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    Abstract  

  Brain-computer interfaces (BCIs) are tools 
that allow overcoming motor disability in 
patients with brain injury, allowing them to 
communicate with the environment. This 
chapter reviews studies on BCI applications 
in patients with disorders of consciousness, 
including EEG and fMRI applications, with a 
critical appraisal regarding false-positive and 
false-negative results. The role of steady-state 
visually evoked potentials and of the cogni-
tive evoked potential P3 (or P300) will be 
highlighted. Future research has to overcome 
several challenges limiting current BCI appli-
cation in routine practice and provide more 
reliable tools for diagnosis. Alternative proto-
cols might be of interest in the development of 
easy-to-use systems for caregivers.  

11.1         Introduction 

 Motor disability poses a signifi cant challenge for 
clinicians working with patients with severe brain 
injury and especially disorders of consciousness 
(DOC), in terms of diagnosis, care, and rehabili-
tation (Schnakers et al.  2009 ; Cruse et al.  2011 ; 
Owen et al.  2006 ; Monti et al.  2010 ). Indeed, 
behavioral assessment, which remains the tradi-
tional way to evaluate consciousness (i.e., 
command- following and/or communication) in 
these patients, is highly dependent on motor 
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 abilities. In this context, paraclinical tools to 
detect signs of consciousness that bypass the 
motor pathway are needed. Brain-computer inter-
face (BCI) constitutes an interesting approach as 
it allows direct recording of the brain activity 
without requiring behavioral responses (Wolpaw 
et al.  2002 ). Recent studies show that there are 
command-specifi c changes in signals recorded 
with electroencephalography (EEG) or func-
tional magnetic resonance imaging (fMRI) in 
patients with severe motor disabilities and that 
about 18 % of the patients being diagnosed as 
unconscious at the bedside might actually be able 
to follow a command by modulating their brain 
activity with respect to the relevant task 
(Schnakers et al.  2008a ,  2009 ; Cruse et al.  2011 ; 
Monti et al.  2010 ; Chatelle et al.  2012 ; Goldfi ne 
et al.  2011 ; Lulé et al.  2013 ). These techniques 
could help improve the diagnosis of patients with 
DOC. However, poor performance (Lulé et al. 
 2013 ; Kubler et al.  2009 ), motor dependence 
(Kubler and Birbaumer  2008 ; Combaz et al. 
 2013 ; Piccione et al.  2006 ), and the need for 
time-consuming user training (Kubler and 
Birbaumer  2008 ; Birbaumer  2006 ; Neuper et al. 
 2003 ) are well-known limitations of BCI for 
detecting command-following and communica-
tion in conscious brain-injured patients. 
Furthermore, the high rate of false negatives 
(patients showing command-following at the 
bedside but not detected with BCI; 22–94 % 
(Monti et al.  2010 ; Schnakers et al.  2008b ; see 
also Chatelle et al.  2014 )) and the issue of false 
positives (patients detected as showing command- 
following with BCI who are actually unconscious 
(Cruse et al.  2013 ; Goldfi ne et al.  2013 )) high-
lights the current need to develop more reliable 
tools for the diagnosis of patients with 
DOC. Indeed, having reliable systems would 
have a real impact on providing care such as 
treatment (in particular, pain and anxiety) and 
rehabilitation, as well as on quality of life (Kubler 
et al.  2006 ). 

 Here we review the studies on BCI applica-
tions for detecting response to command in 
patients with DOC. We then highlight the main 
challenges that will need to be overcome in future 
research and suggestions from studies conducted 

in healthy controls and motor-disabled patients 
that may be applied to the severely brain-injured 
population.  

11.2     Brain-Computer Interfaces 
and Diagnosis in Disorders 
of Consciousness 

 A BCI is a system allowing for communication 
between the brain and the external environment. 
It is therefore independent from any peripheral 
neural or muscular activity (Wolpaw et al.  2002 ). 
This system is based on cerebral activity that can 
be measured using techniques such as EEG, 
fMRI, implanted electrodes (electrocorticogra-
phy – EcoG (Hochberg et al.  2006 )), or func-
tional near-infrared spectroscopy (fNIRS; 
(Sorger et al.  2009 )). The primary function of a 
BCI is to provide the subject a virtual keyboard 
where each covert “key press” constitutes a 
choice of an item from a set of items. This choice 
is made through the control of neuroelectrical 
activity (Sellers and Donchin  2006 ; Sellers et al. 
 2006 ). A specifi c algorithm translates the 
extracted features into commands that represent 
the users’ intent (see Fig.  11.1 ). These commands 
can control effectors to select items such as 
words, images, or devices. Recent development 
has shown the usefulness of BCIs for controlling 
motor prosthesis and cursors, providing a means 
of communication, and accessing the Internet 
(Hochberg et al.  2006 ; Citi et al.  2008 ; Yoo et al. 
 2004 ; Mugler et al.  2010 ; Sellers et al.  2010 ; Lee 
et al.  2009 ).  

 In the context of DOC, the fi rst goal of a BCI 
is to detect command-specifi c changes in brain 
signals as evidence of conscious thoughts. Then, 
if the patient is able to reproducibly follow a 
command using the system, the software and 
hardware can be extended to test communication. 
The acquisition of voluntary responses such as 
command-following and functional communica-
tion is keystones in diagnosis as defi ned by 
behavioral criteria (Giacino et al.  2002 ; Plum and 
Posner  1966 ; Laureys et al.  2010 ). The presence 
of command-following indicates emergence 
from the vegetative/unresponsive wakefulness 
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state (VS/UWS; (Laureys et al.  2010 )) or recov-
ery of a minimally conscious state (MCS; 
(Giacino et al.  2002 ; Bruno et al.  2012 )). The 
recovery of functional communication indicates 
the emergence from MCS (EMCS; (Giacino et al. 
 2002 )). Command-following and functional 
communication also distinguish locked-in syn-
drome (LIS) (Plum and Posner  1966 ) from VS/
UWS patients. Because a better outcome for 
MCS versus VS/UWS patients has been reported 
(Luauté et al.  2010 ), patient access to rehabilita-
tion is likely to be infl uenced by the clinical diag-
nosis. In addition, a recent study of 108 patients 
with traumatic brain injury reported that 56–85 % 
of patients showing command-following before 
discharge from the acute inpatient rehabilitation 
were functioning independently by 5 years post- 
injury, as compared to 19–36 % of patients who 
did not show command-following at discharge 
(Whyte et al.  2013 ). It remains unclear whether it 
was the presence of command-following, the 
quality of rehabilitation treatment (e.g., duration, 

hours of therapy, etc.), or both that contributed to 
better outcomes for command-followers. For LIS 
patients, the diffi culty to recognize unambiguous 
signs of consciousness in the acute stage often 
results in the diagnosis being delayed or even 
missed (Laureys et al.  2005 ), with potentially 
catastrophical implications. Conversely, an early 
diagnosis allows clinicians to start developing a 
communication tool tailored to the patients’ 
residual abilities. 

 To benefi t from a BCI, the patient would need 
to fi rst understand the task and repeat it several 
times, then to be able to attend to stimuli/ques-
tions while retaining task information in working 
memory. However, current BCIs require that the 
patient have much more capacity than required 
by behavioral testing, leading to undetectable 
command-following in many patients. When 
looking at the results obtained in studies of 
patients with DOC, we therefore need to take into 
account the number of patients showing 
command- following with the system, and how 
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  Fig. 11.1    A typical brain-computer interface schema. 
Modifi cations of brain activity due to a task/stimulus are 
recorded with fMRI, fNIRS, EEG, or ECoG. These neu-
ral data are pre-processed before discriminative features 
are extracted. Machine learning techniques are then used 
to train classifi ers to detect statistical patterns in the fea-
tures that are reliably associated with prespecifi ed (super-
vised) volitional states of the user. The trained classifi er 

is then used to classify new features corresponding to 
states now selected by the user to communicate choices. 
Finally, the result of the classifi cation is fed back to the 
user to help him/her train themselves in the use of the 
BCI and to control external devices (e.g., word spelling, 
control of a wheelchair, a robotic prosthesis) or to help 
clinicians detect a response to command or functional 
communication       
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many of them were able to follow a command at 
bedside that could not be detected by the system 
(i.e., false negatives; see Table  11.1 ). False- 
positive rate should also be considered, but will 
not be discussed here as it is diffi cult to deter-
mine the level of consciousness of patients diag-
nosed unconscious but showing response to 
command with a BCI.

11.3        Absence of Motor Responses 
and Brain-Computer 
Interfaces 

 The fi rst study showing the possibility of detect-
ing response to command with BCI was con-
ducted by Owen et al. in 2006 and reported that 
one patient diagnosed as being in VS/UWS was 
able to follow the instruction to “imagine playing 
tennis” and “walking through her house” during 
an fMRI session (Owen et al.  2006 ). The para-
digm consisted of several sessions of mental 
imagery followed by a resting period, both last-
ing 30 s. This patient displayed similar brain acti-
vation as compared to healthy volunteers for both 
tasks. In addition, the patient behaviorally 
evolved into MCS a few months after the study. 
In a follow-up study (Monti et al.  2010 ) including 
54 patients (23 VS/UWS and 31 MCS), fi ve (four 
VS/UWS) showed ability to willfully modulate 
their brain activity according to the task. One of 
them was also able to answer simple questions, 
e.g., “Is your father’s name Alexander?” using 
one task for “yes” and the other for “no.” 
However, out of 18 patients showing command-
following at the bedside, only one could be iden-
tifi ed with the system (false-negative rate: 94 %). 
Bardin et al. (Bardin et al.  2011 ) investigated the 
use of a different imagery task instructing patients 
to imagine themselves swimming or playing ten-
nis with their right hand, using a similar protocol 
to the one used by Owen et al. ( 2006 ) and Monti 
et al. ( 2010 ). Out of six patients (three MCS, two 
MCS/emerging MCS, one LIS), three were able 
to follow commands with the system (one MCS, 
one MCS/emerging MCS, one LIS). However, 
of the fi ve patients who were able to follow 

 commands at the bedside, two of them could not 
be identifi ed with the system (false- negative rate: 
40 %). Similarly, using an active task in fMRI 
task (counting a target-neutral monosyllabic 
word in an auditory sequence of nontargets 
words), Monti et al. reported  preserved working 
memory abilities in a MCS patient exceeding that 
which could be observed with standard behav-
ioral assessment (Monti et al.  2009 ). This patient 
was able to follow a command and communicate 
non-functionally at the bedside. Finally, three 
patients (one VS/UWS, two MCS) were 
instructed to either count the occurrences of a tar-
get word (“yes” or “no”) or to simply relax and 
passively listening to a sequence of “yes” and 
“no” presented in a random series of numbers 
(Naci and Owen  2013 ). Command- following 
could be detected in all of the patients, and two 
patients (one VS/UWS and one MCS) were able 
to focus their attention to communicate correct 
answers to two different binary (“yes” or “no”) 
questions such as “are you in a supermarket?” or 
“is your name Steven?” Because the latter two 
studies included few patients, and the results 
have not been replicated yet, interpretation of 
false-negative rates has not been conducted. 

 These fi rst BCI studies showing response to 
command in DOC patients were conducted using 
fMRI, a technique that has many limitations pre-
venting it from being applied universally to the 
DOC population. First, ferrous metallic implants 
are a contraindication to MRI, preventing many 
patients from undergoing this procedure. Even if 
implants are nonferrous, metal in the head can 
cause signifi cant image artifact, making the anal-
ysis of the results diffi cult or impossible. Second, 
fMRI is sensitive to motion, which can result 
from refl exive movement in the scanner, general 
restlessness, or decreased patient cooperation. 
Images that are affected by signifi cant motion 
artifact cannot be interpreted. Specifi cally, over 
three years of the European FP7 project 
DECODER during which the fMRI active sport/
navigation paradigm described above was used in 
clinical settings at the Centre Hospitalier 
Universitaire de Liège, 169 patients were elected 
for the fMRI procedure. From this cohort, only 
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     Table 11.1    Studies using brain-computer interfaces (BCIs) and alternative systems in patients with disorders of con-
sciousness for assessing response to command and communication with false-negative ratios (patients showing 
command- following at the bedside, but not detected by the BCI)   

 References 

 Technique 
used – brain 
response  Task 

 Total number of
patients included 

 False-negative
ratio (%) 

  BCI applications  
 Owen et al. ( 2006 ) 
and Monti et al. 
( 2010 ) 

 fMRI – motor 
imagery 

 Playing tennis vs. walking 
through your house 
(command-following and  
communication) 

 55 (24 VS/UWS; 
31 MCS) 

 17/18 (94 %) 

 Bardin et al. ( 2011 )  fMRI – motor 
imagery 

 Swimming (command- 
following and 
communication) 

 6 (3 MCS; 2 exit 
MCS; 1 LIS) 

 2/5 (40 %) 

 Monti et al. ( 2009 )  fMRI – P3  Count a target word – neutral 
(command-following) 

 1 (MCS)  0/1 (0 %) a  

 Naci and Owen 
( 2013 ) 

 fMRI – P3  Count a target word – neutral 
(command- following and 
communication) 

 3 (1 VS/UWS; 2 
MCS) 

 0/1 (0 %) a  

 Schnakers et al. 
( 2008a ,  2009 ) 

 EEG – P3  Count a target word – 
subject’s own name 
(command-following) 

 23 (8 VS/UWS; 14 
MCS; 1 LIS) 

 2/8 (25 %) 

 Lulé et al. ( 2013 )  EEG – P3  Count a target word 
(communication) 

 18 (3 VS/UWS; 13 
MCS; 2 LIS) 

 5/6 (83 %) 

 Goldfi ne et al. 
( 2011b ) 

 EEG – motor 
imagery 

 Swimming vs. walking 
through your house 
(command-following) 

 3 (1 MCS, 1MCS/
exit MCS, 1 LIS) 

 1/3 (33 %) 

 Cruse et al. ( 2011 , 
 2012a ) 

 EEG – motor 
imagery 

 Squeeze your right hand vs. 
move your toes 
(command-following) 

 39 (16 VS/UWS; 
23 MCS) 

 13/15 (87 %) 

 Cruse et al. ( 2012b )  EEG – motor 
imagery 

 Squeeze your right vs. left 
hand (command-following) 

 1 (VS/UWS)  Not applicable 

 Pokorny et al. ( 2013 )  EEG – P3  Count the number of deviant 
tones (command- following 
and communication) 

 12 (1 VS/UWS, 10 
MCS, 1 exit MCS b ) 

 1/3 (33 %) b  

 Chennu et al. ( 2013 )  EEG – P3 (20 
patients also seen 
with fMRI active 
task used in (Owen 
et al.  2006 ; Monti 
et al.  2010 )) 

 Count the number of target 
word (command-following) 

 21 (9 VS/UWS; 12 
MCS) 

 EEG: 7/7 P3b 
(100 %), 5/7 P3a 
(71 %); fMRI: 3/7 
(43 %) 

  Alternative systems  
 Bekinschtein et al. 
( 2008 ) 

 EMG – muscle 
activity 

 Move your right hand 
(command-following) 

 10 (8 VS/UWS, 2 
MCS) 

 0/1 (0 %) a  

 Stoll et al. ( 2013 )  Infrared camera – 
pupil dilation 

 Perform arithmetic problem 
(communication but 
command-following with the 
MCS patient) 

 13 (12 LIS; 1 
MCS) 

 0/1 (0 %) a  when 
used for command-
following, but 9/12 
(69 %) when used 
for communication 

  The ratio percentage is calculated by dividing the number of patients who responded to command at the bedside, but did 
not show response to command with the system by the total number of patients’ response to command at bedside 
  a Not interpretable as only one patient showing command-following has been tested with this system 
  b Based on CRS-R data obtained from Pokorny et al. Note that for four patients, subscales scores were not available, 
preventing the current analysis in terms of false negatives  
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60 studies yielded active paradigm data that were 
interpretable, outlining the diffi culties in general-
izing this approach. The main reason for data 
rejection was artifact caused by head motion in 
the scanner. Finally, many clinical settings do not 
have access to MRI because it is an expensive 
technique to implement. Furthermore, fMRI 
requires executing complicated data processing 
methods, which necessitates involvement of per-
sonnel with expertise in this area. Given these 
limitations, EEG may be better suited for assess-
ing DOC patients as it is not contraindicated by 
metallic implants and is less sensitive to motion. 
EEG is relatively inexpensive, and compact sys-
tems can be readily deployed at the bedside. In 
recent years researchers have been developing 
EEG-based BCI to assess response to command 
in DOC. 

 As suggested by fMRI studies, BCI using 
imagination of movement may be a reasonable 
supplement to observation of actual movement 
during standard behavioral assessment. EEG 
studies have shown that motor imagery is associ-
ated with a power decrease (event-related desyn-
chronization) in the sensorimotor or mu rhythm 
(8–15 Hz; (Pfurtscheller et al.  1997 ; Neuper et al. 
 2005 )), focused in the motor region that is impli-
cated in the movement being imagined 
(Pfurtscheller and Lopes da Silva  1999 ). Goldfi ne 
and colleagues ( 2011 ) recorded EEG from three 
patients showing command-following at the bed-
side (MCS, MCS/emerging MCS, and LIS), 
while they were involved in motor imagery and 
spatial navigation tasks. The session alternated 
eight 15- second periods of mental imagery with 
15-second periods of rest. All of the patients 
demonstrated the capacity to generate mental 
imagery on the same tasks on independent fMRI 
studies. With univariate comparisons (individual 
frequencies), these investigators showed evi-
dence of signifi cant differences between the fre-
quency spectra accompanying the two imagery 
tasks in one MCS patient (however, results were 
not stable between the two runs) and one LIS 
patient (false-negative rate: 33 %). 

 In another study from Cruse and colleagues, 
motor imagery tasks were investigated in 16 VS/
UWS (Cruse et al.  2011 ) and in 23 MCS patients 

(Cruse et al.  2012a ). Eight (three VS/UWS, fi ve 
MCS) were able to voluntarily control their brain 
activity in response to a command (“imagine 
squeezing your right hand” versus “imagine 
moving all your toes”). Out of 15 patients show-
ing command-following, 13 could not be identi-
fi ed by the system (false- negative rate: 87 %). In 
order to decrease the cognitive load required to 
complete the task (e.g., minimize task switching 
and the duration of the session), the latter study 
used a block design with instructions to perform 
motor imagery following each of 15 subsequently 
presented tones. However, in this population 
block design may be problematic because 
changes in the EEG signal across and within 
blocks may be infl uenced by vigilance and motor 
artifacts leading to lack of independence between 
trials. For this reason, these results should be 
interpreted cautiously because dependence 
between trials was not accounted for in the statis-
tical analyses. This issue is specifi cally relevant 
for the severely brain-injured population, and 
BCI studies in the future will need to take it into 
account (Cruse et al.  2013 ; Goldfi ne et al.  2013 ). 

 In an attempt to circumvent the statistical pit-
falls of block design, an alternate paradigm has 
been investigated. In this paradigm, each trial is 
started with one of three instructions (i.e., “try to 
move your right hand,” “try to move your left 
hand,” and “and now, relax”) that are presented 
through sounds in a randomized order. Because 
the instructions are presented before each trial as 
oppose to at the beginning of a block, signifi -
cantly less working memory capacity is required 
to carry out the task. In addition, this method is 
technically less challenging and more effi cient as 
it requires the use of only four electrodes. The 
utility of this paradigm as a diagnostic tool has 
been reported in a single patient diagnosed as 
being in a VS/UWS at bedside (Cruse et al. 
 2012b ). However, this type of protocol still 
requires higher-level cognitive abilities, such as 
sustained attention and task switching, as com-
pared to behavioral assessment. 

 Several studies have suggested that motor 
imagery cannot be reliably used in motor- disabled 
patients (Kasahara et al.,  2012 ; Fiori et al.,   2013 ). 
Instead of motor imagery, Nijboer et al. has 
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 recommended the preferential use of the P3-based 
BCI in patients with severe motor impairment 
(Nijboer et al.  2010 ) (see also Chap.   8    ). The P3 
response (also called P300) is a positive defl ection 
in the EEG appearing around 200–500 ms follow-
ing a target stimulus (see also Chaps.   7     and   9    ). 
The advantage of the P3 is that it can be elicited 
by meaningful stimuli and requires a limited 
working memory load from the patient. Some of 
the earliest EEG-based BCI systems were based 
on the P3 component (Farwell and Donchin  1988 ; 
Donchin et al.  2000 ). The successful use of 
P3-based BCIs by a larger population of healthy 
users versus the sensorimotor rhythm has also 
been reported by Guger et al. (Guger et al.  2009 ; 
Guger et al.  2003 ). Moreover, many studies have 
shown that this system is feasible and practical for 
patient groups (see, e.g., Sellers et al.  2006 ; for a 
review, Hoffmann et al.  2008 ; Manyakov et al. 
 2011 ) and offers a stability of the performance 
over time in this population (Sellers et al.  2010 ; 
Nijboer et al.  2008 ; Silvoni et al.  2009 ). 
Consequently, auditory P3 responses are more 
likely to be usable by a greater number of patients 
(Chatelle et al.  2012 ). However, some of the most 
successful P3-based BCI systems are based on 
visual P3 responses which may be diffi cult to 
elicit in brain-injured patients as they frequently 
present with gaze fi xation impairments (Lew et al. 
 2009 ; Alvarez et al.  2012 ) preventing them from 
attending to visual stimuli. Schnakers et al. pro-
posed using an auditory P3 for detecting com-
mand-following using EEG (Schnakers et al. 
 2008a ). They used a paradigm instructing patients 
to count the number of times a name (subject’s 
own name or unfamiliar name) was presented 
within an auditory sequence of random names in 
22 patients (eight VS/UWS, 14 MCS) (Schnakers 
et al.  2008a ). Results showed that fi ve out of 14 
MCS patients showed signifi cantly larger P3 
responses when actively counting the occurrence 
of their own name as compared to when only pas-
sively listening to it. In addition, four other MCS 
patients showed a response only when they were 
asked to count an unfamiliar name as compared to 
passive listening. These results suggest that fl uc-
tuation of vigilance may play a role in task perfor-
mance in this population. The eight VS/UWS 

patients did not show any response to the active 
task. The same paradigm has been used in a 
patient behaviorally diagnosed as being coma-
tose, who showed a signifi cant difference between 
the passive and the active task (Schnakers et al. 
 2009 ). Following this fi nding, this patient was 
reassessed and diagnosed with complete LIS. This 
extreme case illustrates the clinical utility of BCI 
as a supplement to behavioral assessment. Using 
this paradigm, two out of eight patients showing 
command-following at bedside could not be 
detected with the system (false- negative rate: 
25 %). Similar results have been replicated in a 
recent study including patients with DOC (Risetti 
et al.  2013 ). 

 When the data were analyzed offl ine, one 
LIS patient reached 79 % accuracy. Out of six 
patients showing command-following at bedside 
(four MCS, two LIS), fi ve could not be detected 
with the system (false-negative rate: 83 %). 
However, these results should be interpreted cau-
tiously because the offl ine analysis used data 
from both the command- following and commu-
nication sessions to determine the presence of 
command-following. 

 A study by Lulé et al. used a four-choice 
auditory- based paradigm for communication 
with three VS/UWS, 13 MCS, and two LIS 
patients (Lulé et al.  2013 ). After a command-
following training phase (four runs of count-
ing “yes” or “no’s”), each patient was asked to 
communicate by answering 10 questions (count-
ing “yes” or “no’s” depending on the answer). 
When using the system online, no patient could 
achieve performances allowing communica-
tion (>70 % accuracy (Kubler and Birbaumer 
 2008 )). When the data were analyzed offl ine, one 
LIS patient reached 79 % accuracy. Out of six 
patients showing command-following at bedside 
(four MCS, two LIS), fi ve could not be detected 
with the system (false-negative rate: 83 %). 
However, these results should be interpreted cau-
tiously because the offl ine analysis used data 
from both the command- following  and  commu-
nication sessions to determine the presence of 
command-following. 

 Pokorny et al. tested a different auditory 
P3-based paradigm based on tone stream 
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 segregation allowing for binary decisions in 12 
patients (10 MCS, one VS/UWS, one emerging 
MCS 1 ). Two tone streams with infrequently and 
randomly appearing deviant tones were presented 
to the patient. This paradigm is suggested to be 
simpler than the previous ones as only two classes 
of stimulation are used. The patients were asked 
to count the number of deviants in one stream and 
thus modulate the P3 response in the attended 
stream. Only fi ve patients could achieve results 
above chance level, and none of them achieved 
performances allowing communication with the 
system. In addition, response to command could 
be detected in nine patients after averaging all the 
responses obtained, although in two of them the 
response duration was very short (between 30 and 
60 ms). Finally, out of three patients showing 
response to command at bedside (two MCS, one 
emerging MCS 1 ), two could be detected with this 
paradigm. Note that command-following in the 
emerging MCS patient could not be detected with 
BCI. It is important to highlight that this para-
digm was fi rst used in healthy controls and had to 
be adapted to be usable with patients with DOC, 
refl ecting the diffi culty of applying a BCI para-
digm effi cient in non- neurologically impaired 
samples to brain-injured patients. Modifi cations 
to the paradigm included using fewer electrodes, 
adding a simple paradigm to habituate the patient 
to the task and to test the presence of a P3 
response, using blocks of fi ve consecutive trials 
with the same target stream instead of a random-
ized order to decrease the cognitive load, and add-
ing additional auditorily presented instructions at 
the beginning of each run (Pokorny et al.  2013 ). 

 Finally, extensive research on attention involv-
ing healthy subjects has suggested that the P3 
response should be deconstructed into separable 
subcomponents represented by the P3a and P3b. 
The relatively early frontally centered novelty 
P3a is thought to refl ect exogenous attention, 
triggered by “bottom-up” stimulus novelty that 
may be task irrelevant. The later, parietally 
focused target P3b, on the other hand, is seen as a 

1   Based on CRS-R data obtained from Pokorny et al. Note 
that for four patients, subscales scores were not available,  
preventing the current analysis in terms of false negatives. 

marker of “top-down” or volitional engagement 
of endogenous attention to task-relevant targets 
to be consolidated into working memory and 
made available for conscious access (Polich 
 2007 ). Based on this idea, Chennu et al. ( 2013 ) 
used a task designed to engender exogenous or 
endogenous attention, indexed by the P3a and 
P3b components, respectively, in response to a 
pair of word stimuli presented auditorily among 
distracters. They included 21 patients (nine VS/
UWS; 12 MCS). Among these patients, three of 
them (MCS) generated only early non- 
discriminative responses to targets, suggesting 
that involuntary bottom-up attentional orienting 
might be preserved in a greater proportion of 
patients. In addition, one patient in VS/UWS 
generated a P3a as well as a P3b response, sug-
gesting a preserved “top-down” or volitional 
engagement of endogenous attention. Out of the 
seven patients showing command-following at 
bedside, none of them generated a P3b (false- 
negative rate: 100 %), and only two of them 
showed a P3a (false-negative rate: 71 %). 
Interestingly, 20 of these patients were also 
administered the fMRI paradigm developed by 
Owen et al. (Owen et al.  2006 ; Monti et al.  2010 ). 
In six patients in whom a discernible P3a/P3b 
response could be elicited, a response to com-
mand using fMRI tennis imagery task could be 
detected. This discrepancy may be explained by 
vigilance fl uctuation, as the paradigms were 
completed at different times. These results also 
suggest that the level of diffi culty required by this 
attention task is too high to enable a good rate of 
detection of conscious patients. However, the 
VS/UWS patient who showed P3a/P3b responses 
did also show a response to command with the 
fMRI, supporting that the presence of a P3a and 
P3b may highlight a preserved volitional atten-
tion process.  

11.4     Systems to Detect Response 
to Command at Bedside 

 BCI research has classically focused on systems 
using sophisticated EEG or fMRI techniques, 
which may be practical for clinical diagnosis, but 
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become challenging in daily use. For this reason, 
other tools have also been developed and tested 
in patients with DOC to detect motor- independent 
response to command at bedside. 

 Bekinschtein et al. studied 10 patients with 
DOC (eight VS/UWS, two MCS) using electro-
myography (EMG; recording of muscle activity) 
(Bekinschtein et al.  2008 ). They auditorily pre-
sented four different 30 s blocks of commands to 
the patient: “Please try to move your right hand” 
and “Please try to move your left hand.” At the 
end of the block, the instruction was “Please do 
not move, stay still.” Two control auditory 
phrases were used: “Today is a sunny day” and 
“It is raining outside today.” They reported that 
one VS/UWS patient and both MCS patients 
demonstrated an increased EMG signal specifi -
cally linked to the command, suggesting that 
electromyography could be used to objectively 
detect residual motor responses in this popula-
tion. One MCS patient could follow command at 
bedside and showed increased EMG activity with 
the system. 

 Stoll et al. ( 2013 ) investigated the applicabil-
ity of an alternative physiological signal, the pupil 
dilation, that can be readily and noninvasively 
measured with robust, inexpensive, easy-to- use 
equipment, to communicate with motor-disabled 
patients and patients with DOC. Pupil dilation has 
been related to a variety of cognitive functions 
and is a response that could be used to circumvent 
the challenges associated with the practical use of 
traditional BCI approaches. Twelve LIS patients 
(seven typical LIS and four severely brain-injured 
LIS with supratentorial lesions) and one MCS 
patient were included in the study. They reported 
that three out of seven LIS patients showed sig-
nifi cantly higher performances than chance when 
answering yes- no questions using pupil dilation. 
However, none of the severely brain-injured LIS 
patients reached signifi cance. Interestingly, they 
also used pupil response to detect command-fol-
lowing in one MCS patient following command 
at bedside. In this study, nine out of 12 patients 
could communicate at bedside, but could not use 
the system (false- negative rate: 69 %). 

 Although preliminary results suggest that 
these tools may provide simpler bedside methods 

of detecting command-following and communi-
cation with the potential to assist the clinician 
and improve the accuracy of diagnosis, some 
limitations prevent their use in patients with 
DOC. First, EMG still necessitates the preserva-
tion of some residual voluntary muscle activity 
which would prevent its use in patients with 
severe paralysis or chronic spasticity. Second, 
pupil response can be altered by the use of cen-
trally acting drugs. Finally, as in fMRI and EEG, 
restlessness can lead to non-interpretable results. 
However, future studies should start using these 
alternative systems in conjunction with EEG and/
or fMRI to investigate the integrity of cognitive 
function in this population.  

11.5     Guidelines for Future 
Research 

 The high false-negative rate achieved with cur-
rent BCIs highlights the need to develop more 
accurate paraclinical diagnostic tools for the 
DOC population (see Table  11.1 ). Indeed, a sys-
tem that is not sensitive to detecting patients 
diagnosed as conscious at the bedside could not 
be reliably used in patients with unclear diagno-
ses. Similarly, a system which is very sensitive 
and detects signs of consciousness in all patients 
behaviorally diagnosed as conscious but also a 
majority of unconscious patients would not be 
specifi c enough to be reliable for clinicians. 
Currently, research on BCI in patients with 
DOC will have to overcome a number of 
challenges:
    1.    Brain-injured patients are likely to present 

arousal fl uctuation, fatigue, and limited atten-
tion span, especially in MCS (Giacino et al. 
 2002 ). For this reason, paradigm complexity 
(stimulus, instructions) and duration are 
important factors to consider when evaluating 
BCI applications. Moreover, multiple repeti-
tions of the BCI session must be considered to 
ensure a reliable diagnosis and account for 
fl uctuation. In terms of communication, eval-
uation should be assessed with simple ques-
tions as severely brain-damaged patients may 
have diffi culty giving accurate answers to 
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trivial yes/no questions (Nakase-Richardson 
et al.  2009 ).   

   2.    Brain injury can be associated with sensory 
defi cits (such as cortical deafness, blindness, 
or oculomotor impairments (Lew et al.  2009 ; 
Alvarez et al.  2012 ; Pogoda et al.  2012 ; Rowe 
et al.  2013 )). While BCI research in healthy 
participants seems to highlight better perfor-
mance with a visual as compared to auditory 
or tactile BCIs (Kubler et al.  2009 ; Halder 
et al.  2010 ; Pham et al.  2005 ), the key chal-
lenge here will be to develop reliable systems 
offering stimuli, instruction, and/or question 
presentation through multiple domains. A 
recent study reporting the applicability of a 
vibrotactile P3-based BCI in LIS patients 
might enable us to provide systems using a 
wider range of modalities taking into account 
various sensory defi cits (Lugo et al.  2014 ).   

   3.    A certain amount of cerebral reorganization 
and neuroplasticity might occur in several 
cases resulting in the recruitment of other brain 
areas during the performance of a given cogni-
tive task, limiting a direct comparison with 
results observed in healthy controls (Chennu 
et al.  2013 ; Nam et al.  2012 ). In addition, 
future studies should take into account the top-
ographic and latency variability observed in 
healthy subjects to interpret patients’ data 
(Kaufmann et al.  2011 ; Bianchi et al.  2010 ).   

   4.    Suboptimal data quality due to movement, 
ocular, and respiration artifacts in these chal-
lenging populations may also be confounding 
factors that need to be overcome with the 
assistance of appropriate statistical analyses. 
It also needs to be pointed out is that, in EEG,
the classifi cation accuracy achieved with a 
BCI naturally depends on the quality and 
inter-trial consistency of the data used to train 
the classifi er (Goldfi ne et al.  2011 ,  2013 ; 
Cruse et al.  2013 ). This is problematic for 
most patients with DOC, particularly those in 
MCS, who are prone to frequent and pro-
longed bouts of fatigue and fl uctuation of 
vigilance preventing them from paying atten-
tion for suffi ciently long periods. For many 
patients, this limitation will adversely affect 
the classifi cation results (e.g., dependency). It 

is therefore important to design protocols 
accordingly (i.e., avoid using blocks of the 
same stimulation and long-lasting sessions; 
assess the patient at different time periods 
(Cruse et al.  2013 ; Goldfi ne et al.  2013 )), in 
order to decrease the number of false nega-
tives. In addition, this will help us to take care 
of the false positives (patients detected as 
“responders” with the system who are actually 
unconscious (Goldfi ne et al.  2013 )).   

   5.    The success of active paradigms relies on the 
patient’s willingness to do the task, which 
might be decreased in case of loss of motiva-
tion (Nijboer et al.  2010 ; Kleih et al.  2010 ) or 
akinetic mutism (Giacino  1997 ; Royal College 
of Physicians,  1996 ). These factors must be 
considered with care as we cannot distinguish 
a patient lacking motivation to do the task 
from one who is unconscious.   

   6.    Finally, negative fi ndings should be inter-
preted cautiously, as signifi cant variability in 
brain responses are observed in control sub-
jects. For example, some healthy participants 
lack expected ERP and fMRI responses (Lulé 
et al.  2013 ; Guger et al.  2003 ,  2009 ; Logie 
et al.  2011 ; Cui et al.  2007 ).    
  Among the different designs developed in 

healthy controls and tested in DOC, motor imag-
ery BCIs are relatively less hindered by problems 
of stimulation modality. There is relatively little 
stimulation that needs to be presented, and this 
can be effectively delivered with sounds. Studies 
on their use in some patients with DOC have pro-
duced promising results (Monti et al.  2010 ; 
Goldfi ne et al.  2011 ). This knowledge, along 
with the fact that motor imagery (e.g., playing 
tennis vs. spatial navigation imagery) in fMRI 
has already allowed a patient to communicate 
when he was unable to do so at bedside (Monti 
et al.  2010 ), bodes well for similar BCI para-
digms. However, motor imagery usually requires 
training of the participant before reliable perfor-
mance can be achieved, which poses a signifi cant 
challenge in a population of DOC, as illustrated 
by the high rate of false negatives achieved in 
previous studies on imagery tasks (Monti et al. 
 2010 ; Goldfi ne et al.  2011 ; Cruse et al.  2012a ). A 
recent study suggested that imagery of complex 
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and familiar actions may result in EEG responses 
that are more reliably classifi ed as compared with 
simpler or unfamiliar actions in healthy volun-
teers (Gibson et al.  2014 ). Tailoring those para-
digms to the patient’s previous habits may help 
increase the sensitivity of these systems. 

 In this context, P3-based BCI designs could 
also be of interest since they rely on “automatic” 
responses of the brain to salient stimuli and hence 
require relatively little explicit user training. As 
highlighted earlier, previous fi ndings by 
Schnakers et al. ( 2008a ), Chennu et al.( 2013 ), 
Monti et al. (Monti et al.  2009 ), and Naci and 
Owen ( 2013 ) have shown that some patients with 
DOC can generate consistent changes in EEG 
and fMRI when asked to selectively attend to 
task-relevant stimuli. Moreover, the P3 paradigm 
seems to be the most sensitive in terms of false- 
negative rates as compared to the other designs 
studied recently (see Table  11.1 ). Eventually, if 
successful with a patient, a P3-based BCI for 
spelling words and sentences using a predictive 
language support program could provide a true, 
multiclass system with relatively high effi ciency. 
Moreover, a study using a visual P3 in healthy 
subjects has reported that 89 % of the participants 
were able to use the system with an accuracy 
between 80 and 100 % (Guger et al.  2009 ), as 
compared to another study showing only 20 % of 
the users achieving those performances with 
motor imagery-based BCI (Guger et al.  2003 ). 
Since we know that the most successful P3-based 
BCI is visually based, it may also be possible to 
adapt a visually based BCI for patients with eye 
control disabilities using individually presented 
rather than presenting multiple stimuli on the 
same screen. This approach has been success-
fully tested in LIS by Hoffman et al. ( 2008 ), but 
has not yet been applied in DOC. 

 Other kind of BCIs were only studied in 
healthy controls and LIS but can be of interest for 
patients with DOC. Steady-state visually evoked 
potentials (SSVEPs; (Vialatte et al.  2010 ; Regan 
 1989 )) are the oscillatory electrical responses of 
neurons in the visual cortex to stimuli that are 
repeatedly presented (or fl ashed) at frequencies 
above 6 Hz. SSVEPs are easy to detect, as their 
frequency content is completely determined by 

the visual stimuli used to elicit them. The advan-
tage of this response is that it has a high signal-to- 
noise ratio and EMG artifacts (Regan  1966 ; Gray 
et al.  2003 ). However, systems developed and 
successfully tested in healthy subjects and motor- 
disabled patients (Combaz et al.  2013 ; Parini 
et al.  2009 ) are highly dependent on eye motor 
control movement, which may prevent its use in 
patients with DOC. An alternative approach 
based on covert attention will therefore need to 
be tested in DOC (Lesenfants et al.  2011 ). 

 Finally, Birbaumer and colleagues (Birbaumer 
et al.  1999 ,  2000 ; Elbert et al.  1980 ) have worked 
on the development of slow cortical potentials- 
based BCIs (SCPs). SCPs are slow voltage 
changes generated in the cortex that occur over 
periods of 0.5–10.0 s. Usually, negative SCPs are 
associated with motor movement and other func-
tions involving increased cortical activation, 
while positive SCPs are associated with reduced 
cortical activation (Birbaumer  1997 ). This sys-
tem has been tested in patients with late-stage 
amyotrophic lateral sclerosis and has been shown 
to be capable of providing basic communication 
capacities (Kubler et al.  1999 ). However, the 
main problem is again that the most successful 
system uses visually based feedback (Pham et al. 
 2005 ; Birbaumer et al.  2000 ), and a relatively 
long period of training is needed (Birbaumer 
 2006 ). On the other hand, SCPs have the advan-
tage of being the most stable over long periods 
(Chatelle et al.  2012 ). 

 Altogether, BCI applications may offer many 
possibilities for patients with DOC, but further 
work must be done before BCI can be used as a 
supplemental tool to the current behavioral “gold 
standard” for assessment of consciousness. We 
think that an extensive collaborative project 
between researchers, including data sharing to 
enable comparison between paradigms, analyses, 
and patient’s demographic and clinical data is 
needed to effi ciently answer the issues high-
lighted here. In addition, studies will need to 
focus not only on the decrease of false negatives, 
but also on the decrease of false positives in order 
to develop reliable tools for clinicians. 

 In the future, BCI could help us detect cogni-
tive impairment at an early stage, using a binary 
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communication code (Schnakers et al.  2008b ) 
with such systems (Müller-Putz et al.  2013 ), and 
guide rehabilitation programs accordingly. In 
addition, BCI could also be used for motor reha-
bilitation in patients with DOC, as previous lit-
erature has suggested that motor imagery training 
could induce a modifi cation of cortical activity in 
healthy volunteers and stroke patients ((Pichiorri 
et al.  2011 ; Page et al.  2009 ; Santos-Couto-Paz 
et al.  2013 ; Dickstein et al.  2014 ) for a review, 
see (Teo and Chew  2014 )). In addition, studies 
have shown its interest to help in the recovery of 
motor function of the paralyzed limb in stroke 
patients (Jackson et al.  2001 ; Prasad et al.  2010 ; 
Page et al.  2007 ) as well as in patients with trau-
matic etiology (Sacco et al.  2011 ; Oostra et al. 
 2012 ). Given evidence that injured brain regions 
retain the ability to generate motor imagery of 
actions they cannot perform (Cruse et al.  2011 ; 
Owen et al.  2006 ; Monti et al.  2010 ; Goldfi ne 
et al.  2011 ; Cruse et al.  2012a ), motor imagery- 
based BCIs could be an ideal candidate for early 
motor rehabilitation (Bruno et al.  2011 ) in 
patients with severe motor disabilities. However, 
we will need to investigate whether this is still 
possible for patients with chronic severe motor 
disabilities (Birbaumer et al.  2012 ). 

 Finally, it is important to note that, in order to 
use any of the paradigms presented above, the 
patient needs to be able to understand the task 
requirements, and therefore we need to be cau-
tious as these systems will not be sensitive to 
detect patients suffering from language impair-
ments (which is very likely to be the case for 
many patients, as shown in (Majerus et al.  2009 )). 
In that case, language-independent paradigms 
will be needed (e.g., (Casali et al.  2013 ; Phillips 
et al.  2011 ; Malinowska et al.  2013 ; Faugeras 
et al.  2011 ; King et al.  2013 ) for a review, see 
(Boly and Seth  2012 )).  

11.6     Conclusion 

 In this chapter, we reviewed the current stage of 
the development of BCI and other alternative 
tools for the diagnosis of patients with DOC. We 
highlighted the great impact that these systems 

could have on rehabilitation strategies, quality of 
life, and prognosis. Currently, results obtained in 
patients with DOC will need to be interpreted 
with caution. Indeed, results from these studies 
show that the likelihood that a covertly aware 
patient might go undetected (i.e., the false- 
negative rate) is likely to vary signifi cantly across 
different paradigms. In addition, the suitability of 
different BCI designs for single patients is vari-
able and will need to be assessed on a case-by- 
case basis. While some patients have been shown 
to be able to generate reliable P3 responses to 
task-relevant stimuli, others have demonstrated 
the ability to consistently perform mental imag-
ery in response to command. Hence, none of 
these tests applied individually to look for 
command- following can currently be used to 
interpret negative results, without combining 
fi ndings from multiple testing methods to miti-
gate against the level of uncertainty. Similarly, 
we think that positive fi ndings should not be 
taken as clear evidence of consciousness but 
should rather be used as an opportunity to discuss 
clinical fi ndings. 

 Future research will need to overcome several 
challenges limiting current BCI application in 
DOC in order to provide more reliable tools for 
diagnosis. Studies on BCIs in healthy partici-
pants could be used as a basis for the develop-
ment of new paradigms, but there is a need to 
conduct extensive testing with patients likely to 
benefi t from various BCI systems in their daily 
lives (Kubler et al.  2006 ), since we know that 
often results from controls do not generalize well 
to patient groups (Pokorny et al.  2013 ; Hill et al. 
 2006 ). Alternative systems such as EMG or pupil 
dilation might also be of interest especially in the 
development of easy-to-use systems for 
caregivers.     
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