiani et al. (2012),
where this idea is used in the case of vehicular traffic for coupling continuous
dynamics along straight roads and discrete dynamics at crossroads, where
driver perception is sharpened by vehicles coming from different merging
directions).

4 Basic theory

Once an initial measure, say μ̄, is prescribed, the model based on Equa-
tion (1) together with a velocity field of the type (3)-(4) generates a Cauchy
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Figure 3. Lane formation in counter-flows obtained with model (1)-(3)-(4)-
(9) with three different values of the perception parameter θ. a. With θ = 0
pedestrian perception is purely continuous. Lanes emerge but the lack of
symmetry breaking makes the result look rather artificial, thereby suggesting
that granularity should play a role. b. With θ = 0.3 pedestrian perception
is genuinely multiscale. The atoms of μt introduce inhomogeneities in the
density flow, which induce a qualitatively more realistic lane formation also
at a purely continuous level (i.e., when looking at the density only). c.
With θ = 1 pedestrian perception is purely discrete. Also in this case lane-
type patterns predicted by the model look realistic. On the whole, this
example demonstrates that lane formation is quite a robust phenomenon
at all scales, although pedestrian perception can influence the qualitative
patterns collectively observed.

problem falling in the following class:⎧⎨
⎩

∂μt

∂t
+∇ · (μtv[μt]) = 0 x ∈ R

d, t ∈ (0, Tmax]

μ0 = μ̄,
(11)

where we denoted by v[μt] a generic velocity field fully determined by the
(unknown) measure μt.
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Figure 4. Crossing flows at a bottleneck obtained with model (1)-(3)-(4)-
(9) with the same three values of the perception parameter θ as in Figure 3.
a. Initial condition common to all cases. b. A purely continuous perception
(θ = 0) determines a clogging of the bottleneck, because individuals interact
with subgroups of surrounding walkers being thus basically unable to ex-
ploit inter-pedestrian gaps. c. A genuinely multiscale perception (here with
θ = 0.3) produces instead a kind of traffic light effect at the bottleneck: the
latter is occupied alternately by either crowd while the other one stops and
waits. d. A purely discrete perception (θ = 1) gives rise to an ordered lane
formation through the bottleneck, for pedestrians estimate with great preci-
sion the position of nearby people and self-organize so as to share effectively
the available room. On the whole, this example demonstrates that pedes-
trian perception can play a major role in shaping the observable collective
patterns even starting from the very same initial conditions. Notice that all
patterns shown in b., c., and d. can actually happen in real situations.
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In general μt is a finite measure on R
d but not a probability measure.

In fact we know that if μ̄(Rd) = N then μt(R
d) = N for all t ≤ Tmax

but clearly it has to be N > 1 in order for the model to describe interesting
scenarios. However, for the analytical study of Problem (11) it is convenient
to rescale μt with respect to the total number N of pedestrians in such a
way that it is formally a probability, regardless of its derivation for modeling
purposes. This way it is easier to set Problem (11) in the proper functional
spaces with the proper metrics. Therefore we will henceforth assume to
have implicitly performed such a rescaling (and we still denote by μt the
rescaled measure)1.

A proper weak sense in which Problem (11) can be understood is the one
specified in (2) (with μ0 = μ̄). In particular, Equation (2) is well-defined
if t �→ μt is a continuous mapping from the interval (0, Tmax] into one of
the metric spaces Pp(R

d) of probability measures on R
d with finite p-th

moment (p ≥ 1, see Ambrosio et al. (2008) for technical details). Without
loss of generality we fix p = 1, i.e., we consider the space P1(R

d), which is
complete with the metric

W1(μ, ν) = sup
ϕ∈Lip1(R

d)

∫
Rd

ϕd(ν − μ) (μ, ν ∈ P1(R
d)),

called the (first) Wasserstein distance. In the definition above, Lip1(R
d) is

the set of Lipschitz continuous functions on R
d whose Lipschitz constant is

not greater than 1.
Ultimately, we say that:

Definition 4.1. A curve μ• ∈ C([0, Tmax]; P1(R
d)) is a (weak) solution to

Problem (11) if it satisfies Equation (2), with μ0 = μ̄, for all φ ∈ C∞
c (Rd)

and all t ∈ (0, Tmax].

The basic theory for Problem (11) depends essentially on the properties
of the velocity field. We now formulate some assumptions, valid for suffi-
ciently general fields v (i.e., not necessarily referred to the specific struc-
ture (3)-(4)), whence both the well-posedness of the Cauchy problem and
the convergence of a suitable numerical scheme, based on the transport of
measures, for the approximation of the solutions follow.

1Notice that if μt is thought of as a probability measure then the interaction velocity (4)
must be coherently rewritten as

vi[μt](x) = N

∫
Rd

K(x, y)ηS(x)(y) dμt(y)

in view of the rescaling.
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Assumptions on the velocity v for Problem (11)

(i) Uniform boundedness: there exists a constant Vmax > 0 such that

|v[μ](x)| ≤ Vmax, ∀x ∈ R
d, ∀μ ∈ P1(R

d).

(ii) Lipschitz continuity : there exists a constant Lip(v) > 0 such that

|v[ν](y)− v[μ](x)| ≤ Lip(v) (|y − x|+W1(μ, ν)) ,

∀x, y ∈ R
d, ∀μ, ν ∈ P1(R

d).

(iii) Mild linearity : for all α ∈ [0, 1] and all pairs of measures μ, ν ∈
P1(R

d) it results

v[αμ+ (1− α)ν] = αv[μ] + (1− α)v[ν].

Remark 4.2. We called Assumption (iii) mild linearity because it requires
the mapping μ �→ v[μ] to be linear for convex linear combinations only.

It is important to take into account that the Assumptions above are
not meant to be sharp from the technical point of view. Rather, they are
thought of for models which should be applied to realistic case studies. In
this respect, one of their advantages is that they can be verified quite easily
in practical cases. Furthermore, they allow for proofs which do not require
sophisticated techniques of optimal transportation.

4.1 Well-posedness of Problem (11)

Using only Assumption (ii) it is possible to prove the following a priori
estimate on the solutions to Problem (11):

Theorem 4.3. If μ1
•, μ

2
• ∈ C([0, Tmax]; P1(R

d)) are two solutions corre-
sponding to two initial data μ̄1, μ̄2 ∈ P1(R

d), respectively, then there exists
a constant C > 0 such that

W1(μ
1
t , μ

2
t ) ≤ CW1(μ̄

1, μ̄2), ∀ t ∈ (0, Tmax]. (12)

Proof. See e.g., Cristiani et al..
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Thus the solution to Problem (11), if it exists, is unique and depends
continuously on the initial datum. The constant C depends on the Lipschitz
constant Lip(v) of the velocity and on the final time Tmax.

For the proof of the estimate (12) the interested reader is referred to
the above-cited reference. Here we simply point out that the classical tech-
nique makes use of the following representation formula of the solutions to
Problem (11): if μ• ∈ C([0, Tmax]; P1(R

d)) is a solution corresponding to an
initial datum μ̄ ∈ P1(R

d) then, after introducing the flow map γt : R
d → R

d

defined by: ⎧⎨
⎩

∂

∂t
γt(x) = v[μt](γt(x)), x ∈ R

d, t ∈ (0, Tmax]

γ0(x) = x, x ∈ R
d,

(13)

it results

μt = γt#μ̄ viz. μt(E) = μ̄(γ−1
t (E)), ∀E ∈ B(Rd),

where # is the so-called push forward operator. This representation formula
can be easily checked using Equation (2).

Next, in view of the further Assumptions (i), (iii), also existence of the
solution can be proved:

Theorem 4.4. For μ̄ ∈ P2(R
d) ⊂ P1(R

d) there exists a solution μ• ∈
C([0, Tmax]; P1(R

d)) to Problem (11).

Proof. See e.g., Tosin and Frasca (2011).

Notice that Theorem 4.4 requires actually μ̄ ∈ P2(R
d), i.e., that the ini-

tial datum has both first and second order moments finite. This assumption
is mainly technical. Nevertheless, from the point of view of applications it
is not a limitation, since initial data typically have compact support (in-
deed, a crowd spread over the whole Rd would not be such a realistic initial
condition), hence their moments of any order p are automatically finite. In
fact: ∫

Rd

|x|p dμ̄(x) =
∫
supp(μ̄)

|x|p dμ̄(x) ≤ Rp < +∞,

R being the radius of one of the balls centered at the origin which contain
supp(μ̄).

Finally, we can establish the following well-posedness result, in the sense
of Hadamard, for the Cauchy problem (11):



170 A. Tosin

Theorem 4.5. Let Assumptions (i)–(iii) hold. For all μ̄ ∈ P2(R
d) there

exists a unique solution μ• ∈ C([0, Tmax]; P1(R
d)) to Problem (11) in the

sense of Definition 4.1. In addition, it depends continuously on the initial
datum on the basis of the estimate (12).

4.2 Numerical scheme and its convergence

In order to approximate the solution to Problem (11) it is possible to
use the numerical scheme introduced by Piccoli and Tosin (2009, 2011),
then further detailed for multiscale models by Cristiani et al. (2011) and
adopted also by Maury et al. (2010); Canuto et al. (2012). In short, the idea
is to approximate μt by an absolutely continuous measure with respect to
Lebesgue, which is piecewise constant over a pairwise disjoint partition of
R

d called mesh. Specifically, the latter is formed by cells Ei of characteristic
size h > 0 such that Ld(Ei)→ 0 when h→ 0+:

R
d =

⋃
i∈Zd

Ei, Ei ∩ Ej = ∅ ∀ i �= j.

For d = 2 (which in several applications is the most interesting case for
crowd simulations) the cells Ei can be square-shaped with edge length h.
The simplest generalization to an arbitrary dimension is obtained by con-
sidering hypercubes with edge length h, so that Ld(Ei) = hd.

Let μ̃n be the approximation of μt at the discrete time tn = nΔt, where
Δt > 0 is a fixed time step. Then by construction it results dμ̃n = ρ̃n dx,
where ρ̃n = ρ̃n(x) : R

d → R+ is the density that the numerical scheme has
to determine. Again by construction, ρ̃n is piecewise constant on the grid
{Ei}i∈Zd , therefore it can be represented as

ρ̃n(x) =
∑
i∈Zd

ρni χEi
(x), (14)

χEi denoting the characteristic function of the cell Ei. The unknowns are
thus the coefficients ρni ≥ 0.

The numerical scheme is constructed by imposing first that, in one time
step, the measure μ̃n is transported on the new measure μ̃n+1 by a suitable
discretization γ̃n of the flow map (13): μ̃n+1 = γ̃n#μ̃n, and by testing
then this relation on the grid cells: μ̃n+1(Ei) = μ̃n(γ̃

−1
n (Ei)). Using the

numerical density (14), this yields a recursive formula to pass from the
coefficients ρni to those at the next time step:

ρn+1
i =

1

hd

∑
j∈Zd

ρnj Ld(Ei ∩ γ̃n(Ej)) (i ∈ Z
d). (15)
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Figure 5. Action of the numerical scheme (15) on the grid cells.

It expresses the fact that the numerical density is redistributed over the
mesh, in one time step, proportionally to the (Lebesgue) measure of the
intersections among the cells moved by the discrete flow map γ̃n (see Fig-
ure 5). In particular, the latter is obtained cell-by-cell as:

γ̃n(x) = x+ v[μ̃n](xi)Δt for x ∈ Ei,

where xi is any point of Ei, for instance its center. Hence γ̃n acts in every
cell as a rigid translation with constant velocity v[μ̃n](xi), namely the ve-
locity v of the exact problem (11) computed for x = xi with respect to the
approximate measure μ̃n.

Despite that the numerical measure μ̃n has been chosen absolutely con-
tinuous with respect to Lebesgue, the scheme (15) can actually approximate
solutions to Problem (11) with generic spatial structure. Indeed the follow-
ing result holds true:

Theorem 4.6. Consider a sequence of spatiotemporal grids indexed by k =
0, 1, 2 . . . , with mesh parameters hk, Δtk → 0 for k → ∞. Let μ̃k

t be the
piecewise linear interpolation in time of the numerical solutions μ̃k

n computed
on the k-th mesh with the scheme (15):

μ̃k
t =

Nk
max−1∑
n=0

[(
1− t− tkn

Δtk

)
μ̃k
n +

t− tkn
Δtk

μ̃k
n+1

]
χ[tkn, t

k
n+1]

(t), (16)
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where tkn = nΔtk, N
k
max is the number of discrete time steps on the k-th grid

needed to reach the final time Tmax, and χ[tkn, t
k
n+1]

denotes the characteristic

function of the interval [tkn, t
k
n+1].

Assume that Assumptions (i)–(iii) on page 12 hold true, that the initial
datum is discretized as:

(ρ0i )
k =

μ̄(Ek
i )

hd
k

(i ∈ Z
d),

and moreover that the spatiotemporal grids are chosen in such a way that

hk = o(Δtk) when k →∞.

If μ̃k
• converges in C([0, Tmax]; P1(R

d)) to some μ• for k → ∞ in the
following sense:

lim
k→∞

sup
t∈[0, Tmax]

W1(μ̃
k
t , μt) = 0

then the limit μ• is a (weak) solution to Problem (11) in the sense of Defi-
nition 4.1.

Proof. See e.g., Tosin and Frasca (2011).

Notice that Theorem 4.6 does not guarantee but assumes the conver-
gence of the numerical solution to a curve μ• ∈ C([0, Tmax]; P1(R

d)). For
this reason, it recalls the Lax-Wendroff’s Theorem about the convergence
of numerical schemes for hyperbolic conservation laws. Nevertheless it is
possible to complement it with a simple criterion ensuring that the required
convergence does indeed take place:

Proposition 4.7. Let a compact set K ⊂ R
d exist such that supp(μ̃k

n) ⊆
K for all n and all k. Then the time-interpolated sequence {μ̃k

•}k≥0, cf.
Equation (16), converges in C([0, Tmax]; P1(R

d)).

Proof. See e.g., Tosin and Frasca (2011).

It is evident that such a K exists especially when the initial datum
μ̄ is compactly supported. In fact, due to Assumption (i), Problem (11)
describes a transport with finite speed, hence supp(μ̄) cannot expand in-
definitely within a finite time Tmax.

Besides the references already given for the proofs of Theorem 4.6 and of
Proposition 4.7, the interested reader is referred also to the paper by Piccoli
and Rossi (2013) for a deep analysis of further numerical schemes dealing
with the approximation of the solution to Problem (11).
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4.3 Structure of the solution

The theory set forth in the previous sections does not provide any infor-
mation about the spatial structure of the solutions to Problem (11), which
is important especially for multiscale models discussed in Section 3.

Using the representation formula introduced in Section 4.1, it is quite
easy to see that if the initial datum μ̄ has a discrete structure like2 μ̄ =
1
N

∑N
i=1 δx̄i

then also the solution μt has a discrete structure for all t > 0.
In fact, for all Borel set E ∈ B(Rd) it results:

μt(E) = (γt#μ̄)(E) = μ̄(γ−1
t (E)) =

1

N

N∑
i=1

δx̄i(γ
−1
t (E)) =

1

N

N∑
i=1

δγt(x̄i)(E),

hence letting xi(t) := γt(x̄i) we have μt =
1
N

∑N
i=1 δxi(t). Notice that this

holds independently of the regularity of the flow map γt, namely of the
velocity field v[μt].

Conversely, for an absolutely continuous initial datum, dμ̄(x) = ρ̄(x) dx,
the solution μt may develop singularities in finite time if the flow map tends
to concentrate “too much” density over “too small” spatial structures. The
following result gives a sufficient condition for ruling out this possibility:

Theorem 4.8. Let μ̄ be absolutely continuous with respect to the Lebesgue
measure. Assume that at every fixed time t ∈ (0, Tmax] there exists a con-
stant Ct > 0, possibly depending on t, such that

Ld(γ−1
t (E)) ≤ CtLd(E), ∀E ∈ B(Rd). (17)

Then also μt = γt#μ̄ is absolutely continuous with respect to Lebesgue for
all t ∈ (0, Tmax].

Proof. See e.g., Cristiani et al. (2011); Piccoli and Tosin (2011); Cristiani
et al..

Condition (17) requires that the flow map does not shrink measurable
sets too much. Indeed, by reading the inequality from right to left, it states
that the Lebesgue measure of E can be controlled from below by the measure
of its inverse image through γt. Nevertheless, this condition is not easy to be
checked in concrete cases. To obviate such a difficulty, at least for smooth
flow maps, it is possible to use the following criterion, which is at the same
time sufficient and easier to verify.

2Unlike Equation (5), here the coefficient 1
N

appears because of the rescaling to a

probability measure introduced at the beginning of the section.
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Proposition 4.9. If the flow map γt is a diffeomorphism with Lipschitz
constant Lip(γt) such that

Lip(γt) <
1

Lip(v)Tmax
(18)

then it fulfills condition (17).

Proof. See e.g., Cristiani et al..

In particular, it is useful to know that under Assumption (ii) the Lips-
chitz constant of γt can be estimated as Lip(γt) ≤ 1+Lip(v)Tmaxe

Lip(v)Tmax

(see Cristiani et al.), hence (18) is certainly satisfied if

1 + Lip(v)Tmaxe
Lip(v)Tmax <

1

Lip(v)Tmax
,

which is ultimately a condition on the Lipschitz constant of the velocity.
This is more practical because, as seen in Section 2.1, it is the velocity, not
the flow map, which plays a major role in the modeling approach.

Finally, if the initial datum has a hybrid structure such as (9) it is suffi-
cient to recall the linearity of the push forward operator # to conclude that
the results above apply separately to the discrete and continuous parts.
Consequently, if the flow map satisfies the conditions expressed by Theo-
rem 4.8 and by Proposition 4.9 then the solution to Problem (11) preserves
the multiscale structure for all times t > 0.

5 Back to crowd models

Results presented in Section 4 hold for an “abstract” velocity field char-
acterized essentially by Assumptions (i)–(iii) (cf. page 12). In order to
construct crowd models not only physically realistic but also mathemati-
cally robust it is therefore important to study the interplay between the
structures introduced in Section 2 and these assumptions.

As recalled in Section 2.1, the interaction kernel K should depend on
the relative position y − x of the interacting pedestrians in order for the
description of the interactions to be independent of rigid transformations of
the coordinate system. This implies

K(x, y) = k(y − x),

k : Rd → R
d being a function to be properly modeled (which we still call

interaction kernel). That said, pedestrian velocity (3)-(4) takes the form:

v[μt](x) = vd(x) +N

∫
Rd

k(y − x)ηS(x)(y) dμt(t), (19)
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where the coefficient N (total number of pedestrians) in front of the inter-
action integral appears because of the reinterpretation of μt as a probability
measure (cf. footnote 1 on page 11).

It is immediate to check that the velocity field (19) satisfies Assump-
tion (iii) with no additional hypotheses. In fact, it is sufficient to write
vd = αvd + (1 − α)vd and to collect the terms conveniently. Notice that
it is fundamental that Assumption (iii) requires only a mild linearity, for
the mapping μ �→ v[μ] resulting from Equation (19) is in general not linear
(except when the desired velocity is zero, which however does not always
make sense from the modeling point of view).

In order for the velocity (19) to fulfill also Assumptions (i), (ii) some
further technical details are needed, to be regarded as modeling guidelines,
concerning the structure of the terms vd, k, S(·), and ηS(·). For the sake
of simplicity we consider only the two-dimensional case (d = 2), which is
however largely sufficient for addressing realistic crowd models.

Modeling Guidelines for the velocity v (19) with d = 2

(i) Desired velocity : let x �→ vd(x) be Lipschitz continuous and
bounded in R

2.

(ii) Sensory region: for all x ∈ R
2, let S(x) be a bounded Borel set

contained in a ball with fixed radius R > 0 independent of x (for
instance, the one centered in x: S(x) ⊆ BR(x)) and isometric to
a reference set S(0) ⊆ BR(0).

(iii) Interaction kernel : let x �→ k(x) be Lipschitz continuous in the
ball BR(0) centered at the origin and with radius R defined at
the previous point (ii).

(iv) Cut-off function: for all E ∈ B(R2), let x �→ ηE(x) be Lipschitz
continuous and bounded between 0 and 1 in R

2 with supp(ηE) ⊂⊂
E.

Remark 5.1. The Modeling Guideline (ii) means that the sensory region
S(x) of the point x is obtained by translating and rotating the reference
set S(0). The translation vector is obviously x. Moreover, according to
what has been said in Section 2.1, the rotation angle is individuated by the
direction of the vector vd(x).
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If pedestrian velocity is constructed in accordance with the Modeling
Guidelines stated above then the crowd model based on Equations (1), (19)
features a certain mathematical robustness, indeed:

Proposition 5.2. If, in two space dimensions (d = 2), the velocity field (19)
complies with the Modeling Guidelines (i)–(iv) then it fulfills Assumptions (i)–
(iii).

Proof. See e.g., Tosin and Frasca (2011).

hence it is possible to apply to it the theory of well-posedness and numerical
approximation presented in Section 4.
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