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Abstract This Chapter is devoted to the application of unilateral
models to the stress analysis of masonry structures. Some 2d ap-
plications of what we call the simplified models for masonry, are
discussed and studied. Though the essentially unilateral behaviour
of masonry is largely recognized, some prejudices still persist on the
possibility of making the No-Tension (NT) assumption a practical
model for designing engineers. The results here presented demon-
strate that the unilateral model for masonry can be a useful tool
for modeling real masonry structures. In the exposition the critical
points are emphasized and strategies to handle them are suggested,
both for the most primitive model (namely the Rigid NT material),
and for the more accurate Normal Elastic NT and Masonry-Like
(ML)materials. The first tool here introduced for applying the No-
Tension model to structures is the systematic use of singular stress
and strain fields. Next a number of closed form solutions for NENT
and ML materials is discussed. Finally a numerical approach based
on descent is proposed for handling the zero-energy modes typical
of unilateral materials. Some numerical solutions and comparisons
with analytical solutions and test results are also presented.

This Chapter is dedicated to Giovanni Castellano who inspired
most of my work on masonry since my early steps.

1 Basic tools

In this section the main notation and the basic notions of equilibrium and
compatibility, in presence of singular stress and strain fields, are introduced.
Singular strains are usually considered in perfect plasticity, and the use
of singular stress fields (though in a mathematically unconscious way) has
been around since the nineteenth century (see Mery (1840)). It is only fairly
recently that Šilhavý, Lucchesi et al (see Lucchesi and Zani (2005)) , have
put forward a rigorous mathematical formulation of stress field singularities.
Chapters 2 and 3 of the present book are partly devoted to the mathematical
exposition of these clever concepts within the theory of measures.
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The formulation that is given here, instead, is rather informal and based
mainly on geometrical arguments. A substantial knowledge of the mathe-
matical theory of linear elasticity, such as that given in the monograph by
Gurtin (1972), to which I refer for notations, is presumed. Familiarity with
functional analysis is not strictly required, though some previous experi-
ence with elementary functional analysis in Sobolev spaces and variational
methods (as can be found, for example, in the books by Kreyszig (1989)
and Dym and Shames (1973)) would be of help.

The matter treated and analysed here is not entirely new. Much of
what is reported, apart from the classical and more recent sources cited
throughout the text, leans on a number of papers recently published, or
under print or review, by myself or my reserch group. In particular, on
singular stress: Angelillo et al. (2012) and Angelillo et al. (2013); on Limit
Analysis for masonry: Angelillo and Fortunato (2013); on semianalitical
solutions for panels: Fortunato (2010); on numerical methods for unilateral
materials Angelillo et al. (2010).

1.1 Preliminaries

It is assumed that the body, a domain Ω ∈ �n (here n=2), loaded by
the given tractions s on the part ∂ΩN of the boundary, and subject to given
displacements u on the complementary, constrained part of the boundary
∂ΩD, is in equilibrium under the given surface displacements, tractions and
body loads (u; s,b)1 and undergoes displacements u and local deformations,
so small that the infinitesimal strain E(u) is a proper strain measure.

Vectors and tensors are represented in Cartesian components, in a fixed
frame (0; x1, x2). Summation convention is adopted throughout the text.

1.2 Equilibrated stress fields, regularity of T

A stress field T is said to be equilibrated with (s,b), if it satisfies the
equilibrium equations

divT+ b = 0 ,

and the traction boundary conditions

Tn = s , on ∂ΩN ,

n denoting the unit outward normal to ∂Ω.

1Other possible data are the eigenstrains E; here I omit them from the analysis to

simplify the exposition, though some special eigenstrains will be considered as data in

some of the examples which follow.
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T is a tensor function of x ∈ Ω, for which some kind of regularity must
be assumed. If the differential equations of equilibrium are considered in
a strong sense, the stress field T must be differentiable and its divergence
must be continuous.

On adopting a variational formulation, if the material is linearly elastic,
the minimal request for T is to be square summable, that is√∫

Ω

T ·Tda <∞ .

For some rigid perfectly plastic materials (such as rigid unilateral mate-
rials), less regular and even singular stresses may be admitted. The minimal
request for such materials is that T be summable∫

Ω

√
T ·Tda <∞ .

If one admits stress fields that are only summable, the set of competing
functions enlarges to bounded measures, that is to summable distributions
T̃: ∫

Ω

∣∣∣T̃∣∣∣ <∞ ,

which, in general, can be decomposed into the sum of two parts

T̃ = T̃r + T̃s ,

where T̃r is absolutely continuous with respect to the area measure (that

is T̃r is a density per unit area) and T̃s is the singular part.

In the examples, the analysis will be restricted to bounded measures T̃
whose singular part is concentrated on a finite number of regular arcs, that
is bounded measures admitting on such curves a density T̃s with respect
to the length measure (that is special bounded measures with void Cantor
part; for reference to these function spaces see Ambrosio et al. (2000)).

Remark 1. If the stress field is summable (and also if it is square
summable), it is not differentiable in strong sense, and the equilibrium equa-
tions have to be reformulated in variational form (e.g. through the Virtual
Work equation). Singular stresses require also special modifications of the
boundary conditions; the trace of the stress T on the loaded part of the
boundary is not given by Tn if T is singular. I shall come to this point
later.�
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1.3 Compatible displacement fields, regularity of u

The displacement field u is said to be compatible if, besides being regular
enough for the corresponding strain E(u) to exist 2, u satisfies the boundary
conditions on the constrained part ∂ΩD of the boundary

u = u , on ∂ΩD .

For linearly elastic bodies, on adopting a variational formulation, the
usual assumption is that E be square summable, that is√∫

Ω

E ·Eda <∞ .

For some rigid, perfectly plastic (or rigid unilateral) materials, it is suf-
ficient to assume that E be summable∫

Ω

√
E ·Eda <∞ .

As before, the set of competing functions enlarges to bounded measures,
that is to summable distributions Ẽ; then the displacement u can admit
finite discontinuities, i.e. u can be a function with bounded variation. If
E were the whole gradient of u, the summability of E would entail: u∈
BV (Ω), exactly. Since E is only the symmetric part of ∇u, u must belong
to a larger space: BD(Ω). The strain corresponding to u is again a bounded
measure ∫

Ω

∣∣∣Ẽ∣∣∣ <∞ ,

which, in general, can be decomposed into the sum of two parts

Ẽ = Ẽr + Ẽs ,

where Ẽr is absolutely continuous with respect to the area measure (that is

Ẽr is a density per unit area) and Ẽs is the singular part.

Ẽs has support on the union of a set of linear 1d measure (the jump set
of u) and a set of fractional measure.

For simplicity, in the examples, I shall restrict to bounded measures Ẽ
whose singular part is concentrated on a finite number of regular arcs, that
is bounded measures admitting on such curves a density Ẽs with respect

2Recall that, here, E(u) is the infinitesimal strain
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to the length measure (that is special bounded measures with void Cantor
part).

Remark 2. If u∈ BD(Ω), that is u can be discontinuous, the b.c. u
=u on ∂ΩD makes no sense. A way to keep alive the b.c. of Dirichelet type
is to identify the masonry body rather than with the domain Ω (usually an
open set) with the set Ω ∪ ∂ΩD and to assume that u must comply with
the constraint u =u on the skin ∂ΩD, admitting possible singularities of
the strain at the constrained boundary. Then, from here on, I shall deviate
from standard notation referring to Ω as to the set Ω ∪ ∂ΩD. �

Given the displacement field u of x, by taking the gradient of u, in a
classical sense if u is regular, and in a generalized sense if u is singular,
the strain E(u) is derived. Vice versa, if E of x is given, the possibility of
integrating the components Eαβ to get the (possibly discontinuous) compo-
nents uα of u, is submitted to the necessary compatibility conditions (also
sufficient if Ω is simply connected)

E11,22 + E22,11 − 2E12,12 = 0 ,

where a comma followed by an index, say α, means differentiation with
respect to xα.

The reader will see in what follows, that, on admitting discontinuous
displacements, this condition can be reinterpreted in a generalized sense
and applied (with some care), also to discontinuous, and even singular,
strains.

1.4 Dirac deltas: a familiar example

For the unilateral models that here are adopted for masonry materials,
it makes sense to admit singular stresses and strains, that is stress fields
T and strain fields E that can be concentrated on lines (line Dirac deltas).
In mathematical terms these are not functions in a strict sense, since they
assign finite values to all points x∈ Ω, except to those belonging to a set
of lines of Ω ∪ ∂ΩD, to which infinite values are associated. Anyway, these
infinite values must be such that these stresses or strains be summable, that
is ∫

Ω

|T| <∞ ,

∫
Ω

|E| <∞ ,

or, in other words, T and E must be bounded measures. Here I call M(Ω)
the set of bounded measures on Ω ∪ ∂ΩD. Line Dirac deltas are special
bounded measures; a simple example of a Dirac delta in 1d, is the concen-
trated load on a beam, that is a point Dirac delta (Figure 1).
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a b c

Figure 1. Concentrated transverse force Q on a beam: (a). Corresponding internal
shear force T : (b), and bending moment M : (c).

From elementary beam theory the internal moment M, the shear force
T and the transverse load per unit length q, are related by the differential
equilibrium relations

M ′ = T , T ′ = −q ,

where prime denotes differentiation with respect to z.
The previous equilibrium conditions admit also the following integral

form

T (z) = T (0)−
∫ z

0

q , M(z) = M(0) +

∫ z

0

T .

The second set of equations have sense also if q is a concentrated force,
that is a Dirac delta:

q(z) = Qδ(zo) ,

Q being the intensity of the load, δ(.) the unit Dirac delta, zo the point of
application of the force.

The unit point Dirac delta applied at zo is defined as follows∫ zo+ε

zo−ε

δ(zo) = 1 , ∀ε > 0 .

The differential equations can be extended to the case of singular loads by
interpreting -q in Figure 1a as the generalized derivative of T in Figure 1b.

More generally, in 1d, the generalized derivative of a piecewise constant
function f is a distribution whose regular part is zero and whose singular
part has support on the jump set of f. Therefore a piecewise constant
function is a special BV function whose singular part consists of point Dirac
deltas applied at the points of discontinuity of f. The integral of such Dirac
deltas across any point of discontinuity gives the value of the jump of f, at
that point.
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a b

Figure 2. Discontinuous displacement alog a straight line Γ, unit tangent t and normal
m to Γ: (a). Graph of the generic component uα, a BV function: (b).

1.5 Singular stress and strain as line Dirac deltas

In what follows I will restrict to consider stress and strain fields that
are special bounded measures, namely Dirac deltas with support on a fi-
nite number of regular arcs, and look at the restrictions imposed on these
singular fields by equilibrium and compatibility, respectively.

Strain. In what follows, special displacement fields of bounded variation
will be considered. In particular, restricting to discontinuous displacement
fields u having finite discontinuities on a finite number of regular arcs Γ, the
strain E(u) consists of a regular part Er, that is a diffuse deformation over
Ω−Γ, and a singular part Es in the form of a line Dirac delta, concentrated
on Γ.

The jumps of u along Γ, can be interpreted as fractures. In Figure 2a,
to which I refer for notations, a crack separating the body Ω into two parts,
℘1 and ℘2, along a straight interface Γ, is represented. On such a line, the
jump of u:

[[u]] = u+ − u− .

due to a relative translation of the two parts, is considered. Here u+ is the
displacement on the side of Γ where m points

The displacement field is a piecewise constant vector field, discontinuous
on Γ; the graph of a generic Cartesian component of u, is depicted in
Figure 2b.

The jump of u can be decomposed into normal and tangential compo-
nents

Δv = [[u]] ·m , Δw = [[u]] · t ,
where t,m are the unit tangent and normal to Γ, represented in Figure 2a.
Notice that, on any crack, incompenetrability of matter requires Δv ≥ 0 (a
unilateral restriction).
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The strain E corresponding to the piecewise constant field u depicted in
Figure 2b, is zero everywhere on Ω− Γ and is singular on Γ:

E(u) = δ(Γ)(Δvm⊗m+
1

2
Δwt⊗m+

1

2
Δwm⊗ t) .

Stress. If the stress field T is non-singular (say T ∈ L2(Ω)), on a
possible discontinuity line Γ, for equilibrium, the stress emerging on Γ must
be continuous. Then at any regular point of Γ, denoting m the unit normal
to Γ, the stress T must satisfy the condition

(T+ −T−)m = 0 ,

T+ being the stress on the side of Γ where m points. Then, if T ∈ L2(Ω),
the possible jumps of T must be restricted to the part of T non-emerging
on Γ.

If T is singular, say a Dirac delta on Γ, also the part of T emerging on
Γ can be discontinuous. The unbalanced emerging stress

q = (T+ −T−)m ,

in equilibrium, must be balanced by the stress concentrated on Γ (Figure 3).
Referring for notations to Figure 3, the representation of the singular part
Ts of T on Γ, is

Ts = Nδ(Γ)t⊗ t .

For equilibrium, calling p, q the components of q in the tangential and
normal directions, and denoting ρ the curvature of Γ, the following equations
must hold

N ′ + p = 0 , N ρ+ q = 0 .

Therefore q must be zero if Γ is straight.
Kinks. Though the singularity lines Γ, for the stress T, that I consider

are a.e. smooth, they can have kinks and multiple points. At such nodes
the equilibrium of forces transmitted to the nodes must be satisfied; then
if the node is inside the body and there are no concentrated external forces
applied to the node there must be at least a triple junction.

Airy’s stress function and singular stresses. In absence of body
forces (b=0), the equilibrium equations admit the following solution in
terms of a scalar function F:

T11 = F,22 , T22 = F,11 , T12 = −F,12 .
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Figure 3. Stress singularity: forces acting on the curve Γ.

a b c

Figure 4. Square panel under uniform pressure: (a). Corresponding boundary value
m(s): (b), and normal slope n(s): (c).

This is the general solution of the equilibrium equations, if the loads are
self-balanced on any closed boundary delimiting Ω (see Gurtin (1972)).

The b.c. T n = s on ∂ΩN, must be reformulated in terms of F. Denoting
x(s) the parametrization of ∂ΩN with the arc length, the b.c. on F are:

F (s) = m(s) ,
dF

dν
= n(s) , on ∂ΩN ,

in which dF/dν is the normal derivative of F at the boundary (that is the
slope of F in the direction of n) and m(s), n(s) are the moment of contact
and the axial force of contact produced by the tractions s(s), on a beam
structure having the same shape of ∂Ω, and cut at the point s=0.

A simple example is shown in Figure 4.
Regular and singular equilibrated stress fields can be derived by stress

functions meeting the prescribed b.c. on F and dF/dν. A regular stress
field is represented by a smooth F (see Figure 5a), a singular stress field by
a continuous but folded F (Figure 5b). The projection of a fold of F on Ω is
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a b c

Figure 5. Square panel under uniform pressure. Smooth Airy’s stress function giving
homogeneous pressure inside the body: (a); folded Airy’s function: (b); representation
of the uniaxial and singular stress field corresponding to the folded Airy’s function: (c).

called folding line and is denoted Γ. On a fold of F , the second derivative of
F , with respect to the normal m to the folding line Γ, is a Dirac delta with
support on Γ. Therefore, along Γ the Hessian H(F) of the stress function
F is a dyad of the form

H(F ) = ΔmFδ(Γ)m⊗m ,

ΔmF denoting the jump of slope of F in the direction of the normal m to
Γ (see Figure 5c). Recalling the Airy’s relation, the corresponding singular
part of the stress is

Ts = Nδ(Γ)t⊗ t ,

where the axial contact force N is given by

N = ΔmF .

2 Model zero (RNT)

In this section the main ingredients of the theory concerning the most primi-
tive model for masonry materials, namely the Rigid No-Tension (RNT) ma-
terial, are presented. After introducing the constitutive assumptions, the
definitions of statically admissible and kinematically admissible fields are
given, and the compatibility of loads and distortions is discussed. The RNT
model allows for the application of the theorems of Limit Analysis: the for-
mulation of the static and kinematic theorems for rigid-unilateral materials
is given and a number of illustrative examples is developed.
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2.1 Constitutive restrictions and equilibrium problem

It is assumed that the body Ω ∈ �n (here n = 2), loaded by the given
tractions s on the part ∂ΩN of the boundary, and subject to given displace-
ments u on the complementary, constrained part of the boundary ∂ΩD, is in
equilibrium under the action of such given surface displacements and trac-
tions, besides body loads b and distortions E (the set of data being denoted:
(u,E; s,b)), and undergoes small displacements u and strains E(u)3.

I point out that here the masonry structure is identified with the set:
Ω = Ω ∪ ∂ΩD, i.e. it is considered closed on ∂ΩD and open on the rest of
the boundary.

I consider that the body Ω is composed of Rigid No-Tension material,
that is the stress T is negative semidefinite

T ∈ Sym− , (1)

the effective strain E∗ = E(u)−E is positive semidefinite

E∗ ∈ Sym+ , (2)

and the stress T does no work for the corresponding effective strain E∗

T ·E∗ = 0 . (3)

The effective strain E∗ is a positive definite tensor field doing no work
for the corresponding stress, and representing detachment fractures (that is
type 1. fractures, see Sect.2, Chap.1). E∗ is a sort of “reaction” deformation
associated to the constraint on stress (1), and, therefore, is also called latent
strain. In order to avoid trivial incompatible loads (s,b), it is assumed that
the tractions s satisfy the condition

s · n < 0 , or s = 0, ∀x ∈ ∂ΩN . (4)

Notice that in the plane case (n=2) conditions (1), (2), can be rewritten
as

tr T ≤ 0 , detT ≥ 0 , (5)

tr E∗ ≥ 0 , detE∗ ≥ 0 . (6)

3When eigenstrains are considered, under the small strain assumption, the total strain

E(u) is decomposed additively as follows: E(u) = E∗+E, E∗ being the effective strain

of the material.
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2.2 Statically admissible stress fields

An equilibrated stress field T (that is a stress field T balanced with the
prescribed body forces b and the tractions s given on ∂ΩN) satisfying the
unilateral condition (1) (that is conditions (5)), is said statically admissible
for a RNT body. The set of statically admissible stress fields is denoted H
and is defined as follows

H =
{
T ∈ S(Ω) s.t. divT+ b = 0 , Tn = s on ∂ΩN , T ∈ Sym−

}
, (7)

S(Ω) being a function space of convenient regularity. Since for RNT ma-
terials, discontinuous and even singular stress fields will be considered, one
can assume S(Ω) = M(Ω), that is the set of bounded measures.

For Elastic No-Tension (ENT) materials a sensible choice is S(Ω) =
L2(Ω), that is the function space of square summable functions.

Actually the space M(Ω) contains L2(Ω) and is much larger than it, that
is the set of functions which compete for equilibrium is richer for RNT than
for ENT materials; this fact makes easier for RNT materials the search of
s.a. stress fields.

The differential equations of equilibrium must be reformulated for non
smooth T, since the derivatives of T do not exist in a classical sense4. One
way to do it is to impose equilibrium in a variational form, namely by using
the Virtual Work Principle.

On introducing the set of virtual displacements

δK = {δu ∈ S∗(Ω) s.t. δu = 0 on ∂ΩD} , (8)

the stress field T is balanced with (s,b) if and only if

∫
∂ΩN

s · δu+

∫
Ω

b · δu =

∫
Ω

T ·E(δu) , ∀δu ∈ δK . (9)

S∗(Ω) is a function space of convenient regularity. If T ∈ L2(Ω), then
S∗(Ω)= H1(Ω) guarantees the finiteness of the internal work. If T ∈ M(Ω),
the choice S∗(Ω)= C1(Ω) ensures the possibility of computing the internal
virtual work.

4For singular stress fields, even the b.c. on the emerging tractions must be changed,

since the Cauchy argument leading to them, is restricted to absolutely continuous

stress vectors.
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2.3 Fundamental partition

To any statically admissible stress field T one can associate the following
partition of the domain Ω = Ω ∪ ∂ΩD:

Ω1 = {x ∈ Ω s.t. trT ≤ 0 , detT ≥ 0} , (10)

Ω2 = {x ∈ Ω s.t. trT ≤ 0 , detT = 0} , (11)

Ω3 = {x ∈ Ω s.t. T = 0} . (12)

On introducing the spectral decomposition of T:

T = σ1 k1 ⊗ k1 + σ2 k2 ⊗ k2 ,

in Ω1 the stress is of biaxial compression, that is σ1 < 0, σ2 < 0; in Ω2 the
stress is of uniaxial compression, that is T=σ k⊗ k, σ < 0; Ω3 is inert.

Notice that the form and the regularity of these regions depend on the
smoothness of T, and that such regions can be rather weird if one admits
T ∈ M(Ω). We will see in what follows that, on admitting only special
bounded measures (i.e. Dirac deltas with support on a finite number of
regular arcs), the regions Ωi can degenerate, but the fundamental partition
can be still easily identified.

Remark 3. In the Ω2 regions, that is where the stress is of uniaxial com-
pression, a classical theorem of Tension Field Theory (see Subsection 3.8
and Remark 9), states that (as the intuition suggests, see below and Fig-
ure 6) the lines of principal compression (tension in the case of TFT) form
a family of straight lines if the body forces vanish.

A simple geometrical proof of this statement can be obtained by observ-
ing that, the equilibrium of a material tube contained in between two such
infinitesimally spaced principal lines, is possible only if the tube is straight
and the internal axial force of contact N is constant (see Figure 6).

If the two contiguous lines are parallel the stress itself is constant. If the
two lines converge, on denoting R the distance between the point P and
the point of intersection of the two lines, and introducing the arc length s
along the ray from the origin P , calling σ(s) and σ◦ the stress at Q and the
stress at P , for equilibrium, the stress along the ray takes the form

σ(s) =
R

R− s
σ◦ .

�
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Figure 6. Stress along a compression ray.

2.4 Concavity of the Airy’s stress function

In absence of body forces, a statically admissible stress field can be
expressed5 in terms of a scalar function F (called Airy’s solution, see sub-
section 1.5).

The constraint (5), translated in terms of F, reads

tr T = F,11 + F,22 ≤ 0 , detT = F,11 F,22 − F 2
,12 ≥ 0 , (13)

then the Hessian H(F) of F, is negative semidefinite and the stress function
F must be concave. Therefore, in absence of body forces b, the equilibrium
problem for a NT material, can be formulated as the search of a concave
function F, taking on the part ∂ΩN of the boundary, a specified value and
a specified slope.

Example. As a simple example of an equilibrium problem, I consider
the traction problem depicted in Figure 7a. Smooth and singular statically
admissible stress fields can be easily derived from simple stress functions
matching the given boundary data.

A smooth solution can be derived from the stress function (here L=1 is
assumed):

F =

{
− 3

2p+ 2px2 , x2 < 1
2 (1− x2

1) ,

− 1
2px

2
1 − 2p

(1−x2
2)

2

1+x2
1

, x2 ≥ 1
2 (1− x2

1) .

This F is a composite surface, flat in the region denoted Ω3 in Figure 7c,
and strictly concave in Ω1. The graph of such F is depicted in Figure 7b. I

5Univocally, if the body is simply connected or loaded by self balanced tractions on any

closed boundary.
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a b c

Figure 7. Wall beam under uniform transverse load: (a). Graph of the Airy’s stress
function, corresponding to the smooth solution: (b). Domain partition and one of the
families of compression lines corresponding to the smooth solution: (c).

a b c

Figure 8. Graph of the folded Airy’s function, showing the intersection of the gener-
ating surfaces: (a). Corresponding domain partition and principal lines of compression:
(b). Support of the singular stress (solid lines 3, 4, 5): (c).

leave to the reader to verify that the correspondingT is statically admissible,
that is that such T matches the boundary data and belongs to Sym−.

A singular statically admissible stress field is derived from the stress
function F depicted in Figure 8a. F is a continuous non-smooth function:
the surface F, making (concave) folds along the lines indicated with 3, 4,
5 in Figure 8c, can be easily produced by prolongating the datum F|∂Ω
with ruled surfaces having the prescribed slope dF

dν |∂Ω at the boundary. The
intersections of the four ruled surfaces emanating from the boundary (see
Figure 8a) give the folding lines; the jump of slope hortogonal to the folding
line gives the value of the axial force along the line:

Ts = Nδ(Γ)t⊗ t .

Since the fold is concave the jump of slope is negative, then

N = ΔmF < 0 .
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In Figure 8b the principal lines of uniaxial compression corresponding
to the non smooth solution are reported.

2.5 Kinematically admissible displacement fields

A compatible displacement field u, that is a displacement u matching
the given displacements u on ∂ΩD for which (E(u) - E) ∈ Sym+, i.e. such
that the effective strain satisfies the unilateral conditions (6), is said to be
kinematically admissible for a RNT body.

The set of kinematically admissible displacement fields is denoted K and
is defined as follows:

K =
{
u ∈ T (Ω) s.t. u = u on ∂ΩD , (E(u)-E) ∈ Sym+

}
, (14)

where Ω = Ω ∪ ∂ΩD and T(Ω) is a function space of convenient regularity.
Since for RNT materials, discontinuous displacements can be considered,
one can assume T(Ω) = BV (Ω), that is the set of functions of bounded
variation (the functions whose gradient belongs to M(Ω), i.e. functions u
admitting finite discontinuities). I restrict to the subset of BV (Ω), consist-
ing of displacement fields u having finite jumps on a finite number of regular
arcs. Actually, as we shall see, I will need only to consider discontinuous
functions u whose jump set is the union of a finite number of segments.

The differential relation between E and u, likewise the displacement b.c.,
must be reformulated in a weak form, since the derivative of u does not exist
in a classical sense, and the trace of u on ∂ΩD is not well defined. One way
to do it is to impose compatibility in a variational form, namely by using
the Complementary Virtual Work Principle.

On introducing the set of virtual stress fields

δH = {δT ∈ T ∗(Ω) s.t. divδT = 0 , δTn = 0 on ∂ΩN} , (15)

the displacement field u is compatible with (u,E) if and only if

∫
∂ΩD

(δTn) · u−
∫
Ω

δT ·E =

∫
Ω

δT ·E(u) , ∀δT ∈ δH . (16)

T ∗(Ω) is a function space of convenient regularity. If u ∈ H1(Ω) (as it is
assumed in linear elasticity), then T ∗(Ω) = L2(Ω) guarantees the finiteness
of the internal virtual work. If u ∈ BV (Ω), the choice T ∗(Ω) = C◦(Ω)
ensures the possibility of computing the internal virtual work.
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a b

Figure 9. Examples of kinematical problems. Wall loaded by uniform vertical load
at the top and subjected to a given uniform settlement of the right foot: (a). Masonry
panel subject to uniform thermal expansion of the right half: (b).

a b c

Figure 10. Compatible solution for the problem of Figure 9a: (a). Corresponding
(singular) strain components: (b), (c).

Examples. As a simple illustration of typical kinematical problems,
I construct some admissible deformations for the two example problems
reported in Figure 9. In (a) the effect of a given settlement η of the right
foot, is considered. In (b) the constraints are fixed and the effect of the
distortion E =αΔT I, due to the uniform, positive increment of temperature
ΔT, applied to the right half of the strip, is studied.

A kinematically admissible displacement, compatible with the given set-
tlement, is shown in Figure 10a; in Figures 10b,c the strain components
E11,E22 are graphically represented.

A kinematically admissible displacement for the second example is

u1 =

{
αΔTx1(1− x2

2/L
2) , x1 < L ,

αΔTx1 , x1 ≥ L ,

u2 =

{
αΔTx2x

2
1/L

2 , x1 < L ,

αΔTx2 , x1 ≥ L .
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a b c

Figure 11. Compatible solution for the problem of Figure 10b: (a). Corresponding
(regular and singular) strain components: (b), (c).

The corresponding deformation and the strain components E11,E22, are
graphically represented in Figure 11. I leave to the reader to verify that the
effective strain (E(u)-E) belongs to Sym+6 and that the strain E, whose
non-vanishing components are depicted in Figures 11b c, satisfy the com-
patibility conditions (6) in a generalized sense.

2.6 Compatibility of loads and distortions

The data of a general BVP for a RNT body can be split into two parts

� ↔ (s,b) ≈ loads ,

�∗ ↔ (u,E) ≈ distortions .

The equilibrium problem and the kinematical problem for RNT materials,
namely the search of admissible stress or displacement fields for given data,
are essentially independent, in the sense that they are uncoupled but for
condition (3).

It has to be pointed out that, for RNT bodies, there are non-trivial
compatibility conditions, both on the loads and on the distortions; that is
the existence of statically admissible stress fields for given loads, and the
existence of kinematically admissible displacement fields for given distor-
tions, is submitted to special conditions on the data (for a thorough study
of compatibility conditions on the loads see Del Piero (1989) and Angelillo
and Rosso (1995)).

6The assumption that the effective strain has to belong to Sym+, implies that, on a
crack Γ, the form of the singular strain be

Es = δ(Γ)Δvm⊗m , with Δv > 0 ,

that is shearing discontinuities are forbidden.



Practical Applications of Unilateral Models… 127

Figure 12. Statically admissible solution reconcilable with the compatible mechanism
of Figure 11a, and corresponding to the BVP depicted in Figure 10a. An arch carrying
a concentrated axial force is formed, springing from the two hinges of Figure 10a. The
stress field is regular and uniaxial above the arch.

The definition of compatible loads and distortions is rather straightfor-
ward:

{� is compatible} ⇔ {H �= ∅} , (17)

{�∗ is compatible} ⇔ {K �= ∅} . (18)

Therefore the more direct way to prove compatibility, both for loads and
distortions, is to construct a s.a. stress field or a k.a. displacement field, as
done in the previous examples.

To prove the existence of a solution to the BVP for a No-Tension body,
the compatibility of � and �∗ is necessary but not sufficient, since the further
condition

T ·E∗(u) = 0 ,

must be satisfied (this is the material restriction (3)). Then one can say
that a possible solution to the BVP is given, if there exist a s.a. stress field
and and a k.a. dispalcement field, which are reconcilable in the sense of
condition (3).

As a simple example in Figure 12, a s.a. stress field giving, together
with the mechanism of Figure 10a, a possible solution to the simple problem
depicted in Figure 9a, is reported.

Examples. In the examples of Figure 13, the possible solution of two
classical mixed BVP for RNT materials is pictorially presented. Notice that
both the stress solution and the displacement solution present singularities.
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a b

Figure 13. Examples of solutions of typical BVP’s for NENT materials. Arch loaded
by a uniform (per-unit projection) vertical load at the extrados and subjected to a given
uniform settlement of its abutments. In (a) the supports spread, in (b) they get closer.
The strain is singular at the supports and at the key-stone; two different arches form in
the two cases.

The examples reported in Figures 13, that can be found also in the mile-
stone book by Heyman (1995), testify the need, in order to solve a BVP
for Rigid No-Tension materials, to consider at the same time singular stress
and strain fields, and call for an extended formulation of the theorems of
Limit Analysis.

2.7 Incompatibility of loads and distortions

The way to verify the incompatibility of the data is less straightforward,
requiring the definition of two new sets

H◦ =
{
T◦ ∈ S(Ω) s.t. divT◦ = 0 , T◦n = 0 on ∂ΩN , T◦ ∈ Sym−

}
,

and

K◦ =
{
u◦ ∈ T (Ω) s.t. u◦ = 0 on ∂ΩD , E(u◦) ∈ Sym+

}
.

Both H◦ and K◦ can reduce to the sets H◦◦ and K◦◦ corresponding to
null stress and strain fields, depending on the geometry of the boundary, of
the loads and of the constraints.

Remark 4. The fact that H◦ − H◦◦ can be void and that K◦ − K◦◦

can be non-void is kind of peculiar of RNT materials; indeed we are used to
think to 2d continua as overdetermined and deprived of rigid, zero-energy,
internal modes.

One way to see overdeterminacy is to add to any s.a. stress field a, non
zero, self balanced stress field T◦. The fact that H◦ − H◦◦ can be void,
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a b

Figure 14. Example of incompatible loads: in (a) wall loaded by uniform vertical
loads at the top and bottom bases. K.a. displacement field for which the load performs
positive work: (b).

means that overdeterminacy depends on the loads. There also can be loads
for which the structure becomes statically admissible. The fact that the
overdeterminacy/underdeterminacy of the structure depends on the load is
typical also of discrete structures with unilateral constraints.

The absence of degrees of freedom is proved, for discrete structures,
by denying the possibility of zero energy mechanisms. u◦ ∈ K◦ − K◦◦ is
indeed a non trivial mechanism requiring, for the RNT body, zero energy
expended. The underdeterminacy of the structure, descending from the
fact that K◦ −K◦◦ can be non-void, demands for non trivial compatibility
conditions on the loads. �

The incompatibility of the data can be assessed as follows

{� incompatible} ⇐ {∃u◦ ∈ K◦ s.t. 〈�,u◦〉 > 0
}

, (19)

{�∗ incompatible} ⇐ {∃T◦ ∈ H◦ s.t. 〈�∗,T◦〉 > 0
}

, (20)

where 〈�,u◦〉, 〈�∗,T◦〉 represent the work of the loads and distortions for
u◦, T◦, respectively.

Examples. The load of Figure 14a is incompatible, since it makes pos-
itive work for the mechanism u◦ depicted in Figure 14b.

The distortion represented in Figure 15a is incompatible, since it makes
positive work for the self stress T◦ depicted in Figure 15b.

Remark 5. The incompatibility of a given set of loads means that
equilibrium is not possible and that acceleration of the structure must take
place7. The incompatibility of a given set of distortions means that the given

7A trivial compatibility condition for all kinds of bodies, under pure traction conditions,
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a b

Figure 15. Example of incompatible distortions: in (a) panel subject to a given
displacement of the left constraint. S.a. stress field for which the distortion performs
positive work: (b).

kinematical data cannot be accomodated with a zero energy mechanism
and demand for more complex material models (i.e. elastic NT, elastic
NT-plastic, etc). �

2.8 Limit Analysis

We have seen in the preceding sections that, for RNT bodies, both force
and displacement data are subject to compatibility conditions, that is the
existence of a statically admissible stress field and the existence of a kine-
matically admissible displacement field, are subordinated to some necessary
or sufficient conditions on the given data. Here I concentrate on necessary
or sufficient conditions for the compatibility of a given set of loads (s,b),
restricting to the case of zero kinematical data (u,E). The definition of
safe, limit and collapse loads are given first, and the propositions defining
the compatibility of the loads, that are essentially a special form of the
theorems of Limit Analysis (LA), are then discussed.

Theorems of Limit Analysis. Recalling the definition of RNT materi-
als, we can observe that the restrictions (2), (3) are equivalent to a rule of
normality of the total strain to the cone of admissible stress states. Nor-
mality is the essential ingredient allowing for the application of the two
theorems of Limit Analysis (see Del Piero (1998)). In order to avoid the
possibility of trivial incompatible loads (and simplify the formulation of the
two theorems), assumption (4) (i.e. that the tractions s applied at the

is load balance. Load balance is only a necessary compatibility condition for unilateral

bodies.
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boundary are either compressive or zero) is made.
Admissible fields. The rigorous proof of the two theorems of Limit

Analysis requires to set the problem in proper functions spaces. For RNT
materials is appropriate and convenient to define the sets of statically ad-
missible stress fields H and kinematically admissible displacement fields K,
as follows

H =
{
T ∈ S(Ω) s.t. divT+ b = 0 , Tn = s on ∂ΩN , T ∈ Sym−

}
, (21)

K =
{
u ∈ T (Ω) s.t. u = 0 on ∂ΩD , E(u) ∈ Sym+

}
, (22)

where a convenient choice for the function spaces S(Ω) and T (Ω) is

S(Ω) = SMF (Ω) ,

T (Ω) = {u s.t. gradu ∈ SMF ∗(Ω)} ,

SMF being the set of Special Measures (that is measures with null Cantor
part) whose jump set is Finite, in the sense that the support of their singular
part consists of a finite number of regular (n− 1)d arcs8.

With SMF ∗ I denote the subset of SMF for which the support of the
singular part is restricted to a finite number of (n− 1)d segments.

Notice that, depending on the geometry of the structure Ω = Ω̇ ∪ ∂ΩN

and on the given loads, the set H can be void. If H is void the load (s,b) is
incompatible, in the sense previously specified (no possibility of equilibrium
with purely compressive stresses).

Strictly admissible stress fields and load classification. In or-
der to formulate the theorems of Limit Analysis, I need to introduce the
following definitions.

On denoting〈�,u〉 the work of the load � = (s,b) for the displacement
u, the load can be classified as follows:

1. (� is a collapse load)⇔ (∃u∗ ∈ Ks.t. 〈�,u∗〉 > 0),

2. (� is a limit load)⇔ (〈�,u〉 ≤ 0, ∀u ∈ K and ∃u∗ ∈ K−K◦◦ s.t. 〈�,u∗〉
= 0),

3. (� is a safe load)⇔ (〈�,u〉 < 0 , ∀u ∈ K).

8We suggest the reader to consult the book (Ambrosio et al., 2000)for a complete essay

on SBV functions and measure spaces.
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I now introduce a useful definition. A stress field T ∈ H such that
trT < 0 and detT > 0 , ∀x ∈ Ω, is said to be strictly admissible.

Notice that, if T is strictly admissible, then at each point of Ω (that is
the open set Ω̇ to which the fixed part of the boundary ∂ΩD is added) it
results:

σ1 < 0 , σ2 < 0 ,

σ1, σ2 being the eigenvalues of T at the point x.
Kinematic Theorem. If � is a collapse load (in the sense of item (1)

above) then H is void.
Static Theorem. If a strictly admissible stress field T exists, then the

load � is safe (in the sense of item (3) above).
Limit Theorem. If H is not void and there exists u∗ ∈ K − K◦◦

〈�,u∗〉 = 0, then the load � is limit (in the sense of item (2) above).
For the proof of these theorems I refer to the paper (Del Piero, 1998).

The reader must be warned that the proofs given by Del Piero refer to
a similar function space for the displacement but to a different functional
setting for the stress (namely L2(Ω)). In the present paper I assume that
these theorem are still valid in the present larger setting for the stress and
smaller setting for the displacement9.

2.9 Simple applications of the theorems of Limit Analysis

Example 1. Compressed wall/pier. The two simple BVP depicted in
Figure 16 are considered. The first one (Figure 16a) refers to a rectangular
wall compressed at the two bases by uniform normal tractions. The second
example (Figure 16b) is a wall compressed at the top base by a uniform
pressure load and fixed at the bottom base. By employing the Airy’s repre-
sentation and by using the static and kinematic theorems, it can be shown
that in case (a) the load is limit and in the second case the load is safe.

The data for F and dF/dν at the boundary, in case (a), are shown in
Figure 16c. In this case the only concave surface that can possibly satisfy

9For general stress and strain fields that can be line Dirac deltas on a finite number

of regular arcs the internal work
∫
Ω T · E is not defined. Considering the restrictions

which define the sets H and K, that is taking into account the constraints on T and E,

the only case in which there are troubles in computing the internal work (if T and E

are so restricted) is when both the stress and the strain are singular on the same line

Γ, the line is curved and there is a stress discontinuity in the direction of the normal m

to Γ. A way to avoid this is to allow stress singularities on curved lines but to assume

that the support of the jumps of u is a segmentation, that is a line formed by the

union of a finite number of straight arcs.



Practical Applications of Unilateral Models… 133

a b c d

Figure 16. Compressed pier (wall). Pure traction problem: (a), Mixed problem: (b).
Corresponding data for F and dF/ν for the two cases.

the data shown in Figure 16c is the parabolic cylinder defined by

F = −px2
1

2
.

The uniqueness of this F can be proved by observing that the surface
defined by it coincides with the upper part of the convex hull of the curve
carrying the boundary datum for F. The properties of minimality of the
convex hull ensure the uniqueness of F and of the corresponding stress (see
Angelillo and Rosso (1995)), that is of the uniform uniaxial stress

{T} =
{

0 0
0 −p

}
.

Since this is the only statically admissible stress field, H is a singleton
and we can say that the structure, with this load, is statically determined
(see Remark 4). Notice that based on the definition (3) above and on the
theorems of LA, the load is not safe. It is actually limit (see Limit The-
orem above) since by splitting the panel into two parts along any vertical
line Γ with a normal crack, the strain corresponding to this mechanism is
a horizontal uniaxial Dirac delta whose intensity has the value of the dis-
placement jump along Γ: the work of the load for this non-zero mechanism
is zero. Notice that the strain corresponding to this mechanism and the
unique statically admissible stress field are reconcilable in the sense of con-
dition (3), that is they represent a possible solution for the BVP. The fact
that, under these conditions, strain can increase indefinitely at constant
load is a typical feature of limit loads.

In case (b) the previous stress function can be corrected by adding a
term to it. Notice that the boundary is loaded only on the lateral sides and
on the top base (with the same load of case (a)), and that both the value
and the slope of the stress function can be modified along the bottom base
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of the panel (see Figure 16d). The simplest correction with polinomia one
can think of, is

F = −p x2
1

2
− β

(a2 − x2
1)

2 x2
2

a4
.

The corresponding stress is

{T} =
{

−β 2(a2−x2
1)

2

a4 −β 8(a2−x2
1)x1x2

a4

−β 8(a2−x2
1)x1x2

a4 −p+ β
4(a2−3x2

1)x
2
2

a4

}
.

The trace and the determinant of T are then

trT = −p+ β

(
−2 + 4a2x2

1 + 4a2x2
2 − 2x4

1 − 12x2
1x

2
2

a4

)
,

detT = β
2(a2 − x2

1)
2

a8
(
pa4 − β(4a2 + 20x2

1)x
2
2

)
.

If h ≤
√
2
2 a then trT is always negative. If h >

√
2
2 a then trT is negative

on Ω if

β <
pa2

4h2 − 2a2
,

and detT is positive on Ω if

β <
pa2

24h2
.

Then T is negative definite on Ω, and the load is safe, on the base of
the Static Theorem of LA, if the second inequality holds. For example, for
a square panel, if one takes β < p

96 , then the stress given by the above
expression is strictly admissible and the load is safe. In Figure 17 the
stress functions emploied for cases (a) and (b) are shown side by side for
comparison, in the special case h = 2a, and putting for case (b), β = p

400 .
Notice that the negative definiteness of T in case (b) is not uniform, since

on the lateral sides we must have detT = 0 and one of the two eigenvalues
of T must tend to zero as that part of the boundary is approached.

Remark 6. The bounds found on β give values of β vanishingly small
with respect to p, as the ratio h/a increases; if one takes β/p as a sort of
measure of the safety level of the load with respect to collapse: then slender
walls, under this kind of loading, tend to become less and less safe, as the
ratio h/a is increased.�
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a b

Figure 17. Compressed pier (wall): in (a) Airy’s stress function for the traction
problem. In (b) Airy’s stress function adopted for the mixed case.

a b

Figure 18. In (a) Airy’s folded stress function for the mixed problem. In (b) a scheme
of the corresponding stress is reported.

Remark 7. It is worth pointing out that the existence of a strictly
admissible stress field does not imply that the actual state of stress in the
body be of biaxial compression. If the material is rigid in compression,
any statically admissible stress has the same dignity and is theoretically
admissible for equilibrium.

The choice among these fields requires the introduction of more advanced
constitutive restrictions, allowing for shortening strains. When elasticity is
assumed it happens that s.a. stress fields which are not strictly admissible
are preferable, on an energetic ground, to strictly admissible ones. Therefore
the material exhibits both biaxial and uniaxial stress states (and fractures)
despite the existence of a strictly admissible stress field (see Exact solution
4, Subsection 3.7).�

By using the Airy’s formulation singular s.a. stress fields can be easily
generated. By modifying, with some care, these singular fields, strictly
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a b c

Figure 19. Smoothing of the folded stress function of Figure 18. Sections of the folded
surface and its smoothed transformation at x2 = 0: (a); the section of the parabolic
cylinder corresponding to the solution of the traction problem is reported for reference.
In (b), (c) a 3d view of the folded and smoothed surfaces is shown

admissible stress fields can be obtained. A non smooth F satisfying the b.c.
for case (b) of Figure 16 is depicted in Figure 18a.

The stress field corresponding to the non smooth Airy’s function depicted
in Figure 18a, is reported schematically in Figure 18b. The way in which
such a composite surface can be generated by the boundary data is explained
in detail in the next example. Notice that the half-span αa and the rise βh
of the arch-like structure depicted in Figure 18b can be chosen arbitrarily
provided that α, β vary in the interval [0, 1].

The process through which the singular statically admissible stress field
depicted in Figure 18 can be smoothed out and transformed into a strictly
admissible stress field is not discussed here for brevity. A 3d view of the
folded F and of its strictly admissible modification (together with the stress
function of case (a) used as a reference surface) is shown pictorially in Fig-
ure 19.

Example 2. Rocking of a rectangular panel. This is perhaps the
most classical problem for unilateral masonry-like materials, for which the
determination of the limit load under a horizontal force is trivial; therefore
this is the ideal example to understand how the theorems of limit analysis
can be applied to NT materials and how one can take advantage of singular
stress fields and of the stress function formulation.

The vertical load is fixed to the value q = P
L and the intensity of the

concentrated horizontal force is taken as H = αP , α being a load parame-
ter. A trivial upper bound for α ( α◦ = 1

3 ) in the case shown in Figure 20a,
is found by considering the rocking mechanism of the panel (shown in Fig-
ure 20b) and applying the kinematic theorem. If one can find a statically
admissible stress field for the same value of α then α◦ is the limit value of
the load parameter.
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Figure 20. Rectangular panel loaded by vertical and horizontal forces. Loading
scheme: (a). Rocking mechanism: (b)
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Figure 21. Rectangular panel loaded by vertical and horizontal forces. Parametriza-
tion of the boundary: (a). Boundary value for F (moment m(s)): (a). Boundary value
for the normal derivative of F (axial force n(s)): (c)
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Figure 22. Rectangular panel loaded by vertical and horizontal forces for α = 1/4.
Composite stress function: (a). Corresponding support of the singular stress on the
planform and domain partition: (b).

For α < 1
3 , say α = 1

4 , a strictly admissible stress field can be con-
structed. To use the Airy’s formulation the loaded boundary is divided into
five parts (see Figure 21a where L = 1 is set).

1. The boundary is parametrized with the arc length s. The data m(s)
and n(s) are defined in terms of the load on the segments 0-1 and 1-2 (see
Figure 21b, c). From them the curve carrying the datum for F and the
gradient gradF at the boundary are computed.

Segment 0-1.
Parametrization: x(s) = {−s, 3

2};
Moment: m(s) = − qs2

2 ;
Axial force: n(s) = 0 ;

Curve of boundary data: X(s) = {−s, 3
2 ,− qs2

2 };
Gradient of F at the boundary: gradF ◦(s) = {−m′(s), n(s)} = {qs, 0}.
Segment 1-2.
Parametrization: x(s) = {− 1

3 ,
3
2 − s};

Moment: m(s) = − q
8 − qs

4 ;
Axial force: n(s) = − q

2 ;
Curve of boundary data: X(s) = {− 1

2 ,
3
2 − s,− q

8 − qs
4 };

Gradient of F at the boundary: gradF ◦(s) = {−n(s),m′(s)} = { q2 , q
4}.

2. The data are extended inside the body with a uniaxial prolonga-
tion. Such a prolongation is obtained by constructing on each part γi of
the boundary, a ruled surface having as generating curve, the curve X(s)
carrying the Dirichelet data, and formed by the straight lines r directed as
the given loads and whose slope is specified by gradF ◦(s). If the load is
zero, the direction of the line r is taken as the inward normal -n.
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Segment 0-1
Load direction: k = {0,−1};
Propagation vector: v(s) = {k1, k2, gradF · k} = {0,−1, 0};
Parametric form of F 1: y(s, ν) = X(s) + νv(s) = {−s, 3

2 − ν,− qs2

2 };
F 1 in terms of x1, x2: F

1(x1, x2) = − qx2
1

2 .
Segment 1-2
Load direction: k = {1, 0};
Propagation vector: v(s) = {k1, k2, gradF · k} = {1, 0, q

2};
Parametric form of F 2: y(s, ν) = X(s) + νv(s) =
{− 1

2 + ν, 3
2 − s,−p

8 (1− 2qs+ 4νq)};
F 2 in terms of x1, x2: F

2(x1, x2) = − q
4 (1− 2x1 − x2).

3. The two surfaces F 1 and F 2 intersect along a curve (represented in
Figure 22a) whose projection Γ on the “planform” is determined, in explicit
form. By solving the equation F 1 = F 2, one obtains the following equation
for Γ:

x2 = 1− 2x1 − 2x2
1 .

The curve Γ is a parabola, passing through the point {− 1
2 ,

3
2} and inter-

secting the base at x◦1 = 1
2 (
√
3 − 1). Γ splits the rectangle into two parts

Ω2,Ω3(Figure 22b).
4. Along Γ the stress is singular: it is a concentrated axial force N

whose intensity is determined by the jump of slope ΔF of the composite
surface F in the direction of h (Figure 22ab). Since the gradient jump
across Γ is gradF 1 − gradF 2 = −q{ 12 + x1,

1
4} and the unit normal h to Γ

is h = {2 + 4x1, 1}/
√
5 + 16x1 + 16x2

1, we have

ΔF = (gradF 1 − gradF 2) · h = −1

4
q
√

5 + 16x1 + 16x2
1 .

The stress corresponding to this composite F is zero in Ω1, uniaxial
inside Ω2, and a Dirac delta stress of intensity N = ΔF , balancing the
stress jump on Γ due to the stress discontinuity, at the interface between
Ω1 and Ω2 (Figure 23a). The graph of N along the curve Γ, in the interval[− 1

2 ,
1
2 (
√
3− 1)

]
, is shown in Figure 23b.

Remark 8. Notice that the concentrated force emerging at the bottom
edge is the trace of the singular stress field T(x1) = N(x1)δ(Γ)t(x1)⊗t(x1),
t being the unit tangent vector to Γ: {t} = {h2,−h1}. The value of such
force is R = N(x◦1)δ(x

◦
1)t(x

◦
1), i.e. it is not given by the Cauchy formula

s(n) = Tn, valid for absolutely continuous stress vectors s.�
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Figure 23. Rectangular panel loaded by vertical and horizontal forces for α = 1/4.
Stress corresponding to the stress function of Figure 22: (a). Graph of the axial force
along the arch: (b).

A s.a. stress field for α = 1
3 is obtained by following the same steps as

before. The two functions F 1 and F 2 are in this case:

F 1(x1, x2) = −q x
2
1

2
, F 2(x1, x2) = − 1

24
q(9− 12x1 − 8x2) .

They intersect along the curve Γ depicted in Figure 24a, whose projection
on the planform is given by the equation:

x2 =
3

8
(3− 4x1 − 4x2

1) .

Γ is a parabola passing through the points [−1/2, 3/2], [1/2, 0] (thus is
the two opposite top and bottom corners of the rectangle: Figure 24b). The
jump of slope along Γ is

ΔF (x1) = (gradF 1 − gradF 2)|Γ · h(x1) = −1

6
q
√

13 + 36x1 + 36x2
1 .

the corresponding axial force N along Γ, in the interval [−0.5, 0.5], is re-
ported in Figure 24d.

In Figure 24c the stress field corresponding to the composite surface
F 1, F 2 is reported. Such a field is not strictly admissible and does zero
work for the mechanism of Figure 20b, therefore α = 1/3 is the limit load.
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Figure 24. Rectangular panel loaded by vertical and horizontal forces for α = 1/3.
Strees function: (a). Support of the singular stress on the planform and domain partition:
(b). Stress corresponding to the stress function depicted in (a): (c). Graph of the axial
force along the arch: (d).

The stress field that was constructed for α = 1/4 is not strictly admissible
(actually the stress that we derived from the folded stress function is on the
boundary of the cone Sym− all over Ω), but, for any value of the load
parameter α < 1

3 , the previous construction can be used to generate a
strictly admissible stress field. The method proceeds as follows:

Assume that a value of the parameter, say α̃ < 1
3 , is given. If one

removes a portion p = q(1 − 3α̃) from the given uniform load, the load
becomes limit, that is the parabola hits the right corner of the rectangle
and, as before, a stress field T1 can be constructed. Now I consider the
panel under the action of the uniform vertical load p applied at the top
base, and take the strictly admissible solution, say T2, constructed for the
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previous example (the compressed wall). The sum of the two stress fields
T1 + T2 is strictly statically admissible, since Sym− is convex, the second
stress state is strictly inside the cone, and then the sum of the two stress
fields is also strictly inside the cone for any x ∈ Ω.

Remark 9. In the previous example statically admissible stress fields
were produced through the stress function formulation. The overdetermined
problem of equilibrium was reduced to a determined problem by restricting
the search to a special class of stress functions, namely that of ruled surfaces
(that is surfaces composed of straight lines). The stress fields corresponding
to these surfaces are either uniaxial or null, that is the stress is limit almost
everywhere in the body and the equilibrium problem is determined, since to
the two differential equations of equilibrium the algebraic condition that the
stress is uniaxial (detT = 0) is added10. Any statically admissible uniaxial
stress field balanced with zero body forces b, has one family of isostatic lines
(the ones corresponding to the negative eigenvalue) composed of straight
lines (see Remark 3 and Figure 6). These straight lines, being actually the
projections of the straight lines generating the ruled stress surface associated
to T, are called compression rays 11.

The differential problem is parabolic, and the stresses inside Ω are deter-
mined by the boundary data. By propagating the loads from opposite parts
of the boundary the corresponding stress fields are usually unbalanced at
the interface between the two fields: singular stress fields must be admitted
along the interface. Both the value of the singular stress and the shape
and location of the interface is determined by equilibrium. With the stress
function formulation both the form and the location of the interface, besides
the intensity of the axial contact force along Γ, are derived by intersecting
two contiguous stress surfaces.�

Example 3. Lintel under vertical and horizontal loads. A rect-
angular wall beam, supported at the bottom corners A,B, submitted to
vertical and horizontal loads applied along its top edge, is shown in Fig-
ure 25a to which I refer for notations. This element can be representative
of lintels, that is the transverse structures connecting the piers in masonry
portals or in sequences of arches, when the effect of the loads transmitted
to the arch from other parts of the structure, prevails on the self load, and

10This assumption is the basic hypothesis of the Tension Field Theory (see (Mansfield,

1969)), a simplified unilateral model for thin elastic membranes, analogous to the NT

model for masonry structures (see Remark 3 and Subsection 3.8).
11This is a terminology similar to that adopted in Tension Field Theory, see Fortunato

(2010).
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the diffuse effect of body forces will be neglected. In Example 5 below the
effect of uniform vertical body forces is considered.

The lintel’s lower edge is actually often curved (see dashed line in Fig-
ure 25a), this feature being in keeping with the kind of stress state that
I wish to consider in the element, as we shall see below. The presence of
this arched intrados is necessary for equilibrium, if vertical body forces are
considered.

By adopting the previous approach, in the case at hand I formulate the
equilibrium problem of the lintel as follows.

The loads acting on Ω consists of a distributed load q, applied along
the top edge of Ω and having two components {q1, q2} (see Figure 25b).
The supports A, B reacts with two forces RA,RB , whose components are
denoted {H(A), V (A)}, {−H(B), V (B)} ; the lateral and the lower edges
are unloaded.

Restricting to at most uniaxial stress fields and denoting g = q1/q2 the
slope of the applied load with respect to x2, the stress field, in the upper
part of the domain, is a uniaxial field in the direction of the compression
rays emanating from the top edge, whose slope with respect to x2 is g.
Calling τ the length along the (straight) top edge of the domain, measured
from O, I also assume that the slope g is so restricted:

g(0) = 0 , g(L) = 0 , − τ

h◦
≤ g(τ) ≤ L− τ

h◦
, |g(τ)| ,

that is the initial and final slopes are zero (then the two extreme compression
rays run along the lateral edges), and the compression rays go from base to
base and do not cross each other inside the rectangle enclosing Ω.

The stress field in the lower part of the domain is zero. The upper and
the lower regions are separated by a common boundary Γ, passing through
A and B, that is parametrized in terms of τ as follows

Γ = {{xΓ} = {τ + g(τ)y(τ), y(τ)} , τ ∈ {0, L}} ,

carrying a concentrated axial force.
We denote H and V the horizontal and vertical components of the axial

contact force N, arising on Γ in order to equilibrate the stress jump 12. By
imposing the equilibrium of the piece ℘ of Ω represented in Figure 25a, the
following set of differential equations is obtained

H ′ = q1 , V ′ = q2 , V = H
y′

1 + gy′ + g′y
,

12For the positive sign of these two components I refer to the choice reported in Fig-

ure 25a.
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Figure 25. Lintel loaded by vertical and horizontal forces. Geometry of the panel:
(a). Forces acting on the panel, compression rays and arch: (b). Horizontal and vertical
load for two special cases (c, e) corresponding to the equilibrium solutions (d, f).

to be solved for H,V, y with the boundary conditions

y(0) = h◦ , y(L) = h◦ , y(τ◦) = 0 , y′(τ◦) = 0 ,

τ◦ being an unknown position along the upper edge. In the special case in
which the horizontal and vertical loads have the form

q1(τ) =
6q◦(L− τ)2τ

L3
, q2(τ) = q◦ ,

that is the vertical load is uniform, the horizontal load is parabolic, and the
horizontal load resultant is half of the vertical resultant, the solution is
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H = q◦
(
(h◦ − L)2

8h◦
+

6L2τ2 − 8Lτ3 + 3τ4

2L3

)
,

V =
1

2
q◦(h◦ − L+ 2τ) ,

y =
h◦L3(h◦ − L+ 2τ)2

L5 + (h◦)2a(τ)− 2h◦b(τ)
,

where

a(τ) = L3 − 24L2τ + 48Lτ2 − 24τ3 ,

b(τ) = L4 − 12L3τ + 36L2τ2 − 44Lτ3 + 18τ4 .

The solution of this special case for h◦ = L
2 is reported in Figure 25.

Example 4. Lintel under a vertical uniform load and a horizontal
concentrated force. Here I apply the stress function method to solve a
problem similar to the previous one, namely the equilibrium of a rectangular,
simply supported panel under a vertical uniform load applied along the top
edge and a horizontal concentrated force acting at the left upper corner
(Figure 26a). Again it is assumed that the supports in A and B react with
two concentrated forces passing through A and B. These two forces are
expressed in the form

{R(A)} =
{
H,

q◦L
2
− Fh◦

L

}
,

{R(B)} =
{
−H − F,

q◦L
2

+
Fh◦

L

}
,

The corresponding boundary data for the stress function are reported
pictorially in Figure 26b. Prolongating the data with ruled surfaces having
the prescribed slope and direction at the boundary, a surface composed by
three parts, a parabolic cylinder and two planes, is generated. Notice that
the value of the thrust H could be chosen arbitrarily, within some limits,
and that, in Figure 26b, it is set to a value such that the intersection of
the lower plane with the parabolic cylinder, touches the upper boundary
(minimal thrust).

The intersection of the three surfaces (Figure 26c) determines the 1d
structure depicted in Figure 26d. The stress is uniaxial between the top
edge and the structure Γ, null below the estrados of the arch; the singular
part of it is concentrated on the support of the folds of F , that is on the
structure Γ.
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Figure 26. Lintel loaded by vertical and horizontal forces: (a). Boundary data: (b).
Composite stress function: (c). Support of the singular stress, arch structure: (d).

Example 5. Lintel under homogeneous vertical body forces. A
rectangular wall beam of heigth h◦ and width L, supported at the bottom
corners A,B and submitted to homogeneous vertical body forces, is shown
in Figure 27a, to which I refer for notations. This element is representative
of lintels for which the effect of body forces is not negligible. The parameter
p◦ = 2h◦

L defines the aspect ratio of the lintel.
The lintel’s lower edge is actually considered as symmetric (with respect

to the center line) and curved (see dashed line in Figure 27a). For now the
shape of this symmetric curve Γ is not specified, whilst its rise is fixed and
called f◦ = (1 − α)h◦, α being a parameter ranging in the open interval
(0, 1). Notice that αh◦ is the thickness of the arch at the keystone.

The curve is described parametrically, in the Cartesian frame depicted
in Figure 27a, as follows

Γ = {{xΓ} = {x, f(x)} , x ∈ [−L/2, L/2]} ,

with

f(L/2) = f(−L/2) = 0, f(0) = (1− α)h◦ .
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Figure 27. Lintel loaded by uniform body forces. Geometry of the panel: (a). Lower
arch for α = 9/10: (b) and for α = 1/100: (c).

I construct two different statically admissible solutions for the equilib-
rium problem of the lintel as described in what follows.

First solution: maximal thrust. With the first solution I assume that
inside the body the stress field is a.e. uniaxial and vertical, and an arch, on
which the normal stress is concentrated, forms along the bottom boundary
curve Γ. The loads acting on the wall produce a resultant vector Q, having
components {0,−Q}, with Q = −γ area(Ω), and located at the center of
the wall. The supports A,B react with two forces RA,RB , whose com-
ponents are denoted {H(A), V (A) = Q/2}, {−H(B), V (B) = Q/2}, where
H(A) = H(B) = H, H being the unknown thrust of the arch; the rest of
the boundary is unloaded.

The uniaxial stress field of simple compression in the vertical direction,
has a non-vanishing component of the form

σ = −γ(h◦ − y) .

Therefore the arch Γ is subjected to the vertical distributed load (per unit
horizontal length) q = −γ(h◦ − f(x)), f(x) being the vertical coordinate of
the arch Γ. For equilibrium the shape of the arch must satisfy the equation

f ′′ = −γ h
◦ − f

H
.

that one can solve (for f and H) with the boundary conditions

f(L/2) = f(−L/2) = 0, f(0) = (1− α)h◦ .

The solution is

f =

(
1 + eL

√
γ
H − e

(L−2x)
2

√
γ
H − e

(L+2x)
2

√
γ
H

)
h◦

1 + eL
√

γ
H

,
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H = γ
L2

Log2
(

2−α2−2
√
1−α2

α2

) .

The value of the force resultant is then

Q = γp◦
2L2

(
1− α2 +

√
1− α2

) (
Log

(
2− α2 − 2

√
1− α2

)− 2Log(α)
)(−1 +√1− α2

)
Log2

(
2−α2+2

√
1−α2

α2

)
.

In Figures 27b,c the shape of the lower curve determined through equi-
librium is compared to the actual shape of the intrados of the lintel, for
two extreme special cases (α = 0.9, α = 0.01). From these two pictures
one can see that, in the first case, the statically admissible stress field here
constructed can be accepted as an approximate equilibrated solution (by
neglecting the slight geometrical difference between the two curves); whilst,
in the second case, there is a large portion of the domain (located below the
arch) that remains out of the picture.

It is to be pointed out that for α→ 1, the thrust force tends to +∞.
Second solution: reducing the thrust.The domain Ω is divided into

two parts: the part Ω′ comprised between the curve Γ and the curve

Γ′ = {{xΓ} = {{x, g(x)} , x ∈ [−L/2, L/2]}} ,

with

g(x) =
1

1− α
f(x) ,

and the part Ω′′, that is the part of Ω located above Γ′ (see Figure 28). A
solution of the equilibrium problem for the region Ω′ is constructed first;
the problem of equilibrium of the region Ω′′ is solved in a second phase, and
superimposed to the previous stress field.

Again I restrict to at most uniaxial stress fields, assuming that the stress
field is convected to one of the two families of curvilinear lines ϑ1 = x, ϑ2 =
λ, defined by

x1 = x , x2 = h(x, λ) ,

with

h(x, λ) = (1− α+ λα) g(x) ,

where, x ∈ [−L/2, L/2], λ ∈ (0, 1) and
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Figure 28. Lintel loaded by uniform body forces: geometry of the panel and domain
partition for the second solution.

g(x) =
1

1− α
f(x)

is the function describing the upper curve Γ′.
The natural and reciprocal base vectors associated to this curvilinear

system, in components in the Cartesian reference depicted in Figure 28, are

{a1} = {1, h,1} , {a2} = {0, h,2} ,

{
a1

}
= {1, 0} ,

{
a2

}
=

{
−h,1

h,2
,
1

h,2

}
.

The uniaxial stress field here considered has the form

T = σa1 ⊗ a1 ,

σ being a function of (x, λ), describing the intensity of the stress field, to
be found, together with f , by solving the equilibrium equation

∂

∂ϑα
(σa1 ⊗ a1) a

α + b = 0 .

By projecting this vector equation along the natural bases, after some
algebra, the following system of second order differential equations, is ob-
tained:

σ,1 + σ
h,12

h,2
= 0 ,

− γ

h,2
+ σ

h,11

h,2
= 0 ,
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Recalling that h,2 = ∂h
∂λ = αg, since h,2 is always different from zero

inside Ω′, integrating the first equation, one obtains

σ =
m(λ)

h,2
,

m(λ) being an unknown function of λ. Substituting into the second equation
one obtains

γ = m(λ)
h,11

h,2
.

Therefore, taking into account that h,2 = ∂h
∂λ = αg and h,11 = ∂2h

∂x2 =
(1− α+ αλ)g′′, the following two conditions are obtained:

g′′ = −kg , m(λ) = −γ α

k(1− α+ αλ)
,

k being a constant that I will assume positive.
By solving the first equation with the boundary conditions g(−L/2) =

0, g(0) = h◦ the following solution is obtained

g◦ = h◦
(
cos

(√
kx

)
+ cot

(√
kL

2

)
sin

(√
kx

))
.

By imposing the condition g′(0) = 0 the value of the constant k is
determined:

k =
π2

L2
,

and then the form of the curve Γ′ is given by

g◦ = h◦cos
(πx
L

)
,

that is

Γ′ =
{
{x} =

{
x, h◦cos

(πx
L

)}
, x ∈

[
−L

2
,
L

2

]}
.

The physical uniaxial stress component

σ = T(11) = T ·
(

a1
|a1| ⊗

a1
|a1|

)
= − L2γSec

(
πx
L

)
h◦π2(1 + α(−1 + λ))

,

along the ϑ1 curves, is depicted in the graphic of Figure 29.
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Figure 29. Contour plot of the stress σ in the region Ω′.

It is assumed that the load which is given above the curve Γ′, is taken by
an arch Γ′′, that is by a concentrated stress with support on Γ′′. The form
of this curve, springing from the points A, B, determined by the form of the
load through equilibrium, should be located below the load (that is below
the curve Γ′) and contained inside the masonry (that is above the curve Γ).
In this way, the load can be transmitted to the arch by compressive uniaxial
vertical stresses, linearly varying inside Ω′′, and constant outside it.

The vertical load that I consider acting on Γ′′′ is then

q = γ(s+ h◦ − g◦) ,

γs being the effect of a given uniform over-load. By solving the equilibrium
equation for the arch, with the conditions that the arch passes through the
points A and B, and through the point P of coordinates {0, hy}, one obtains

Γ′′′ =
{{

x,
hy

(
π2(Lp◦ + 2s)

(
L2 − 4x2

)− 8L3p◦cos
(
πx
L

))
L2 (L (−8 + π2) p◦ + 2π2s)

}
,

x ∈ (−L/2, L/2)
}
,

where p◦ = 2h◦
L is the aspect ratio of the lintel. In Figure 30 the form of the

arch for p◦ = 1 , s = L/8 and three special cases is reported.
Finally the values of the vertical reactions and of the thrust forces in A

and B, due to the compound effect of the first and the second equilibrium
solutions are:

Q/2 =
(π − 4p◦ + 2πp◦)γ

8π
+

p◦αγ
2π

, (23)
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Figure 30. Lintel loaded by uniform body forces: geometry of the arch Γ′′′ carrying
the load of the part Ω′′ for three special cases: from top top to bottom, α = 2/3, α = 1/3,
α = 1/6.
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Figure 31. Typical masonry portal. L: span of the arch, f : rise, h: thickness. ABCD:
lintel, h◦: height of the lintel. GFEB: pier, h1: height of the pier, �: width of the pier.

H =

(−16p◦ + π2(1 + 2p◦)
)
γ

32hyπ2
− γLog(1− α)

π2
. (24)

2.10 Derand’s rule

Based on the unilateral model the safety of the structure is a matter of
geometry rather than of strength of materials, in keeping with the spirit of
the “rules of proportion” used by the ancient architects for masonry design.
The essential characteristic of all these rules is that they are proportional
and that they control the overall form of the structure of the building,
regardless of its size.

Most of these rules, being not written, have faded and progressively been
forgotten, but it is evident that the great buildings of the past could not
have been built without some kind of rich and complex knowledge, because
its application resulted in astonishing realizations such as the Pantheon and
the Gothic cathedrals. One of the rules that is survived, is the Derand’s rule
(see Benvenuto (1991) and Huerta (2008)), and here I try to assess the safety
margins it assures on the basis of singular stress fields for the masonry-like
model. The results here obtained confirm that this often criticized rule is
actually a sharp technical tool.

The rule applied to a portal. In 1643 François Derand published his
monumental work on vaults (Derand (1643)), where the rule for determin-
ing the thickness of the walls, needed to support the thrust of the vaults,
appears. Here I apply the rule to a simple masonry portal.

If Figure 31, a masonry panel Ω, having the form of a portal, fixed at
the base and unloaded on the rest of the boundary, is depicted. The panel
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Figure 32. Derand’s rule for shallow and pointed arches.

is loaded by its own weight b, considered uniform and acting vertically
downward, and by a small uniform vertical load applied along the top edge.
The main nomenclature concerning such a typical structure is reported in
Figure 31, to which I refer for notations. For simplicity I take the unit of
length and force in such a way that L = 1 and |b| = γ = 1.

Derand’s rule applies both to segmental and pointed arches as illustrated
in Figure 32a,b, to which I refer for notations. Based on this rule the thick-
ness of the wall is the segment �c indicated as a thick line in Figure 32a,b,
that is given by the projection of the arch segment, reported in the same
figure, on the horizontal line. The rule is that the arch segment whose
projection determines �c, is

1
3 of the total length of the intrados.

On introducing the angle ϑ = artan(2(1 − α)h◦) (in which α is the
parameter introduced in the previous example) and noticing that the radii
for the segmental (ϑ < π/4) and pointed (ϑ > π/4) arches are

r′ =
L

2sin2ϑ
, r′′ =

L

2(1 + cos2ϑ)
,

the rule gives

�c =

{
L
2 − r′sin 2

3ϑ ,

r′′
(
1− cos 2

3 (π − 2ϑ)
)
.

(25)

Limit Analysis solution We analyze the equilibrium of the portal con-
sidering separately the equilibrium of the lintel ABCD and of the pier
BEFG, and then assembling the two parts.

Lintel. The effect of the dead load b on the lintel depicted in Figure 33a
is analyzed by adopting the second s.a. stress field, introduced in the pre-
vious Section. Based on this solution the forces transmitted to the piers at
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Figure 33. Forces acting of the pier. Q, H are the vertical and horizontal forces
trasmitted by the lintel; the uniformly distributed load at the top base is the effect of
the weight of the part BEC; b is the body force.

the points A, B, have the vertical and horizontal components given by (23)
and (24).

The concentrated and distributed forces acting on the right pier of the
portal, are depicted in Figure 33a.

Pier. These forces and their slope can be used as data for the equilibrium
of the pier, as shown in Figure 33. In the pier BEFG I consider an arch
Γ springing from the point B with the slope given by 2H/Q. The arch Γ
is represented by its graph z(x) in a right handed reference {O;x, y} with
origin in B and y directed vertically, downward. The arch Γ carries the
inclined thrust force coming from the lintel and the weight of the part of
the wall above it, besides the over-load s. A uniaxial stress field, linearly
varying with y, and balancing the, constant, vertical load b (|b| = γ = 1),
is considered both above and below the arch: the upper part is sustained by
the arch; the part below is supported by the soil. The equilibrium conditions
give, in this case, the following equation for z:

z′′ =
1

H
(s+ h◦ + z) .

This equation can be integrated with the conditions

z(0) = 0, z′(0) =
2H

Q
.
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The solution is

z◦ =
1

2

(
(p◦

L

2
+ s)(1− e−βx)(−1 + eβx) +

2H

Qβ2
(1 + eβx)

)
,

where β =
√
1/H. The form taken by the arch Γ depends on the aspect

ratio, p◦, of the lintel, and on the parameter α defining the thickness of the
arch at the key stone. To compare the results with the rule of Derand, I
introduce the parameter

λ = tan(ϑ) ,

and notice that

λ =
(1− α)2h◦

L
= (1− α)p◦ .

Then z◦ can be expressed as a function of p◦ and λ and the limit length
�c, that is the intersection of the arch Γ′ with the base, can be determined
for different values of the heigth h.

Effect of the heigth: Gil’s rule. Derand’rule makes no reference to the
heigth of the pier, though other rules of proportion relating the shape of the
arch to the heigth of the piers are known. One of these is the seventh rule
of Gil (Rodrigo Gil de Hontanon, see Huerta (2004)) for which the heigth
of the pier is approximately twice the rise of the arch.

In Figure 34 a comparison between the values of �c given by Derand’s
rule with that obtained with the RNT model under Gil’s prescription (that
is by putting for the heigth: h = 2f), is presented. The values of �c are
plotted against the parameter λ, for a few values of the parameter p◦, in the
range of practical interest: { 1

10 ,
9
10}. The different curves refer to different

values of p◦.
The values of �c predicted with the unilateral model (which being ob-

tained with the static theorem of LA are safe and then upper bounds to the
limit length �c) are always smaller than the values prescribed by Derand in
the range of values of the aspect ratio p◦ here explored. Notice that the
range considered covers both the cases of shallow and pointed arches and
that, based on the NT theory, Derand’s prescription appears as a rather
sharp rule.
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Figure 34. Comparison of Derand’s (and Gil’s) rule with LA predictions. The con-
tinuous upper curve represents the graphic of Derand’s rule (25). The sequence of curves
represents the LA predictions of �c for (from left to right) p◦ = { 1

8
, 1
4
, 1
2
, 1, 2, 3}.

3 Model one (NENT)

In this section the main ingredients of the theory concerning model one for
masonry materials, namely the Normal Elastic No-Tension (NENT) mate-
rial, that is the n > 1 version of the 1d model introduced in Chapter 1,
are presented. The constitutive assumptions, the balance equations and
the boundary conditions are introduced and the boundary value problem
for NENT materials is formulated. On introducing a proper form of stored
elastic energy, the minimum problem for the potential energy functional
provides the existence of the solution for this boundary value problem. The
main issues connected with energy minimization and a number of illustrative
exact solutions and examples are discussed.

3.1 A Premise on Minimum problems and the peculiarity of NT
materials

Several problems in physics and Engineering can be formulated as a
minimum search: a functional describing the energy of the system and de-
pending on an unknown function has to be minimized over the set of all
admissible functions. In the context of elasticity, denoting u the displace-
ment vector describing the deformation from a given configuration Ω, of a
material body subject to a system of applied forces and given boundary
displacements, the energy can be written in the form

E(u) = −〈�,u〉+ U(u) , (26)
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where -〈�,u〉 is the linear form describing the potential energy of the load,
that is minus the work of the load � = (s,b) for the displacement u, and
U(u) is the stored energy functional. The simplest case in which existence
theorems for the minimum problem

min
u∈K

E(u) , (27)

K being the subset of a convenient Banach space T (Ω̃), occurs when E(u) is
lower semicontinuous and coercive, in the sense that E(u)→∞ as ‖u‖S →
∞. Unfortunately, as we shall see, the energy functional for masonry-like
materials is not coercive (see also the form that the strain energy density
takes in the 1d case (see Figure 10.a of Chapter 1) and therefore some
supplementary hypotheses have to be added in order to get existence. For
instance, existence of solution in the case of Normal Elastic No-Tension
materials, under small strains and in the 2d context, has been established
by Giaquinta and Giusti (in Giaquinta and Giusti (1985)), under a so called
safe load condition. Specifically the form of energy to be minimized in the
case of NENT materials is

E(u) = −
∫
∂ΩN

s · u−
∫
Ω

b · u+

∫
Ω

Φ(E(u)) , (28)

where E(u) is the infinitesimal strain associated to u, Φ(E(u)) is the elastic
energy density, and the stress T is related to E through the relation

T =
∂Φ

∂E
. (29)

The minimizer of E(u) is searched for u ∈ S(Ω) (a Banach space) and
u = u on ∂ΩD. Concerning the nature of such Banach space, that is the
regularity of u, actually it seems reasonable to expect, based on the non
coercivity of Φ (see Figure 10.a of Chapter 1) and on the at most linear
growth of the energy E(u), that u be possibly discontinuous and the cor-
responding deformation not to be absolutely continuous. A popular choice
for S(Ω) is the space BD(Ω) of bounded deformations, though one expects
that, apart from very special cases and away from the case of collapse loads,
the minimizers should be much more regular. We shall return to the vari-
ational formulation of equilibrium for masonry materials after the BVP in
its strong form is considered.

3.2 The Boundary Value Problem for NENT materials

Constitutive restrictions. It is assumed that the structure Ω ∈ �n (here
n = 2), loaded by the given tractions s on the part ∂ΩN of the boundary, and
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subject to given displacements u on the complementary, constrained part of
the boundary ∂ΩD, is in equilibrium under the action of the given surface
and body loads (s, b) and distortions E, and undergoes small displacements
u and strains E(u)13.

Notice again that Ω is considered closed on ∂ΩD and open on the rest of
the boundary.

We consider that the structure Ω is composed of Normal Elastic No-
Tension material, that is the stress T is negative semidefinite

T ∈ Sym− , (30)

the effective strain, that is the total infinitesimal strain E(u) minus the
eigenstrains E, is decomposed additively into the sum of an elastic part Ee

and an anelastic part Ea, namely:

E(u) = Ee +Ea +E , (31)

the elastic part being linearly related to the stress T:

Ee = A [T] , (32)

the latent anelastic part (a measure for fracture) being positive semidefinite

Ea ∈ Sym+ , (33)

and the stress T doing no work for the corresponding latent strain Ea

T ·Ea = 0 . (34)

Notice that in the plane case (n=2) conditions (30), (33), can be rewrit-
ten as

tr T ≤ 0 , detT ≥ 0 , (35)

tr Ea ≥ 0 , detEa ≥ 0 . (36)

Remark 10. It is to be pointed out that a NENT material, that is a
material defined by the restrictions (30) through (34), is elastic in the sense
that, given the total strain E(u), the stress can be univocally determined.
The material is actually hyperelastic as we shall see later in what follows.�
13When eigenstrains are considered, under the small strain assumption, the total strain

E(u) is decomposed additively as follows: E(u)=E∗ +E, E∗ being the effective strain

of the material.
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Equilibrium problem. In order to avoid trivial incompatible loads (s,b),
I assume again that the tractions s satisfy condition (4).

In equilibrium, the stress field T must be balanced with b, that is

divT+ b = 0 , (37)

and the stress T and the displacement u must comply with the boundary
conditions

Tn = s , on ∂ΩN ,u = u , on ∂ΩD . (38)

Boundary Value Problem. The boundary value problem for NENT
materials can be formulated as follows:

Given a bounded open set Ω and the partition ∂Ω = ∂ΩD ∪ ∂ΩN , find
the fields u, T defined over Ω ∪ ∂ΩD, such that the material restrictions
(30) through (34), the balance equations (37) and the b.c. (38) are satisfied.

Peculiar features of the fracture field for NENT materials, in the
three sets of the Fundamental Partition. As it was already observed
in the previous Chapter concerning the RNT model, to each statically ad-
missible stress field T defined over Ω ∪ ∂ΩD, is associated a Fundamental
Partition of the domain: Ω = Ω1 ∪ Ω2 ∪ Ω3, of biaxial, uniaxial and zero
stress (see Section 2.3).

In Ω2 the equilibrium equations and the condition detT = 0, form a
system of three equations in the three unknown independent components
of T. The differential problem is parabolic and the stress is determined by
equilibrium regardless of the material response.

In Ω1 fractures are not possible, that is Ea = 0.
In Ω3, where T = 0, any positive semidefinite fracture field is possible.
Also in Ω2 the material can be fractured. The necessity of fractures is

naturally produced by the problem being statically determined: the elastic
strain associated to the statically determined stress is generally not compati-
ble and fracture strains are required to restore compatibility. The normality
condition requires that in Ω2 the fractures must open up orthogonally to
the isostatic compression lines, therefore, as a consequence of normality, on
a crack line (that is a line where the strain is a line Dirac delta) the jump
of displacement must be purely orthogonal to the crack line. If the strain
is regular, in a curvilinear frame with natural bases a1,a2 coincident with
the eigenvectors of T, T admits the representation
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T = σ
a1 ⊗ a1
a1 · a1 ,

σ being the only non zero, negative eigenvalue of T. Normality implies the
following form for the fracture strain Ea:

Ea = λ
a2 ⊗ a2
a2 · a2 ,

λ being the only non zero, non negative eigenvalue of Ea. Then, regardless
of the possible elastic anisotropy of the material, the principal directions
of stress and anelastic strain of a NENT material are always coincident all
over Ω.

3.3 Strain energy density in 2d

Most of the features illustrated by the 1d ENT model (that is Model 1
introduced in Chapter 1) are transposed to the 2d case, except that to obtain
hyperelasticity there is a price to pay: the assumption of normality (that is
the constituitve assumptions (33), (34)) must be made on the total latent
strain Ea. Such an assumption implies that on a discontinuity line Γ for the
displacement u, that is on the support of a concentrated fracture, the jump
of displacement must be orthogonal to Γ. Therefore sliding is forbidden
on fracture lines. It is shown by Del Piero in Del Piero (1989) that, for
NENT materials, the major symmetry of A is necessary and sufficient to
get existence of an elastic energy function. In the isotropic case the form
of the energy density Φ can be constructed explicitly14 in terms of the
eigenvalues e1, e2 of E (here e1 < e2 is assumed). In the case of generalized
plane stress, one has (see Figure 35)

Φ =

⎧⎪⎨⎪⎩
0 , e1 ≥ 0 and e2 ≥ 0 ,
1
2Ee21 , e1 < 0 and e2 ≥ −νe1 ,
1
2

E
1−ν2

(
e21 + e22 + 2νe1e2

)
e1 < 0 and e2 < −νe1 ,

E, ν being the Young modulus and the Poisson ratio. Notice that the stress
T derived from Φ satisfies identically the no-tension restriction (30), that
is there is no need to impose it as a constraint.

14In the general anisotropic case the explicit symbolic form of Φ is not known and must

be constructed numerically, case by case.
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Figure 35. Strain energy density of isotropic NENT materials: zero energy region:
light grey; parabolic energy region: grey; elliptic energy region: dark grey.

3.4 Function spaces for the potential energy functional.

For hyperelastic materials equilibrium states of the body can be searched
as minimizers of the total potential energy (28)

min
u∈K

E(u) , (39)

K being the set of kinematically admissible displacement fields for NENT
materials, defined as follows

K = {u ∈ T (Ω) s.t. u = u on ∂ΩD } , (40)

where Ω = Ω̇∪∂ΩD and T(Ω) is a convenient Banach space. As it is evident
from the picture of Figure 35, the strain energy function characterizing
NENT materials is not coercive.

Coercivity of the total potential energy can be restored by considering
the following supersafe load condition on the applied forces (here I consider
for simplicity the case of fixed boundary constraints: u = 0, on ∂ΩD)

Supersafe load condition. The load p,b is said to be supersafe if
there exists at least one stress field T ∈ H, H being the set of statically
admissible stress fields for NT materials defined in (7):

H =
{
T ∈ S(Ω) s.t. divT+ b = 0 , Tn = s on ∂ΩN , T ∈ Sym−

}
, (41)

such that
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(T+ βI) ∈ Sym− , (42)

for some constant β > 0. In other words the load is supersafe if T is strictly
statically admissible over the set Ω in a uniform way, that is independently
of x. The definition of supersafe loads depends on the choice of the function
space S(Ω). For NENT materials one can assume

S(Ω) ≡ L2(Ω) . (43)

If the load is supersafe then the potential energy associated to the exter-
nal forces can be expressed in terms of T and of any displacement u ∈ K,
in the form

−
∫
∂ΩN

s · u−
∫
Ω

b · u = −
∫
Ω

T ·E(u) .

Then the total potential energy can be rewritten in terms of this super
safe s.a. stress field T as

E(u) = −
∫
Ω

T ·E(u) +
1

2

∫
Ω

C[Ee(u)] ·Ee(u) .

Recalling that E(u) = Ee(u)+Ea(u), on using the safe load assumption
one can write

E(u) ≥ −
∫
Ω

T ·Ee(u) +
1

2

∫
Ω

C[Ee(u)] ·Ee(u) + β

∫
Ω

|Ea(u)| ,

that is the energy has at least a linear growth with respect to the norm of the
space BD(Ω): the space of functions u whose corresponding infinitesimal
deformation E is a bounded measure. For full information on this function
space I refer to the paper by Temam and Strang (1994). Here I notice only
that, since the infinitesimal strain E can be a bounded measure, then u can
be discontinuous and E can be decomposed in its absolutely continuous and
singular parts with respect to the 2d Lebesgue measure:

E(u) = Er +Es .

Recalling the decomposition of E into its elastic and fracture parts,
since the potential energy grows quadratically with respect to the elastic
part of the deformation, then only the fracture part Ea can be singular,
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that is only fracture discontinuities are admitted. In other words the elastic
deformation must be regular and the anelastic deformation can be either
regular or singular. In Giaquinta and Giusti (1985) (theorem 6.8, p 381),
the authors show the existence of the solution for the minimum problem
with T (Ω) = BD(Ω) under the supersafe load condition (and some sup-
plementary technical conditions) in the special case of traction problems
and isotropic elastic behaviour. Since the energy is not strictly convex the
solution is in general non unique.

3.5 Complementary energy functional.

Also a dual energy principle based on the Complementary Energy can
be proved (see Giaquinta and Giusti (1985)). The stress state T◦ that cor-
responds to the solution of the boundary value problem for NENT materials
can be characterized as the minimizer of the energy functional

Ec(T) = −
∫
∂ΩD

Tn · u+
1

2

∫
Ω

A[T] ·T , (44)

over the set H of statically admissible stress fields

H =
{
T ∈ S(Ω) s.t. divT+ b = 0 , Tn = s on ∂ΩN , T ∈ Sym−

}
, (45)

S(Ω) being a convenient Banach space. S(Ω) can be assumed as the Hilbert
space L2(Ω): in other wordsH is represented by the symmetric second order
tensors T of L2(Ω), such that T is negative semidefinite and balanced with
s,b. Obviously on considering T ∈ L2(Ω) the balance conditions must be
considered in a generalized sense (see (8), (9)).

The choice of L2(Ω) as the function space for the stress field seems natu-
ral considering the quadratic term which represents the stress energy in the
complementary energy (44). Since the Complementary Energy functional is
strictly convex over the convex set H, the existence and the uniqueness of
the minimizer T◦ of such functional is guaranteed whenever H is not void
(that is there exist at least one square summable stress field T such that
T is negative semidefinite and balanced with s,b, or, in other words, the
loads are compatible in the sense of definition (17)). Therefore though the
solution u◦ may be non unique the elastic part Ee of the strain solution is
unique. Non uniqueness is restricted to the anelastic part Ea of the defor-
mation E, and to special arrangements of the boundary conditions. This
circumstance makes the displacement and stress approach to the equilib-
rium of NENT materials non symmetric, in the sense that existence of the
minimizer T◦ for the complementary energy. is not sufficient for the exis-
tence of the minimizer u◦ of the potential energy E. The existence of T◦
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requires only the existence of an admissible stress field, existence of u◦, with
the known theorems, requires instead the existence of a uniformly strictly
admissible stress field. There are indeed counterexamples for the existence
of u◦ in the case the loads do not satisfy the safe load condition, in which
a s.a. stress field T◦ can be found; two of them are reported in the next
Subsection.

3.6 Examples of non-existence.

To my knowledge there are no examples of non existence, for traction
problems, in the case in which the loads do not satisfy the safe load con-
dition but there exists a strictly admissible stress field T. The only known
counterexamples refer to the case in which the loads do not satisfy the safe
load condition and there exists a balanced and admissible, but not strictly
admissible, stress field T. In the known examples there are parts of the do-
main that can be taken away and transplaced rigidly, without paying any
energy price. Therefore E = 0 as |u| → +∞, and I can say that the loads
are collapse loads, in the sense that the deformation can increase indefinitely
at constant load. Some trivial examples of non-existence are considered in
what follows.

Two examples of non existence. The NENT material is a pecu-
liar model for a continuum, some care in the imposition of the data must
be exercised to avoid nasty results, that is lack of solution or very large
displacements for small loads. The idea is that the material is rather del-
icate and loads and displacements must be applied cautiously to allow for
the material to accept them. This aspect is somehow in keeping with the
behaviour of real masonry structures which suffer from the application of
concentrated loads or from the abrupt changes of loads or given displace-
ments. The message is that the data of a BVP relative to a body made of
NENT material must be specially disposed and coordinated.

The two following examples are two, more or less famous, examples of
non existence. The first case (Figure 36a) refers to a traction problem, the
second (Figure 36b) to a mixed BVP.

These two examples suggest that a finite normal crack develops on a
line: the assumption of infinitesimal displacements and strains is violated.

3.7 Elementary analytical solutions

A number of closed form solutions for NENT materials were first pre-
sented in Angelillo and Giliberti (1988); here I report some of them.
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a b

Figure 36. Examples of non existence of the solution for the NENT BVP. (a) : the
displacement corresponding to the only statically admissible state cannot possibly verify
the normality condition at the interface Γ (the vertical center line), unless the normal
displacement jump on Γ tends to +∞. (b): since the only statically admissible stress
field is T = 0, any k.a. displacement field cannot possibly satisfy the normality condition
at the base for the given tangential displacements, unless the normal displacement jump
at the base tends to +∞.

a b

Figure 37. Pure shear: (a). Stress field solution: (b).

Exact solution 1: Pure shear. The very first simple, non trivial solu-
tion (i.e. distinct from elementary solutions of linear elasticity), for NENT
materials is pure shear (Figure 37).

The solution, in terms of displacements, is identical to the universal
solution for homogeneous linearly elastic materials, that is

u1 = γx2 , u2 = 0 .

The corresponding strain decomposition into elastic and anelastic strains:
E = Ee +Ea, for a homogeneous and isotropic NENT material, is
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where

{Ea} = (1− ν)

{
γ
4

γ
4

γ
4

γ
4

}
.

The associated stress field, trivially balanced with zero body loads inside
Ω is (see Figure 37b)

{T} = E

{ −γ
4

γ
4

γ
4 −γ

4

}
.

With this solution the whole domain is of the Ω2 type, the material
being uniformly compressed along a family of compression rays parallel to
a diagonal of the square panel; uniformly distributed fractures open up in
the direction of the other diagonal. Therefore, in a real masonry panel, one
may expect a pattern of parallel cracks in the direction of the compression
rays.

Exact solution 2: Simple flexure. The second problem I consider is
the flexure of a rectangular strip. The geometry and the boundary condi-
tions are depicted in Figure 38a to which I refer for notations. A simple
solution of the problem exists if the material is isotropic and one assumes
ν = 0 (an assumption that, though far from being realistic, produces easy
analytical solution that one can use as benchmark problems for numerical
approximations).

In this case the displacement field u = uê1 + vê2 with

u =
ϕ

L
(L− 2x1)x2 ,

v = −ϕ

L
(L− x1)x1 ,

solves all the field and boundary equations, for a homogeneous and isotropic
NENT material, with ν = 0. Indeed the corresponding total strain is

{E} =
{ −2ϕx2

L 0
0 0

}
,

that is easily decomposed into the elastic and fracture parts:
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a b

Figure 38. Pure flexure of a rectangular strip. Boundary data: (a), stress and domain
partition corresponding to the first solution: (b).

{Ee} =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{
−2ϕx2

L 0

0 0

}
, x2 > 0 ,

{
0 0

0 0

}
, x2 ≤ 0 ,

(46)

{Ea} =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{
0 0

0 0

}
, x2 > 0 ,

{
−2ϕx2

L 0

0 0

}
, x2 ≤ 0 .

(47)

The corresponding stress field is

{T} = E

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{
−2ϕx2

L 0

0 0

}
, x2 > 0 ,

{
0 0

0 0

}
, x2 ≤ 0 .

(48)

This stress field is obviously balanced with the prescribed body load
b = 0 at the interior and with the surface tractions s = 0 given at the
loaded part of the boundary (x = ∓H/2). Based on this solution for the
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stress, the domain Ω is divided into two zones of the type Ω2, Ω3, as depicted
in Figure 38b.

For this example I can also give a different solution, namely the same
stress field but a different fracture field, under the same boundary condi-
tions. The second solution (see Figure 39) to the same problem is defined
by the displacement field u = uê1 + vê2, as follows

u =

⎧⎪⎨⎪⎩
ϕ
L (L− 2x1)x2 , x2 > 0 ,

ϕx2 , x2 < 0 and, x1 < L/2 ,

−ϕx2 , x2 < 0 and, x1 > L/2 ,

v =

⎧⎪⎨⎪⎩
−ϕ

L (L− x1)x1 , x2 > 0 ,

−ϕx1 , x2 < 0 and, x1 < L/2 ,

ϕ(x1 − L) , x2 < 0 and, x1 > L/2 .

The corresponding total strain is composed of absolutely continuous and
singular parts: E = Er +Es with

{Er} =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{
−2ϕx2

L 0

0 0

}
, x2 > 0 ,

{
0 0

0 0

}
, x2 ≤ 0 ,

{Es} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
−2ϕx2 0

0 0

}
δ , x1 = L/2 and x2 ≤ 0 ,

{
0 0

0
ϕx2

1

L

}
δ , x1 < L/2 and x2 = 0 ,

{
−2ϕx2 0

0 ϕ(x1−L)2

L

}
δ , x1 > L/2 & x2 = 0 .

where δ denotes the unit Dirac delta. The total strain is then decomposed
in its elastic and anelastic parts as follows:

Ee = Er , Ea = Es .
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Figure 39. Deformed configuration corresponding to the second solution: (a). Graph
of the non zero Cartesian components of Ea :(b). Flexure test on a masonry panel
(courtesy G. Castellano): (c).

a b

Figure 40. Heap under uniform body forces resting on a smooth foundation: (a).
Mechanism for which the load does zero work: (b).

Therefore the stress T coincides with that of the first solution and de-
termines the same partition of the domain Ω, as described in Figure 38b.

The fracture strain is singular and describes the cracks exhibited by the
deformed configuration depicted in Figure 39a. A graph of the E11 and E22

components of Ea is reported in Figure 39b. In the absence of any energy
price to pay to open up fractures, the two solutions reported are perfectly
equivalent and the body can choose any of the two. It could be of some
interest to look at the result of the flexure test performed on a masonry-like
material (a mixture of lime and gypsum with a ratio between tensile and
compressive strength of 1

20 ) shown in Figure 39c.

Exact solution 3: 2d heap of masonry stones on a smooth founda-
tion. The third problem I consider concerns a triangle of NENT material,
simply supported at the base on a rigid, perfectly smooth interface (see Fig-
ure 40). The only external forces I consider are represented by a uniform
gravitational load b = −γê2 directed vertically.

A solution to this problem can be easily found since there exists only
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one admissible stress field for this geometry and for these data.
The load is a collapse load since the resultant stress across any vertical

section of the triangle (see Figure 40b) is zero and any two parts divided by
a vertical section, can be separated horizontally with a vertical crack, cor-
responding to a zero energy mode and consisting into a horizontal uniaxial
strain, concentrated on the line of separation.

Setting the length scale in such a way that L = 1, the one and only
s.a. stress field, negative semidefinite and in equilibrium with the load, is
written as follows

{T} =
{

0 0
0 σ(x1, x2)

}
,

with

σ(x1, x2) =

{
γ(x2 − x1) , x1 ≤ 1 ,

γ(x2 + x1 − 2) , x1 ≥ 1

}
.

To this stress field (considering for simplicity the case ν = 0) is associated
the elastic strain

{Ee} =
{

0 0
0 ε(x1, x2)

}
,

with

ε(x1, x2) =

{
γ
E (x2 − x1) , x1 ≤ 1 ,

γ
E (x2 + x1 − 2) , x1 ≥ 1

}
.

Therefore, taking into account the normality condition T.Ea, the anelas-
tic strain takes the form

{Ea} =
{

λ(x1, x2) 0
0

}
,

the total strain being

{E} =
{

λ(x1, x2) 0
0 ε(x1, x2)

}
.

Such total strain is compatible if and only if

∂2λ(x1, x2)

∂x2
2

+
∂2ε(x1, x2)

∂x2
1

= 0 .

The function ε(x1, x2) is not smooth and its second derivatives must be
interpreted in a generalized sense. The 3d graph of ε(x1, x2) depicted in
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a b

c d

Figure 41. 3d plot of the elastic uniaxial strain ε(x1, x2): (a). In (b): first derivative
of ε(x1, x2) with respect to x1: piecewise constant field. In (c): second derivative; a
constant line Dirac delta with support on the center line Γ. In (d) the anelastic strain
λ(x1, x2) restoring compatibility: a parabolic line Dirac delta with support on the center
line Γ

Figure 41a, can help to visualize the first and second derivatives of ε(x1, x2)
with respect to x1 reported in Figures 41b,c.

A function λ(x1, x2) that solves the compatibility equation and is non
negative is

λ(x1, x2) =
γ

E
(L− x2

2) δ(Γ) ,

where δ(Γ) is the line Dirac delta defined on the line Γ of equation x1 = 1
(see the graph depicted in Figure 41d).

The displacement u = uê1 + vê2 is then obtained integrating the total
deformation. In components

u =

{
γ
2E (x2

2 − 1) , x1 < 1 ,
γ
2E (1− x2

2) , x1 > 1 ,

v =

{
γ
2Ex2(x2 − x1) , x1 < 1 ,
γ
2Ex2(x2 + x1 − 2) , x1 > 1 ,
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Figure 42. Ring under external and internal pressures: (a). Fundamental partition
of the domain corresponding to the solution for α = 25/48: (b). Fundamental partition
corresponding to α = 1/2: (c).

The deformation corresponding to this discontinuous displacement field,
singular on the center line Γ, gives a concentrated fracture varying parabol-
ically with x2.

Exact solution 4: Ring under internal and external pressures.
The fourth problem I consider concerns a ring of internal radius a and
external radius 2a, composed of NENT material and subjected to an internal
pressure p and an external pressures q = α p (see Figure 42).

The real number α is a load parameter varying in the interval [1/2, 1].
Notice that the case α = 1 corresponds to the elastic solution of uniform
pressure.

First Case: supersafe load. First I consider the case in which 1/2 <
α < 1. To fix the ideas I consider the special case α = 25

48 .
In this case the load is supersafe since there exists a strictly s.a. stress

field, uniformly bounded from above by a uniform compression of value
−p/18. Such s.a. stress field, in physical components in the polar coordinate
system {r, ϑ} with origin in the center of the ring, takes the form

Trr = −p
(
a

r
+

r2 − a2

36r2

)
,

Tϑϑ = −pr
2 + a2

36r2
,

Trϑ = 0 .
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The existence of a purely compressive s.a. stress field does not imply
that the solution of the BVP is necessarily of pure biaxial compression. In
the case at hand we shall see that both uniaxial and biaxial stress states,
and fractures open up in the inner part of the domain.

With reference to the linear elastic solution for an isotropic pressur-
ized ring, recalling the formula for the stress (see Timoshenko and Goodier
(1951)), one easily finds that: in the region Ω1 = {{r, ϑ} s.t. 3

2a < r < 2a},
the stress coincides with the classical elastic solution; in the region Ω2 =
{{r, ϑ} s.t. a < r < 3

2a}, the stress is uniaxial and radial (see Figure 42b).
Namely:

Trr =

{
−p a

r , a ≤ r ≤ 3
2a ,

−p(9a2+4r2)
12r2 , 3

2a ≤ r ≤ 2a ,

Tϑϑ =

{
0 , a ≤ r ≤ 3

2a ,

−p(4r2−9a2)
12r2 , 3

2a ≤ r ≤ 2a ,

Trϑ = 0 .

We leave to the reader to verify that this stress field verifies the bal-
ance equations with zero body forces, matches the given pressures at the
inner and outer boundary, and is compressive. In the region Ω1 the stress
field being coincident with the elastic solution, gives compatible strains and
the physical components{ur, 0} of the displacement u, can be easily found
through the relations:

Eϑϑ = Tϑϑ − νTrr , Eϑϑ =
ur

r
.

In Ω2, ur can be found, modulo a constant, through the equations

Err = Trr − νTϑϑ , Err =
∂ur

∂r
.

The constant is finally determined by imposing the continuity condition

ur

(
r−

)
= ur

(
r+

)
,

at r = 3
2a. Then the displacement ur takes the following form

ur =

{
p a
E

(
log

(
3a
2r

)
+ ν

)
, a ≤ r ≤ 3

2a ,
p(4r2(−1+ν)+9a2(1+ν))

12Er , 3
2a ≤ r ≤ 2a ,

In Ω2 the elastic deformations Ee
rr = Trr, E

e
ϑϑ = −νTrr, left alone, are

not compatible. To restore compatibility I must add the fracture field
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Ea
ϑϑ =

∂ur

∂r
− Ee

ϑϑ ,

that is

Ea
ϑϑ =

{
p a
Er log

(
3a
2r

)
, a ≤ r ≤ 3

2a ,

0 , 3
2a ≤ r ≤ 2a .

Then the fracture field is described by a regular deformation consisting
into a diffuse uniaxial circumferential strain taking place in the internal ring
Ω2, of outer radius 3

2a, and becoming vanishingly small at the boundary
between Ω1 and Ω2 (as shown pictorially in Figure 42b).

Second case: Limit load. Consider now the case in which α = 1
2 (see

Figure 42c).
In this case the load is limit since there exists at the same time, a

stress field belonging to H, that is a statically admissible (but not strictly
admissible) stress field, and also a non-zero displacement field belonging to
K◦ for which the load does zero work.

This s.a. stress field, in physical components in the polar coordinate
system {r, ϑ} with origin in the center of the ring, is

Trr = −pa
r
,

Tϑϑ = 0 ,

Trϑ = 0 .

Notice that, in this case, this is also the unique statically admissible
solution, that is the set H of s.a. stress fields is a singleton (with the
language of Structural Mechanics one may say that the structure, with this
kind of load, is statically determined).

The given loads do zero work for the mechanism described by the fol-
lowing physical components of displacement:

ur = u , uϑ = 0 ,

where u is an arbitrary positive constant.
The solution of the BVP in terms of displacements reads

ur = u+
p a

E

(
log

(
2a

r

)
+ ν

)
, uϑ = 0 ,

and the corresponding fracture strain is
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Ea
ϑϑ =

u

r
+

p a

Er
log

(
2a

r

)
.

We point out that, being u an unknown positive parameter, the solution,
in terms of strains and displacements, is not unique.

3.8 Masonry-like panels under flexure, shear and compression:
Mansfield-Fortunato semi-analytical solutions

The problem of equilibrium for normal elastic no-tension materials can
be formulated as a minimum problem for the complementary energy func-
tional over the set of statically admissible stress fields H.

Masonry facades are often formed by an assembly of units in the form of
rectangular panels; an example of a wall with openings in which rectangular
panels can be devised in the masonry, is shown in Figure 43. A special
class of mixed boundary value problem for such units can be solved by
minimizing the complementary energy over the subset H̃ ofH defined by the
admissible stress fields that are of rank one. These minimal uniaxial stress
states represent often the exact solution of such BVP’s in some parts of the
domain. This can be verified by deriving the corresponding fracture strains
through the compatibility equations and checking the boundary conditions
for the associated displacements.

These approximate solutions for rectangular panels have some relevance
both for masonry structures as well as for elastic membranes due to simpli-
fied models which impose unilateral constraints on the normal stress, namely
the No-Tension theory (NT-T) for masonry (see Fortunato (2010))and the
Tension Field Theory (TF-T) for membranes (see Mansfield (1969) and
Steigmann (1990) and references therein). Solutions of similar problems,
consisting of uniaxial stress fields directed along a one parameter family of
rays15, can be found in the technical literature dating back to sixties.

The first to analyze the shearing problem, under the ad hoc assumptions
of TF-T, in mathematically rigorous terms, was Mansfield (Mansfield, 1969).
In Mansfield (1989) he considers more general boundary conditions. For NT
materials, the shearing case was also studied with a variational approach
by Angelillo and Olivito (1995) in the general case of unilateral, anisotropic
elastic materials.

In a recent paper, Fortunato (2010), a comprehensive study, valid for any
relative rigid displacements of the bases (including rotations), is presented;

15We recall that (see Remark 3, Remark 9 and Figure 6), in the regions of uniaxial stress

and under vanishing body forces, a classical result of TF-T is that the lines of principal

traction (compression for NT-T) form a family of straight lines.
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Figure 43. Structural scheme of a masonry wall with openings (in a simplified model
dashed parts can be considered as rigid).

on introducing a curvilinear coordinate system convected with the compres-
sion rays, the problem is reduced to an ordinary differential equation for the
ray distribution (that is the Euler equation of the minimum problem for the
complementary energy over the set H̃), without the need of any ad hoc as-
sumptions besides energy minimization. The basic tension field assumption
(that is the restriction to H̃), in the present context, reduces the compres-
sion ray solution to an approximate solution of the minimum problem for
the complementary energy, and gives a lower bound for the stiffness of the
panel. A definition of the partition of the domain Ω into uniaxial stress
part Ω2 and slack part Ω3, explicit in terms of the relative displacement
parameters, is given. Simple ordinary differential equations are obtained
from the compatibility condition, from which the anelastic strain (that is
the fracture strain for NT-T and the wrinkling strain for TF-T) can be
computed through integration.

Unilateral models for masonry and wrinkling. The last result has
significant relevance for the problem of wrinkling of thin membranes. When
a thin panel is forced into the post-buckling range by loads applied to its
edges, load is transmitted primarily along one of the principal axes of stress,
while bending effects remain secondary. The panel deforms into a wavy or
wrinkly surface, the crests of the waves coinciding approximately with the
trajectories of the tensile stresses (see Figure 44b).
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a b

Figure 44. Wrinkling of a rectangular sheet under relative shearing of the bases and
free on the lateral sides. Boundary conditions: (a) . In (b) wrinkles developing in an
alluminium sheet subject to the b.c. described in (a).

TF-T defines approximately the magnitude and direction of the stress
in the wrinkled zone. The anelastic strains, in TF-T, are a measure of
wrinkling, in the sense that they may be viewed as limits of sequences of
ordinary deformations whose gradients oscillate finely on any interval. The
definition of the wave length and the amplitude of the wrinkles is of vital
importance in many applications (such as sails or space solar panels). In
recent works, some authors (Epstein (1999), Wong and Pellegrino (2006))
propose approximate formulas for estimating the amplitude as well as the
wave length of wrinkles, based on the knowledge of the TFT stress field and
the corresponding anelastic strain. Then the knowledge of the anelastic
strain can be used to test the adherence of such formulas to the description
of known experimental results on panels.

Basic Boundary Value Problem for a Masonry Panel In this Sec-
tion I summarize the main results of the analysis given by Fortunato in
(Fortunato, 2010). Consider a masonry-like rectangular panel, traction free
on the lateral sides and subject to zero body forces and prescribed rigid
body displacements of the top and bottom bases. A Cartesian frame of
reference {O; x1 = x, x2 = y} (Figure 45a) is introduced, with associated
unit base vectors (e1, e2); let us define {uA, vA, ϕA} as the translation and
rotation parameters of the block RA relative to the pole A◦, {uB , vB , ϕB}
as the translation and rotation parameters of the block RB relative to the
pole B◦, {U, V,Φ} as the relative rigid displacement parameters between
the top and bottom bases.
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Figure 45. Masonry panel undergoing rigid relative displacements of the bases: a.
Slope g of a compression ray: (b). Typical minimizing slope g as a function of ϑ1 = x:
(c).

Modulo an ineffective rigid body displacement, it is straightforward to
relate the displacement components at the top and bottom bases a, b with
the relative (rigid) displacement parameters, written

ua = uae1 + vae2 = Ue1 + (V +Φx)e2 ,

ub = ube1 + vbe2 = −Ue1 − (V +Φx)e2 .

Based on the complementary energy principle stated in Subsection 3.5,
the equilibrium solution can be searched by minimizing the complementary
energy over the set H defined in (45). In keeping with the spirit of TF-T,
an approximate solution is looked for in the restricted set H̃ obtained by
considering stress fields T ∈ H such that T is of rank-one.

Remark 11. As shown by some of the elementary solutions previously
discussed, the displacement solution, in the closure of the regions Ω2 ∪
Ω3, can exhibit singularities affecting the latent strain. These singularities
correspond to discontinuities in the displacement through lines that can be
interpreted as fracture lines. The normality assumptions (34), (36), imply
that displacement discontinuities be orthogonal to the discontinuity line. �

Remark 12. On the interface between Ω2 and Ω3 the stress must be
continuous in order to avoid shear discontinuities (violating the normality
rule). As a consequence the stress along the interface between the regions
Ω2 and Ω3 must be zero, the interface itself a straight unextended line. �

The minimizer T◦ of the complementary energy over the restricted set
H̃ is generally not the exact solution of the problem, rather an approximate
solution.
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For any T ∈ H̃ one has Ω = Ω2 ∪ Ω3, that is Ω1 = ∅. Once the free
boundary between Ω2 and Ω3 is identified, the solution of the equilibrium
problem is reduced to the search of the stress field solution in Ω2. As already
remarked, in Ω2 one of the two families of principal stress curves (i.e., the
integral curves of the stress eigenvectors) is made of straight lines, that are
called compression rays. The compression rays carry the non zero stress
and do not overlap. Since the lateral sides of the panel are stress free the
compression rays intersect the boundary along the bases. Therefore the
definition of the behaviour of a single panel, under the above assumptions,
is reduced to finding in Ω2 the optimal compression ray distribution, with
the optimal choice being determined by energy convenience.

In what follows, I summarize the results of the analysis given by Fortu-
nato in (Fortunato, 2010), omitting all the proofs and referring to the cited
paper for the detailed derivations. The main results contained in Fortunato
(2010) concern: 1. the explicit definition of the partition Ω = Ω2 ∪ Ω3, in
terms of the data {U, V,Φ}. 2. The explicit definition of the stress and
complementary energy to be minimized, in terms of the slope of the rays
g. 3. The formalization of the Euler equations and boundary conditions
for all the possible data. 4. The explicit definition of the anelastic strains
(fractures) in terms of the slope g.

Partition of the panel and free boundary between Ω2 and Ω3 Con-
sider the rectangular panel of base B◦ and height H◦. In the sequel a rect-
angular normalized panel is considered, which is a rectangular panel whose
base is of unit length and whose height is H = H◦/B◦ . The slope function
g of a compression ray is introduced; the compression ray intersects the
bottom and top bases at the abscissae xA, xB and the horizontal axis at
ϑ1 = xA+xB

2 , and the slope is defined as a function of ϑ1

[−1/2, 1/2] ! ϑ1 → g(ϑ1) := tan(α(ϑ1)

where α is the angle between such ray and the y axis, as shown in Figure 45b,
to which I refer for notations.

In order that the rays belong entirely to Ω, the geometrical constraints
on g

−1− 2ϑ1

H
≤ g(ϑ1) ≤ 1− 2ϑ1

H
s.t. ϑ1 > 0 , (49)

−1 + 2ϑ1

H
≤ g(ϑ1) ≤ 1 + 2ϑ1

H
s.t. ϑ1 ≤ 0 , (50)

must be satisfied.
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On observing that, for compatibility (that is in order that the strain
satisfies the elasticity relations for shortening and the normality conditions
for lengthening), the interface between the regions Ω2, Ω3, if any, must be
an unextended ray, the following equation definining such class of rays is
derived:

g(ϑ1) = −V

U
− Φ

U
ϑ1 . (51)

The free boundary must be chosen in this class.
It is easy to show that all the rays satisfying the constraint (51) pass

through a common centre C whose coordinates {x◦, y◦) depend only on the
parameters {U, V,Φ}. The expressions for the coordinates of the centre C
are

x◦ = −V

Φ
, y◦ =

U

Φ
.

The partition of the panel into the disjoint regions Ω2 and Ω3, and in
particular their free boundary (necessarily made by rays that satisfy the
constraint (51) ), can be obtained by the position of the center C, and is
independent of the size of the rigid displacement parameters, provided the
ratios U

Φ and V
Φ stay constant.

If U > 0 the inequality

g(ϑ1) < −V

U
− Φ

U
ϑ1 . (52)

defines the ray passing through the points P and Q on the top and bot-
tom bases which are shortened for the given rigid displacements parameters
{U, V,Φ} of the bases.

This is a kinematic constraint on the slope g for the existence of the
compression rays, that is for the existence of the region Ω2.

In the case U = 0, g(ϑ1) is not restricted and the rays are shortened, as
long as ϑ1 > −V

Φ if Φ > 0 and ϑ1 < −V
Φ if Φ < 0. In the case U < 0 then

g(ϑ1) > −V
Φ − Φ

U ϑ1.
Summing up, the restrictions on g(ϑ1) that have been introduced can be

reformulated as follows:
Given the rigid boundary displacement parameters {U, V,Φ}, find the

pair {ϑ1, g(ϑ1)}, so that the geometrical constraints (49), (50) and the kine-
matical constraint (52) hold.

These five inequalities define a feasible region for the pair ({ϑ1, g(ϑ1)}
that can be easily visualized with a graph through which the interface be-
tween the Ω2 and Ω3 regions can be located.
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Depending on the values of the triplet {U, V,Φ}, the feasible region for g
can be either empty or not empty. In the latter case the region is a polygon
with three to five sides whose extrema, with respect to the ϑ1 component,

define the boundary of the Ω2 region. These extrema are called ϑ1 and ϑ
1
.

Based on the values of U, V,Φ, there are essentially five representative
cases to be considered:

(i) Shearing, shortening, flexure: U �= 0 , V > 0, Φ �= 0 ;
(ii) Shearing, elongation, flexure: U �= 0 , V < 0, Φ �= 0 ;
(iii) Shortening: U = 0 , V > 0, Φ = 0 ;
(iv) Shearing: U �= 0 , V = 0, Φ = 0 ;
(v) Shortening, flexure: U = 0 , V < 0, Φ �= 0 .
Figure 46 shows the admissible repertoire of g(ϑ1) in the range [−1/2, 1/2]

for one of these cases.
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Figure 46. Definition of the taut region for the case of shearing, elongation, flexure.
Restrictions on g and limit slopes: (a). Position of the center C: (b). Taut region: (c).

Curvilinear Coordinates in Ω2 In Ω2 it is convenient to introduce a
system of curvilinear coordinates {ϑ1, ϑ2} with one of the curvilinear lines,
say ϑ2, convected to the compression rays. In terms of the Cartesian coor-
dinates x1 = x, x2 = y, with associated base vectors e1, e2, the curvilinear
coordinates {ϑ1, ϑ2} are defined as follows

x1 = ϑ1 + gϑ2 , x2 = ϑ2 ,

g being the slope of the rays, a function of ϑ1 alone.
A physical reference system, that is a variable orthonormal base {e1′ , e2′},

with e2′ tangent to the compression rays at any point of Ω2, is also intro-
duced.
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Strain and Stress in Ω2 Calling uα, the covariant components of the
displacement field u in the curvilinear system {ϑ1, ϑ2} , the local infinitesia-
mal strain E has the following covariant components in the same curvilinear
system

E11 = u1,1 − g′′ϑ2

1 + g′ϑ2
u1 ,

E22 = u2,2 ,

E12 =
1

2
(u1,2 − u2,1)− g′

1 + g′ϑ2
u1 .

The physical component of strain in the ray direction, that is the strain
component in the direction of e2′⊗e2′ , is related to the covariant component
E22 through the relation

E(2′2′) = E22
1

1 + g2
.

Notice that the total strain E, in the variable hortonormal base {e1′ , e2′},
is described by the matrix

{E} =
{

λ(ϑ1, ϑ2)− νε(ϑ1, ϑ2) 0
0 ε(ϑ1, ϑ2)

}
.

where ν is the Poisson ratio, ε = E(2′2′) is the elastic strain component and
λ is the unknown fracture field.

The decomposition of the total strain into its anelastic and elastic parts
is then

{Ea} =
{

λ(ϑ1, ϑ2) 0
0 0

}
,

{Ee} =
{ −νε(x1, x2) 0

0 ε(x1, x2)

}
.

The uniaxial stress T, in order to satisfy the equilibrium with zero body
forces, must take the form (for a pictorial description of equilibrium along
a compression ray see Remark 3 and Figure 6)

T = σe2′ ⊗ e2′ ,

with
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σ =
f(1 + g2)

1 + g′ϑ2
.

The elastic part ε of the deformation, is easily obtained, through the
Hooke’s law, in the form

ε =
σ

E
,

E being the Young modulus of the material.

Energy The complementary energy (44) can be written in the form

Ec = −
∫ ϑ

1

ϑ1

2f(Ug+V +Φϑ1)dϑ1+
1

2

∫ ϑ
1

ϑ1

∫ H
2

−H
2

f2

E

(1 + g2)2

1 + g′ϑ2
dϑ1dϑ2 . (53)

The complementary energy, depending parametrically on {U, V,Φ} is
a functional of f , g, that is of two unknown numeric functions of ϑ1. The
function f can be determined explicitly by pre-minimizing Ec with rewspect
to f . Such a minimizer is

f =
Eg′

(1 + g2)2
2(Ug + V +Φϑ1

log(1− g′H2 )− log(1− g′H2 )
.

By substituting the previous expression into the stress, one has

σ =
1

1 + g′ϑ2

Eg′

1 + g2
2(Ug + V +Φϑ1

log(1− g′H2 )− log(1− g′H2 )
,

and substituting back into the energy, after some algebra, the following
reduced expression of Ec is obtained

Ec = −2E
∫ ϑ

1

ϑ1

(Ug + V +Φϑ1)2g′2

(1 + g2)2 log
1+g′ H2
1−g′ H2

dϑ1 . (54)

This is a functional of the sole unknown function g, to be minimized for
g with the boundary conditions

g(ϑ1) = g , g(ϑ
1
) = g .

The solution, that is called g◦, can be determined by finding the zeroes
of the derivative (the Euler equation) associated to the minimum problem
for (54) (see equation (58), p.101 of Fortunato (2010)). The Euler equation
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Figure 47. Numerical solution of three special cases. In column a: fundamental
partition and minimizing slope g. In column b: compression rays corresponding to the
minimizing g and level curves of the principal stress. First row: shortening and flexure.
Second row: pure relative shearing. Third row: shearing, elongation and flexure.

is a second order non-linear differential equation for g that, due to the
precence of log terms in g′, results rather stiff. The equation is integrated
by Fortunato in (Fortunato, 2010) for some special cases, by employing a
multi-shooting technique and a Gauss-Kronrod quadrature formula.

Compatibility, Anelastic Deformation The stress fieldT◦ correspond-
ing to the minimizer g◦, that is the uniaxial stress field directed as the
compression rays for which the principal stress component is
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Figure 48. Level curves for of the fracture strain for the case of pure relative shearing.

σ =
1

1 + g′◦ϑ2

Eg′◦
1 + g2◦

2(Ug◦ + V +Φϑ1

log(1− g′◦
H
2 )− log(1− g′◦

H
2 )

,

can be either an approximation to the exact solution or the solution of the
BVP. In order to check that T◦ is the exact solution of the BVP, compati-
bility of the strain E, and compatibility of the corresponding displacements
on the part ∂ΩD of the boundary, must be verified. Actually a continuous
displacement field u of which E is the symmetric part of its gradient exists
in Ω2 if and only if

E11/22 + E22/11 − 2E12/12 = 0 , (55)

where / followed by indices denotes covariant differentiation with respect to
those indices.

Recalling that the total strain E admits the representation

E = (λ− νε)e1′ ⊗ e1′ + εe2′ ⊗ e2′ ,

and that ε is the elastic stretch determined by the known stress T◦, the
unknown fracture strain field λ can be found by solving the differential
equation (55).

In Fortunato (2010) the author finds the explicit solution of this differ-
ential equation in terms of g◦. The solution is

λ =
z(1 + g2◦)
1 + g′◦ϑ2

+ νε+ g2◦ε
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where z is the solution of the differential equation

z,22 =
p

1 + g◦ϑ2

p being a specified function of f , g, that is of g◦ (see (73), p.103 Fortunato
(2010)).

Rectangular panels under elongation, flexure and shearing: ex-
amples In this section the solution of some peculiar cases is presented. A
rectangular panel of normalized lengths and Poisson ratio ν = 0, subject to
three different combinations of the given displacements {U, V,Φ} is consid-
ered. The Euler equation is solved numerically for each of the three cases
with a multi-shooting technique. In Figure 47 the fundamental partition,
the minimizer g(ϑ1), the compression rays and the principal stress levels
are shown. In particular for the example of pure shearing the contour plot
of the fracture λ, that is the only non vanishing component of the anelastic
strain in Ω2, is shown in Figure 48. Since the solution of the Euler equation
is obtained numerically the optimal g, and the corresponding σ, are affected
by numerical errors depending essentially on the integration scheme chosen.
In the examples, an adaptive algorithm has been adopted: the function g is

integrated over the interval [ϑ1, ϑ
1
], by using a Gauss-Kronrod quadrature

formula, from which an integral value (usually overestimated) and an error
estimate are obtained. If the estimation is too big, the interval is divided
in half and the integration is performed over each of the halves using the
quadrature formula. If the total error is still too big, the interval with the
biggest error is again bisected. The process is repeated until the desired pre-
cision is reached. For the integration scheme adopted the anelastic strain
is always non negative all over Ω2. This outcome gives an indication that
the compression ray solution is the exact solution for the cases considered
(ν = 0).

4 Model two (ML)

In this section the main ingredients of the theory concerning model two for
masonry materials, namely the Masonry-Like (ML) material, that is the
n > 1 version of the 1d model introduced in Chapter 1, are presented.
The constitutive assumptions, the balance equations and the boundary and
initial conditions are given and the evolutionary boundary value problem
for ML materials is formulated. A number of illustrative exact solutions
and examples are discussed and a new technique for handling numerically
the solution of specific ML problems, is introduced.
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4.1 The equilibrium problem for ML materials

The crushing behaviour of masonry, that is its limited strength in com-
pression, is modeled as perfectly plastic, then the crushing behavior of the
material is assumed to be represented within the classical framework of a
convex elastic domain coupled with the normality law, the yield surface
being fixed in the stress space (no hardening or softening).

The initial-boundary value problem describing the quasi-static evolution
of a NT elasto-plastic body occupying a bounded domain Ω with boundary
∂Ω is then considered.

The first to propose and analyse this model for masonry materials were
Lucchesi and Zani (1996).

Plastic behaviour is described in terms of strain rates and the problem
is not merely a BVP but rather an evolutionary problem. The evolution is
assumed to be quasi-static, that is, to occur so slowly that inertial effects
may be ignored.

The initial-boundary value problem in two dimensions. Again I
assume small strains and restrict to 2d problems.

Time dependent data are considered, such as the fields b(x, t) (body
forces per unit volume), s(x, t) (surface tractions per unit area), and u(x, t)
(surface displacements):

b : (x, t) ∈ Ω× [0, t)→ b(x, t) ∈ V 2 ,

s : (x, t) ∈ ∂ΩN × [0, t)→ s(x, t) ∈ V 2 ,

u : (x, t) ∈ ∂ΩD × [0, t)→ u(x, t) ∈ V 2 ,

with T = [0, t) the time interval in which the evolution is considered and t
the final instant of the evolution. Usually it is assumed that

b(x, 0) = 0 , s(x, 0) = 0 , u(x, 0) = 0 .

We consider that the body Ω is composed of NT material, that is the
stress T is negative semidefinite (T ∈ Sym−).

We further assume that the stress cannot be arbitrarily large but is
confined to belong to a bounded convex set K of Sym containing the origin.
Then the interior of K ∩Sym− is the elastic region:

T ∈ K ∩ Sym− , (56)
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Figure 49. Section of the Elastic Domain in the stress space Sym with the plane
T12 = 0.

while its boundary is the yield surface. Notice that K ∩Sym− is convex but
need not to be smooth. The boundary of K may be represented by a level
set of a function f , called the crushing function, so that

K = {T ∈ Sym : f(T) ≤ 0} .

For simplicity I consider

f(T) = Φ̃(T)− σ2
◦

2E
, (57)

where Φ̃ is the strain energy density of the isotropic NENT material, ex-
pressed as a function of the stressT, and σ◦ is the crushing stress in uni-axial
compression; that is the boundary of K is a level set of the free energy of
the NENT material. In Figure 49 the intersection of the elastic domain with
the plane T12 = 0, is depicted.

Under the small strain hypothesis, the total deformation is again de-
scribed by the tensor E, and an additive decomposition of the total strain
can be considered in the form

E = E∗ +Ep , (58)

where Ep is the plastic strain. Notice that now E∗ represents the reversible
part of the deformation, in turn composed itself of two parts:
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E∗ = Ee +Ea , (59)

the elastic part being linearly related to the stress T:

Ee = A [T] . (60)

For the latent anelastic part (a measure for fracture) of the reversible
strain, again normality to the cone Sym− is assumed

(T′ −T) ·Ea ≤ 0 , ∀T′ ∈ Sym− . (61)

For the time rate Ė
p
of the plastic strain the associative flow rule

(T′ −T) · Ėp ≤ 0 , ∀T′ ∈ K , (62)

is considered.
Notice that the reversible part of the strain E∗ can still be derived by

an energy density:

T =
∂Φ

∂E∗
.

In the isotropic case the form of the energy density Φ can be constructed
explicitly in terms of the eigenvalues e∗1, e

∗
2 of E∗ (here e∗1 < e∗2 is assumed).

In the case of generalized plane stress this form is

Φ =

⎧⎪⎨⎪⎩
0 , e∗1 ≥ 0 and e∗2 ≥ 0 ,
1
2E(e∗1)

2 , e∗1 < 0 and e∗2 ≥ −νe∗1 ,
1
2

E
1−ν2

(
(e∗1)

2 + (e∗2)
2 + 2νe∗1e

∗
2

)
e∗1 < 0 and e∗2 < −νe∗1 ,

(63)

E, ν being the Young modulus and the Poisson ratio. Notice that the stress
T derived from Φ satisfies identically the unilateral restriction (30), that is
there is no need to impose it as a constraint.

Energy formulation, internal variables. The problem is described in
terms of the total strain and of the recorded history of mechanical be-
haviour, by introducing as an internal variable the total plastic strain Ep.
If I consider that the form of Φ(E − Ep) is prescribed and that T = ∂Φ

∂E∗ ,
the instantaneous values of T are known if E is given and the entire process
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of plastic strain is known. Obviously Ep =
∫ t

0
Ė

p
dt, and Ė

p
is described by

the flow rule (62).
Notice that, based on the ML model, fracture strains are reversible and

are perfectly recoiled upon load inversion. Crushing strains, by contrast,
cannot be healed and, being totally irreversible, can either stay or grow.
In other words, smeared fractures cannot cancel crushing strains; the two
mechanisms being completely independent.

4.2 Numerical minimization strategy

The numerical method I adopt to solve approximately the BVP for
NENT materials is to search for the minimum of the potential energy (26)
and is based on the direct minimization of such a functional through a de-
scent method. The search is carried out in the subset of the set of statically
admissible displacements K defined by the C◦ displacement fields obtained
by employing a standard finite element approximation based on a triangular
finite element discretization Πh(Ω) of the domain Ω, where h denotes the
mesh size. This kind of discretization excludes discontinuities in u, that is,
real cracks. The reason for considering such a simplification is twofold:

Firstly, I believe that fractures in NENT materials will appear smeared
within the domain if the loads are safe (that is they are not collapse loads)
in the sense specified in Subsection 2.9.

Secondly, in limit cases in which the loads approach the collapse limit the
fracture strain may accumulate in narrow bands indicating the occurrence
of real cracks in the limit.

Descent methods for NENT materials. The convenience of descent
methods, favoured in recent years by the widespread availability of compu-
tational power, is recovered in the case of unilateral and non-smooth energy
shapes. In the specific case of NENT materials the method is particularly
indicated since the problem becomes unconstrained, the potential energy is
a convex function of its arguments and the method of descent is insensitive
to zero-energy modes (source of major troubles with standard FEM based
on updated stiffness matrices, see Alfano et al. (2000)).

Several numerical tests performed on simple problems, for which the ex-
act solutions are known, show the competitiveness of the descent approach
with respect to more classical techniques. Some of these benchmark prob-
lems are reported in what follows, a larger number of examples can be found
in the recent paper by Angelillo et al. (2010). Comparisons with numerical
solutions obtained by other developing codes (see Lucchesi and Zani (2008))
and commercial programs (Abaqus, 6.12) indicate that the descent method
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seems to be the right choice to overcome the difficulties which are inherent
to the NT constraint.

The energy functional E is approximated with the function Ẽ({uh}) of
the nodal displacements {uh}:

Ẽ({uh}) = −
∑
r

Lrs(xr) ·ur−
∑
m

fm ·um−
∑
n

Anb(xn) ·un−
∑
q

AqΦ(xq)

(64)
where ur is the displacement at the midpoint xr of the r-th edge of length Lr

on ∂ΩN , um the displacement of them-th mesh node where the concentrated
force fm is applied, un the displacement at the Gauss point xn of the n-th
mesh triangle with area An, and xq the Gauss point of the q-th mesh triangle
of area Aq, where the strain energy density Φ is evaluated for integration. In
the discretized version (64) of the potential energy, all the displacements uj ,
as well as the strain energy density Φ(xq) of the q-th triangle, are clearly
explicit functions of the nodal displacements {uh}, via the linear shape
functions of a standard triangular mesh.

The iterative procedure adopted to minimize the function (64) is based
on a step-by-step minimization method. Let us denote {uh}j the nodal
displacements at the j-th minimization step. The force acting on the mesh
nodes is given by the negative gradient of the energy fj = −∇jẼ. The
descent method implemented computes the current velocity pj employing
the nodal forces at the current and previous step as

pj = ηjpj−1 + fj ,

where the scalar ηj is

ηj = Max

{
fj · (fj − fj−1)

fj−1 · fj−1
, 0

}
,

in the Polak-Ribiere version of the conjugate gradient method, and

ηj =
fj · fj

fj−1 · fj−1
,

if the Fletcher-Reeves variant of the method is employed (the Polak-Ribiere
method is usually adopted in the applications reported herein).

If the nodes of the mesh are constrained, the velocity pj is projected
onto the tangent space of the constraint equations to obtain the compat-
ible velocity p∗j . The velocity p∗j gives the direction for the minimization
motion while obeying all the constraints imposed on the nodes. The nodal
displacement {uh}j is computed as
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{uh}j = {uh}j + κjp
∗
j ,

where κj is the amplitude of the minimization step in the direction of p∗j and
is computed via a line search method16 to minimize the energy Ẽ({uh}) in
the direction of the velocity p∗j . The iteration process stops when a suitable
norm of the energy gradient becomes sufficiently small (for the decrease
conditions see for example (Kelley, 1999)).

Descent methods for ML (dissipative) materials. When consider-
ing ML materials, that is, adding to the NENT model a crushing strength
criterion (of elasto-plastic associative type), it seems that the proposed nu-
merical technique, based on energy minimization (extremely efficient for
unilateral materials) should be abandoned. The elastoplastic behavior is
indeed inherently path-dependent: the stress state at time t depends, in
general, on the whole strain history in the interval T = [0, t) rather than on
the strain at time t. Then the equilibrium problem for such a material is es-
sentially a dissipative evolution problem whose solution cannot be obtained
by simply minimizing an energy functional. The proposed technique can
still be applied to this evolutive problem considering the exact trajectory as
the limit of a sequence of minimum problems. This is done by discretizing
the time interval into steps and updating the energy in a suitable way. The
evolutive problem is then approximated as a sequence of a discrete number
of minimizing movements. The evolutive solution is obtained as the limit
of the discrete evolution by letting the time step go to zero (see De Giorgi
(1996) for the general formulation, Mielke and Ortiz (2008) for the conver-
gence proofs in the general case of rate independent materials and Dal Maso
et al. (2004) in the specific case of perfect elastoplasticity).

The time interval T = [0; t) is discretized into k subintervals by means of
the instants 0 = t◦ ≤ t1 ≤ .. ≤ ti ≤ .. ≤ tk = t. The idea is approximate the
exact trajectory (u(t),T(t),Ea(t),Ep(t)) (which solves the initial-boundary
value problem defined above), with a sequence of states obtained by solving,
at each time step ti, the minimum problem for a suitably defined, updated
energy functional, characteristic of an evolving hyper-elastic NT material.
To model perfect plasticity in compression, I assume a linearly-growing
extension of the strain energy function defined in (63), beyond the yield
surface defined in (57) (see Figure 50).

16 The line search method calculates the energy for several values of the scale factor κj

(doubling or halving each time) until the minimum energy is passed. The optimum

scale is then calculated by quadratic interpolation.
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Figure 50. Linear prolongation of the strain energy beyond the crushing limit.

Namely, at any time step ti, the functional form implemented in the
finite element code is

Φ̃i(E
∗
i ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 , (e∗1)i ≥ 0 , (e∗2)i ≥ 0 ,
1
2E(e∗1)

2
i , (e∗1)i < 0 , (e∗2)i ≥ −ν(e∗1)i , f(E∗i ) ≤ 0 ,

α
√

1
2E(e∗1)

2
i + β , (e∗1)i < 0 , (e∗2)i ≥ −ν(e∗1)i , f(E∗i ) > 0 ,

ϕ((e∗j )i) (e∗1)i < 0 , (e∗2)i < −ν(e∗1)i , f(E∗i ) ≤ 0 ,

α
√
ϕ((e∗j )i) + β (e∗1)i < 0 , (e∗2)i < −ν(e∗1)i , f(E∗i ) > 0 ,

where

ϕ((e∗j )i) =
1

2

E

1− ν2
(
(e∗1)

2
i + (e∗2)

2
i + 2ν(e∗1)i(e

∗
2)i

)
,

(e∗1)i, (e
∗
2)i ((e∗1)i < (e∗2)i) are the principal values of E∗i , and the elastic

strain at time ti is given by the difference between the total strain Ei at
the same time step and the plastic strain Ep

i−1 inherited from the previous

solution step, that is E∗i = Ei −Ep
i−1; by using this relation Φ̃i(E

∗
i ) can be

expressed as a function of Ei and becomes Φ̂i(Ei). The constants

α =

√
2

E
σ◦ , β = − σ2

◦
2E

are introduced to preserve the C1 regularity of Φ̃i(E
∗
i ). A representation of

Φ̃i(E
∗
i ) in the space of principal elastic strains is depicted in Figure 50.

φ
i

~

s
0

0
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1i

(  e)
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The descent procedure finds the minimum of the total potential energy
at time ti, defined as

Ei(ui) = −
∫
∂ΩN

s · ui −
∫
Ω

b · ui +

∫
Ω

Φ̂(Ei(ui)) , (65)

via a finite element discretization of the domain and descent minimization.
The solution at the previous loading step is used as the initial condition for
the minimization of the function

Ê({uh}) = −
∑
r

Lrs(xr) ·ur−
∑
m

fm ·um−
∑
n

Anb(xn) ·un−
∑
q

AqΦ̂(xq)

(66)
representing the finite element approximation of the total potential energy
(65), as in the case of NENT materials (see (64)). At each step i, the

minimization of the function Ê({uh}) is performed via the descent method
described previously for NENT materials.

A plastic strain update is then performed at each Gauss point. The yield
condition f(E∗i ) = 0 defines, in the space of principal reversible strains
E∗, a curve whose position vector is y, of coordinates {yj}. It is useful
to give a parametric description y(γ) of the yielding curve in the space
of principal elastic strain, γ being the parameter. The return mapping
algorithm, according to the principle of minimum dissipation imposed by
the assumption of associated plasticity (Ortiz and Simo, 1986), consists in
finding the value of the parameter giving the minimum distance (in the
energy norm) of the current elastic strain E∗i from the curve y(γ):

minγΦ(y(γ)−E∗i ) .

This minimum problem can be easily formulated as

d

dγ
Φ(y(γ)−E∗i ) = 0 ,

that can be solved for γ, at each Gauss point, via the Newton–Raphson
method. The tensor of plastic strain rate Ė

p
at time ti is coaxial to the

reversible strain tensor E∗i , therefore the principal components (Δepj )i (with

j=1,2) of the plastic strain increment ΔEp
i (i.e., the discrete version of (Ė

p
)i)

are simply computed as

(Δepj )i = (e∗j )i − yj(γ
◦
i ) .

Once the plastic strain has been updated in the global reference frame,
i.e. Ep

i = Ep
i−1 + ΔEp

i (a backward Euler finite difference scheme), the
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energy density dissipation at the given Gauss point, at time step ti, can be
computed as

Di = Φ̂(Ei,E
p
i−1)− Φ̂(Ei,E

p
i ) = Φ̂(Ei,E

p
i−1)−

1

2
Ti ·A[Ti]

from which one sees that the plastic strain increments produce energy loss.

4.3 Numerical examples

The ability of descent methods to approximate the solution of boundary
value problems for NENT and ML materials is tested in the paper (Angelillo
et al., 2010) in two ways: the numerical solutions are compared first with
some simple exact solutions, then with some experimental results; finally
the numerical solutions obtained with our code for more complex boundary
value problems concerning masonry facades are presented. Here I report
some of those results.

Example 1: Simple Flexure. In Angelillo et al. (2010), we solved
numerically the problem of Flexure (whose exact solution is described in
Subsection 3.7) both for the isotropic NENT material and for the isotropic
ML material, by putting ν = 0, H = B = 2 m.

For the first case (NENT material), we assumed for the Young modulus
E = 660 MPa; the value of the rotation was set to Φ = 0.001 radiants. To
test convergence a sequence of structured discretizations of decreasing mesh
size h was considered. By introducing the normalized mesh size h/D, D be-
ing the diameter of the domain, the four values

√
2{1/16, 1/32, 1/64, 1/128}

were considered. In Figure 51a, the contour plot of the maximum principal
fracture strain obtained with the finest mesh, is reported. Fractures are
non-zero in the region indicated as Ω3 in Figure 38b, and their distribution
suggests that the numerical solution is close to the rigid-block displacement
represented in Figure 51b, which can be thought of as an energetically-
equivalent alternative to the two analytical solutions described in Subsec-
tion 3.7 (see also Figure 39).

The numerical experiment was repeated for a ML panel by assuming for
the maximum compressive stress in uniaxial compression, the value σ◦ =
19.8 MPa. The value of the given rotation Φ = 0.006 radiants is selected in
such a way that, for the exact solution, the strip y > B/4 is forced into the
yielding regime. For this value of Φ the exact stress solution is

T◦ =

⎧⎪⎨⎪⎩
−σ◦e1 ⊗ e1 , y ≥ B/4 ,

−4σ◦ y
Be1 ⊗ e1 , B/4 > y ≥ 0 ,

0 , 0 > y ,
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Figure 51. Numerical solution of the flexure problem for an isotropic NENT material.
In (a): maximum fracture strain [×10−3. ]. Deformation on the right and rigid-block
displacement on the right, close to the solution obtained numerically through descent.

Again the same sequence of discretizations of decreasing mesh size is
considered. Figure 52a shows the computed isostatic curves for the finest
mesh. They are very close to being vertical lines as expected. In Figure 52b
the contour plot of the computed maximum compressive stress (solid lines)
is comapared with the exact solution (dash-dotted lines). The numerical
solution shows, graphically, good qualitative accuracy. The maximum frac-
ture strain is reported in Figure 52c, and it can be noticed that the fracture
distribution in the strip y < 0 (region Ω3 in Figure 38b) is similar to the one
observed in the NENT material (see Figure 51a). The distribution of frac-
ture strain in the Ω2 region resembles closely the crushing vertical fractures
that appear in the experiment shown in Figure 52d.

For this example,both for the NENT and ML materials, we performed
a numerical convergence study on the stress, by considering the sequence
of discretizations of decreasing mesh size h described above. In Figure 53 a
plot of the approximation error for the stress

eh =
‖Th −Tcirc‖L2

‖Th‖L2

,

versus the dimensionless mesh size h/D (T0, Th, being the exact stress
solution snd the stress field computed for the mesh of size h) is reported. A
linear convergence of the method is obtained in both cases.

Example 2: Pure relative shearing. The simple rectangular panel
depicted in Figure 54 subject to a given relative horizontal translation of the
bases (of value 2U) and vanishing tractions on the lateral sides is considered.
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Figure 52. Numerical solution of the flexure problem for an isotropic ML material.
In (a), (b): isostatic lines of compression and contour plot of the minimum principal
stress (the other principal stress is almost zero). In (c): contour plot of the maximum
anelastic strain component (fracture strain). Flexure test on a masonry panel (courtesy
G. Castellano): (d).
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Figure 53. Flexure: convergence diagram. In (a): NENT material; in (b): ML
material.
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Figure 54. Pure relative shearing of a NENT panel. In (a): boundary conditions and
mesh used in the numerical simulation. In (b): Comparison of the minimum principal
compressive stress levels corresponding to the numerical (solid lines) and exact solution
(dotted lines).

NENT material. The material parameters and the geometry are the
same adopted in the previous Section. The value U = 1mm is considered.
In Figures 54 and 55 the numerical solution is compared with the semi-
analytical solution described in Subsection 3.8.

The distribution of the maximum compressive stress, the fracture strain,
and the form of the isostatic lines computed numerically for the NENT
panel are in good agreement with the results of the semi-analytical method
of Fortunato (2010), as summarized in Figures 54 and 55.

ML material. The numerical experiment was repeated for a ML panel, by
assuming the same material parameters adopted for the NENT material and
putting for the limit stress: σ◦ = 19.8 MPa. The value of the displacement
at the boundary, U = 1 mm, previously considered, is small enough to give
very limited yielding (mainly located in the vicinity of the corners, and is
used as the first step in the discretized loading of the ML panel, whose
evolution and crushing spreading is followed approximately, as the relative
shearing U is gradually increased, by discretizing the real trajectory into
steps.

In Figure 56 three stages of the evolving solution are reported. As the
boundary displacement increases, a diagonal band, uniaxially and uniformly
compressed at the limit stress of 19.8 MPa, forms progressively, and the
isostatic lines of compression (compression rays) become more and more
parallel.

The contour plots in Figure 57 represent the maximum fracture strain,
which concentrates on two sub-diagonal lines, and the maximum plastic
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Figure 55. Pure relative shearing of a NENT panel. Fracture strain for the numerical:
(a) and for the exact: (b) solutions. Compression rays for the numerical: (c) and the
exact: (d) solutions.

strain, which concentrates at the constrained boundary, near two opposite
corners. Concentration of plastic strain is expected, due to the assumed
perfect plasticity of the material.

In Figure 58, a plot of the energy as a function of the step-wise increment
of the boundary displacement U is reported, where: black circles denote the
energy level of the computed solution at the beginning of the time step
i, open circles denote the energy level due to the loading increment, and
diamond marks denote the energy level reached after convergence.

Therefore the upward jump in energy represents the effect of updating
the given disploacement from the value at time i to the one at time i + 1;
the jump back of the energy is the effect of the numerical minimization of
the updated energy, and the last smaller drop is the effect of the numerical
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Figure 56. Pure shearing of a ML panel. Evolution of the contour plot of the minimum
principal compressive stress and of the compression rays at three steps of the loading
process.
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Figure 57. Pure shearing of a ML panel. Contour plot of the maximum principal
fracture strain: (a), and minimum plastic strain: (b), for the final value of the relative
displacement.
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Figure 58. Pure shearing of a ML panel. Energetics.

update of the plastic strain that gives the approximate solution at time i+1.
This energy loss represents energy dissipation due to plastic work, and

gives evidence of spreading of plastic deformation as the load is increased.
The dashed line (that is the envelope of the solution points) represents the
numerical approximation to the exact time history of the total potential
energy of the body. In Figure 58b the push-over plot, that is the evolution
of the horizontal component of the computed reaction at the base (horizontal
force) as the displacement U increases, is depicted. The shear force plateaus,
as expected for a perfectly plastic structure approaching collapse.

Validation against experimental tests. Here the ML material model
is validated against independent sets of experimental results from Benedetti



Practical Applications of Unilateral Models… 203

N
0

H

B

U

D

Figure 59. Loading scheme in the experiments by Benedetti and Steli (2008) and
Eucentre (2010)

and Steli (2008) and Eucentre (2010), performed on different types of ma-
sonry. Figure 59 reports the constraints and the load scheme used in the
numerical analysis to simulate the experimental setup.

A masonry panel of width B, height H, and thickness D is fixed to the
ground at the bottom and to a steel beam at the top (the gray strip in Fig-
ure 59). A uniform load is distributed at the top part of the steel beam and
the horizontal load is applied in incremental steps by imposing the horizon-
tal displacement U of the left edge of the steel beam. Neither Benedetti and
Steli (2008) and Eucentre (2010) report measurements of the Poisson’s ratio,
and because of that ν = 0 is assumed in the simulations, since, paramet-
ric studies, not reported here, show that the simulated force-displacement
curves, under shear, manifest very low sensitivity to the Poisson’s ratio. The
graphs in the top row of Figure 60 compare the numerical simulations and
the experimental results for specimens (1A-08,2C-03) of the experiments
by Benedetti and Steli (2008). In these tests, the masonry is composed of
crushed stones and injected crushed stones. Our model reproduces quanti-
tatively the substantial features of the measured force-displacement curves,
with a slight overestimation of the force for higher levels of the horizontal
displacement U .

The graphs of Figure 60c,d report the comparison between experimental
data and numerical simulations for the specimens CS00, CS02, and CT01
of (Eucentre, 2010), all composed of stone masonry. Specimen CS00 differs
from the other two because the mortar has been reinforced with 20% sand
in mass fraction. This might explain the flatness of the force-displacement
curve for experiment CS00 which is very well captured by the model. The
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Figure 60. Comparison of numerical simulations with the experimental results of
Benedetti and Steli (2008) (1A-08,2C-03) and Eucentre (2010) (CS00-CS02, CT01)

marked reduction of the horizontal force at higher levels of the displacement
U might be due to softening effects induced in the masonry by the unrein-
forced mortar, an effect that is not captured by the ML model as presented
here.

Example 3: Masonry walls with regular openings. In this section
I apply the ML material model to simulate the response of a simple two-
storey facade to vertical loads, seismic loads, and differential foundation
subsiding. The geometry of the facade, the applied loads, and the boundary
conditions are summarized in Figure 61a.

The facade is provided, above the openings, with 25 cm-thick wood
beams and is assumed to be made of tuff and mortar of good quality. Wood
is modeled as elastic, with Young’s modulus E = 11 GPa, Poisson’s ra-
tio ν = 0.35, and density ρ = 800 kg/m3. For the tuff wall we assumed
a Young’s modulus E = 0.66 GPa, Poisson’s ratio ν = 0.2, density 1800
kg/m3, and compression limit σ◦ = 1.98 MPa. The whole structure is
assumed to be 0.5 m thick.

Working loads. Working loads are represented by the weight of masonry
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Figure 61. Masonry wall with openings. Loading schemes: (a). Numerical results for
vertical loads: b,c,d. Contour plot of maximum principal fracture strain: (b). Minimum
principal stress: (c). Isostatic lines: (d)

and the force transmitted by the floors (25 kN/m); the results of the sim-
ulation are reported in Figure 61b,c,d. The structure sustains the working
loads without detectable crushing. The value of the maximum stress at the
base of the wall is about 0.35 MPa. The partition of the domain can be
inferred from Figure 61d: in Ω1 both families of isostatic lines are depicted;
in Omega2 the family of isostatic lines corresponding to zero stress are not
reported.

Horizontal loads. We simulated the response of the facade to a uniform
horizontal force per unit length of 39 kN/m, distributed on the right side of
the structure and superimposed to the structure subject to working loads
(see Figure 61a). The total horizontal load is equivalent to 70% of the
weight of the structure and is applied in ten steps. This kind of loading
can be adopted to simulate seismic loads if horizontal ties or connections
are present. Crushing strain accumulates in very localized regions near the
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a b

c d

Figure 62. Numerical results for vertical and horizontal loads. Contour plot of max-
imum principal plastic strain: (a). Contour plot of maximum principal fracture strain:
(b). Minimum principal stress: (c). Isostatic lines: (d)

corners (see Figure 62a). The formation of a compressed diagonal truss
element, in the panels in between the openings, is evident from Figures 62c
and 62d.

The force-displacement curve, depicted in Figure 64, shows that the
structure is approaching collapse for the maximum horizontal load applied.

Differential foundation subsiding. A 6 cm subsiding of the base of the
central wall is imposed in fifteen steps.This action is superimposed to the
effect of working loads. The structure shows a peculiar kinematical effect,
consisting in a vertical displacement of the central wall and an outward
rotation of the lateral walls around the corner points of the bases, where
the plastic strain concentrates (see Figure 63).

The computed vertical component of the reaction of the central wall
drops from about 390 kN to 240 kN after the subsiding. This computa-
tion indicates that the vertical loads migrate from the central panel to the
lateral ones. Such a stress redistribution is also highlighted from the com-
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a b

c d

Figure 63. Masonry walls with openings under the effect of vertical loads and a vertical
settlement of the central pier: mumerical results. Contour plot of maximum principal
plastic strain: (a). Contour plot of maximum principal fracture strain: (b). Minimum
principal stress: (c). Isostatic lines: (d)

parison of the isostatic lines depicted in Figure 63d with the ones reported
in Figure 61d.
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