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Abstract The prospect of biomolecules using microorganisms in fermentation

processes is widely used, in this context to solid state fermentation (SSF) has

advantages such as the possibility of using agricultural and industrial waste and

reduction of water waste. Studies show that different microorganisms can be used in

SSF; actinomyces and fungi are the most used due to growth in media with low

water activity. Among the highlight biomolecules produced are antibiotics,

anticarcinogenic agents, anticoccidians, antiviral, neuroactive, antioxidants, and

enzymes. The enzymes are produced in greater scale among the different classes;

hydrolases have gained importance because of cellulases, hemicellulases,

proteases, chitinases, lipases, and phytases. Cellulases are a complex capable of

acting on cellulosic materials, promoting its hydrolysis to release sugars, of which

glucose is the one with largest industrial interest. Xylanolytic enzymes act on xylan,

hemicellulose components, which may be attached to the cellulose and lignin in the

plant cell wall. The study of chitinase has been stimulated by their possible

involvement as agents of defense against pathogenic organisms that contain chitin,
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such as insects, nematodes, and fungi. Proteases catalyze the hydrolysis of peptide

bonds of proteins and may have activity on ester and amide bonds. Lipases allow

catalysis of the hydrolysis and synthesis, often in chemo, regal, or enantioselective

reactions. Furthermore, phytase catalyzes the hydrolysis of phytate to phosphate

and inorganic phosphorus, increasing the bioavailability of phosphorus for mono-

gastric animals.

Keywords Enzymes • Solid state fermentation • Bioprospecting • Fungus •

Actinomycetes • Biomolecules

10.1 Introduction

The exploitation of biodiversity rises as a new exploitation method of biological

natural resources, generating bioprospecting, that is defined as the method to

determinate, evaluate, and explore legally and systematic life diversity in particular

location, whose main goal is seek for genetic and biochemical resources for

commercial purposes. Therefore, microorganisms are versatile for molecules pro-

duction with biological activities by fermentation processes, such as the solid state

fermentation (SSF).

The SSF is widely used for obtaining biotechnological products, and it has

become an interesting alternative to reduce the processes cost. This type of fermen-

tation can use agricultural and agro industrial waste as substrates, which present

low value, are nutrient rich, and have restricted water availability that helps to

select contaminants, especially bacteria and yeasts. The obtainment of the final

product by SSF is easier and the amount of waste is minimized (Lima et al. 2003).

The use of surplus/waste as substrate for SSF allows the reduction of the final

product cost and the implementation of a closed, sustainable, and environmentally

friendly product chain. Among these substrates we can mention sawdust, bagasse

from sugarcane of the sugar and alcohol industry and straw, bark and bran from

cereal and fruit production. For biotechnological processes, the microorganisms are

widely required because they are, in most cases, unicellular; when they are multi-

cellular, they are poorly differentiated; they simplify cultivation in fermenter; they

have rapid absorption of nutrients, fast metabolism, and high versatility,

transforming different compounds and producing a wide variety of products.

Microorganism is considered viable for a process when it is able to grow on

cheap substrates; it is genetically stable, but liable for genetic manipulation; it

provides high production yields on large scale, and, also, recovered at low cost; it

does not produce incompatible substances with the target final product and it is not

pathogenic. Actinomyces and fungi are the most used by SSF, since they grow

under low water activity conditions.

Actinomyces were originally classified as fungi, as they present aerial hyphae,

however, detailed studies of the cell wall composition, particularly the lipid mem-

brane and the composition of its peptidoglycan, classified them as true aerobic

bacteria. Molecular taxonomy studies created the class Actinobacteria, which

includes all gram-positive bacteria with guanine and cytosine content greater than
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55 %. Within this new class, actinomyces with capacity to produce mycelium are

classified as Actinomycetales and include 10 subclasses and 34 families. Each year,

new proposals are presented in literature of new species, genera, or families, and so,

the classification of these organisms is constantly renewed (Stackebrandt

et al. 1997; Stackebrandt 2000). Actinomyces of genus Streptomyces, the most

commonly isolated and studied, are considered important microorganisms for

industrial production and they have been described as the main antibiotics

producers. Species of this genus are noted for producing more than half of the

10,000 bioactive compounds documented until 2001 (Anderson and Wellington

2001). Due to its high metabolic diversity, actinomyces have also been explored as

major producers of many bioactive substances (Korn-Wendisch and Scheider

1992). The Kingdom Fungi consists of about 1.5 million species of which 77,000

species are known. These microorganisms have important ecological functions in

nature, such as decomposition of organic material and reduction of mineral dis-

charge to environment, immobilization and nutrient release, association with plants

that can vary from beneficial to pathogenic, release of organic acids for the soil,

among others. They are capable of degrading various substances with aid of

exoenzymes to achieve required solubility and shape to be transported and

incorporated by the cells. These enzymes are amylases, pectinases, xylanases,

lipases, cellulases, and proteases, which are important for many applications in

promising industrial processes (Silva et al. 2008). Furthermore, they produce other

metabolites as antibiotics, chelating agents, and others (Hawksworth et al. 1996;

Fransson et al. 2004; Klein and Paschke 2004).

10.2 Production of Bioactive Substances by
Microorganisms

The production of bioactive compounds by SSF may be conducted as shown in

Fig. 10.1.

Actinomyces are producers of antibiotics (Bull 2004; Berdy 2005; Strohl 2004),

antitumor agents (Olano et al. 2009), and immunosuppressive agents (Mann 2001).

The Streptomyces have the ability to produce many bioactive compounds. Around

23,000 antibiotics have been discovered from microorganisms. It is estimated that

about 10,000 of them have been isolated from actinomyces (Okami and Hotta

1988).

Regardless of its chemical structure, these bioactive substances can be classified

as peptides, quinones, macrolides, terpenes, polyketides, among others (Li and Piel

2002; Salmon et al. 2003). Most peptides derived from Streptomyces species are
cyclical and contain elements such as chromophores or amino acids in its structure.

Peptides include ciclomarine A, which can be obtained from Streptomyces with

great anti-inflammatory and antiviral activity (Renner et al. 1999), and

piperazimicines A-C, which are cytotoxins isolated from Streptomyces
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sp. Though, piperazimicine A showed high cytotoxicity against tumor cells in vitro

(Miller et al. 2007) and salinamides A and B, produced by Streptomyces
sp. CNB-091, showed anti-inflammatory activity (Moore et al. 1999). Quinones

are compounds with conjugated dione cyclic in its structure and they are common

constituents and biologically relevant molecules. As an example: C-glycoside

himalomicines A and B complex and tetracenomycin D. The first is the anthraqui-

none with fridamicine E chromophore, precursor of anthracycline antibiotic

obtained from Streptomyces sp. 6921, that show great antibacterial activity

(Maskey et al. 2004), while the second, the anthraquinone antibiotic produced by

Streptomyces corchorusii AUBN (Adinarayana et al. 2006) showed cytotoxic

activity against hepatic carcinoma cells. Terpenes (large and diverse class of

hydrocarbons) are biosynthetically derived from units of isoprene, with molecular

formula C5H8. Streptomyces sp. NPS008187, isolated in Alaska, synthesized three

Fig. 10.1 Solid state fermentation process. Microorganisms kept in slants are sterile inoculated in

reactors containing substrate previously sterilized. Afterwards they are incubated for fermentation,

followed by water addition, homogenization and filtration to obtain the substances with biological

activity
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new pyroles sesquiterpenes which showed antibacterial activity (Macherla

et al. 2005). Carotenoids are tetraterpenos mostly know, and they can be obtained

from strains such as Streptomyces griseus (Lee et al. 2001).
The polysaccharides produced by basidiomycetes fungi are extensively studied

in China and Japan, due to its medicinal and tonics attributes. Examples include

Agaricus blazei which produces substances with anticarcinogenic activity (Mizuno

et al. 1990); Flammulina velutipes that produces elements which helps to reduce

cholesterol (Miles and Chang 1997); extracts of Ganoderma lucidum which are

immune system boosters and promoters of tonic effects for cardiac system (Hikino

et al. 1985); Lentinula edodes biomolecules with anti-HIV effect (Chihara 1992);

and others. Filamentous fungi (ascomycetes) of Penicillium genus are fairly flexible

for antibiotics production by fermentation processes alone or associated with

chemical modification, such as penicillin G produced by P. chrysogenum; griseo-
fulvin of P. griseofulvin used for infections treatment of skin, hair, and nails;

cyclosporin, used as an immunosuppressant in transplant surgery; and fusidic

acid, used to help control the infection by Staphylococcus aureus resistant to

methicillin. Duarte et al. (2012) described the achievement of marine fungi

molecules from different genus such as Penicillium, Fusarium, Trichoderma,
Hupocrea, Phoma, and Scopulariopsis, among others with cytotoxic, antifungal

anticoccidial, antiviral, and neuroactive activity. Whereas Xiong et al. (2009) stud-

ied the production of antibacterial compounds by Cladosporium sp., Meenupriya

and Thangaraj (2011) describe the bioactive molecules obtained from marine

organisms present anticancer, antimicrobial, and anti-inflammatory activity. Thus,

these researchers obtained molecules from Aspergillus ochraceus with activity

against microorganisms that cause humans diseases.

10.3 Production of Enzymes by Microorganismis

Enzymes include a abundant class of substances produced by actinomyces and

fungi. The advantages of using microorganisms for enzyme production in replace-

ment of the traditional animal and vegetable sources are relatively high perfor-

mance, low cost, and susceptibility to genetic manipulation. Currently,

microorganism enzymes are used in food processing, manufacture of detergents,

textile and pharmaceutical industries, medical therapy, molecular biology, biofuels

industry, wastewater treatment, environmental preservation, bioremediation, and

biological control. These microorganisms have a wide ecological and biochemical

diversity, and furthermore, they have a high capacity for production of secondary

metabolites. Therefore, they can be considered an excellent source for finding new

enzymes with new specificities and different biochemical characteristics. They are

capable of producing several enzymes that can be considered promising for bio-

technological applications, including oxidoreductases, transferases, hydrolases,

lyases, isomerases, and synthases. Hydrolases are noteworthy, because these are

cellulases, hemicellulases, proteases, chitinases, phytases, and lipases, whose

features and applications are described below.
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10.3.1 Cellulases

Cellulases are enzymes consisting of complex capable of acting on cellulosic

materials, promoting its hydrolysis. These biocatalysts enzymes are highly specific,

acting synergistically to release sugars, where glucose is the one with greater

industrial interest due to the possibility of its conversion to ethanol, sweeteners,

phytohormones, organic acids, etc. The steps involved in cellulose degradation by

cellulase are not fully understood, but it is formed as a multienzyme system

including three enzymes that act together for hydrolysis of cellulose:

endoglucanases (EC 3.2.1.4), which cleave randomly cellulose polymer by chang-

ing the degree of polymerization; cellobiohydrolases (EC 3.2.1.91), which hydro-

lyze the polymer at its nonreducing end, releasing cellobiose; and cellobiases

(β-glucosidase, EC 3.2.1.21), which are responsible for cleavage of small chain,

both celloligosaccharides and cellobiose, until glucose (Fleuri and Lima 2013). The

prospect of cellulose degradation (most abundant polymer in nature present in

vegetable cells) is linked to program implemented in Brazil in 1970 that meant to

replace gasoline with ethanol from sugarcane. Consequently, research for agricul-

ture and new technologies have been greatly intensified, leading Brazil in a

favorable position in terms of secure energy sources. However, only a part of the

biomass produced is used for bioenergy production, as one-third of the sugarcane is

used for sugar production, one-third is residue, which is burned to produce electric-

ity, and the other third of the remaining residue is left in the field and decomposed

by microorganisms (Zanin et al. 2000; Soccol et al. 2010). However, a significant

increase in ethanol production may be possible if new technologies converting the

polysaccharides of the two-thirds of the remaining biomass of the entire process in

bioethanol. For the last four decades, much effort is being made to development of

second-generation bioethanol, through abundant and renewable lignocellulose bio-

mass by physical, chemical, and enzymatic treatments, isolation and/or combined

(Hahn-Hägerdal et al. 2006; D’Souza-Ticlo et al. 2010; Soni et al. 2010). The raw

lignocellulose materials include agribusiness, municipal waste, and wood from

angiosperms and gymnosperms. The agro industrial materials are important for

its residue character, after processing raw materials with high value, and the natural

capacity that Brazil has for generation of these products, that is: sugarcane bagasse

and straw, soybean straw, rice straw, and corncobs. Among the mentioned biomass,

bagasse from sugarcane is predominant in Brazil, producing, in 2007, 147 million

tons of wet mass (Chandra et al. 2010). Furthermore, these materials may also be

used for solid state fermentation (SSF), since they are inexpensive materials and

they have shown effective results for biocatalysts and bioactive compound produc-

tion (Lever et al. 2010; Sukumaran et al. 2009; Bhattacharya and Banerjee 2008;

Lin and Tanaka 2006; Mishima et al. 2006). The polysaccharides present in

lignocellulose biomass must be hydrolyzed with acid (in the presence of high

temperature and pressure) and/or cellulases and other enzymes to release ferment-

able sugar in a high yield. Pre-treatment help to hydrolyse the lignin and to

solubilize the cellulose partly, so the enzyme can act on the molecule and available
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all the remaining hexoses and pentoses. The process of enzymatic conversion of

lignocellulose into ethanol is affected by the use and purchase of cellulases prepa-

ration, since they are marketed by a small number of suppliers and have high cost.

For this process to become economically viable, large-scale production of

cellulases at low cost, using agro-industrial residues as substrate, is necessary

(Maclean and Spatari 2009; Chandra et al. 2009).

Actinomyces produce cellulase with high activity and stability in extreme

temperature and pH conditions (Lima et al. 2005; Jang and Chen 2003). Such

cellulases exhibit great activity in a wide range of pH, between 4.0 and 8.0,

which it is also promising (Lima et al. 2005; Jang and Chen 2003; George

et al. 2001; Bhat 2000). The proportion of current total production of cellulases

as additives for detergents for laundry industry market exceeds 30 %. Due the

increase of environmental pressure on paper and textile industries, it is assumed that

cellulases should play an important role in the development of clean technology,

both for denim processing and for discoloration of paper for recycling purposes

(George et al. 2001). Currently, one of the main applications for cellulases are

textile industry, where the need of high temperatures (50–65 �C) and alkaline pH

requires the use of thermostable enzymes for efficient jeans treatment (Bhat 2000).

The main commercial cellulase preparations are obtained from filamentous

fungi, such as Aspergillus niger (Cellulocast of Novozyme) and Trichoderma reesei
(Megazyme). Among cellulases producing fungi, we can name genus Aspergillus,
Trichoderma, Penicillium pinophilum, Sporotrichum, Fusarium, Talaromyces,
Thermoascus, Chaetomium, Humicola, Neocallimastix, Piromonas, and

Sphaeromonas (Fleuri and Lima 2013).

10.3.2 Xylanases

Xylanases enzymes act on xylan, hemicellulose components, which may be

associated to cellulose and lignin in the plant cell wall. Xylan is formed by xylose

units linked with β-1,4 glycosidic bonds; they, also, may have arabinose, glucuronic

acid or 4-methyl ether, and acetic, p-cumaric, and ferulic acids (Brienzo

et al. 2008). Among the xylanases enzymes, there are β-1,4 endoxylanases

(β-1,4-D-xilanil-xylan hydrolase, EC 3.2.1.8), which depolymerize xylan by ran-

dom hydrolysis of main skeleton, and β-xylosidases (β-1,4-D-xilosidic-xylo hydro-

lase, EC 3.2.1.37), which hydrolyze small oligosaccharides (Collins et al. 2005).

Xylanase’s most important application is in the pulp and paper industry where high

temperatures (55–70 �C) and alkaline pH of the pulp substrate requires utilization of

thermostable enzymes for efficient bleaching (Beg et al. 2001; Collins et al. 2005;

Saha 2003). However, other applications, such as food industry can be mentioned

like: dough preparation (Collins et al. 2005), for clarification of beer and juices, and

partial hydrolysis of xylan in animal feeds. Nascimento et al. (2003) found that the

xylanase extract obtained from Streptomyces malaysiensis showed biochemical

characteristics (temperature 50–65 �C and pH 6.0–8.0) with great potential for
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pulp and paper industry. Beg et al. (2000) showed optimal values of temperature,

range between 50 and 75 �C and pH from 6.0 to 9.0 for strain Streptomyces QG-11-
3. Most known thermostable xylanases are produced by strains of Thermatoga, with
half-life of 90 min at 95 �C (Sunna and Antranikian 1997). However, very signifi-

cant thermostability of xylanases has been studied in many Streptomyces strains,
including Streptomyces sp. T7 with stability at 50 �C, at pH 6.0 for 6 days (Deng

et al. 2005). Costa et al. (2000) described the production of xylanase complex using

Penicillium janthinellum with sugarcane bagasse hydrolyzed as substrate.

10.3.3 Proteases

Proteases (EC 3.4.21.12) catalyze hydrolysis of peptide bonds of proteins, and they

may have activity on ester and amide bonds. The proteolytic enzymes synthesized

by microorganisms have become significant for research because of its wide

application at different industries and medicine, as well as its involvement in

microbial metabolism. They are used in leather industry, pharmaceutical and food

industries, in hydrolysis of substrates used for microbiological growth and paren-

teral nutrition preparation, detergents, and cosmetics. Proteases enzyme

preparations are particularly important in medicine for burns cleaning and removal

of necrotic tissue and blood clots lysis (Landau and Egorov 1996). Proteases can

also be applied for monogastric animals feed aimed at reduction of anti-nutritional

agents of vegetable ingredients, increased digestibility, increasing endogenous

enzymes activity, and reduction of environmental pollution (Garcı́a et al. 2000).

Actinomyces and fungi produce a variety of extracellular peptidases, including

endopeptidases (serine and metallo-peptidases, specially) and exopeptidases

(amino- and carboxypeptidases) with specificity for many substrates. Peptidases

obtained from actinomyces, such as serine-peptidases from Streptomyces
exfoliates; serine and metallo-peptidases from Streptomyces lactamdurans; and
serine-peptidase from Streptomyces pactum are involved in the nitrogen protein

sources assimilation, in degradation of aerial mycelium, in sporulation processes,

and in production of antibiotics (Kim and Lee 1996). Peptidases and other enzymes

used in detergent formulations may have high activity and stability in a wide range

of pH and temperature. Serine and metallo-peptidases have been described for the

genus Streptomyces, as observed with strains Streptomyces sp. 594, Streptomyces
malaysiensis AMT-3, and Streptomyces alboniger (Born 1952). However, the

nature and characteristics of each component of the peptidase complex from

Streptomyces has not been extensively studied. Likewise, thermostable actinomy-

ces produce peptidase with major role in degradation of keratin components, such

as chicken feathers present in the poultry industry waste (De Azeredo et al. 2004).

Specifically, keratinase produced by actinomyces can have great biochemical

characteristics with pH ranging between 6.0 and 9.0 and optimal temperature

between 50 and 70 �C, as observed for some species (Gushterova et al. 2005).

Fungi are, also, capable for protease production. Zanphorlin et al. (2011) used
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wheat bran moistened with casein and nutrient for protease production using fungus

Myceliophthora sp. The enzyme showed optimum pH and temperature of 9.0 and

40–45 �C, respectively. Rojas et al. (2009) studied fungal proteases obtained from

Eladia sacculum in biodeterioration processes. Cabaleiro et al. (2002) studied

protease production by fungi Phanerochaete chrysosporium and Phlebia radiata
in SSF using nylon sponge and corncob. Proteases obtained from this process were

distinguished by microbial growth time and activity, and they are of different

classes.

10.3.4 Chitinases

Chitin is linear polymer of β-1,4-N-acetylglucosamine, which is the most abundant

natural amino polysaccharide. Moreover, it is present in cell wall of most fungi and

it is the main constituent of insects and crustaceans exoskeleton (Fleuri

et al. 2009a). The hydrolysis of chitin occurs by action of enzyme complex

involving two enzymes: chitinase or poly (1,4-N-acetyl-β-D-glicosaminida) glucan

hydrolase (EC 3.2.14), which breaks randomly internal bonds in the chitin chain,

generating oligomers and disaccharides, and β-N-acetyl-glucosaminidase or β-N-
acetyl-β-D-hexosaminide-N-acetyl-hexosamino hydrolase (EC 3.2.1.52), which

cleaves nonreducing terminal unit, releasing N-acetylglucosamine. The first ones

have higher affinity for larger molecules, while the others prefer small oligomers,

including quitobiose (Merzendorfer and Zimoch 2003). Study of chitinase has been

increasing because its contribution as defense agents against pathogenic organisms

that have chitin, such as insects, nematodes, and fungi (Sahai and Manocha 1993).

Besides, chitinases can be used as a protective agent against pathogenic fungi, in

protoplast preparation, and production of biologically active substances as

aminoglucanooligossacarides (Fleuri et al. 2009a, b). Han et al. (2008) observed

application of chitinase in medicine (hypocholesterolemic action and antihyperten-

sive), in agriculture (anti-phytopathogenic), in bioremediation, and in maintenance

of food quality. It is estimated that there are between 10 and 25 different chitinases.

Tikhonov et al. (1998) produced and purified chitinases from Streptomyces
kurssanovii. Brzezinska et al. (2012) studied the degradation of chitin substances

with chitinase from Streptomyces rimosus, which was isolated from soil. Many

fungi genus (Beauveria sp., Aspergillus sp., Thermoascus sp., Chaetomium
sp. Trichoderma sp.) are able to produce chitinases by SSF.

10.3.5 Lipases

Lipases are enzymes that are increasing at the biotechnological enzymes scenario.

They are very versatile, allow catalysis of hydrolysis and synthesis of chemical

reactions; often in chemo, regal, or enantioselective, lipases are applied in many

industries such as food industry, pharmaceuticals, fine chemicals, oil chemistry,
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detergents, and biodiesel (Barros et al. 2010). The participation of lipases in the

world market of industrial enzymes has grown significantly; it is estimated that in

the future they will have world significance comparable to peptidases today which

count for 25–40 % of industrial enzymes sales (Hasan et al. 2006). Lipases act in the

organic–aqueous interface; they catalyze hydrolysis of carboxylic-ester bonds and

liberate fatty acids and organic alcohols. However, the reverse reaction (esterifica-

tion) and also various transesterification reactions can occur in environments with

restricted water (Freire and Castilho 2008). The transesterification term refers to

radical change between an ester and an acid (acidolysis), or ester and alcohol

(alcoholysis), or between two esters (interesterification). Their ability to catalyze

these reactions with high efficiency, stability, and versatility make these enzymes

very commercially important. Lipases are enzymes of the group of serine

hydrolases (EC 3.1.1.3). Their natural substrates are triglycerides; however, its

activity is increased when located at the interface polar/nonpolar, and they have

higher affinity for long-chain fatty acids (Hasan et al. 2006). Among lipases

obtained from actinomyces, there is Streptomyces rimosus, S. coelicolor (Cöte

and Shareck 2008), S. fradiae, S. coelicolor (Sharma et al. 2001), S. exfoliatus,
S. albus, and S. cinnamomeus (Abramic et al. 1999). Bielen et al. (2009) and

Abramic et al. (1999) reported that lipases have been traced from different

microorganisms for different kinds of applications, and that streptomycetes have

a large number of genes encoding different enzymes with many lipolysis activities.

Among these actinomyces are cited S. exfoliates, S. albus, S. coelicolor, S. rimosus,
and S. exfoliatus. Mander et al. (2012) studied the transesterification with the lipase

obtained from Streptomyces sp. CS133 for production of biodiesel. Even with a

wide variety of microbial lipases, use of these enzymes on industrial scale is still

limited due to high production costs, low activity, and limited biochemical

characteristics, which facilitates searching of other microbial lipases sources.

Extracellular lipases from fungi Rhizopus homothallicus (thermostable) were

obtained by SSF with sugarcane bagasse as substrate. Moreover, these authors

mention that the yield of enzyme production by SSF is higher than liquid fermenta-

tion due to increased rate of biomass growth. There are lower protease production

that can degrade other enzymes, as well as higher stability for pH and temperature

of the enzyme obtained by this type of fermentation (Mateos Diaz et al. 2006). The

main commercial lipase preparation is from Aspergillus oryzae, created from lipase

clones derived from Thermomyces lanuginosa (Lipolase from Novo Nordisk) and

lipase clones from Rhizomucor miehei (Lipozyme, Novo Nordisk S/A). They are

especially applied as detergents and production of analogues of cocoa butter from

cheap oil sources (Romdhane et al. 2010).

10.3.6 Phytases

Phosphorus is an important ingredient for various biochemical pathways, biological

processes, and skeletal integrity. Vegetable ingredients are important sources of
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phosphorus, and phytate (inositol hexaphosphate or IP6) is the mineral storage for

plants. The amount can differ between plant species. However, phytic acid is not a

suitable source of phosphorus for nonruminants animals, since 85 % of the phos-

phorus is bound to inositol making phytic acid or inositol hexametaphosphate, kept

it chelated and unavailable. Diets fed to animals are supplemented with inorganic

sources of phosphorus such as calcium phosphate or animal sources like meat and

bone flour, due to the lack of availability of phosphorus and a possible deficiency of

this mineral for animals in diets with vegetable ingredients. As result, diets for

nonruminant animals have amount of phosphorus addition to nutritional

requirements, with elimination of excess not absorbed by the animal. Furthermore,

phytate acts as anti-nutrient associated to proteins, amino acids, lipids, and

minerals, while it interacts with their digestive enzymes reducing activity,

influencing digestion, and impairing nutrients utilization. In this sense, phytase

catalyzes the hydrolysis of phosphate and phytic acid to phosphorus inorganic,

increasing the bioavailability of phosphorus for monogastric animals. Phytase

classification is based on first position of the phosphate to be hydrolyzed; named

3-phytase (EC 3.1.3.8) and 6-phytase (EC 3.1.3.26). Supplementation of phytase in

diet benefits animal nutrition and improves digestibility of protein, gross energy,

and increases the availability of calcium, phosphorus, zinc, manganese, and mag-

nesium. Furthermore, these enzymes improve phosphorus availability in 50 %, and

it is important toll to reduce environmental excretion, because of better utilization

of phytic phosphorus from vegetable sources, reducing utilization of inorganic

sources. Main phytases are classified as their activity on determined pH. Acid

phytases show better dephosphorylating between pH 5.0 and alkaline phytase in

pH 8.0. All phytases show great pH between 4.0 and 6.0 (Kies et al. 2001; Lei and

Stahl 2000). Phytase is produced in large commercial scale by recombination DNA

techniques, from fungi of genus Aspergillus niger. Enzymes that blend with phytase

from Peniophora lycii, Schizosaccharomyces pombe, and Escherichia coli are also
found on the market.

References

Abramic M, Lescic I, Korica T et al (1999) Purification and properties of extracellular lipase from

Streptomyces rimosus. Enzyme Microb Technol 25:522–529

Adinarayana G, Venkateshan MR, Bpiraju VV et al (2006) Cytotoxic compounds from the marine

actinobacterium. Bioorg Khim 32:328–334

Anderson AS, Wellington EMH (2001) The taxonomy of Streptomyces and related genera.

Int J Syst Bacteriol 51:797–814

Barros M, Fleuri LF, Macedo GA (2010) Seed lipases: sources, applications and properties – a

review. Braz J Chem Eng 27:15–29

Beg QK, Brushan B, Kapoor M et al (2000) Production and characterization of thermostable

xylanase and pectinase from Streptomyces sp. QG-11-3. J Ind Microbiol Biotechnol

24:396–402

Beg QK, Kapoor M, Mahajan L et al (2001) Microbial xylanases and their industrial applications:

a review. Appl Microbiol Biotechnol 56:326–338

10 Exploration of Microorganisms Producing Bioactive Molecules of Industrial. . . 157



Bielen A, Cetkovic H, Long PF et al (2009) The SGNH-hydrolase of Streptomyces coelicolor has
(aryl) esterase and a true lipase activity. Biochimie 91:390–400

Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

Bhattacharya SS, Banerjee R (2008) Laccase mediated biodegradation of 2,4-dichlorophenol

using response surface methodology. Chemosphere 73:81–85

Born GVR (1952) The extracellular bacteriolytic enzymes of a species of Streptomyces. J Gen

Microbiol 6:344–351

Brienzo M, Arantes V, Milagres AMF (2008) Enzymology of the thermophilic ascomycetous

fungus Thermoascus aurantiacus. Fungal Biol Rev 22:120–130

Brzezinska MS, Jankiewicz U, Lisiecki K (2012) Optimization of cultural conditions for the

production of antifungal chitinase by Streptomyces sporovirgulis. Appl Biochem Microbiol

49:154–159

Bull AT (2004) Microbial diversity and bioprospecting. ASM, Washington, DC

Cabaleiro DR, Couto SR, Sanromán A et al (2002) Comparison between the protease production

ability of ligninolytic fungi cultivated in solid state media. Process Biochem 37:1017–1023

Chandra M, Kalra A, Sangwan NS et al (2009) Development of a mutant of Trichoderma
citrinoviride for enhanced production of cellulases. Bioresour Technol 100:1659–1662

Chandra M, Kalra A, Sharma PK et al (2010) Optimization of cellulases production by

Trichoderma citrinoviride on marc of Artemisia annua and its application for bioconversion

process. Biomass Bioenergy 34:805–811

Chihara G (1992) Immunopharmacology of lentinan, a polysaccharide isolated from lentinus

edodes: its application as a host defense potentiator. Int J Orient Med 17:57–77

Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases.

FEMS Microbiol Rev 29:3–23

Costa SA, Pessoa AJ, Roberto IC (2000) Partitioning of xylanolitic comples from Penicillium
janthinellum by na aqueous two-phase system. J Chromatogr 743:339–348
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