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Abstract The numerical calculation of the dynamic loading of a
structure includes a great number of steps in which various fun-
damental or engineering problems are involved. Most of them are
addressed in the present course at CISM. In this paper, we discuss
the testing of materials in order to model their behaviour.

Because of waves induced in the testing device by impulse load-
ings and short time measurements, the data analysis has to deal
with transient effects. Using bars makes easier such an analysis.
For this reason, Hopkinson bars are a very commonly used dynamic
testing device.

Using the word ”dynamic” means that ”time” is considered as
an active parameter in the evolution process. When dynamically
testing a structure (a cylindrical specimen is a common example of
such a structure) the effects of time appears in different ways.

There is not static equilibrium in the machine so that mea-
surements at specimen ends cannot be simply deduced from mea-
surements with sensors incorporated in the machine, as it is the
case with quasi-static testing. Furthermore, most sensors (like force
cells) have a limited high passing band.

Transient effects in the specimen induce waves and the non-
homogeneity of mechanical parameters. Consequently, average or
global measurements cannot be right away related to local ones.

Stresses cannot be simply related to forces measurements as in-
ertia effects are also involved – the most known effect is the confine-
ment induced by lateral inertia, especially important when testing
a big specimen of brittle material.

Short testing times do no allow for isothermal testing – a metallic
specimen can have a temperature increase up to 100◦C during a
SHBP test.

The behaviour of an elementary volume of the material can de-
pend on the rate of change of basic mechanical parameters strain
and/or stress. This last effect (strain rate sensitivity) is the (only)
one that is expected to be measured, in most cases.
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In (dynamic) mechanical testing it is then suitable to consider
separately the global measurements made on the specimen (forces
applied at a part of the specimen border and displacement measured
at another - or the same - part) and the analysis of its mechanical
evolution.

This is commonly done in the quasi-static side but is not always,
for historical reasons, done in dynamic testing.

The above discussion does not answer the basic question of the
boarder between quasi-static and dynamic testing. Theoretically,
indeed, waves in solids are still present in quasi-static testing. The
common criterion to evaluate this limit is to compare the time
τe needed to reach equilibrium (say < 5% of non homogeneity of
stresses and strains) to the measurement duration. Note that τe
mostly depends on the specimen size and on the elastic speed of
waves in the material and not on the measurement duration. In the
classical SHPB literature, this problem is related to the “impedance
matching problem”, misunderstood in many publications, perfectly
addressed in 1963 by Davies & Hunter. Based on this criterion,
(too) many SHPB tests are considered as quasi-static ones.

1 Why using bars

Taking account of the transient response of the machine seems a difficult
theoretical problem as far as a geometrically complex loading machine is
considered. Two ways allow for avoiding this difficulty.

The first one is to make measurements directly at specimen faces. Even if
modern optical devices can provide direct displacement measurements, force
measurements need transducers in which mechanical waves are induced by
the loading.

The second is to use a simple enough machine allowing for an analysis
of transient effects. This is the case of Hopkinson bars.

In order to illustrate the problems encountered with a classical machine,
we examine the case of a drop test.

We consider the simplified description of a drop test machine using, as
an example, the compression test of an aluminium honey comb. As a first
approximation, we assume that the force response of the specimen provides
a constant value F0 (fig. 1).

In this simulation, the force is measured in two different ways. We first
consider a linear spring the shortening of which is measured by an instan-
taneous optical device. Secondly, the force is deduced from the deceleration
of the known falling mass. The corresponding acceleration is measured with
an accelerometer of finite size in its middle. For sake of simplicity, the test
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is modeled with the one-dimensional analysis. In this case, usual relations
between jumps of stress, particle velocity and strain are used. See basic
demonstration later or, in a more general frame, Achenbach (1978).

Δν = −cΔε Δσ = −ρcΔv (1)

Fig. 1. One-dimensional scheme of a drop test.

At any time, the stress and the particle velocity can be calculated at any
section of the falling mass and of the spring. Fig. 2 shows the calculated
velocities at the accelerometer position and at the head of the spring.

Knowing the velocity of the accelerometer, its acceleration is obtained by
derivation. To avoid obtaining an infinite acceleration, the speed considered
is the average speed across the accelerometer and it depends on its size. If
the falling mass is supposed to have this measured deceleration, a measured
force is deduced.

From the velocity of the springhead, the displacement is obtained by
integration and the relative variation of the length of the spring is known.
If the force supported by the spring is supposed proportional to this dis-
placement, another measured force is deduced.

Both forces, as they would be deduced from a quasi-static analysis of
the test, are shown in fig. 3.
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Fig. 2. Velocity at measuring points.

Fig. 3. ”measured forces”

It is observed that the two methods give very different results. In both
cases, the maximum force is over estimated, especially with the acceleration
measurement. Nevertheless, it can be checked that the mean value of both
force measurements corresponds to the exact one. It confirms that a quasi-
static analysis of the test could be done provided that the duration of the
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test is great compared with the oscillation period of each system and that
the passing band of the system is adapted.

This example purposely goes to extremes in order to show the importance
of transient effects in dynamic testing. Such an analysis largely explains the
difference observed between the two results of crash-tests done on the same
structure (square tube) with an industrial drop test machine and, in our
laboratory with a Hopkinson bar. Both results are shown together in fig. 4,
with same scales on axes.

Fig. 4. Measurement with Hopkinson bars (left), falling mass (right)

Looking at fig. 4, one observes that, as expected, the dynamic response
of the square tube shows a greater force than the static response of the same
tube. The dynamic result also shows a good agreement with a numerical
simulation of the test. The test duration of the Hopkinson bar system (6 m
long aluminium input bar, diameter 80 mm) has been increased by using a
deconvolution technique that will be described later.

This example shows how important are transient and inertia effects in
dynamic testing machines and it also shows that a good account of them
is taken with Hopkinson bars. There are various other dynamic testing
techniques that will not be considered in this paper as we focus on the
Hopkinson bars, or Kolsky apparatus.
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2 Basic notions on 1-D waves

2.1 Dalembert’s equation

The general form of the so called “Dalembert’s equation” concerns one
time variable t and one or more spatial variables x1, x2, . . . , xn, and a
function u = u(x1, x2, ....xn, t), the values of which model some amplitude
of a wave.

The wave equation for u is
∂2u
∂t2 = c2∇u, where ∇ is the (spatial) Lapla-

cian and where c is a fixed constant.
In solid mechanics, and within the Lagrangian formalism where variables

are related to material points, the generic scalar function is the amplitude
of the displacement vector at a point.

In the particular case of 1-D elastic bars, this displacement is a scalar
where c is the speed of the 1-D wave. The wave equation can be then
established in a very simple manner.

Let us consider the dynamic equilibrium a thin slice of a bar with a
thickness dx between abscissa x and x+dx.

A is the area of the bar, ρ its density, σ the uniaxial stress, u the dis-
placement, ε the uniaxial strain.

Dynamic equilibrium (F = mγ) for this slice reads:

Aσ(x+ dx)−Aσ(x) = ρAdx
∂2u

∂t2

Using elasticity 1-D (σ = Eε) and the definition of 1-D strain (ε =
∂u/∂x) one obtains:

AE
∂ε

∂x
dx = ρAdx

∂2u

∂t2
,

and the Dalembert’s 1-D equation:

∂2u

∂t2
= c2

∂2u

∂x2
with c2 =

E

ρ

Both terms support to be differentiated with respect to x, so that Dalem-
bert’s equation is also verified by the uniaxial strain (and by the linearly
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linked uniaxial stress). In mechanical applications the equation of waves
more often considers the strain.

The general solution of this equation is known to be in the form:

u = f(x− ct) + g(x+ ct)

where fand g are arbitrary functions.
The variable x − ct means that the value of u at point x and time t is

the same as at an other position x′ and an other time t′such as
x− ct = x′ − ct′ or x− x′ = c(t− t′)
The value u is observed at a distance ( x− x′) after a delay (x− x′)/c.

It defines the propagation of a signal in one direction at speed c.
The variable x + ct defines, in a similar way, the propagation in the

opposite direction.

2.2 Relations between strain, stress and particle velocity

These relations can be defined as a particular case of “jump equations”
established for material waves.

An easier and more comprehensive way to derive them is to recall the
general form of a single wave propagating in the positive direction (conven-
tionally defined) and its derivatives with respect to space and time.

u = f(x− ct) ε =
∂u

∂x
= f ′(x− ct) v =

∂u

∂t
= −cf ′(x− ct)

For a wave propagating in the positive direction, on has then.
v = −cε and (from E = ρc2) σ = −ρcv
On has to keep in mind that these relations are valid in a Galilean

referential. Considering for instance the shock of a striker on a bar needs
to carefully account for the initial speed of the striker. In terms of jumps,
equations (2) are recovered.

Δν = −cΔε Δσ = −ρcΔv (2)

Equations (2), together with the propagation relations, are the founda-
tions of Hopkinson bar measurements, where forces and displacements are
computed at bar end on the base of strain measurements.
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3 Real bars: dispersion relations

3.1 Case of elastic bars

A philosophical point

From an epistemological point of view, it is interesting to observe that,
in the general 3-D elastic case, one can find two solutions only of the
Dalembert’s equation corresponding to the so called P and S waves. By
reference to seismology, P is for “premières” (first arrived, speed cp) and S
for “secondes”(speed cs).

cp =

√
E(1− ν)

ρ(1 + ν)(1− 2ν)
cs =

√
E

2ρ(1 + ν))

For a Young’s modulus equal to 200 GPa, a Poisson’s ratio 0.3 and a
density 7850 kg/m3 (values for steel), cp =5860 m/s, cs =3130 m/s, while
the speed of the 1-D wave is 5047 m/s.

Note that for torsion bars, the speed of the torsion wave is cs.
The 1-D wave (that theoretically does not exist, as no bar is purely 1-

D) has a speed in between 3-D speeds and is a theoretical concept that
describes very well the wave signals observed in bars. Such a “wave” could
be also considered as a mixture of 3-D waves traveling at speeds cpand cs.

Dispersion

Knowing that the 1-D model is not perfect, as a careful observation of
waves might show it at once, it is worth looking at a more complete model.

The main point is that, due to a positive value of Poisson’s ratio, the
compression goes with a diameter increase inducing lateral inertia effects.

On the contrary, shear waves (torsion waves in torsion bars), which do
not induce volume change, are non dispersive.

The wave dispersion effects (due to radial expansion) on the longitudinal
elastic wave propagating in cylindrical bars have been studied experimen-
tally by Davies (1948). On the basis of the longitudinal wave solution for
an infinite cylindrical elastic bar given by Pochhammer’s (1876) and Chree
(1889), a dispersion correction has been proposed and verified by the exper-
imental data. Even though the Pochhammer-Chree solution is not the exact
one for a finite bar, it is found easily applicable and sufficiently accurate -
see Davies (1948).

In the Pochhammer-Chree’s longitudinal wave analysis, it is assumed
that the wave is harmonic as follows.

u(r, z, t) =
1

2π

∫ +∞

−∞
ū(r, ω)ei[ξ(ω)z−ωt]dω (3)
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where u(r, z, t) is the displacement vector.
The complete solution of the governing equations with the boundary

condition on the external surface of the bars leads to a frequency equation
that gives a relation between the wave number ξ and the pulsation ω.

f(ξ) = (2α/r0)(β
2 + ξ2)J1(α.r0)J1(β.r0)− (β2 − ξ2)2J0(α.r0)J1(β.r0)

− 4ξ2α.β.J1(α.r0)J0(β.r0) = 0
(4)

with α2 = ρω2

λ+2μ − ξ2;β2 = ρω2

μ − ξ2; and J0, J1 are the Bessel functions, λ
and μ are the elastic coefficients, r0 is the radius of the bar.

It is important to note that this equation has an infinite set of solutions
which are called the propagating modes. As they do not define a basis of a
vector space, (they are not orthogonal to each other) it cannot be decided,
from a single measurement, how the energy is split into the different modes.

A very nice point is that, at low frequencies, only one mode has a real
celerity. The frequency at which could appear the second mode is around
0.22c/a (for steel, with a radius equal to 10 mm,fcut = 105 kHz). It can be
checked that such a frequency is generally above the spectrum of a standard
test (even without pulse shaper).

It is then of common use with Hopkinson bars to consider the first mode
solution of equation (4). This use has been carefully validated by Tyas &
Watson (2001).

This harmonic wave solution has been studied numerically by Bancroft
(1941). Bancroft’s data is given in the form where the phase velocity vari-
ation C/C0 is a function of Poisson’s coefficient ν and of the ratio between
radius and wave length r0/λ for the non dimensional interest.

C/C0 = F (r0/λ, v), (5)

with C = ω/ξ and λ = 2π/ξ
The previous works - Follansbee & Franz (1983), Gorham (1983), Gong

et al.(1990), Lifshitz & Leber (1994)- use this data to correct the wave
dispersion in bars. Following Yew & Chen’s works (1978), they calculate
harmonic components in frequency domain of signals by Fast Fourier Trans-
form (FFT) and find the phase difference for each component from (Eqn. 4).
The corrected signals in time domain can be recovered from the corrected
frequency components.

Their correction procedure in term of variation of phase velocity can be
re-written as follows. From the knowledge of the dispersion relation between
wave number ξ and frequency ω given by the solution of (4) or (5), one
can calculate, from a measured wave um

z (t), the wave ui
z(t) reached at a
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distance Δz. Using the components in z of the formula (2) at the surface
of the bar, one can write um

z (t) and ui
z(t).

umz (t) =
1

2π

∫ +∞

−∞
ūz(r0, ω)e

i[ξ(ω)z0−ωt]dω

uiz(t) =
1

2π

∫ +∞

−∞
ūz(r0, ω)e

i[ξ(ω)(z0Δz)−ωt]dω (6)

The wave shifting procedure can be then performed numerically by the
FFT.

ui
z(t) = FFT−1

[
eiξ(ω)ΔzFFT [um

z (t)]
]

(7)

Accordingly, the correction accuracy depends only on that of the dis-
persion relation ξ(ω). The use of Bancroft’s data must be done carefully
as one has to take care of the following points. First, as the value is given
only in form of a table for a certain Poisson’s coefficient and for certain
values of the ratio between radius and wave length r0/λ , which is known
discretely, an interpolation is needed. Second, equation (5) only gives an
implicit relation for correction, between wave number ξ and frequency ω. It
is then recommended to calculate directly from (4) the dispersion relation,
in the form of wave’s number ξ as function of ω. for a given Poisson’s ratio
and Young’s modulus.

The application of formula (7) with modern computers is instantaneous
and should be systematically used. Using “pulse-shapers” to reduce the
high frequencies in the recorded signals (and consequently reducing the
need of the correction) also reduces the rising time of the signals and then
the duration of the commonly found “constant plateau”.

It is observed that the dispersion changes the slope of the signal in the
early stage of the test and has a sensitive effect on the average stress-strain
curve in the range of small strains, as shown by Gary et al. (1991) and Zhao
and Gary (1996).

A good way to test the quality of the dispersion relation is to check
whether the oscillations induced by the dispersion disappear at the impact
side where the signal can be transported, as shown in fig. 5.

The two “ears” are due to two plastic rings used to guide the striker.
(The non-nul slope is not explained)

Another way is to calculate the stress at a free end, which must be zero,
as shown in fig. 6.
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Fig. 5. Incident signal transported at striker side. (striker 1.3 m and
input bar 3 m made of steel, diameter 20 mm. Incident gauge in the

middle, striker speed 13.3 m/s)

Fig. 6. The forces at a free end.

3.2 Case of visco-elastic bars

For viscoelastic bars, the argument ξ in equation (4) is a complex number
so that a solution cannot be expressed in a simplified form such as (5).
Consequently, the computation of the dispersion relation needs the functions
λ∗(ω) and μ∗(ω) that describe the viscoelastic behaviour of the bars.

The material properties of standard viscoelastic materials are often rep-
resented with a rheological model. The simplest one (called Zenner model)
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needs 3 parameters to be identified (first 3 left elements in figure 7).
They could be identified in different ways, more often when dealing with

bars by an inverse approach based on the measurement of the wave propa-
gation on the bar itself. This is a safe method as, unlike for metals, material
properties depend on various external factors.

Zhao and Gary (1995) have used an inverse method based on such an
idea. They found that the Zenner model was not complete enough, and had
to use a more complex model with 9 parameters (figure 7). Furthermore,
following many authors, they assumed a constant Poisson’s ratio.

Fig. 7. A linear viscoelastic model

The same experimental set-up as in an impulse test is applied, where the
waves are recorded at two different points in the bar. Using the wave at a
recording point as input data, the parameters are determined in comparing
the predicted wave and the recorded wave at another point (like in fig. 8)

It is also possible to avoid to solve equation (4). Dispersion may indeed
be experimentally determined by comparing the wave Fourier components
measured on two points on the rod – Blanc (1971), Lundberg and Blanc
(1988), Gorham (1983), Bacon (1998). More recently, Hillström & al. (2000)
developed a multi-point method using least squares. Another method, very
accurate, is also proposed by Othman & al. (2001) based on a one-point
measurement method using a spectral analysis of the resonant frequencies
of the rod. An recent extension and improvement of this method proposed
by Collet et al (2012) is presented in chapter 7.

In order to illustrate the excellent quality of the dispersion relations
generally obtained, an original record and two other records at respective
distances of 4 m and 8 m of the original one, compared with their predictions,
are shown in fig. 8.

By comparison with the elastic case (see fig. 4) it is observed that the
dispersion correction is more important for common size viscoelastic bars
and could not be neglected.

The importance of the correction in a real test situation is illustrated by
showing both forces calculated in a test without specimen where the output
force must obviously be equal to the input one (fig. 9 and 10).
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Fig. 8. Test of the dispersion relation.

Fig. 9. Input and output forces without dipersion correction.

For both viscoelastic and elastic bars, a precise dispersion correction
does not suppress oscillations of the incident force in the case of sharp
loading pulses. These oscillations are indeed the physical consequence of
the wave dispersion.

At very high speeds of loading with short specimens, oscillations can also
be seen in the output signal
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Fig. 10. Input and output forces with dipersion correction.

3.3 Planerity of waves

The planarity of waves is extensively studied by Davies for the first
mode. The solution of equation (4) is well known and illustrated in his
paper for particular values of the frequency, as shown in figure 11 - from
Davies (1948).

Fig. 11. Stresses and strains function of radius and frequency.
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In this figure one sees, among other variables, the relative variation of the
stress along the radius (xx/xx0). It shows that, at a relative high frequency
(in 19b, 0.935 corresponds to a non realistic value of the frequency for our
standard steel bar: 280 kHz), the stress at the surface of the bar is negative
when the average stress is positive. At a more realistic frequency (figure
19a – 94 kHz for our bar) one can see that the average stress is more or less
10% higher than the stress at the surface. The strain is not proportional to
the strain, but those observations are also valid for the average strain. On
has then to keep in mind that, depending on the frequency:

a) - The strain measured at the surface is not proportional to the average
strain.

b) - The axial strain and the orthoradial strain are not proportional to
each other.

c) - The axial stress is not proportional to the axial strain.
d) - The average axial speed is not proportional to the axial strain.
Point (b) is well illustrated by Tyas and Watson (2001).
At lower frequencies, all the measurements become close to be propor-

tional to each other.
A few authors – Safford (1992), Merle and Zhao (2006) have checked

the validity of usual hypothesis commonly used. They proved that it is not
worth taking care when frequencies f are under 2c/a (where a is the radius
of the bar, equivalent for steel, to a/λ < 0.2 ). For the standard 20 mm
steel bar, one observes that frequencies are in the good range.

4 Direct impact test

Recall here that, with non strictly 1 D bars.
The average strain is not proportional to the strain measured at the

surface of the bar. The average stress is not proportional to the average
strain

The dispersion of the waves induces significant changes in rising times
of the signals.

The displacement at bar end is over estimated as the punching of the
bar by the specimen is neglected (this point will be addressed later).

In the following, the basic understanding of SHB is recalled based on the
1-D propagation theory.

A convenient way to have a good understanding of waves propagation
and reflections in a system of bars is to use the “Lagrange” representation
together with formulas (2). In a space-time (abscissa-ordinate) diagram,
the fact that the celerity of waves is constant induces that a wave event
follows a straight line with an absolute slope c (figure 12).
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Fig. 12. A typical Lagrange diagram. The two sloping lines show the
path of the beginning and the end of a square signal in the space-time
diagram. At a given point A, the time story show what could have been

recorded by a gauge at this point.

Direct impact test: 1 force and 1 displacement measurements.
A force is applied at the end of a bar of length l starting at time t = 0.

It produces a strain-time signal which is measured by a gauge at a (short)
distance a of the bar end. The corresponding signal εi(t) starts at time
ts = a/c. The beginning of the signal reaches the other end (say output) of
the bar at a time te = l/c .

A given boundary condition is applied at the output end of the bar. In
order to satisfy this (unknown) boundary condition, a new wave εr(t) in the
opposite direction is produced which starts at time te.

This reflected wave reaches point A at time tr = l/c+ (l − a)/c.
From this time tr, the strain measured by the gauge is the sum of the

initial wave and of the unknown reflected one.
Consequently, the measurement duration based on the record of the ini-

tial wave is Δtm = tr − ts = 2(l − a)/c.
Say the strain measured at the gauge is εm(t).
The measurement duration is limited by the overlapping of waves.
During this time Δtm ,
The strain at bar (input) end is ε(t) = εm(t− a/c)
The force at input bar is F = EbSbε
The speed at input bar is v = −cε
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Fig. 13. A Lagrange diagram for an impact test.

If
- one side of the specimen is fixed at the input end,
- the speed of the other side of the specimen can be measured,
- the equilibrium of the specimen is assumed,
Then,
The force–(relative) displacement relation of the specimen can be com-

puted.

5 SH(P)B. 2 forces and 2 displacements
measurements

The specimen is sandwiched between two bars. One force and one speed
measurement are made on each bar-end in contact with the specimen. The
output bars works as for the direct impact. It is not the case for the input
bar where, due to the loading, there exists a wave prior to the loading of
the specimen itself.

Torsion bars and direct tension bars will not be explicitly addressed here.
Their analysis is based on the same knowledge of basic wave propagation
theory, but they need to solve some specific technical problems concerning
the loading of the system and the specimen clamping.

In this chapter, some problems related to the measurement side (that
of forces and speeds) will be addressed. Anyway, due to the very common
use of Kolsky’s formulas, this historical case is briefly recalled first, where
problems dealing with the specimen behaviour have to be also introduced.
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5.1 The special case of Kolsky bars

This very special case is interesting. For historical reasons, the gauges are
equally distant from the specimen and both bars are identical. Considering
the values of the strain at specimen ends, forces and displacements at both
specimen ends are given by formulas (7,8)

vi = −cb(εi − εr) vo = −cb(εt) (8)

Fi = AbEb(εi + εr) Fo = AbEbεt (9)

Where vi, vo, Fi, Fo are input and output speeds and input and output
forces at specimen faces, respectively. Ab, Eb, cb are area, Young’s modulus
and celerity of waves in (identical) bars, respectively.

εi, εr, εt are incident, reflected and transmitted waves, respectively,
computed at specimen faces.

The measurement finishes here. In particular, the “Kolsky” formu-
las that will be discussed later are resulting of more assumptions, mainly:
identical bars and specimen equilibrium. This second assumption is always
an approximation.

The situation is indeed here exactly the same as any measurement where
the machine basically provides forces and displacements. Consequently it is
possible, without any lost in the quality of measurements, to use different
bars.

In Kolsky’s standard processing, the special assumption of equilibrium
is used in the case of identical (same material, same diameter) bars. This
yields - along with the superposition principle and formulas (7,8)- the well
known relation:

εi(t) + εr(t) = εt(t) (10)

Consequently, assuming the homogeneity of stresses and strains within
the specimen, the incident wave does not explicitly appear in the simplified
formulas:

εs(t) =

∫ t

0

ε̇s(τ)dτ = −2cb
ls

∫
0

εr(τ)dτ σs(t) =
Ab

As
Ebεt(t) (11)

where As is the area of the specimen.
These simplified formulas are both based on equilibrium. When equi-

librium is only badly verified, some researchers suggest the use an average
formula for the stress (sometimes called the “three waves formula”). First,
one must keep in mind that the average force could give a worth response
than one of other input force or output force. Second, the simplified formula
for the strain could also produce an imperfect result.
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5.2 Overlapping of waves

The best way to address easily this problem is to make use of Lagrange
diagram. It already has been seen for the direct impact test which corre-
sponds, with the Kolsky apparatus, to the output bar. When equilibrium
is not assumed and has to be checked, a measure of both input and output
forces is needed. In this case, the best position for the input gauge appears
to be in the middle of the input bar. Consequently the length of the output
bar is such that the length between the gauge and its end is half of the
input bar. If the bars do not have the same impedance, one must take care
of propagation time and not of length.

Theoretically, the length of the striker could be as long as half of the
input bar. In real situations one must account that the duration of the input
wave is greater than that of the theoretical “square” one. The rising time of
the signal has indeed to be added. For a given striker, this time is related to
the imperfect geometrical matching of both striker and input bar ends. This
mismatch can be due to imperfect surfacing and/or imperfect alignment but
it can be considered equivalent to an imperfection of a constant thickness.
A realistic interpretation of the rising time is that of the time needed for
the bars to flatten the geometric mismatch.

In the case of a standard steel SHPB 20mm, the rising time is around
20μs with a striker speed of 10 m/s. It should be around 100μs at a striker
speed of 2 m/s.

If the minimum loading speed is 2 m/s, these consideration lead to the
standard optimal SHPB configuration, with:

Input bar length = 2l
Output bar length = l + 5d (5 diameters form the end for the gauge

position)
Striker length = l -0.25 m (theoretical loading duration decreased by

100 s)
Note that for “pulse shaper” users, the rising time will increase and

depend on the “pulse shaper” geometry and material.
In the case of viscoelastic bars and a viscoelastic striker, the analysis is a

little different. With a striker and an input bar having the same impedance,
the loading duration (in the 1-D analysis) is infinite, due to a tail. It is not
easy to decide when the amplitude of the tail is small enough. It is then
recommended, with viscoelastic strikers and bars, to use a striker with a
smaller (by around 10%) diameter than the bars. Bussac et al. (2008)
have indeed demonstrated that the incident pulse has, in this case, a finite
duration.
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5.3 Wave shifting. A precise method for SHPB.

The 1-D analysis of the waves implicitly takes account of the Saint-
Venant principle: a certain distance is needed between the end of the bar
and the strain gauge to insure the homogeneity of the strain across the bar
(typically 5 diameters).

One needs then to use a wave theory to deduce the strain (as it would
be is this point was not an end) at the end a bar. This operation is called
shifting.

It is clear that the input force is proportional to the sum of the incident
and reflected waves and that a relative imperfect shifting in time would
induce an error, especially at the beginning of the loading. Some authors
have proposed to use some geometrical trick at the beginning of the signals
to define a “foot” for the curves and determine the shifting process on
the knowledge of these points: we call that the “foot shifting” technique.
Acceptable results could be obtained for the input force, with this method.

If we extend the method to the output wave, it induces a wrong evalu-
ation, at least, of the strain, if it neglects the times needed by the loading
to go across the specimen.

The shifting process must then be precise. A method, introduced by
Zhao & Gary (1996),can be used. It is based on the transient simulation
of an initial elastic behaviour of the specimen. The method also allows
for a correction of specimen geometry and a measurement of the Young’s
modulus of the specimen material.

The incident wave at the input specimen face been known (after the shift-
ing process), reflected and transmitted waves can be computed – depending
on specimen dimensions, bar dimensions and mechanical properties, speci-
men Young’s modulus. The only unknown is the last one. Using a try and
error method, one rapidly finds the Young’s modulus that gives shapes of
both simulated waves similar to that of transmitted and reflected waves as
they are known (after the shifting process) at the input and output specimen
faces.

Note that this operation does not work if the dispersion is not taken
into account, even with elastic bars. The reason is that the elastic response
of the specimen concerns the first instants of the loading where the initial
slope is strongly affected by the dispersion.

Some distance in time is still often observed between real and simulated
waves. This distance can be due to an imperfect knowledge of the speed of
waves or, more often, to some geometrical imperfection of the specimen. For
an optimized stress-strain curve, real waves are shifted to simulated ones.
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This very short shift (equivalent of a few cm in distance) is not affected
by the dispersion. An illustration of the method is presented in figures 14
and 15.

Fig. 14. Optimal choice of Young’s modulus for transmitted and reflected
waves.

The precise way stress and strain are computed will be addressed later.
Remind that the best results are derived from the force and displacement
time histories at the specimen boundaries without artificial time shifts.

Fig. 15. an example of possible effect of the method. Case of a concrete
specimen.
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Recall that the method does not work correctly without the dispersion
correction and that it relies on an initial non negligible elastic behaviour of
the specimen.

It still perfectly works with (slightly) viscoelastic bars (as Nylon or
PMMA bars) but not with a purely viscous specimen.

5.4 Punching of the bar-end by the specimen

After using this method during years, we have observed that the expected
modulus of the specimen was found when the specimen diameter was close
to that of the bars. The measured value was lower than the expected one
in most situations when the specimen diameter was smaller than that of
the bars. Furthermore, for a given specimen diameter, the discrepancy was
decreasing with specimen length.

This problem, due to the local punching of the bar end by the specimen,
has been addressed by Safa & Gary (2010). They have shown that this effect
is like that of an added spring at the end of the bars: the displacement due
to punching is proportional to the applied (and measured) force. A simple
formula has been established that gives the value of the displacement due
to punching. Results are summarised in figure 16 next page.

Note that the 1-D elastic behaviour of punching allows for taking ac-
count of its contribution in the elastic simulation process. Consequently,
the Young’s modulus of any material specimen can be directly estimated by
means of the elastic simulation process.
It is clear that the relative influence of the displacement due to punching
increases when the length of the specimen decreases. This is especially
important at high or very high strain-rates that need shorter specimen (as
the incident striker-speed is limited by the care of the gauges) when the
specimen diameter is under the half of that of the bar.

For a real test made at 10000/s, with a specimen 3 mm thick, diameter
6.5mm (steel bars, 12 mm, striker speed 25m/s), the equivalent in strain
due to punching, at the plastic plateau, is around 14%. On the other side,
at low strain rates, when the total measured strain is small, the effect of
punching is still important as illustrated in figure 17.
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Fig. 16. Summary of punching data for SHPB.
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Fig. 17. Influence of the punching correction. (20 mm steel bar, striker
speed 2.79 m/s, strain-rate around 100/s).

5.5 Force matching. Critical case of the input side.

This problem has nothing to do with a so called “impedance matching”
problem (discussed later).

In most cases, especially when testing metallic specimens, input and
output forces are almost equal. This is not always the case, as shown later.
Anyway, in the following analysis, we use this assumption to make clearer
the ”force matching” problem.

Considering formula (9), it appears that a correct measurement of the
output force is only possible when the measured output strain is itself sig-
nificant. It can be considered that strain measurements are done with a
precision around 5.10−6 when using classical strain-gauges. With semicon-
ductor gauges, it can be improved by a factor 50. Considering that an
acceptable relative precision of 2% is suitable for any measurement, the
maximum strain measured should be more than 2,5.10−4. Using formula
(9) allows for the calculation of the minimum suitable output force.

In the example of a steel bar (20 mm diameter), this force is around 15
kN. The specimen area being at maximum equal to the bar diameter, the
corresponding stress is 50 MPa. For weaker materials, it is necessary to use
semiconductor gauges or a better amplifying system (or a bar with a low
Young’s modulus, as it is the case of most viscoelastic bars).

Let us then assume that a material, with a maximum stress of 50 MPa,
is tested with the steel bar, very carefully. Considering now formula (9) for
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the input force, it appears that a precise measurement is not possible when
the amplitude of the incident wave and the opposite of the amplitude of the
reflected wave are too close.

Keeping this example, if we wish to obtain high strain rates, we use a
small specimen length. For sake of simplicity, we assume that the tested
material is not strongly rate sensitive. A simple simulation, with a specimen
5 mm long, shows that the striker speed must be 15 m/s to obtain an average
strain rate close to 3000/s. In this case, the absolute amplitude of the
reflected wave only differs by 15% from the amplitude of the incident wave.
A precise calculation of the input force with formula (9) is then difficult.

If we consider that an acceptable result is obtained when both waves
differ by more than 20%, the maximum strain rate giving an acceptable
result is, for this example, around 400/s. It can be concluded that materials
with a plateau stress under 50 MPa cannot be safely tested with 20 mm steel
bars at strain-rates over 400/s.

More generally speaking, weak materials need the use of soft bars.
This problem should be called the “force-matching” problem as it has

nothing to do with the specimen impedance, but only with the product
of the Young’s modulus of the bar by its area to be compared with the
maximum force to be measured.

Optimizing specimen dimensions. In order to insure good mea-
surements on the input side (more often of the force) the specimen has to
be designed depending on the required strain-rate.The problem is also to
choose the appropriate striker speed to obtain the strain rate. One can use
a method presented by Gary (2001), which is based on simple assumptions
(one-dimensional wave analysis, specimen equilibrium, evaluation of the ma-
terial stress: say σy). The amplitude of the incident wave is deduced from
the striker speed V (eq. 11a). The amplitude of the transmitted wave is
deduced from the specimen section Ss and σy (eq. 11b), and the amplitude
of the reflected wave is deduced from the equilibrium (eq. 11c).

εi =
V
2c (11a), εt =

Ssσy

SbEb
(11b),

εr = −εi + εt (11c), ε̇s =
2cεr
ls

(11d)

where Sb and Eb are the section and the Young’s modulus of the bars,
respectively.

The average strain rate is now given by formula (11d), where c is the
wave speed in the bars and ls is the specimen length. It is then possible to
make sure that the relative amplitude of the reflected wave is small enough
in comparison with the relative amplitude of the incident wave. If we look
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at formulas (8) and (9), it can be seen that the best situation, i.e., that
giving the most accurate force and speed results, is that occurring when
the amplitudes of the transmitted and reflected waves are fairly similar.
These formulas make it possible to easily determine optimized specimen
dimensions and striker speeds.

5.6 Impedance matching

The impedance matching problem, has been addressed by Davies and
Hunter (1963). It mainly deals with the homogeneity of stresses and strains
in the specimen, during a Hopkinson bar test, and especially at early in-
stants.

During this loading phase, input and output forces are alternatively big-
ger than the other. An example is shown in fig 18, from Klepaczko (2007) -
figure 3.11a, p 206.The gap between both forces decreases when the speed
of waves in the specimen increases and when its length decreases. It also
decreases when the amplitude in force (in stress in the present figure) of the
first step decreases.

Here is the “impedance” matching problem that describes the conditions
to make this step small enough. Furthermore, this step is softened if the
rising time of the loading is increased. This point is one reason for using
pulse shapers.
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Fig. 18. Elastic input and output stresses at early instant of the loading -
from Klepaczko (2007).

5.7 Holding the specimen: dealing with one-point measurements

Measurements with bars are always analyzed within the 1-D hypothesis
(even with dispersion and punching corrections as both are only expressed
as a function of the axial coordinate of the bar). In other words, force
and speed measurements, on each side, are made at a single point. This
basic hypothesis does not appear when Kolsky’s formulas are used for
a direct stress-strain relation. It is then important to keep in mind this
aspect, especially in situations where holding the specimen leads to the use
of devices that induce an impedance change along the wave propagation
path.

Some examples are given here.
When compression bars are used to test a material specimen, the spec-

imen diameter must be smaller than the diameter of the bar to ensure a
quasi-uniaxial state of stress. When very weak material are tested, even
with viscoelastic bars, the quality of the measurement is limited by force
matching problems described above.

In order to overcome this limitation, one could use at bar ends a device
with a larger diameter and then be able to hold a specimen with a much
larger specimen. Such a technique is illustrated in figures 19 and 20.
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Fig. 19. Impedance change between the bar (tube) and the specimen.

Fig. 20. Special device for a larger specimen.

The first question here is to decide at which point is made the measure-
ment: end of the bar or specimen face?

In order to illustrate this problem, a brass specimen has been tested in
the situation shown in fig. 20 and in a classical situation with the same
(aluminium) bars. The corresponding recorded waves are shown in fig. 21

Fig. 21. Illustration of the influence of a matching device – waves. It is
observed that the strongest influence appears in the reflected wave, and
that the transmitted wave is smoothed (this is not a general results as it

depends on each impedance ratio device/bar).

A standard processing of the waves will then give wrong results when
matching devices are used, as shown in figures 22 and 23.
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Fig. 22. Apparent equilibrium with and without devices.

Fig. 23. Apparent stress-strain relation with and without devices.

Looking at the stress-strain diagram shows a difference that is not so
large, in particular for larger strains. The main effect is a smoothing of
the stress-strain relation that prevents for an acceptable evaluation of the
elastic limit of the tested material.
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When it is not possible to avoid the use of a matching device, an impedance
correction is possible. A simple way is to use a one dimensional analysis.
Knowing the waves at the end of the bar (in the part with a constant
impedance), the waves at specimen faces can be calculated, assuming the
1-D elastic behaviour of the devices of known impedance. The forces and
the displacements applied to the specimen faces are then deduced.

5.8 Undetermined specimen ends

A good example is found in a work of Gary and Nowacki (1994). They
proposed a device to convert compression in shear. The idea is summarised
in fig. 24.

The (say) input hollow cylinder has the same impedance than the input
bar when the output cylinder has the same impedance as the output bar.
The problem here is that the beginning and the end of the specimen are
not defined. Consequently one has to consider that the shear-displacement
curve is filtered with a cut-off frequency depending on the length of the
shear zone.

Fig. 24. Conversion compression to shear.

6 Specimen behaviour

The Split Hopkinson pressure bar arrangement can give very accurate mea-
surements of forces and velocities at both sample faces if the data process-
ing is carefully performed. Relating material properties to measurements of
forces and velocities at the two specimen faces is a completely independent
problem.
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For this reason, we have distinguished the problems of measuring ac-
curacy of SHPB and material property identification from the measured
data.

6.1 Axial homogeneity

Due to the presence of waves in dynamic experiments, both the stress
and strain fields within a specimen are seldom uniform. A dynamic material
test should be designed such as to minimize this inherent non-uniformity,
a condition which is typically associated with “quasi-static equilibrium”.
However, when testing purely elastic materials such as fiber reinforced com-
posites or low impedance materials, the validity of this assumption needs to
be checked with care. Note that there are situations where force equilibrium
can exist without strain homogeneity as it is often the case with structural
materials like honey-comb or foam.

Before computers became generally available, the assumption of quasi-
static equilibrium of the specimen had a special importance from a data
processing point of view.

The historical point is that, in the 50’s, signals could not be recorded.
The idea was to associate, in a “memory scope” (the image was stored in
an analogic way) the “strain” and the “stress” signals and directly observe
a curve proportional to the stress-strain curve of the material. First, the
strain-rate was analogically integrated with respect to time. Then, the
simplest way to synchronize both signals was to produce them at the same
time. This was the reason to use both bars of same length with each gauge
in the middle.

With the use of modern numerical acquisition, the output gage can now
be positioned closer to the specimen interface; consequently, the output
bar can be shorter than the input one (and there is no good reason to
choose its length equal to that of the input bar). The use of “equilibrium”
condition was also crucial at that time as the input force could not be
directly measured.
Optimal design with equilibrium. It is worth noting here that this
equilibrium condition could be used with different input and output bars
leading to slightly more complex formulas. In the same way, other formulas
could be derived using any pair of waves (among three).

Let’s consider the idea of using only the incident and transmitted waves.
For sake of simplicity we suppose that the two bars are still identical but
the results could be generalized to a SHPB made of two different bars.
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Assuming equilibrium, formula 3 can also be written:

εs(t) =

∫ t

0

ε̇s(τ)dτ = −2cb
ls

∫
0

(εi(τ)− εt(τ))dτ σs(t) =
Ab

As
Ebεt(t)

where Ab is the area of the bar, Eb its Young’s modulus and As the area of
the specimen.

It can be seen that only the incident and the transmitted waves are now
involved in the processing formulas. Finding an optimal position for the
gauges, close to the input side of the bars where the waves arrive first, (see
the case of direct impact) will then lead to an increased measured strain. It
is then easy to find the optimal design close to the one shown in figure 25.
The bars have now to have the same length to allow for the same duration
of the incident and the transmitted waves. Consequently, the striker has to
be as long (or longer) as the remaining distance between the gauges and the
end of the bars.

Fig. 25. With equilibrium, a configuration for an increased duration
measurement.

Evaluation of specimen behaviour. The evidence of non equilibrium is
found in early instants of the loading, when the first wave in the specimen
has not yet reached its end. At this instant the input force exists when
the output force is still null. Knowing that specimen equilibrium is never
achieved exactly, we seek the best of the commonly used stress-strain curve
estimates in a SHPB experiment. This question is studied by Mohr et al.
(2010). The time shift of the waves is found to play a critical role as far as
the accuracy is concerned.

More specifically, it is found that the omission of artificial time shifts (as
illustrated in fig 26) provides the best stress-strain curve estimates. In other
words, once the force and displacement histories are known at the specimen
boundaries, accurate estimates of the stress-strain curves should be made
without further shifting the signals on the time axis.
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Fig. 26. Exact theoretical waves as shifted at specimen faces. The dashed
blue line shows the strain history of the transmitted wave after shifting

the beginning of this wave in time (so-called “foot shifting”) such that all
strain histories begin simultaneously.

Fig. 27. Plot of the estimated stress strain curves for a dynamic
compression experiment on PMMA (steel bars 20 mm).

Estimations evaluated by Mohr et al. (2010) are based on exact explicit



34 G. Gary

calculation done in the frequency domain. Results confirm that the error
(for all formulas) increase with the impedance mismatch between the spec-
imen and the bars. It is emphasized that, in standard testing situations,
exact shifting (illustrated in fig 26) is much more important than strain or
force approximation (with 2 or 3 waves).

The estimates which are based on the force and displacement time his-
tories at the specimen boundaries without artificial time shifts, provide the
most accurate stress-strain curve. Unless accurate input force measurements
are available, the combination of the average strain with the output force
based stress estimate is recommended for standard SHPB experiments. An
illustration is given in fig. 27.

Recall that in the elastic range and in standard SHPB testing, when the
specimen diameter is smaller than half of that of the bars, the incidence
of the punching correction on the quality of the results is the most
important.

6.2 Radial homogeneity. Friction and inertia

We must keep in mind that, alike in all testing situations, axial stress
and strain homogeneity (considered up to now) is not the only one to be
considered. In quasi-static testing, it is possible to directly measure the
strain in a “gauge section” of the specimen where 1-D assumptions are well
verified. In SHPB, when using a cylindrical specimen, it is more difficult to
avoid friction at specimen faces. This friction prevents the expected radial
expansion quantified by Poisson’s ratio.

The consequence is that the triaxial stress-state is not uniform along the
axial loading. It induces an average over-stress in the common situation of
elastoplastic materials.

This radial expansion is also prevented by inertia effects that induce
lateral confinement.

An empirical formula has been established by Malinowski and Klepaczko,
(1986) that takes account of both effects. This formula is valid for purely
plastic materials but gives a first order correction that applies to many other
materials.

σ − σ0 =
μσ

3s
+

ρd2

12
(s2 − 3

16
)(ε̇2 + ε̈) +

3ρd2

64
ε̈

where, σ0 : ideal value, σ : actual value (true stresses)
land dactual values of length and specimen diameter and s = l/d
ρ , density assumed to be constant
μ friction Coulomb coefficient (usually <0.1).
This formula indicates that the inertia effect is much smaller than that

of friction for common metal testing (bar diameter < 20 mm). It becomes
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significant for bigger specimens (>30mm) like found for rock or concrete
testing when big specimen sizes are required for a good average material
representation. It is seen in this case that some artificial strain rate effects
can be attributed to bi-axial loading induced by inertial confinement.

In the case of testing where a quasi-static radial confinement is added -
see Gary and Bailly (1998), and Forquin et al. (2010) - inertia effects are
prevented and do not operate anymore.

6.3 Adiabatic heating

The duration of a dynamic compression test with SHPB is almost always
under 1 ms. For many materials, it induces large strains (depending on
strain-rate) that produce work which is (partly ?) converted into heat. In
case of metal or polymer testing, it can induce a specimen temperature
increase in the range up to 100◦C.

It is then important to account for this temperature increase for an
improved evaluation of the material behaviour. This question has been in-
vestigated by various authors who have proposed techniques for high speed
temperature measurements (more often based on infrared specimen emis-
sion). See for instance Rittel (1999) and Negreanu et al. (2009).

6.4 Inverse methods

On the basis of force and velocities measurements at specimen faces, an
approach of the specimen behaviour based on an inverse method is theo-
retically possible, as shown by Rota (1994), as these four values are super-
abundant measurements.

3-D dynamic numerical simulation could allow, in this case, accounting
for friction, radial inertia and possibly temperature increase. If an appropri-
ate form of the material behaviour with some parameters to be determined
is known, using a part of data (two velocities, for example) as the input data,
another part of data (the two forces) associated with the given parameters
can be calculated. The best set of parameter which gives the calculated
forces well in agreement with the measured ones can theoretically be found.

In order to further investigate this approach, we shall limit the analysis
to axial 1-D effects by means of a fast 1-D transient simulation based on
the Sokolovsky (1948) and Malvern (1951) approach.

The uniaxial governing equation and the constitutive law are written in
equations (12)
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∂σ(x,t)
∂x = ρ∂v(x,t)

∂t

∂ε(x,t)
∂t = ∂v(x,t)

∂x

(12)

f(σ, ε, σ̇, ε̇, ...) = 0

where σ, ε, v are the stress, the strain, and the particle velocity in the spec-
imen. ρ is the mass density.

The boundary conditions at the two faces of the specimen are given as
follows:

σ(x, t)− EBSB

CBSS
v(x,t) = 2

SB

SS
EBεi(t) at the input side

σ(x, t) +
EBSB

CBSS
v(x,t) = 0 at the output side (13)

EB , CB , SB , Ss denote the Young’s modulus, wave velocity, cross-sectional
area of the bar and the section of the specimen.

Once the specimen behaviour is assumed, the direct problem described
by equations (12, 13) corresponds to an uni-dimensional SHPB simulation.
As mentioned above, the simulation would be just the preliminary stage of
the inverse problem which consists in finding the parameters of the model.
The inverse methods need fast calculation procedures to allow for a great
number of direct calculations with different sets of parameters if necessary.
For this purpose, the specimen behaviour should be numerically easy to
calculate. This is why it is chosen to use a Sokolovsky-Malvern model type
for the specimen, (14).

∂ε
∂t = 1

E
∂σ
∂t if σ ≤ σs

∂ε
∂t = 1

E
∂σ
∂t + g(σ, ε) if σ > σs

(14)

The characteristic network in this case is composed of families of straight
lines so that the numerical integration of equation (13, 14) by the method
of characteristics is very efficient. In comparing the given behaviour with
the average stress strain curve obtained from three simulated waves, the
efficiency of classical SHPB analysis for this type of materials can be eval-
uated.

It is noted that the Sokolovsky-Malvern constitutive model is a quite
general rate-sensitive one. Though it has been introduced initially for met-
als, it can be also used to describe the non-metallic materials if the function
g(σ, ε) is correctly chosen –see Critescu (1967).
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In order to have a general idea of the efficiency of the classical SHPB
analysis for this type of constitutive models, a popular rheological model
(Fig. 28) is examined here, which is of Sokolovsky-Malvern type with the
g(σ, ε) expressed as follows,

g(σ, ε) =
(1 + Ev

E )σ − Evε

η
(15)

Fig. 28. Rheological model for 1-D standard elasto-visco-plasticity.

A number of simulations were done for different sets of parameters. It has
been found, like for previous results on metals, that the classical average
stress-strain curve is in good agreement with the curve given by SHPB
standard analysis at relative important strains. However, in the range of
small strains, it is acceptable when the viscosity is low even if there is no
axial uniformity. On the other hand, when the viscosity is high, the average
(SHPB) curve is quite far from the given behaviour.

An illustration of the method is presented in two particular cases: for salt
in fig. (29) which exhibits a strong viscoplastic behaviour and for concrete
fig. (30) which breaks, showing a negative strain hardening, at small strains.
In both cases, equilibrium conditions are obviously not satisfied.

The chosen model with the set of parameters which gives the best agree-
ment can be considered as a representative model of the specimen in this
test. As a result, the stress and strain fields in the specimen are evaluated
so that a stress-strain curve is found. The assumption on the uniformity
of stress and strain fields is then not needed in such a method. The only
hypothesis used is that specimen tested manifests the same properties every-
where. Furthermore, it is possible to give a stress strain curve at a constant
strain rate via the model and the set of parameters identified.
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Fig. 29. Simulated and measured forces for rock-salt.

Fig. 30 Simulated and measured forces for concrete.

This stress-strain curve can then be compared with the one obtained with
the classical SHPB analysis. For the test on salt, the two curves are quite
far from each other in the range of small strains. The inverse calculation is
then in this case the only way to obtain an accurate result for this type of
materials. On the other hand, for the test of concrete, the average stress-
strain curve is rather close to the curve derived from the model, as a kind of
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averaging operates between input and output forces. The inverse calculation
could then be avoided.

7 Measurement of the dispersion relations

A method is briefly presented here that provides a very accurate estimation
of the dispersion relations. One reason is that it is a one point method; the
other is that it is based on simple formulas and an easy identification of the
wave speed and damping at a given finite set of frequencies.

Furthermore, it allows for a subsequent mathematical analysis which
includes noise reduction and provides a rheological model with a number of
elements that is in accordance with the complexity of the material.

7.1 Impact test method. Theory

Fig. 31 Impact test with a uniform viscoelastic bar specimen.

At one end, x=0, the bar is impacted axially by a striker that separates
from the bar after the generation of a compressive primary pulse in the
bar. The other end of the bar, x = l, is free. The strain εb (t) = ε (b, t)
is recorded at a distance a from the free end and b from the impacted end
(a + b = l). The primary pulse should be shorter than 2a so that there is
no overlap in the measured strain of this pulse and the first pulse reflected
from the free end. However, it should be much longer than the diameter of
the bar so that approximate 1D conditions prevail - Hillström et al (2000).

In the frequency domain, the strain in the bar can be expressed as:

ε̂ (x, ω) = A (ω) e−iξ(ω) x +B (ω) eiξ(ω) x, (16)

where

ξ2 (ω) = ρω2/E(ω), ξ (ω) = k (ω)− iα (ω) (17)

Here, ε̂ (x, ω) is the Fourier transform of ε (x, t), and A (ω) and B (ω)
are complex amplitudes of waves travelling in the directions of increasing
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and decreasing x, respectively, k (ω) is the wave number and α (ω) is the
damping coefficient.
In order to determine an expression for the recorded strain ε̂1b (ω) = ε̂ (b, ω)
associated with the primary pulse alone, the amplitudes A and B are first
determined from Eq. (16) and the boundary conditions ε̂ (0, ω) = ε̂0 (ω)
and B (ω) = 0 for a semi-infinite bar x ≥ 0 , where ε̂0 (ω) is the strain at
the impacted end. With these amplitudes and x = b inserted, Eq. (16)
gives

ε̂1b (ω) = e−iξ bε̂0 (ω) (18)

The recorded strain ε̂1b (ω) = ε̂ (b, ω) associated with the complete train
of pulses is determined similarly. With amplitudes A and B, and x = b and
l − b = a inserted, Eq. (16) gives

ε̂∞b (ω) =
sin (ξa)

sin (ξl)
ε̂0 (ω) . (19)

Dividing the members of Eq. (19) by those of Eq. (18) eliminates the
strain ε̂0 (ω) at the impacted end which normally cannot be measured. The
elimination of this strain makes the difference between the method used here
and that used by Othman et al. (2001). Substituting ξ from the second of
Eqs. (17) into the result, one gets the ratio ε̂∞b (ω) /ε̂1b (ω) which gives

|ε̂∞b (ω)|2 =
∣∣ε̂1b (ω)∣∣2 e2αb sin

2 (ka) + sinh2 (αa)

sin2 (kl) + sinh2 (αl)
. (20)

Resonance occurs at the angular frequencies ω = ωm, m=1, 2,. . . which
correspond to the wave numbers, wavelengths and phase velocities

km =
mπ

l
, λm =

2π

km
=

2l

m
, cm =

ωm

km
=

ωml

mπ
, (21)

respectively.
It is assumed that within the m:th resonance peak α = αmω/ωmcan be

taken as directly proportional to angular frequency and c (ω) = ω/k (ω) =
cm can be taken as constant. By use of the third of Eqs. (21) we then
obtain the relation between wave number and angular frequency within the
resonance peak. Inserting these expressions for α (ω) and k (ω) into Eq.
(20) we get (m = 1, 2, . . . )

|ε̂∞b (ω)|2 =
∣∣ε̂1b (ω)∣∣2 e2αm bω/ωm

sin2 (kmaω/ωm) + sinh2 (αmaω/ωm)

sin2 (kmlω/ωm) + sinh2 (αmlω/ωm)
(22)

within the m:th resonance peak. In this relation, the spectra |ε̂∞b (ω)|2
and
∣∣ε̂1b (ω)∣∣2 can be determined experimentally.



Testing with Bars from Dynamic to Quasi-static 41

For each resonance m=1,2,. . . , the resonance frequency ωm and damping
coefficient αm can be estimated by minimizing the difference between the
resonance peaks represented by the left and right members of Eq. (16).
From ωm and m, the complex modulus Em at each resonance frequency can
be finally obtained as

Em = ρ

(
ωm

ξm

)2

, ξm =
mπ

l
− iαm,m = 1, 2, . . . .

7.2 Experimental set-up and procedure

Impact tests were carried out with a Nylon bar specimen of length 3045
mm, diameter 10.2 mm, and density 1149 kg/m. The striker had length
174 mm and the same diameter 10.2 mm and material as the bar, and
its impact velocity was 3.7 m/s. The strain was recorded with 500 kHz
sampling frequency, and the signal vanished completely before the end of
the recording window (fig. 32 and 33)

Fig. 32 Recorded strain in the Nylon bar specimen. Long-time record of
strain pulses.

The spectrum |ε̂∞b |, computed from the long-time strain record, is shown
in Fig. 34, 35 and 36. It is easily checked that resonance peaks are clearly
identified. In figures 35 and 36, the experimental peak is shown with the
theoretical one identified by the minimization process described above (in
figure 35, the superposition is perfect at the scale of the drawing).
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Fig. 33 Primary strain pulse followed by strain pulses which have
undergone one and two free-end reflections

Fig. 34 Experimental spectrum
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Fig. 35 Spectrum, zoom on f=270 Hz

Fig. 36 Spectrum, zoom on f=6860 Hz

Corresponding to the peaks, a set of experimental points is obtained
which provides, for each frequency, a value for wave speed and damping
(circles in figures 37, 38)
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Fig. 37 Wave speed

Fig. 38 Damping

By averaging, the results in figures 37 and 38 immediately provide the
dispersion relations that could be used right away for the wave shifting.

Using the mathematical analysis presented by Collet et al. (2012), an
optimal rheological model type is built and identified with 7 springs and
dashpots. Note that the number of elements is not an assumption - as was
done in Othman et al. (2001) - but is a result of the method. Knowing the
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corresponding Young’s modulus, wave speed and damping as functions of
frequency are then built. In the present example, they correspond to black
continuous curves in figures 37 and 38.

8 Long-time measurements

Basic measuring techniques involving the use of bars require the knowledge
of the two elementary waves which propagate in opposite directions. Once
they have been characterised, they can be shifted to the appropriate cross-
sections (the bar specimen interfaces for example) and all the mechanical
values required can be calculated. The SHPB technique involves the inde-
pendent measurement of each wave.

Some authors - Lundberg & Henchoz (1977), Yanagihara (1978), Zhao &
Gary (1997), Jacquelin & Hamelin (2001) - have carried out two measure-
ments on each bar. The pioneers in this respect were Lundberg & Henchoz
(1977) and Yanagihara (1978), who independently developed a wave sepa-
ration technique based on one-dimensional wave propagation theory. Their
methods didn’t take into account the wave dispersion. Some attempts have
been made to develop methods also accounting for the wave dispersion,
starting with Zhao & Gary (1997). However, the solutions proposed so
far are sensitive to noise. A wave separation technique based on multiple
measurements has been proposed by Othman & al. (2001) and Bussac &
al. (2002). In line with Jacquelin and Hamelin (2003), this method will
be subsequently called the BCGO method. It is based on the Maximum
Likelihood approach and involves performing multiple strain measurements
on each bar. This method, which is not noise-sensitive, requires an extra
velocity measurement at very low strain rates. Jacquelin & Hamelin (2003)
have developed an alternative three-point wave separation technique which
is also insensitive to noise but the gauges are cemented to specific points
and the force is calculated at one bar end (which is the only point where
it can be calculated). The BCGO method is illustrated with the analysis
of Split Hopkinson Bar tests, and an extended range of strain-rates (from
10−1 to 5 103 s-1) for the study the rate sensitivity of an aluminum alloy.

8.1 Wave separation: the BCGO method

In this section, the BCGO method is briefly presented.
Let us consider an elastic or viscoelastic bar with length l. In the case of

single mode propagating longitudinal waves, the stress, strain, displacement
and velocity are expressed in terms of the Fourier transforms as follows:
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ε̃ (x, ω) = A (ω) e−iξ(ω)x +B (ω) eiξ(ω)x

σ̃ (x, ω) = E∗ (ω)
(
A (ω) e−iξ(ω)x +B (ω) eiξ(ω)x

)
ṽ (x, ω) = −ω

(
A (ω) e−iξ(ω)x −B (ω) eiξ(ω)x

)/
ξ (ω)

ũ (x, ω) = i
(
A (ω) e−iξ(ω)x −B (ω) eiξ(ω)x

)/
ξ (ω) (23)

where A (ω) and B (ω) are the Fourier components of the forward and
downward waves, respectively, at the origin of the bar, E∗ (ω) is the complex
Young’s modulus and ξ (ω) = k (ω) + iα (ω) is the complex wave number.
Eqs. (23) show that the strain, stress, displacement and particle velocity
can be obtained at any point on the bar if the following four parameters are
known: ξ (ω) , E∗ (ω) , A (ω) and B (ω).

The two parameters E∗ (ω) and ξ (ω) depend only on the bar character-
istics (its geometry and material). They only need to be determined once.
Here we used the method presented in chapter 7.

In what follows, E∗ (ω) and ξ (ω) are therefore assumed to be known.
A(ω) and B (ω) are calculated based on the data obtained by performing
three strain measurements and one velocity measurement. We express the
fact that the signals recorded are noisy by writing that they are the sum
of the exact value of the strain (or the velocity) and an unknown noise.
The statistical distribution of the noise is assumed to be Gaussian. Conse-
quently, the Maximum Likelihood Method can be used to estimate the two
functions A(ω) and B (ω). This consists in writing that the signals measured
correspond to the most probable event. Our problem is therefore equivalent
to the minimization of a functional: this minimization yields an explicit
formula for A(ω) and B (ω) as a function of the material and geometric
parameters and the measured quantities - see Bussac & al. (2002).

The elementary functions A(ω) and B (ω) are then computed for each
test. Using eqs. (23), one can now determine the force and the velocity at
each point on the bar, especially at the bar ends. By applying the BCGO
method to each of the bars, it is then possible to assess the force and the
velocity at the two bar/specimen interfaces.

8.2 Experimental set-up

As an example, it is proposed to explore the strain-rate sensitivity of
aluminium. The behaviour of this material is explored under a large range
of strain rate conditions: quasi-static, medium and high strain rates.

In the high strain-rate tests, the classical time domain approach cor-
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responding to the Split Hopkinson Bar was used. In the quasi-static and
medium strain-rate tests, the new method involving the use of extra sensors
on the SHPB was adopted, as explained above. The corresponding appa-
ratus is a modified SHPB system loaded by an actuator, of the kind first
introduced by Zhao & Gary (1997). In the quasi-static and medium strain-
rate tests, low velocity loading was required. The kinetic energy of a striker
would not suffice to induce large strains in the specimen, and longer load-
ing durations were required. The bar system was therefore loaded using a
hydraulic actuator and selecting the speed as required. Low loading speeds
(of less than 0.1 m/s) can be monitored and automatically kept constant
throughout the test. At higher speeds of up to 5 m/s, the requisite value
is maintained approximately constant during the test. The new appara-
tus is called the “slow bars” apparatus. In the present case, three strain
gauges and an optical displacement extensometer were used on each bar.
The derivative of the displacement was then calculated numerically to ob-
tain the velocity. A simplified scheme is presented in Fig. 39 and pictures
of the set-up are given in figures 40a and 40b.

Aluminium bars 40mm in diameter and 3m in length were used in these
tests on the strain-sensitivity of the aluminium.

Fig. 39 Simplified scheme of the “slow bar” set-up

Both the Hopkinson bar and the slow bars give force and displacement
measurements at the two bar/specimen interfaces. To determine the be-
haviour of the material, we assume the stress and strain to be homogeneous
in the specimens. This assumption was systematically checked in the case
of the slow bars and SHPB by making sure that the forces measured in the
bars on each side of the specimen were practically equal. As was to be ex-
pected, it was observed that the smaller the loading rate, the more exactly
this condition (called equilibrium) was fulfilled.
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Fig. 40a View of the slow bar rig Fig. 40b Hydraulic actuator

8.3 A bar-bar test check

To check the consistency of the complete system (as well as testing the
accuracy of the BCGO method), a bar/bar test was carried out, in which
the two bars were put in contact without placing a specimen between them.
The force and the displacement were computed at the bar/bar interface
in two independent ways, using the measurements obtained on each bar
separately and checking whether the two results obtained were equal. In
the present example, the velocity of the hydraulic jack was set at 1.5m/s.

The forces and displacements calculated at bar ends are compared in Fig.
41 and Fig. 42, respectively. The results of computations made on each bar
were almost equal, as was to be expected (with the bars in contact).

8.4 Aluminium characterisation

In the slow bar tests, the specimens used were 6mm in length and 6mm in
diameter. The velocity of the hydraulic jack ranged from 2.10−4 to 2.5m/s.
The strain rate ranged approximately from 10−1on to 400/s. In Hopkinson
bar tests, the specimen geometry and the striker impact velocity have to
be adapted to the strain rates, which ranges approximately from 150 to
5000/s. In each test, the assumption that the force equilibrium conditions
were satisfied between the two bar/specimen interfaces was checked. An
example is given in Fig. 43 in the case of slow bars. The forces dropped
suddenly at approximately 0.032s because the specimen broke at that point.
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Fig. 41 Forces at the bar/bar interface.

Fig. 42 Displacements at the bar/bar interface.
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Fig. 43 Specimen equilibrium.

Displacement data were also calculated at each of the specimen faces, as
shown in Fig. 44.

Fig. 44 Displacements at specimen faces.

Assuming (as well as checking) that the equilibrium conditions were
satisfied, the stresses, strains and strain rates were obtained from these
measurements. It can be noted that the duration of the tests increased
considerably when using slow bars, reaching several seconds, in comparison
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with the usual duration of 500μs in the case of the classical Hopkinson bar
tests carried out on the same bars.

The results of the aluminum test show that this material is only slightly
sensitive to the strain rate. In Fig. 45, the changes in the stress correspond-
ing to a 10% strain level were plotted versus the strain rate corresponding
to the same strain level. The stress increased by approximately 15% when
the strain rate increased from 10−1 to 5000/s. Some slow bar tests and
Hopkinson bar tests were also both carried out at strain rates in the 150 to
400/s range. The mean difference between the results obtained with these
two methods was less than 20MPa.

Fig. 45 Strain-rate sensitivity of aluminum.

8.5 A powerful tool

An easy interrupted test.
A simple way to make an interrupted test is to ensure that, after the first

loading, the speed of the output bar at specimen side is larger than the speed
of the intput bar at specimen side. This test also needs, of course, that the
output bar is free of moving, that provides an extra “strain” measurement
at its end (null strain). The total strain amplitude is then limited by the
striker length (provided that the specimen behaviour is estimated as it also
governs the strain rate). This will happen, when the transmitted wave will
be greater, in amplitude, than half of the incident strain (with bars of the
same impedance).
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A test have been designed for this purpose, with aluminium bars (diam-
eter 40mm, in input bar 1.8 m, output bar 1.3 m, striker 0.8 m – speed 10
m/s).

The corresponding wave records are shown in fig. 46 and 47. One
extra gauge has been added on each bar and the record duration has been
increased in order to check the validity of the “interrupted test” assumption.

Fig. 46 Recorded waves.

Fig. 47 Recorded waves (early instants).
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Using the BCGO method, displacements computed at bar ends (speci-
men side) prove that the test was indeed an “interrupted test” as the spec-
imen could not be reloaded, as shown in figs. 48 and 49.

Fig. 48 Displacements at bar ends (specimen side) – short time

Fig. 49 Displacements at bar ends (specimen side) – long time

The BCGO method is valid at quasi-static strain-rates.
As the method works in the frequency domain and as the size of numeri-

cal records is limited, the data acquisition frequency used at very low strain
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rates is no more than 1 kHz. Considering that the corresponding time base
corresponds to 5 m of an elastic wave propagation, one could fear that the
description of waves in bars is insufficient.

This is not the case, as demonstrated in fig. 54 where a test at a loading
speed of 5mm/s is shown. The specimen is a water cylinder contained in a
pressure vessel in which the bars act as pistons.

Fig. 50 Comparison of the BCGO method with a quasi-static analysis

For the quasi-static analysis, the displacement of each bar is corrected
with the mean strain.

εm = (ε1 + ε2 + ε3)/3 de = dmeas + εmd(xmeas, specimen)

The force is simply deduced from the mean strain.

F = SbEbεm

9 Conclusion

Most problems related to dynamic testing have been addressed here, in
particular those dealing with bars that are very commonly used at high
strain rates, from 200/s to 5000/s.

Higher strain-rates have not been studied as they generally involve very
expensive equipments.
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On the other strain-rate side, some suggestions have been proposed to
extend the use of bars at medium strain-rates (1/ to 200/s) where no in-
dustrial experimental method is easily available.

Recall that dynamic material testing needs to keep in mind a few points:
- Direct measurements of specimen mechanical properties like strains

and stresses are almost impossible.
- Forces and displacements must be done (or computed) as close as pos-

sible to specimen faces.
- Going from global measurements to mechanical properties needs to

evaluate dynamic effects (stresses and strains homogeneity, lateral inertia,
temperature increase) in order to quantify the subsequent approximation.

Some modern optical methods which allow for direct measurements dur-
ing high rates of testing, like image correlation for a more local estimation
of the strain and infra-red temperature measurements, are welcome when
available, in order to confirm and complete the validity of this difficult pro-
cess that leads, from global forces and displacements measurements, to some
knowledge of the material behaviour.
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