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Abstract We present a model describing spatial competition be-
tween two biological populations. Individuals belonging to the two
populations diffuse in space, reproduce, and die as effect of com-
petitions; all these processes are implemented stochastically. We
focus on how the macroscopic equations for the densities of the two
species can be derived within the formalism of the chemical master
equations. We also compare the case in which the total density of
individuals is kept fixed by constraint with a case in which it can
fluctuate.

1 Introduction

Competition between biological populations can be mathematically described
at different levels of complexity. For example, when spatial degrees of free-
dom and number fluctuations are neglected, competition models are rela-
tively easy to analyze with tools of dynamical system theory. A paradig-
matic example of this case are Lotka-Volterra models, see e.g. (Murray,
2007).

However, in many biological situations, the spatial distribution of the
populations cannot be neglected, so that one is forced to consider spatially
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explicit models. Moreover, stochasticity can be also important. This is
especially the case in neutral or near-neutral conditions, where the param-
eters characterizing the species are the same (or nearly), and the outcome
of competition is determined by chance rather than by fitness differences.

In this chapter, we analyze two spatial competition models. The first is
the stepping stone model, originally introduced by Kimura (Kimura, 1953;
Kimura and Weiss, 1964). A key assumption of the stepping stone model
is that the sum of the number of individuals belonging to the two species
is kept constant at each point in space; this assumption is relaxed in the
second model (Pigolotti et al., 2012, 2013). For both models, we show how
one can generally derive the macroscopic dynamic equations describing the
concentrations of the two species using the formalism of the chemical master
equation (see e.g. Gardiner (2004), chapter 8), which can be thought of
as a generalization of the Kramers-Moyal expansion for spatially extended
systems. After presenting this derivation and discussing its limits of validity
for the two models, we show some analytical and numerical results in the
case in which the two species are neutral, i.e. characterized by the same
rates.

2 The Stepping Stone Model

The stepping stone model (Kimura, 1953; Kimura and Weiss, 1964) is a
paradigmatic model for spatial population genetics. Let us consider a sys-
tem made up of different islands (or “demes”), each hosting two populations,
A and B. The total population of each island is a fixed parameter Nl. We
denote with n the population of species A, so that the population of species
B is Nl − n. The two populations undergo a Moran process: at a given
rate, an individual is chosen at random, killed and replaced with a copy of
one of the other individuals on the island, also chosen at random. To model
the possibility of a selective advantage, individuals of space A are copied
with a rate μ(1 + s), while individuals of species B are copied at a rate μ.
The parameter μ can be interpreted as an inverse generation time, while s
represents the relative selective advantage of species A. The rates at which
population A increases or decreases are then given by:

W+(ni) = (1 + s)μ
Nl − ni

Nl

ni

Nl

W−(ni) = μ
ni

Nl

Nl − ni

Nl
. (1)

For simplicity, we first discuss the well-mixed version of the model, i.e.
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the dynamics on a single island, which reduces to the well-known Moran
model. In the second part of this section, we will describe the one dimen-
sional case of a linear array made up of many islands, where the rates above
will be complemented by immigration/emigration rates between neighbor-
ing islands.

The definition of the rates in (1) directly leads to the following master
equation

d

dt
P (ni, t) = W+(ni−1)P (ni−1, t) +

+W+(ni+1)P (ni+1, t)− [W+(ni) +W−(ni)]P (ni, t). (2)

The next step consists in approximating the birth-death process defined
above into a Langevin equation by means of a Kramers-Moyal expansion.
Formally, the master equation (2) can be written in an integral form as

d

dt
P (n, t) =

∫
d(Δn)[ω(Δn, n−Δn)P (n−Δn)− ω(Δn, n)P (n)] (3)

where the jump rates have been incorporated into a jump distribution func-
tion ω:

ω(δn, n) = δ(Δn− 1)W+(n) + δ(Δn+ 1)W−(n). (4)

The trick is now to perform a Taylor expansion of Eq. (3) around Δn = 0,
leading to

d

dt
P (n, t) =

∞∑
j=1

(−1)j
j!

dj

dnj
[αj(n)P (n, t)] (5)

where the αj ’s are the moments of the jump distribution,

αj(n) =

∫
d(Δn)(Δn)jω(Δn, n). (6)

Assuming Nl " 1, we can introduce the new variable f = n/Nl. The
quantity f can be interpreted as the fraction of one species: f = 1 means
an island exclusively populated with one allele and f = 0 means exclusive
occupation by the alternative genotype. The jumps in terms of the new
variable δf = ±1/Nl are now small, so that we can truncate the above
expansion up to the second derivative. This yields a Fokker-Planck equation:

∂tP (f, t) = −∂f [μsf(1− f)P (f, t)] + ∂2
f

[
μf(1− f)

Nl
P (f, t)

]
(7)
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where we neglected terms of order s/N by assuming N " 1 and s " 1.
The corresponding Langevin equation is

∂tf(t) = μsf(1− f) +

√
2μf(1− f)

Nl
ξ(t) (8)

where ξ(x, t) is a Gaussian stochastic process, delta-correlated in time,
〈ξ(t)ξ(t′)〉 = δ(t − t′). The nonlinearity multiplying the noise requires an
interpretation in terms of the Ito calculus; this will also be the case for all
generalizations we will consider in the following.

We now move to the one-dimensional case. We consider an infinite linear
array of islands (or “demes”), where two neighboring islands are separated
by a distance a. Each island host a total population Nl of individuals
belonging to the two species A and B. Numbering the islands with an
index i, we denote with ni the population of species A in the island i, so
that the population of species B will be Nl − ni. The local dynamics on
each island is the same as before; the only additional ingredient is that we
allow neighboring island for exchanging individuals. It is convenient to call
the exchange rate from an island to a neighboring one as DN/a2, where D
is an additional free parameter. We can proceed as before by performing a
Kramers-Moyal expansion in each island and introducing the local fractions
fi = ni/Nl. The result is a set of Langevin equations:

∂tfi(x, t) =
D

2a2
(fi−1+fi+1−2fi)+μsfi(1−fi)+

√
2μfi(1− fi)

Nl
ξi(t) (9)

where noise sources corresponding to different islands are uncorrelated. It
is now possible to (formally) take the continuum limit a→ 0, leading to

∂tf(x, t) = D∇2f(x, t) + μsf(1− f) +

√
2μf(1− f)

N
ξ(x, t) (10)

where N = Nl/a: it is convenient to distinguish between Nl (the popu-
lation inside a single discrete deme of the SSM) and N (the corresponding
total density of individuals). Notice that Nl is a non-dimensional quantity,
while N is a density, carrying units of an inverse length. In the above equa-
tion, ξ(x, t) is a Gaussian stochastic process, delta correlated in space and
time, 〈ξ(x, t)ξ(x′, t′)〉 = δ(x− x′)δ(t− t′).

We conclude with a few remarks about the validity of this continuous
limit. Equations (7) and (8) have been derived by means of the Kramers-
Moyal equation, which strictly speaking is not a systematic expansion in



Stochastic Competition between two Populations in Space 109

a small parameters. However, the same equation can be more rigorously
derived in the framework of Van Kampen’s system size expansion, where
the expansion parameter is 1/Nl (see e.g. Risken (1989); Gardiner (2004)
for a discussion of this problem). The continuum limit of Eq. (10) should
be considered as a short notation, as the system size expansion is valid only
when the local population size Nl = Na is large; this assumption clearly
breaks down in the limit of a → 0, see (Law et al., 2003; Doering et al.,
2003; Hernandez-Garcia and Lopez, 2004; Birch and Young, 2006; Pigolotti
et al., 2013) for examples in which this assumption is violated.

3 Model without total density conservation

We consider individuals as diffusing particles in d dimensions. We imple-
ment population dynamics by assuming that individuals of species i re-
produce at rate μi and die with rates λ̃ij proportional to the number of
individuals of species j in a given neighborhood. In a language borrowed
from chemical kinetics, the “reactions” we consider are:

Xi
μi→ 2Xi (reproduction)

Xi +Xj
λ̃ij→ Xi (death by competition) (11)

In particular, competition occurs when individuals are within a small
volume δ (for details on the numerical implementation of the individual-
based dynamics see Perlekar et al. (2011)). We can then discretize the
system in cells of size δ and start the derivation from the master equation
governing the time evolution of the probability the numbers of particles
{nA

j , n
B
j } of type A and B in each cell, labeled by the index j. We first define

the rates WA(±1, nA
j , n

B
j ) and WB(±1, nA

j , n
B
j ) at which the populations of

type A (or B) increase/decrease by one individual in a specific box, given
that the population sizes are nA

j and nB
j . Letting aside the diffusion terms,

the expression for these rates are:

WA(+1, nA
j , n

B
j ) = μAn

A
j

WA(−1, nA
j , n

B
j ) = λ̃AAn

A
j (n

A
j − 1) + λ̃ABn

A
j n

B
j

WB(+1, nA
j , n

B
j ) = μAn

B
j

WB(−1, nA
j , n

B
j ) = λ̃BAn

A
j n

B
j + λ̃BBn

B
j (n

B
j − 1). (12)

The master equation governing the evolution of the full probability dis-
tribution P ({nA

j , n
B
j }, t) for all possible box occupation numbers {nA

j , n
B
j }
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then reads:

d
dt P ({nA

j , n
B
j }, t) =

=
∑
j

[WA(+1, nA
j − 1, nB

j )P (nA
1 , . . . , n

A
j − 1, . . . , nB

1 , . . . )

− WA(+1, nA
j , n

B
j )P ({nA

j , n
B
j })]

+
∑
j

[WA(−1, nA
j + 1, nB

j )P (nA
1 , . . . , n

A
j + 1, . . . , nB

1 , . . . )

− WA(−1, nA
j , n

B
j )P ({nA

j , n
B
j })]

+
∑
j

[WB(+1, nA
j , n

B
j − 1)P (nA

1 , . . . , n
B
1 , . . . , n

B
j − 1, . . . )

− WB(+1, nA
j , n

B
j )P ({nA

j , n
B
j })]

+
∑
j

[WB(−1, nA
j , n

B
j + 1)P (nA

1 , . . . , n
B
1 , . . . , n

B
j + 1, . . . )

− WB(−1, nA
j , n

B
j )P ({nA

j , n
B
j })]

+ diffusion terms, (13)

where the diffusion terms account for the stochastic exchange of particles
between neighboring boxes. As in the case of the stepping stone model,
these terms reduce to discrete approximations to Laplace operator. Indeed,
we will replace them with Laplacians in the continuous space limit at the
end of the calculation.

In analogy with the previous section, we now to perform a Kramers-
Moyal expansion (Risken, 1989) in each of the boxes. The only difference
is that in this case it is a two-variable system, so we have to expand in the
two independent increments ΔnA and ΔnB . The result is

∂tP{nA
j , n

B
j } =

∑
j

∞∑
k=1

(−1)k
k!

{∂k
nA
j
[αA

k (n
A
j , n

B
j )P ({nA

j , n
B
j })] +

+ ∂k
nB
j
[αB

k (n
A
j , n

B
j )P ({nA

j , n
B
j })]}, (14)

with the moments of the two jump distribution functions defined by

αA,B
k (nA

j , n
B
j ) =

∫
dΔnA,B

j (ΔnA,B
j )kωA,B(ΔnA,B

j , n, jA, nB
j ) (15)

and the function ω is defined from the rates exactly as in the previous
section. Finally, truncating the Kramers-Moyal expansion up to second or-
der in the derivatives leads to a Fokker-Planck equation for P{nA

j , n
B
j }. It
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is convenient to write directly the equivalent but somewhat simpler sys-
tem of Langevin equations corresponding to this Fokker-Planck description,
namely:

dnA
j

dt
= nA

j (μA − λ̃AAn
A
j − λ̃ABn

B
j ) + diffusion + σA,jξ

A
j

dnB
j

dt
= nB

j (μB − λ̃BAn
A
j − λ̃BBn

B
j ) + diffusion + σB,jξ

B
j (16)

where the noise amplitudes are

σ2
A,j = nA

j (μA + λ̃AAn
A
j + λ̃ABn

B
j )

σ2
B,j = nB

j (μB + λ̃BAn
A
j + λ̃BBn

B
j ). (17)

In Eqns. (16), the ξ’s are delta-correlated unit variance Gaussian processes,
< ξkj (t)ξ

m
l (t′) >= δjlδkmδ(t − t′). In principle, the diffusion terms in (13)

would contribute to the noise term. However, one can show that this con-
tribution can be neglected if the size of the cells is sufficiently large (see
Gardiner (2004)). In analogy with the previous section, from Eqs.(16) one
can take (formally) the limit δ → 0. In such a way the number densities of
individuals become continuous functions of the coordinate x, nA(x, t) and
nB(x, t).

We also define rescaled, macroscopic rates of binary reactions, λij =

Nδλ̃ij , and the macroscopic concentrations of individuals

cA,B(x, t) = nA,B(x, t)/N.

It is convenient to perform this rescaling in a different way for the well-
mixed case (in which the population is not structured in space) and for the
one dimensional case. In the former case we take δ = 1. In analogy with the
stepping stone model, calling Nl = δN the local population size, we simply
have N = Nl. In the spatial case, we fix δ = 1/N so that λij = λ̃ij , ∀i, j.
This procedure leads to the following coupled spatial Langevin equations

∂

∂t
cA = D∇2cA + cA(μA − λAAcA − λABcB) + σAξ

∂

∂t
cB = D∇2cB + cB(μB − λBAcA − λBBcB) + σBξ

′ (18)

where

σ2
A =

cA(μA + λAAcA + λABcB)

N

σ2
B =

cB(μB + λBAcA + λBBcB)

N
. (19)
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4 Neutral theory

In this section, we present results in the simple case

μA = μB = λAA = λAB = λBA = λBB . (20)

This case represent the neutral situation in which the two variants are neu-
tral, i.e. phenotypically equivalent.

As before, we start our discussion with the well-mixed case. It is useful
to describe the dynamics of the neutral version of the model in the cA vs. cB
plane, represented in Fig. (1, left). Starting from a dilute initial condition,
the system evolves rapidly towards to the intrinsic overall carrying capacity
given by cA+cB = 1. The dynamics is then localized with fluctuations near
this line, until extinction of one of the two species. This contrasts with the
Moran process, in which the dynamics is rigidly confined to the cA+cB = 1
line. To assess the effect of these fluctuations, note from Eq. (18) that in the
neutral case the total concentration cT = cA + cB obeys a closed equation:

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

c B

cA

10-3

10-2

10-1

100

101

 0  250  500  750  100

<
H

(t
)>

t

N=200
N = 500
N=750

N = 1000

10-2

100

 0  1  2  3  4

<
H

(t
)>

t/N

a) b)

Figure 1. Neutral dynamics in the well-mixed case. (a) Example of a
trajectory in the (cA, cB) plane with N = 500. The initial condition is
nA = nB = 20, i.e. a small fraction of a typical long time carrying capacity.
(b) Decay of the average heterozygosity 〈H(t)〉 for different values of N .
Curves are obtained from simulations of the particle model; each curve is
an average over 104 realizations and the error bars are smaller than the size
of the lines. (inset) Collapse of the same curves plotted as a function of
t/N . From Pigolotti et al. (2013).

d

dt
cT = μcT (1− cT ) +

√
μcT (1 + cT )

N
ξc, (21)
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decoupled from the fraction of species A, f = cA/(cA+cB), where the noise
term ξc satisfies 〈ξc(t)ξc(t′)〉 = δ(t − t′). When N is large, the stationary
solution, beside the solution P (c) = δ(c) corresponding to global extinction,
is approximately a Gaussian with average 〈cT 〉 = 1 and variance 〈c2T 〉 −
〈cT 〉2 = N−1, which is small when N is large. We remind that, as in the
particle model for simplicity death is implemented only via binary reactions
(see Eq. 12), the state of global extinction is not accessible in the particle
model, while it constitutes an absorbing state for Eq. 21. Such discrepancy
with the macroscopic equation could be easily removed by allowing for death
even in absence of competition, i.e. the reaction Xi → ∅.

We now describe the dynamics of the relative fraction f of individuals
carrying allele A, f(t) = cA/(cA + cB). Let us recall Ito’s formula for a two
variable system: let us write the Langevin equations for the two densities
cA and cB as

d

dt
cA(x, t) = αA(cA, cB) + σA(cA, cB)ξ(x, t)

d

dt
cB(x, t) = αB(cA, cB) + σB(cA, cB)ξ

′(x, t) (22)

where the diffusive Laplacian terms are included into αA, αB . The equation
for f(t) then reads

d

dt
f = αA∂Af + αB∂Bf +

√
σ2
A(∂Af)

2 + σ2
B(∂Bf)

2ξ +

+
σ2
A

2
∂AAf +

σ2
B

2
∂BBf, (23)

where we used the abbreviated notation ∂A ≡ ∂cA , ∂AA ≡ ∂2
cA and so on.

Inserting the complete set of equations (18) into (23) leads to a lengthy
expression for the dynamics of f . However, with the simple neutral choice
of the parameters presented above in (20), the equation reduces to

d

dt
f =

√
μf(1− f)

1 + cT
NcT

ξf (24)

where ξf (t) also satisfies 〈ξf (t)ξf (t′)〉 = δ(t − t′), and further we have
〈ξf (t)ξc(t′)〉 = 0. The above equation is the same as the equation for the
stepping stone model, Eq. (8), in the neutral case s = 0, apart from the cou-
pling with the total density cT which evolves dynamically according to (21).
We can now analyze the global heterozygosity, which quantifies the loss of
diversity as time evolves and is defined as the probability H(t) = 2〈f(1−f)〉
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that two randomly chosen individuals in the population carry different al-
leles. As the equation for cT is independent of f in the neutral case studied
here, one can factorize the average over cT and f in the equation for H(t):

d

dt
H(t) = − μ

N

〈
f(1− f)

1 + cT
cT

〉
= − μ

N
〈f(1− f)〉

〈
1 + cT
cT

〉

= −2μ

N
H(t) +O

(
1

N2

)
. (25)

Neglecting the correction of order N−2, we recover for our model with
density fluctuations the closed equation for H(t) for Fisher-Wright and
Moran-type models with a fixed population size derived by Kimura, which
states that the total heterozygosity decays exponentially in well mixed neu-
tral systems (Crow and Kimura, 1970):

〈H(t)〉 = H(0) exp(−2μt/N) (26)

This exponential behavior is confirmed in simulations, as shown in Fig.
(1b).

We now move to the one and two dimensional cases. To study how
fixation occurs in space, we study the behavior of the spatial heterozygosity
H(x, t) defined as the probability of two individuals at distance x and time
t to carry different alleles. In the neutral stepping stone model with a fixed
population size in each deme, H(x, t) obeys a closed equation:

∂tH(x, t) = 2D∇2H − 2μ

N
Hδ(x). (27)

In one dimension, such equation can be solved explicitly:

H(x, t) = H0

⎡
⎣1− 2

N

∫ t

0

dt′
erf

(
t′

4N2D

)
√
8πD(t− t′)

e
− x2

8D(t−t′)+
t′

4N2D

⎤
⎦ (28)

where H0 is the initial heterozygosity, equal to one half if the two variants
are well mixed and equally populated at time t = 0. Eqs. (27) and (28)
can be derived directly from the stochastic Fisher equation (10) with s = 0
(see, e.g., Korolev et al. (2009)).

We define the heterozygosity in the off-lattice particle simulations with
growth and competition from the statistics of interparticle distances. In
particular, at a given time t, we compute all distances between pairs of
individuals. Upon introducing a bin size h, the function H(r, t) is then
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defined as the ratio between the number of pairs carrying different alleles
at a separation between r and r + h, divided by the total number of pairs
of all types in the same range of separation. For simplicity, we always took
the bin size h equal to the interaction distance δ.

In the limit N
√

D/μ" 1, the spatial heterozygosity obtained by simu-
lations of the neutral off-lattice model shows a remarkable agreement with
Eq. (28), as shown in Fig. (2). This correspondence arises because, also
in the spatial case, the relative fraction of allele A, f(x, t) = cA/(cA + cB),
obeys a very similar equations as discussed in the mean field case. By ap-
plying Ito’s formula in the spatial case as before, one can show that the
only difference is an additional effective advection term in the equation for
∂tf , equal to 2D(∇ log cT ) · ∇f . The appearance of such terms was firstly
found in Vlad et al. (2004) in a deterministic version of the model described
here. Since cT obeys a decoupled equation in the neutral case, such terms
do not affect the equation for the heterozygosity. Indeed, numerical simula-
tion shows that the average spatial heterozygosity in the model reproduces
that of the stepping stone model even in the limit of very high diffusivity,
as shown in Fig. 2, panel (b). Panel (c) shows that similar agreements arise
comparing numerical integration of Eq. (27) with our off-lattice simulations
in two dimensions. At variance with the one dimensional case, where the
local heterozygosity H(0, t) decays at long times as t−1/2, in two dimension
the decay is much slower, H(0, t) ∼ 1/ ln(t). Such slow logarithmic decay is
confirmed in simulations in panel (d).

5 Conclusions

In this Chapter we compared two different stochastic models of spatially
extended populations. We have shown that one can formally demonstrate
their equivalence by means of stochastic calculus, at least in the case of neu-
tral species. While the stepping stone model allows for a simpler analysis,
the more general model is appropriate for cases in which the total den-
sity of individuals can vary considerably due to external causes, as a non-
homogeneous distribution of resources or transport by fluid flows (Pigolotti
et al., 2012, 2013).
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agreement with the prediction of formula (28). (c) Neutral heterozygosity
in 2d, compared with a numerical integration of Eq. (27). (d) Behavior of
the local heterozygosity H(x = 0, t) as a function of time in 2D, showing
the logarithmic decay H(x = 0, t) ∼ 1/ ln(t). From Pigolotti et al. (2013).
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