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PREFACE

The motion of individual active agents (like e.g. bacteria or ant
colonies, birds flocks, etc.) give rise to fascinating large scale col-
lective behaviours. How does this large-scale emerge from the small-
scale dynamics? How does the large-scale conditions influence the
dynamics of the individuals? There are many fundamental scientific
questions with important practical implications that have attracted
the attention of various scientific communities, ranging from logis-
tics, theoretical biology, ecology, statistical physics and mathematics.
On the one hand, one would like to understand the formation of large-
scale patterns in large colonies, this may be relevant to fisheries and
fishing strategies optimization. On the other hand, in crowded pedes-
trian flows, the behaviour of individuals display significant differences
from that of undisturbed free walking. Furthermore, when panic sit-
uations occur, small microscopic (i.e. individual-level) interactions
can amplify leading to macroscopic patterns (e.g. shock-like waves)
that can cause jamming during evacuation but also losses of human
lives.

Multiscale models in social applications combine mean-field and
kinetic equations with either microscopic or macroscopic level de-
scriptions. These are approaches of strongly increasing importance
with high potential for quantitative research. Typically, individual-
based models need to be accurately coarse-grained to translate the rel-
evant microstructure information to a mesoscopic (Boltzmann-level)
or to a macroscopic (continuum) level. Relevant questions include:
What is the natural scaling for the averaging? How much micro-
level information needs to be retained in order to capture the specific
individual-level interaction responsible for the formation and prop-
agation of the macroscopically-observed patterns (for instance, lane
formation in pedestrian counterflow). What are the main microscopic
interactions responsible for the macroscopic transport mechanism dis-
placing pedestrian flows?

Within this book an attempt is made to cover a limited number
of these questions with an eye on multidisciplinary approach to the
topics:

J.-A. Carrillo, Y.-P. Choi and M. Hauray focus on the deriva-
tion of mean-field models for swarming proving, by means of con-



verging Wasserstein distances of empirical measures, the discrete-to-
continuum passage from a first-order system of interacting particles
to a continuity-like equation with nonlocal kernel. Their technique is
applicable to a large class of first-order interaction models.

B. Maury treats hard congestions in models for crowd motion.
The hard-core part of the interactions naturally leads to non-smooth
evolution systems. The handling of the contacts translates here into
suitable (quasi-)variational inequalities. Rigorous numerics show that
such contacts can be quantitatively evaluated.

Pedestrians moving in the dark are modeled by A. Muntean, E.
Cirillo, O. Krehel, and M. Böhm in terms of Becker-Döring interac-
tion rules for two possible kinds of scenarios: (i) a continuum PDE
model in term of measures and (ii) a lattice automaton. They show
that adhering to large groups is not necessarily the right thing to do
if one wishes to find invisible exits.

S. Pigolotti, R. Benzi, M. Jensen, P. Perlekar, F. Toschi discuss
a model for stochastic competitions of biological species in space focus-
ing on how the macroscopic equations for individual species density
can be derived within the formalism of master equations.

F. Tesser and Ch. Doering review the non-equilibrium statisti-
cal mechanics models of reaction and interaction kinetics. Among
others, they show that traditional mean-field or ”mass-action” reac-
tion kinetics theories are useful but that there are also limits to their
validity.

A. Tosin reviews multiscale crowd dynamics scenarios posed in
terms of conservation laws for (discrete and absolutely continuous)
mass measures from a threefold perspective: modeling, solvability, and
approximation.

The multiscale nature of interacting particle systems gives rise
to many interesting and challenging mathematical problems. In this
book, the reader will find not only a wide spectrum of multiscale anal-
ysis results (like convergence proofs), but also practically important
information such as derivations of mean-field equations, methods to
handle hard contacts numerically, to model group behavior, to quan-
titative estimate microscopic/macroscopic segregation of competing
species, to quantitative understand the limits of validity of mass-
action kinetics for simple reactions.

Adrian Muntean and Federico Toschi
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The derivation of swarming models:
Mean-field limit and Wasserstein distances

José Antonio Carrillo†, Young-Pil Choi†, and Maxime Hauray‡
† Department of Mathematics, Imperial College London,

SW7 2AZ London, United Kingdom
‡ Centre de Mathématiques et Informatique, Université d’Aix-Marseille,

Technopôle Château-Gombert, Marseille, France

Abstract These notes are devoted to a summary on the mean-field
limit of large ensembles of interacting particles with applications in
swarming models. We first make a summary of the kinetic models
derived as continuum versions of second order models for swarm-
ing. We focus on the question of passing from the discrete to the
continuum model in the Dobrushin framework. We show how to
use related techniques from fluid mechanics equations applied to
first order models for swarming, also called the aggregation equa-
tion. We give qualitative bounds on the approximation of initial
data by particles to obtain the mean-field limit for radial singular
(at the origin) potentials up to the Newtonian singularity. We also
show the propagation of chaos for more restricted set of singular
potentials.

1 Introduction

In the last years, we have seen the development of a great deal of different
models in the biology, applied mathematics, and physics literature to de-
scribe the collective behavior of individuals. Here, individuals may mean
animals (insects, fish, birds,...), bacteria, and even robots. Most of these
models involve the nonlocal character of the interaction as a basic modelling
pillar, see for instance Camazine, Deneubourg, Franks, Sneyd, Theraulaz,
and Bonabeau (2003); Couzin, Krause, Franks, and Levin (2005); Li, Luke-
man, and Edelstein-Keshet (2008); Vicsek, Czirok, Ben-Jacob, Cohen, and
Shochet (1995). In fact, one of largest source of collective behavior models
comes from control engineering. There, the aim is to produce a suitable
control of the movement of small squads of robots in order to perform un-
manned vehicle operations, for instance Perea, Gómez, and Elosequi (2009).
These ideas even have been proposed to model crowd motion, including

A. Muntean, F. Toschi (Eds.), Collective Dynamics from Bacteria to Crowds, CISM International  
Centre for Mechanical Sciences, DOI 10.1007/978-3-7091-1785-9_1, © CISM, Udine 2014 



2 J.A. Carillo, Y.P. Choi and M. Hauray

more “intelligent” particles deciding their movement based on optimization
of certain quantities: time to exit from a room or a stadium, for instance
Burger, Markowich, and Pietschmann (2011).

Either in social or in biological sciences, these models encounter many
interesting features such as the spontaneous formation of different pattern
behaviors. When we talk about patterns, we do not mean static patterns
like in the study of crystals but rather dynamic patterns leading to the col-
lective motion of the individual ensemble. For instance, two of the main
collective motion patterns studied in different models are the flock and the
milling behavior, see D’Orsogna, Chuang, Bertozzi, and Chayes (2006); Car-
rillo, D’Orsogna, and Panferov (2009); Cañizo, Carrillo, and Rosado (2010);
Carrillo, Klar, Martin, and Tiwari (2010); Carrillo, Panferov, and Martin
(2013). In the flock pattern, individuals achieve a consensus on the direction
or orientation towards some objective, producing as a consequence a par-
ticular spatial shape showing their preferred comfort structure. This kind
of swiftly moving flocks have been reported in many species although the
most spectacular or bucolic ones are the bird flocks, starlings for instance.
In the mill pattern, individuals arrange into a kind of vortex like motion
around some point. This particular moving pattern has been observed in
fish schools. Hundreds of movies can be easily accessed through internet
search showing them.

There are many reasons one can argue, why such a large number of
individuals react to external stimuli producing these macroscopic patterns
without seemingly the presence of a leader in the swarm. Hydrodynamic en-
hancement, predators avoidance, social interactions, spawning survival rate,
and many others have been proposed to explain this behavior in different
species, see Parrish, and Edelstein-Keshet (1999).

One of the main question in describing this behavior by mathematical
models is how to include the interaction between individuals. In any case,
there is a consensus that the modelling starts from particle-like models as in
statistical physics. These particle models are also called Individual-Based
Models (IBMs) in the community. They are usually formed by a set of differ-
ential equations of Newton type (called 2nd order models) or by kinematic
equations where the inertia terms are neglected (called first order models).
Essentially, by assuming that the inertia term is negligible, we assume that
individuals can adjust to the velocity field instantaneously, an approxima-
tion valid when their speed is not too large. In any case, these first order
models were proposed in the literature derived in a phenomenological man-
ner; see Mogilner, Edelstein-Keshet, Bent, and Spiros (2003); Mogilner and
Edelstein-Keshet (1999); Parrish, and Edelstein-Keshet (1999); Topaz and
Bertozzi (2004); Topaz, Bertozzi, and Lewis (2006); Eftimie, de Vries, and
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Lewis (2007). The literature on first and second order models for swarm-
ing has increased exponentially fast in the last few years. Many of these
models find also their origin in social sciences, where consensus or opinion
formation was also described in similar grounds. Another typical ingredient
in these models is some kind of noise leading to systems of SDEs. In this
work, we will not discuss how to incorporate noise in these models, we refer
to Bolley, Cañizo, and Carrillo (2011) and the references therein.

Most of these models are based on discrete approaches incorporating cer-
tain effects that we like to call the “first principles” of swarming. These first
principles are based on modelling the “sociological behavior” of animals with
very simple rules such as the social tendency to produce grouping (attrac-
tion/aggregation), the inherent minimal space they need to move without
problems and feel comfortably inside the group (repulsion/collisional avoid-
ance) and the mimetic adaptation or synchronization to a group (orienta-
tion/alignment). Even if these minimal models contain very basic rules, the
patterns observed in their simulation and their complex asymptotic behavior
are already very challenging from the mathematical viewpoint. The 3-zone
models including attraction, repulsion, and alignment effects are classical in
fish modelling; see Aoki (1982); Huth and Wissel (1992) for instance. Based
on them, one can incorporate may other effects to render more realistic the
outputs of the simulations and the models, see Barbaro, Taylor, Trethewey,
Youseff, and Birnir (2009) for fish schools or Hemelrijk and Hildenbrandt
(2008) for birds flocks. We also refer to the reader to the recent review
Carrillo, Fornasier, Toscani, and Vecil (2010) about the kinetic modelling
of swarming.

To the eyes of a kinetic theorist or a statistical physicist, studying such
systems of ODEs when the number of individuals becomes large is doomed
to fail. Dynamical system approaches are quite useful but they typically
have huge problems to describe large systems of particles. A classical ap-
proach to attack the problem is to pass to a continuous description of the
system. This means to go from particle descriptions to kinetic descriptions
where the unknown is the particle density distribution in position-velocity
(phase) space for 2nd order models or in position space for 1st order models.

Going from particle to continuum descriptions is one of the most clas-
sical problems in kinetic theory. It is at the basis of the derivation of the
mother and father kinetic equations, namely: the Vlasov and the Boltz-
mann equations. A rigorous derivation of the Boltzmann equation from the
Newtonian dynamics has only been given for short times (of the order of the
average time of first collision), see Lanford (1974) Gallagher, St-Raymond,
and Texier (2012). In that case, interactions between the particles are mod-
elled by short-range potentials leading to collision kernels. The question
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of the derivation of the Boltzmann equation from particles with jump pro-
cesses was also raised and solved by Kac (1956), and further results are
given in the recent important work by Mischler and Mouhot (2013). The
derivation of the Vlasov equation is well understood only for regular or
not too singular potentials; see Braun and Hepp (1977); Neunzert (1984);
Dobrushin (1979); Hauray and Jabin (2012). In fact, a full derivation of
the Vlasov-Poisson system in 3D is also lacking. The problem of passing
to the limit from particle to continuum models like the Vlasov equation is
called the mean-field limit. This name just comes from the fact that the
resulting equation is a kind of averaged version of the interaction between
the large number of individuals. Moreover, the resulting equation gives the
typical behavior of one isolated individual among all the others since they
are assumed to be completely indistinguishable.

Finally, there are other famous mean-field limit equations, such as the
Euler and the Navier-Stokes equations for incompressible fluids, see Mar-
chioro and Pulvirenti (1994); Majda and Bertozzi (2002). It has been exten-
sively used for numerical purposes that both equations in the 2D incompress-
ible case can be derived from particle approximations, called vortex point
approximations. The convergence in the viscous case has been rigorously
proved for very general initial data; see Osada (1985); Founier, Hauray, and
Mischler (2012). In the non-viscous case Schochet (1996) proves that par-
ticle approximations converge towards solutions of the Euler equation, but
they may not converge to the good solution because of the lack of uniqueness
in the Euler equation, see De Lellis and L. Székelyhidi (2009). However, in
the case where the initial particles are equally spaced on a grid to approxi-
mate a smooth solution of the Euler equation, the convergence was shown in
Goodman, Hou, and Lowengrub (1990). These vortex methods have been
proven to be convergent and estimates of the error committed have been ob-
tained in recent works using optimal transport techniques (Hauray (2009))
but not for the real Euler equation in 2D.

The aim of this work is to show in detail a particular example of the
mean field limit in the case of first order models not covered in the previous
literature. Nevertheless, we will first discuss some of these issues for 2nd
order models summarizing results in Cañizo, Carrillo, and Rosado (2011);
Bolley, Cañizo, and Carrillo (2011). We will also discuss that the spatial
shape of the main patterns, flock and mills, are given by stationary solutions
of the 1st order models. This gives another reason from a more conceptual
mathematical viewpoint of reducing to 1st order models. Section 3 will be
devoted to obtain the mean field limit to the so-called aggregation equation
for singular potentials recovering some of the models studied in Bertozzi,
Carrillo, and Laurent (2009); Bertozzi, Laurent, and Rosado (2010). Here,
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the idea is to assume that we have solutions of the model in better func-
tional spaces due to the singularity of the potential, but we have to pay
in terms of conditions on the initial distribution of particles (how they are
distributed) in such a way that the particle solution converges to the con-
tinuum solution of the aggregation equation as N → ∞. We will make
use of similar arguments to Hauray (2009) to show the mean-field limit for
first order swarming models with singular potentials up to the Newtonian
singularity. In Section 4, we study a local existence of a unique Lp-solution
for the aggregation equation. This complements the well-posedness theory
in Bertozzi, Laurent, and Rosado (2010). Finally, Section 5 is devoted to
show the propagation of chaos property for the aggregation equation. This
property is very important from the physical relevance of the kinetic and
aggregation models, since it states that one can derive the mean-field equa-
tions under quite generic randomly generated initial location of the particles.
We are only able to show it for a more restricted set of singular potentials
with respect to the mean-field limit.

2 The Dobrushin approach

2.1 Some Individual Based Models

As we described in the introduction, the modelling in swarming starts
by introducing some particle models, IBMs in the jargon of this community,
incorporating some of the basic effects: repulsion, attraction, and alignment.
Let us discuss briefly some of these models, starting with the ones that
have recently attracted more attention due to their simplicity while having
a rich mathematical structure and pattern formation. One of these models
was introduced by the UCLA group in D’Orsogna, Chuang, Bertozzi, and
Chayes (2006) and it consists of Newton-like equations where all the effect of
repulsion and attraction is encoded via a pairwise potential W : Rd → R. A
popular choice for the interaction potential W is the Morse potential given
by

W (x) = −CAe
−|x|/�A + CRe

−|x|/�R , (2.1)

where CA, CR and �A, �R are the strengths and the typical lengths of at-
traction and repulsion, respectively. They are chosen for having biologically
reasonable potentials with C = CR/CA > 1 and �R/�A < 1, see Carrillo,
Panferov, and Martin (2013) for other nice choices of the interaction poten-
tials and a deeper discussion on the issue of biologically relevant interaction
potentials. Apart from this, the other effect included is the tendency of
the particles to travel asymptotically at a fixed speed as in Levine, Rap-
pel, and Cohen (2000). Consequently, a term producing a balance between
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self-propulsion and friction is introduced imposing an asymptotic speed to
the particles (if other effects are ignored), but it does not influence the
orientation vector. The resulting ODE system reads as:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dxi

dt
= vi, (i = 1, . . . , N),

dvi
dt

= (α− β |vi|2)vi −
1

N

∑
j �=i

∇W (|xi − xj |), (i = 1, . . . , N).

where α, β are nonnegative parameters, determining the asymptotic speed of
particles given by

√
α/β. Here, the potential has been scaled depending on

the mass of each particle as in Carrillo, D’Orsogna, and Panferov (2009) and
in such a way that the effect of the potential per particle diminishes while
the energy is of constant order as the number of particles N diverges. This
scaling is the so-called mean-field scaling, see the introduction of Bodnar
and Velazquez (2012) for a nice discussion of the different scalings in first
order models.

Another popular IBM including only the alignment effect is the so-called
Cucker and Smale (2007) model. Each individual in the swarm changes its
velocity vector based on the other individuals by adjusting/averaging their
relative velocity with all the others. This averaging is weighted in such a
way that closer individuals have more influence than further ones. For a
system with N individuals the Cucker-Smale model reads as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
dxi

dt
= vi,

dvi
dt

=
1

N

N∑
j=1

wij (vj − vi) ,

with the communication rate w(x) given by:

wij = w(xi − xj) =
1

(1 + |xi − xj |2)γ
,

for some γ ≥ 0.
Associated to the above models, one can formally write the expected

Vlasov-like kinetic equations asN →∞, see for instance Carrillo, D’Orsogna,
and Panferov (2009), leading to

∂tf + v · ∇xf − (∇W ∗ ρ) · ∇vf + divv((α− β|v|2)vf) = 0, (2.2)

where ρ represents the macroscopic density of f :

ρ(t, x) :=

∫
Rd

f(t, x, v) dv for t ≥ 0, x ∈ R
d.
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The Cucker-Smale particle model leads to the following kinetic equation:

∂f

∂t
+ v · ∇xf = ∇v · [ξ[f ] f ] , (2.3)

where ξ[f ](x, v, t) = (H ∗ f) (x, v, t), with H(x, v) = w(x)v and ∗ stand-
ing for the convolution in both position and velocity (x and v). We refer
to Cucker and Smale (2007); Ha and Tadmor (2008); Ha and Liu (2009);
Carrillo, Fornasier, Rosado, and Toscani (2010) for further discussion about
this model and qualitative properties.

Moreover, quite general models incorporating the three effects previ-
ously discussed with additional ingredients, such as vision cones or topo-
logical interactions, have been considered in Carrillo, Fornasier, Toscani,
and Vecil (2010); Li, Lukeman, and Edelstein-Keshet (2008); Agueh, Illner,
and Richardson (2011); Albi and Pareschi (2013); Haskovec (2013). In
particular Li, Lukeman, and Edelstein-Keshet (2008) consider that the N
individuals follow the system:⎧⎪⎪⎨

⎪⎪⎩
dxi

dt
= vi,

dvi
dt

= FA
i + F I

i ,

(2.4)

where FA
i is the self-propulsion generated by the ith-individual, while F I

i is
due to interaction with the others. The interaction with other individuals
can be generally modeled as:

F I
i = F I,x

i + F I,v
i =

N∑
j=1

g±(|xi − xj |)
xj − xi

|xi − xj |
+

N∑
j=1

h±(|vi − vj |)
vj − vi
|vi − vj |

.

Here, g+ and h+ (g− and h−) are chosen when the influence comes from
the front (behind), i.e., if (xj − xi) · vi > 0 (< 0); choosing g+ �= g− and
h+ �= h− means that the forces from particles in front and those from
particles behind are different. The sign of the functions g±(r) encodes the
short-range repulsion and long-range attraction for particles in front of (+)
and behind (-) the ith-particle. Similarly, h+ > 0 (< 0) implies that the
velocity-dependent force makes the velocity of particle i get closer to (away
from) that of particle j.

Some of these models, for instance Agueh, Illner, and Richardson (2011);
Albi and Pareschi (2013); Haskovec (2013), include sharp boundaries for the
vision cone or for the interaction with the nearest neighbors. As we shall see
later, these are typical situations in which the mean-field limit for general
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measures will not work. By sharp boundaries we mean that the functions
involved in the kernels such as w(x), g±, or h± are given by characteristic
functions on sets depending on the location/velocity of the agent.

2.2 First-order models: Aggregation Equation

In this work, the objective is to show how to obtain the continuum
limits of these particle models in a simpler situation than the ones in the
previous section. However, at the same time we will allow for more singular
kernels. We will showcase these tools in the case of the so-called aggregation
equation. Let us assume that we have just particles interacting through the
pairwise potential W (x). Assuming that the variations of the velocity and
speed are much smaller than spatial variations, see Mogilner and Edelstein-
Keshet (1999), then one can neglect the inertia term in Newton’s equation
to deduce that

dXi

dt
= −

∑
j �=i

∇W (Xi−Xj) in the N →∞ limit �

⎧⎨
⎩

∂ρ

∂t
+ div (ρu) = 0

u = −∇W ∗ ρ
.

(2.5)
Another reason to study this first order equation is that the stationary states
of the first order model determine the spatial shape of the flock solutions to
the second order models, see Carrillo, Panferov, and Martin (2013).

Let us note that some of the difficulties to overcome are already in
this model. Next subsection is devoted to review the classical Dobrushin
strategy for the mean-field limit when all functions involved in the model
are smooth enough. This strategy applies to the aggregation equation for
C2(Rd) smooth potential with at most quadratic growth at infinity by fol-
lowing the same argument as in Theorem 2.4 below. This argument was
detailed in a nice summer school notes in Golse (2003). The goal of this
chapter is to show how to deal with more singular potentials. The main mes-
sage is that in order to obtain the mean-field limit, whose precise statement
is given later on, you need to impose certain conditions on the approxi-
mation of the initial data avoiding the possible singularities (collisions) in
finite time of the particles. We will elaborate on this at the begining of
next section. In order to deal with these questions, it is quite convenient to
work with transport distances between probability measures that we quickly
review next.

2.3 Basic tools in transport distances

In this subsection, we present several definitions of Wasserstein distances
and their properties.
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Definition 2.1. (Wasserstein p-distance) Let ρ1, ρ2 be two Borel proba-
bility measures on R

d. Then the Euclidean Wasserstein distance of order
1 ≤ p <∞ between ρ1 and ρ2 is defined as

dp(ρ1, ρ2) := inf
γ

(∫
Rd×Rd

|x− y|p dγ(x, y)
)1/p

,

and, for p =∞ (this is the limiting case, as p→∞),

d∞(ρ1, ρ2) := inf
γ

(
sup

(x,y)∈supp(γ)
|x− y|

)
,

where the infimum runs over all transference plans, i.e., all probability mea-
sures γ on R

d × R
d with marginals ρ1 and ρ2 respectively,∫
Rd×Rd

φ(x)dγ(x, y) =

∫
Rd

φ(x)ρ1(x)dx,

and ∫
Rd×Rd

φ(y)dγ(x, y) =

∫
Rd

φ(y)ρ2(y)dy,

for all φ ∈ Cb(Rd).

We also remind the definition of the push-forward of a measure by a
mapping in order to give the relation between Wasserstein distances and
optimal transportation.

Definition 2.2. Let ρ1 be a Borel measure on R
d and T : Rd → R

d be a
measurable mapping. Then the push-forward of ρ1 by T is the measure ρ2
defined by

ρ2(B) = ρ1(T −1(B)) for B ⊂ R
d,

and denoted as ρ2 = T #ρ1.

The set of probability measures with bounded moments of order p, de-
noted by Pp(R

d), 1 ≤ p <∞, is a complete metric space endowed with the
p-Wassertein distance dp, see Villani (2003). We refer to Givens and Shortt
(1984); McCann (2006) for more details in the case of the d∞ distance.

Remark 2.3. The definition of ρ2 = T #ρ1 is equivalent to∫
Rd

φ(x) dρ2(x) =

∫
Rd

φ(T (x)) dρ1(x) ,
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for all φ ∈ Cb(Rd). Given a probability measure with bounded p-th moment
ρ0, consider two measurable mappings X1, X2 : Rd → R

d, then the following
inequality holds.

dpp(X1#ρ0, X2#ρ0) ≤
∫
Rd×Rd

|x−y|pdγ(x, y) =
∫
Rd

|X1(x)−X2(x)|pdρ0(x).

Here, we used as transference plan γ = (X1 ×X2)#ρ0 in Definition 2.1.

2.4 A quick review of the classical Dobrushin result

Under smoothness assumptions on the ingredient functions of the swarm-
ing models, one can use adaptations of the classical result of Dobrushin
(1979) to obtain what is called the mean-field limit equation for general
particle approximations of any initial measure. These arguments are clas-
sical in kinetic theory and were also introduced in Braun and Hepp (1977);
Neunzert (1984), making use of the bounded Lipschitz distance, and re-
viewed in Spohn (1991); Villani (2002), see also Sznitman (1991); Méléard
(1996) for the case with noise. The bounded Lipschitz distance or dual
W 1,∞-norm is equivalent to the Wasserstein distance d1 for compactly sup-
ported measures. This strategy works as soon as the velocity field defining
the characteristics of the model is a bounded and globally Lipschitz func-
tion whose dependence on the measure itself is Lipschitz continuous in the
d1 sense. These ideas were improved to allow for locally Lipschitz veloc-
ity fields for compactly supported initial measures in Cañizo, Carrillo, and
Rosado (2011) and for suitable decay conditions at infinity and with noise in
Bolley, Cañizo, and Carrillo (2011). With these techniques one can include
quite general kinetic models for swarming in this well-posedness theory.

Let us introduce some notation for this section: A = Pc(R
d×Rd) denotes

the subset of P(Rd×R
d) consisting of measures of compact support in R

d×
R

d. On the other hand, we consider the set of functions B := Liploc(R
d ×

R
d,Rd), which in particular are locally Lipschitz with respect to (x, v). BR

will denote the ball centered at 0 of radius R in R× R.
Let us consider general operators from measures to vector fields, H[·] :

A → B, satisfying the following hypotheses: for any R0 > 0 and f, g ∈ A
such that supp f ∪ supp g ⊆ BR0

, there exists some ball BR ⊂ R
d ×R

d and
a constant C = C(R,R0) > 0, such that

‖H[f ]−H[g]‖L∞(BR) ≤ C d1(f, g), (2.6)

LipR(H[f ]) ≤ C, ‖H[f ]‖L∞(BR) ≤ C. (2.7)

Here, LipR(·) denotes the Lipschitz constant of a function in BR.
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Given f ∈ C([0, T ],Pc(BR0
)), and for any initial condition (X0, V 0) ∈

R
d×R

d, the following system of ordinary differential equations has a unique
locally defined solution

d

dt
X = V, X(0) = X0 (2.8a)

d

dt
V = H[f(t)](X,V ), V (0) = V 0 . (2.8b)

We will additionally require that the solutions to that system are “global”.
More precisely, we assume that for any R0, T > 0, there exists R > 0 such
that (X(t), V (t)) ∈ BR for all t ∈ [0, T ] and all (X0, V 0) ∈ BR0

. Of course,
this is a requirement that has to be checked for every particular model. We
prefer to give a general condition which reduces the problem of existence
and stability to the simpler one of existence of the ODEs. Under the above
conditions, the existence and uniqueness of associated transport equation

∂tf + v · ∇xf −∇v · [H[f ]f ] = 0. (2.9)

was obtained in Cañizo, Carrillo, and Rosado (2011) to which we refer
for full details. In Cañizo, Carrillo, and Rosado (2011), the interactions
H[f ] = (α− β|v|2)v−∇W ∗ ρ and H[f ] = H ∗ f corresponding to (2.2) and
(2.3), respectively, and

H[f ] = FA(x, v) +G(x) ∗ ρ+H(x, v) ∗ f,

with FA, G and H given functions satisfying suitable hypotheses, such that
the kinetic equation (2.9) corresponds to the model (2.4) are investigated.

Theorem 2.4. Given an operator H[·] : A → B satisfying Hypotheses
(2.6) and (2.7) for which the characteristics (2.8a)-(2.8b) are globally well-
defined, and f0 a measure on R

d × R
d with compact support. There exists

a solution f on [0,+∞) to equation (2.9) with initial condition f0. In
addition,

f ∈ C([0,+∞);Pc(R
d × R

d)) (2.10)

and there is some increasing function R = R(T ) such that for all T > 0,

supp ft ⊆ BR(T ) ⊆ R
d × R

d for all t ∈ [0, T ]. (2.11)

This solution is unique among the family of solutions satisfying (2.10) and
(2.11). Moreover, given any other initial data g0 ∈ Pc(R

d × R
d) and g

its corresponding solution, there exists a strictly increasing function r(t) :
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[0,∞)→ R
+
0 with r(0) = 1 depending only on H and the size of the support

of f0 and g0, such that

d1(ft, gt) ≤ r(t) d1(f0, g0), t ≥ 0.

The stability theorem 2.4 gives in particular a rigorous derivation of the
kinetic equation (2.9) from the large particle limit of the system of ordinary
differential equations. This is the exact statement of the mean-field limit
for general measures as initial data. Let us consider the system of ordinary
differential equations:

ẋi = vi, i = 1, . . . , N, (2.12a)

v̇i =
∑
j �=i

mjH[fN (t)](xi, vi), i = 1, . . . , N. (2.12b)

where m1, . . . ,mN ≥ 0 and
∑

i mi = 1 and fN is defined next. Under
the conditions of Theorem 2.4, we first notice that if xi, vi : [0, T ] → R

d,
for i = 1, . . . , N , are a solution to the system (2.12), then the function
fN : [0, T ]→ Pc(R

d × R
d) given by

fN
t :=

N∑
i=1

mi δ(xi(t),vi(t)) (2.13)

is the solution to (2.9) with initial condition

fN
0 =

N∑
i=1

mi δ(xi(0),vi(0)). (2.14)

In fact, the solution (2.13) is called the empirical measure associated to the
system of ODEs (2.12). We finally write the full statement of the mean-field
limit in the Dobrushin strategy.

Corollary 2.5. Given f0 ∈ Pc(R
d×R

d) and H[f ] satisfying the conditions
of Theorem 2.4, take a sequence of fN

0 of measures of the form (2.14) (with
mi, xi(0) and vi(0) possibly varying with N), in such a way that

lim
N→∞

d1(f
N
0 , f0) = 0.

Consider fN
t the empirical measure associated to the solution of the system

(2.12) with initial conditions xi(0), vi(0). Then,

lim
N→∞

d1(f
N
t , ft) = 0, (2.15)
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for all t ≥ 0, where f = f(t, x, v) is the unique measure solution to eq. (2.9)
with initial data f0.

This section can be directly applied to the models recently introduced
in Agueh, Illner, and Richardson (2011) to account for vision cones and
braking/acceleration of individuals and those in Albi and Pareschi (2013);
Haskovec (2013) to include topological (nearest neighbours) interactions
once the parameter functions are smoothed out to avoid sharp boundaries.

Summarizing this subsection, under suitable smoothness of the parame-
ters involved in the swarming models, the empirical measures are solutions
themselves of the Vlasov-like kinetic equation (2.9). Thus, a stability result
in d1 with respect to the initial data is enough to conclude the mean-field
limit. Let us consider one of the particular examples in subsection 2.1,
the model introduced in D’Orsogna, Chuang, Bertozzi, and Chayes (2006)
with the Morse potential (2.1). This potential does not satisfy the smooth-
ness assumption in Theorem 2.4. In principle, one cannot expect to have a
mean-field result for general measures as initial data and for general approx-
imations by particles. In fact, we do not have a well-posedness theory for
such initial data in those cases. However, one can develop well-posedness
theories in better functional spaces, say L1∩Lp(Rd×R

d) for the initial data
and then impose suitable conditions to the distribution of the approximated
particles initially to be able to conclude the mean-field limit (2.15). This
is the strategy that have been followed in Hauray and Jabin (2012) for the
classical Vlasov equation and in Hauray (2009) for Euler-like equations in
fluid mechanics. The rest of this work is to show this technique applied to
the first order model introduced in Subsection 2.2.

3 Mean-Field Limit for the Aggregation Equation

Now, we analyse the mean-field limit of the first order model (2.5) for swarm-
ing introduced in the previous section. More precisely, we will study suffi-
cient conditions on the initial distribution of particles for the convergence of
a particle system towards the aggregation equation. This mean-field limit
model consists of the continuity equation for the probability density of in-
dividuals ρ(x, t) at position x ∈ R

d and time t > 0 given by:⎧⎪⎪⎨
⎪⎪⎩

∂tρ+∇ · (ρu) = 0, t > 0, x ∈ R
d,

u(t, x) := −∇W ∗ ρ, t > 0, x ∈ R
d,

ρ(0, x) := ρ0(x), x ∈ R
d,

(3.16)

where u(x, t) is a velocity field non-locally computed in terms of the density
of individuals.
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As an approximation by particles of the aggregation equation (3.16), we
consider the following ODE system:⎧⎨

⎩
Ẋi(t) = −

∑
j �=i

mj∇W (Xi(t)−Xj(t)),

Xi(0) = X0
i , i = 1, . . . , N.

(3.17)

Here, {Xi}Ni=1 and {mi}Ni=1 are the positions and weights of i-th particles,
respectively. We define the associated empirical distribution μN (t) as

μN (t) =

N∑
i=1

miδXi(t),
N∑
i=1

mi =

∫
Rd

ρ0(x)dx = 1, (3.18)

with mi > 0, i = 1, . . . , N . As long as two particles (or more) do not
collide, and if we set ∇W (0) = 0 (arbitrarily if there is a singularity), then
μN satisfies (3.16) in the sense of distributions, i.e., μN (t) and ρ(t) satisfy
the same equation. In this framework, the convergence:

“μ0
N ⇀ ρ0 weakly-∗ as measures =⇒ μN (t) ⇀ ρ(t) weakly-∗ as measures

for small time or for every time?”

is a natural question. If the answer is yes, we say that the continuity
equation (3.16) is the mean-field limit of the particle approximation (3.17).
In other words, we can say that the continuum nonlocal equation (3.16) has
been rigorously derived from particle systems.

Because of the singularity in the interaction force, the natural transport
distance to use is the one induced by the d∞-topology. In fact, the d∞ allows
to take advantage of the fact that the singularity in the interaction force is
localized. This seems more difficult to use with other distance like dp, p <
∞. Remark that this distance also allows to understand linearized stability
of particle systems around singular steady state measures with a ring shape
in first order aggregation models, see Balagué, Carrillo, Laurent, and Raoul
(2013b); Kolokonikov, Sun, Uminsky, and Bertozzi (2011). Actually, a local
perturbation of the dynamical system (3.17) keeping the number of particles
fixed is obtained by transporting the particle to other locations nearby. One
could even allow for splitting of the mass into different particles, but all of
them located in a local neighborhood of the unperturbed particle positions.
Certainly, sending a small portion of mass very far away from the location
of one particle is not a d∞-perturbation of the atomic measure but it is a
dp small perturbation for all 1 ≤ p < ∞. These ideas have also recently
been used in Balagué, Carrillo, Laurent, and Raoul (2013b) to study local
minimizers of the energy functional associated to (3.16).
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Another issue to cope with is that we are dealing with particle systems
whose characteristics may lead to collisions in finite time. Therefore, we will
be able to obtain meaningful results only on intervals in which collisions are
avoided (although in some particular cases we can allow collisions).

We next introduce several notations that are used throughout the rest
of this work to compare the distance between a solution ρ(t) of the contin-
uum aggregation equation (3.16) and the empirical measure μN (t) defined
by (3.18) associated to a solution {Xi}Ni=1 of the particle system (3.17).
The main two quantities appearing in this comparison are the d∞-distance
between ρ(t) and μN (t), and the minimum inter-particle distance:

η(t) := d∞(μN (t), ρ(t)), ηm(t) := min
1≤i�=j≤N

(|Xi(t)−Xj(t)|) , (3.19)

with η0 := η(0) and η0m := ηm(0). Our strategy does not take advantage,
as we do not know how, of the repulsive or attractive character of the
potentials, the proof being equal for both cases.

A theory of well-posedness for measure solutions has been obtained for
the aggregation equation (3.16) allowing collision of particles in finite time
in Carrillo, Di Francesco, Figalli, Laurent, and Slepčev (2011); Carrillo,
Di Francesco, Figalli, Laurent, and Slepčev (2012). In these works, the
potential is assumed to be smooth except at the origin, where the allowed
singularity cannot be worse than Lipschitz and the potential has to be λ-
convex, see Carrillo, Di Francesco, Figalli, Laurent, and Slepčev (2011) for
details. This convexity allows for attractive at the origin potentials, but
not repulsive, with local behaviors of the form |x|b with 1 ≤ b < 2. In
these works, the essential tools that allow to get the mean-field limit for
more singular potentials that quadratic are based on gradient flows in the
Wasserstein distance d2 sense as in Ambrosio, Gigli, and Savaré (2005).
The additional dissipation in the system of the natural Liapunov functional
given by the total interaction energy is crucial to get the mean field limit
for general measures for a potential behaving locally at 0 like W (x) � |x|,
for instance for the attractive Morse potential W (x) = 1− e−|x|.

In this work, we want to allow for more singular potentials at the origin
as in Bertozzi, Carrillo, and Laurent (2009); Bertozzi, Laurent, and Rosado
(2010), and thus we need to work with solutions in better functional spaces.
More precisely, we will work with solutions of the aggregation equation
(3.16) in L∞(0, T ; (L1 ∩ Lp)(Rd)) with 1 ≤ p ≤ ∞ to be determined de-
pending on the singularity of the potential. We will use the notation

‖ρ‖(L1∩Lp)(Rd) := ‖ρ‖1 + ‖ρ‖p, ‖ρ‖ := ‖ρ‖L∞(0,T ;(L1∩Lp)(Rd)) ,

where ‖ρ‖p denotes the Lp(Rd)-norm of ρ, 1 ≤ p ≤ ∞.
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In order to make sense of solutions to (3.16), we need the following
assumptions on the interaction potential: we first fixW (0) = 0 by definition,
even if W is singular at the origin, and

|∇W (x)| ≤ C

|x|α , and |D2W (x)| ≤ C

|x|1+α
, ∀ x ∈ R

d\{0} , (3.20)

for −1 ≤ α < d−1. Note that due to the assumptions on W , we can always

find 1 < p <∞ such that (α+1)p′ < d, and thus ∇W belongs toW1,p′
loc (Rd).

Our results also apply with minor modifications for interaction potentials
of the form W := W1 + W2, with W1 satisfying assumptions (3.20), and
∇W2 being a global Lipschitz function, or even more general satisfying
a one-sided Lipschitz (or convexity) condition y · D2W2(x)y ≤ C|y|2 for
all y ∈ R

d. This last generalization is important because it is satisfied if
W2 = c|x|a, (0 ≤ a ≤ 2) with c positive. So that any repulsive-attractive
potential W , see Balagué, Carrillo, Laurent, and Raoul (2013a,b) for a
definition, such that W (x) � −|x|b/b locally at x near the origin, satisfies
assumptions (3.20) locally with α = 1 − b. Therefore, our mean-field limit
results apply to locally repulsive potentials with exponent range 2 − d <
b < a ≤ 2 and without much restriction on the attractive part at +∞, i.e.,
a > 0. We will discuss further on localizing assumptions (3.20) at the end
of this section. Finally, we cannot apply our techniques to the Newtonian
singularity (Bertozzi, Laurent, and Léger (2012)) being the limiting case of
our strategy as it was the case for the Euler-like models in fluid mechanics
studied in Hauray (2009).

We next summarize the results on the existence and uniqueness of solu-
tions to the aggregation equation (3.16). For the local well-posedness of so-
lutions to equation (3.16), we refer to Bertozzi and Laurent (2007); Bertozzi,
Carrillo, and Laurent (2009); Bertozzi, Laurent, and Rosado (2010); Laurent
(2007). In particular, unique solutions for the system (3.16) were obtained in
Bertozzi, Laurent, and Rosado (2010) with second moment bounded initial
data. More precisely, Bertozzi et al. (Bertozzi, Laurent, and Rosado, 2010,
Theorem 1.1) showed that if ∇W ∈ W1,p′

(Rd) and ρ0 ∈ Lp(Rd) ∩ P2(R
d),

then there exists T ∗ > 0 and a unique nonnegative solution to (3.16) sat-
isfying

ρ ∈ C([0, T ∗], (L1 ∩ Lp)(Rd)) ∩ C1([0, T ∗],W−1,p(Rd)).

Unfortunately, one can not directly apply those results for potentials sat-
isfying assumptions (3.20). We will compliment the results in Bertozzi,
Laurent, and Rosado (2010) to show the local existence of a unique solution
to the system (3.16) with the interaction potential function W satisfying
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(3.20) in Section 4. We prefer to postpone the well-posedness theory in
order to emphasize the mean-field limit result contained in the following
theorem, whose proof follows the strategy in Hauray (2009).

Theorem 3.1. Suppose the kernel W satisfies (3.20), and let ρ be a solu-
tion to the system (3.16) up to time T > 0, such that ρ ∈ L∞(0, T ; (L1 ∩
Lp)(Rd)) ∩ C([0, T ],P1(R

d)), with initial data ρ0 ∈ (P1 ∩ Lp)(Rd), 0 ≤ α <
−1 + d/p′, and 1 < p ≤ ∞. Furthermore, we assume μ0

N converges to ρ0

for the distance d∞ as the number of particles N goes to infinity, i.e.,

d∞(μ0
N , ρ0)→ 0 as N →∞,

and that the initial quantities η0, η0m satisfy

lim
N→∞

(η0)d/p
′

(η0m)1+α
= 0. (3.21)

Then, for N large enough the particle system (3.17) is well-defined up to
time T , in the sense that there is no collision between particles before that
time, and moreover

μN (t) ⇀ ρ(t) weakly-∗ as measures as N →∞, for all t ∈ [0, T ].

Remark 3.2. Let us first discuss the assumptions on the initial data in
Theorem 3.1. The mean-field limit is valid for particular approximations
μ0
N of ρ0, that is, for well chosen particle approximations of the initial data.

In fact, a procedure to construct initial atomic measures approximating the
initial condition in the sense of (3.21) is the following: define a regular
mesh of size ε and approximate ρ0 by a sum of Dirac masses μ0

N located at
the center of the cells such that the mass at each particle is exactly equals
to the mass of ρ0 contained in the associated cell. In that case, we have
η0 ∼ ε and η0m ∼ ε (for the last condition we need that the mesh has some
regularity). In that case, the assumption (3.21) is automatically fulfilled
since (1+α)p′ < d. Notice that no bound on the masses mi of the particles
is required.

Proof of Theorem 3.1. The proof of Theorem 3.1 is divided into three steps:
• In Step A, we estimate the growth of the d∞ Wasserstein distance

between the continuum and the discrete solutions η that involves η
itself and ηm in the form:

dη

dt
≤ Cη‖ρ‖

(
1 + ηd/p

′
η−(1+α)
m

)
. (3.22)
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• In Step B, we estimate the decay of the minimum inter-particle dis-
tance ηm, which also involves the terms η and ηm in the form:

dηm
dt

≥ −Cηm‖ρ‖
(
1 + ηd/p

′
η−(1+α)
m

)
. (3.23)

• In Step C, under the assumption of the initial approximation (3.21),
we combine (3.22) and (3.23) to conclude the desired result.

Step A.- We first introduce the flows generated by the two velocity
fields: u(x, t) = −∇W ∗ ρ and uN := −∇W ∗ μN . Let us remark that the
convolution in the definition of uN is just a notation for the right-hand side
of (3.17) since the convolution of a Dirac Delta with a (possibly) singular
potential is not well-defined. These flows ΨN ,Ψ : R+ × R+ × R

d → R
d are

defined as solutions of⎧⎨
⎩

d

dt
(Ψ(t; s, x)) = u(t; s,Ψ(t; s, x)),

Ψ(s; s, x) = x,
(3.24)

for all s, t ∈ [0, T ], and

⎧⎨
⎩

d

dt
(ΨN (t; s, x)) = uN (t; s,ΨN (t; s, x)),

ΨN (s; s, x) = x,
(3.25)

for all s, t ∈ [0, TN
0 ]. Notice that the solution Xi(t) to the system (3.17)

is well-defined and continuous by the Cauchy-Lipschitz theorem as long as
there is no collision between particles. Since η0m > 0, there exists TN

0 > 0
such that ηm(t) > 0 for t ∈ [0, TN

0 ] by continuity. Then the flow map
ΨN (t; s, x) solution to (3.25) is well-defined for t, s ∈ [0, TN

0 ]. Now, let us
check that the flow for the solution associated to the continuum equation
in (3.24) is well-defined. Assumptions (3.20) imply that

|∇W (x)−∇W (y)| ≤ 2|x− y|
min(|x|, |y|)α+1

. (3.26)

One can see this by integrating along a straight line joining x and y but
avoiding the singularity using a small circle if needed, see Hauray (2009).
The estimate (3.26) implies that the velocity field is Lipschitz continuous
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with respect to the spatial variable. Actually, one can estimate it as

|u(t, x)− u(t, y)| ≤
∫
Rd

|∇W (x− z)−∇W (y − z)|ρ(t, z) dz

≤ 2|x− y|
∫
Rd

1

min(|x− z|, |y − z|)α+1
ρ(t, z) dz

≤ 4|x− y| sup
x∈Rd

∫
Rd

1

|x− z|α+1
ρ(t, z) dz .

Now, splitting the last integral into the near- and far-field sets A := {z :
|x− z| ≥ 1} and B := R

d −A and estimating the two terms, we deduce

∫
Rd

1

|x− z|α+1
ρ(t, z) dz ≤ ‖ρ(t)‖1 +

(∫
B

1

|x− y|(1+α)p′ dy

)1/p′

‖ρ(t)‖p

≤ C‖ρ‖ , (3.27)

for all x ∈ R
d due to the assumption (1+α)p′ < d. Putting together previous

inequalities, we get the desired Lipschitz continuity of the velocity field with
respect to x, which is moreover uniform in time. A similar estimate using
(3.20) shows that the velocity field is bounded, and then the flow Ψ in
(3.24) is well-defined. Our first aim is to find an expansion of the velocity
of the d∞ Wasserstein distance. The idea is similar to the evolution of
the euclidean Wassertein distance in Carrillo, McCann, and Villani (2003,
2006); Otto (2001). Fixed 0 ≤ t0 < min(T, TN

0 ) and choose an optimal
transport map for d∞ denoted by T 0 between ρ(t0) and μN (t0); μN (t0) =
T 0#ρ(t0). It is known that such an optimal transport map exists when ρ(t0)
is absolutely continuous with respect to the Lebesgue measure Champion,
Pascale, and Juutinen (2008). Then it follows from Theorem 4.1 that ρ(t) =
Ψ(t; t0, · )#ρ(t0) and obviously μN (t) = ΨN (t; t0, · )#μN (t0) for t ≥ t0. We
also notice that for t ≥ t0

T t#ρ(t) = μN (t), where T t = ΨN (t; t0, ·) ◦ T 0 ◦Ψ(t0; t, ·).

By Definition 2.1 of the dp Wasserstein distance, we get

dpp (μN (t), ρ(t)) ≤
∫
Rd

|Ψ(t; t0, x)−ΨN (t; t0, T 0(x))|pρ(t0, x)dx.

In the case of p =∞, we obtain

η(t) = d∞(μN (t), ρ(t)) ≤ ‖Ψ(t; t0, ·)−ΨN (t; t0, ·) ◦ T 0‖∞.
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We notice that

d

dt

(
ΨN (t; t0, T 0(x))−Ψ(t; t0, x)

) ∣∣∣
t=t0

= uN (t0, T 0(x))− u(t0, x).

Thus, writing the integral form, dividing by t − t0, and taking the limit
t→ t+0 we easily get

d

dt
‖ΨN (t; t0, ·)◦T 0−Ψ(t; t0, ·)‖∞

∣∣∣
t=t+0

≤ ‖uN (t0, ·)◦T 0−u(t0, ·)‖∞. (3.28)

We now note that

uN (t0, T 0(x))− u(t0, x)

= −
∫
Rd

∇W (T 0(x)− y)dμN (t0, y) +

∫
Rd

∇W (x− y)ρ(t0, y)dy

= −
∫
Rd

(
∇W (T 0(x)− T 0(y))−∇W (x− y)

)
ρ(t0, y)dy.

For notational simplicity, we omit the time dependency on t0 in the next
few computations. This yields that (3.28) can be rewritten as

d+η

dt
≤ C sup

x∈Rd

∫
Rd

|∇W (T (x)− T (y))−∇W (x− y)|ρ(y)dy. (3.29)

We decompose the integral on R
d into the near- and the far-field parts as

A := {z : |x− z| ≥ 4η} and B := R
d −A as∫

Rd

|∇W (T (x)− T (y))−∇W (x− y)|ρ(y)dy =

∫
A
· · ·+

∫
B
· · ·

:= I1 + I2.
(3.30)

For the estimate in the set A, we use

|T (x)− T (y)| ≥ |x− y| − |T (x)− x| − |T (y)− y| ≥ |x− y| − 2η ≥ |x− y|
2

together with (3.26) and (3.27) to obtain

I1 ≤
∫
A

2 (|x− T (x)|+ |y − T (y)|)
min(|x− y|, |T (x)− T (y)|)α+1

ρ(y)dy

≤ 4η

∫
A

(
1

|x− y|α+1
+

2α+1

|x− y|α+1

)
ρ(y)dy ≤ Cη

∫
A

1

|x− y|α+1
ρ(y)dy

≤ Cη

∫
Rd

1

|x− y|α+1
ρ(y)dy ≤ Cη‖ρ‖. (3.31)
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For the second part I2, we estimate separately each term using (3.20) to
deduce

I2 ≤
∫
B

ρ(y)

|x− y|α dy +
∫
B

ρ(y)

ηαm
dy

≤
(∫

B

1

|x− y|αp′ dy

)1/p′

‖ρ‖p +
1

ηαm

(∫
B
1dy

)1/p′

‖ρ‖p

≤ C(ηd/p
′−α + ηd/p

′
η−α
m )‖ρ‖p ≤ C(ηd/p

′−α + ηd/p
′
η−α
m )‖ρ‖ .

(3.32)

Notice that |T (x)−T (y)| ≥ ηm by definition of the minimum inter-particle
distance (3.19) as soon as T (x) �= T (y), ∇W (T (x)− T (y)) = 0 otherwise.

Finally, we choose two indices i, j so that |Xi − Xj | = ηm, then we
observe that the middle point between Xi and Xj has to be transported by
T to either Xi or Xj , and thus ηm ≤ 2η. Hence by combining (3.29)-(3.32)
and being t0 arbitrary in [0,min(T, TN

0 )), we have

d+η

dt
≤ Cη‖ρ‖

(
1 + ηd/p

′−1η−α
m

)
≤ Cη‖ρ‖

(
1 + ηd/p

′
η−(1+α)
m

)
, (3.33)

for all t ∈ [0,min(T, TN
0 )).

Step B.- We now focus on showing the lower bound estimate of ηm to
make the system (3.33) closed. We again choose two indices i, j so that
|Xi −Xj | = ηm. Neglecting the time dependency to simplify the notation,
we get

d

dt
|Xi −Xj | ≥ −|uN (Xi)− uN (Xj)|

≥ −
∫
Rd

|∇W (Xi − y)−∇W (Xj − y)| dμN (y)

= −
∫
Rd

|∇W (Xi − T (y))−∇W (Xj − T (y))| ρ(y)dy ,

where T is the optimal map satisfying μN (t) = T #ρ(t), for each t ∈
[0,min(T, TN

0 )). Similar to (3.30), we split in near- and far-field parts the
domain R

d as A := {y : |Xi− y| ≥ 2η and |Xj − y| ≥ 2η} and B := R
d−A.
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We can again use (3.26) to deduce∫
A
|∇W (Xi − T (y))−∇W (Xj − T (y))| ρ(y)dy (3.34)

≤
∫
A

2|Xi −Xj |
min(|Xi − T (y)|, |Xj − T (y)|)α+1

ρ(y)dy

≤ 22+α|Xi −Xj |
∫
A

(
1

|Xi − y|α+1
+

1

|Xj − y|α+1

)
ρ(y)dy ≤ Cηm‖ρ‖,

where we used that |Xi − T (y)| ≥ |Xi − y| − η ≥ 1
2 |Xi − y| and similarly

for Xj together with (3.27). For the integral over B, we use that as soon as
Xi �= T (y), then we obtain from (3.20) that

|∇W (Xi − T (y))| ≤
1

|Xj − T (y)|α
≤ 1

ηαm
,

and ∇W (Xi − T (y)) = 0 otherwise, and similarly for Xj . A simple Hölder
computation as in (3.27) implies that∫

B
ρ(y)dy ≤ Cηd/p

′‖ρ‖ ,

from which we infer that∫
B
|∇W (Xi − T (y))−∇W (Xj − T (y))| ρ(y)dy ≤ Cηd/p

′
η−α
m ‖ρ‖. (3.35)

Putting together (3.34) and (3.35), we finally conclude that

dηm
dt

≥ −Cηm‖ρ‖
(
1 + ηd/p

′
η−(1+α)
m

)
, (3.36)

for all t ∈ [0,min(T, TN
0 )).

Step C.- Until now, we have proved from (3.33) and (3.36) that⎧⎪⎪⎨
⎪⎪⎩

d+η

dt
≤ Cη‖ρ‖

(
1 + ηd/p

′
η
−(1+α)
m

)
,

dηm
dt

≥ −Cηm‖ρ‖
(
1 + ηd/p

′
η
−(1+α)
m

)
,

(3.37)

for t ∈ [0,min(T, TN
0 )). We first notice from (3.37) that if ηd/p

′
η
−(1+α)
m ≤ 1,

then

η(t) ≤ η0e2‖ρ‖t and ηm(t) ≥ η0me−2‖ρ‖t t ∈ [0,min(T, TN
0 )). (3.38)
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We now show that (3.38) holds for time t ∈ [0, T ] when N goes to infinity,
in other words that T < TN

0 when N is sufficiently large. For this, we set

f(t) :=
η(t)

η0
, g(t) :=

ηm(t)

η0m
and ξN := (η0)d/p

′
(η0m)−(1+α).

Note that ξN depends on the number of particles N as in (3.19). It yields

d+f

dt
≤ C‖ρ‖ f

(
1 + ξNfd/p′

g−(1+α)
)
,

dg

dt
≥ −C‖ρ‖ g

(
1 + ξNfd/p′

g−(1+α)
)
.

Since f(0) = g(0) = 1 and ξN → 0 as N goes to infinity, we obtain that
there exists a positive constant TN

∗ (≤ TN
0 ) such that

ξNfd/p′
g−(1+α) ≤ 1 for t ∈ [0, TN

∗ ] ,

for sufficiently large N . Then it follows from (3.38) that

f(t) ≤ e2‖ρ‖t and g(t) ≥ e−2‖ρ‖t.

This yields ξNfd/p′
g−(1+α) ≤ ξNe2(d/p

′+(1+α))‖ρ‖t, that is,

ξNfd/p′
g−(1+α) ≤ 1 holds for t ≤ − ln(ξN )

2(d/p′ + (1 + α))‖ρ‖ ,

so that

− ln(ξN )

2(d/p′ + (1 + α))‖ρ‖ ≤ TN
∗ .

On the other hand, our assumption for the initial data (3.21) implies

lim inf
N→∞

TN
∗ ≥ lim

N→∞
− ln(ξN )

2(d/p′ + (1 + α))‖ρ‖ =∞ ,

and thus for N large enough, T < TN
∗ < TN

0 . This completes the proof.

Remark 3.3. One can use almost the same argument with the above to
obtain an stability estimate in d∞: let ρ1 and ρ2 be solutions given by
Theorem 4.1 to the system (3.16) satisfying (3.20), then we have

d

dt
d∞(ρ1(t), ρ2(t)) ≤ Cmax(‖ρ1‖, ‖ρ2‖) d∞(ρ1(t), ρ2(t)) .
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In fact, the estimate of mean field limit in Theorem 3.1 holds for −1 ≤
α < 0 without any condition on η0 and η0m. This is coherent with the results
in Carrillo, Di Francesco, Figalli, Laurent, and Slepčev (2011) in which the
mean field limit is obtained for all measure initial data without restriction in
the way initial data are approximated by Dirac masses at least for attractive
potentials.

Corollary 3.4. Suppose the interaction potential W satisfies (3.20) with
−1 ≤ α < 0, and let ρ be a solution to the system (3.16) such that ρ ∈
L∞(0, T ; (L1 ∩ Lp)(Rd)) ∩ C([0, T ],P1(R

d)). Suppose that

d∞(μ0
N , ρ0)→ 0 as N →∞.

Then for any solution of the ODE system (3.17) the associated empirical
distributions μN (t) converge toward ρ(t) uniformly in time:

sup
t∈[0,T ]

d∞(μN (t), ρ(t))→ 0 as N →∞.

Remark 3.5. It is remarkable that even if we do not have uniqueness of
solution of (3.17) under assumption (3.20) with −1 ≤ α < 0, we get the
mean field limit without restriction. If one collision occurs, then uniqueness
may lost, but the existence of solution is still guaranteed. Thus Corollary
3.4 is interesting because it is valid for density solutions to (3.16) even if
collisions occur and uniqueness is lost at the particle level.

Proof of Corollary 3.4. We first notice that the existence of solutions to the
ODE system (3.17) is guaranteed thanks to Cauchy-Peano-Arzela theorem
since α is strictly negative with (3.20) implies that ∇W is continuous. One
can use the same arguments as in the proof of Theorem 3.1 to find

d+η

dt
≤ C sup

x∈Rd

(∫
A
+

∫
B

)
|∇W (T (x)− T (y))−∇W (x− y)| ρ(y)dy

:= K1 +K2,

where the same notation for the sets A and B is used and the time de-
pendency has been avoided for simplicity. Using (3.31) we estimate K1 by
Cη‖ρ‖. To estimate K2, we use that α < 0 to get

|∇W (T (x)− T (y))−∇W (x− y)| ≤ C

ηα
+

C

|x− y|α ,

and to obtain by Hölder’s inequality that

K2 ≤ C

∫
B

ρ(y)

|x− y|α dy +
C

ηα

∫
B
ρ(y)dy ≤ Cηd/p

′−α‖ρ‖p + Cηd/p
′
η−α‖ρ‖p

≤ Cηd/p
′−α‖ρ‖ .
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Hence, we have
d+η

dt
≤ Cη‖ρ‖

(
1 + ηd/p

′−α−1
)
,

and this yields for sufficiently large N

η(t) ≤
(
(η0)1−(d/p′−α)e−C‖ρ‖(d/p′−α−1)t + e−C‖ρ‖(d/p′−α−1)t − 1

)− 1
d/p′−α−1

,

for all t ∈ [0, T ]. Note that d/p′ − α − 1 > 0 and then, the right hand side
of previous estimate goes to zero as N goes to infinity. This completes the
proof.

We next show that there is no collision between particles when the initial
quantities η0 and η0m in (3.19) satisfy

lim
N→∞

(η0)d/p
′−α

η0m
= 0. (3.39)

Note that the same strategy as in Remark 3.2 allows us to find suitable
approximations for the initial data satisfying (3.39).

Corollary 3.6. Under the assumptions of Corollary 3.4 with −1 ≤ α < 0,
if we further assume that η0, η0m satisfy (3.39). Then we have that for N
large enough, the particle system (3.17) is uniquely well-defined till time T
in the sense that there is no collision between particles before that time, and
the convergence

sup
t∈[0,T ]

d∞(μN (t), ρ(t))→ 0 as N →∞ ,

holds.

Proof. The proof of Corollary 3.4 shows that for sufficiently large N

η ≤
(
(η0)1−(d/p′−α)e−C‖ρ‖(d/p′−α−1)t + e−C‖ρ‖(d/p′−α−1)t − 1

)− 1
d/p′−α−1

.

For the estimate of ηm, one can obtain from the proof of Theorem 3.1 that

dηm
dt

≥ −Cηm‖ρ‖
(
1 + ηd/p

′−αη−1
m

)
for all t ∈ [0,min(T, TN

0 )),

where TN
0 denotes the first collision time between particles. Then we con-

clude the desired result employing the same arguments in Step C of Theorem
3.1 using (3.39).
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As a corollary of Theorem 3.1, we consider interaction potentials under
weaker assumptions than (3.20): there exists R > 0 such that W satisfies

|∇W (x)| ≤ C

|x|α , and |D2W (x)| ≤ C

|x|1+α
, ∀ x ∈ B(0, R), (3.40)

where B(0, R) := {x ∈ R
d : |x| < R}. Then one can assume that the

initial data ρ0 has compact support, and show that the local solution ρ(t)
has compact support on a small time interval [0, T ]. This is possible since
characteristics are locally in time well defined and the velocity is uniformly
bounded under the assumptions (3.40) initially. This argument was made
rigorous under stricter assumptions on the local behaviour of the interac-
tion potential but allowing growth of the potential at infinity in Balagué
and Carrillo (2012). Thus, one can cut-off the potential outside a large ball
in such a way that the solution is unaffected but the potential satisfies the
global assumption ∇W ∈ W1,p′

(Rd) entering the well-posedness theory in
Bertozzi, Laurent, and Rosado (2010) or satisfying (3.20) allowing for the
application of Theorem 4.1. Concerning the interaction potential W satis-
fying (3.40), the same results of convergence in Theorem 3.1 and Corollary
3.6 can be obtained. We leave the details to the reader.

4 Local existence and uniqueness of Lp-solutions

In this section, we provide a local existence and uniqueness result of weak
solutions in Lp-spaces to the system (3.16) under the assumptions (3.20).

As we mentioned before, we can not directly apply the arguments in
Bertozzi, Laurent, and Rosado (2010) for the potentials satisfying (3.20).
Of course, we can overcome these difficulties using the property of compact
supports on the initial data ρ0 (see the paragraph below Corollary 3.6).
However, we use the arguments of dividing near- and far-field parts of the
interaction potential function W to establish the local existence of a unique
Lp-solution to the continuity aggregation equation (3.16).

Theorem 4.1. Assume that W satisfies the condition (3.20), for some
−1 < α < d

p′−1, and that ρ0 ∈ P1(R
d)∩Lp(Rd), 1 < p ≤ ∞. Then there ex-

ists a time T > 0, depending only on ‖ρ0‖p and α, and a unique nonnegative
solution to (3.16) satisfying ρ ∈ L∞(0, T ;L1 ∩ Lp(Rd)) ∩ C([0, T ],P1(R

d)).
Furthermore, the solution satisfies that there exists C > 0 depending only
on ‖ρ0‖p and α such that

‖ρ(t)‖p ≤ C for all t ∈ [0, T ]. (4.41)
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The velocity field generated by ρ, given by u = −∇W ∗ ρ, is bounded and
Lipschitz continuous in space uniformly on [0, T ], and ρ is determined as
the push-forward of the initial density through the flow map generated by u.

Moreover, if ρi, i = 1, 2, are two such solutions to (3.16) with initial
conditions ρ0i ∈ P1(R

d)∩Lp(Rd), 1 < p ≤ ∞, we have the following stability
estimate:

d

dt
d1(t) ≤ Cmax(‖ρ1‖, ‖ρ2‖)d1(t),

where d1(t) := d1(ρ1(t), ρ2(t)).

Proof. Let us start by proving the uniqueness. Given two weak solutions
ρi ∈ L∞(0, T ;L1 ∩ Lp(Rd)) ∩ C([0, T ],P1(R

d)), i = 1, 2, to the continuous
aggregation equations (3.16), consider the two flow maps Ψi : R+ × R+ ×
R

d → R
d, i = 1, 2, generated by the two velocity fields, i.e.,⎧⎨

⎩
d

dt
(Ψi(t; s, x)) = ui(t; s,Ψi(t; s, x)) ,

Ψi(s; s, x) = x,

where ui := −∇W ∗ρi, t, s ∈ [0, T ] and x ∈ R
d. We know that the solutions

are constructed by transporting the initial measures through the velocity
fields ρi = Ψi#ρ0i , i = 1, 2.

Let T 0 be the optimal transportation between ρ1(0) and ρ2(0) for the
d1-distance. Then we define a transport (not necessarly optimal) between
ρ1(t) and ρ2(t) by

T t(x) = Ψ2(t; 0, x) ◦ T 0(x) ◦Ψ1(0; t, x), T t#ρ1(t) = ρ2(t),

and d
dtd1(t) ≤ Q(t), where d1(t) := d1(ρ1(t), ρ2(t)) and

Q(t) :=

∫
Rd×Rd

|∇W (T t(x)− T t(y))−∇W (x− y)|ρ1(t, x)ρ1(t, y)dxdy ,

where we have used a similar argument as in Step A of the proof of Theorem
3.1. To simplify the notation, let us not make explicit the dependence on
time. Note by symmetry that

Q(t) ≤ 4

∫
Rd×Rd

(
|T (x)− x|

|T (x)− T (y)|1+α
+
|T (x)− x|
|x− y|1+α

)
ρ1(x)ρ1(y)dxdy

:= J1 + J2.
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Straightforward computation using the near- and far-field decomposition as
in (3.27) shows that

J1 = 4

∫
Rd

|T (x)− x|ρ1(x)
(∫

Rd

ρ2(y)

|T (x)− y|1+α
dy

)
dx

≤ C‖ρ2‖
∫
Rd

|T (x)− x|ρ1(x)dx = C‖ρ2‖ d1(t).

Similarly using again (3.27), we have J2 ≤ C‖ρ1‖d1(t). It yields that

d

dt
d1(t) ≤ Cmax(‖ρ1‖, ‖ρ2‖) d1(t) ,

from which we conclude the uniqueness part of the statement.

Let us now show the existence of weak solution. Let ε > 0 and θ be a
standard mollifier:

θ ≥ 0, θ ∈ C∞0 (Rd), supp θ ⊂ B(0, 1),

∫
Rd

θ(x)dx = 1,

and we set a sequence of smooth mollifiers:

θε(x) :=
1

εd
θ
(x
ε

)
.

We first regularize ∇W such as ∇Wε := (∇W ) ∗ θε. Then since ∇Wε is
a globally Lipschitz, we can apply the theory of Braun and Hepp (1977);
Dobrushin (1979); Laurent (2007) which says that there exists a unique
global solution ρε to the following system⎧⎪⎪⎨

⎪⎪⎩
∂tρε +∇ · (ρεuε) = 0, t > 0, x ∈ R

d,

uε(t, x) := −∇Wε ∗ ρε, t > 0, x ∈ R
d,

ρε(0, x) := ρ0(x), x ∈ R
d,

(4.42)

A standard calculation, see Bertozzi, Laurent, and Rosado (2010), implies
that

d

dt
‖ρε‖L1∩Lp ≤ C‖ρε‖2L1∩Lp , (4.43)

where C is an uniform constant in ε. Note that the inequality (4.43) holds
only formally for the non regularized problem, but it is fully rigorous for the
regularized one with Wε. This yields that the time of blow-up depends only
on the initial data, more precisely ‖ρ0‖, and not on ε. Thus, there exists a
T > 0 such that

sup
ε>0

‖ρε‖ <∞. (4.44)
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It follows from (4.44) and the evolution in time of the first momentum of ρ,
that this first moment is also uniformly bounded:

sup
ε>0

‖xρε‖L∞(0,T ;L1(Rd)) ≤ C,

where C depends only on T, ‖xρ0‖1, and ‖ρ0‖. We leave the details to
the reader. Next, we show an estimate on the growth of the d1 distance
ηε,ε′(t) := d1(ρε(t), ρε′(t)) between ρε and ρε′ , for ε, ε

′ > 0:

d

dt
ηε,ε′(t) ≤ Cmax(‖ρε‖, ‖ρε′‖) (ηε,ε′(t) + ε+ ε′) , (4.45)

where C is an uniform constant in ε and ε′. We remark that the above esti-
mate (4.45) implies that {ρε}ε>0 is a Cauchy sequence in C([0, T ],P1(R

d)).
Let us remark that the weak solutions to the regularized problems (4.42)

can be written in terms of characteristics. This is a consequence of the
fact that the associated velocity field uε is bounded and Lipschitz in space,
unifromly in time and some standard duality arguments. This strategy is
explained in detail at the end of the proof of the present Theorem applied
to the solution of the original problem, and we refer the reader there for
details. Since solutions are constructed by characteristics, for the proof of
(4.45) we can proceed as in the part of uniqueness. Therefore, not making
explicit the time dependency, we get

d

dt
ηε,ε′(t) ≤

∫
Rd×Rd

|∇Wε(T (x)− T (y))−∇Wε′(x− y)| ρε′(x)ρε′(y)dxdy

≤
∫
Rd×Rd

|∇Wε(T (x)− T (y))−∇Wε(x− y)| ρε′(x)ρε′(y)dxdy

+

∫
Rd×Rd

|∇Wε(x− y)−∇Wε′(x− y)| ρε′(x)ρε′(y)dxdy

:= K1 +K2, (4.46)

where T is the optimal transportation between ρε′(t) and ρε(t) for the d1-
distance. To estimate K1, we notice that

|∇Wε(x)| ≤
∫
{y:|y|< |x|

2 }
θε(y)

|x− y|1+α
dy +

∫
{y:|y|≥ |x|

2 }
θε(y)

|x− y|1+α
dy

≤ 21+α

|x|1+α

∫
Rd

θε(y)dy + 1{|x|≤2ε}

∫
{y: ε≥|y|}

θε(y)

|x− y|1+α
dy

≤ C

|x|1+α
+

Cε1+α

|x|1+α

∫
{y: ε≥|y|}

θε(y)

|x− y|1+α
dy ≤ C

|x|1+α
. (4.47)
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Then we now use again the decomposition (3.27) as in the part of uniqueness
to find

K1 ≤ Cmax(‖ρε‖, ‖ρε′‖) ηε,ε′(t) , (4.48)

where C, ‖ρε‖, and ‖ρε′‖ are uniformly bounded in ε and ε′ thanks to the
estimate (4.44). For the estimate of K2, we claim that

|∇(W −Wε)(x)| ≤
Cε

|x|1+α
, (4.49)

where C is independent on ε.
Proof of Claim: It is a straightforward to obtain

|∇Wε(x)−∇W (x)| ≤
∫
Rd

|∇W (x− y)−∇W (x)|θε(y)dy

≤ 2

∫
Rd

(
1

|x|1+α
+

1

|x− y|1+α

)
|y|θε(y)dy

:= L1 + L2 .

(4.50)

Noticing that the mollifier properties allow to gain an ε factor in front of
the integrals, we can estimate Li, i = 1, 2 as follows

L1 ≤
Cε

|x|1+α

∫
Rd

θε(y)dy =
Cε

|x|1+α
,

L2 ≤ 2ε

∫
Rd

θε(y)

|x− y|1+α
dy ≤ Cε

|x|1+α
,

(4.51)

where we used a similar argument to (4.47) for L2. We now combine (4.50)
and (4.51) to have the inequality (4.49). Then we use (4.49) together with
(3.27) to find the estimate of K2

K2 ≤ C(ε+ ε′)
∫
Rd×Rd

ρε′(t, x)ρε′(t, y)

|x− y|1+α
dxdy ≤ C(ε+ ε′)‖ρε′‖ . (4.52)

This completes the proof of the inequality (4.45) by combining (4.45), (4.46),
(4.48), and (4.52).

Since ρε is a Cauchy sequence in C([0, T ],P1(R
d)), it converges toward

a limit curve of measures ρ ∈ C([0, T ],P1(R
d)), and we also have ρ ∈

L∞(0, T ;L1 ∩ Lp(Rd)) from the uniform bounded estimate (4.44). It re-
mains to show that ρ is a solution of the aggregation equations (3.16).
Choose a test function φ(t, x) ∈ C∞c ([0, T ]× R

d), then ρε satisfies∫
Rd

ρ0(x)φ0(x)dx =

∫
Rd

ρε(T, x)φ(T, x)dx+

∫ T

0

∫
Rd

ρε(t, x)∂tφ(t, x)dxdt (4.53)

−
∫ T

0

∫
Rd

∫
Rd

ρε(t, x)ρε(t, y)∇Wε(x− y) · ∇φ(t, x)dxdydt.
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The first two terms in the rhs of (4.53) converges to∫
Rd

ρ(T, x)φ(T, x)dx+

∫ T

0

∫
Rd

ρ(t, x)∂tφ(t, x)dxdt,

since ρε → ρ in C([0, T ],P1(R
d)). For the third term in the rhs of (4.53),

we use the estimates (4.49) and (4.44) to find∣∣∣∣∣
∫ T

0

∫
Rd

∫
Rd

ρε(t, x)ρε(t, y) (∇Wε(x− y)−∇W (x− y)) · ∇φ(t, x)dxdydt

∣∣∣∣∣→ 0,

as ε→ 0. It remains to show that∫ T

0

∫
Rd

∫
Rd

ρε(t, x)ρε(t, y)∇W (x− y) · ∇φ(t, x)dxdydt

→
∫ T

0

∫
Rd

∫
Rd

ρ(t, x)ρ(t, y)∇W (x− y) · ∇φ(t, x)dxdydt,

as ε→ 0. For this, we introduce a cut-off function χδ ∈ C∞c (R) such that

χδ(x) =

{
1 if |x| ≤ δ
0 if |x| ≥ 2δ

.

Then it follows from the weak convergence that∫ T

0

∫
Rd

∫
Rd

ρε(t, x)ρε(t, y)(1− χδ(x− y))∇W (x− y) · ∇φ(t, x)dxdydt

→
∫ T

0

∫
Rd

∫
Rd

ρ(t, x)ρ(t, y)(1− χδ(x− y))∇W (x− y) · ∇φ(t, x)dxdydt,

as ε→ 0, since (1− χδ(x− y))∇W (x− y) · ∇φ(t, x) is a Lipschitz function.
We estimate the remainder as follows:∣∣∣∣∣
∫ T

0

∫
Rd

∫
Rd

ρε(t, x)ρε(t, y)χδ(x− y))∇W (x− y) · ∇φ(t, x)dxdydt

∣∣∣∣∣
≤ Cδ

∫ T

0

∫
{(x,y)∈Rd×Rd: |x−y|≤2δ}

1

|x− y|1+α
ρε(t, x)ρε(t, y)dxdydt

≤ CTδ‖ρε‖ → 0 as δ → 0.

Similarly, we have

lim
δ→0

∣∣∣∣∣
∫ T

0

∫
Rd

∫
Rd

ρ(t, x)ρ(t, y)χδ(x− y)∇W (x− y) · ∇φ(t, x)dxdydt

∣∣∣∣∣ = 0.
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Hence, we conclude that ρ satisfies∫
Rd

ρ0(x)φ0(x)dx =

∫
Rd

ρ(T, x)φ(T, x)dx+

∫ T

0

∫
Rd

ρ(t, x)∂tφ(t, x)dxdt (4.54)

−
∫ T

0

∫
Rd

∫
Rd

ρ(t, x)ρ(t, y)∇W (x− y) · ∇φ(t, x)dxdydt,

for all φ ∈ C∞c ([0, T ]× R
d).

Now, We notice that a weak solution in ρ ∈ L∞(0, T ;L1 ∩ Lp(Rd)) to
(3.16) under the assumptions (3.20) has a well defined flow by using the
same arguments as the ones at the beginning of Theorem 3.1. In fact, the
velocity field is bounded and Lipschitz continuous in space with

|u(t, x)− u(t, y)| ≤ C‖ρ‖|x− y|

for all x, y ∈ R
d and t ∈ [0, T ]. Thus, the flow map⎧⎨

⎩
d

dt
(Ψ(t; s, x)) = u(t; s,Ψ(t; s, x)),

Ψ(s; s, x) = x,

for all s, t ∈ [0, T ] is well-defined. Choosing as test function in (4.54)
φ(t, x) = ϕ(Ψ(t; T̄ , x)) for any T̄ ∈ (0, T ] with ϕ ∈ C∞c (Rd), it is a straight-
forward to check, due to the definition of the flow map, that∫

Rd

ρ0(x)ϕ(Ψ(0; T̄ , x))dx =

∫
Rd

ρ(T̄ , x)ϕ(x)dx,

for all ϕ ∈ C∞c (Rd), and thus by a density argument we conclude ρ(T̄ ) =
Ψ(T̄ ; 0, · )#ρ0. Since this argument can be done for all 0 < T̄ ≤ T , this
completes the proof.

5 Propagation of chaos

In most practical purposes to approximate the continuum model by particle
systems, it is naturally expected that initial positions and velocities will
randomly and independently be selected. We will show that the empirical
measure at time 0 is then close to ρ0 with large probability in suitable weak
norm.

In a seminal article Kac (1956), the propagation of chaos was introduced
by Kac giving a proof for a simplified collision evolution process. He showed
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how the limit of many particles rigorously follows from the property of
propagation of chaos. For a classical introduction to these topics, we refer
to Sznitman (1991). Later, this property has been studied and developed in
kinetic theory, Mckean (1967, 1975); Graham and Méléard (1997); Hauray
and Mischler (2012); Mischler and Mouhot (2013).

Let us introduce the notion of propagation of chaos. Let us consider
ρN (t, x1, · · · , xN ) being the image by the dynamics to the coupled system
(3.17) with N -equal masses particles of the initial law (ρ0)⊗N . We define
the k-marginals as follows.

ρNk (t, x1, · · · , xk) :=

∫
Rd(N−k)

ρN (t, x)dxk+1 · · · , dxN .

Let us choose the initial positions XN,0 := {X0
i }Ni=1 as independent iden-

tically distributed random variables (in short iid) with law ρ0. We can
construct the associated empirical measure as in (3.18) by

μN (t) =
1

N

N∑
i=1

δXi(t) ,

but now understood as a random variable with values in the space of prob-
ability measures.

The propagation of chaos property is defined as follows: for any fixed
k ∈ N,

ρNk ⇀ (ρ)⊗k weakly-∗ as measures as N →∞.

It is classically known Sznitman (1991) that it is sufficient to check this
property for k = 2 to derive the propagation of chaos. In fact, this is based
on the fact that propagation of chaos is equivalent to show that the empirical
measures μN (t) converge in law towards the constant random variable ρ(t).

Theorem 5.1 gives a quantified version of the convergence in probability
of μN (t) towards ρ(t). We refer to Hauray and Mischler (2012); Mischler
and Mouhot (2013) for a detailed explanation of the quantified equivalence
relations. The propagation of chaos for the Vlasov-Poisson equations with
singular force has recently been investigated in Hauray and Jabin (2012).
Here, we are only able to provide such a result in a more restrictive setting
that in the previous section. Namely, we only show the propagation of chaos
for d ≥ 3 and with a more restrictive condition on the allowed singularities
α ≥ 0 depending on the regularity of the initial data 1 < p <∞.

Theorem 5.1. Given ρ(t) ∈ L∞(0, T ; (L1∩Lp)(Rd))∩C([0, T ],P1(R
d)) the

unique solution to (3.16) with initial data ρ0 ∈ P1(R
d)∩Lp(Rd), 1 < p ≤ ∞,
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up to time T > 0. Assume that ρ0 has compact support, that the initial
positions XN,0 := {X0

i }Ni=1 are iid with law ρ0, and that

(1 + α)p′ <
p− 1

2p− 1
d ,

with α ≥ 0. Then the propagation of chaos holds in the sense that

P

(
sup

t∈[0,T ]

d1(μN (t), ρ(t)) ≥ C

Nγ/d

)
→ 0, as N → +∞,

where γ is a positive constant satisfying

p′(2p− 1)(1 + α)

d(p− 1)
< γ < 1.

Remark 5.2. The condition on α gets more and more restrictive as p gets
smaller and smaller. In d = 2, even for p = ∞ the condition is empty
for α ≥ 0. In d = 3, you get the condition α < 1/2 for p = ∞ and

with p = 5+
√
13

2 the condition is already empty. We also notice that the
existence and uniqueness of the solutions are guaranteed by Theorem 4.1 and
taking expectations in the corresponding inequalities for the particle system.
Finally, in case −1 ≤ α < 0, the propagation of chaos holds using the same
strategy as in Corollary 3.4 by taking expectations in the inequalities for
the evolution of the Wasserstein distance.

We will follow the strategy recently introduced in Hauray and Jabin
(2012) for the Vlasov equation. We first find a deterministic version of the
propagation of chaos. This means that we consider a regularized system
of particles as a kind of middle ground between the solution of the mean-
field equation (3.16) and the random particle evolution. More precisely, we
define the “blob” initial data ρ0N as

ρ0N := μ0
N ∗

1Bε(0)

|Bε(0)|
=

1

cdεd
(
μ0
N ∗ 1Bε(0)

)
, (5.55)

where ε > 0 to be chosen as a function of the number of particles N and
cd is the volume of the unit ball in dimension d. We also define the “blob”
approximation ρN (t) to be the solution of the system (3.16) with the kernel
W satisfying (3.20) given by Theorem 4.1 and “blob” initial data ρ0N .

In the rest, ε is chosen as a function of N as ε(N) = N−γ/d with 0 <
γ < 1. It is easy to check that ‖ρ0N‖p � N (γ−1)/p′

for N large enough, then
we can wonder how far is the empirical measure to its blob approximation
if we assume a bound on ‖ρ0N‖p independent of N .
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Proposition 5.3. Under the assumptions of Theorem 5.1 and assuming
that there exists C1 > 0 independent of the number of particles N such that

‖ρ0N‖p ≤ C1, and η0m ≥
1

C1
εr,

with 1 ≤ r < d
p′(1+α) . Then, there exists T > 0 such that the solutions ρN (t)

and the empirical measure μN (t) are well-defined for all t ∈ [0, T ], and

d∞(ρN (t), μN (t)) ≤ d∞(ρ0N , μ0
N )eC2T ≤ ε(N)eC2T ,

where C2 > 0 is independent of N .

Proof. We follow a similar argument to Theorem 3.1. We first notice from
Theorem 4.1 that there exists a common time of existence T > 0 of the
solutions ρN independent of N since it only depends on ‖ρ0N‖p and α. The
empirical measure also exists up to this time since it will be smaller than
the possible first collision time of particles. Moreover, due to (4.41), we get
that ‖ρN (t)‖p ≤ C, for all t ∈ [0, T ], where C is independent of N . We next
substitute ρN (t) for ρ(t) in the proof of Theorem 3.1, and thus all estimates
in Step A and B hold to deduce

dηN
dt

≤ CηN‖ρN‖
(
1 + η

d/p′

N η−(1+α)
m

)
≤ CηN

(
1 + η

d/p′

N η−(1+α)
m

)
,

and

dηm
dt

≥ −Cηm‖ρN‖
(
1 + η

d/p′

N η−(1+α)
m

)
≥ −Cηm

(
1 + η

d/p′

N η−(1+α)
m

)
,

where ηN (t) := d∞(ρN (t), μN (t)). Note that the condition r ≥ 1 makes
sense since ε ≈ η0N ≥ η0m ≥ Cεr for ε small enough. We finally conclude the
desired result using a similar argument as in Step C of the proof of Theorem
3.1 since

(η0N )d/p
′

(η0m)1+α
≤ Cεd/p

′−r(1+α) → 0 as N →∞,

by assumption.

We now present two propositions showing that the assumptions on ρ0N
and η0m in Proposition 5.3 are generic in a probability sense when the initial
positions XN,0 are iid with law ρ0 in Lp. We first prove in Proposition 5.4

that η0m is roughly larger than N− 2p−1
d(p−1) if the XN,0 are iid with law ρ0.
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Proposition 5.4. Let ρ0 ∈ P1(R
d) ∩ Lp(Rd), 1 < p ≤ ∞, and the initial

positions XN,0 be iid with law ρ0. Suppose there exists L > 0 such that

2c
1
p′
d ‖ρ0‖pL

d
p′ ≤ N ,

then η0m satisfies

P

(
η0m ≥ LN− 2p−1

d(p−1)

)
≥ e−2c

1
p′
d ‖ρ0‖pL

d
p′

.

Proof. Choose an r ∈ R+. Then η0m ≥ r holds if

X0
k ∈ R

d
∖
Ak , with Ak =

⋃
1≤i≤k−1

B(X0
i , r) ,

for all 1 ≤ k ≤ N . It implies from our assumption with r = LN− 2p−1
d(p−1) that

P

(
η0m ≥ LN− 2p−1

d(p−1)

)
≥

N∏
k=1

[
1−

∫
Ak

ρ0(x) dx

]

≥
N−1∏
k=1

[
1− c

1
p′
d ‖ρ0‖pL

d
p′ N−2+ 1

p k
1
p′
]
,

and thus using that ln(1− x) ≥ −2x if x ∈ [0, 1
2 ], we conclude

lnP(η0m ≥ r) ≥ −2c
1
p′
d ‖ρ0‖pL

d
p′ N−2+ 1

p

N−1∑
k=1

k
1
p′ ≥ −2c

1
p′
d ‖ρ0‖pL

d
p′ .

The next proposition gives some bound on the large deviation of ‖ρ0N‖p.
It states roughly that ‖ρ0N‖p is of the same order that ‖ρ0‖p, if the XN,0

are iid with law ρ0.

Proposition 5.5. Let ρ0 ∈ P1(R
d) ∩ Lp(Rd), 1 < p ≤ ∞, with compactly

support included in [−R,R]d. For any iid XN,0 with law ρ0, the smoothed
empirical measures ρ0N defined in (5.55) satisfy the explicit “large devia-
tions” bound

P
(
Ld‖ρ0‖p ≤ ‖ρ0N‖p

)
≤ [2(R+ 1)]dNγe−cR‖ρ‖pN

1−γ

,
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where Ld and cR are explicitly given by

cR :=
2 ln 2

[2(R+ 1)]
d
p

and Ld :=
4(4[[

√
d]] + 1)d/p

cd
,

with [[·]] denoting the integer part.

Proof. For any Xi ∈ R
d and x ∈ R

d, we have

ρ0N (x) =
1

N cd εd

N∑
i=1

1Bε
(x−Xi) =

1

N cd εd
#{i s.t. |x−Xi| ≤ ε},

where # stands for the cardinal (of a finite set). Next, we cover [−R,R]d

by M disjoint cubes Ck of size εd, centered at the points (ck)k≤M . The
number M of square needed depends on N via ε, and is bounded by

M ≤
[
2(R+ 1)

ε

]d
.

Assume that x ∈ Ck for some 1 ≤ k ≤M , i.e., |x− ck| ≤
√
dε
2 , then

#{i s.t. |x−Xi| ≤ ε} ≤ #{i s.t. |ck −Xi|∞ ≤ 2
√
dε},

and for any 1 < p <∞ we obtain∫
Ck

(ρ0N (x))p dx ≤ εd(1−p)

(N cd)p
#{i s.t. |ck −Xi|∞ ≤ 2

√
dε}p

=
εd(1−p)

(N cd)p
#{i s.t. x ∈ Cd

k}p ,

where Cd
k denotes the cube of center ck and size (4

√
dε)d. Let us consider

the set of cubes of the lattice that contains Cd
k , i.e.,

Cd
k ⊂

⋃
j∈Ik

Cj

where Ik = {j such that Cd
k ∩Cj �= ∅}. It is direct to check that #Ik ≤Md

with Md = (4[[
√
d]] + 1)d. Moreover, there are only Md possible values of

1 ≤ k ≤M such that j ∈ Ik for a given 1 ≤ j ≤M . This yields∫
Rd

(ρ0N (x))pdx ≤ εd(1−p)

(N cd)p

M∑
k=1

∑
j∈Ik

#{i s.t. x ∈ Cj}p

≤ Mdε
d(1−p)

(N cd)p

M∑
k=1

#{i s.t. Xi ∈ Ck}p . (5.56)
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Let us introduce the notation Nk := #{i s.t. Xi ∈ Ck}. Nk is a random
variable which follows a binomial law B(N, sk) with sk :=

∫
Ck

ρ0(x) dx. If

L‖ρ0‖p ≤ ‖ρ0N‖p, then (5.56) together with Hölder’s inequality imply that

M∑
k=1

Np
k ≥

(cdN)p

Md
ε
d p

p′ ‖ρ0N‖pp ≥ NpL̃pε
d p

p′ ‖ρ0‖pp ≥ NpL̃p
M∑
k=1

spk,

where L̃ := cdL/(Md)
1/p. But, if this happens, it means that for at least

one k ≤M ,

Nk ≥
(
1

2
M−1(NL̃)pε

d p
p′ ‖ρ0‖pp +

1

2
NpL̃pspk

) 1
p

≥ 1

2
M− 1

pNε
d
p′ L̃‖ρ0‖p +

1

2
NL̃sk ≥

NL̃

2

(
c̃Rε

d‖ρ0‖p + sk
)
,

with c̃R := 1/ [2(R+ 1)]
d
p , where the concavity of x1/p was used. Then, we

deduce that

P
(
L‖ρ0‖p ≤ ‖ρ0N‖p

)
≤

M∑
k=1

P

(
Nk ≥

NL̃

2
[c̃Rε

d‖ρ0‖p + sk]
)
.

Since Nk is a random variable which follows a binomial law B(N, sk), then
for any λ, the exponential moments of Nk are bounded by

E(eλNk) ≤
[
1 + (eλ − 1)sk

]N ≤ e(e
λ−1)Nsk .

This together with Chebyshev’s inequality implies that

P
(
L‖ρ0‖p ≤ ‖ρ0N‖p

)
≤

M∑
k=1

E(eλNk)e−λNL̃
2 [c̃Rεd‖ρ0‖p+sk]

≤
M∑
k=1

e(e
λ−1)Nsk−λNL̃

2 [c̃Rεd‖ρ0‖p+sk].

Taking λ = lnL′ with the notation L′ = L̃
2 , we get

P
(
L‖ρ0‖p ≤ ‖ρ0N‖p

)
≤

M∑
k=1

e−(L′ lnL′+1−L′)Nsk−L′ lnL′c̃RNεd‖ρ0‖p

≤
M∑
k=1

e−L′ lnL′cRNεd‖ρ0‖p = Me−L′ lnL′c̃RNεd‖ρ0‖p ,
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where we used x lnx−x+1 ≥ 0, for x > 0. With the scaling ε(N) = N− γ
d ,

we get

P
(
L‖ρ0‖p ≤ ‖ρ0N‖p

)
≤ [2(R+ 1)]dNγe−c̃RL′ lnL′‖ρ0‖pN

1−γ

.

In particular, choosing L = Ld = 4(Md)
1
p /cd so that L′ = 2, we get the

desired result

P
(
Ld‖ρ0‖p ≤ ‖ρ0N‖p

)
≤ [2(R+ 1)]dNγe−cR‖ρ0‖pN

1−γ

,

for 1 < p < ∞. In the case of p = ∞, we first notice that as in (5.56), we
deduce

‖ρ0N‖∞ ≤ Md

Ncdεd
sup

1≤k≤M
#{i s.t. |ck −Xi|∞ ≤ ε} = Md

Ncdεd
sup

1≤k≤M
Nk.

Since Nk follows a binomial law B(N, sk) and sk ≤ ‖ρ0‖∞εd, above esti-
mates allow us to conclude the desired inequality.

We are now in a position to give the proof of propagation of chaos.

Proof of Theorem 5.1. We introduce several sets for the random initial data:

ω1 := {XN,0 : η0m ≥ εr}, ω2 := {XN,0 : Ld‖ρ0‖p ≥ ‖ρ0N‖p},

and

ω3 := {XN,0 : d1(μ
0
N , ρ0) ≤ ε} ,

where r, ε and Ld are given in Propositions 5.3, 5.4, and 5.5. We first
provide the estimate of P(ωc

1). Note that since the assumption on γ, we
obtain

2p− 1

γ(p− 1)
<

d

p′(1 + α)
.

This yields the existence of r verifying

1 <
2

γ
≤ 2p− 1

γ(p− 1)
< r <

d

p′(1 + α)
.

This again implies the existence of β > 0 satisfying

d

γ
β +

2p− 1

γ(p− 1)
< r.
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From Proposition 5.4, if we choose L = N−β , ε = N−γ/d, then

P(ωc
1) = P

(
XN,0 : η0m ≤ εr

)
= P

(
XN,0 : η0m ≤ N− γr

d

)
≤ P

(
XN,0 : η0m ≤ LN− 2p−1

d(p−1)

)
≤ 1− e−2c

1/p′
d ‖ρ0‖pL

d/p′

≤ 2c
1/p′

d ‖ρ0‖pLd/p′ ≤ CN−s,

for a sufficiently large N such that N ≥ (2c
1/p′

d ‖ρ0‖p)
p′

p′+dβ , where s = dβ
p′ .

For the estimate of P(ωc
2), we use the result of Proposition 5.5 to obtain

P(ωc
2) ≤ CNγe−CN1−γ

.

Finally the estimate of P(ωc
3) follows from (Boissard, 2011b, Proposition 1.2

of Annexe A) (see also Boissard (2011a); Bolley, Guillin, and Villani (2007))
that

P
(
XN,0 : d1(μ

0
N , ρ0) ≥ ε

)
≤ CN−s′ ,

where C and s′ are positive constants. We now denote ω := ω1 ∩ ω2 ∩ ω3.
Then we have

P(ωc) ≤ CN−l,

for some positive constants C and l. If the initial data belongs to ω, then
we obtain from Proposition 5.3 that

d1(ρN (t), μN (t)) ≤ d∞(ρN (t), μN (t)) ≤ CeCT

Nγ/d
, for t ∈ [0, T ].

We also notice from Theorem 4.1 that

d1 (ρ(t), ρN (t)) ≤ d1
(
ρ0, ρ0N

)
eCT ≤ (d1

(
ρ0, μ0

N

)
+ d∞

(
μ0
N , ρ0N

)
)eCT ,

for all t ∈ [0, T ]. Since d∞
(
μ0
N , ρ0N

)
≤ ε and the initial data belongs to ω,

this yields

d1 (ρ(t), ρN (t)) ≤ CeCT

Nγ/d
,

for all t ∈ [0, T ] since

d1
(
ρ0, ρ0N,ε

)
≤ d1

(
ρ0, μ0

N

)
+ d∞

(
μ0
N , ρ0N,ε

)
≤ CeCT

Nγ/d
.

Hence, we have

P(ω) ≤ P

(
sup

t∈[0,T ]

d1 (ρ(t), ρN (t)) ≤ CeCT

Nγ/d

)
,
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and it implies the desired result

P

(
sup

t∈[0,T ]

d1 (ρ(t), ρN (t)) ≥ CeCT

Nγ/d

)
≤ P(ωc) ≤ C

N l
.
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J.A. Cañizo, J.A. Carrillo, and J. Rosado : A well-posedness theory in
measures for some kinetic models of collective motion,M ath. Mod. Meth.
Appl. Sci., 21:515–539, 2011.



The Derivation of Swarming Models 43

J. A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent, and D. Slepčev,
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Non smooth evolution models in crowd
dynamics: mathematical and numerical issues

Bertrand Maury*

* Laboratoire de Mathématique d’Orsay, Université Paris-Sud, 91405 Orsay,
France

Abstract Accounting for hard congestion in crowd motion mod-
eling leads to non-smooth evolution problems. At the microscopic
level (individuals are represented separately), these problems fit in
the framework of non smooth analysis in Hilbert spaces, and the
tools developed in the 70’s to handle the so-called sweeping pro-
cess are directly adaptable. At the macroscopic scale (the popu-
lation is represented by a density), a similar approach can be car-
ried out. This is done by identifying densities with measures in
the Wasserstein space, endowed with the distance based on optimal
transportation for the quadratic cost. These lecture notes provide
an introduction to the mathematical theory of these models, and
a description of numerical methods, in the microscopic (ODE) and
macroscopic (PDE) cases.

1 Introduction

Congestion is a crucial issue in crowd motion modeling. When people want
to evacuate a room they all head to the door, which tends to decrease
their mutual distance, thereby increasing the local density. Investigating a
bit further these considerations will shed light on the different aspects of
congestion, in the microscopic and in the macroscopic settings. As a first
step, consider people in a corridor, and assume that they all want to go to
the right direction. The situation is likely to become critical in terms of
density if the velocities decrease from left to right (i.e. the people in front
move slower than the people behind them), whereas increasing velocities will
tend to relax the situation (the density decreases). In the two-dimensional
setting, the notion of “increasing” velocity field has to be extended in some
way. Consider a velocity field U in the plane, and two individuals 1 and
2, identified to rigid discs centered at q1 and q2. Each individual qi is
assumed to move at velocity U(qi). Their distance increases whenever

(U(q2)−U(q1)) · (q2 − q1) ≥ 0. (1)

A. Muntean, F. Toschi (Eds.), Collective Dynamics from Bacteria to Crowds, CISM International  
Centre for Mechanical Sciences, DOI 10.1007/978-3-7091-1785-9_2, © CISM, Udine 2014 
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A velocity field that verifies (1) is said to bemonotone (which actually means
increasing in a general, multidimensional sense). An archetypal monotone
field is x/ |x|. The velocity field corresponding to the evacuation of a room
(the desired velocity is directed to a single “point”, which is the door) is
roughly the opposite of this field: the evolution according to this field tends
to decrease all distances. Let us go a bit further in the classification between
relaxing and non relaxing fields. The monotony (1) condition above can be
written for q2 seen as a variation of q1, i.e. q2 = q1 + εh. Having ε go to
0, we obtain that

h · ∇U · h ≥ 0

for any direction h. Note that it can be expressed in terms of the sym-
metrized gradient of U, i.e. ∇U + t∇U, since the skew symmetric part
does not contribute. Now consider particles (or individuals) evolving ac-
cording to this velocity fields. The velocity of a point q + εh close to a
reference point q writes

U(q+ εh) = U(q) + ε

(
∇U− t∇U

2

)
· h+ ε

(
∇U+ t∇U

2

)
· h+ o(ε),

which means that the local velocity around q is mainly a rigid motion
composed of a translation (velocity U(q)), a rotation (angular velocity
∂1u2 − ∂2u1), and a last component which corresponds to deformations.
The corresponding tensor (or matrix)

e =
∇U+ t∇U

2
(2)

is called the strain tensor. It is symmetric, thereby diagonalizable, with
real eigenvalues, the sign of which indicate the nature of the deformation:
a negative value correspond to compression in the corresponding direction,
whereas a positive one reflects expansion (i.e. distances increase). Condi-
tion (1) therefore expresses that all eigenvalues of e are nonnegative, which
means that the flow is expanding in all directions. Coming back to the
problem of congestion, it means that problems can be expected (i.e. some
distances between individuals may decrease down to physical contact) as
soon as the desired velocity field is not expanding in all directions. Ac-
tually, the “problems” we mentioned concern safety (i.e. jamming can be
expected upstream the exit, which may tend to increase the evacuation time
and induce casualties), but the fact that the field concentrates people makes
the problem easier from the mathematical standpoint, as far as the uncon-
tested situation is concerned. Indeed, if −U is monotone, as it is expected
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for an evacuation through a small exit, then the evacuation process (without
congestion) can be written

dq

dt
−U � 0,

and well-posedness (existence and uniqueness of a solution) can be estab-
lished without assuming that U is Lipschitz, as the standard theory of
Ordinary Differential Equations requires (see e.g. Bauschke and Combettes
(2011)).

Let us now point out a deep difference between the microscopic approach
that we followed previously and the macroscopic one. The latter consists
in representing the population by a density ρ(x, t). Still denoting by U
the underlying velocity field1, the “people conservation” in any domain ω
expresses the time derivative of the population in ω and the flux through
its boundary, and it writes

d

dt

∫
ω

ρ =

∫
ω

∂ρ

∂t
= −

∫
∂ω

ρU · n = −
∫
ω

∇ · (ρU).

Since conservation holds for any such subdomain, we have the transport
equation

∂ρ

∂t
+∇ · (ρU) = 0.

The derivative of ρ along a trajectory (total derivative) writes

∂ρ

∂t
+U · ∇ρ = −ρ∇ ·U,

which is nonpositive (i.e. the density relaxes toward a smaller value) as
soon as ∇ ·U ≥ 0. Note that the condition is weaker than the microscopic
one: preserving nondecreasing distance necessitates expansion in all direc-
tions (the eigenvalues of e are nonnegative), whereas here only the sign of
the trace (that is the divergence of U, and also the sum of eigenvalues of
the strain tensor e defined by (2)) is relevant. As we shall see in Section 2,
handling the constraints at the microscopic level consists in accounting for
the concentrating character of the velocity field, neither in all directions
(as in the first approach we presented), nor in a mean sense like in the
macroscopic setting, but rather in some particular directions that corre-
spond to the actual contacts between individuals. Those directions depend

1We shall make later on a difference between the desired velocity field and the actual

velocity field; the latter accounts for constraints.
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on the local structure of the contact network, and the native heterogeneity
of jammed population will induce numerical difficulties. The macroscopic
problem is easier from this standpoint, since the problem is homogeneous:
the constraint to remain below a prescribed value is the same over the whole
saturated zone. The difficulty here is rather due to the Eulerian character
of Partial Differential Equations, which rules out the possibility to directly
apply tools of convex analysis, at least in standard functional spaces. We
shall details in Section 3 how the Wasserstein Distance on measures will
make it possible to adapt some tools that have been developped in Hilbert
spaces.

2 Hard congestion in the microscopic setting

2.1 The model

We consider N individuals identified to rigid disks of radius r in a room
identified to a domain Ω. The positions are represented by a vector q of
R

2N :

q = (q1,q2, · · · ,qN ) ∈ R
2N .

The distance between two individuals i and j is denoted by

Dij = |qj − qi| − 2r.

The set of feasible configurations (contact is allowed, but no overlapping)
can be written

K =
{
q ∈ R

2N , Dij ≥ 0 ∀i �= j
}
.

The distance Dij can be considered as a function of the configuration vector
q (although it depends on i and j only), and we denote by Gij ∈ R

2N its
gradient. Ruling out overlapping between two individual amounts to re-
quire that their instantaneous relative velocity is nonnegative in the normal
direction, as soon as there is contact. It leads to the following definition of
the set of feasible (or admissible) velocities2

CK(q) =
{
v ∈ R

2N , Dij(q) = 0 =⇒ Gij · v ≥ 0
}
. (3)

Now consider that a collection of desired velocities

U = (U1, . . . ,UN )

2In order to alleviate notations, we disregard here the constraints that are due to ob-

stacles (walls or piles), but they can be integrated in the set of feasible velocities like

inter individual non overlapping constraints.
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is given. Following Maury and Venel (2011), we assume that, at each instant,
the actual velocity field u is the closest (in the �2 sense) to the desired
velocity field U, among all feasible fields, i.e.

u =
dq

dt
= PCK(q) (U) . (4)

The desired velocity Ui may depend on time, on the position of other indi-
viduals (if one aims at accounting for social effects). If one considers that
the desired velocity of an individual depends on its location only, and that
individual are interchangeable, Ui can be defined as U0(qi), where U0 is a
desired velocity field, the same for everybody. We consider here the general
case: the individual desired velocity depends on all the positions, and this
dependence may vary from an individual to the other. Thus, the desired
velocity is written U = U(q).

2.2 General setting, catching up approach

The basic tool to reformulate Model (4) is the decomposition of a Hilbert
space according to mutually polar cones, as proposed by Moreau (1962).
Consider a closed convex cone C pointed at the origin, in a Hilbert space
H, i.e.

C ⊂ H , R
+C ⊂ C , λx+ (1− λ)y ∈ C ∀x, y ∈ C , λ ∈ [0, 1] , C = C.

The polar cone to C is defined as

C◦ = {y ∈ H , (y, x) ≤ 0 ∀x ∈ C} .
The decomposition of any Hilbert space as the direct sum of a closed vector
set and its orthogonal can be extended to cones (Moreau (1962)):

Id = PC + PC◦ ,

where Id is the identity, and PC (resp. PC◦) is the projection on C (resp.
C◦).

Eq. (4) can be rewritten

u =
dq

dt
= U− PC◦

K(q) (U) , (5)

which implies u−U ∈ −C◦
K(q). The latter inclusion is usually written

dq

dt
+NK(q) � U(q), (6)

where NK = C◦
K(q) is the so-called outward normal cone to K at q. As

we shall see, this inclusion actually characterizes the evolution (i.e. no
information is lost by replacing the projection by a simple inclusion).
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Catching up algorithm in the convex case Now assume for a moment
that the set K of feasible configurations is convex3. By characterization of
the projection on a closed convex set, i.e.

q = PK q̃⇐⇒ (q̃− q, z− q) ≤ 0 ∀z ∈ K,

we obtain that the outward normal cone NK(q) = C◦
K(q) can be expressed

NK(q) = {q̃− q , q = PK q̃} . (7)

This suggests the following time discretization, which can be seen as a
semi-implicit Euler scheme applied to (5). This strategy was introduced
by Moreau (1977) as a catching-up approach to build solutions to similar
problems (sweeping process).

Considering a time step τ > 0, it consists in discretizing (5) as

qn+1 − qn

τ
−U(qn) ∈ −NK(qn+1), (8)

which can be written

qn + τU(qn)− qn+1 ∈ NK(qn+1).

By (7), it is equivalent to (Catching-up scheme)

qn+1 = PK (qn + τU(qn)) , (9)

so that the semi-implicit Euler scheme turns out to be explicit in this regard:
it reduces to a projection of a predicted position q̃n+1 = qn + τU(qn) on
K.

Theoretical issues (convex case) The catching-up algorithm can be
used to build a solution to our problem, more precisely its formulation (6).
We shall state it in an abstract form.

Proposition 2.1. Let H be a Hilbert space, K ⊂ H a closed convex set,
and

U : q ∈ H �−→ U(q)

3This assumption is very strong, and rarely verified in realistic situations in the context

of crowd motions. It corresponds to the case of a single person in a convex room with

no door (!), or to the one-dimensional situation: N individual in a corridor, the size of

which is exactly the diameter of individuals.
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a Lipschitz function in H, bounded over H. Consider an initial condition
q0, T > 0 τ = T/M > 0 a time step, and

q0
τ , q1

τ , . . . , qM
τ ,

the elements obtained by application of the Catching-Up algorithm (9). De-
noting by qτ the corresponding continuous, piecewise affine trajectory, qτ

converges uniformly toward a solution t �→ q(t) to (6), i.e.

dq

dt
+NK(q) � U(q(t)), for almost every t ∈ (0, T ).

Proof. We shall simply give here the main arguments of the proof, and we
refer to Venel (2011) for further details. The main argument is a charac-
terization of the outward normal cone for a convex set K (see e.g. Venel
(2011)):

v ∈ NK(q) ⇐⇒ ∀ξ , 〈v , ξ〉 ≤ |v| dK(q+ ξ) (10)

⇐⇒ ∃C > 0 , η > 0 , ∀ξ , |ξ| ≤ η , 〈v , ξ〉 ≤ CdK(q+ ξ),

where dK(·) denotes the distance to K.
The rest of the proof relies on compactness arguments. First of all (qτ )

is uniformly bounded in W 1,∞(0, T ), so that (up to the extraction of a
subsequence) (qτ )τ converges uniformly toward some trajectory q, and the
corresponding velocity uτ = dqτ/dt (which is piecewise constant) converges
toward some u in the L∞ weak-star topology.

It holds that
qn+1
τ = PK (qn

τ + τU(qn
τ )) ,

which implies
(qn

τ + τU(qn
τ ))− qn+1

τ ∈ NK(qn+1
τ ),

i.e.
dqτ

dt
−U(q̃τ ) ∈ −NK(qτ ), for a.e. t ∈ (0, T ),

where q̃τ and qτ are piecewise constant approximate solutions, with value
at the beginning and at the end of time intervals, respectively. Notice that
both sequences q̃τ and qτ uniformly converge to q. By (10), the previous
inclusion implies

−
〈
dqτ

dt
−U(q̃τ ) , ξ

〉
≤

∣∣∣∣dqτ

dt
−U(q̃τ )

∣∣∣∣︸ ︷︷ ︸
≤M

dK (q+ ξ) .
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Since uτ−U(q̃τ ) converges weakly-star to u−U(qτ ) (in L∞), by Mazur’s
Lemma, a convex combination zτ of the sequence (uτ −U(q̃τ )) converges
strongly in L1 toward u−U(q). We therefore have point wise convergence
of zτ toward u−U(q) for almost every time t. Thus, for any time at which
pointwise convergence of zτ holds,

lim sup 〈zτ , ξ〉 ≤MdK (q+ ξ) .

so that. 〈
dq

dt
−U(q) , ξ

〉
≤MdK (q+ ξ) .

By using again (10) (second characterization) the other way around, we
obtain

dq

dt
−U(q) ∈ −NK(q) for a.e. t,

which ends the proof.

Crowd motion model: the non convex situation As for the crowd
motion model we introduced, the feasible set K is not convex as soon as
there are two individuals (i.e. rigid discs). Yet, as suggested by the previous
approach, similar results can be expected as soon as it is possible to project
the predicted configuration q̃n+1 = qn + τU(qn) on K. More precisely, if
qn is feasible (i.e. in K), if U is bounded, then a control on the time step
ensures that q̃n+1 is close to K. It is therefore enough to prescribe that
the projection is well-defined in the neighborhood of K. This leads to the
notion of prox-regular sets (Poliquin and Rockafellar (1996)). Let us first
extend the notion of outward normal cone to non convex sets (Clarke et al.
(1995)):

Definition 2.2. Let K ⊂ H be a closed set, and q ∈ K. The outward
normal cone to K at q is defined by

NK(q) = {v ∈ H , ∃α > 0 , q ∈ PK(q+ αv)} , (11)

where PK(q̃) denotes here the set of elements of H that realize the distance
between q̃ and K.

The prox-regularity is defined as follows:

Definition 2.3. Let K ⊂ H be a closed set, and η > 0. The set K is said
to be uniformly η prox-regular if, for any q ∈ ∂K, NK(q) is not reduced to
{0} and, for any v ∈ NK(q), with |v| = 1, we have

B(q+ ηv, η) ∩K = ∅.
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A weakened form of the characterization (10) holds for prox-regular sets:

v ∈ NK(q)⇐⇒

∃α > 0 , C > 0 , ∀ξ , |ξ| < α , 〈v , ξ〉 ≤ CdK(q+ ξ) +
|v|
2η
|ξ|2 , (12)

Thanks to this characterization, Prop. 2.1 can be extended to the prox regu-
lar case, which provides a framework for the crowd motion model, since the
feasible set K can be shown to be prox-regular (Maury and Venel (2011)).

Saddle point formulation The outward normal cone NK(q) = C◦
K(q)

can be parametrized thanks to Farkas’ Lemma (see e.g. Rockafellar (1970),
p. 200):

NK(q) =
{
v ∈ R

2N , Dij(q) = 0 =⇒ Gij · v ≥ 0
}◦

=

⎧⎨
⎩−∑

i<j

λijGij , λij ≥ 0 , Dij > 0⇒ λij = 0

⎫⎬
⎭ .

As a consequence, the projection of U on NK(q) can be formulated in a
saddle point manner. It amounts to find (λij)(i,j)∈Λ, where Λ is the set of
(i, j) such that the constraint is active (i.e. Dij(q) = 0), and u ∈ R

2N , such
that ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u+B�λ = U

Bu ≤ 0

λ ≥ 0

(Bu, λ) = 0.

(13)

where B is a matrix, each line of which corresponds to the constraint

−Gij · u ≤ 0, (i, j) ∈ Λ,

with

Gij = (0, . . . , 0,−eij , 0, . . . , 0, eij , 0, . . . , 0) , eij =
qj − qi

|qj − qi|
.

Thus, the projection takes the form of a (unilateral) discrete Darcy problem.
This analogy is not only formal. Consider for example the case of people in
a corridor (one-dimensional setting):
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The gradients are

G12 = (−1, 1, 0, . . . , 0) , G23 = (0,−1, 1, 0, . . . , 0) , etc.

so that the constraint matrix writes

B =

⎛
⎜⎜⎜⎝

1 −1 0 . . . . . .
0 1 −1 . . . . . .

0 0
. . .

. . . . . .
0 0 . . . 1 −1

⎞
⎟⎟⎟⎠

that is the discrete counterpart of −∂x (opposite of the divergence), and B�

corresponds to ∂x (gradient). Note that BB� is the discrete counterpart of
the one-dimensional Laplacian −∂xx. This observation reveals the numeri-
cal underlying difficulties: at each time step, the computation of the actual
velocity can be expected to be, at least, as difficult as solving a discrete
Poisson problem with the same number of degrees of freedom. It also illus-
trates the non-local effect of the projection onto the set of feasible velocities:
all individuals gathered in a same cluster are likely to interact.

The projection (9) can also be formulated in a dual manner: since

qn+1 = PK (qn + τU(qn))

there exists a collection of Lagrange multipliers (λij)(i,j)∈Λ such that

qn + τU(qn) = qn+1 −
∑
i,j

λijGij(q
n+1),

which can be written

qn+1 − qn

τ
+B�λ = U(qn).

Yet, in spite of its formal simplicity, this formulation does not directly lead
to a tractable numerical scheme, since the matrix B (together with the set
Λ of active couples) depends on the unknown qn+1. It reflects the implicit
(and highly nonlinear) character of the scheme.
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Figure 1. Inner approximation of the feasible set K.

2.3 Numerical scheme

In order to obtain a tractable numerical scheme, we replace (as in Maury
(2006)) the set of feasible configurations by some kind of local inner ap-
proximation. More precisely, considering a given configuration q ∈ K, we
introduce (see Fig. 1)

K̃q = {q̃ , Dij(q) +Gij(q) · (q̃− q) ≥ 0 ∀i < j} .

Thanks to the convex character of the function Dij , it can be shown that

K̃q ⊂ K for any q ∈ K, and it is a convex polyhedron as intersection of
half spaces. The projection step (9) is replaced by

qn+1 = PK̃qn
(qn + τU(qn)) , (14)

which amounts to project a predicted position q̃n+1 = qn + τU(qn) on the
set K̃(q

n), which is an intersection of half spaces. The link with the initial
problem is more explicit if one expresses the scheme in terms of velocities.
The approximate set of feasible velocities is defined by

C̃τ (q) = {v , Dij(q) + τGij(q) · v ≥ 0 ∀i < j} .

Now setting un+1 = (qn+1 − qn)/τ , the scheme (14) can be expressed in
terms of velocities as

un+1 = PC̃τ (qn)U(qn), (15)
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which the discrete counterpart to (4). The problem can be put in a saddle-
point form: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u+B�λ = U

Bu ≤ D/τ

λ ≥ 0

(Bu−D/τ, λ) = 0.

(16)

whereD is the vector of distances at the current configuration, i.e. (Dij(q
n)).

Remark 2.4. In the present context, the number of rows of B is the number
of potential contacts, i.e. N(N − 1)/2), whereas the number of rows of B in
the continuous setting (13) was the number of actual contacts, which is of
the order of 3N . It is nevertheless possible to alleviate the computational
costs by ruling out a priori the constraints that are not likely to become
activated at the next step, which amounts to suppress the corresponding
lines of B, thereby reducing the computational costs.

As it appears in Fig. 1, K can hardly be seen as a global approximation
of K̃q. Yet, if the time step is small, the constraints will be activated

when q is closed to a forbidden zone, and in this case K̃q approximates K
locally, i.e. in the neighborhood of q. It can be proven that the scheme
converges (Venel, 2011).

Uzawa algorithm Solutions to Problem (16) can be approximated by the
Uzawa algorithm. Let λ0 be given (the choice λ = 0 can be made in case
no prior information on λ is available). Successive approximations (uk, λk)
are built as follows: once λk is determined, uk+1 and λk+1 are defined by{

uk+1 +B�λk = U

λk+1 = Π+

(
λk + ν

(
Buk+1 −D/τ

)) (17)

where Π+ is the euclidean projection on the cone of vectors with nonnegative
components (a simple cut-off in practice), and ν > 0 is a fixed parameter.

Note that any fixed point of the algorithm is a solution to Problem (16).
Indeed, consider (u, λ) such a fixed point,. For any component of λ associ-
ated to a contact (i, j), stationarity implies the following alternative:

i) either λij = 0 and (Bu − D/τ)ij ≤ 0 (the constraint is satisfied,
possibly in a strict sense, and the Lagrange multiplier is inactive), or

ii) λij > 0 and (Bu − D/τ)ij = 0 (the constraint is saturated, and the
Lagrange multiplier is active).
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The algorithm can be shown to converge as soon as 0 < ν < 2/‖B‖2
(see Ciarlet (1989)). This algorithm is actually a fixed-step algorithm of
the projected gradient type, performed on the quadratic functional defined
on the set of Lagrange multipliers:

μ �−→ Ψ(μ) =
1

2
(U−B�μ,U−B�μ) + (μ,D/τ) .

The quadratic part of the functional is the quadratic form associated to
the matrix BB�, that is the discrete Laplace-like operator on the network
already mentioned in the previous section. This very matrix will condi-
tion the numerical difficulty so numerically solve the system. Note that the
present matrix BB� actually differs from the one described in the previous
section in that it pertains to all potential contacts, and not only actual ones
(see Remark 2.4). Yet, in actual computations, active contacts for the dis-
cretization scheme will correspond to couples of particles that are not far
away from each other, so that both matrices can be expected to share similar
properties. The next section is dedicated to further remarks on this under-
lying Laplace-like operator, which reflects the microscopic arrangements of
individuals.

2.4 Underlying Laplace-like operator

We investigate here the properties of the matrix BB�, which was iden-
tified as a kind of discrete Laplace operator. We shall see that this ma-
trix actually differs from the matrices that result from space discretization
of elliptic problems, or more generally from discrete Laplace operators for
electric networks.

Let us consider a configuration q ∈ K (like in Fig. 2), and the associated
matrix B, each line of which expresses the constraint

−Gij · u ≤ 0,

where Gij is the gradient of the distance Dij = |qj − qi| − ri − rj with
respect to the configuration vector q = (q1, . . . ,qN ). Let us start with
some comment on the operator B�. As we already pointed out, it can be
interpreted as a discrete gradient. Considering a set of Lagrange multipliers
λ (i.e. interaction pressures between particles in contacts), −B� assembles
the corresponding force field acting on the particles. In case the configura-
tion is structured (e.g. orthogonal lattice of discs of the same size, or the
triangular lattice of Fig.. 3) then a constant pressure field induces no force
at all (expect for the boundary of the cluster). It is the discrete counter-
part of the standard property in the continuous setting that the gradient of
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i

j

k

Figure 2. Non structured stencil

a constant field is zero. Yet, in the general situation (when no structural
assumption is made on the local arrangements of discs), this property does
not hold. See e.g. the discs on Fig. 2: the vectors pointing inward each par-
ticle do not sum up to zero. Another feature is typical of the unstructured
discrete situation. Consider the cluster represented in Fig. 3. The number
of discs is 14, thus the number of degrees of freedom is 28, whereas the
number of contacts is 29. As a consequence, the kernel of B� is not trivial:
there exists a non-zero pressure field (one pressure for each contact point)
such that the resulting force field is 0. A striking consequence of this fact
is the following: the associated Laplace-like operator BB� does not satisfy
the Hopf maximum principle, since there exist pressure fields λ such that
BB� ≥ 0, whereas some pressures are negative.

The matrix BB� can be expressed as follows: considering a pressure
field λ = (λk�), where (k, �) runs over the set of actual contacts, the vector
BB�λ is a pressure-like vector (one component for each contact), and the
value corresponding to the contact between discs i and j is∑

(k,�)∼(i,j)

λk�Gij ·Gk�.
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Figure 3. Hyperstatic situation

The discrete matrix operates on the network which is dual to the primary
network (i.e. the network made of the centers of discs, with a connection
between two vertices as soon as the discs are in contact). The vertices of
the dual network are the contact points, and two vertices are connected, or
equivalently the corresponding element of the matrix is non zero, as soon
as the contacts share a same particle. Both networks are represented in
Fig. 4. The corresponding stencil is represented in Fig. 2, around a vertex
that is the contact point between two particles. The non-verification of
the maximum principle is due to the fact that, when one considers three
particles i, j, and k, it may happen that

eij · ekj > 0,

where eij is the unit vector (qj − qi)/ |qj − qi|. Examples of such vectors
are represented in Fig. 2, in bold. This property is generic in jammed
collections of discs. As a consequence, some of the extra diagonal elements
of BB� are positive, thus BB� is not aM -matrix. If one aims at interpreting
the situation in terms of electric networks, in means that some resistances
are negative, and this situation is native for jammed population of individual
identified to rigid discs.

Condition number In terms of numerical computation, the inner diffi-
culty of the problem can be quantified by the condition number of BB� (i.e.
the ratio between the largest and the smallest non zero eigenvalue of this
symmetric positive matrix). This number κ can be related in some way to
the lack of convexity of the feasible set K in the following sense: as detailed
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Figure 4. Primal (left) and dual (right) contact networks

in Maury and Venel (2011), it holds that

κ = cond2(BB�) ≥ C

η2
,

where η is the prox-regularity constant of K, i.e. the largest constant that
can be chosen in Definition 2.3. This constant tends to zero very fast as the
number of discs grows (see again Maury and Venel (2011)).

3 Macroscopic setting

3.1 The macroscopic model

We aim now at describing the population at a macroscopic level, i.e. by
a density ρ(x, t). We consider a bidimensional domain Ω (the room), we
denote by U the desired velocity field (which is given), and by u the actual
velocity field (which is affected by congestion effects). The set of feasible
densities is defined as

K =
{
ρ ∈ L1(Ω) , 0 ≤ ρ(x) ≤ 1 a.e. in Ω

}
.

The density is transported by the actual velocity field4:

∂ρ

∂t
+∇ · (ρu) = 0, (18)

where u is defined as the L2 projection of U on the cone of feasible velocities
CK(ρ). This model was proposed in Maury et al. (2010), and studied in the
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case where U is a gradient.
Unformally said, CK(ρ) contains velocity fields that do not increase the

density where the constraint is already saturated (i.e. wherever ρ = 1). It
can be defined in a dual way as

CK(ρ) =

{
v ∈ L2(Ω)2,

∫
Ω

v · ∇q ≤ 0 ∀q ∈ H1
+(Ω) ,

∫
Ω

q(1− ρ) = 0

}
,

with H1
+(Ω) = {q ∈ H1(Ω) , q ≥ 0 a.e. in Ω}. (19)

Note that the constraint on the integral of q(1 − ρ) imposes that q is 0 in
the zones where the constraint is not saturated (i.e. ρ < 1).

When a part Σ of the boundary of Ω is an open exit, a free outlet
condition can be prescribed by simply prescribing that the pressure is 0 on
Σ (since the pressure is in H1(Ω), its trace on Σ is indeed well-defined).

Saddle-point formulation The projection of the desired velocity on the
cone of feasible ones can be formulated in a dual manner, in the form of a
unilateral Darcy problem:

Find (u, p) ∈ L2(Ω)2 ×H1
ρ(Ω), where

H1
ρ+(Ω) =

{
q ∈ H1

+(Ω),

∫
Ω

q(1− ρ) = 0

}
,

such that ⎧⎪⎨
⎪⎩

u+∇p = U

−
∫
Ω

u · ∇q ≤ 0 for all q ∈ H1
ρ+(Ω),

(20)

with the complementarity condition:

−
∫
Ω

u · ∇p = 0 .

Toward a suitable framework The model can be written

∂ρ

∂t
+∇ · (ρu(ρ)) = 0,

4The transport equation is meant in a weak sense; we shall say that u transports ρ in
the time interval [0, T ], with initial condition ρ = ρ0, when

∫ T

0

∫
Ω
ρ∂tϕ+

∫ T

0

∫
Ω
ρu · ∇ϕ+

∫
Ω
ϕ(0, ·)ρ0 = 0 ∀ϕ ∈ C∞

c ([0, T )× Ω).



64 B. Maury

where the mapping ρ �→ u(ρ) corresponds to the projection of U on CK(ρ).
This mapping is nonlinear, nonlocal, the dependence upon ρ is not smooth;
it does not fit in the classical framework of conservation laws.

In the microscopic setting, the difference q̃ − q between the configura-
tions q and q̃ corresponds to a collection of individual displacements which
reflects the Lagrangian character of the description. In the standard frame-
work of Partial Differential Equations, the difference between entities (or,
more generally, functions) ρ̃− ρ is of different nature, because of the Eule-
rian character of the description. In order to extend the tools we used in
the microscopic context, we must adopt another standpoint. Let us show
that the Wasserstein distance, based on optimal transportation, provides
an adapted framework.

3.2 Optimal transportation and Wasserstein distance

We present here some basics on optimal transportation, and we refer
to Villani (1995) for a more detailed and more general presentation of those
concepts. We assume here that the domain Ω is convex. For any measurable
map t : Ω −→ Ω, and probability densities5 μ and ν supported in Ω, we
say that ν is the pushforward of μ by t whenever∫

t−1(A)

μ(x) dx =

∫
A

ν(x) dx,

for any measurable set A ⊂ Ω. Considering that the cost of moving x to y
is |y − x|2 (quadratic cost), the cost of the transport map t is defined as

C(t) =

∫
Ω

|t(x)− x|2 dx.

The quadratic Wasserstein distance W2(μ, ν) is then defined by

W2(μ, ν)
2 = inf

t, t�μ=ν
C(t) = inf

t, t�μ=ν

∫
Ω

|t(x)− x|2 dx.

In the case we considered (in particular the first measure is absolutely
continuous), the minimizer is attained, and the minimization problem can
be formalized in a dual way: it holds that

1

2
W2(μ, ν)

2 =
1

2
min

t, t�μ=ν

∫
Ω

|t(x)− x|2 dx (21)

5As detailed in Villani (1995), the approach generalizes to general measures, but we

assume here absolute continuity, which is the case in the situation we consider.
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= max
ϕ,ψ∈Cb(Ω)

{∫
Ω

ϕ(x)ρ(x) dx+

∫
Ω

ψ(y)ν(y) dy , ϕ(x) + ψ(y) ≤ 1

2
|y − x|2

}
,

where Cb(Ω) is the space of all those functions that are bounded and con-
tinuous in Ω. The latter maximum is attained for a couple (ϕ, ϕc), where

ϕc(y) = inf
x

(
1

2
|x− y|2 − ϕ(x)

)
.

The function ϕ is called a Kantorovich potential for the transport problem
from μ to ν; it is related to the transport map t that realizes the Wasserstein
distance by

t = i−∇ϕ, (22)

where i is the identity. Let us consider a toy problem to illustrate the
considerations above. Let η be given in (0, 1/2), and let Iη be the interval
(−1/2 − η/2, 1/2 + η/2) ⊂ R, the length of which is 1 − η. We consider a
probability density

ρη =
1

1− η
1Iη ,

(characteristic function of Iη, normalized to recover a unit mass). The
density ρη violates the constraint and its projection on K is ρ0, the char-
acteristic function of the interval (−1/2, 1/2). The Kantorovich potentials
(from ρ0 to ρη) can be computed exactly as

ϕ(x) =
η

2
x2 , Ψ(y) = −1

2

1

1− η
y2.

The transport map from ρ0 to ρη is indeed

x �−→ (i−∇ϕ)x = (1− η)x,

and its inverse (ρη to ρ0) is

y �−→ (i−∇ψ) y = y +
η

1− η
y =

1

1− η
y.

3.3 Catching-up algorithm

Let τ > 0 be a time step. The catching-up algorithm consists in trans-
porting the current density by the desired velocity field, and then projecting
it on the set K of feasible densities:

ρ̃n+1 = (i+ τU)# ρn (prediction step), (23)
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ρn+1 = PK ρ̃n+1 (correction step), (24)

where the projection is performed in the Wasserstein sense. This projection
can be shown to be well defined6 (Maury et al., 2011).

In the microscopic setting, the link between the catching-up algorithm
and the crowd motion model was straightforward7. In the present situation,
the link is less straightforward, and the proof of convergence of the discrete
trajectories requires technical developments that we will not describe here
(see Maury et al. (2010, 2011)). We shall simply describe here the core of
the proof, which lies in the link between the catching up scheme and the
unilateral Darcy problem (20).

In the microscopic setting, the actual velocity at the discrete level was
written (qn+1 − qn)/τ (see e.g. (8)). This expression has to replaced by a
similar expression involving ρn and

ρn+1 = PK

(
(i+ τU)# ρn

)
,

which would be a Lagrangian version of “(ρn+1 − ρn)/τ”, so to say. The

K

rho1

trho

rho

t

r

tauv

Figure 5. Definition of the discrete transport maps.

situation is represented in Fig. 5. The main idea consists in defining a

6This fact is somewhat striking since, in the microscopic setting, the set K can be shown

to be η-prox-regular with η going to 0 as the number of individuals goes to ∞, and

their size goes to 0. It means that the projection is defined in a neighborhood of ∂K

which shrinks down to ∂K itself as the population grows, which suggests a degenerated

behavior when it tends to the macroscopic situation. The very fact that it does not

degenerate in the macroscopic situation (the projection is well-defined, no matter what

the distance to K is) reflects the deep difference between the two approaches, as it was

already addressed at the end of Section 1.
7We refer the reader to the few lines between Eq. (8) (which is a discretization of (5))

and Eq. (9)
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discrete velocity un+1 such that τun+1 corresponds to the displacement
between ρn and ρn+1, and to show that this velocity solves (at least at the
first order in time) a Darcy problem like (20). It can be done as follows: we
define tn+1 as (i+ τU)−1, which is well defined as soon as U is regular and
τ is small enough, and rn+1 as the optimal map between ρn+1 and ρ̃n+1.
The discrete velocity is then defined as

un+1 =
i− tn+1 ◦ rn+1

τ
.

Notice that this velocity is defined in the target set: considering a element
of mass x of ρn, transported to y in ρn+1, it holds

y = x+ τun+1(y),

where the velocity is defined at y, and not at x.
Let us introduce

wn+1 =
i− rn+1

τ
⇐⇒ rn+1 = i− τwn+1.

As soon as U is assumed to be smooth (i.e. continuously differentiable),
tn+1 can be expanded at the first order as

tn+1 = (i+ τU)−1 = i− τU+ o(τ),

where the o(τ) if uniform with respect to the space variable x. We then
have

un+1 =
1

τ

(
i− (i− τU+ o(τ)) ◦ (i− τwn+1)

)
= wn+1 +U+O(τ). (25)

To complete the identification with (20), we still have to establish thatwn+1

is the gradient of a pressure p that is nonnegative, and that vanishes out-
side the saturated zone. To that purpose, we follow the strategy introduced
in Butazzo and Santambrogio (2005) and used in the context of crowd mo-
tion models of the gradient flow type in Maury et al. (2010). It consists in
proving that the Kantorovich potential associated to the transport problem
from ρn+1 to ρ̃n+1 (which corresponds to the displacement −τwn+1) can
be interpreted (up to multiplicative and additive constants) as a pressure
field in the saturated zone. We shall assume here that ρ̃n+1 is positive in Ω
(we refer to Maury et al. (2010) for an adaptation to the general case). The
proof is somewhat paradoxical, since it consists in considering eulerian vari-
ations around the minimizer, whereas the Wasserstein framework suggests
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to build variations by means of transport maps (i.e. horizontal variations).
Consider μ a density in K, and ε > 0. We define

ρε = ρn+1 + ε(μ− ρn+1) ∈ K,

and we denote by ϕε and ψε the Kantorovich potentials associated to the
transport problem from ρε to ρ̃n+1. By the Monge Kantorovich formula-
tion (21), it holds that

1

2
W2(ρε, ρ̃

n+1)2 =

∫
Ω

ϕερε +

∫
Ω

ψερ̃
n+1, (26)

and
1

2
W2(ρ

n+1, ρ̃n+1)2 =

max
ϕ,ψ∈Cb(Ω)

{∫
Ω

ϕρn+1 +

∫
Ω

ψρ̃n+1 , ϕ(x) + ψ(y) ≤ 1

2
|y − x|2

}
,

≥
∫
Ω

ϕερ
n+1 +

∫
Ω

ψερ̃
n+1. (27)

Besides, since ρn+1 minimizes the Wassertein distance from ρ̃n+1 to K by
construction, and since ρε is in K, we have

1

2
W2(ρε, ρ̃

n+1)2 ≥ 1

2
W2(ρ

n+1, ρ̃n+1)2,

which yields, thanks to (26) and (27),∫
Ω

ϕε(ρε − ρn+1) ≥ 0 =⇒
∫
Ω

ϕερ
n+1 ≤

∫
Ω

ϕεμ ∀μ ∈ K. (28)

Now, prescribing a fixed value of the Kantorovich potentials at some point
x0 ∈ Ω, the Kantorovich potential is unique, and the sequence (ϕε) can be
shown (see Butazzo and Santambrogio (2005), Lemma 3.4) to converge to
the Kantorovich potential ϕ associated to the transport from ρn+1 to ρ̃n+1

(i.e. in the limit ε = 0). So finally ρn+1 minimizes a linear functional of the
type

ρ �−→
∫
Ω

ϕρ,

over K which is the set of probability densities that are less that 1 almost
everywhere. If the upper bound constraint were not prescribed, ρ would
tend to concentrate on the minimizer(s) of ϕ. This concentration is ruled
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Figure 6. Projection of ρ̃ onto K
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out by the congestion constraint, and ρ saturates the zone in which ϕ is
minimal, so that it takes the following form

ρn+1

∣∣∣∣∣∣
= 1 on [ϕ < �]
≤ 1 on [ϕ = �]
= 0 on [ϕ > �]

where � is a value which is adjusted to comply with the unit mass constraint.
In the previous expression, the way ρn+1 is distributed over [ϕ = �] is
underdetermined, since it does not affect the value of the functional: the
solution of the previous minimization problem is not unique. It does not
matter here, since ρn+1 was already identified as the unique density that
realizes the distance to K. We then define the pressure field

p =
1

τ
(�− ϕ)

+
.

By construction, p is nonnegative, it vanishes outside of the saturated zone
(i.e. where ρn+1 < 1), and ∇p = −∇ϕ/τ in the support of p. Now recall
that ϕ is a Kantorovich potential for rn+1, i.e.

rn+1 = i−∇ϕ = i+ τ∇p.

Finally, we have

wn+1 =
i− rn+1

τ
= −∇p,

so that, thanks to (25), we obtain the Darcy decomposition (at the first order
in time) of the desired velocity field U as the sum of the actual velocity and
the gradient of a pressure:

un+1 +∇p = U+O(τ).

Fig. 6 is an attempt to illustrate this construction: the zone in which the
constraint is violated (i.e. ρ̃n+1 > 1) is denoted by ω̃. The excess of mass
is spread out around this zone, and the obtained density saturates the con-
straint (ρn+1 ≡ 1) on ω. Note again that the displacement τun+1 which
pushes ρn onto ρn+1 is defined on the target set, which rules out a straight
use of this approach to design a tractable numerical procedure.

3.4 Numerical issues

Like in the microscopic setting, a direct use of the saddle point form of
the projection onto K is delicate, since the pressure field is defined on the
target set. We describe here a Monte Carlo algorithm based on a stochastic
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interpretation of the Poisson problem with Dirichlet boundary condition
(see Maury et al. (2011) for details). Let us make it clear that this approach
is not covered by a rigorous numerical analysis. We consider again the
situation represented in Fig. 5, and we drop the upperscripts n+1 to alleviate
notation. The predicted density ρ̃ violates the constraint in the domain ω̃,
and the excess mass is (ρ̃ − 1)+. Since this excess mass is due to the
transport of an admissible density by a contracting field (desired velocity
field U) during τ , it is of the order τ . Let us assume that it can be written
τν, where ν is a nonnegative density supported by the oversaturated zone8.
The density ρ̃ is 1 + τν in ω̃. Let ρ be the projection of ρ̃ on K. The

displacement from ρ to ρ̃ is of the form r = i+ τ∇p, where p is 0 outside ω
(see the previous section). Since ρ saturates the constraint9 in ω, we have
in ω

1

|i+ τ∇p| (x) ≈ (1− τ∇ · ∇p) (x) = 1 + τν(r(x)),

so that, at the first order in τ ,

−Δp(x) = ν(r(x)),

with p = 0 on the boundary of ω. The unknown pressure field p and the
right-hand side are not defined on the same set, but r is close to the identity
i. Replacing ν(r(x)) by ν(x) is audacious, even in this informal approach,
since ν has no reason to be regular. Yet, ν and ν ◦ r are close (of the
order τ) in the Wasserstein sense by construction, therefore their distance
in the H−1 sense is of the same order (see Maury et al. (2010), Lemma 3.4).
Thus, the corresponding pressures are also close (at the first order in τ) in
the H1 norm. Using again the fact that ω is transported to ω̃ by r, which
is the identity at the first order in τ , and assuming sufficient regularity to
transport the elliptic problem back to ω̃ (up to first order terms), we end
up with a Poisson problem in ω̃

−Δp = ν in ω̃,

with homogeneous Dirichlet boundary conditions on ∂ω̃.
The velocity of the boundary is −∂p/∂n, which means that the quantity

of mass crossing an element dγ of the boundary during τ is −τ∂p/∂n dγ.
Now consider the stochastic interpretation of the Poisson problem (we as-
sume that ν has unit mass, which can be recovered by a straightforward

8Since ρ̃ comes from the transport of the previous density ρn by U, it holds approxi-

mately ρ̃ ≈ 1− τ∇ ·U+ o(τ).
9This property is straightforward: if it were not, it would obviously not be the density

closest to ρ̃ in K.
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renormalization): consider a brownian motion starting at an initial point
X, which is supposed to be itself a random position following the law of
density ν in ω̃, and consider the location at which this Brownian motion
crosses the boundary of ω̃. The law of the position of this first hit is known
to follow a law with density −∂p/∂n on ∂ω̃, where p is the solution to the
Poisson problem above. The algorithm we propose (see Maury et al. (2011))
is deduced from these consideration.

init

final

excess

Figure 7. Random walk algorithm

The space is discretized in a finite volume spirit by a cartesian mesh. The
densities are assumed to be constant on each cell of this mesh. We illustrate
in Fig. 7 the discretized counterpart of the situation represented in Fig. 6.
The zone delimited by the bold broken line corresponds to cells where the
constraint is violated. Considering one of those cells as a starting point,
with an excess of mass m, we run a random walk on the grid with balanced
transition probabilities. When the random walk reaches a cell which is not
saturated, the excess of mass is put in this cell, up to saturation. If there
is not enough empty space to get rid of the total excess m, the random



Non Smooth Evolution Models in Crowd Dynamics 73

walk continues according to the same principle, until there is no mass left.
Fig. 7 illustrates the process, starting from a cell inside the zone where the
constraint is violated.

A new random walk is then initiated from another cell where the con-
straint is saturated, and so on, until the constraint is satisfied everywhere.
We refer to Maury et al. (2011) for a more detailed description of the algo-
rithm, and for some illustrations of the behavior of the algorithm.
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Abstract We present two conceptually new modeling approaches
aimed at describing the motion of pedestrians in obscured corridors:
(i) a Becker-Döring-type dynamics and
(ii) a probabilistic cellular automaton model.
In both models the group formation is affected by a threshold. The
pedestrians are supposed to have very limited knowledge about their
current position and their neighborhood; they can form groups up
to a certain size and they can leave them. Their main goal is to find
the exit of the corridor.

Although being of mathematically different character, the dis-
cussion of both models shows that it seems to be a disadvantage for
the individual to adhere to larger groups.

We illustrate this effect numerically by solving both model sys-
tems. Finally we list some of our main open questions and conjec-
tures.

1 Introduction

Social mechanics is a topic that has attracted the attention of researchers for
more than one hundred years; see e.g. (Haret, 1910; Portuondo y Barceló,
1912). A large variety of existing models are able to describe the dynamics
of pedestrians driven by a desired velocity towards clearly defined exits. But
how can we possibly describe the motion of pedestrians when the exits are
not clearly defined, or even worse, what if the exits are not visible?

A. Muntean, F. Toschi (Eds.), Collective Dynamics from Bacteria to Crowds, CISM International  
Centre for Mechanical Sciences, DOI 10.1007/978-3-7091-1785-9_3, © CISM, Udine 2014 
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This paper is inspired by a practical evacuation scenario. Some of the
existing models are geared towards describing the dynamics of pedestrians
with somehow given, prescribed or, at least, desired velocities or spatial
fluxes towards an exit the location of which is, more or less, known to the
pedestrians1. We focus on modeling basic features which we assume to be
influencing the motion of pedestrians in regions with reduced or no visibil-
ity2. Our scenario is the following: A large number of pedestrians, generally
denoted by Y , is supposed to move through an obscured corridor,Ω. Due
to the lack of visibility (e.g. smoke, fog, darkness, etc.3) the Y ’s cannot see
the exit. We allow for some sort of "buddying": If Y ’s hit each other they
might decide to form a group. For practical reasons, we limit the size of
such groups by a threshold T . As transport mechanism, we assume a very
mild diffusion-like motion which is not connected with the location of the
exit. To model this situation, we take two different routes by introducing
and discussing:

(1) a Becker-Döring-type system of balance equations for mass measures
(see Appendix A for a derivation)

(2) a lattice model for an interacting particle system with threshold dy-
namics.

The two approaches are conceptually different. They consider from two
different perspectives the concept of group (social collectivity). In the fol-
lowing sections, we approximate the corresponding dynamics for evacuation
scenarios similar to those described in Fang et al. (2012) and Zheng et al.
(2011), for instance. In the first approach, the group feature is imbedded in a
size-dependent mass measure and the evolution will be dictated by the con-

1Efficient evacuation of humans from high–risk zones is a very important issue cf. Schad-
schneider et al. (2009). The topic is very well studied by large communities of scien-
tists ranging from logistics and transportation, civil and fire engineering, to theoretical
physics and applied mathematics. Models (deterministic or stochastic) succeed to
capture basic behaviors of humans walking within given geometries towards a priori
prescribed exits. Typical classes of crowd dynamics models include social force/social
velocity models (cf. e.g. Helbing and Molnar (1995), Piccoli and Tosin (2011), Evers
and Muntean (2011)), simple asymmetric exclusion models (see chapters 3 and 4 from
Schadschneider et al. (2011) as well as references cited therein), cellular automaton-
type models Kirchner and Schadschneider (2002); Guo et al. (2012), etc.; a detailed
classification of pedestrian models, see Schadschneider et al. (2011), e.g.

2In recent years, high-rise buildings claim steadily increasing numbers of victims in
evacuations. Most victims were due to the reduced visibility by fire smoke; see Jin
(1978); Jin and Yamada (1985). In the future, most likely one will insist also on
building underground, so the potential of smoke victims further increases. We refer
the reader to Kobes et al. (2010) for a recent literature review.

3Think about an evacuation in a metro in which there is smoke and/or no light, etc.
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servation equation of the respective measure (balancing the size-dependent
density). In the second approach, we use a threshold to allow finite non-
exclusion per site in a lattice automaton for the self-propelled particles (i.e.
the pedestrians). We suspect however that connections between (1) and (2)
might exist, but we don’t expect that the mean-field limit of (2) is (1) (cf.
e.g. Presutti (2013)).

Whatever route we take, our central questions are:

(Q1) How do pedestrians choose their path and speed when they are about
to move through regions with no visibility?

(Q2) Is group formation (e.g. buddying) the right strategy to move through
such uncomfortable zones able to ensure exiting within a reasonable
time?

Answers to (Q1) and (Q2) are largely unknown. Group psychology (compare
e.g. Le Bon (2008); Curşeu (2009) and Dyer et al. (2009)) lacks extensive
experimental observations, and, due to absence of meaningful statistics,
nothing can be really concluded. The "groups" we study here are expected
to be highly unstable and therefore they only remotely resemble the well-
studied swarming patterns typically observed in nature by fish and or birds
communities (see e.g. the 4–groups taxonomy in Topaz and Bertozzi (2004),
namely swarm, torus, dynamic parallel groups, and highly parallel groups).

The basic idea is the following: In the situation we are modeling, neigh-
bors (both individuals or groups) can not be visually identified by the in-
dividuals in motion, so that basic mechanisms like attraction to a group,
tendency to align, or social repulsion are negligible and individuals have to
live with “preferences".

The paper is structured as follows: We start off with a continuum model
describing the mesoscopic dynamics of groups in Section 2. After giving the
set of governing equations in Section 2.1, we illustrate numerically the ob-
served threshold effects at such mesoscopic level in Section 2.2. Appendix
A contains a formal derivation in terms of mass measures of the Becker-
Döring-like system proposed here. As next step, we propose a lattice model
to capture the microscopic dynamics, see Section 3. The model detailed
in Section 3.1 is illustrated numerically in Section 3.2. We conclude by
enumerating a set of basic questions that are for the moment open (see Sec-
tion 4) on the behavior of both interacting particle systems and structured
densities with threshold effects.
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2 Becker-Döring grouping in action

2.1 From interacting colloids to group dynamics

Inspired by the modeling of charged colloids transport in porous media
(see e.g. Krehel et al. (2012); Ray et al. (2012)), we consider now a system
of reaction-diffusion equations describing the aggregation and dissolution of
groups; the ith variable in the vector of unknowns represents the specific
size of the subgroup i (density of the i-mer ui). Here u1 – density of crowds
of group size one (individuals), u2 – density of groups of size two, and so
on until uN are the corresponding Radon-Nikodym derivatives of suitable
measures (see Appendix A for details). For convenience, we take here T :=
N , the biggest group size.

The following equations describe our system:

∂tu1 +∇ · (−d1∇u1) = −u1

∑N−1
i=1 βiui +

∑N
i=2 αiui − β1u1u1 + α2u2(1)

∂tu2 +∇ · (−d2∇u2) = β1u1u1 − β2u2u1 + α3u3 − α2u2 (2)
... (3)

∂tuN−1 +∇ · (−dN−1∇uN−1) = βN−2uN−2u1 − (4)
−βN−1uN−1u1 + αNuN − αN−1uN−1 (5)

∂tuN +∇ · (−dN∇uN ) = βN−1uN−1u1 − αNuN . (6)

This system of partial differential equations indicates that groups diffuse
inside Ω. If the groups meet each other, then they start to interact via
the mechanism suggested by the right-hand side of the system (aggregation
or degradation being the only allowed interaction behaviors). We take as
boundary conditions

u1 = 0 on ΓD (7)
−d1∇u1 · n = 0 on ∂Ω \ ΓD (8)

−di∇ui · n = 0 on ∂Ω, i ∈ {2, . . . , N}, (9)

while the initial conditions at t = 0 are

u1 = M in Ω (10)
ui = 0 in Ω, i ∈ {2, . . . , N}. (11)

These boundary conditions model the following scenario: Only the popu-
lation of size one are allowed to exit, all the other groups need to split in
smaller groups close to ΓD. In (10), M > 0 denotes the initial density of
individuals, the total mass [of pedestrians] in the system being

∫
Ω

∑N
i=1 iui.
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The total mass at t = 0 is M |Ω|. Note that (10) indicates that, initially,
groups are not yet formed. Group formation happens here immediately af-
ter the initial time. As transport mechanism, we have chosen to use Fickian
diffusion fluxes to model the mesoscopic erratic motion of the crowd [with
all its N group structures] inside the corridor Ω.

Similarly to the case of moving colloidal particles in porous media (cf.
for instance Krehel et al. (2012) and references cited therein), we take as
reference diffusion coefficients the ones given the Stokes-Einstein relation,
i.e. the diffusion coefficient of the social conglomeration is inversely propor-
tional to its size as described by di :=

1
3√i

(which would correspond to the
colloidal particles diffusion in a 3D confinement) for any i ∈ {1, . . . , N}; see
for instance Edward (1970). In contrast to the case of transport in porous
media, we assume that no heterogeneities are present inside Ω. Conse-
quently, the diffusion coefficients are taken here to be independent of the
space and time variables. If heterogeneities were present (like it is nearly
always the case e.g. in shopping malls), then one needs to introduce con-
cepts like local porosity and porosity measures as in Evers and Muntean
(2011); see Chepizhko et al. (2013) for a related scenario discussing stochas-
tically interacting self propelled particles within a heterogeneous media with
dynamic obstacles. We restrict ourselves here to the case of homogeneous
corridors.

We take the degradation (dissociation, group splitting) coefficients αi >
0 (i ∈ {2, . . . , N}) as being given constants, while for the aggregation coef-
ficients we use the concept of social threshold. We define

βi :=

{
i i < T

1 otherwise,
(12)

where T ∈ (0,∞) is the social threshold. Essentially, using (12) we expect
that the choice of T essentially limits the size of groups that can be formed
by means of this Becker-Döring-like model. In other words, even if large
values of N are allowed (say mimicking N →∞) most likely groups of sizes
around �T � will be created; here �p� denotes the integer part of p ∈ R.

2.2 Threshold effects on mesoscopic group formation

For the numerical examples illustrated here, we consider N = 20 species
waking inside the corridor Ω = (0, 1) × (0, 1). On the boundary ∂Ω, we
design the door ΓD = {(x, y) : x = 0, y ∈ [0.4, 0.6]}, while the rest of the
boundary ∂Ω \ ΓD is considered to be impermeable, i.e. the pedestrians
cannot penetrate the wall ∂Ω \ ΓD.
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To solve the system numerically, we use the library DUNE and rely on
a 2D Finite Element method discretization (with linear Lagrange elements)
for the space variable, with implicit time-stepping. Note that we allow only
crowds of size one, i.e. u1, to exit the door. For larger group sizes the door
in impenetrable. Such groups really need to dissociate/degrade first and
then attempt to exit. We choose constant degradation coefficients and take
as reference values αi = 0.7 (i ∈ {1, . . . , N}).
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Figure 1. Outgoing flux with respect to initial density.

As we can see from Figure 1, the outgoing flux (close to the steady state4)
exhibits a polynomial behavior with respect to the initial mass, where the
polynomial exponent is influenced by the choice of the threshold T . It
seems that the higher the threshold, the smaller is the polynomial power.
This effect is rather dramatic – it indicates that, regardless the threshold
size, behaving/moving gregariously is less efficient that performing random
walks.

Figure 2 shows that there’s no apparent saturation for the outgoing flux
with respect to the mass: the growth goes on in a polynomial fashion. The
linear behavior has been obtained by setting to zero the aggregation and
degradation coefficients.

In Figure 3, we see that the influence of variable diffusion coefficients
is marginal; since a lot of mass exchange is happening in terms of species
u1, setting all the other coefficients d2, . . . , dN to be lower than d1 = 1 (i.e.
bigger groups move somewhat slower than individuals) does not affect the

4The mass exiting the system is evenly distribute throughout the domain Ω.
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Figure 2. Outgoing flux for T = 5 versus large initial data M →∞.

output too much. Probably, the effect of diffusion could be stronger as soon
as the effective diffusion coefficients are allowed to degenerate with locally
vanishing ui; this is a situation that can be foreseen in a modified setting
Guo et al. (1988).
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Figure 3. Homogeneous diffusion(c) and Stokes-Einstein diffusion(e). Note
that the profiles are overlapping very closely.
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Figure 4. Steady-state mass distributions. Pile-up effect around group size
T .
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Figure 5. Clusters behavior close to the exit. The case of u1–u4.

In Figure 5, we see the mass escaping from the clusters u1–u4 in the
neighborhood of the exit. Note the dramatic change in u1 compared to
what happens with the other group sizes. It is visible that large group have
to stay in the queue until the small groups exit.

On the other hand, we can see in Figure 6 how the crowd breakage
directly influences the outward flux. Essentially, a faster splitting of the
groups tends to increase the averaged outgoing (evacuation) flux. This
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effect is due to our choice of boundary conditions at the exit. We mentioned
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Figure 6. Comparison of outgoing flux for different values of degradation
coefficients α.

in Section 2 that we expect that the way the threshold T intervenes in the
definition of the aggregation coefficients βi (compare (12)) essentially affects
the maximum allowable group size. We can now see that close to the steady
state situation, such situation happens. This effect is pointed out in Figure
4; the picture suggests that the mass of pedestrians piles-up in structures
whose maximum lie around T .

3 A lattice model for the reverse mosca cieca game

3.1 Microscopic dynamics

Using the lattice model presented in this section, we explore the effects
of the microscopic non–exclusion on the overall exit flux (evacuation rate).
More precisely, we look again at social thresholds and study this time the
effect of the buddying threshold (of no–exclusion per site) on the dynamics
of the crowd and investigate to which extent such approach confirms the
following pattern revealed by investigations on real emergencies and also
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emphasized in Section 2: If the evacuees tend to cooperate and act altruisti-
cally, then their collective action tends to favor the occurrence of disasters5.

Question (Q1) in Paragraph 1 drives any possible attempt of modeling
pedestrians motion. In this section we show how an answer to this question
can be setup by using a stochastic point of view.

Our reference scenario is here a microscopic one: Imagine to be one of
the individuals in a dark (possibly crowded) corridor trying to save your life
by quickly reaching one of the exits. You cannot see anything and, maybe,
you do not have any a priori knowledge of the geometry of the corridor you
have to exit from. It is not difficult to imagine that you will not be able
to keep a constant direction of motion and that, in any case, it will be not
chosen via some neat reasoning, but you will essentially chose it at random
on the basis of what other people shout and scream. In some sense your
motion will closely resemble that of the blinded kid playing mosca cieca6,7

with his friends.

This simple remark triggered us to propose a stochastic model for the
pedestrian motion in no–visibility areas based on a random walk scheme
Cirillo and Muntean (2013, 2012). The random walk rule has been intro-
duced by taking into account a possible interaction between the individuals,
see the question (Q2) in Section 1.

Pedestrians move freely inside the corridor and like to buddy with people
they accidentally meet at a certain point (site). The more people are local-
ized at a certain site, the stronger the preference to attach to it. However if

5Note that,due to the lack of visibility, anticipation effects (see Suma et al. (2012)) and
drifts (see Guo et al. (2012)) are expected to play no role in evacuation.

6Mosca cieca means in Italian blind fly. It is the Italian name of a traditional chil-
dren’s game also known as blind man’s buff or blind man’s bluff. The game is played
in a spacious free of dangers area in which one player, the “mosca", is blindfolded
and moves around attempting to catch the other players without being able to see
them. Other players try to avoid him; they make fun of the “mosca" inducing him to
change direction. When one of the player is finally caught, the “mosca" has to iden-
tify him by touching is face and if the person is correctly identified he becomes the
“mosca". Interestingly, the game has inspired significantly satiric literature (Manzoni,
1909; Muşatescu, 1978; Богданов, 2001). Our model tackles a reverse mosca cieca
game – all the players (pedestrians) cluster around, as if they were blindfolded, trying
to catch the (invisible) exit. Note that the game is actually international жмурки
(Russian), baba-oarba (Romanian), Blindekuh (German) ...

7The picture in Figure 7 is taken from
http://commons.wikimedia.org/wiki/File:Jongensspelen_14.jpg.
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Figure 7. The blind man’s buff game (the mosca cieca (ital.) game).

the number of people at a site reaches a threshold, then such site becomes
not attracting for eventually new incomers.

Our lattice model provides a not so nice answer: In many situations, it
seems much better not to cooperate8. More precisely, in Section 3.2, we will
see that simulations indicate to

– cooperate with one person at time;
– cooperate with more than one person only if the number of evacuees

in the corridor is not too large.
Based on this idea we have announced in Cirillo and Muntean (2012)

and then presented in details in Cirillo and Muntean (2013) a model9 for
the motion of pedestrians governed by the following four mechanisms:
(A1) in the core of the corridor, people move freely without constraints;
(A2) the boundary is reflecting;
(A3) people are attracted by bunches of other people up to a threshold

(buddying mechanism);

8"Cooperation" means in this setting "buddying" - the basic gregarious tendency. Our
current modeling approach does not yet allow the particles to influence each other. We
refer the reader to Eggels (2013) for a setting where particles do exchange mass (as a
measure of "confidence") not only momentum.

9The model proposed in the paper is slightly more complicated, for instance there it is
taken into account the possibility to tune the interaction between the pedestrians and
the wall of the corridor
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(A4) people are blind in the sense that there is no drift (desired velocity)
leading them towards the exit.

Let Λ ⊂ Z
2 be a finite square with odd side length L. We refer to this as

the corridor. Each element x of Λ will be called a cell or site. The external
boundary of the corridor is made of four segments made of L cells each; the
point at the center of one of these four sides is called exit. Let N be positive
integer denoting the (total) number of individuals inside the corridor Λ. We
consider the state space X := {0, . . . , N}Λ. For any state n ∈ X, we let
n(x) be the number of individuals at cell x.

We define a Markov chain nt on the finite state space X with discrete
time t = 0, 1, . . . . The parameter of the process is the integer (possibly equal
to zero) T ≥ 0 called threshold. We finally define the function S : N → N

such that
S(k) :=

{
1 if k > T
k + 1 if k ≤ T

for any k ∈ N. Note that for k = 0 we have S(0) = 1.
The transition matrix of the Markov chain is specified by assigning the

stochastic rule according to which the individuals move on the lattice. At
each time t, the N individuals move simultaneously within the corridor
according to the rules that will be specified in the following. These rules
depend on the location of the pedestrian, we have to distinguish among
four cases: bulk, corner, neighboring the wall, and neighboring the exit (see
Figure 8. In the bulk: the probability for a pedestrian at the site x to jump
to one of the four neighboring sites y1, . . . , y4 is

S(n(y))

S(n(x)) + S(n(y1)) + · · ·+ S(n(y4))
.

In a corner: the probability for a pedestrian at the site x to jump to one of
the two neighboring sites y1 and y2 is

S(n(y))

S(n(x)) + S(n(y1)) + S(n(y2))
.

In a site close to the boundary: the probability for a pedestrian at the site
x to jump to one of the three neighboring sites y1, y2, and y3 is

S(n(y))

S(n(x)) + S(n(y1)) + S(n(y2)) + S(n(y3))
.

In front of the exit: the probability for a pedestrian at the site x to jump
to one of the three neighboring sites y1, y2, and y3 in the bulk is

S(n(y))

S(n(x)) + S(n(y1)) + S(n(y2)) + S(n(y3)) + (T + 1)
,
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whereas the probability to exit is

T + 1

S(n(x)) + S(n(y1)) + S(n(y2)) + S(n(y3)) + (T + 1)
.

In all the cases described above, the probability for the individual to stay
at the same site x (not to move) is S(n(x)) divided by the corresponding
normalization denominator.

� in the bulk
�

in a corner

�

close to the boundary � in front of the exit

Figure 8. Schematic description of the different situation considered in the
definition of the transition matrix.

The dynamics is then defined as follows: at each time t, the position of all
the individuals on each cell is updated according to the probabilities defined
above. If one of the individuals jumps on the exit cell a new individual is
put on a cell of Λ chosen randomly with the uniform probability 1/L2.

3.2 Playing games on lattices

The possible choices for the parameter T correspond to two different
physical situations. For T = 0 the function S(k) is equal to one whatever
the occupation numbers. This means that each individual has the same
probability to jump to one of its nearest neighbors or to stay on his site.
This is the independent symmetric random walk case with not zero resting
probability. The second physical case is T > 0. For instance, T = 1 means
mild buddying, while T = 100 would express an extreme buddying. No
simple exclusion is included in this model: on each site one can cluster as
many particles (pedestrians) as one wants. The basic role of the threshold
is the following: The weight associated to the jump towards the site x
increases from 1 to 1 + T proportionally to the occupation number n(x)
until n(x) = T , after that level it drops back to 1. Note that this rule is
given on weights and not to probabilities. Therefore, if one has T particles
at y and T at each of its nearest neighbors, then at the very end one will
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Figure 9. Averaged outgoing flux vs. number of pedestrians. The symbols
◦, ×, ∗, �, and + refer respectively to the cases T = 0, 1, 5, 30, 100. The
straight line has slope 8× 10−6 and has been obtained by fitting the Monte
Carlo data corresponding to the case T = 0.

have that the probability to stay or to jump to any of the nearest neighbors
is the same. Differences in probability are seen only if one of the five (sitting
in the core) sites involved in the jump (or some of them) has an occupation
number large (but smaller than the threshold).

In Cirillo and Muntean (2013), we have studied numerically this model
for T = 1, 2, 5, 30, and 100. The Monte Carlo simulations have been all
performed for L = 101. For each value of the threshold we have studied the
cases N = 100, 600, 1000, 6000, 10000. For the choices T = 30 and T = 100
we have also analyzed the cases N = 2000, 2200, 2400, 2600, 2800, 3000, 3300
and N = 1300, 1600, 2000, 3000, respectively.

The main quantity of interest that one has to compute is the average
outgoing flux that is to say the ratio between the number of individuals
which exited the corridor in the time interval [0, tf] and tf. This quantity
fluctuates in time, but for times large enough it approaches a constant value.
In order to observe relative fluctuations smaller than 10−2 we had to use
tf = 5 × 106. To capture the extreme buddying case T = 100, we used
tf = 1.5× 107.

Figure 9 depicts our results, where the averaged outgoing flux is given
as a function of the number of individuals. At T = 0, that is when no
buddying between the individuals is put into the model, the outgoing flux
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results proportional to the number of pedestrians in the corridor; indeed
the data represented by the symbol ◦ in Figure 9 have been perfectly fitted
by a straight line.

The appearance of the straight line was expected in the case T = 0 since
in this case the dynamics reduces to that of a simple symmetric random walk
with reflecting boundary conditions; see also the straight line in Figure 1
(where we suspect that, microscopically, something very similar microscop-
ically happens). This effect was studied rigorously in the one–dimensional
case and via Monte Carlo simulations in dimension two in Andreucci et al.
(2011). The order of magnitude of the slope can be guessed with a simple
argument Andreucci et al. (2012): the typical time needed by the walker,
started at random in the lattice, to reach the site facing the exit is of order
of (1

6
L
)2

× 4L =
1

9
L3.

The first term is the square of the average distance of a point inside a square
of side length L from the boundary of the square itself and the second one
is the number of times the walker has to visit the internal boundary before
facing the exit. Hence

outgoing flux =
1

tf
N

tf
L3/9

=
9

L3
N = 8.73× 10−6 N.

When a weak buddying effect is introduced in the model, that is in the
case T = 1, we find that if the number of individuals is small enough,
say N ≤ 6000, the behavior is similar to the one measured in the absence
of buddying (T = 0). At N = 10000, on the other hand, we measure a
larger flux; meaning that in the crowded regime small buddying favors the
evacuation of the corridor [i.e. it favors the finding of the door].

The picture changes completely when buddying is increased. To this end,
see the cases T = 5, 30, 100. The outgoing flux is slightly favored when the
number of individuals is low and strongly depressed when it this becomes
high. The value of N at which this behavior changes strongly depends on
the threshold parameter T .

The question remains:

Why does the disaster occur at large threshold and large density?

It is not straightforward to understand how the model behaves in this
regime. Inspired by theory behind particles percolation in porous media, one
possible natural explanation would be that individuals cluster in bunches
and that the resulting dynamics is characterized by the motion of these huge
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Figure 10. Histogram of the size of the bunch of people occupying the
center of the lattice for N = 10000, T = 0 (left), and T = 100 (right).

groups. At the moment we do not know if this explanation is the right one.
In order to support it at least partially, we have computed the histogram
of the size of the bunch at the center of the corridor; see Figure 3.2. Here
we compare the cases T = 0 and T = 100 for N = 10000 individuals. The
histogram has been constructed by running a 106 long simulation. The pic-
ture does suggest that the bunch formation is negligible in the former case
while in the latter it is a possible mechanism.

Now, we can summarize our conclusions based on this microscopic model.
Through a novel lattice model we have examined the effect of buddying
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mechanisms on the efficiency of evacuation in a smoky corridor (no–visibility
area). With respect to the outgoing flux measured in absence of group
formation, our model predicts that

– the existence of many small groups (threshold T equal to one) fa-
vors the exit efficiency (compare points and straight line in figure 9:
straight line is essentially the not–buddying case);

– strong gregariousness favors the exit efficiency only if the number of
evacuees is small enough;

– the larger the threshold, the more dramatic is this effect.
In Heliavaara et al. (2012), the authors present an experiment whose

purpose was to study evacuees exit selection under different behavioral ob-
jectives. The evacuation (egress) time of the whole crowd turned out to be
shorter when the evacuees behave egoistically instead of behaving cooper-
atively. This is rather intriguing and counter intuitive fact, and it is very
much in the spirit of the effect of the threshold T we observed above.

Note that for low densities the buddying mechanism increases the out-
going flux, whereas at large densities the scenario is dramatic: isolated
individuals may turn to have a bigger escape chance than a large group
around a leader [behavior recommended by standard manuals on evacua-
tion strategies, see e.g. NIB (2009), p. 122.]. This suggests that evacuation
strategies should not rely too much only on the presence of a leader; see
Katsikopoulos and King (2010) for a related scenario.

4 Open issues

This research opens a series of fundamental questions. Some of them con-
nect to the psychology of pedestrian groups that are essentially driven by
features, behaviors, and not necessarily by desired velocities encoding the
information on the location and accessibility of the exits. Some other ques-
tions are more general and refer to effect of the threshold on the general
behavior of solutions to both cellular-like automata (lattice systems) as well
as on Becker-Döring-like systems of differential equations (continuum sys-
tems).

We conclude the paper by enumerating a few detailed questions as well
as less crystalized but promising links to other fields of science:

(i) Is there a direct link between the models (or variants on the same
theme) presented in Section 2 and in Section 3? Can one derive in
the many-particle limit (i.e. N → ∞)) Becker-Döring-like equations
having as departure point a particle system with threshold dynamics
governing the interactions? We expect that a few hints can be taken
over from Großkinsky et al. (2005) at least in what the moderately
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stochastically interacting particle limit case is concerned. Note that
some ideas on how one could possibly treat simple interacting-particle
systems with threshold are also anticipated in Bodineau et al. (2010),
e.g., in the context of modeling batteries. For the passage from the
Becker-Döring-like system to the corresponding continuity equation,
ideas from Niethammer (2004) may turn to be useful.

(ii) We do not know yet how pedestrians should behave if they don’t
posses any information on the location of the exit. Difficult ques-
tions are: What is the right type of behavior in the dark? or How
do people behave close to walls? To choose what is the best strat-
egy for moving [e.g. cooperation (grouping, buddying, etc.) versus
selfishness (walking away from groups)] one may also wish to explore
basic aspects of the dynamics of non-momentum conserving inelastic
collisions. Billiard dynamics, or biased billiards like those modeling
the prisoner’s dilemma, or broader contexts involving stochastic game
theory (see Szilagyi (2003)), perhaps involving non-standard (strongly
non-Gaussian) scenarios, where energy can be exchanged between par-
ticles in a non-standard way need to be studied Eggels (2013). Recall
that the Newtonian principle of action and reaction is not necessarily
true anymore in this framework; see Haret (1910).

(iii) A quite similar pile-up effect to the one seen in Figure 4 appears
as a result of the motion of edge dislocations on slip planes in steel
plasticity. The dislocations are repulsively interacting defects natu-
rally arising in the crystalline structure of materials (here dual phase
steels). Their motion is typically accelerated by the action of a macro-
scopic stress. As result of this, the dislocations are pushed towards a
piling-up in the boundary later present at the interface between the
strong and weak material phase; see Geers et al. (2013); van Meurs
et al. (2013) for mathematical evidence on the formation of the pile-up
starting off from a suitably interacting particle system. Is there a hid-
den threshold mechanism responsible for the formation of the pile-up
of dislocations? We suspect that the high contrast between the stiff-
nesses of the two steel phases is the responsible threshold. We plan to
use a rigorous upscaling/homogenization procedure to shed more light
on connecting density thresholds (high-contrast) with pilling-ups.

(iv) To which extent cooperation is profitable? is a basic question studied
recently for instance in Curşeu et al. (2013).psychologists and socio-
econo- physicists. neglecting the effect of population size, thresholds
and boundary conditions, The authors of Curşeu et al. (2013) are
pointing out the superiority of collaborative interaction rules as com-
pared to follow-the-leader type of interactions, making clear connec-
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tions between concepts like group rationality and deliberative democ-
racy. From yet a different perspective, this subject is intimately con-
nected to the dynamics of opinions (cf. e.g. the work by S. Galam;
to get a hint on this see Galam (2011); Martins and Galam (2012)
and references cited therein) as indicated also in Moshman (March
13, 2013) (in the spirit that deliberative democracy outreasons en-
lightened dictatorship). One could stretch more this idea towards
eventual links to percolation theory applied this time not to a porous
media setting, but rather to dynamically evolving networks (societies).
We refer the reader to van Santen et al. (2010), for some preliminary
thoughts around the idea of percolation thresholds occurring in struc-
tured social systems.

(v) Both the lattice system and the population balances approach à la
Becker-Döring share many similarities. However, there are a few es-
sential differences between the two approaches. An important one is
the following: For small N , the presence of the threshold T seems
to be beneficial for the particles leaving the lattice system; however
this effect is lost completely in the Becker-Döring approach (compare
Figure 5). This seems to be due to the choice of boundary conditions
in the continuum system. On the other hand, we conjecture that the
continuum limit of the lattice system is a sort of non-linear diffusion
equation with inherited threshold, while we see that the Becker-Döring
system is not emphasizing the threshold effects when changing the size
(or nonlinearity) of the effective diffusion coefficient (see e.g. Figure
3). The challenging question is here: Derive (and then prove rigor-
ously) the mean-field limit for the lattice system. Alternatively, one
can reformulate the lattice model in terms of myopic random walkers
in an exclusion process in the spirit of Landman and Fernando (2011)
and then prove rigorously the validity of the corresponding mean-field
model (a porous media-like equation).

(vi) Based on our working experience with continuum models with dis-
tributed microstructures, we expect that it is possible to couple the
two models for groups dynamic within a single multiscale framework.
The challenge here is to establish the right micro-macro transmission
condition (in this case, a discrete-to-continuum coupling). We believe
that steps in this direction are possible, inspired for instance by the
way the human language is treated in Mitchener (2010) as a hybrid
system.
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(Eindhoven), Petre Curşeu (Tilburg) as well as Errico Presutti (Rome) for
fruitful discussions on this and closely related topics. A.M. thanks the
NWO’s Complexity program (project "Correlating fluctuations across the
scales"), O.K. acknowledges financial support from the EU ITN FIRST
project.

A Becker-Döring system in the context of a two-scale
modeling approach

A.1 Background

This section contains a brief derivation of a structured-population model,
which is a special case of a multi-feature continuity equation cf. Böhm
(2012). It provides a general framework for some of the equations we
are dealing with. For a related derivation using densities, see Perthame
(2007), e.g. At a more general scale the following considerations yield some
sort of a transport equation or continuity equation, respectively, with two
features being involved in the transport (also: cf. Smoluchowski (1917);
Diekmann et al. (1998) et al.). In the present situation, the "location in the
corridor" and the "group size" constitute the two "features". The first is a
continuous, the second a discrete variable. Our aim is to derive a population-
balance equation, (21), able to describe the evolution of pedestrian groups
in obscured regions.

Fix N ∈ N, let Ω ⊂ R
2 be the dark corridor (open, bounded with Lips-

chitz boundary), S - the observation time interval and Kd := {0, 1, 2, 3, .., N}
- the collection of all admissible group sizes. We say that a Y belongs to
K ′ ⊆ K, if it belongs is part of some group with a size K. Furthermore,
AΩ := B2(Ω), AS := B1(S) are the corresponding Borel σ-algebras with
the corresponding Lebesgue-Borel measures λx := λ2 and λt := λ1, respec-
tively; AKd

:= p(Kd) is equipped with the counting measure λ′
c(K) := |K ′|.

We call λtx := λt⊗λx the space-time measure and set λtxc := λt⊗λx⊗λcj ,
AΩKd

:= AΩ ⊗ AKd
, ASΩKd

:= AS ⊗ AΩ ⊗ AKd
.

A.2 Derivation of the model

Fix t ∈ S, let Ω′ ∈ AΩ, K
′ ∈ AKd

, S′ ∈ AS , introduce

μY (t,Ω
′ ×K ′) := number of Y ′s present in Ω′

at time t and belonging to the group K ′ (13)
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and two production quantities

μPY±(S′ × Ω′ ×K ′) := number of Y ′s which are added
to (subtracted from) Ω′ ×K ′ during S′ and

μPY = μPY+ − μPY−.
(14)

Note that these numbers might be non-integer.
Given the nature of the problems we are dealing with, we postulate - as

a part of the modeling-

(P1) For all K ′ ∈ AKd
, Ω′ ∈ AΩ and t ∈ S : μY (t, ·×K ′) and μY (t,Ω

′×·)
are measures on their respective σ-algebras AΩ and AKd

, respectively.
(P2) μPY±(S′ × Ω′ × ·), μPY±(S′ × · ×K ′) and μPY±(· × Ω′ ×K ′) are

measures on their respective σ-algebras.

Now, we are in the position to formulate a

Balance principle:
μY (t+ h,Ω′ ×K ′)− μY (t,Ω

′ ×K ′) = μPY (S
′ × Ω′ ×K ′)

for all t, t+ h ∈ S, Ω′ ×K ′ ∈ AΩ × AKd
, S′ := (t, t+ h].

(15)

Addition to Ω′ × K ′, modeled by μPY+, can happen by addition inside
of Ω′ × K ′ as well as by fluxes into Ω′ × K ′. A similar remark applies to
subtraction and μPY−. This gives rise to assume μPY+ to be the sum of an
interior production part, μint

PY+, and a flux part, μflux
PY+. We proceed similarly

with μPY− and have, with the

net productions μint
PY := μint

PY+ − μint
PY− and μflux

PY := μflux
PY+ − μflux

PY− :

μPY = μint
PY + μflux

PY =
(
μint
PY+ − μint

PY−
)
+

(
μflux
PY+ − μflux

PY−
)
. (16)

We extend μY (t, · × ·) and μPY±(· × · × ·) by the usual procedure to
measures μY = μY (t, ·) and μPY± = μPY±(·) on the product algebras
AΩ ⊗ AKd

and AS ⊗ AΩ ⊗ AKd
, respectively.

Note that the quantities in (P1) and (P2) and the extensions are finite.
The following postulate prevents accumulation on sets of measure zero.

It reads as

(P3) μY (t, ·)! λxc (absolutely continuous).

Therefore, for all t ∈ S there are integrable Radon-Nikodym densities
u(t, ·) = dμY (t,·)

dλxc

10, i.e.

μY (t, Q
′) =

∫
Q′

u(t, (x, i))dλxc for all Q′ ∈ AΩK . (17)

10Note with respect to Section 2: ui(t, x) from Section 2 corresponds to u(t, x, i) here.
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The absolute-continuity assumption

(P4) μint
PY ! λtxc

excludes the presence of Y ′s on sets of λtxc1 -measure zero. Moreover it
assures the existence of the Radon-Nikodym density

f int
PY :=

dμPY

dλtxc
∈ L1

loc(S × Ω×Kd,ASΩKd
, λtxc). (18)

In order to get a reasonable idea for a representation of the flux measure
we consider the special case Q′ = Ω′×K ′ with, say, K ′ = {a, a+ 1, ..., b} ∈
p(Kd). The "surface"

F := Ω′ × {a} ∪ Ω′ × {b} ∪ ∂Ω′ ×K ′

is the location of any interaction with the outside of Q′. There are two
locations on F to enter or leave Q′ from the outside - one via F1 := Ω′ ×
{a} ∪ Ω′ × {b} , the other one through F2 := ∂Ω′ ×K ′ (see Figure 11).

x1

x2

k

Ω′ × {a}

Ω′ × {b− 1}
Ω′ × {b}

a

a+ 1

b− 2

b− 1

b

n̄k(x, a) := (0, 0,−1)

n̄k(x, b) := (0, 0, 1)

Figure 11. Special interactions regions on the surface F.
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The unit-outward normal field n = n(x, κ) on F can be split into two or-
thogonal components, n = nx+nκ, nx = (nx, 0), nκ = (0, nκ), respectively.
It is nκ(x, a) = −1, nκ(x, b) = +1 and nx = nx(x, κ) is the a.e. existing
outward normal on ∂Ω. Borrowing from the theory of Cauchy interactions,
cf. Schuricht (2007), e.g..

(P5) we assume for all t ∈ S the existence of two vector fields

jx(t, ·) : Ω×Kd → R
2

jκ : Ω×Kd → R

with
μflux
PY := μflux

PY x + μflux
PY κ,

where

μflux
PY x(S

′ × Ω′ ×K ′) :=
∫
S′

∫
F2
−jx(τ, x, i) · nx(x, i)dσxdλcdτ

and
μflux
PY κ(S

′ × Ω′ ×K ′) :=
∫
S′

∫
Ω′ −jκ(τ, x, b)nκ(x, b)

−jκ(τ, x, a)nκ(x, a)dxdτ.
(19)

In (19), σx - is the 1D-surface (= curve length-) measure. μflux
PY x(S

′ ×
Ω′ × K ′) calculates the net gain/loss of the Y ′s in Ω′ belonging to one of
the size groups from K ′ due to physical motion from/to the outside of Ω′

into/out of Ω′.
Furthermore, μflux

PY κ(S
′ × Ω′ × {i}) calculates the net gain/loss of the

Y ′s in Ω′ belonging to the size group labelled by i due to reasons within
K. Since, in the given situation of Section 2, there is no interaction with
groups of size κ > N or κ < 0 (these group sizes are not admissible!), we
have to require

jκ(t, x, 0) = jκ(t, x,N) = 0 for all t ∈ S, x ∈ Ω. (20)

Introducing the discrete partial derivative by

∂d
i jκ(t, x, i) := jκ(t, x, i+ 1)− jκ(t, x, i), i ∈ K

and assuming u, f int
PY , divx jx and ∂d

κjκ to be sufficiently regular, we obtain

μflux
PY (S′ ×Q′) =

∫
S′

∫
Q′
− divx(jx(τ, x, i)dλcdxdτ

+

∫
S′

∫
Q′
−∂d

i jκ(t, x, i)dτdxdλc.
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Combining (15) - (19), Fubini’s theorem, and division by h, imply∫
Q′

1
h (u(t+ h, x, i)− u(t, x, i)) dxdκ

=
∫
Q′

1
h

∫ t+h

t

(
f int
PY (τ, x, i)−

(
divx jx(τ, x, i) + ∂d

i jκ(t, x, i)
))

dτdxdλc.

Under appropriate smoothness conditions on u, f int
PY , jx and jκ we ob-

tain in the limit h → 0 (the classical continuity equation with a slightly
different interpretation of the entries)

∂u

∂t
(t, x, i) +

(
divx jx + ∂d

i jκ(t, x, i)
)
= f int

PY (t, x, i). (21)

A.3 Connection with the model in Section 2:

In order to obtain a workable model, one has to specify the flux vectors
jx and jκ as well as f int

PY . In Section 2 this has been done in (1) to (6) by
setting

i = 1, ..., N (there) = i = 1, ..., N (here), ui(t, x) (there) = u(t, x, i)
(here), −Di∇xui(t, x) (there) = jx(t, x, i) (here),

f int
PY (t, x, i)(here) =

⎧⎨
⎩

∑N
i=1 αiui −

∑N
i=1 +βiuiu1 if i = 1,

βi−1ui−1u1 − βiuiu1 if i ∈ {2, ..., N − 1},
βNuN−1u1 if i = N,

respectively.
The discrete derivative jκ(t, x, i) (here) corresponds to

jκ(t, x, i) = −αiui(t, x), i = 1, 2, ..., N − 1,

jκ(t, x, 0) = jκ(t, x,N) = 0.

A.4 Derivation of the model in Section 2:

Specifying jx(t, x, i) as some sort of a diffusion flux in the manner above
means: Individual groups of size i recognize whether a group of the same
size is in their immediate neighborhood and they tend to avoid moving into
the direction of such groups. Employing a Fickian law seems to be the
simplest way to model this. f int

PY models interactions (= merging) between
groups of size i ∈ K and "groups" of size i = 1: If a single (i.e. a group of
size one) hits a group of size i < N , then it might happen, that this single
merges with the group. This turns the group into a group of size i+ 1 and
leads to a "gain" for groups of size i + 1 (modeled by +βiuiu1) and a loss
for groups of size i (modeled by −βiuiu1). In any such joining situation the
group with i = 1 looses members (modeled by −

∑N
i=2βiuiu1). Note, that
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this model allows only for direct interaction between groups of size i with
groups of size 1! The α-terms model some "degradation" effect: It might
happen, that an individual leaves a group of size i ≥ 2. This leads to a
loss for the groups of size i (modeled by −αiui), a gain for the groups of
size i− 1 and a gain for the groups with i = 1 (modeled by

∑N
i=2αiui). αi,

βi ≥ 0 and Di > 0 are empirical and assumed to be constant.
Note: In the abstract approach the degradation terms express a flux

rather than a volume source or sink. In the same way as aging can be seen
as a flux ("people change their age group by aging with (speed 1)" ) Y ’s
change their size group by "degradation" of their group. Nevertheless: For
fixed i, the expressions αiui and αi−1ui−1 still remain "volume sources" and
"sinks", respectively. It’s just two different ways to look at the same thing.

Bibliography

Basisopleiding Bedrijfshulpverlener. NIBHV – Nederlands Instituut voor
Bedrijfshulpverlening, Rotterdam, 2009.

D. Andreucci, D. Bellaveglia, E. N. M. Cirillo, and S. Marconi. Monte Carlo
study of gating and selection in potassium channels. Phys. Rev. E, 84:
021920, 2011.

D. Andreucci, D. Bellaveglia, E. N. M. Cirillo, and S. Marconi. Effect of
intracellular diffusion on current–voltage curves in potassium channels.
arXiv: 1206.3148, 2012.

T. Bodineau, B. Derrida, and J. L. Lebowitz. A diffusive system driven by
a battery or by a smoothly varying field. Journal of Statistical Physics,
140(4):648–675, 2010.
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A. Portuondo y Barceló. Apuntes sobre Mecánica Social. Establecimiento
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Abstract We present a model describing spatial competition be-
tween two biological populations. Individuals belonging to the two
populations diffuse in space, reproduce, and die as effect of com-
petitions; all these processes are implemented stochastically. We
focus on how the macroscopic equations for the densities of the two
species can be derived within the formalism of the chemical master
equations. We also compare the case in which the total density of
individuals is kept fixed by constraint with a case in which it can
fluctuate.

1 Introduction

Competition between biological populations can be mathematically described
at different levels of complexity. For example, when spatial degrees of free-
dom and number fluctuations are neglected, competition models are rela-
tively easy to analyze with tools of dynamical system theory. A paradig-
matic example of this case are Lotka-Volterra models, see e.g. (Murray,
2007).

However, in many biological situations, the spatial distribution of the
populations cannot be neglected, so that one is forced to consider spatially

A. Muntean, F. Toschi (Eds.), Collective Dynamics from Bacteria to Crowds, CISM International  
Centre for Mechanical Sciences, DOI 10.1007/978-3-7091-1785-9_4, © CISM, Udine 2014 



106 S. Pigolotti et al.

explicit models. Moreover, stochasticity can be also important. This is
especially the case in neutral or near-neutral conditions, where the param-
eters characterizing the species are the same (or nearly), and the outcome
of competition is determined by chance rather than by fitness differences.

In this chapter, we analyze two spatial competition models. The first is
the stepping stone model, originally introduced by Kimura (Kimura, 1953;
Kimura and Weiss, 1964). A key assumption of the stepping stone model
is that the sum of the number of individuals belonging to the two species
is kept constant at each point in space; this assumption is relaxed in the
second model (Pigolotti et al., 2012, 2013). For both models, we show how
one can generally derive the macroscopic dynamic equations describing the
concentrations of the two species using the formalism of the chemical master
equation (see e.g. Gardiner (2004), chapter 8), which can be thought of
as a generalization of the Kramers-Moyal expansion for spatially extended
systems. After presenting this derivation and discussing its limits of validity
for the two models, we show some analytical and numerical results in the
case in which the two species are neutral, i.e. characterized by the same
rates.

2 The Stepping Stone Model

The stepping stone model (Kimura, 1953; Kimura and Weiss, 1964) is a
paradigmatic model for spatial population genetics. Let us consider a sys-
tem made up of different islands (or “demes”), each hosting two populations,
A and B. The total population of each island is a fixed parameter Nl. We
denote with n the population of species A, so that the population of species
B is Nl − n. The two populations undergo a Moran process: at a given
rate, an individual is chosen at random, killed and replaced with a copy of
one of the other individuals on the island, also chosen at random. To model
the possibility of a selective advantage, individuals of space A are copied
with a rate μ(1 + s), while individuals of species B are copied at a rate μ.
The parameter μ can be interpreted as an inverse generation time, while s
represents the relative selective advantage of species A. The rates at which
population A increases or decreases are then given by:

W+(ni) = (1 + s)μ
Nl − ni

Nl

ni

Nl

W−(ni) = μ
ni

Nl

Nl − ni

Nl
. (1)

For simplicity, we first discuss the well-mixed version of the model, i.e.
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the dynamics on a single island, which reduces to the well-known Moran
model. In the second part of this section, we will describe the one dimen-
sional case of a linear array made up of many islands, where the rates above
will be complemented by immigration/emigration rates between neighbor-
ing islands.

The definition of the rates in (1) directly leads to the following master
equation

d

dt
P (ni, t) = W+(ni−1)P (ni−1, t) +

+W+(ni+1)P (ni+1, t)− [W+(ni) +W−(ni)]P (ni, t). (2)

The next step consists in approximating the birth-death process defined
above into a Langevin equation by means of a Kramers-Moyal expansion.
Formally, the master equation (2) can be written in an integral form as

d

dt
P (n, t) =

∫
d(Δn)[ω(Δn, n−Δn)P (n−Δn)− ω(Δn, n)P (n)] (3)

where the jump rates have been incorporated into a jump distribution func-
tion ω:

ω(δn, n) = δ(Δn− 1)W+(n) + δ(Δn+ 1)W−(n). (4)

The trick is now to perform a Taylor expansion of Eq. (3) around Δn = 0,
leading to

d

dt
P (n, t) =

∞∑
j=1

(−1)j
j!

dj

dnj
[αj(n)P (n, t)] (5)

where the αj ’s are the moments of the jump distribution,

αj(n) =

∫
d(Δn)(Δn)jω(Δn, n). (6)

Assuming Nl " 1, we can introduce the new variable f = n/Nl. The
quantity f can be interpreted as the fraction of one species: f = 1 means
an island exclusively populated with one allele and f = 0 means exclusive
occupation by the alternative genotype. The jumps in terms of the new
variable δf = ±1/Nl are now small, so that we can truncate the above
expansion up to the second derivative. This yields a Fokker-Planck equation:

∂tP (f, t) = −∂f [μsf(1− f)P (f, t)] + ∂2
f

[
μf(1− f)

Nl
P (f, t)

]
(7)
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where we neglected terms of order s/N by assuming N " 1 and s " 1.
The corresponding Langevin equation is

∂tf(t) = μsf(1− f) +

√
2μf(1− f)

Nl
ξ(t) (8)

where ξ(x, t) is a Gaussian stochastic process, delta-correlated in time,
〈ξ(t)ξ(t′)〉 = δ(t − t′). The nonlinearity multiplying the noise requires an
interpretation in terms of the Ito calculus; this will also be the case for all
generalizations we will consider in the following.

We now move to the one-dimensional case. We consider an infinite linear
array of islands (or “demes”), where two neighboring islands are separated
by a distance a. Each island host a total population Nl of individuals
belonging to the two species A and B. Numbering the islands with an
index i, we denote with ni the population of species A in the island i, so
that the population of species B will be Nl − ni. The local dynamics on
each island is the same as before; the only additional ingredient is that we
allow neighboring island for exchanging individuals. It is convenient to call
the exchange rate from an island to a neighboring one as DN/a2, where D
is an additional free parameter. We can proceed as before by performing a
Kramers-Moyal expansion in each island and introducing the local fractions
fi = ni/Nl. The result is a set of Langevin equations:

∂tfi(x, t) =
D

2a2
(fi−1+fi+1−2fi)+μsfi(1−fi)+

√
2μfi(1− fi)

Nl
ξi(t) (9)

where noise sources corresponding to different islands are uncorrelated. It
is now possible to (formally) take the continuum limit a→ 0, leading to

∂tf(x, t) = D∇2f(x, t) + μsf(1− f) +

√
2μf(1− f)

N
ξ(x, t) (10)

where N = Nl/a: it is convenient to distinguish between Nl (the popu-
lation inside a single discrete deme of the SSM) and N (the corresponding
total density of individuals). Notice that Nl is a non-dimensional quantity,
while N is a density, carrying units of an inverse length. In the above equa-
tion, ξ(x, t) is a Gaussian stochastic process, delta correlated in space and
time, 〈ξ(x, t)ξ(x′, t′)〉 = δ(x− x′)δ(t− t′).

We conclude with a few remarks about the validity of this continuous
limit. Equations (7) and (8) have been derived by means of the Kramers-
Moyal equation, which strictly speaking is not a systematic expansion in
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a small parameters. However, the same equation can be more rigorously
derived in the framework of Van Kampen’s system size expansion, where
the expansion parameter is 1/Nl (see e.g. Risken (1989); Gardiner (2004)
for a discussion of this problem). The continuum limit of Eq. (10) should
be considered as a short notation, as the system size expansion is valid only
when the local population size Nl = Na is large; this assumption clearly
breaks down in the limit of a → 0, see (Law et al., 2003; Doering et al.,
2003; Hernandez-Garcia and Lopez, 2004; Birch and Young, 2006; Pigolotti
et al., 2013) for examples in which this assumption is violated.

3 Model without total density conservation

We consider individuals as diffusing particles in d dimensions. We imple-
ment population dynamics by assuming that individuals of species i re-
produce at rate μi and die with rates λ̃ij proportional to the number of
individuals of species j in a given neighborhood. In a language borrowed
from chemical kinetics, the “reactions” we consider are:

Xi
μi→ 2Xi (reproduction)

Xi +Xj
λ̃ij→ Xi (death by competition) (11)

In particular, competition occurs when individuals are within a small
volume δ (for details on the numerical implementation of the individual-
based dynamics see Perlekar et al. (2011)). We can then discretize the
system in cells of size δ and start the derivation from the master equation
governing the time evolution of the probability the numbers of particles
{nA

j , n
B
j } of type A and B in each cell, labeled by the index j. We first define

the rates WA(±1, nA
j , n

B
j ) and WB(±1, nA

j , n
B
j ) at which the populations of

type A (or B) increase/decrease by one individual in a specific box, given
that the population sizes are nA

j and nB
j . Letting aside the diffusion terms,

the expression for these rates are:

WA(+1, nA
j , n

B
j ) = μAn

A
j

WA(−1, nA
j , n

B
j ) = λ̃AAn

A
j (n

A
j − 1) + λ̃ABn

A
j n

B
j

WB(+1, nA
j , n

B
j ) = μAn

B
j

WB(−1, nA
j , n

B
j ) = λ̃BAn

A
j n

B
j + λ̃BBn

B
j (n

B
j − 1). (12)

The master equation governing the evolution of the full probability dis-
tribution P ({nA

j , n
B
j }, t) for all possible box occupation numbers {nA

j , n
B
j }
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then reads:

d
dt P ({nA

j , n
B
j }, t) =

=
∑
j

[WA(+1, nA
j − 1, nB

j )P (nA
1 , . . . , n

A
j − 1, . . . , nB

1 , . . . )

− WA(+1, nA
j , n

B
j )P ({nA

j , n
B
j })]

+
∑
j

[WA(−1, nA
j + 1, nB

j )P (nA
1 , . . . , n

A
j + 1, . . . , nB

1 , . . . )

− WA(−1, nA
j , n

B
j )P ({nA

j , n
B
j })]

+
∑
j

[WB(+1, nA
j , n

B
j − 1)P (nA

1 , . . . , n
B
1 , . . . , n

B
j − 1, . . . )

− WB(+1, nA
j , n

B
j )P ({nA

j , n
B
j })]

+
∑
j

[WB(−1, nA
j , n

B
j + 1)P (nA

1 , . . . , n
B
1 , . . . , n

B
j + 1, . . . )

− WB(−1, nA
j , n

B
j )P ({nA

j , n
B
j })]

+ diffusion terms, (13)

where the diffusion terms account for the stochastic exchange of particles
between neighboring boxes. As in the case of the stepping stone model,
these terms reduce to discrete approximations to Laplace operator. Indeed,
we will replace them with Laplacians in the continuous space limit at the
end of the calculation.

In analogy with the previous section, we now to perform a Kramers-
Moyal expansion (Risken, 1989) in each of the boxes. The only difference
is that in this case it is a two-variable system, so we have to expand in the
two independent increments ΔnA and ΔnB . The result is

∂tP{nA
j , n

B
j } =

∑
j

∞∑
k=1

(−1)k
k!

{∂k
nA
j
[αA

k (n
A
j , n

B
j )P ({nA

j , n
B
j })] +

+ ∂k
nB
j
[αB

k (n
A
j , n

B
j )P ({nA

j , n
B
j })]}, (14)

with the moments of the two jump distribution functions defined by

αA,B
k (nA

j , n
B
j ) =

∫
dΔnA,B

j (ΔnA,B
j )kωA,B(ΔnA,B

j , n, jA, nB
j ) (15)

and the function ω is defined from the rates exactly as in the previous
section. Finally, truncating the Kramers-Moyal expansion up to second or-
der in the derivatives leads to a Fokker-Planck equation for P{nA

j , n
B
j }. It



Stochastic Competition between two Populations in Space 111

is convenient to write directly the equivalent but somewhat simpler sys-
tem of Langevin equations corresponding to this Fokker-Planck description,
namely:

dnA
j

dt
= nA

j (μA − λ̃AAn
A
j − λ̃ABn

B
j ) + diffusion + σA,jξ

A
j

dnB
j

dt
= nB

j (μB − λ̃BAn
A
j − λ̃BBn

B
j ) + diffusion + σB,jξ

B
j (16)

where the noise amplitudes are

σ2
A,j = nA

j (μA + λ̃AAn
A
j + λ̃ABn

B
j )

σ2
B,j = nB

j (μB + λ̃BAn
A
j + λ̃BBn

B
j ). (17)

In Eqns. (16), the ξ’s are delta-correlated unit variance Gaussian processes,
< ξkj (t)ξ

m
l (t′) >= δjlδkmδ(t − t′). In principle, the diffusion terms in (13)

would contribute to the noise term. However, one can show that this con-
tribution can be neglected if the size of the cells is sufficiently large (see
Gardiner (2004)). In analogy with the previous section, from Eqs.(16) one
can take (formally) the limit δ → 0. In such a way the number densities of
individuals become continuous functions of the coordinate x, nA(x, t) and
nB(x, t).

We also define rescaled, macroscopic rates of binary reactions, λij =

Nδλ̃ij , and the macroscopic concentrations of individuals

cA,B(x, t) = nA,B(x, t)/N.

It is convenient to perform this rescaling in a different way for the well-
mixed case (in which the population is not structured in space) and for the
one dimensional case. In the former case we take δ = 1. In analogy with the
stepping stone model, calling Nl = δN the local population size, we simply
have N = Nl. In the spatial case, we fix δ = 1/N so that λij = λ̃ij , ∀i, j.
This procedure leads to the following coupled spatial Langevin equations

∂

∂t
cA = D∇2cA + cA(μA − λAAcA − λABcB) + σAξ

∂

∂t
cB = D∇2cB + cB(μB − λBAcA − λBBcB) + σBξ

′ (18)

where

σ2
A =

cA(μA + λAAcA + λABcB)

N

σ2
B =

cB(μB + λBAcA + λBBcB)

N
. (19)
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4 Neutral theory

In this section, we present results in the simple case

μA = μB = λAA = λAB = λBA = λBB . (20)

This case represent the neutral situation in which the two variants are neu-
tral, i.e. phenotypically equivalent.

As before, we start our discussion with the well-mixed case. It is useful
to describe the dynamics of the neutral version of the model in the cA vs. cB
plane, represented in Fig. (1, left). Starting from a dilute initial condition,
the system evolves rapidly towards to the intrinsic overall carrying capacity
given by cA+cB = 1. The dynamics is then localized with fluctuations near
this line, until extinction of one of the two species. This contrasts with the
Moran process, in which the dynamics is rigidly confined to the cA+cB = 1
line. To assess the effect of these fluctuations, note from Eq. (18) that in the
neutral case the total concentration cT = cA + cB obeys a closed equation:
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Figure 1. Neutral dynamics in the well-mixed case. (a) Example of a
trajectory in the (cA, cB) plane with N = 500. The initial condition is
nA = nB = 20, i.e. a small fraction of a typical long time carrying capacity.
(b) Decay of the average heterozygosity 〈H(t)〉 for different values of N .
Curves are obtained from simulations of the particle model; each curve is
an average over 104 realizations and the error bars are smaller than the size
of the lines. (inset) Collapse of the same curves plotted as a function of
t/N . From Pigolotti et al. (2013).

d

dt
cT = μcT (1− cT ) +

√
μcT (1 + cT )

N
ξc, (21)



Stochastic Competition between two Populations in Space 113

decoupled from the fraction of species A, f = cA/(cA+cB), where the noise
term ξc satisfies 〈ξc(t)ξc(t′)〉 = δ(t − t′). When N is large, the stationary
solution, beside the solution P (c) = δ(c) corresponding to global extinction,
is approximately a Gaussian with average 〈cT 〉 = 1 and variance 〈c2T 〉 −
〈cT 〉2 = N−1, which is small when N is large. We remind that, as in the
particle model for simplicity death is implemented only via binary reactions
(see Eq. 12), the state of global extinction is not accessible in the particle
model, while it constitutes an absorbing state for Eq. 21. Such discrepancy
with the macroscopic equation could be easily removed by allowing for death
even in absence of competition, i.e. the reaction Xi → ∅.

We now describe the dynamics of the relative fraction f of individuals
carrying allele A, f(t) = cA/(cA + cB). Let us recall Ito’s formula for a two
variable system: let us write the Langevin equations for the two densities
cA and cB as

d

dt
cA(x, t) = αA(cA, cB) + σA(cA, cB)ξ(x, t)

d

dt
cB(x, t) = αB(cA, cB) + σB(cA, cB)ξ

′(x, t) (22)

where the diffusive Laplacian terms are included into αA, αB . The equation
for f(t) then reads

d

dt
f = αA∂Af + αB∂Bf +

√
σ2
A(∂Af)

2 + σ2
B(∂Bf)

2ξ +

+
σ2
A

2
∂AAf +

σ2
B

2
∂BBf, (23)

where we used the abbreviated notation ∂A ≡ ∂cA , ∂AA ≡ ∂2
cA and so on.

Inserting the complete set of equations (18) into (23) leads to a lengthy
expression for the dynamics of f . However, with the simple neutral choice
of the parameters presented above in (20), the equation reduces to

d

dt
f =

√
μf(1− f)

1 + cT
NcT

ξf (24)

where ξf (t) also satisfies 〈ξf (t)ξf (t′)〉 = δ(t − t′), and further we have
〈ξf (t)ξc(t′)〉 = 0. The above equation is the same as the equation for the
stepping stone model, Eq. (8), in the neutral case s = 0, apart from the cou-
pling with the total density cT which evolves dynamically according to (21).
We can now analyze the global heterozygosity, which quantifies the loss of
diversity as time evolves and is defined as the probability H(t) = 2〈f(1−f)〉
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that two randomly chosen individuals in the population carry different al-
leles. As the equation for cT is independent of f in the neutral case studied
here, one can factorize the average over cT and f in the equation for H(t):

d

dt
H(t) = − μ

N

〈
f(1− f)

1 + cT
cT

〉
= − μ

N
〈f(1− f)〉

〈
1 + cT
cT

〉

= −2μ

N
H(t) +O

(
1

N2

)
. (25)

Neglecting the correction of order N−2, we recover for our model with
density fluctuations the closed equation for H(t) for Fisher-Wright and
Moran-type models with a fixed population size derived by Kimura, which
states that the total heterozygosity decays exponentially in well mixed neu-
tral systems (Crow and Kimura, 1970):

〈H(t)〉 = H(0) exp(−2μt/N) (26)

This exponential behavior is confirmed in simulations, as shown in Fig.
(1b).

We now move to the one and two dimensional cases. To study how
fixation occurs in space, we study the behavior of the spatial heterozygosity
H(x, t) defined as the probability of two individuals at distance x and time
t to carry different alleles. In the neutral stepping stone model with a fixed
population size in each deme, H(x, t) obeys a closed equation:

∂tH(x, t) = 2D∇2H − 2μ

N
Hδ(x). (27)

In one dimension, such equation can be solved explicitly:

H(x, t) = H0

⎡
⎣1− 2

N

∫ t

0

dt′
erf

(
t′

4N2D

)
√
8πD(t− t′)

e
− x2

8D(t−t′)+
t′

4N2D

⎤
⎦ (28)

where H0 is the initial heterozygosity, equal to one half if the two variants
are well mixed and equally populated at time t = 0. Eqs. (27) and (28)
can be derived directly from the stochastic Fisher equation (10) with s = 0
(see, e.g., Korolev et al. (2009)).

We define the heterozygosity in the off-lattice particle simulations with
growth and competition from the statistics of interparticle distances. In
particular, at a given time t, we compute all distances between pairs of
individuals. Upon introducing a bin size h, the function H(r, t) is then
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defined as the ratio between the number of pairs carrying different alleles
at a separation between r and r + h, divided by the total number of pairs
of all types in the same range of separation. For simplicity, we always took
the bin size h equal to the interaction distance δ.

In the limit N
√

D/μ" 1, the spatial heterozygosity obtained by simu-
lations of the neutral off-lattice model shows a remarkable agreement with
Eq. (28), as shown in Fig. (2). This correspondence arises because, also
in the spatial case, the relative fraction of allele A, f(x, t) = cA/(cA + cB),
obeys a very similar equations as discussed in the mean field case. By ap-
plying Ito’s formula in the spatial case as before, one can show that the
only difference is an additional effective advection term in the equation for
∂tf , equal to 2D(∇ log cT ) · ∇f . The appearance of such terms was firstly
found in Vlad et al. (2004) in a deterministic version of the model described
here. Since cT obeys a decoupled equation in the neutral case, such terms
do not affect the equation for the heterozygosity. Indeed, numerical simula-
tion shows that the average spatial heterozygosity in the model reproduces
that of the stepping stone model even in the limit of very high diffusivity,
as shown in Fig. 2, panel (b). Panel (c) shows that similar agreements arise
comparing numerical integration of Eq. (27) with our off-lattice simulations
in two dimensions. At variance with the one dimensional case, where the
local heterozygosity H(0, t) decays at long times as t−1/2, in two dimension
the decay is much slower, H(0, t) ∼ 1/ ln(t). Such slow logarithmic decay is
confirmed in simulations in panel (d).

5 Conclusions

In this Chapter we compared two different stochastic models of spatially
extended populations. We have shown that one can formally demonstrate
their equivalence by means of stochastic calculus, at least in the case of neu-
tral species. While the stepping stone model allows for a simpler analysis,
the more general model is appropriate for cases in which the total den-
sity of individuals can vary considerably due to external causes, as a non-
homogeneous distribution of resources or transport by fluid flows (Pigolotti
et al., 2012, 2013).
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Abstract These lectures review some recent decades’ research on
non equilibrium statistical mechanics models of reaction and in-
teraction kinetics. Lectures 1-4 focus on macroscopic kinetics of
microscopically transport-limited interactions, while lectures 5 and
6 are concerned with discreteness and stochastic effects in reaction-
diffusion fronts. The final lecture 7 considers demographic stochas-
ticity in evolutionary population dynamics.

1 Macroscopic kinetics of microscopically
transport-limited interactions

Traditional “mean field” or “mass action” reaction kinetic theories are ex-
tremely useful, but there are limits to their validity. In these lectures we
examine the underlying assumptions that go into those approaches and con-
sider situations where those assumptions are not valid. Several specific ex-
amples are developed to illustrate non-conventional reaction kinetics.

Microscopic interactions

One example of particle interactions is the electron-positron annihilation
which gives as product two photons, e++e− → γ+γ, and another example
comes from chemistry, 2H +O � H2O, where, in addition, we also include
the reverse reaction. In general a two body reaction is a process in which
two interacting particles A and B react to produce something as product:

A+B → Product. (1)

Sometimes the reactant particles are indistinguishable and the elementary
interaction is

A+A→ Product. (2)

A. Muntean, F. Toschi (Eds.), Collective Dynamics from Bacteria to Crowds, CISM International  
Centre for Mechanical Sciences, DOI 10.1007/978-3-7091-1785-9_5, © CISM, Udine 2014 
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While case (2) is a special version of the case (1), the two cases may behave
quite differently dynamically. These two general prototypes collect a large
number of systems in various fields: A and B could be an enzyme and a
substrate respectively or a predator and a prey or else an infectious and
a susceptible individual. The best way to describe the kinetics of these
reactions is to trace back to the details of the interaction. This is possible
only when the nature of the interaction is well-known, otherwise a classic
mean field description is the first standard approach to that kind of systems.

Macroscopic kinetics

Often a macroscopic level of description is adopted for describing the
kinetics of a general reaction A + B → C and A + A → C, where C is the
produced particle and for the moment no inverse reaction is considered, for
example the particle C could be inert. The variables of the system are the
mean field quantities NA(t), NB(t), NC(t), that are the total number of A,
B and C particles in the system at time t. For the reactions of type A+B
the rate of variation of individuals of the A species is equal to that of the
B and they are equal to the opposite variation of the C individuals

dNA(t)

dt
=

dNB(t)

dt
= −dNC(t)

dt
.

For the reaction A+A the following equality holds:

dNA(t)

dt
= −2dNC(t)

dt
.

The central question of reaction kinetics is what is the rate of variations of
NA and NB?

In the mean field approach the Law of Mass Action asserts that the rate
at which an elementary reaction proceeds is proportional to the product
of the populations of the participating particles. In this theory the rate of
reaction of the particles is proportional to the product of the numbers of
reactants. For the A+B reaction the mean field kinetics is

d

dt
NA = −kNANB (3)

introducing a phenomenological “rate constant” k. In the A + A case the
reaction rate is function of NA only:

d

dt
NA = −kN2

A. (4)
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Equations (3) and (4) describe the “reaction-limited” kinetics of the systems
in which, roughly, each individual has opportunity to sample its neighbor-
hood when it has a small probability of reaction per encounter. The rate
of the reaction is then only related to the density of reactants neglecting
any possible dependence on their spatial distribution. For initial conditions
NA(t = 0) = NB(0) = N0 the solution for the ODE (3) is

NA(t) = NB(t) =
N0

1 +N0kt
. (5)

The exact same evolution in time holds for the equation (4) with initial
condition NA(0) = N0. The long-time (t " 1/(kN0)) dependence of the
reactant particle numbers decays as t−1 in both systems, which we will refer
to it as the mean field decay.

Transport-limited interactions

When the spatial distribution of the reactants becomes relevant for the
macroscopic kinetics of the reaction other terms should take into account.
We consider situations where the A and B particles are spatially distributed
and proceed as random walkers. The proper variables for the system are
now the local concentrations a(�x, t) and b(�x, t), and the diffusion process
must be considered. At the macroscopic level the diffusion is often well
described by the Fick’s law where the flow of particles is proportional to the
gradient of the concentration with proportionality constant D (which need
not be the same for the two species, but for simplicity we limit consideration
here to particles with equal diffusion coefficients). The temporal evolution
of the A+B reaction process is governed by the reaction-diffusion equations

∂

∂t
a(�x, t) = D∇2a− k̃ab (6)

∂

∂t
b(�x, t) = D∇2b− k̃ab (7)

where k̃ is the rate of the reaction per unit concentration. The first term
represents the classical diffusion term, while the second term in the equa-
tions refers to the loss of particles due to reactions. For the single-species
A+A process the reaction-diffusion equation is

∂

∂t
a(�x, t) = D∇2a− k̃a2. (8)

This sort of description neglects, by design, fluctuations and correlations
which occur at microscopic level; more on this later.
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In the case in which there is no flux of reactants at the boundary of
the spatial domain and for initial concentrations a(�x, 0) = b(�x, 0) = a0 =
b0 = ρ0 the local concentrations a(�x, t) and b(�x, t) remain uniform in space
because the diffusion term is zero so the concentrations obey

a(t) = b(t) =
ρ0

1 + ρ0k̃t
∼ 1

k̃t
as t→∞. (9)

For t" 1/(ρ0k̃), then, power law t−1 mean field decay is found.
If the condition of the flux is the same, but considering that the initial

concentration is not homogeneous in space, but arbitrary, the total number
of A or B particles in a volume Ω is the integral over the volume of the
concentration a(�x, t) and b(�x, t) respectively:

NA(t) =

∫
Ω

a(�x, t)d�x NB(t) =

∫
Ω

b(�x, t)d�x.

More generally, for the single-species A + A process with initial condition
a(�x, 0) and any sort of spatial variation in the concentration, NA(t) generally
satisfies the inequality

NA(t) ≤
N0

1 + N0k̃t
|Ω|

with N0 =
∫
Ω
a(�x, 0)d�x, displaying a mean-field-like upper bound on the

decaying concentration, ∼ |Ω| /k̃t independent of N0 for large t.

Proof. For the A+A process the concentration solves the Eq.(8). The total
number of particles

NA(t) =

∫
Ω

a(�x, t)d�x

evolves according to

d

dt
NA(t) =

∫
Ω

ȧ(�x, t)d�x =

∫
Ω

(D∇2a(�x, t)− k̃a(�x, t)2)d�x = −k̃
∫
Ω

a(�x, t)2d�x

since the diffusive term can be rewritten, thanks to the divergence theorem,
as the integral over the boundaries of Ω and the term∫

Ω

∇2ad�x =

∫
∂Ω

�∇a · n̂ds = 0

which vanishes when there is no flux of reactants at the boundary. Consid-
ering the general relation (the Cauchy-Schwarz inequality)(∫

Ω

a

)2

≤ |Ω|
∫
Ω

a2,
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we have

−k̃
∫
Ω

a(�x, t)2d�x ≤ − k̃

|Ω|

(∫
Ω

a(�x, t)d�x

)2

= − k̃

|Ω|NA(t)
2.

Hence the total number of particles satisfies

d

dt
NA(t) ≤ −

k̃

|Ω|NA(t)
2,

and for initial conditions NA(0) = N0 we can solve the differential inequality
and deduce

NA(t) ≤
N0

1 +N0
k̃t
|Ω|

.

These considerations suggest that (a) spatial diffusion may play no role in
macroscopic kinetics both in reaction-diffusion systems with homogeneous
initial—and hence subsequent time-dependent—concentrations, and (b) for
the irreversible single-species reaction, the mean field power law concentra-
tion decay ∼ t−1 is an upper limit in the presence of any sort of initial
concentration variations. In the single-species case the implication is that
spatial variations in concentration can only increase the bulk reaction rate.

The question we now address is whether these results are universally
true. That is, we ask what aspects of the theory should change considering
the underlying discrete nature of the interacting particle processes and the
inevitable presence of spatial fluctuations in the system.

Macroscopic segregation for two-species reaction

In order to consider the effect of particle discreteness in the A+B reac-
tion system it is interesting to focus on the motion and behavior of single
individuals. We consider statistically uniform initial distributions, inde-
pendent and identical distributions, of A and B particles in a volume Ω,
however now we note that even a statistically uniform distribution of parti-
cles contains fluctuations. In any sub-volume V ⊂ Ω containing N particles
on average, there are statistical fluctuations on the order of the square root
of
√
N . That is, if the initial condition is a statistically uniform random

distribution of particles with density ρ0, then∫
V

a(�x, 0) = ρ0V ±
√
ρ0V and

∫
V

b(�x, 0) = ρ0V ±
√
ρ0V .
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Let us define ρ(�x, t) and γ(�x, t) as the sum and the difference of the two
species’ local concentrations:

ρ(�x, t) = a(�x, t) + b(�x, t) and γ(�x, t) = a(�x, t)− b(�x, t).

Equations (6) and (7) imply that ρ and γ satisfy

∂tρ = D∇2ρ− 1

2
k̃ρ2 +

1

2
k̃γ2 (10)

∂tγ = D∇2γ. (11)

The equation for γ is the standard diffusion equation, linear in γ, while
a term proportional to γ2 appears in the equation for ρ acting as a source
term for the total concentration in addition to the diffusion and the reaction
terms.

The average of γ at time t = 0 is zero because of the statistically iden-
tical initial distribution of particles, 〈γ(�x, 0)〉 = 0, so that the variance〈
(γ − 〈γ〉)2

〉
=

〈
γ2

〉
. This can be computed because the independent initial

distribution of particles are δ-correlated in space:

〈γ(�x, 0)γ(�x′, 0)〉 = 2ρ0δ(�x− �x′).

This means that the variance of γ(·, 0) integrated on every sub-volume V
in d-spatial dimensions is〈(∫

V

γ(�x, 0)ddx

)2
〉

=

〈(∫
V

ddx

∫
V

ddx′γ(�x, 0)γ(�x′, 0)
)〉

=

∫
V

ddx

∫
V

ddx′ 〈γ(�x, 0)γ(�x′, 0)〉

=

∫
V

ddx

∫
V

ddx′2ρ0δ(�x− �x′) = 2ρ0

∫
V

ddx = 2ρ0V

so that, roughly speaking, the difference between the number of A and B
particles in a sub volume V is initially∫

V

γ(�x, 0)d�x = 0±
√

2ρ0V .

In order to calculate the contribution of γ(�x, t)2 in equation (10) it is
convenient to compute the Fourier transform

γ̂(�k, t) =
1

(2π)d

∫
Ω

e−i�k·�xγ(�x, t)ddx.
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The correlation of γ̂(�k, 0) is〈
γ(�k, 0)γ(�k′, 0)

〉
=

1

(2π)2d

∫
Ω

ddx

∫
Ω

ddx′e−i(�k·�x+�k′·�x′) 〈γ(�x, 0)γ(�x′, 0)〉

=
1

(2π)2d

∫
Ω

ddx

∫
Ω

ddx′e−i(�k·�x+�k′·�x′)2ρ0δ(�x− �x′)

=
2ρ0

(2π)2d

∫
Ω

ddxe−i(�k·�x+�k′·�x) =
2ρ0
(2π)d

δ(�k + �k′)

where the last passage is relevant to the limit of large Ω. Since it is linear, the
Fourier transform of the partial differential equation (11) gives the ordinary
differential equation

d

dt
γ̂(�k, t) = −Dk2γ̂(�k, t) (12)

with solution
γ̂(�k, t) = γ̂(�k, 0)e−Dk2t. (13)

The correlation of γ̂ at time t is given by〈
γ(�k, t)γ(�k′, t)

〉
=

〈
γ(�k, 0)γ(�k′, 0)

〉
e−D(k2+k′2)t =

2ρ0
(2π)d

δ(�k + �k′)e−2Dk2t,

so the ensemble average integrated over the volume Ω of γ2 is〈(∫
Ω

γ(�x, t)2ddx

)〉
=

〈(∫
Ω

ddxγ(�x, t)γ(�x′, t)
)〉

=

〈∫
Ω

ddx

∫
Ω

ddkei
�k·�xγ̂(�k, t)

∫
Ω

ddk′ei�k
′·�xγ̂(�k′, t)

〉

=

∫
Ω

ddx

∫
Ω

ddk

∫
Ω

ddk′ei(�k+�k′)·�x 2ρ0
(2π)d

δ(�k + �k′)e−2Dk2t

= |Ω| 2ρ0
(2π)d

∫
Ω

ddke−2Dk2t

= |Ω| 2ρ0
(2π)d

dCd

∫ ∞

0

dkkd−1e−2Dk2t

where dCdk
d−1 is the surface of the d-1 sphere of ray k. With the change in

variable ξ =
√
2Dtk it is possible to recognize the Gamma function Γ(d/2):

= |Ω| 2ρ0
(2π)d

dCd
1

(2Dt)d/2

∫ ∞

0

dξξd−1e−ξ2

= |Ω| ρ0
(2π)d

dCd

Γ(d2 )

(2Dt)d/2
.
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The evolution in time for that quantity at time gives a power law in time
which depends on the spatial dimension d:〈∫

Ω

γ(�x, t)2d�x

〉
∼ ρ0 |Ω| (Dt)−

d
2 . (14)

Thus, even when the diffusion term does not influence the bulk dynamics
because of uniform average initial conditions the equation for ρ Eq. (10) is
made of two terms

d

dt

∫
Ω

ρ(�x, t)d�x = −1

2
k̃

∫
Ω

ρ(�x, t)2d�x+
1

2
k̃

∫
Ω

γ(�x, t)2d�x

≈ −1

2

k̃

|Ω|

[∫
Ω

ρ(�x, t)d�x

]2
+O

(
k̃ρ0 |Ω| (Dt)−

d
2

)
.

The error committed in moving the square outside the first integral will be
negligible when the total density of reactants ρ is spatially uniform—even
though the individual densities a and b may not be. The balance of the two
terms depends on the spatial dimension: the second term—balancing the
first term—yields a t−

d
4 decay which dominates mean field t−1 for d < 4.

The conclusion is that the spatial dimension is essential for considering the
kinetics of the number of particles in such systems:

NA(t) = NB(t) =
1

2

∫
Ω

ρ(�x, t)d�x ∼
{√

|Ω|N0(Dt)−d/4 for d ≤ 4

|Ω| (k̃t)−1 for d ≥ 4.

The main result is the appearance of anomalous (non-mean-field) scaling
for d < 4.

The effect of fluctuations like this was first discussed by Ovchinnikov and
Zeldovich (1978). They analyzed the influence of initial density fluctuations
of the reactants of the A + B process in 3-dimensional volume, obtaining
the more slow time dependance t−3/4 instead of t−1 for the evolution of the
number of particles in time. Later, numerical and analytical work (Tous-
saint and Wilczek, 1983) was performed for the same process of particles
and antiparticles moving diffusively and annihilating irreversibly. For a two
dimensional system they studied the time decay for the density of parti-
cles changing the lattice size for the domain and they investigated the most
dramatic macroscopic manifestation of the anomalous decay for d smaller
than 4: the spontaneous macroscopic segregation of reactants. That is, the
emergence of regions of only one type of particles. These islands are spon-
taneously created because the diffusion is not fast enough to dissolve them.
In those configurations reactions only occur at interfaces of subdomains.
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Macroscopic segregation was proved to appear also in fractal dimension
(Kopelman, 1988), the A + B reaction simulated in a Sierpinski triangle
gives an anomalous decay for the density of particles ρ ≈ t−0.4 for d ∼ 1.6.

A rigorous proof of the anomalous time scaling was presented in the pa-
per by Bramson and Lebowitz (1991), while the first experimental demon-
stration of the spontaneous segregation in three dimensions was provided
in 2000 (Monson and Kopelman, 2000). In order to postpone the reac-
tion until equilibrium random initial conditions had been achieved, Monson
and Kopelman encapsulated one of the two species and used laser speck-
les to start the process. The system obtained by relaxing the restriction
to irreversible reactions, i.e., the process which allows the back reaction
A + B � C, exhibits its own peculiarities (ben Avraham and Doering,
1988; Clément et al., 1989).

In conclusion, these examples show that transport properties of individ-
ual discrete reactants play a great role in the kinetics of reactions. This
fact is most emphasized when reactions occur in very geometrical compli-
cated environment; indeed, it has much more recently been appreciated how
much the first-passage time (the random time for a molecule to reach a tar-
get) is related both to the initial distance between reactants and complex
geometric constraints (Bénichou et al., 2010).

Microscopic segregation for single-species reaction

In the previous section, a macroscopic segregation phenomenon for two
species diffusion-limited reactions was described. Now we would like to
consider processes where only one species is present. For this kind of pro-
cesses no macroscopic segregation is possible, but anomalous scaling still
occurs. In the paper of Toussaint and Wilczek (1983), a scaling argument
for single-species reactions suggested

NA(t) =

∫
Ω

ρ(�x, t)d�x ∼
{
|Ω| (Dt)−d/2 for d ≤ 2

|Ω| (k̃t)−1 for d ≥ 2.
(15)

That is,

d

dt
NA(t) ∼

{
−N

d+2
d

A for d ≤ 2

−N2
A for d ≥ 2.

(16)

This means that mean field behavior for the evolution of the number of
particles (or the evolution for the density) holds for sufficiently high spatial
dimensions d, but not so in low dimensions. The goal now is to develop an
exact solution when the mean field kinetics does not hold. Three different
processes are discussed in this section:
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1. the coagulation process A+A→ A;
2. the process A+A→ A together with a source, ∅ → A;
3. the reversible process A+A � A.

Mean field mass action theory gives the following kinetic equations, respec-
tively, for the concentration in these three processes:

1. dρ/dt = −k̃ρ2
2. dρ/dt = −k̃ρ2 +R
3. dρ/dt = −k̃ρ2 + βρ,

where k̃ is the coagulation rate, β the birth rate and R is the rate of creation.
We note that the last equation is the logistic equation.

Now, consider the processes in the limit where the characteristic time
for reaction, given two particles in each others’ neighborhoods, is much
smaller than the characteristic time for diffusion of the particles into each
others’ neighborhoods. This is when the effect of “self stirring” by diffusion
is ineffective and the law of mass action does not hold. The associated
diffusion-limited kinetics may very well be different.

As a first guess one can assume the validity of the scaling argument
above and infer from equations (16) that the diffusion-limited kinetics in
the d = 1 case for the three processes are

1. dρ/dt ∼ −Dρ3

2. dρ/dt ∼ −Dρ3 +R
3. dρ/dt ∼ −Dρ3 + βρ.

As will be shown, this approach fails to describe the real dynamics in all
these. In the following we will extract the exact solution from a microscopic
treatment (ben Avraham et al., 1990) in order to have a direct comparison
with the mean field description.

The one-species process we consider is the transport-limited reversible
coagulation process A + A �A with input ∅ → A and diffusion on a one
dimensional lattice where Δx is the space between adjacent sites. Each site
can be singly occupied or empty. The diffusion process is modeled giving a
hop rate for a particle to a neighboring site of D(x, t)/Δx2, where D(x, t)
is the (local) macroscopic diffusion coefficient which may be space (x) and
time dependent. The birth process is described in this way: a particle at
site x gives birth to another particle at site x ± Δx at rate v(x, t)/2Δx.
The coagulation/coalescence phenomenon is enforced by fixing the number
of occupation at each sites 0 or 1, so that two particles on the same site
simply become one. To complete the scenario the spontaneous generation
of particles can occur with probability at each site equal to R(x, t)Δx (R is
a probability per unit length, which may be space and time dependent).
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An interesting quantity is the empty interval probability E(x, y, t) de-
fined as the probability that all the sites between x and y (including x and
y) are empty at time t:

E(x, y, t) = Prob {sites from x to y ≥ x are empty at time t}
= Prob

{
x y

}
.

If ρ(x, t) is the density of particles at site x and time t,
In order to derive the kinetic equation for E we need an expression for the

variation of E, ΔE in time interval short enough to neglect double births,
hops, etc. The combination of all processes in time interval Δt produce an
increasing of E(x, y) in the cases where there is only one particle in x and
it hops to the left or only one particle in y that hops to the right. On the
contrary there is a decrease of E(x, y) in the cases where a particle in x−Δx
hops to x, one particle in y+Δx hops to y, a particle in x−Δx gives birth
to a particle into site x, a particle in y + Δx gives birth to a particle in y
or in cases where there is an input of particles at each site z between x and
y. Altogether we may write

ΔE =
D(x, t)Δt

Δx2
Prob

{
x y

}
+

D(y, t)Δt

Δx2
Prob

{
x y

}
− D(x−Δx, t)Δt

Δx2
Prob

{
x − Δx y

}
− D(y +Δx, t)Δt

Δx2
Prob

{
x y + Δx

}
− v(x−Δx, t)Δt

Δx
Prob

{
x − Δx y

}
− v(y +Δx, t)Δt

Δx
Prob

{
x y + Δx

}
− [R(x, t) +R(x+Δx, t) + · · ·+R(y, t)]ΔxE(x, y, t).

The closure of the kinetic equation comes from the ability to write each
configuration as a union of two others configurations, for example:

x + Δx y
=

x y
∪

x y

so that the corresponding probability can be written as the sum of two
probabilities:

E(x+Δx, y) = Prob
{

x y

}
+ E(x, y)



130 F. Tesser and C. R. Doering

with analogous passages:

E(x, y −Δx) = Prob
{

x y

}
+ E(x, y)

E(x, y) = Prob
{

x − Δx y

}
+ E(x−Δx, y)

E(x, y) = Prob
{

x y + Δx

}
+ E(x, y +Δx).

These expressions can be substituted in the equation for ΔE, then di-
viding by Δt and considering the limit Δt → 0 we obtain a differential
equation for E:

dE(x, y, t)

dt
=
D(x, t)

Δx2
{E(x+Δx, y, t)− E(x, y, t)}

+
D(y, t)

Δx2
{E(x, y −Δx, t)− E(x, y, t)}

− D(x−Δx, t)

Δx2
{E(x, y, t)− E(x−Δx, y, t)}

− D(y +Δx, t)

Δx2
{E(x, y, t)− E(x, y +Δx, t)}

− v(x−Δx)

2Δx2
{E(x, y, t)− E(x−Δx, y, t)}

− v(y +Δx)

2Δx2
{E(x, y, t)− E(x, y +Δx, t)}

−
y∑

z=x

R(z, t)ΔxE(x, y, t). (17)

In order to make the equation valid for x = y the appropriate boundary
conditions are

E(x+Δx, x, t) = 1 and E(x, x−Δx, t) = 1.

In the spatial continuum limit Δx → 0 we find the partial differential
equation

∂E(x, y, t)

∂t
=

∂

∂x

[
D(x, t)

∂E

∂x

]
+

∂

∂y

[
D(y, t)

∂E

∂y

]
− v(x, t)

2

∂E

∂x

+
v(y, t)

2

∂E

∂y
−

{∫ y

x

R(z, t)dz

}
E(x, y, t) (18)

which is linear in E, with boundary conditions

lim
y→x+

E(x, y, t) = 1 and lim
x→y−

E(x, y, t) = 1.
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In the continuum limit Δx→ 0 the statistical local density

ρ(x, t) =
1

Δx
[1− E(x, x, t)] =

1

Δx
[E(x, x−Δx, t)− E(x, x, t)] (19)

is given by

ρ(x, t) = − ∂E(x, y, t)

∂y

∣∣∣∣
y=x

. (20)

In the case of constantD, R and v, Eq.(18) becomes a constant coefficient
PDE

∂E(x, y, t)

∂t
= D

(
∂2E

∂x2

)
+D

(
∂2E

∂y2

)
− v

2

∂E

∂x
+

v

2

∂E

∂y
−R(y − x)E(x, y, t),

(21)
valid in the half-space y ≥ x. Proceeding with the change in variables
ξ = y + x and ζ = y − x, the PDE (21) becomes:

∂E(ξ, ζ, t)

∂t
= 2D

∂2E(ξ, ζ, t)

∂ξ2
+ 2D

∂2E(ξ, ζ, t)

∂ζ2
+ v

∂E

∂ζ
−RζE(ξ, ζ, t). (22)

But ∂/∂ξ = 0 in (statistically) translational invariant situations where
E is only a function of ζ and t and (22) reduces to

∂E(ζ, t)

∂t
= 2D

∂2E(ζ, t)

∂ζ2
+ v

∂E

∂ζ
−RζE(ζ, t) (23)

with boundary conditions

E(0, t) = 1 and E(∞, t) = 0.

In this case the expression for the density is

ρ(t) = − ∂E

∂ζ

∣∣∣∣
ζ=0

. (24)

In order to find a general solution for the Eq.(23) we may expand E as
linear superposition of eigenfunctions

E(ζ, t) =
∑
λ

aλEλ(ζ)e
−λt

where

−λEλ(ζ) = 2D
∂2Eλ(ζ)

∂ζ2
+ v

∂Eλ(ζ)

∂ζ
−RζEλ(ζ). (25)
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Now let Eλ(ζ) = Fλ(ζ)e
− vζ

4D where

2D
∂2Fλ(ζ)

∂ζ2
=

[
Rζ +

(
v2

8D
− λ

)]
Fλ(ζ). (26)

This is Airy’s equation with solution

Fλ(ζ) = Ai

{(
R

2D

) 1
3

ζ +

(
v2

8D
− λ

)
1

(2DR2)
1
3

}
. (27)

As z → ∞, Ai(z) ∼ e−z3/2

. The steady state solution is obtained from
Eq.(27) setting λ = 0, whereas the transient solutions correspond to λ > 0
and, combining with the boundary conditions, Fλ(0) = 0 for λ > 0. Apply-
ing this to Eq.(27) it is possible to obtain a discrete relaxation spectrum for
nonvanishing R and D:

λn =
v2

8D
+ (2DR2)

1
3 |an| (28)

where an is the nth zero of the Airy function Ai(z). These zero are all
negative and their values are tabulated in the literature.

Let us now analyze the three processes introduced at the beginning of
the section. The first case presented was the irreversible coagulation process
A+A→ A corresponding to R = 0 and v = 0. The steady state is a trivial
solution with zero concentration of particles, instead the kinetic solution for
the density of particles gives at large time the non-mean-field behavior:

ρ(t)→ 1√
2πDt

as t→∞ and
dρ

dt
= −πDρ3. (29)

In an experimental work Kroon et al. (1993) study the kinetics of the
tetramethylammonium magnese trichloride (TMMC) which turns out to be
a perfect model for diffusion-reaction system in 1D. A full characterization
of the coalescence process is provided only by the infinite hierarchy of cor-
relation functions and a complete exact description is given in the paper of
ben Avraham (1998).

In the second class of coalescence process also an input is present, so
v = 0, but R > 0. The dynamics of the solution for the density near the
steady state, forced onto a rate equation form, must be written

dρ

dt
≈ −c1Dρ3 + c2R (30)
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where

c1 =
2 |a1|Ai(0)2

3Ai′(0)2
�= π and c2 =

|a1| · |Ai′(0)|
3Ai(0)

�= 1.

These are both different from the mean field behavior and from what one
might guess by adding the source term to the decay dynamics in (29).

In the last case we analyze the process with both forward and back-
ward reaction, so v > 0, but with no input R = 0. Near the equilibrium
statistically steady state, logistic dynamics is found:

dρ(t)

dt
≈ βρ(t)

(
1− ρ(t)

ρeq

)
(31)

with β = 1
2Dρ2eq. The stationary state of this reversible process is a true

thermodynamic equilibrium with a totally random (Poisson) distribution of
particles.

But the approach to equilibrium can be slower than that suggested by
logistic approach for far-from-equilibrium initial conditions. Unlike the pre-
dictions of any mean field rate equations, the asymptotic relaxation rate
depends on initial conditions: this process exhibits a sharp transition in
its relaxation dynamics. Considering initial conditions consisting of purely
random distributions of particles with density ρ0 and writing the long-time
density ρ(t) = ρeq +O(e−t/τr ), the relaxation time τr is found to obey

τr =

{
β−1 for ρ0 ≥ 1

2ρeq

[2Dρ0(ρeq − ρ0)]
−1 for ρ0 ≤ 1

2ρeq.
(32)

This kinetic phase transition is the result of long-lived spatial correlations
in the microscopic distribution of particles appearing when initial state is
far enough from equilibrium. The spatial correlations between particles
positions persist forever when ρ0 < 1

2ρeq and the kinetic phase transition is
destroyed with finite volume (Doering and Burschka, 1990).

The mechanism for the appearance of the “slow-relaxation” phase is
clear when the initial density is much smaller that the equilibrium density.
When ρ0 ! ρeq, the typical distance between particles, l ∼ 1/ρ0, is large
and a concentration wavefront must propagate in order to fill the gaps be-
tween the particles. The speed of the front is v/2 (Doering et al., 1991)
which results in the “long” time scale ∼ (ρ0v)

−1. We note that the average
concentration front in one dimension never reaches a unique shape but it
appears a continuous spreading due to diffusion of the leading particle al-
though in each realization the shape of the wave remain actually constant
(ben Avraham, 1998).
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In conclusion, we see that microscopic fluctuations are relevant for the
kinetics of diffusion-limited processes and can spontaneously produce cor-
relations among participants that diffusive transport may not be able to
dissipate. In case of two species reacting (A+ B) macroscopic correlations
may emerge producing anomalous kinetics even though local mean field the-
ory may still apply. On the other hand the single species (A+A) reactions
display anomalous kinetics due to microscopic segregation and even pos-
sess a macroscopic phase transition which depends explicitly on long-lived
microscopic spatial correlations. These examples illustrate difficulty of any
kind of general macroscopic kinetic theory and, in particular, the failure of
law of mass description of the dynamics.

2 Discreteness and stochastic effects in
reaction-diffusion fronts

In these two lectures we develop an example illustrating how microscopic
discreteness and fluctuations can qualitatively modify macroscopic dynam-
ics, in this case the propagation of a reaction-diffusion front. The analysis
involves developing a correspondence between two different reaction pro-
cesses, one of which is naturally described in terms of a nonlinear stochastic
partial differential equation with multiplicative noise. This discussion comes
from Doering et al. (2003).

The stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation

The stochastic FKPP equation is

∂tU(x, t) = D∂xxU + γU(1− U) + ε
√

U(1− U) η(x, t) (33)

where 0 ≤ U(x, t) ≤ 1 and η(x, t) a Gaussian white noise. Solutions of this
stochastic partial differential equation have a special connection with the
reaction-diffusion process A � A + A. This “duality” relationship is an
exact mathematical connection between the particle process with appropri-
ate growth and diffusion rates and the solutions U(x, t) of the equation, so
it is a useful tool for transferring some results among them. We begin by
motivating the stochastic partial differential equation (33).

The logistic ordinary differential equation

d

dt
U(t) = γU(1− U) (34)

is characterized by the growth rate γ and a saturation term (here normal-
ized to 1). This equation has two stationary solutions, one is the unstable
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solution for U = 0 and the other is the stable fixed point U = 1 correspond-
ing to the saturation value. In 1937 Fisher and independently Kolmogorov,
Petrovsky and Piscounov studied the addition of the spatial dependence in
the logistic system through the insertion of the diffusive term obtaining a
description of the macroscopic spatial spreading of a gene in “empty” space
when interpreting U(x, t) as the local density of the population at time t.
The reaction-diffusion equation

∂

∂t
U(x, t) = D

∂2u

∂x2
+ γU(1− U) (35)

is thus known as the FKPP equation. It is characterized by the diffusion
coefficient D in addition to the growth rate γ. The FKPP equation with
initial conditions satisfying

lim
x→−∞U(x, t) = 1 and lim

x→+∞U(x, t) = 0

admits traveling wave solutions, that is to say solutions of the form

U(x, t) = F (z) = F (x− ct). (36)

This corresponds to a rigid translation of a front with speed c in positive x
direction, where c is to be determined.

The insertion of the wave solution ansatz (36) into (35) gives the ordinary
differential equation

DF ′′(z) + cF ′(z) + γF (z)(1− F (z)) = 0 (37)

together with initial conditions

lim
z→−∞F (z) = 1 and lim

z→+∞F (z) = 0.

This ODE (37) can be studied as the mechanical analog of the dynamics of
a body of convenient mass moving in the potential

V (F ) =
1

2
F 2 − 1

3
F 3

with velocity-dependent friction characterized by the coefficient c; see Figure
2. The solutions divide in different classes, depending on the strength of
the friction.

If c is low enough the mass joins F = 0 after oscillations around the
equilibrium. In case of high values of c no oscillations are present, and
cmin = 2

√
Dγ is the minimum value for c corresponding to a solution which
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join the stable fixed point without crossing it. In order to keep its physical
meaning as a population or concentration, U(x, t) must be non-negative
so the oscillating solutions are not acceptable. This excludes all possible
values under the critical speed cmin while all values above it are accessible
to the system, including the critical value itself. Moreover if suitable initial
conditions are assumed, i.e., when the front is sharp enough, a weak velocity
selection holds and the final speed of the front converges to the minimum
value c ∼ cmin+O(t−1) (Bramson, 1983 and Ebert and van Saarloos, 2000).
This slow speed selection by propagation of a stable phase into the unstable
phase presents a fundamental problem because it depends on the specific
shape of the asymptotic structure of the leading tail, where, additionally,
the model is most unstable. This makes one wonder how robust the result
is to physically meaningful perturbations.

Discrete nature of the microscopic process

The microscopic approach gives a better understanding of the system
because it considers intrinsically the discreteness nature of particles and
fluctuations. In this section it is shown how it is possible to include these
features of the system in the continuum logistic kinetics trough the addition
of a noise term. Consider the A+B reaction scheme:

A+B
k1−→ A+A

A+B
k2−→ B +B

in a well stirred reactor of volume Ω all A particles have chance to react with
B and vice-versa with rates k1 and k2. NA(t) and NB(t) are the number of
A and respectively B particles at time t and the total number of particles
N = NA(t) +NB(t) is conserved by these reactions.

A natural variable is U(t) = NA(t)/N and the mean field equation for
its kinetics is

d

dt
U(t) =

(
k1 − k2

Ω

)
U(1− U), (38)

the logistic equation with γ = (k1 − k2)/Ω. On other hand NA(t) is really
a discrete microscopic Markov process with pn(t) = Prob(NA(t) = n), n =
0, 1, . . . , N , evolving according to the master equation

dpn
dt

=− k1
Ω
n(N − n)pn +

k1
Ω
(n− 1)(N − n+ 1)pn−1

− k2
Ω
n(N − n)pn +

k2
Ω
(n+ 1)(N − n− 1)pn+1. (39)
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Here it is convenient to take p−1 = 0 = pN+1 in order to apply the master
equation also at extreme values n = 0 and n = N .

Changing the variable to u = n/N with f(u, t) = NpNu(t) which for-
mally converges to the probability density function for u, discreteness is
represented by Δu = 1/N . After a Taylor expansion in terms of u+Δu and
u −Δu, in the limit of continuum approximation N " 1, the leading first
and second order terms are sufficient for the description of the evolution of
f(u, t):

∂f(u, t)

∂t
=

∂

∂u

[
− (k1 − k2)N

Ω
u(1− u) +

1

2

k1 + k2
Ω

∂

∂u
u(1− u)

]
f(u, t)

(40)
with boundary conditions f(0, t) = 0 = f(1, t).

This is the Fokker-Planck equation, which is associated to the Itô stochas-
tic differential equation for U(t):

dU(t) = γU(1− U)dt+ σ
√

U(1− U)dW (t) (41)

when we recognize γ = (k1 − k2)N/Ω and σ2 = (k1 + k2)/Ω, where W (t)
is a Wiener Process (usual Brownian motion). In the limit N → ∞ and
Ω→∞ with N/Ω = O(1), the coefficient γ is finite and the noise strength
σ ∼ 1/

√
N goes to zero recovering the deterministic dynamics. Note that

U(t) in the stochastic equation is a continuum variable but the discreteness
is present in the noise term, giving rise to fluctuations to the system.

For example it gives the possibility for extinction which is not possible in
the logistic equation without noise; the addition of the noise indeed allows
the process to eventually become extinct (in finite time, no less) due to fluc-
tuations. Indeed, starting from any initial conditions 0 ≤ U(0) = u0 < 1,
the deterministic model predicts U(t) drifts monotonically toward 1 al-
though it never reaches 1 in finite time. The stochastic process, on the
other hand, hits U = 0 (at a random, almost surely finite, time) with prob-
ability pext which is a function of the initial conditions:

pext = Prob
{
U(t)

t→∞−−−→ 0|U(0) = u0 ≥ 0
}
=

e
2γ

σ2 (1−u0) − 1

e
2γ

σ2 − 1
. (42)

This is positive for all 0 ≤ u0 < 1 as shown in Figure 1.
To see this consider the adjoint operator

L∗ = u(1− u)

[
γ
∂

∂u
+

σ2

2

∂2

∂u2

]
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and note that the function h(u) that solves L∗h(u) = 0 with boundary
conditions h(0) = 1 and h(1) = 0 is precisely

h(u) =
e

2γ

σ2 (1−u) − 1

e
2γ

σ2 − 1
. (43)

Then consider Itô’s formula for the increments of the stochastic process
h(U(t)):

dh(U(t)) = h′(U(t))dU +
1

2
h′′(U(t))dU2

≈
[
h′(U(t))γ +

σ2

2
h′′(U)

]
U(1− U)dt

+ h′(U(t))σ
√
U(1− U)dW (44)

using (41), remembering that dW 2 ∼ dt, and neglecting small terms pro-
portional to dt2 and dtdW . The first term on the right hand expression is
identically 0 because of L∗h(u) = 0. Thus only the term proportional to the
increment of the Brownian motion dW remains so h(U(t)) is a Martingale,
i.e., the expectation of h(U(t)) does not change in time:

d

dt
E{h(U(t))} = 0. (45)

Now on the one hand as t → ∞ the process U(t) either goes extinct
(U(t)→ 0 and h(U(t))→ 1) with probability pext or it saturates (U(t)→ 1
and h(U(t))→ 0) with probability 1−pext. This means that E{h(U(t))} →
1× pext + 0× (1− pext) = pext. But the E{h(U(t))} does not change with
time so it is equal to its initial value and we conclude that when U(0) = u0,

pext = E{h(U(t))} = E{h(U(0))} = h(u0) =
e

2γ

σ2 (1−u0) − 1

e
2γ

σ2 − 1
. (46)

All this naturally leads to study the stochastic version of the FKPP
equation obtained from the deterministic equation by the addition of a
multiplicative noise like that in (41):

∂U(x, t)

∂t
= D

∂2U

∂x2
+ γU(1− U) + ε

√
U(1− U)η(x, t) (47)

where ε is the strength of the noise and η(x, t) is a Guassian white noise,
δ-correlated in time and space:

〈η(x, t)η(y, s)〉 = δ(x− y)δ(t− s).
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Figure 1. The extinction probability as function of initial condition u0 for
changing the parameter γ

σ2 .

What sort of solutions exist for the sFKPP equation? A theorem assures
that for ε > 0 solutions enjoy a “compact support property”. This means
that if the initial data U(x, 0) is compactly supported in space then U(x, t)
is also compactly supported for all t > 0. Moreover if U(x, 0) vanishes iden-
tically for, say, positive x, then U(x, t) vanishes identically for sufficiently
large x at all future time t > 0. And starting with U(x, 0) = 1 for x ≤ 0 and
U(x, 0) ≡ 0 for x sufficiently large there is a well defined stochastic front
traveling at (almost sure constant) mean speed

c = lim
t→∞ t−1

∫ ∞

0

U(x, t) dx

that depends on D, γ, and the noise strength ε (Mueller and Sowers, 1995).
The primary effect of noise is to extinguish the “leading tail” of the front,

and some studies of front propagation modified the growth function in the
deterministic FKPP equation in order to take care of discreteness (Brunet
and Derrida, 1997, Kessler et al., 1998, and Pechenik and Levine, 1999).
The equation is then given by a cutoff in the growth term replacing the
classic logistic growth by

γu(1− u)Θ(u− 1

N
)
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where the Heaviside step function Θ(u− 1
N ) is 0 for u < ε2 and 1 for u ≥ ε2.

This models the level of discreteness 1/N according to ε ∼ 1/
√
N .

If we look at the mechanical analog this has the same effect of modifying
the potential V (F ) as shown in Figure 2. If the friction coefficient (the

Figure 2. On the right the schematic view of the potential V (F ) in the
mechanical analog of the differential equation (37). On the left, the potential
V (F ) modified by the cutoff in order to model the noise in the deterministic
FKPP equation.

front speed) c is too small, the solution overshoots zero which is unphysi-
cal. On the other hand if c is too large the ”particle” never reaches 0, but
rather comes to rest between 0 and 1/N . The conclusion is that there is
now a unique friction coefficient (front speed) c in order to have a steadily
propagating wave front. Note that this unique speed c must be less than
the deterministic continuum minimum value cmin = 2

√
Dγ. In fact the me-

chanical analog implies c is less than the deterministic continuum minimum
value cmin by corrections of order (ln ε−2)−2:

c ∼
√
Dγ

⎡
⎣2− π2

(
ln

(Dγ)
1
2

ε2

)−2
⎤
⎦ . (48)

The speed of the front c in the presence of noise is slower than the minimum
value for the speed in the deterministic case and as ε→ 0 the correction van-
ishes only very slowly. The expression (48) was recently proved rigorously
for the sFKPP by Mueller et al. (2011).

Duality without spatial dependence

In order to analyze the dependence of the front speed in the strong noise
limit it is useful to use the duality between the sFKPP equation and the
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diffusion-reaction process A+A. However a preliminary approach to duality
without any spatial dependence is convenient. In this section we develop the
concept of duality between the solution of the stochastic (Itô) differential
equation

dU = γU(1− U)dt+ σ
√
U(1− U)dW, (49)

where dW is the usual Brownian motion, and the well-stirred chemical re-
action processes

A
γ−→ A+A

A+A
σ2

−→ A.

The microscopic Markov ProcessNA(t) is described by Pn(t) = Prob{N(t) =
n}, n = 1, 2, 3, . . . , which evolves according to the master equation

d

dt
Pn(t) = γ(n− 1)Pn−1 − γnPn − σ2n(n− 1)

2
Pn + σ2n(n+ 1)

2
Pn+1

=

∞∑
m=1

MnmPm(t) (50)

defining the transition matrix

Mnm = γmδn,m+1 − γmδn,m −
σ2

2
m(m− 1)δn,m +

σ2

2
δn,m−1. (51)

On other hand a change in variable Z(t) = 1− U(t) in Eq.(49) gives

dZ = −γZ(1− Z)dt+ σ
√
Z(1− Z)dW. (52)

The process Z(t) has stable fixed point 0 and unstable fixed point 1. The
Itô formula applied to the monomial Z(t)m with integer values m ≥ 1 yields

dZm = mZm−1dZ +
1

2
m(m− 1)Zm−2(dZ)2. (53)

Substitute the equation for dZ into the expression above, keeping only terms
of order dW and dt and recalling (dW )2 = dt, we obtain

dZm =

(
−mγZm +mγZm+1 +

σ2

2
m(m− 1)Zm−1 − σ2

2
m(m− 1)Zm

)
dt

+ σmZm−1
√
Z(1− Z)dW (54)

which is

dZm =

∞∑
n=1

Z(t)nMnmdt+ σmZm−1
√
Z(1− Z)dW (55)
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where the matrix Mnm turns out to be exactly the matrix in (50) for the
evolution of Pn. The term proportional to dW vanishes when one takes
the expectation, so the conclusion is that moments of Z(t) evolve in time
according to

d

dt
〈Z(t)m〉 =

∞∑
n=1

〈Z(t)n〉Mnm (56)

where we adopt the notation 〈·〉 for the expectation E{·}.
Choose T > 0 and consider times 0 ≤ t ≤ T . The random variable

M(t) =

∞∑
m=1

Z(t)mPm(T − t) (57)

is well defined since 0 ≤ Z ≤ 1 and the Pm ≥ 0 are summable. And, as will
be seen, it is a Martingale (that is, its expectation value does not change
with time):

〈M(t)〉 = 〈M(0)〉 = 〈M(T )〉 . (58)

Proof.

d 〈M(t)〉
dt

=
∞∑

m=1

(
d

dt
〈Z(t)m〉

)
Pm(T − t) +

∞∑
m=1

〈Z(t)m〉
(

d

dt
Pm(T − t)

)

=
∞∑

m=1

∞∑
n=1

〈Z(t)n〉MnmPm(T − t)−
∞∑

m=1

〈Z(t)m〉
∞∑

n=1

MmnPn(T − t) = 0.

The duality connection follows from the Martigale property. Extending
the expectation notation 〈·〉 to include expectation value over the integer-
valued stochastic process N(t) distributed according to Pn(t) we may write

〈
Z(0)N(T )

〉
=

∞∑
n=1

〈Z(0)n〉Pn(T ) (59)

and 〈
Z(T )N(0)

〉
=

∞∑
n=1

〈Z(T )n〉Pn(0). (60)

Thus, according to (58),〈
Z(0)N(T )

〉
=

〈
Z(T )N(0)

〉
. (61)
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Returning to the original logistic variable U(t),〈
(1− U(t))N(0)

〉
=

〈
(1− U(0))N(t)

〉
(62)

where the expectation is over the underlying Brownian motion, the stochas-
ticity of the interacting particle process, and over initial conditions.

Using duality is it possible to infer one of the two processes in terms
of its initial conditions and the initial and final state of the other process,
i.e., it allows the direct computation of the extinction probability pext for
U(t) as explained below. The particle process N(t) has a unique invariant
equilibrium (Poisson) distribution

P eq
n =

gn

n!

1

eg − 1
for n = 1, 2, . . . (63)

where g ≡ 2γ/σ2. Duality leaves freedom to choose initial conditions, so
let us take the initial condition of the particle process to be the equilibrium
distribution itself, Pn(0) = Pn(T ) = P eq

n . Hence〈
(1− U(t))N(0)

〉
=

〈 ∞∑
n=1

(1− U(t))nP eq
n

〉
=

〈
eg(1−U(t)) − 1

eg − 1

〉
. (64)

On the other hand〈
(1− U(0))N(T )

〉
=

〈 ∞∑
n=1

(1− U(0))nP eq
n

〉
=

〈
eg(1−U(0)) − 1

eg − 1

〉
. (65)

Define the random variable V (T )

V (T ) =
eg(1−U(T )) − 1

eg − 1
(66)

which in the limit T →∞ has the following values

lim
T→∞

V (T ) = lim
T→∞

eg(1−U(T )) − 1

eg − 1
=

{
1 with probability pext

0 with probability 1− pext.

(67)
So V (T ) is an indicator of extinction or fixation and its expectation con-
verges to the probability pext. Thanks to duality, which gives the equality
of expression (64) and (65)

pext = 〈V (T )〉 =
〈
eg(1−U(0)) − 1

eg − 1

〉
(68)

which is the same result of expression (46) when U(0) is the non-random
initial condition u0.
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Duality for the sFKPP equation

Now let us include space dependence and develop the duality relation
between the sFKPP partial differential equation (33) and the diffusion-
reaction particle process. For convenience we consider discretized space, a
one-dimensional lattice with spacing h.

The birth-coagulation diffusion process is defined by the local (on-site)
reactions

A→ A+A at rate γ

A+A→ A at rate σ2

and the rate of hopping between neighbourhood sites, D/h2. The system
is the Markov process N(t) = (. . . , Ni−1(t), Ni(t), Ni+1(t), . . . ) specifying
the number of particles at each site i at time t. Here we introduce the
notation n = (. . . , ni−1, ni, ni+1, . . . ) where each 0 ≤ nj < ∞ and the unit
vectors ei = (. . . , 0, 1, 0, . . . ). The probability Pn = Prob[N(t) = n] evolves
according to the master equation

d

dt
P (t)n =

∑
{m}

MnmPm(t) (69)

with transition matrix

Mnm =
∑
i

[
γmiδn,m+ei

− γmiδnm −
σ2

2
mi(mi − 1)δnm

+
σ2

2
mi(mi − 1)δn,m−ei

+
D

h2
mi−1δn,m+ei−ei−1

−2D

h2
miδnm +

D

h2
mi+1δn,m+ei−ei+1

]
. (70)

The discrete version of sFKPP equation is

dUi(t) =

[
D

(
Ui+1 − 2Ui + Ui−1

h2

)
+ γUi(1− Ui)

]
dt+ σ

√
Ui(1− Ui)dWi

(71)
where Wi(t) are independent Brownian motion at each site,

dWi(t)dWj(t) = δij dt.

As same as before the change in variable is considered

Zi(t) = 1− Ui(t)
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For a given vector of integers m = (. . . ,mi−1,mi,mi+1, . . . ), an the appli-
cation of Itô formula yields

d

⎛
⎝∏

j

Zj(t)
mj

⎞
⎠ =

∑
{n}

〈∏
i

Zi(t)
ni

〉
Mnmdt+

∑
i

(terms ∝ dWi) . (72)

The expectation of the last term vanishes so

d

dt

〈∏
j

Zj(t)
mj

〉
=

∑
{n}

〈∏
i

Zi(t)
ni

〉
Mnm (73)

where Mnm is exactly the matrix in (70).
For time 0 ≤ t ≤ T it is possible to define the random variable

M(t) =
∑
{n}

(∏
i

Zi(t)
ni

)
Pn(T − t) (74)

which is a Martigale (proved by direct computation as before):

〈M(t)〉 = 〈M(0)〉 = 〈M(T )〉 . (75)

With analogous passages as before, the duality relationship that holds for
any time t ≥ 0 is

〈∏
i

(1− Ui(0))
Ni(t)

〉
=

〈∏
i

(1− Ui(t))
Ni(0)

〉
(76)

where the expectation is over the Brownian motion Wi(t), the realization
of the particle process N(t), and over initial conditions.

As an application of duality we analyze the long time behavior for the
solution of the sFKPP equation with non-random initial condition Ui(0) =
u0
i . As t→∞ all variables Ui(t) become either 0 or they all saturate to 1.

Starting from any non-vanishing initial condition the particle process N(t)
goes to equilibrium distribution

P eq
n =

∏
i

gni

ni!
e−g. (77)
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On one hand〈∏
i

(1− Ui(0))
Ni(t)

〉
=

∑
{n}

∏
i

(
1− u0

i

)ni
P eq
n

=
∏
i

∞∑
n=0

(1− u0
i )

ngn

n!
e−g

=
∏
i

e−gu0
i = exp

{
−

∑
i

2γ

σ2
u0
i

}
. (78)

On the other hand, choosing for N(0) the equilibrium distribution,〈∏
i

(1− Ui(t))
Ni(0)

〉
=

〈∑
{n}

∏
i

(1− Ui(t))
niP eq

n

〉

=

〈∏
i

egUi(T )

〉

=

〈
exp

{
−

∑
i

2γ

σ2
Ui(T )

}〉
. (79)

The random variable in the righthand expression above converges as t→∞
to the indicator that the process become extinct or not, so its expectation
value converges to the probability of extinction pext. The duality relation
thus allows us to infer the exact expression for pext:

pext = exp

{
−

∑
i

2γ

σ2
u0
i

}
. (80)

In the continuum limit h → 0, equation (71) becomes the continuum
version of the sFKPP equation

∂tU(x, t) = D∂xxU + γU(1− U) + ε
√

U(1− U)η(x, t) (81)

with noise strength

ε = σ
√
h. (82)

The extinction probability is then

pext = exp

{
−2γ

ε2

∫ ∞

−∞
u0(x)dx

}
(83)
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which is exponentially small for large initial mass.
Duality brings another result, too. It allows us to say that the wavefront

speed for U(t) is the same for the particle process. To see this, choose
the following initial conditions for the two independent processes: only one
particle in site i > 0 and no particles anywhere else (N(0) = ei ⇔ Nj(0) =
δij), and the step function for Uj(0) = 0 for any site j ≥ 0 and Uj(0) = 1
for any site j ≤ 0). Note first that

1−
〈∏

j

(1− Uj(0))
Nj(t)

〉
= 〈Ui(t)〉 (84)

since the factors on the products are everywhere 1 except at site i. As long
as there are no particles on j ≤ 0 the product above is equal to one, but
if there is a particle at any site j ≤ 0 the product become 0, so it is the
indicator function of the fact that particles have arrived in the region j ≤ 0.
The expectation value of this quantity is hence the probability for these
events for given particular initial conditions:

〈Ui(t)〉 = Prob {any site j ≤ 0 has a particle at t|Nj(0) = δij} (85)

and we conclude that the wave front for Uj(t) moves with the same speed
of the front of A+A � A.

This result is particularly useful in the strong noise limit when σ → ∞
or ε→∞ since, in this case, the s-FKPP equation is dual to the diffusion-
controlled particle reaction. The exact speed for this process is known:
v = Dρeq where ρeq is the density of particles at equilibrium,

ρeq =
2γ

hσ2
=

2γ

ε2
. (86)

Given the equality of the speeds of the two fronts due to duality, this gives

c = v =
2Dγ

ε2
. (87)

This is the expression for the speed of the front of the sFKPP solutions in the
limit of strong noise and it is in excellent agreement with direct numerical
simulations; see Doering et al. (2003). (See Doering et al. (2005b) for a
discussion of some of the simulation techniques.)

In conclusion the addition of noise in the deterministic FKPP equation
is a natural way to consider the effects of discreteness and fluctuations in
spatially extended logistic dynamics. The presence of this term can have
profound effects on the qualitative behavior on the system. In particular the
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front speed with noise turns out to be unique, and slower that the minimum
value accessible for any deterministic front.

Demographic stochasticity in evolutionary population
dynamics

In this last lecture we focus on stochasticity in demographic systems an-
alyzing its effect on the dynamics of competitive species. For the model
studied here, the deterministic description produces ”degenerate” steady
state coexistence of the species with a population ratio determined by the
initial conditions. Demographic fluctuations, i.e., birth-death noise, break
this degeneracy allowing for the selection of one species over another on
an evolutionary time scale that is longer than the deterministic relaxation
time but much shorter than the ultimate extinction time. In order to show
this behavior we study the system of two competitive species that have the
same carrying capacity but different birth and death rates using a Marko-
vian model and compare results with the degenerate deterministic limit.
This discussion comes from “Features of Fast Living: On the Weak Selec-
tion for Longevity in Degenerate Birth-Death Processes” by Lin, Kim, and
the lecturer (Lin et al., 2012).

Deterministic and stochastic models

When a single species grows with constant net growth rate γ, the incre-
ment of the population X(t) is proportional to the population itself so

dX(t)

dt
= γX (88)

and the number of individuals grows exponentially in time. If there is a
carrying capacity K limiting the total number of individuals, the simple
logistic equation

dX

dt
= γX

(
1− X

K

)
(89)

captures the essential dynamics: X(t) relaxes to the steady state K, achiev-
ing K ± O(1) in time t ∼ O(logK) as K → ∞. In natural dimensionless

variables x(t) ≡ X( t
γ )

K ,
ẋ = x(1− x) (90)

and x(t) reaches 1± 1/K in time t ∼ O(logK) as K →∞.
The deterministic rate equation does not display finite time extinction

but discrete stochastic dynamic models do. Consider the integer-valued
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continuos time process Xt with birth and death events rates, respectively,
β and δ(1 + n/K̃) when Xt = n, where K̃ ≡ K/(ρ − 1) and ρ ≡ β/δ > 1.
The state of the population is then described by the probability pn(t) =
Prob{Xt = n} that follows the master equation

dpn(t)

dt
= − βnpn + β(n− 1)pn−1 − δ

(
1 +

n

K̃

)
npn

+ δ

(
1 +

n+ 1

K̃

)
(n+ 1)pn+1. (91)

This formulation introduces something interesting into the system: finite
time extinction with probability 1 in time t = O(ecK) for large K (Doering
et al., 2005a). Before extinction and after the O(logK) deterministic re-
laxation time, population fluctuates ±O(

√
K) around the carrying capacity

K. The normalised continuous time process

xt =
Xt/(β−δ)

K
(92)

has level of discreteness δx = 1/K ! 1 and for large K and long time inter-
vals its statistics mimic those of solutions of the Itô stochastic differential
equation

dxt = γxt(1− xt)dt+ ε

√
γxt

(
ρ+ 1

ρ− 1
+ xt

)
dWt (93)

where γ = β − δ and the noise amplitude ε = 1/
√
K. The multiplicative

white noise produces the finite time extinction with probability 1 in time
t = O(ec

′K) as well (Doering et al., 2005a).

Degenerate model

According to evolutionary dynamics the best-fit species should survive
longer than the less-fit. Consider the Markovian birth-death process of two
species with text of order ecK . We are interested in finding if one of the
two species has an extinction time significantly shorter than ecK so that it
might be possible to refer the cause of extinction as competition rather than
natural inevitable extinction. We consider two species X(t) and Y (t) and
assume that one reproduces and also dies fast, whereas the other is slow
in reproduction but also lives longer. They compete equally for the same
resources and the only difference is on their rates of birth and death.

Start with the simplest description considering the following determin-
istic equations:

Ẋ = γXX

(
1− X + Y

K

)
and Ẏ = γY Y

(
1− X + Y

K

)
. (94)
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Suppose the total number of individuals in the steady state isK and let scale
X(t) and Y (t) by normalize them by K, moreover let define γ = γX/γY
and without loss of generality let consider the case γ > 1, so that X is the
faster species:

ẋ = γx (1− x− y) and ẏ = y (1− x− y) . (95)

Trajectories in the phase space satisfy

γ
dy

dx
=

y

x
(96)

so that at any instants of time

y(t)

y(t0)
=

(
x(t)

x(t0)

) 1
γ

. (97)

Trajectories are shown in Figure 3. From any initial point inside the first
quadrant solutions evolve to the stable line of fixed points corresponding to
degenerate states of coexistence. This occurs roughly in time of O(logK),
and the final ratio of the two species depends only in the initial conditions.
But is deterministic degeneracy real? That is, do the species coexist for
an O(ecK) time? If not, which among two species has an advantage and
(probably) survives longer?

Demographic stochasticity is taken into account by moving to the Markov
processes Xt and Yt. The random birth events have rates βX and βY and
the death events have rates

δX

(
1 +

n+m

K̃

)
and δY

(
1 +

n+m

K̃

)

when Xt = n and Yt = m, where K̃ = K/(ρ − 1) with βX/δX = βY /δY =
ρ > 1. With this formulation pn,m(t) = Prob{Xt = n and Yt = m} evolves
according to the master equation

d

dt
pn,m(t) =−

(
βX + δX

[
1 +

(n+m)

K̃

])
npn,m (98)

−
(
βY + δY

[
1 +

(n+m)

K̃

])
mpn,m

+ βX(n− 1)pn−1,m + δX

[
1 +

(n+ 1 +m)

K̃

]
(n+ 1)pn+1,m

+ βY (m− 1)pn,m−1 + δY

[
1 +

(n+m+ 1)

K̃

]
(m+ 1)pn,m+1.
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Figure 3. Deterministic trajectories according to equation (97) with γ = 10
in the (y,x) space.

The coefficients γX and γY appearing in the deterministic differential equa-
tions (94) are γX = βX − δX and γY = βY − δY .

In the limit of infinite K the real-valued processes

xt =
Xt/γY

K
and yt =

Yt/γY

K
(99)

closely follow (94), but for large but finite K their statistics are well approx-
imated by those of the Markov diffusion processes solving the Itô stochastic
differential equations

dxt =γxt(1− xt − yt)dt+ ε

√
γxt

(
ρ+ 1

ρ− 1
+ xt + yt

)
dW x

t (100)

dyt =yt(1− xt − yt)dt+ ε

√
yt

(
ρ+ 1

ρ− 1
+ xt + yt

)
dW y

t (101)

where dW x
t and dW y

t are independent Wiener processes and γ = δX/δY =
βX/βY . The noise amplitude ε = 1/

√
K. Note that for the fast species,

γ affects both the relaxation term and the noise term in a way that both
terms are larger for the faster species.

For large K the system at initial state (x0, y0) follows the deterministic
dynamics of (97) to a neighborhood of the degenerate line in time O(logK),
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and then it is affected by fluctuations of amplitude of O(1/
√
K) around it.

To decide the victor of the competition we study the reduced process zt
defined as the difference of the two processes xt and yt:

zt = xt − yt ∈ [−1, 1]. (102)

This represents drift and fluctuation on the coexistence line and it is useful
for analyzing the probability of eventual absorptions of zt at the borders
1 or −1, which means the extinction respectively of y or x. Starting form
z0, the process in zt may be approximated by a Markovian drift-diffusion
process described by drift v(z) and diffusion D(z):

dzt = v(zt)dt+
√
2D(zt)dWt. (103)

Let τz be the random time at which zt hits ±1 starting from z ∈ (−1, 1).
In order to study the probability of domination of one species over the
other we need to know u(z) ≡ Prob{z(τz) = −1|z0 = z}. The mean time to
extinction m(z) ≡ E{τ(z)} sets the time scale for the decision. To compute
these we need to determine the functions v(z) and D(z), i.e., to quantify
the drift and diffusion along the coexistence line.

Suppose the system is in the position z0 = (x0, y0) in the coexistence
line at time t = 0. A displacement at time t′ due to fluctuations brings
the system to the state (x′, y′) = (x0 + φa, y0 + ηb) where φ and η are
independent random variables which take values ±1 with probability 1/2.
To be consistent with the stochastic equations (101) a and b should be
proportional to the noise and, noting that x0 + y0 � 1 in the coexistence
line,

a ∼ ε

√
γx0

2ρ

ρ− 1
dt and b ∼ ε

√
y0

2ρ

ρ− 1
dt. (104)

We write

a2 = Cε2γx0
2ρ

ρ− 1
dt and b2 = Cε2y0

2ρ

ρ− 1
dt (105)

where C > 0 is a constant of order O(1).
After the random displacement we suppose that the system responds

with the deterministic trajectory of Eq.(97) to the coexistence line to posi-
tion (x0− ξ, y0 + ξ) so that the net displacement in the line is −2ξ, and the
drift and diffusion functions are

v(z) =
〈dzt〉
dt

= −2 〈ξ〉
dt

(106)

and

2D =

〈
dz2t

〉
dt

=
4
〈
ξ2

〉
dt

(107)
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where 〈·〉 means the average over fluctuations. Using 〈Φ〉 = 0 = 〈η〉,
〈
Φ2

〉
=

1 =
〈
η2

〉
and assuming that ξ can be written as an asymptotic expansion on

the noise ε, it is possible to write the drift and diffusion as explicit function
of z:

v(z) =− 2 〈ξ〉
dt

∼ Cε2
2ργ(1− γ)

ρ− 1
× 1− z2

[(1− z) + γ(1 + z)]2
(108)

D(z) =
2
〈
ξ2

〉
dt

∼ Cε2
2ργ

ρ− 1
× 1− z2

(1− z) + γ(1 + z)
. (109)

Both drift and diffusion are of order ε2 ∼ 1/K, so the time scale for
selecting between the two species is of order K which is longer than the time
for going to the coexistence line, but small compared to ultimate extinction!
Moreover, u(z) turns out to be independent of C. Its explicit form, valid
for K →∞, is

u(z) =
1− z

2

[
1 +

(
γ − 1

γ + 1

)
1 + z

2

]
. (110)

As can be seen from Figure 4, the form of u(z) means that the longer lived
species is favored, but note that starting with a 50%-50% initial population,
z = 0, the probability of Y winning is always constrained to be between 25%
and 75%.

In a different way, the time for the extinction of one speciesm(z) depends
explicitly on C, which is a constant to be determined. In order to do that,
one can consider the truly degenerate state in which the two species are
absolutely identical but different only for labelling, so γ = 1. In this case
m(z) satisfies

Cε2
(

ρ

ρ− 1

)(
1− z2

) d2m

dz2
= −1 (111)

with boundary conditions m(±1) = 0. The comparison between ODE (111)
and the leading terms approximation of the mean first passage time of the
process (xt, yt) to the borders allows to conclude that C = 1.

Numerical Monte Carlo simulations of the Markov process defined by
the master equation (98) varying γ and K, (while fixing ρ) show that the
asymptotic theory is in agreement with the data, although data for the
mean extinction time systematically underestimate the asymptotic theory
for high values of γ (Lin et al., 2012).

In conclusion demographic fluctuations can influence the selection of one
species over another. The problem in this scenario is an example of a tech-
nique for solving this kind of problems with the intention of understanding
how generalize it to more complex systems where fluctuations are due, for
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Figure 4. Probability of domination of Y-species over X starting from
position z in the coexistence line. From bottom to top γ → 0, γ =
0.1, 0.5, 1, 2, 10 and γ →∞.

example, to births and deaths and spatial dispersion of individuals in homo-
geneous or heterogeneous environments. Then fluctuations can affect the
selection or the extinction of one the species or another (Waddell et al.,
2010).
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Multiscale Crowd Dynamics
Modeling and Theory

Andrea Tosin*
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Abstract This chapter deals with models of living complex sys-
tems, chiefly human crowds, by methods of conservation laws and
measure theory. We introduce a modeling framework which en-
ables one to address both discrete and continuous dynamical sys-
tems in a unified manner using common phenomenological ideas
and mathematical tools as well as to couple these two descriptions
in a multiscale perspective. Furthermore, we present a basic the-
ory of well-posedness and numerical approximation of initial-value
problems and we discuss its implications on mathematical modeling.

1 Introduction

By living complex systems we mean multi-agent systems composed by living
entities, which take part in group dynamics while trying to chase individ-
ual purposes. Specifically, in this chapter we will be concerned with human
crowds. We will assimilate pedestrians to active particles, the activity being
their ability to set one or more intermediate and final goals (such as e.g,
avoiding collisions with other particles, reaching a destination) and to act
directly on their own dynamics to chase them, without being passively prone
to external influences. This gives rise to collective dynamics based primar-
ily on individual behavioral rules. At times active particles cooperate for
chasing a group goal, like in consensus and rendez-vous problems studied
by Canuto et al. (2012). On other occasions, instead, they do not cooperate
consciously, which makes group dynamics more difficult to be predicted and
nevertheless often surprisingly ordered and coordinated: it is the so-called
self-organization, see Cristiani et al. (2010).

In order to model such systems it is necessary to set up mathematical
structures suitable to cope with their complexity, partly due to that overall
dynamics are ultimately multiscale. In fact, they originate from individual

A. Muntean, F. Toschi (Eds.), Collective Dynamics from Bacteria to Crowds, CISM International  
Centre for Mechanical Sciences, DOI 10.1007/978-3-7091-1785-9_6, © CISM, Udine 2014 
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behaviors at the microscopic scale of single particles. Next, they are “ampli-
fied” by interactions among particles up to producing collective behaviors
at the macroscopic scale of the group, which cannot be directly deduced
from the knowledge of individual ones. Moreover, the collective state of the
group can in turn impact locally on the behavioral rules adopted by single
particles.

A large class of mathematical models uses conservation (or balance) laws,
expressing the fact that some physical quantities, such as mass, linear mo-
mentum, and energy of the system, either do not change during the evolution
or change in consequence of specific production/destruction mechanisms.
However, living systems can hardly be confined in strict balance principles.
For instance, their ability to elaborate behavioral strategies for chasing a
purpose makes them continuously put and remove energy from the system
in unconventional manners. Indeed entropy principles classically related to
the equiprobability of the states may be questioned, for self-organization
promotes special, usually inhomogeneous, configurations to the detriment
of more generic and homogeneous ones as stated by Schröedinger (1967).
Moreover, it may be difficult to ascribe the variations of linear momentum
to possibly “generalized” forces, because the dynamics of living systems
are not ruled purely by inertia. Of course, active particles do not elude
usual physical laws, rather they can influence them by means of personal
decisions, whose effects are not necessarily describable in terms of exter-
nal force fields. In other words, a straightforward application of the very
same ideas successfully used to describe other kinds of passive systems may
not completely fit active particles, because this analogy would forcedly miss
some distinctive features that heavily differentiate living from inert matter.

Among all classical balance principles mentioned above, probably the less
questionable one for the systems at hand is the conservation of mass: when
describing the evolution in space and time of human crowds it makes sense to
assume that no proliferation or destruction of pedestrians occur. Notice that
this does not imply by itself any specific dynamics of the interactions among
the individuals, it simply requires the conservation of their number. Thus
interactions can still be mechanical or non-mechanical, local or nonlocal,
binary or multiple, and so on.

Starting from the mass conservation principle, in this chapter we de-
scribe a unified mathematical framework which allows one to model crowd
dynamics by embedding the discrete description of individual pedestrians
and the continuous one of the collectivity. The key point is the reinterpreta-
tion of the continuity equation in terms of abstract mass measures featuring
a singular component (Dirac deltas), which represents the discrete level, and
an absolutely continuous one (with respect to the Lebesgue measure), which
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represents the continuous level. In more detail, in Section 2 we first intro-
duce the abstract equation and then specialize it to the case of pedestrian
interaction models. In Section 3 we discuss the use of the measure formu-
lation for obtaining discrete, continuous, and multiscale models, relating
furthermore the structure of the measure and the behavioral strategy of
pedestrians. In Section 4 we present the basic qualitative results concerning
well-posedness and numerical approximation of the Cauchy problem for the
mathematical structures previously deduced. Finally, in Section 5 we discuss
the relevance of these qualitative results as guidelines for the construction
of specific models which are both physically realistic and mathematically
robust.

2 Mathematical models by time-evolving measures

From the mathematical point of view, the mass of a d-dimensional system
(d = 1, 2, 3 for physical purposes) at time t is a Radon positive measure μt :
B(Rd) → R+ defined over the Borel σ-algebra B(Rd) in the physical space
R

d. In our case, for all measurable set E ∈ B(Rd) the number μt(E) ≥ 0
gives an estimate of the crowding of the region E ⊆ R

d at time t (ideally,
it can be thought of as the “average” number of pedestrians occupying the
region E at time t). In particular, if we consider a crowd composed by N
pedestrians then, owing to the mass conservation principle, we must have
μt(R

d) = N for all t. This can be expressed in differential form by saying
that the measure μt satisfies the equation:

∂μt

∂t
+∇ · (μtvt) = 0, (1)

where vt = vt(x) : R
d → R

d is, at time t, a transport velocity field. Equa-
tion (1) is written in a formal fashion but has to be properly understood in
the weak sense of distributions. For all test function φ ∈ C∞

c (Rd) and for
all t ∈ (0, Tmax], Tmax > 0 being a final time, it means:∫

Rd

φ(x) dμt(x) =

∫
Rd

φ(x) dμ0(x) +

∫ t

0

∫
Rd

vs(x) · ∇φ(x) dμs(x) ds, (2)

where μ0 is a positive Radon measure to be assigned, which represents the
initial distribution of the crowd. If the transport velocity is bounded, i.e.,
there exists a constant Vmax > 0 such that

|vt(x)| ≤ Vmax, ∀x ∈ R
d, t ∈ (0, Tmax],

it is not difficult to show that (2) implies indeed μt(R
d) = μ0(R

d) for all t ∈
(0, Tmax], hence actually the conservation of the total number of pedestrians
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Figure 1. a. Example of a desired velocity field vd in a domain formed by
two regions communicating through a narrow corridor. b. “True” velocity
v (cf. Equation (3)) when the interaction velocity vi among pedestrians is
added to the desired velocity. c. Crowd density field with generates the
true velocity illustrated in b.

as fixed at the initial time. It is sufficient to take a sequence {φm}m≥1 ⊆
C∞

c (Rd) of test functions such that 0 ≤ φm(x) ≤ 1 for all x ∈ R
d and all

m ≥ 1, with in addition φm(x)→ 1 and ∇φm(x)→ 0 pointwise for m→∞,
and then invoke the Dominated Convergence Theorem (the existence of such
a sequence is guaranteed by Uryshon’s Lemma).

2.1 Modeling pedestrian interactions

Equation (1), or alternatively (2), gives the time evolution of the crowd
distribution μt provided a transport velocity is assigned. Recalling the
discussion set forth in the Introduction, given the lack of a balance of linear
momentum to be coupled to the mass conservation it is necessary to model
directly the field vt.
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Other crowd models available in the literature follow similar ideas, see
e.g., Coscia and Canavesio (2008); Colombo and Rosini (2009). Typically,
pedestrian velocity is obtained from an empirical constitutive relationship,
the so-called fundamental diagram, which expresses it as a known function of
the distribution in space of the crowd in (locally) stationary homogeneous
conditions. Here we propose instead a modeling of vt more focused on
pedestrian interactions, in order to ground the dynamics directly on the
idea of active behavior discussed in the Introduction.

We write the velocity as the sum of two contributions:

vt(x) := vd(x) + vi[μt](x), (3)

where square brackets indicate a functional dependence on the measure μt.
The function vd : Rd → R

d is the desired velocity, i.e., the velocity at
which an isolated pedestrian would head for her destination. It is inde-
pendent of the system dynamics, being determined a priori only by the
geometry of the domain, including the presence of possible obstacles viewed
as holes in R

d, namely regions that pedestrian cannot access (Figure 1a).
Conversely, the function vi[μt] : R

d → R
d is the interaction velocity, i.e., the

correction that pedestrians make to the desired velocity due to mutual in-
teractions. It takes into account that individuals generally aim at avoiding
crowded areas, hence it adds a repulsive contribution to vd (Figures 1b-c).
Moreover, its effect is nonlocal, because pedestrians anticipate their own
decisions through a process of synthesis of the information about the crowd
distribution in the immediate vicinity. Out of these arguments, we set:

vi[μt](x) =

∫
Rd

K(x, y)ηS(x)(y) dμt(y), (4)

where:
• K : R

d × R
d → R

d is the interaction kernel, which describes the
repulsion acting on the individual in x, called test pedestrian, because
of the presence of an individual in y, called field pedestrian. Generally,
recalling also the Galileian invariance, the function K depends on x,
y through their distance |y − x| along the segment connecting them.
A prototypical example is:

K(x, y) ∼ − 1

|y − x| ·
y − x

|y − x|

for |y − x| “not too” small, whereas for y → x it may be necessary
to introduce a regularization in order to avoid singularities (cf. Sec-
tion 5);
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vd(x)

x

dμt(y) y

Figure 2. Sensory region of the test pedestrian in x.

• ηS(x) : Rd → R+ is a cut-off function limiting the influence on the
test pedestrian in x to field pedestrians within her sensory region
S(x) ⊂ R

d. Typically, ηS(x) is smooth and compactly supported in
S(x) (for instance, it can be a mollified version of the characteristic
function of the set S(x)). A prototypical sensory region is a circular
sector centered in x, symmetric with respect to the local direction of
the desired velocity vd(x), and oriented along the latter (Figure 2).
This models anisotropic interactions: the test pedestrian is affected
by field pedestrians ahead but not behind. The radius of the circular
sector is the maximal distance at which a field pedestrian can have an
influence on the test pedestrian, while the angle of the sector identifies
the visual cone of the latter.

3 Multiscale approach

Equations (1), (3), (4) provide a unified modeling framework which com-
prises both discrete and continuous dynamics. The key point is the spatial
structure of the measure μt.

Discrete dynamics are obtained if the spatial structure of μt is discrete:

μt =

N∑
i=1

δxi(t), (5)

{xi(t)}Ni=1 ⊂ R
d being the set of all and only points where pedestrians are

distributed at time t. Plugging (5) into (2), (4) yields:

ẋi = vd(xi) +

N∑
j=1

K(xi, xj)ηS(xi)(xj) (i = 1, . . . , N), (6)
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which completely characterizes the evolution of the crowd distribution.
Continuous dynamics are instead obtained if the spatial structure of μt

is continuous, i.e., if mass and volume are proportional (in the sense of
Radon-Nikodym’s Theorem):

dμt(x) = ρt(x) dx, (7)

where now ρt : R
d → R+ is the mass density of the crowd distribution at

time t, such that
∫
Rd ρt(x) dx = N (thus, in particular, ρt ∈ L1(Rd) for all

t). In this frame, the support of ρt in R
d is conceptually the counterpart

of the set {xi(t)}Ni=1 above. Inserting (7) in (2), (4) gives (actually a weak
form of):

∂

∂t
ρt(x) +∇ ·

[
ρt(x)

(
vd(x) +

∫
Rd

K(x, y)ηS(x)(y)ρt(y) dy

)]
= 0, (8)

namely a conservation law with nonlocal flux, which in turn characterizes
completely the evolution of the distribution of pedestrians.

Do Equations (6), (8) describe the same system and the same dynam-
ics? Yes and no. They formalize two different mathematical models of the
same physical system, which however originate from the common abstract
structure (1)–(4). Therefore they share the phenomenological description
of the individual microscopic interactions, expressed by the kernel K and
by the cut-off function ηS(·), but can predict different collective macroscopic
effects because the latter depend on the spatial structure of the measure μt

in Equation (4).
More precisely, it is useful to understand the spatial structure of μt as

the modeling counterpart of the perception of the test pedestrian, which
affects the way the latter reacts to surrounding individuals. A discrete
perception can be typical of sparse crowds or of leisure-type travel pur-
poses, when pedestrians are more sensitive to the one-by-one distribution
of their neighbors. Conversely, a continuous perception can be typical of
dense crowds or of business-type travel purposes (e.g., commuters in rush
hours), when pedestrians tend to interact with subgroups of other walkers
as a whole. This corresponds to the expression of a behavioral strategy,
which can impact in a non-negligible manner on the classical laws of mo-
tion (see also Bruno et al. (2011) for a different modeling approach to the
concept of perception, however always related to the expression of a behav-
ioral strategy by pedestrians). Therefore, although the elementary pairwise
interaction rules are always the same, their collective effect can be greatly
different due to the “filtering” operated by perception. Such a phenomenol-
ogy is possible because crowds are granular living systems: the number of
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pedestrians is locally always finite and “small” (at least compared to the
order of magnitude of the Avogadro’s number in classical gas dynamics),
which makes large-scale dynamics rather sensitive to individual behaviors
on smaller scales.

The concept of perception can be formalized in the model by means of
a parameter θ ∈ [0, 1], which determines a scale of spatial structures of the
measure μt:

μt = θ

N∑
j=1

δxj(t) + (1− θ)ρtLd, (9)

Ld being the Lebesgue measure in R
d. By plugging this representation into

Equation (4) we see that the transport velocity (3):

vt(x) = vd(x) + θ

N∑
j=1

K(x, xj)ηS(x)(xj)

+ (1− θ)

∫
Rd

K(x, y)ηS(x)(y)ρt(y) dy (10)

depends now on a weighted contribution of discrete and continuous dynam-
ics. Clearly, the two choices discussed above correspond to the particular
cases θ = 0 (continuous dynamics) and θ = 1 (discrete dynamics). Nev-
ertheless, if 0 < θ < 1 this formalism allows one to deal, more in general,
with hybrid dynamics which are neither fully discrete nor fully continuous
(cf. the case studies presented in Figures 3, 4). Moreover, the transport
of the measure (9) by means of Equation (1) with the velocity field (10)
allows also for a purely continuous representation of the crowd distribu-
tion evolving according to genuinely discrete dynamics or, conversely, a
purely discrete representation evolving according to genuinely continuous
dynamics. Finally, if the perception parameter θ changes in space, i.e., it is
converted into a function of x, then the model enables one to have different
types of dynamics in different sub-domains (see e.g., Cristiani et al. (2012),
where this idea is used in the case of vehicular traffic for coupling continuous
dynamics along straight roads and discrete dynamics at crossroads, where
driver perception is sharpened by vehicles coming from different merging
directions).

4 Basic theory

Once an initial measure, say μ̄, is prescribed, the model based on Equa-
tion (1) together with a velocity field of the type (3)-(4) generates a Cauchy
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Figure 3. Lane formation in counter-flows obtained with model (1)-(3)-(4)-
(9) with three different values of the perception parameter θ. a. With θ = 0
pedestrian perception is purely continuous. Lanes emerge but the lack of
symmetry breaking makes the result look rather artificial, thereby suggesting
that granularity should play a role. b. With θ = 0.3 pedestrian perception
is genuinely multiscale. The atoms of μt introduce inhomogeneities in the
density flow, which induce a qualitatively more realistic lane formation also
at a purely continuous level (i.e., when looking at the density only). c.
With θ = 1 pedestrian perception is purely discrete. Also in this case lane-
type patterns predicted by the model look realistic. On the whole, this
example demonstrates that lane formation is quite a robust phenomenon
at all scales, although pedestrian perception can influence the qualitative
patterns collectively observed.

problem falling in the following class:⎧⎨
⎩

∂μt

∂t
+∇ · (μtv[μt]) = 0 x ∈ R

d, t ∈ (0, Tmax]

μ0 = μ̄,
(11)

where we denoted by v[μt] a generic velocity field fully determined by the
(unknown) measure μt.
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Figure 4. Crossing flows at a bottleneck obtained with model (1)-(3)-(4)-
(9) with the same three values of the perception parameter θ as in Figure 3.
a. Initial condition common to all cases. b. A purely continuous perception
(θ = 0) determines a clogging of the bottleneck, because individuals interact
with subgroups of surrounding walkers being thus basically unable to ex-
ploit inter-pedestrian gaps. c. A genuinely multiscale perception (here with
θ = 0.3) produces instead a kind of traffic light effect at the bottleneck: the
latter is occupied alternately by either crowd while the other one stops and
waits. d. A purely discrete perception (θ = 1) gives rise to an ordered lane
formation through the bottleneck, for pedestrians estimate with great preci-
sion the position of nearby people and self-organize so as to share effectively
the available room. On the whole, this example demonstrates that pedes-
trian perception can play a major role in shaping the observable collective
patterns even starting from the very same initial conditions. Notice that all
patterns shown in b., c., and d. can actually happen in real situations.
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In general μt is a finite measure on R
d but not a probability measure.

In fact we know that if μ̄(Rd) = N then μt(R
d) = N for all t ≤ Tmax

but clearly it has to be N > 1 in order for the model to describe interesting
scenarios. However, for the analytical study of Problem (11) it is convenient
to rescale μt with respect to the total number N of pedestrians in such a
way that it is formally a probability, regardless of its derivation for modeling
purposes. This way it is easier to set Problem (11) in the proper functional
spaces with the proper metrics. Therefore we will henceforth assume to
have implicitly performed such a rescaling (and we still denote by μt the
rescaled measure)1.

A proper weak sense in which Problem (11) can be understood is the one
specified in (2) (with μ0 = μ̄). In particular, Equation (2) is well-defined
if t �→ μt is a continuous mapping from the interval (0, Tmax] into one of
the metric spaces Pp(R

d) of probability measures on R
d with finite p-th

moment (p ≥ 1, see Ambrosio et al. (2008) for technical details). Without
loss of generality we fix p = 1, i.e., we consider the space P1(R

d), which is
complete with the metric

W1(μ, ν) = sup
ϕ∈Lip1(R

d)

∫
Rd

ϕd(ν − μ) (μ, ν ∈ P1(R
d)),

called the (first) Wasserstein distance. In the definition above, Lip1(R
d) is

the set of Lipschitz continuous functions on R
d whose Lipschitz constant is

not greater than 1.
Ultimately, we say that:

Definition 4.1. A curve μ• ∈ C([0, Tmax]; P1(R
d)) is a (weak) solution to

Problem (11) if it satisfies Equation (2), with μ0 = μ̄, for all φ ∈ C∞
c (Rd)

and all t ∈ (0, Tmax].

The basic theory for Problem (11) depends essentially on the properties
of the velocity field. We now formulate some assumptions, valid for suffi-
ciently general fields v (i.e., not necessarily referred to the specific struc-
ture (3)-(4)), whence both the well-posedness of the Cauchy problem and
the convergence of a suitable numerical scheme, based on the transport of
measures, for the approximation of the solutions follow.

1Notice that if μt is thought of as a probability measure then the interaction velocity (4)
must be coherently rewritten as

vi[μt](x) = N

∫
Rd

K(x, y)ηS(x)(y) dμt(y)

in view of the rescaling.
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Assumptions on the velocity v for Problem (11)

(i) Uniform boundedness: there exists a constant Vmax > 0 such that

|v[μ](x)| ≤ Vmax, ∀x ∈ R
d, ∀μ ∈ P1(R

d).

(ii) Lipschitz continuity : there exists a constant Lip(v) > 0 such that

|v[ν](y)− v[μ](x)| ≤ Lip(v) (|y − x|+W1(μ, ν)) ,

∀x, y ∈ R
d, ∀μ, ν ∈ P1(R

d).

(iii) Mild linearity : for all α ∈ [0, 1] and all pairs of measures μ, ν ∈
P1(R

d) it results

v[αμ+ (1− α)ν] = αv[μ] + (1− α)v[ν].

Remark 4.2. We called Assumption (iii) mild linearity because it requires
the mapping μ �→ v[μ] to be linear for convex linear combinations only.

It is important to take into account that the Assumptions above are
not meant to be sharp from the technical point of view. Rather, they are
thought of for models which should be applied to realistic case studies. In
this respect, one of their advantages is that they can be verified quite easily
in practical cases. Furthermore, they allow for proofs which do not require
sophisticated techniques of optimal transportation.

4.1 Well-posedness of Problem (11)

Using only Assumption (ii) it is possible to prove the following a priori
estimate on the solutions to Problem (11):

Theorem 4.3. If μ1
•, μ

2
• ∈ C([0, Tmax]; P1(R

d)) are two solutions corre-
sponding to two initial data μ̄1, μ̄2 ∈ P1(R

d), respectively, then there exists
a constant C > 0 such that

W1(μ
1
t , μ

2
t ) ≤ CW1(μ̄

1, μ̄2), ∀ t ∈ (0, Tmax]. (12)

Proof. See e.g., Cristiani et al..



Multiscale Crowd Dynamics: Modeling and Theory 169

Thus the solution to Problem (11), if it exists, is unique and depends
continuously on the initial datum. The constant C depends on the Lipschitz
constant Lip(v) of the velocity and on the final time Tmax.

For the proof of the estimate (12) the interested reader is referred to
the above-cited reference. Here we simply point out that the classical tech-
nique makes use of the following representation formula of the solutions to
Problem (11): if μ• ∈ C([0, Tmax]; P1(R

d)) is a solution corresponding to an
initial datum μ̄ ∈ P1(R

d) then, after introducing the flow map γt : R
d → R

d

defined by: ⎧⎨
⎩

∂

∂t
γt(x) = v[μt](γt(x)), x ∈ R

d, t ∈ (0, Tmax]

γ0(x) = x, x ∈ R
d,

(13)

it results

μt = γt#μ̄ viz. μt(E) = μ̄(γ−1
t (E)), ∀E ∈ B(Rd),

where # is the so-called push forward operator. This representation formula
can be easily checked using Equation (2).

Next, in view of the further Assumptions (i), (iii), also existence of the
solution can be proved:

Theorem 4.4. For μ̄ ∈ P2(R
d) ⊂ P1(R

d) there exists a solution μ• ∈
C([0, Tmax]; P1(R

d)) to Problem (11).

Proof. See e.g., Tosin and Frasca (2011).

Notice that Theorem 4.4 requires actually μ̄ ∈ P2(R
d), i.e., that the ini-

tial datum has both first and second order moments finite. This assumption
is mainly technical. Nevertheless, from the point of view of applications it
is not a limitation, since initial data typically have compact support (in-
deed, a crowd spread over the whole Rd would not be such a realistic initial
condition), hence their moments of any order p are automatically finite. In
fact: ∫

Rd

|x|p dμ̄(x) =
∫
supp(μ̄)

|x|p dμ̄(x) ≤ Rp < +∞,

R being the radius of one of the balls centered at the origin which contain
supp(μ̄).

Finally, we can establish the following well-posedness result, in the sense
of Hadamard, for the Cauchy problem (11):



170 A. Tosin

Theorem 4.5. Let Assumptions (i)–(iii) hold. For all μ̄ ∈ P2(R
d) there

exists a unique solution μ• ∈ C([0, Tmax]; P1(R
d)) to Problem (11) in the

sense of Definition 4.1. In addition, it depends continuously on the initial
datum on the basis of the estimate (12).

4.2 Numerical scheme and its convergence

In order to approximate the solution to Problem (11) it is possible to
use the numerical scheme introduced by Piccoli and Tosin (2009, 2011),
then further detailed for multiscale models by Cristiani et al. (2011) and
adopted also by Maury et al. (2010); Canuto et al. (2012). In short, the idea
is to approximate μt by an absolutely continuous measure with respect to
Lebesgue, which is piecewise constant over a pairwise disjoint partition of
R

d called mesh. Specifically, the latter is formed by cells Ei of characteristic
size h > 0 such that Ld(Ei)→ 0 when h→ 0+:

R
d =

⋃
i∈Zd

Ei, Ei ∩ Ej = ∅ ∀ i �= j.

For d = 2 (which in several applications is the most interesting case for
crowd simulations) the cells Ei can be square-shaped with edge length h.
The simplest generalization to an arbitrary dimension is obtained by con-
sidering hypercubes with edge length h, so that Ld(Ei) = hd.

Let μ̃n be the approximation of μt at the discrete time tn = nΔt, where
Δt > 0 is a fixed time step. Then by construction it results dμ̃n = ρ̃n dx,
where ρ̃n = ρ̃n(x) : R

d → R+ is the density that the numerical scheme has
to determine. Again by construction, ρ̃n is piecewise constant on the grid
{Ei}i∈Zd , therefore it can be represented as

ρ̃n(x) =
∑
i∈Zd

ρni χEi
(x), (14)

χEi denoting the characteristic function of the cell Ei. The unknowns are
thus the coefficients ρni ≥ 0.

The numerical scheme is constructed by imposing first that, in one time
step, the measure μ̃n is transported on the new measure μ̃n+1 by a suitable
discretization γ̃n of the flow map (13): μ̃n+1 = γ̃n#μ̃n, and by testing
then this relation on the grid cells: μ̃n+1(Ei) = μ̃n(γ̃

−1
n (Ei)). Using the

numerical density (14), this yields a recursive formula to pass from the
coefficients ρni to those at the next time step:

ρn+1
i =

1

hd

∑
j∈Zd

ρnj Ld(Ei ∩ γ̃n(Ej)) (i ∈ Z
d). (15)
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Figure 5. Action of the numerical scheme (15) on the grid cells.

It expresses the fact that the numerical density is redistributed over the
mesh, in one time step, proportionally to the (Lebesgue) measure of the
intersections among the cells moved by the discrete flow map γ̃n (see Fig-
ure 5). In particular, the latter is obtained cell-by-cell as:

γ̃n(x) = x+ v[μ̃n](xi)Δt for x ∈ Ei,

where xi is any point of Ei, for instance its center. Hence γ̃n acts in every
cell as a rigid translation with constant velocity v[μ̃n](xi), namely the ve-
locity v of the exact problem (11) computed for x = xi with respect to the
approximate measure μ̃n.

Despite that the numerical measure μ̃n has been chosen absolutely con-
tinuous with respect to Lebesgue, the scheme (15) can actually approximate
solutions to Problem (11) with generic spatial structure. Indeed the follow-
ing result holds true:

Theorem 4.6. Consider a sequence of spatiotemporal grids indexed by k =
0, 1, 2 . . . , with mesh parameters hk, Δtk → 0 for k → ∞. Let μ̃k

t be the
piecewise linear interpolation in time of the numerical solutions μ̃k

n computed
on the k-th mesh with the scheme (15):

μ̃k
t =

Nk
max−1∑
n=0

[(
1− t− tkn

Δtk

)
μ̃k
n +

t− tkn
Δtk

μ̃k
n+1

]
χ[tkn, t

k
n+1]

(t), (16)
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where tkn = nΔtk, N
k
max is the number of discrete time steps on the k-th grid

needed to reach the final time Tmax, and χ[tkn, t
k
n+1]

denotes the characteristic

function of the interval [tkn, t
k
n+1].

Assume that Assumptions (i)–(iii) on page 12 hold true, that the initial
datum is discretized as:

(ρ0i )
k =

μ̄(Ek
i )

hd
k

(i ∈ Z
d),

and moreover that the spatiotemporal grids are chosen in such a way that

hk = o(Δtk) when k →∞.

If μ̃k
• converges in C([0, Tmax]; P1(R

d)) to some μ• for k → ∞ in the
following sense:

lim
k→∞

sup
t∈[0, Tmax]

W1(μ̃
k
t , μt) = 0

then the limit μ• is a (weak) solution to Problem (11) in the sense of Defi-
nition 4.1.

Proof. See e.g., Tosin and Frasca (2011).

Notice that Theorem 4.6 does not guarantee but assumes the conver-
gence of the numerical solution to a curve μ• ∈ C([0, Tmax]; P1(R

d)). For
this reason, it recalls the Lax-Wendroff’s Theorem about the convergence
of numerical schemes for hyperbolic conservation laws. Nevertheless it is
possible to complement it with a simple criterion ensuring that the required
convergence does indeed take place:

Proposition 4.7. Let a compact set K ⊂ R
d exist such that supp(μ̃k

n) ⊆
K for all n and all k. Then the time-interpolated sequence {μ̃k

•}k≥0, cf.
Equation (16), converges in C([0, Tmax]; P1(R

d)).

Proof. See e.g., Tosin and Frasca (2011).

It is evident that such a K exists especially when the initial datum
μ̄ is compactly supported. In fact, due to Assumption (i), Problem (11)
describes a transport with finite speed, hence supp(μ̄) cannot expand in-
definitely within a finite time Tmax.

Besides the references already given for the proofs of Theorem 4.6 and of
Proposition 4.7, the interested reader is referred also to the paper by Piccoli
and Rossi (2013) for a deep analysis of further numerical schemes dealing
with the approximation of the solution to Problem (11).
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4.3 Structure of the solution

The theory set forth in the previous sections does not provide any infor-
mation about the spatial structure of the solutions to Problem (11), which
is important especially for multiscale models discussed in Section 3.

Using the representation formula introduced in Section 4.1, it is quite
easy to see that if the initial datum μ̄ has a discrete structure like2 μ̄ =
1
N

∑N
i=1 δx̄i

then also the solution μt has a discrete structure for all t > 0.
In fact, for all Borel set E ∈ B(Rd) it results:

μt(E) = (γt#μ̄)(E) = μ̄(γ−1
t (E)) =

1

N

N∑
i=1

δx̄i(γ
−1
t (E)) =

1

N

N∑
i=1

δγt(x̄i)(E),

hence letting xi(t) := γt(x̄i) we have μt =
1
N

∑N
i=1 δxi(t). Notice that this

holds independently of the regularity of the flow map γt, namely of the
velocity field v[μt].

Conversely, for an absolutely continuous initial datum, dμ̄(x) = ρ̄(x) dx,
the solution μt may develop singularities in finite time if the flow map tends
to concentrate “too much” density over “too small” spatial structures. The
following result gives a sufficient condition for ruling out this possibility:

Theorem 4.8. Let μ̄ be absolutely continuous with respect to the Lebesgue
measure. Assume that at every fixed time t ∈ (0, Tmax] there exists a con-
stant Ct > 0, possibly depending on t, such that

Ld(γ−1
t (E)) ≤ CtLd(E), ∀E ∈ B(Rd). (17)

Then also μt = γt#μ̄ is absolutely continuous with respect to Lebesgue for
all t ∈ (0, Tmax].

Proof. See e.g., Cristiani et al. (2011); Piccoli and Tosin (2011); Cristiani
et al..

Condition (17) requires that the flow map does not shrink measurable
sets too much. Indeed, by reading the inequality from right to left, it states
that the Lebesgue measure of E can be controlled from below by the measure
of its inverse image through γt. Nevertheless, this condition is not easy to be
checked in concrete cases. To obviate such a difficulty, at least for smooth
flow maps, it is possible to use the following criterion, which is at the same
time sufficient and easier to verify.

2Unlike Equation (5), here the coefficient 1
N

appears because of the rescaling to a

probability measure introduced at the beginning of the section.



174 A. Tosin

Proposition 4.9. If the flow map γt is a diffeomorphism with Lipschitz
constant Lip(γt) such that

Lip(γt) <
1

Lip(v)Tmax
(18)

then it fulfills condition (17).

Proof. See e.g., Cristiani et al..

In particular, it is useful to know that under Assumption (ii) the Lips-
chitz constant of γt can be estimated as Lip(γt) ≤ 1+Lip(v)Tmaxe

Lip(v)Tmax

(see Cristiani et al.), hence (18) is certainly satisfied if

1 + Lip(v)Tmaxe
Lip(v)Tmax <

1

Lip(v)Tmax
,

which is ultimately a condition on the Lipschitz constant of the velocity.
This is more practical because, as seen in Section 2.1, it is the velocity, not
the flow map, which plays a major role in the modeling approach.

Finally, if the initial datum has a hybrid structure such as (9) it is suffi-
cient to recall the linearity of the push forward operator # to conclude that
the results above apply separately to the discrete and continuous parts.
Consequently, if the flow map satisfies the conditions expressed by Theo-
rem 4.8 and by Proposition 4.9 then the solution to Problem (11) preserves
the multiscale structure for all times t > 0.

5 Back to crowd models

Results presented in Section 4 hold for an “abstract” velocity field char-
acterized essentially by Assumptions (i)–(iii) (cf. page 12). In order to
construct crowd models not only physically realistic but also mathemati-
cally robust it is therefore important to study the interplay between the
structures introduced in Section 2 and these assumptions.

As recalled in Section 2.1, the interaction kernel K should depend on
the relative position y − x of the interacting pedestrians in order for the
description of the interactions to be independent of rigid transformations of
the coordinate system. This implies

K(x, y) = k(y − x),

k : Rd → R
d being a function to be properly modeled (which we still call

interaction kernel). That said, pedestrian velocity (3)-(4) takes the form:

v[μt](x) = vd(x) +N

∫
Rd

k(y − x)ηS(x)(y) dμt(t), (19)
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where the coefficient N (total number of pedestrians) in front of the inter-
action integral appears because of the reinterpretation of μt as a probability
measure (cf. footnote 1 on page 11).

It is immediate to check that the velocity field (19) satisfies Assump-
tion (iii) with no additional hypotheses. In fact, it is sufficient to write
vd = αvd + (1 − α)vd and to collect the terms conveniently. Notice that
it is fundamental that Assumption (iii) requires only a mild linearity, for
the mapping μ �→ v[μ] resulting from Equation (19) is in general not linear
(except when the desired velocity is zero, which however does not always
make sense from the modeling point of view).

In order for the velocity (19) to fulfill also Assumptions (i), (ii) some
further technical details are needed, to be regarded as modeling guidelines,
concerning the structure of the terms vd, k, S(·), and ηS(·). For the sake
of simplicity we consider only the two-dimensional case (d = 2), which is
however largely sufficient for addressing realistic crowd models.

Modeling Guidelines for the velocity v (19) with d = 2

(i) Desired velocity : let x �→ vd(x) be Lipschitz continuous and
bounded in R

2.

(ii) Sensory region: for all x ∈ R
2, let S(x) be a bounded Borel set

contained in a ball with fixed radius R > 0 independent of x (for
instance, the one centered in x: S(x) ⊆ BR(x)) and isometric to
a reference set S(0) ⊆ BR(0).

(iii) Interaction kernel : let x �→ k(x) be Lipschitz continuous in the
ball BR(0) centered at the origin and with radius R defined at
the previous point (ii).

(iv) Cut-off function: for all E ∈ B(R2), let x �→ ηE(x) be Lipschitz
continuous and bounded between 0 and 1 in R

2 with supp(ηE) ⊂⊂
E.

Remark 5.1. The Modeling Guideline (ii) means that the sensory region
S(x) of the point x is obtained by translating and rotating the reference
set S(0). The translation vector is obviously x. Moreover, according to
what has been said in Section 2.1, the rotation angle is individuated by the
direction of the vector vd(x).
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If pedestrian velocity is constructed in accordance with the Modeling
Guidelines stated above then the crowd model based on Equations (1), (19)
features a certain mathematical robustness, indeed:

Proposition 5.2. If, in two space dimensions (d = 2), the velocity field (19)
complies with the Modeling Guidelines (i)–(iv) then it fulfills Assumptions (i)–
(iii).

Proof. See e.g., Tosin and Frasca (2011).

hence it is possible to apply to it the theory of well-posedness and numerical
approximation presented in Section 4.
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Birkhäuser, Boston, 2010.

E. Cristiani, B. Piccoli, and A. Tosin. Multiscale modeling of granular
flows with application to crowd dynamics. Multiscale Model. Simul., 9
(1):155–182, 2011.



Multiscale Crowd Dynamics: Modeling and Theory 177

E. Cristiani, B. Piccoli, and A. Tosin. How can macroscopic models reveal
self-organization in traffic flow? In Proceedings of the 51st IEEE Con-
ference on Decision and Control, Maui, Hawaii, USA, December 2012.

B. Maury, A. Roudneff-Chupin, and F. Santambrogio. A macroscopic crowd
motion model of gradient flow type. Math. Models Methods Appl. Sci.,
20(10):1787–1821, 2010.

B. Piccoli and F. Rossi. Transport equation with nonlocal velocity in
Wasserstein spaces: convergence of numerical schemes. Acta Appl. Math.,
124(1):73–105, 2013.

B. Piccoli and A. Tosin. Pedestrian flows in bounded domains with obsta-
cles. Contin. Mech. Thermodyn., 21(2):85–107, 2009.

B. Piccoli and A. Tosin. Time-evolving measures and macroscopic modeling
of pedestrian flow. Arch. Ration. Mech. Anal., 199(3):707–738, 2011.
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