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Abstract Continuum crystal plasticity models are extended to in-
corporate the effect of the dislocation density tensor on material
hardening. The approach is based on generalized continuum me-
chanics including strain gradient plasticity, Cosserat and micromor-
phic media. The applications deal with the effect of precipitate
size in two–phase single crystals and to the Hall-Petch grain size
effect in polycrystals. Some links between the micromorphic ap-
proach and phase field models are established. A coupling between
phase field approach and elastoviscoplasticity constitutive equations
is then presented and applied to the prediction of the influence of
viscoplasticity on the kinetics of diffusive precipitate growth and
morphology changes.

1 Introduction

Continuum crystal plasticity is a special class of anisotropic elastoviscoplas-
tic behaviour of materials. It relies on the precise knowledge of the kine-
matics of plastic slip according to crystallographic slip systems and of the
driving force for activation of plastic slip, namely the corresponding resolved
shear stress. When the number of dislocations inside the material volume
element is high enough, a continuum description of plastic deformation and
hardening can be formulated as settled in (Mandel, 1965, 1971, 1973) and
(Teodosiu and Sidoroff, 1976).

The objectives of this contribution is first to establish the continuum
mechanical framework for the formulation of constitutive equations for sin-
gle crystals including the effect of the dislocation density tensor. We show
then than this model class can be used to predict size effects in the re-
sponse of polycrystals. The considered plastic deformation mechanism is
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crystallographic slip but the formulation can serve as a basis for extensions
to climb or twinning since thermomechanical balances and most kinematic
considerations are still valid.

There exists an extreme variety of possible constitutive equations for sin-
gle crystals derived in the last 40 years but the thermomechanical foundation
is quite unique and now clearly settled Estrin (1996). We will consider this
variety of constitutive laws by introducing generic internal variables with-
out making specific choices. Only generic examples of evolution laws for
such internal variables are provided and the reader is referred to (Fivel and
Forest, 2004a), and references quoted therein, for a detailed discussion of
best–suited constitutive laws for metal single crystals. Also the transition
from single to polycrystal behaviour is shortly addressed here but funda-
mentals for modelling polycrystals can be found in (Fivel and Forest, 2004b;
Besson et al., 2009).

The most relevant internal variables for describing the work–hardening of
single crystals are undoubtedly dislocation densities, ρs, defined as the total
length of dislocations belonging to a slip system s divided by the volume of
the material volume element. Evolution equations for dislocations densities
can be found in (Fivel and Forest, 2004a). In the present contribution, we
introduce general isotropic and kinematic hardening variables accounting
for monotonic and cyclic responses of crystals. Dislocation densities are
generally related to isotropic hardening through forest hardening but recent
contributions also aim at establishing dislocation based kinematic hardening
dislocation rules.

Another characterisation of the dislocation distribution is the dislocation
density tensor introduced by (Nye, 1953). It is defined in section 2.3 and
contributes to many size effects observed in crystalline solids: grain size or
Hall–Petch effect, precipitate size effect, etc. The dislocation density ten-
sor cannot be handled as a usual internal variable because it is related to
the gradient of the plastic deformation field. As a result, higher order par-
tial differential equations arise when hardening laws involve the dislocation
density tensor. The development of constitutive models involving the dislo-
cation density tensor is the realm of strain gradient plasticity. Even for the
much too simple constitutive equations presented in this work, the model
shows that the dislocation density tensor is responsible for a size–dependent
kinematic hardening component in the material behaviour.

The final part of this chapter draws a parallel between the micromor-
phic approach which consists in introducing additional degrees of freedom
in the mechanical framework, and the phase field approach dedicated to the
simulation of evolution of microstructures. The comparison enables us to
combine the elastoviscoplastic behaviour of constitutents and the phase field
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model in order to address the question of the influence of nonlinear deforma-
tion on the kinetics and morphology evolution during phase transformation
(Ammar et al., 2011).

Notations Vectors, second, third and fourth rank tensors are denoted by
a ,a

∼

,a
∼

,a
≈

, respectively. The initial and current positions of the material

point are denoted by X and x , respectively. Throughout this work, the
initial configuration of the body is V0 whereas V denotes the current one.
The associated smooth boundaries are ∂V0 and ∂V with normal vector N
and n . The gradient operators with respect to initial and current coordi-
nates are called ∇X and ∇x respectively. Similarily, the divergence and
curl operators are Div, div and Curl, curl whether they are computed with
respect to initial or current positions, respectively. Intrinsic notation is used
in general but it is sometimes complemented or replaced by the index no-
tation for clarity. A Cartesian coordinate system is used throughout with
respect to the orthonormal basis (e 1, e 2, e 3). The notations for double
contraction and gradient operations are:

A
∼

: B
∼

= AijBij , u ⊗∇X =
∂ui

∂Xj

e i ⊗ e j (1)

2 Crystal plasticity and the dislocation density tensor

2.1 Thermomechanics of single crystal behaviour

Balance equations. Mechanical equilibrium can be expressed in the form
of the principle of virtual power

−

∫
D

σ
∼

: D
∼

∗ dv +

∫
D

ρ(f − a ) · v ∗ dv +

∫
∂D

t · v ∗ ds = 0 (2)

for all virtual velocity fields and all subdomains, D, of the current config-
uration Ω of the body. The Cauchy stress tensor is σ

∼

and D
∼

is the strain
rate tensor. Volume and acceleration forces are denoted by f and a , re-
spectively, whereas t is the traction vector. The principle of virtual power
implies the following balance of momentum equation

divσ
∼

+ ρf = ρa (3)

The energy balance is the purpose of the first principle of thermodynamics∫
D

ρė dv −

∫
D

ρ(a − f ) · v dv =

∫
∂D

t · v ds+Q (4)
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or equivalently, after implementing the balance of momentum principle,∫
D

ρė dv =

∫
D

σ
∼

: D
∼

dv +Q (5)

where ρe is the volume density of internal energy. The heat production rate
is assumed to take the form

Q = −

∫
∂D

q · n ds (6)

The local form of the energy principle is then

ρė = σ
∼

: D
∼

− div q (7)

The second principle of thermodynamics stipulates that∫
D

ρη̇ dv +

∫
∂D

q

T
· n ds ≥ 0 (8)

where η is the mass density of entropy and T the temperature field. The
validity of this principle with respect to all subdomain D leads to the local
form of the entropy principle

ρη̇ + div
q

T
≥ 0 (9)

Introducing the free energy density Ψ := e − Tη and taking the balance of
energy into account, we are lead to the Clausius inequality

σ
∼

: D
∼

− ρΨ̇− ρηṪ − q ·
∇T

T
≥ 0 (10)

Kinematics of single crystals. It is based on the multiplicative de-
composition of the deformation gradient, F

∼

, into an elastic part, E
∼

, and a
plastic part, P

∼

:

F
∼

(X ) = 1
∼

+
∂u

∂X
= 1
∼

+ u ⊗∇X , F
∼

(X ) = E
∼

(X ).P
∼

(X ) (11)

The initial coordinates of the material point in the reference configuration
are denoted by X and ∇X denotes the gradient operator with respect to
initial coordinates. The current position of the material point in the current
configuration is x . The displacement vector is u = x −X . The multiplica-
tive decomposition (11) is associated with the definition of an intermediate



Micromorphic Approach to Crystal Plasticity… 135

configuration for which elastic strain is unloaded, see figure 1. The inter-
mediate released configuration is uniquely determined up to a rigid body
rotation which is chosen such that the lattice orientation in the intermediate
configuration is the same as the initial one. Mandel called it the isoclinic
intermediate configuration. As a result, lattice rotation and distortion dur-
ing elastoplastic deformation are contained in the elastic deformation part
E
∼

, as examined at the end of this section.
The multiplicative decomposition leads to the following partition of the

velocity gradient

v ⊗∇ = Ḟ
∼

· F
∼

−1 = Ė
∼

·E
∼

−1 +E
∼

· Ṗ
∼

· P
∼

−1 ·E
∼

−1 (12)

We introduce the Cauchy–Green and Green–Lagrange elastic strain mea-
sures

C
∼

e := E
∼

T ·E
∼

, E
∼

e =
1

2
(C
∼

e − 1
∼

) (13)

and note that

Ė
∼

e
=

1

2
(Ė
∼

T ·E
∼

+E
∼

T · Ė
∼

) =
1

2
Ċ
∼

e

=
1

2
E
∼

T · (E
∼

−T · Ė
∼

T + Ė
∼

·E
∼

−1) ·E
∼

= E
∼

T ·
(
Ė
∼

e
·E
∼

−1
)sym

·E
∼

where sym operator takes the symmetric part of the quantity in brackets.
The mass density of the material point with respect to the current (resp.
intermediate) configuration is denoted by ρ (resp. ρe). The volume density
of internal forces with respect to the intermediate configuration is

Jeσ
∼

: D
∼

= Jeσ
∼

: (Ḟ
∼

· F
∼

−1) = Jeσ
∼

: (Ė
∼

·E
∼

−1) + Jeσ
∼

: (E
∼

· Ṗ
∼

· P
∼

−1 ·E
∼

−1)

= Jeσ
∼

: (Ė
∼

·E
∼

−1)sym + Jeσ
∼

: (E
∼

· Ṗ
∼

· P
∼

−1 ·E
∼

−1)

= Π
∼

e : Ė
∼

e
+M

∼

: Ṗ
∼

.P
∼

−1 (14)

where Je = detE
∼

is the volume change from the intermediate to the current
configuration, Π

∼

e is the second Piola–Kirchhoff stress tensor with respect to
the isoclinic intermediate configuration, and M

∼

is the Mandel stress tensor
defined as :

Π
∼

e = JeE
∼

−1.σ
∼

.E
∼

−T , M
∼

= JeE
∼

T .σ
∼

.E
∼

−T = C
∼

e ·Π
∼

e (15)

Plastic deformation is the result of slip processes according toN slip systems
characterised by the slip direction, m s, and the normal to the slip plane,
n s, in the intermediate configuration :

Ṗ
∼

.P
∼

−1 =

N∑
s=1

γ̇sm s ⊗ n s (16)
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Note that plastic deformation induced by dislocation glide is isochoric so
that

Jp = detP
∼

= 1, Je = J = detF
∼

(17)

Constitutive equations Constitutive equations for elastoviscoplastic ma-
terials are based on the definition of two potential functions, namely the free
energy density function and the dissipation potential. The specific energy
density, Ψ(E

∼

e, T, α), is a function of elastic strain, temperature and inter-
nal variables accounting for hardening properties. Writing the Clausius–
Duhem inequality (10) with respect to the intermediate isoclinic configura-
tion amounts to multiplying (10) by ρe/ρ = Je

Jeσ
∼

: D
∼

− ρeΨ̇− ρeηṪ −Q ·
∇XT

T
≥ 0 (18)

where Q = JeF
∼

−T · q . Expanding the time derivative of the free energy
density, we obtain(
Π
∼

e − ρe
∂Ψ

∂E
∼

e

)
: Ė
∼

e
−ρe(η+

∂Ψ

∂T
)Ṫ +M

∼

: Ṗ
∼

·P
∼

−1−ρe
∂Ψ

∂α
α̇−Q ·

∇X

∂T
≥ 0

(19)
The following state laws provide the hyperelasticity relation and the entropy
density :

Π
∼

e = ρe
∂Ψ

∂E
∼

e = C
≈

: E
∼

e, η = −
∂Ψ

∂T
, X = ρe

∂Ψ

∂α
(20)

where a quadratic potential for elasticity has been proposed, thus introduc-
ing the fourth rank tensor of elasticity moduli, C

≈

. Such an assumption is

realistic for metals since elastic strain usually remains small, as discussed in
the next subsection. The thermodynamic forces associated with the internal
variables α are called X . The residual dissipation rate is

M
∼

: Ṗ
∼

· P
∼

−1 −Xα̇−Q ·
∇XT

T
≥ 0 (21)

The first term is the plastic power. Part of it is stored due to the second
contribution whereas the third one denotes thermal dissipation.

At this stage, a dissipation potential Ω(M
∼

, X) is introduced from which
the flow rule and the evolution equation for internal variables are derived

Ṗ
∼

.P
∼

−1 =
∂Ω

∂M
∼

, α̇ = −
∂Ω

∂X
(22)
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Positivity of dissipation rate is ensured if the dissipation potential Ω(M
∼

, X)
exhibits specific convexity properties with respect to its arguments (convex
with respect to M

∼

and concave with respect to X) and if a Fourier type of
heat conduction is chosen

Q = −K
∼

·∇X(logT ) (23)

The dissipation potential is assumed to depend onM
∼

and X via the Schmid
yield function

f s(M
∼

, X) = |τs − xs| − τsc , with τs = M
∼

: m s ⊗ n s (24)

where τsc is the critical resolved shear stress for slip system s, which may
evolve due to isotropic hardening. Kinematic hardening is accounted for
by means of back-stress components xs attached to each slip system. The
resolved shear stress τs = m s.M

∼

.n s on slip system s is the driving force
for activation of slip. This corresponds to the specific choice of hardening
variables: X = (τsc , x

s). So we consider a function

Ω(M
∼

, X) =

N∑
s=1

Ωs(f s(M
∼

, X)) (25)

It follows that

Ṗ
∼

.P
∼

−1 =
∂Ω

∂M
∼

=
N∑
s=1

∂Ωs

∂f s

∂f s

∂M
∼

=
N∑
s=1

γ̇sm s ⊗ n s (26)

where the slip rate is computed as

γ̇s =
∂Ωs

∂f s
sign (τs − xs) (27)

Accordingly, the kinematics (16) is retrieved from the normality rule, show-
ing that the crystal slip kinematics is associated with the Schmid law. Let
us call (ρs, αs) internal variables associated with the isotropic and kinematic
hardening variables (τsc , x

s). The hardening rules in (22) become

ρ̇s = −
∂Ω

∂τsc
=

∂Ωs

∂f s
= |γ̇s|, α̇s = −

∂Ω

∂xs
=

∂Ωs

∂f s
sign (τs − xs) = γ̇s (28)

It is worth computing the plastic power after taking the previous relations
into account

M
∼

: Ṗ
∼

.P
∼

−1 =

N∑
s=1

τsγ̇s (29)
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Specific hardening laws including evolution equations for dislocation densi-
ties can be found for example in Fivel and Forest (2004a). As an example,
we consider here a power law potential

γ̇s =
∂Ω

∂τs
=

〈
|τs − xs| − τc

K

〉n

sign(τs) (30)

Ω(τs) =
N∑
s=1

K

n+ 1

〈
|τs − xs| − τc

K

〉n+1

(31)

The brackets 〈x〉 denote the positive part of x. Viscosity parameters are K
and n in (31). They can be chosen such that plastic processes are almost
rate–independent in a given range of applied strain rates. As an example,
we give here simple nonlinear evolution rules for the isotropic and kinematic
variables that are used for practical computations

τsc = τc + q
N∑
r=1

hsr(1− exp(−bvr)), α̇s = γ̇s − dv̇sαs (32)

where q, b, d are material parameters. An interaction matrix hrs is necessary
to account for interaction between dislocations and is responsible for latent
hardening Fivel and Forest (2004a).

Figure 1. Multiplicative decomposition of the deformation gradient into
elastic and plastic parts.

Lattice rotation. The previous continuum mechanical approach makes
it possible to distinguish between the transformation of material and lattice
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directions. Material lines are made of material points that are subjected
to the motion u (X ). The tangent to a material line at X is a material
direction d in the reference configuration that transforms into the mate-
rial direction d ′ in the current configuration by means of the deformation
gradient:

d ′(X ) = F
∼

(X ) · d (X ) (33)

In contrast, lattice directions are not material insofar as they are not nec-
essarily made of the same material points (atoms) in the initial and current
configurations due to the passing of dislocations, but keep the same crys-
tallographic meaning. According to the concept of isoclinic configuration,
lattice directions are unchanged from the initial to the intermediate con-
figuration of figure 1. Glide of dislocations through, and thus leaving, the
material volume element do not distort nor rotate the lattice, although
material lines are sheared. According to the continuum theory of disloca-
tions, statistically stored dislocations accumulating in the material volume
element affect material hardening but do not change the element shape.
Accordingly, an initial lattice direction d � is transformed into d �′ by means
of the elastic deformation:

d �′(X ) = E
∼

(X ).d �(X ) (34)

The kinematics of elastoplastic deformation recalled in section 2.1 can be
expanded in the case of small strains and small rotations, based on the polar
decompositions of total, elastic and plastic deformations:

E
∼

= R
∼

e.U
∼

e � (1
∼

+ ω
∼

e).(1
∼

+ ε
∼

e) � 1
∼

+ ε
∼

e + ω
∼

e (35)

P
∼

= R
∼

p.U
∼

p � (1
∼

+ ω
∼

p).(1
∼

+ ε
∼

p) � 1
∼

+ ε
∼

p + ω
∼

p (36)

where R
∼

e,R
∼

p and U
∼

e,U
∼

p are rotations and symmetric stretch tensors, re-
spectively. Accordingly, ε

∼

e,ω
∼

e (resp. ε
∼

p,ω
∼

p) represent small elastic (resp.
plastic) strain and rotation. The elastic rotation accounts for lattice rota-
tion, as follows from the proposed kinematics of plastic slip. Similarly, the
following holds for the total deformation:

F
∼

= R
∼

.U
∼

= (1
∼

+ ω
∼

).(1
∼

+ ε
∼

) � 1
∼

+ ε
∼

+ ω
∼

(37)

so that

ε
∼

= ε
∼

e + ε
∼

p, ω
∼

= ω
∼

e + ω
∼

p (38)

where all strain tensors are symmetric whereas all ω tensors are skew–
symmetric.
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In metals, elastic strain remains small whereas lattice rotations can be-
come very large. That is why the kinematics of crystallographic slip is very
often approximated as

F
∼

� R
∼

e · P
∼

(39)

especially for the simulation of metal forming processes. Lattice rotation is
then directly given by R

∼

e.
Let us consider also rotation rates by introducing the material spin tensor

W
∼

which is the skew–symmetric part of the velocity gradient

Ḟ
∼

·F
∼

−1 = D
∼

+W
∼

= Ė
∼

·E
∼

−1+E
∼

·Ṗ
∼

·P
∼

−1 ·E
∼

−1 = D
∼

e+W
∼

e+D
∼

p+W
∼

p (40)

where the elastic and plastic contributions have been split into their sym-
metric and skew–symmetric parts. The elastic spin tensor is therefore de-
fined as

W
∼

e =
(
Ė
∼

·E
∼

−1
)skew

=
(
Ṙ
∼

e
·R
∼

e−1 +R
∼

e · U̇
∼

e
·U
∼

e ·R
∼

e−1
)skew

(41)

� Ṙ
∼

e
·R
∼

e−1 = Ṙ
∼

e
·R
∼

eT (42)

where the exponent skew denotes the skew–symmetric part of the tensor in
brackets. The latter approximation is valid when elastic strain rates can be
neglected compared to rotation rates, which is generally the case for metals
at sufficiently high total strains. Note that for any rotation Q

∼

, the rotation

rate Q̇
∼

· Q
∼

−1 = Q̇
∼

· Q
∼

T is a skew–symmetric tensor due to the fact that a

rotation is an orthogonal tensor1. The plastic spin rate is

W
∼

p =

(
E
∼

·

(
N∑
s=1

γ̇sm s ⊗ n s

)
·E
∼

−1

)skew

�

(
R
∼

e ·

(
N∑
s=1

γ̇sm s ⊗ n s

)
·R
∼

eT

)skew

� R
∼

e ·

(
N∑
s=1

γ̇s (m s ⊗ n s)skew
)

·R
∼

eT

In the case of small elastic strain and rotations, the expressions simplify

1
meaning that Q

∼

·Q
∼

T
= Q
∼

T
·Q
∼

= 1
∼
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and we obtain

D
∼

p � ε̇
∼

p =

N∑
s=1

γ̇s (m s ⊗ n s)
sym

(43)

W
∼

p � ω̇
∼

p =

N∑
s=1

γ̇s (m s ⊗ n s)
skew

(44)

D
∼

e � ε̇
∼

e = ε̇
∼

− ε̇
∼

p, Ẇ
∼

e
� ω̇

∼

e = ω̇
∼

− ω̇
∼

p (45)

2.2 Elements of tensor analysis

The Euclidean space is endowed with an arbitrary coordinate system
characterizing the points M(qi). The basis vectors are defined as

e i =
∂M

∂qi
(46)

The reciprocal basis (e i)i=1,3 of (e i)i=1,3 is the unique triad of vectors such
that

e i · e j = δij (47)

If a Cartesian orthonormal coordinate system is chosen, then both bases
coincide.

The gradient operator for a tensor field T (X ) of arbitrary rank is then
defined as

gradT = T ⊗∇ :=
∂T

∂qi
⊗ e i (48)

The gradient operation therefore increases the tensor rank by one.
The divergence operator for a tensor field T (X ) of arbitrary rank is then

defined as

divT = T ·∇ :=
∂T

∂qi
· e i (49)

The divergence operation therefore decreases the tensor rank by one.
The curl operator2 for a tensor field T (X ) of arbitrary rank is then

defined as

curlT = T ∧∇ :=
∂T

∂qi
∧ e i (50)

where the vector product is ∧. The curl operation therefore leaves the tensor
rank unchanged. The vector product on an oriented Euclidean space is

a ∧ b = εijkajbk e i = ε
∼

: (a ⊗ b ) (51)

2
or rotational operator.
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The component εijk of the third rank permutation tensor is the signature
of the permutation of (1, 2, 3).

With respect to a Cartesian orthonormal basis, the previous formula
simplify. We give the expressions for a second rank tensor T

∼

gradT
∼

= Tij,k e i ⊗ e j ⊗ e k (52)

divT
∼

= Tij,j e i (53)

We consider then successively the curl of a vector field and of a second rank
vector field, in a Cartesian orthonormal coordinate frame

curlu =
∂u

∂Xj

∧ e j = ui,j e i ∧ e j = εkijui,j e k (54)

curlA
∼

=
∂A
∼

∂xk

∧ e k = Aij,ke i ⊗ e j ∧ e k = εmjkAij,k e i ⊗ em (55)

We also recall the Stokes formula for a vector field for a surface S with unit
normal vector n and oriented closed border line L:∮

L

u · dl = −

∫
S

(curlu ) · n ds,

∮
L

uidli = −εkij

∫
S

ui,jnk ds (56)

Applying the previous formula to uj = Aij at fixed i leads to the Stokes
formula for a tensor field of rank 2:∮

L

T
∼

· dl = −

∫
S

(curlT
∼

) · n ds,

∮
L

Aijdli = −εkij

∫
S

Aij,knm ds (57)

2.3 Dislocation density tensor

In continuummechanics, the previous differential operators are used with
respect to the initial coordinates X or with respect to the current coordi-
nates x of the material points. In the latter case, the notation ∇, grad, div
and curl are used but in the former case we adopt ∇X ,Grad, Div and Curl.
For instance,

F
∼

= 1
∼

+Gradu =⇒ CurlF
∼

= 0 (58)

This result expresses the fact that the deformation gradient is a compatible
field which derives from the displacement vector field. This is generally not
the case for elastic and plastic deformation:

CurlE
∼

�= 0, CurlP
∼

�= 0 (59)

Elastic and plastic deformations are generally incompatible tensor fields,
even though the product F

∼

= E
∼

· P
∼

is compatible. It may happen inci-
dentally that elastic deformation be compatible for instance when plastic or
elastic deformation is homogeneous.
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A consequence of the incompatibility of the elastic deformation is that,
for an oriented surface S ⊂ Ω of the body, with border L, the vector B

belonging to the intermediate isoclinic configuration

B =

∮
L

E
∼

−1 · dl = −

∫
S

(curlE
∼

−1) · n ds (60)

does not vanish in general. It can be interpreted as the continuum Burgers
vector for the circuit L. It represents a generalization of the concept of
Burgers vector for dislocations. This geometric definition was introduced by
Bilby et al. (1957); Teodosiu (1970); Kröner and Teodosiu (1972) within the
context of the continuum theory of dislocations. The previous calculation
leads to the definition of the dislocation density tensor

α
∼

:= − curlE
∼

−1 = −εjklE
−1
ik,l e i ⊗ e j (61)

which is used to compute the resulting Burgers vector for dislocations cross-
ing the surface S:

B =

∫
S

α
∼

· n ds (62)

The Burgers vector can also be computed by means of a closed circuit
L0 ⊂ Ω0 convected from L ⊂ Ω:

B =

∮
L

E
∼

−1 · dx =

∮
L0

E
∼

−1 · F
∼

· dX =

∮
L0

P
∼

· dX (63)

=

∫
S0

(CurlP
∼

) · dS =

∫
S

(CurlP
∼

) · F
∼

T ·
dS

J
(64)

Nanson’s formula3 has been used. We obtain the alternative definition of
the dislocation density tensor

α
∼

= curlE
∼

−1 =
1

J
(CurlP

∼

) · F
∼

T (65)

The present modern treatment of the dislocation density tensor was settled
by Cermelli and Gurtin (2001); Svendsen (2002). A statistical mechanics
perspective of the dislocation density tensor can be found in Kröner (1969).

It can be noticed that the relation (65) implies

J(curlE
∼

−1) ·E
∼

−T = (CurlP
∼

) · P
∼

T (66)

which is a consequence of (58), curlF
∼

= curl(E
∼

· P
∼

) = 0.

3
ds = JF

∼

−T
· dS
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Within the small perturbation framework, we introduce the notations

H
∼

= Gradu = H
∼

e +H
∼

p, with H
∼

e = ε
∼

e + ω
∼

e, H
∼

p = ε
∼

p + ω
∼

p (67)

We have
E
∼

−1 � 1
∼

−H
∼

e (68)

so that the dislocation density tensor can be computed as

α
∼

� CurlH
∼

e = −CurlH
∼

p (69)

since CurlH
∼

= 0 due to the compatibility of the deformation gradient.

2.4 Lattice curvature

Experimental techniques like EBSD provide the field of lattice orienta-
tion and, consequently, of lattice rotation R

∼

e during deformation. Since

α
∼

= − curlE
∼

−1 = − curl(U
∼

e−1 ·R
∼

eT ) (70)

the hypothesis of small elastic strain implies

α
∼

� − curlR
∼

eT (71)

If, in addition, elastic rotations are small, we have

α
∼

� − curl(1
∼

− ω
∼

e) = curlω
∼

e (72)

The small rotation axial vector is defined as

×

ω e = −
1

2
ε
∼

: ω
∼

e, ω
∼

e = −ε
∼

·
×

ω e (73)

or, in matrix notations,

[ω
∼

e] =

⎡⎢⎢⎢⎣
0 ωe

12 −ωe
31

−ωe
12 0 ωe

23

ωe
31 −ωe

23 0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎣
0 −

×
ωe
3

×
ωe
2

×
ωe
3 0 −

×
ωe
1

−
×
ωe
2

×
ωe
1 0

⎤⎥⎥⎦ (74)

The gradient of the lattice rotation field delivers the lattice curvature tensor.
In the small deformation context, the gradient of the rotation tensor is
represented by the gradient of the axial vector:

κ
∼

:=
×

ω e (75)
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One can establish a direct link between curlω
∼

e and the gradient of the axial
vector associated with ω

∼

. For that purpose, the matrix form of curlω
∼

e is
derived according to (55):

[curlω
∼

e] =

⎡⎢⎢⎢⎣
ωe
12,3 + ωe

31,2 −ωe
31,1 −ωe

12,1

−ωe
23,2 ωe

12,3 + ωe
23,1 −ωe

12,2

−ωe
23,3 −ωe

31,3 ωe
23,1 + ωe

31,2

⎤⎥⎥⎥⎦ (76)

or equivalently

[curlω
∼

e] =

⎡⎢⎢⎢⎣
−
×
ωe
3,3 −

×
ωe
2,2

×
ωe
2,1

×
ω3,1

×
ωe
1,2 −

×
ωe
3,3 −

×
ωe
1,1

×
ω
e

3,2

×
ωe
1,3

×
ωe
2,3 −

×
ωe
1,1 −

×
ωe
2,2

⎤⎥⎥⎥⎦ (77)

from which it becomes apparent that

α
∼

= κ
∼

T − (traceκ
∼

)1
∼

, κ
∼

= α
∼

T −
1

2
(traceα

∼

)1
∼

(78)

This is a remarkable relation linking, with the context of small elastic
strains4 and rotations, the dislocation density tensor to lattice curvature.
It is known as Nye’s formula Nye (1953).

3 Micromorphic crystal plasticity

The links between the micromorphic continuum and the plasticity of crys-
talline materials has been recognized very early by Eringen himself (Claus
and Eringen, 1969; Eringen and Claus, 1970). Lattice directions in a single
crystal can be regarded as directors that rotate and deform as they do in
a micromorphic continuum. The fact that lattice directions can be rotated
and stretched in a different way than material lines connecting individual
atoms, especially in the presence of static or moving dislocations, illustrates
the independence between directors and material lines in a micromorphic
continuum, even though their deformations can be related at the constitu-
tive level.

The identification of a micromorphic continuum from the discrete atomic
single crystal model is possible based on proper averaging relations pro-
posed in (Chen and Lee, 2003a,b). These works contain virial formula for

4
and in fact of small gradient of elastic strain.
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the higher order stress tensors arising in the micromorphic theory. This
atomistic–based approach can be used to predict phonon dispersion rela-
tions (Chen and Lee, 2003c). Claus and Eringen (1971) also studied the
dispersion of waves in a dislocated crystal.

Analytical solutions have been provided that give the generalized stress
fields around individual screw or edge dislocations embedded in an elastic
generalized continuum medium, like the micromorphic medium. The phys-
ical meaning of such a calculation is the account of non–local elasticity at
the core of dislocations that may suppress or limit the singularity of the
stress fields. For instance, non singular force and couple stress were deter-
mined by (Lazar and Maugin, 2004) for a screw dislocation embedded in
a gradient micropolar medium that combines the first strain gradient with
independent rotational degrees of freedom. The unphysical singularities at
the core of straight screw and edge dislocations are also removed when the
second gradient of strain is introduced in the theory, while the first strain
gradient is not sufficient, see (Lazar et al., 2006). Other crystal defects in a
large range of microcontinua were analysed by Lazar and Maugin (2007).

The next step is to consider the collective behaviour of dislocations in
a single crystal by means of the continuum theory of dislocations. The
material volume element is now assumed to contain a large enough num-
ber of dislocations for the continuum theory of dislocation to be applicable.
Non–homogeneous plastic deformations induce material and lattice incom-
patibilities that are resolved by a suitable distribution of the dislocation
density tensor field which is a second rank statistical mean for a population
of arbitrary dislocations inside a material volume element (Kröner, 1969;
Cermelli and Gurtin, 2001). Nye’s fundamental relation linearly connects
the dislocation density tensor to the lattice curvature field of the crystal.
This fact has prompted many authors to treat a continuously dislocated
crystal as a Cosserat continuum (Günther, 1958; Kröner, 1963; Schäfer,H.,
1969; Forest et al., 2000). The Cosserat approach records only the lattice
curvature of the crystal but neglects the effect of the rotational part of the
elastic strain tensor, which is a part of the total dislocation density tensor
(Cordero et al., 2010). Full account of plastic incompatibilities is taken in
strain gradient plasticity theories, starting from the original work by Aifantis
(1984) up to recent progress by Gurtin (2002). Formulation of crystal plas-
ticity within the micromorphic framework is more recent and was suggested
by Clayton et al. (2005) for a large spectrum of crystal defects, including
point defects and disclinations. Limiting the discussion to dislocation den-
sity tensor effects, also called geometrically necessary dislocation (GND)
effects, Cordero et al. (2010) showed, within a small deformation setting,
how the micromorphic model can be used to predict grain and precipitate
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size effects in laminate crystalline materials. In particular, the micromor-
phic model is shown to deliver more general scaling laws than conventional
strain gradient plasticity. These models represent extensions of the con-
ventional crystal plasticity theory, see for instance (Teodosiu and Sidoroff,
1976), that accounts for single crystal hardening and lattice rotation but
does not incorporate the effect of the dislocation density tensor.

The objective of the present work is, first, to formulate a finite deforma-
tion micromorphic extension of conventional crystal plasticity to account
for GND effects in single crystals, and, second, to show that the micromor-
phic approach can also be used to introduce cleavage induced damage in a
single crystal model. The first part, see Section 3, represents an extension
to finite deformation of the model proposed by Aslan et al. (2011). It also
provides new analytical predictions of size effects on the yield stength and
kinematic hardening of laminate microstructures made of an elastic layer
and an elastic–plastic single crystal layer undergoing single slip. The theory
is called the microcurl model because the evaluation of the curl of the mi-
crodeformation, instead of its full gradient, is sufficient to account for the
effect of the dislocation density tensor.

The models proposed in this work for single crystals fall in the class
of anisotropic elastoviscoplastic micromorphic media for which constitutive
frameworks at finite deformations have been proposed in (Forest and Sievert,
2003; Lee and Chen, 2003; Grammenoudis and Tsakmakis, 2009; Sansour
et al., 2010; Regueiro, 2010). The introduction of damage variables was
performed in (Grammenoudis et al., 2009). In fact, the micromorphic ap-
proach can be applied not only to the total deformation by introducing the
micro–deformation field, but can also be restricted to plastic deformation,
for specific application to size effects in plasticity, or to damage variables
for application to regularized simulation of crack propagation, as proposed
in (Forest, 2009; Hirschberger and Steinmann, 2009).

3.1 Model formulation

Balance equations. The degrees of freedom of the proposed theory are
the displacement vector u and the microdeformation variable χ̂

∼

p, a gen-

erally non–symmetric second rank tensor. The field χ̂
∼

p(X ) is generally
not compatible, meaning that it does not derive from a vector field. The
exponent p indicates, in advance, that this variable will eventually be con-
stitutively related to plastic deformation occurring at the material point. In
particular, the microdeformation χ̂

∼

p is treated as an invariant quantity with
respect to rigid body motion. The constitutive model will eventually ensure
this invariance property. This is in contrast to the general microdeforma-
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tion degrees of freedom of the original micromorphic theory. A first gradient
theory is considered with respect to the degrees of freedom. However, the
influence of the microdeformation gradient is limited to its curl part because
of the aimed relation to the dislocation density tensor associated with the
curl of plastic distortion. The following sets of degrees of freedom and of
their gradients are therefore defined:

DOF = {u , χ̂
∼

p}, GRAD = {F
∼

:= 1
∼

+u⊗∇X , K
∼

:= Curl χ̂
∼

p} (79)

The following definition of the Curl operator is adopted:

Curl χ̂
∼

p :=
∂χ̂
∼

p

∂Xk

× e k, Kij := εjkl
∂χ̂p

ik

∂Xl

(80)

where εijk is the permutation tensor.
The method of virtual power is used to derive the balance and boundary
conditions, following (Germain, 1973b). For that purpose, we define the
power density of internal forces as a linear form with respect to the velocity
fields and their Eulerian gradients:

p(i) = σ
∼

: (u̇ ⊗∇x) + s
∼

: ˙̂χ
∼

p
+M

∼

: curl ˙̂χ
∼

p
, ∀x ∈ V (81)

where the conjugate quantities are the Cauchy stress tensor σ
∼

, which is
symmetric for objectivity reasons, the microstress tensor, s

∼

, and the gen-
eralized couple stress tensor M

∼

. The curl of the microdeformation rate is
defined as

curl ˙̂χ
∼

p
:= εjkl

∂ ˙̂χp
ik

∂xl

e i ⊗ e j = K̇
∼

· F
∼

−1 (82)

The form of the power density of internal forces dictates the form of the
power density of contact forces:

p(c) = t · u̇ +m
∼

: ˙̂χ
∼

p
, ∀x ∈ ∂V (83)

where t is the usual simple traction vector andm
∼

the double traction tensor.
The principle of virtual power is stated in the static case and in the absence
of volume forces for the sake of brevity:

−

∫
D

p(i) dV +

∫
∂D

p(c) dS = 0 (84)

for all virtual fields u̇ , ˙̂χ
∼

p
, and any subdomain D ⊂ V . By application of

Gauss divergence theorem, assuming sufficient regularity of the fields, this
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statement expands into: ∫
V

∂σij

∂xj

u̇i dV +

∫
V

(
εkjl

∂Mik

∂xl

− sij

)
˙̂χp
ij dV

+

∫
∂V

(ti − σijnj) u̇i dS +

∫
∂V

(mik − εjklMijnl) ˙̂χp
ik dS = 0, ∀u̇i, ∀ ˙̂χp

ij

which leads to the two field equations of balance of momentum and gener-
alized balance of moment of momentum:

divσ
∼

= 0, curlM
∼

+ s
∼

= 0, ∀x ∈ V (85)

and two boundary conditions

t = σ
∼

· n , m
∼

= M
∼

· ε
∼

· n , ∀x ∈ ∂V (86)

the index notation of the latter relation being mij = Mikεkjlnl.

Constitutive equations. The deformation gradient is decomposed into
elastic and plastic parts in the form

F
∼

= F
∼

e · F
∼

p (87)

The isoclinic intermediate configuration is defined in a unique way by keep-
ing the crystal orientation unchanged from the initial to the intermediate
configuration following (Mandel, 1973). The plastic distortion F

∼

p is invari-
ant with respect to rigid body motions that are carried by F

∼

e. The current
mass density is ρ whereas the mass density of the material element in the
intermediate configuration is ρi, such that ρi/ρ = Je := detF

∼

e. The elastic
strain is defined as

E
∼

e :=
1

2
(F
∼

eT · F
∼

e − 1
∼

) (88)

The microdeformation is linked to the plastic deformation via the introduc-
tion of a relative deformation measure defined as

e
∼

p := F
∼

p−1 · χ̂
∼

p − 1
∼

(89)

It measures the departure of the microdeformation from the plastic defor-
mation, which will be associated with a cost in the free energy potential.
When e

∼

p ≡ 0, the microdeformation coincides with the plastic deforma-
tion. The state variables are assumed to be the elastic strain, the relative
deformation, the curl of microdeformation and some internal variables, α:

STATE := {E
∼

e, e
∼

p, K
∼

, α} (90)
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The specific Helmholtz free energy density, ψ, is assumed to be a function of
this set of state variables. In particular, in this simple version of the model,
the curl of microdeformation is assumed to contribute entirely to the stored
energy. In more sophisticated models, as proposed in (Forest and Sievert,
2003, 2006; Forest, 2009; Gurtin and Anand, 2009), the relative deformation,
the microdeformation and its gradient can be split into elastic plastic parts.
This is not necessary for the size effects to be described in the present work.

When the internal constraint e
∼

p ≡ 0 is enforced, the plastic microdefor-
mation coincides with the plastic deformation so that the curl of the plastic
microdformation is directly related to the dislocation density tensor:

K
∼

:= Curl χ̂
∼

p ≡ CurlP = Jα
∼

· F
∼

−T (91)

The micromorphic model then reduces to strain gradient plasticity according
to Gurtin (2002).

The dissipation rate density is the difference:

D := p(i) − ρψ̇ ≥ 0 (92)

which must be positive according to the second principle of thermodynam-
ics. When the previous strain measures are introduced, the power density
of internal forces takes the following form:

p(i) = σ
∼

: Ḟ
∼

e
· F
∼

e−1 + σ
∼

: F
∼

e · Ḟ
∼

p
· F
∼

p−1 · F
∼

e−1

+ s
∼

: (F
∼

p · ė
∼

p + Ḟ
∼

p
· e
∼

p) +M
∼

: K̇
∼

· F
∼

−1

=
ρ

ρi
Π
∼

e : Ė
∼

e
+

ρ

ρi
Π
∼

M : Ḟ
∼

p
· F
∼

p−1

+ s
∼

: (F
∼

p · ė
∼

p + Ḟ
∼

p
· e
∼

p) +M
∼

: K̇
∼

· F
∼

−1 (93)

where Π
∼

e is the second Piola–Kirchhoff stress tensor with respect to the

intermediate configuration and Π
∼

M is the Mandel stress tensor:

Π
∼

e := JeF
∼

e−1 ·σ
∼

·F
∼

e−T , Π
∼

M := JeF
∼

eT ·σ
∼

·F
∼

e−T = F
∼

eT ·F
∼

e ·Π
∼

e (94)

On the other hand,

ρψ̇ = ρ
∂ψ

∂E
∼

e : Ė
∼

e
+ ρ

∂ψ

∂e
∼

p
: ė
∼

p + ρ
∂ψ

∂K
∼

: K̇
∼

+ ρ
∂ψ

∂α
α̇ (95)
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We compute

JeD = (Π
∼

e − ρi
∂ψ

∂E
∼

e ) : Ė∼
e
+ (JeF

∼

pT · s
∼

− ρi
∂ψ

∂e
∼

p
) : ė

∼

p

+ (JeM
∼

· F
∼

−T − ρi
∂ψ

∂K
∼

) : K̇
∼

+ (Π
∼

M + Jes
∼

· χ̂
∼

pT ) : Ḟ
∼

p
· F
∼

p−1 − ρi
∂ψ

∂α
α̇ ≥ 0 (96)

Assuming that the processes associated with Ė
∼

e
, ė
∼

p and K̇
∼

are non–dissipative,
the state laws are obtained:

Π
∼

e = ρi
∂ψ

∂E
∼

e , s
∼

= J−1
e F

∼

p−T · ρi
∂ψ

∂e
∼

p
, M

∼

= J−1
e ρi

∂ψ

∂K
∼

· F
∼

T (97)

The residual dissipation rate is

JeD = (Π
∼

M + Jes
∼

· χ̂
∼

pT ) : Ḟ
∼

p
·F
∼

p−1 −Rα̇ ≥ 0, with R := ρi
∂ψ

∂α
(98)

At this stage, a dissipation potential, function of stress measures, Ω(S
∼

, R),
is introduced in order to formulate the evolution equations for plastic flow
and internal variables:

Ḟ
∼

p
· F
∼

p−1 =
∂Ω

∂S
∼

, with S
∼

:= Π
∼

M + Jes
∼

· χ̂
∼

pT (99)

α̇ = −
∂Ω

∂R
(100)

where R is the thermodynamic force associated with the internal variable
α, and S

∼

is the effective stress conjugate to plastic strain rate, the driving
force for plastic flow.
In the case of crystal plasticity, a generalized Schmid law is adopted for each
slip system s in the form:

f s(S
∼

, τsc ) = |S
∼

: P
∼

s| − τsc ≥ 0, with P
∼

s = l s ⊗ n s (101)

for activation of slip system s with slip direction, l s, and normal to the
slip plane, n s. We call P

∼

s the orientation tensor. The critical resolved
shear stress is τsc which may be a function of R in the presence of isotropic
hardening. The kinematics of plastic slip follows from the choice of a dis-
sipation potential, Ω(f s), that depends on the stress variables through the
yield function itself, fs:

Ḟ
∼

p
· F
∼

p−1 =

N∑
s=1

∂Ω

∂f s

∂f s

∂S
∼

=

N∑
s=1

γ̇s P
∼

s, with γ̇s =
∂Ω

∂f s
sign(S

∼

: P
∼

s)

(102)
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A possible viscoplastic potential is then:

Ω(f s) =
K

n+ 1
<

f s

K
>n+1 (103)

where K,n are viscosity parameters associated with viscoplastic slip, and
the brackets stand for < · >= Max(0, ·). The generalized resolved shear
stress can be decomposed into two contributions:

S
∼

: P
∼

s = τs−xs, with τs = Π
∼

M : P
∼

s and xs = −s
∼

·χ̂
∼

pT : P
∼

s (104)

The usual resolved shear stress is τs whereas xs can be interpreted as an
internal stress or back–stress leading to kinematic hardening. The fact that
the introduction of the effect of the dislocation density tensor or, more gen-
erally, of gradient of plastic strain tensor, leads to the existence of internal
stresses induced by higher order stresses has already been noticed by (Stein-
mann, 1996), see also (Forest, 2008). The back–stress component is induced
by the microstress s

∼

or, equivalently, by the curl of the generalized couple
stress tensor, M

∼

, via the balance equation (85).
When deformations and rotations remain sufficiently small, the previous

equations can be linearized as follows:

F
∼

= 1
∼

+H
∼

� 1
∼

+H
∼

e +H
∼

p, H
∼

e = ε
∼

e + ωe, H
∼

p = ε
∼

p + ωp (105)

where ε
∼

e,ω
∼

e (resp. ε
∼

p,ω
∼

p) are the symmetric and skew–symmetric parts
of F

∼

e − 1
∼

(resp. F
∼

p − 1
∼

). When microdeformation is small, the relative
deformation is linearized as

e
∼

p = (1
∼

+H
∼

p)−1 · (1
∼

+ χ
∼

p)− 1
∼

� χ
∼

p −H
∼

p, with χ
∼

p = χ̂
∼

p − 1
∼

(106)

When linearized, the state laws (97) become:

σ
∼

= ρ
∂ψ

∂ε
∼

e
, s

∼

= ρ
∂ψ

∂e
∼

p
, M

∼

= ρ
∂ψ

∂K
∼

(107)

The evolution equations read then:

ε̇
∼

p =
∂Ω

∂(σ
∼

+ s
∼

)
, α̇ = −

∂Ω

∂R
(108)

We adopt the most simple case of a quadratic free energy potential:

ρψ(ε
∼

e, e
∼

p,K
∼

) =
1

2
ε
∼

e : C
≈

: ε
∼

e +
1

2
Hχe

∼

p : e
∼

p +
1

2
AK
∼

: K
∼

(109)
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Figure 2. Single slip in a periodic two–phase single crystal laminate under
simple shear: the grey phase (h) displays a purely linear elastic behaviour
whereas the inelastic deformation of the white elasto–plastic phase (s) is
controlled by a single slip system (n , l ).

The usual four–rank tensor of elastic moduli is denoted by C
≈

. The higher

order moduli have been limited to only two additional parameters: Hχ (unit
MPa) and A (unit MPa.mm2). Their essential impact on the prediction of
size effect will be analyzed in the next section. It follows that:

σ
∼

= C
≈

: ε
∼

e, s
∼

= Hχe
∼

p, M
∼

= AK
∼

(110)

Large values of Hχ ensure that e
∼

p remains small so that χ̂
∼

p remains close

to H
∼

p and K
∼

is close to the dislocation density tensor. The yield condition
for each slip system becomes:

fs = |τs − xs| − τsc (111)

with
xs = −s

∼

: P
∼

s = (curlM
∼

) : P
∼

s = A(curl curlχ
∼

p) : P
∼

s (112)

3.2 Size effects in a two-phase single crystal laminate

Let us consider a periodic two–phase single crystal laminate under simple
shear as in (Forest and Sedláček, 2003), (Forest, 2008) and (Cordero et al.,
2010). This microstructure is described in Fig. 2; it is composed of a hard
elastic phase (h) and a soft elasto–plastic phase (s) where one slip system
with slip direction normal to the interface between (h) and (s) is considered.
A mean simple glide γ̄ is applied in the crystal slip direction of the phase
(s). We consider a displacement and microdeformation fields of the form:

u1 = γ̄x2, u2(x1), u3 = 0, χp
12(x1), χp

21(x1) (113)
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within the context of small deformation theory. It follows that

[
H
∼

]
=

⎡⎣ 0 γ̄ 0
u2,1 0 0
0 0 0

⎤⎦
[
H
∼

p
]
=

⎡⎣ 0 γ 0
0 0 0
0 0 0

⎤⎦ [
H
∼

e
]
=

⎡⎣ 0 γ̄ − γ 0
u2,1 0 0
0 0 0

⎤⎦
[
χ
∼

p
]
=

⎡⎣ 0 χp
12(x1) 0

χp
21(x1) 0 0
0 0 0

⎤⎦ [
curlχ

∼

p
]
=

⎡⎣ 0 0 −χp
12,1

0 0 0
0 0 0

⎤⎦
The resulting stress tensors are:

[
σ
∼

]
= μ

⎡⎣ 0 γ̄ − γ + u2,1 0
γ̄ − γ + u2,1 0 0

0 0 0

⎤⎦
[
s
∼

]
= −Hχ

⎡⎣ 0 γ − χp
12 0

−χp
21 0 0

0 0 0

⎤⎦
[
M
∼

]
=

⎡⎣ 0 0 −Aχp
12,1

0 0 0
0 0 0

⎤⎦ [
curlM

∼

]
=

⎡⎣ 0 −Aχp
12,11 0

0 0 0
0 0 0

⎤⎦
These forms of matrices are valid for both phases, except that γ ≡ 0 in the
hard elastic phase. Each phase possesses its own material parameters, Hχ

and A, the shear modulus, μ, being assumed for simplicity to be identical
in both phases. The balance equation, s

∼

= − curlM
∼

, gives χp
21 = 0 and the

plastic slip:

γ = χp
12 −

A

Hχ

χp
12,11. (114)

In the soft phase, the plasticity criterion stipulates that

σ12 + s12 = τc +Hγcum, (115)

where H is a linear hardening modulus considered in this phase and γcum
is the accumulated plastic slip as γ̇cum = |γ̇|. The following analytical
resolution is done for the first loading branch, under monotonic loading.
The slip direction, l , has been chosen such that γ > 0 for this first loading
branch, so that we have: γcum = γ. Considering Eqs. (114) and (115),



Micromorphic Approach to Crystal Plasticity… 155

we obtain the second order differential equation for the microdeformation
variable in the soft phase, χps

12,

1

ωs2
χps
12,11 − χps

12 =
τc − σ12

H
, with ωs =

√
Hs

χH

As
(
Hs

χ +H
) . (116)

where 1/ωs is the characteristic length of the soft phase for this boundary
value problem. The force stress balance equation requires σ12 to be uniform.
It follows that the non–homogeneous part of the differential equation is
constant and then the hyperbolic profile of χps

12 takes the form:

χps
12 = Cs cosh (ωsx) +D, (117)

where Cs and D are constants to be determined. Symmetry conditions
(χps

12(−s/2) = χps
12(s/2)) have been taken into account.

In the elastic phase, where the plastic slip vanishes, an hyperbolic profile of
the microdeformation variable, χph

12 , is also obtained:

χph
12 = Ch cosh

(
ωh

(
x±

s+ h

2

))
, with ωh =

√
Hh

χ

Ah
, (118)

where, again, Ch is a constant to be determined and symmetry conditions
have been taken into account. It is remarkable that the plastic microvari-
able, χph

12 , does not vanish in the elastic phase, close to the interfaces, al-
though no plastic deformation takes place. This is due to the transmission
of double traction. Such a transmission has been shown in (Cordero et al.,
2010) to be essential for size effects to occur. This point will be discussed in
section 3.3. The meaning of the linear constitutive equation for the double
stress tensor in (110) can be interpreted, for the elastic phase, as non–local
elasticity. That is why the corresponding characteristic length, 1/ωh, will
be kept of the order of nanometer in the presented simulation.

Note that the same boundary value problem was handled in (Cordero
et al., 2010) in the case of a perfectly plastic phase (s), i.e., without linear
isotropic hardening. It showed that χps

12 has a parabolic profile over (s), the

profile of χph
12 remaining hyperbolic in the hard phase (h). In the following

of this section we will show how the additional isotropic hardening affects
the local and macroscopic behaviors while the main effects of the microcurl
model as presented in (Cordero et al., 2010) remain.
The coefficients Cs, D and Ch can be identified using the interface and
periodicity conditions:
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• Continuity of χp
12 at x = ±s/2:

Cs cosh
(
ωs s

2

)
+D = Ch cosh

(
ωhh

2

)
. (119)

• Continuity of the double traction, as given in Eq. (86), m12 = −M13

at x = ±s/2:

AsωsCs sinh
(
ωs s

2

)
= −AhωhCh sinh

(
ωhh

2

)
. (120)

• Periodicity of displacement component u2. We have the constant
stress component

σ12 = μ(γ̄ − γ + u2,1) (121)

whose value is obtained from the plasticity criterion in the soft phase
(Eq. 115):

σ12 = τc +Hγcum −Asχps
12,11. (122)

Still considering the first loading branch for which γcum = γ, it follows
that

us
2,1 =

σ12

μ
− γ̄+ γ =

τc
μ
− γ̄+

Asωs2Cs

H
cosh (ωsx) +

H + μ

μ
D (123)

in the soft phase and

uh
2,1 =

σ12

μ
− γ̄ =

τc
μ

− γ̄ +
H

μ
D (124)

in the hard phase. The average on the whole structure,∫ (s+h)/2

−(s+h)/2

u2,1 dx = 0, (125)

must vanish for periodicity reasons and gives(
τc
μ

− γ̄

)
(s+ h) +

2AsωsCs

H
sinh

(
ωs s

2

)
+

H (s+ h) + μs

μ
D = 0

(126)
The resolution of Eqs. (119), (120) and (126) gives

Cs =

(
τc
μ

− γ̄

)⎡⎣Asωs sinh
(
ωs s

2

)
s+ h
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⎛⎜⎜⎝H (s+ h) + μs

μ

⎛⎜⎜⎝coth
(
ωs s

2

)
Asωs

+

coth

(
ωhh

2

)
Ahωh

⎞⎟⎟⎠−
2

H

⎞⎟⎟⎠
⎤⎥⎥⎦
−1

(127)

D = −AsωsCs sinh
(
ωs s

2

)⎛⎜⎜⎝coth
(
ωs s

2

)
Asωs

+

coth

(
ωhh

2

)
Ahωh

⎞⎟⎟⎠ (128)

Ch = −Cs
Asωs sinh

(
ωs s

2

)
Ahωh sinh

(
ωh

h

2

) . (129)

Fig. 3 shows the profiles of plastic microdeformation and double traction
in the two–phase laminate for different sets of material parameters and for
a fraction of soft phase (s), fs = 0.7. These profiles clearly show the conti-
nuity of χp

12 and m12 at the interfaces. The different shapes presented are
obtained for various values of the modulus As, the other material param-
eters being fixed and given in Table 1. Varying As modifies the mismatch
with respect to the modulus Ah of the phase (h). Without mismatch the
profile of χp

12 is smooth at interfaces while stronger mismatches lead to
sharper transitions between the phases. Varying As also changes the in-
trinsic length scale 1/ωs of the phase (s). When the intrinsic length scale
is small compared to the size of the microstructure, the microdeformation
gradient can develop inside the phase (s) which leads to a rounded profile
of the plastic microdeformation χps

12 and to a double traction m12 localized
at the interfaces. When the intrinsic length scale increases, the value of
the double traction also increases at the interfaces (or equivalently, when
decreasing the microstructure length scale, l = s + h, for a fixed intrin-
sic length scale). When the intrinsic length scale becomes of the order of
the size of the microstructure or even larger, the model starts to saturate
so that χps

12 becomes quasi–homogeneous (flat profile) and the double trac-
tion is not localized anymore (linear profile). χps

12 is affected by As in the
same way as in (Cordero et al., 2010) where the hardening modulus, H ,
was not considered; in this latter case, the plastic microdeformation profile
was parabolic, so that m12, as a linear function of χps

12,1, always displayed a
linear evolution in the phase (s), even for very small intrinsic length scales.
From Eq. (122) we derive the expression of the macroscopic stress tensor
component, Σ12, defined as the mean value of the stress component σ12 over



158 S. Forest et al.

Table 1. Set of material parameters used in the simulations. The intrinsic
length scales, defined as 1/ωh,s, induced by these parameters is of the order
of 10 nm for the elastic phase (h) and 500 nm for the plastic phase (s).

μ [MPa] τc [MPa] H [MPa] Hχ [MPa] A [MPa.mm2]
Phase (s) 35000 40 5000 500000 1.10−3

Phase (h) 35000 - - 500000 5.10−5

the microstructure size, l = (s+ h):

Σ12 =< σ12 >=
1

l

∫ l
2

−
l
2

σ12 dx = τc +
H

fs
〈γcum〉 −

As

fs
〈χps

12,11〉, (130)

where brackets <> denote the average values over the microstructure unit
cell. We obtain the mean plastic slip for the first loading branch from Eq.
(114):

〈γ〉 =

〈
χps
12 −

As

Hs
χ

χps
12,11

〉
=

2AsωsCs sinh

(
ωs fsl

2

)
Hl

+ fsD (131)

where fs is the fraction of soft phase. From this we obtain alternative
expressions of Cs and D as functions of 〈γ〉,

Cs = −〈γ〉

[
Asωs sinh

(
ωs fsl

2

)
⎛⎜⎜⎝fs

⎛⎜⎜⎝coth

(
ωs fsl

2

)
Asωs

+

coth

(
ωh (1− fs) l

2

)
Ahωh

⎞⎟⎟⎠−
2

Hl

⎞⎟⎟⎠
⎤⎥⎥⎦
−1

(132)

D = 〈γ〉

⎡⎢⎢⎢⎣fs − 2

Hl

⎛⎜⎜⎝coth

(
ωs fsl

2

)
Asωs

+

coth

(
ωh (1− fs) l

2

)
Ahωh

⎞⎟⎟⎠
−1
⎤⎥⎥⎥⎦
−1

(133)

which contain contributions from both the back–stress and the isotropic
hardening. The macroscopic stress takes the form:

Σ12 = τc +HD. (134)
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Figure 3. Profiles of (a) plastic microdeformation χp
12 and (b) double

traction m12 in the two–phase microstructure with the microcurl model
at 0.2% overall plastic strain obtained with the set of material param-
eters given in Table 1 and: (1) with no mismatch between the moduli
of the two phases, Ah = As = 5.10−5 MPa.mm2, (2) with a stronger
mismatch, Ah = 5.10−5 MPa.mm2 and As = 1.10−3 MPa.mm2 and (3)
Ah = 5.10−5 MPa.mm2 and As = 5.10−2 MPa.mm2. The associated intrin-
sic length scales, 1/ωs, are respectively: 100 nm, 449 nm and 3.2μm. In all
three cases, the fraction of soft phase fs = 0.7 and the microstructure size
is fixed, l = 1 μm. The vertical lines indicate the position of interfaces.

(a)

(b)
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The hardening produced by the model is a combination of the kinematic
hardening arising from the higher order back–stress component and the
linear isotropic hardening introduced in (115). Its modulus, Htot, is size–
dependent and is obtained using Eqs. (133) and (134):

Htot = H

⎡⎢⎢⎢⎣fs − 2

Hl

⎛⎜⎜⎝coth

(
ωs

fsl

2

)
Asωs

+

coth

(
ωh

(1− fs) l

2

)
Ahωh

⎞⎟⎟⎠
−1
⎤⎥⎥⎥⎦
−1

(135)
The macroscopic stress–strain curves shown in Fig. 4 illustrate the ad-
ditional hardening predicted by the microcurl model in comparison to a
conventional crystal plasticity theory. One cycle of deformation γ̄ has been
considered to illustrate the kinematic hardening effects. The first loading
branch is described by the previous analytical solution, whereas the remain-
ing of the loop has been computed numerically. In the absence of gradient
effects (classical case, dashed line), only isotropic hardening is visible. The
microcurl model leads to an additional kinematic hardening component.
When the size of the elasto-plastic phase (s) becomes large compared to
the intrinsic length scale 1/ωs, strain gradient effect is small and the kine-
matic hardening arising from the microcurl model tends to vanish. Then
the model reduces to conventional crystal plasticity theory and the limit of
the 0.2% macroscopic flow stress is:

lim
l→∞

Σ12|0.2 = τc +
H

fs
〈γcum〉. (136)

In contrast, the maximum extra–stress, ΔΣ, predicted by the model at small
microstructure sizes can be computed as:

ΔΣ = lim
l→0

Σ12(< γ >)− lim
l→∞

Σ12|0.2 =
1− fs
fs

Hχ 〈γ〉 . (137)

Fig. 5 presents the predicted evolution of the macroscopic flow stress Σ12|0.2

at 0.2% plastic strain (obtained by setting 〈γ〉 = 0.002) as a function of the
microstructure length scale l in a log–log diagram. This evolution is plotted
using the material parameters given in Table 1 and for various values of the
coupling modulus, Hs

χ = Hh
χ = Hχ. The four lower curves are obtained for

finite values of the modulus Hχ, they exhibit a tanh–shape with saturation
for large (l > 10−2 mm) and small (l < 10−5 mm) values of l. These
saturations can be characterized by the limit given in Eq. (136) and the
maximum extra–stress, ΔΣ, given in Eq. (137) respectively. A transition
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Figure 4. Macroscopic stress–strain response of the two–phase microstruc-
ture under cyclic shear loading conditions: comparison between the be-
haviour from a conventional crystal plasticity theory and the behaviour ac-
cording to the microcurl model in which an additional kinematic hardening
is predicted. Results obtained by finite element simulations for: l = 1μm,
fs = 0.7 and the material parameters given in Table 1.

domain with strong size dependence is observed between these two plateaus.
The limits and the maximum extra–stress, the position of the transition
zone and the scaling law exponent in the size dependent domain (slope in
the log–log diagram) are directly related to the material parameters used in
the model. In fact, the position of the size dependent domain is controlled
by the moduli Ah,s (not illustrated here) while the maximum extra–stress
and the scaling law exponent are both controlled by the modulus Hχ, both
increasing for higher values of Hχ as suggested by Fig. 5.
When Hχ is very small, we can deduce from Eq. (137) that ΔΣ vanishes
and consequently the scaling law exponent will tend to 0. The upper curve
is obtained for Hχ → ∞, it no longer exhibits a tanh–shape as no saturation
occurs for small values of l, the limit ΔΣ → ∞ follows. This limit case will
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Figure 5. Evolution of the macroscopic flow stress Σ12|0.2 at 0.2% plastic
strain as a function of the microstructure length scale l, plotted for different
coupling moduliHχ (= Hs

χ = Hh
χ). The other material parameters are given

in Table 1 and fs = 0.7.

be described in next subsection, it will be shown that in that case a scaling
law exponent of −2 is reached. Finally the microcurl model can produce
scaling law exponents ranging from 0 to −2.

3.3 Strain gradient plasticity as a limit case

In the proposed microcurl model, the modulus Hχ introduces a coupling
between micro and macro variables. A high value of Hχ forces the plastic
microdeformation χ

∼

p to remain as close as possible to the macro plastic

deformation H
∼

p. Consequently, it enforces the condition that K
∼

coincides
with the dislocation density tensor. In this case, the microcurl model de-
generates into the strain gradient plasticity model by (Gurtin, 2002). When
applied to the laminate microstructure, the strain gradient plasticity model
leads to the indeterminacy of the double traction vector at the interfaces,
due to the fact that no strain gradient effect occurs in the elastic phase,
see (Cordero et al., 2010). The microcurl model can then be used to derive
the missing interface condition to be applied at the interface, by means of
a limit process in the previous solution of the boundary value problem.
The limit Hχ → ∞ of the microcurl model can be used to determine the
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value of the double traction to be imposed at the interface.

lim
Hχ→∞

m12(s/2) = lim
Hχ→∞

Asχps
12,1(s/2)

= lim
Hχ→∞

Asωs sinh

(
ωs fsl

2

)
Cs

= lim
Hχ→∞

〈γ〉

⎡⎢⎢⎣ 2

Hl
− fs

⎛⎜⎜⎝coth

(
ωs fsl

2

)
Asωs

+

coth

(
ωh (1− fs) l

2

)
Ahωh

⎞⎟⎟⎠
⎤⎥⎥⎦
−1

Since Hχ → ∞, 1/ωh → 0 and coth
(
ωhh/2

)
→ 1. Moreover, ωs

∞ := ωs →√
H/As. Consequently,

lim
Hχ→∞

m12(s/2) = 〈γ〉

⎡⎢⎢⎣ 2

Hl
− fs

coth

(
ωs
∞

fsl

2

)
Asωs

∞

⎤⎥⎥⎦
−1

(138)

Accordingly, the double traction is found to depend on the mean plastic slip.
The characteristic length in the soft phase for the strain gradient plasticity
model is found to be related to the ratio between the hardening modulus
and the higher order modulus, As.
The limiting process can also be used to predict the response of the strain
gradient plasticity model in the size effect zone. For that purpose, let us
consider the limit of Σ12|0.2, when Hχ goes to infinity. Indeed, when Hχ

tends to infinity, the expression of D in Eq. (133) can be simplified. We
consider sizes of the microstructures in the size effect zone, i.e. intermediate
values of l. Since Hχ is very high, the term tanh

(
ωh(1− fs)l/2

)
tends to

1. Considering that l is small enough, the term l (tanh (ωsfsl/2)) can be
approximated by its Taylor expansion at the order 2, which leads to D of
the form:

D ≈
al+ b

cl2 + dl + e
(139)

where

a =
〈γ〉fs

2
√
Hχ

, b = 〈γ〉fsA
h

(
1 +

H

Hχ

)
(140)

c = −
f3
sH

√
Ah

12
, d =

f2
sH

2
√
Hχ

, e = −
fs
√
AhH

Hχ

(141)
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The terms a, d and e tend to 0 when Hχ → ∞, so that

D ≈
12As〈γ〉

f3
sHl2

(142)

and for the macroscopic stress:

Σ12 ≈ τc +
12As〈γ〉

f3
s l

2
(143)

This expression is the same as that found in the absence of isotropic hard-
ening in (Cordero et al., 2010). It indicates a l−2 scaling law for the strain
gradient plasticity model. This scaling law differs from Hall–Petch relation,
l−1/2, typical for grain size effects, and from Orowan’s law, l−1, valid for
precipitate size effects.

4 Continuum modelling of size effects in polycrystals

The model is now applied to simulate the response of polycrystals and the
effects of grain size.

The interface conditions at grain boundaries play a major role in the
simulated size effects in the polycrystal behaviour. No special interface law
is considered in this work, although such physically motivated interface con-
ditions exist in the literature, see (Gurtin and Anand, 2008). Instead we
consider the canonical interface conditions that arise from the formulation
of the balance equations of the microcurl continuum model. These condi-
tions are the continuity of displacement, u , and the continuity of plastic
micro–deformation, χ

∼

p. These conditions also include the continuity of the

simple and double tractions, t and M
∼

, described in Eq. (86). Continuity
of displacement excludes grain boundary cracking and sliding. Continu-
ity of plastic micro–deformation is reminiscent of the fact that dislocations
generally do not cross grain boundaries, especially for such random grain
boundaries. Note that in the microcurl model, only the kinematic degrees
of freedom χ

∼

p are continuous. This is not the case of the plastic deforma-

tion, H
∼

p, which is treated here as an internal variable. However, due to
the internal constraint discussed in section 3.1, H

∼

p closely follows the plas-
tic micro–deformation, so that it is quasi–continuous at grain boundaries
when the penalty coefficient, Hχ, is high enough. Conversely, lower values
of Hχ may allow slightly discontinuous plastic deformation, which may be
tentatively interpreted as dislocation sinking inside grain boundaries. The
continuity of the associated tractions expresses the transmission of classi-
cal and generalised internal forces from one grain to another through grain
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(a) (b)

(c)

Figure 6. Periodic meshes of the 2D periodic aggregates used in the finite
element simulations: (a) 24 grains, (b) 52 gains. Two slip systems are taken
into account in each randomly oriented grain. Various mean grain sizes, d,
ranging from tens of nanometers to hundreds of microns, are investigated.
(c) Description of the two effective slip systems for 2D planar double slip.

boundaries. Such continuum models are then able to mimic in that way
the development of dislocation pile–ups at grain boundaries (Forest and
Sedláček, 2003).

4.1 Boundary value problem for polycrystals

The size effects exhibited by the solution of the boundary value problem
are linked to an intrinsic length scale, ls, introduced through the generalised
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moduli Hχ and A of Eq. (110) and defined as:

ls =

√
A

Hχ

. (144)

This intrinsic length scale has to be consistent with the fact that plasticity
effects occur at scales ranging from hundreds of nanometers to a few microns.
In addition, as stated in section 3.1, the coupling modulus, Hχ, has to be
chosen high enough to ensure that χ

∼

p and H
∼

p are close. Hχ also determines
the scaling law exponent. These requirements are guidelines for the choice
of relevant generalised moduli Hχ and A. The sets of material parameters
used in this paper are chosen in that way.

The finite element simulations have been made on periodic 2D meshes of
periodic polycrystalline aggregates generated by a method based on Voronoi
tessellations (Fig. 6(a)(b)). The integration order of elements is quadratic.
The Voronoi polyhedra represent the grains, the random distribution of their
centers has been controlled so that their sizes are sensibly the same, that
is why we can reasonably assume that the mean grain size, d, is sufficient
to characterise the microstructure of our aggregates. A random orientation
is assigned to each grain and two slip systems are taken into account. In
2D, the plastic behaviour of f.c.c. crystals can be simulated with 2D planar
double slip by considering two effective slip systems separated by an angle
of 2φ (Asaro, 1983; Bennett and McDowell, 2003). Figure 6(c) describes the
geometry. The slip system pair is oriented by the angle θ which is the grain
orientation randomly fixed for each grain. For a f.c.c. crystal φ = 35.1◦,
it corresponds to the orientation of the close–packed planes in the crystal
lattice of the grain.

Periodic homogenization for generalised continua is used to predict the
effective response of the polycrystal. The displacement field is assumed to
be of the form

u (x) = E
∼

.x + v (x), (145)

with the fluctuation v periodic, meaning that it takes identical values at
homologous points of the unit cell (Forest et al., 2001). The plastic micro–
deformation field, χ

∼

p, is assumed to be periodic, meaning that no rotational
macroscopic plastic deformation is imposed to the unit cell. Its components
are equal at homologous opposite nodes. According to periodic homog-
enization, the simple and double tractions t and m

∼

are anti–periodic at
homologous points of the unit cell.

Polycrystals are random materials so that the periodicity constraint may
lead to a bias in the estimation of the effective properties. This boundary
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Figure 7. Macroscopic stress–strain response of the 24–grain aggregate
under cyclic simple shear loading conditions with a mean gain size d ≈
0.2μm. The set of material parameters used is labelled (c) in Table 2.

effect can be alleviated by considering several realization of the microstruc-
ture and performing ensemble averaging (Zeghadi et al., 2007).

4.2 Overall cyclic response of a polycrystalline aggregate

The finite element simulations of the boundary value problem presented
previously have been conducted under generalised plane strain conditions
on aggregates with a relatively small number of grains. The aim here is not
to obtain a representative response but to catch the grain size effects and
to explore qualitatively the impact of different sets of material parameters.
In this section, a virtual material is considered with various intrinsic length
scales. The macroscopic stress–strain curve shown in Fig. 7 is obtained
by applying a cyclic simple shear loading controlled by the average stress
component E12 on the aggregate of 24 grains with d = 0.2μm and the set
of material parameters labelled (c) in Table 2. The mean stress component
Σ12 is then computed:

Σ12 =
1

V

∫
V

σ12 dV, E12 =
1

V

∫
V

ε12 dV, (146)



168 S. Forest et al.

Table 2. Sets of material parameters used in the 24–grain aggregate case
(Fig 6(a)). The intrinsic length scale, ls =

√
A/Hχ, is given for each set.

Set μ [MPa] τc [MPa] Hχ [MPa] A [MPa mm2] ls [μm]

a 35000 40 3.0 106 1.0 10−2 5.8 10−2

b 35000 40 1.0 106 1.0 10−2 1.0 10−1

c 35000 40 3.5 105 1.0 10−2 1.7 10−1

d 35000 40 8.8 104 1.0 10−3 1.1 10−1

where V denotes each polycrystal unit cell. The simulated response il-
lustrates the kinematic hardening produced by the microcurl model. The
stress–strain curves obtained in the next case (see Fig. 9) show that this
kinematic hardening is size dependent: it increases for smaller grains. Note
that the observed overall kinematic hardening has two distinct sources: the
intragranular back–stress induced by plastic strain gradients, and the inter-
granular internal stress that originate from the grain to grain plastic strain
incompatibilities. The latter contribution is also predicted by classical crys-
tal plasticity models.

Figure 8 presents the effect of the mean grain size, d, on the macroscopic
flow stress at 1% plastic strain in the 24–grain aggregate in a log–log dia-
gram for different intrinsic length scales, ls, introduced through the sets of
material parameters (labelled a, b, c and d) given in Table 2. The curves
exhibit two plateaus for large (d > 20μm) and small (d < 0.1μm) mean
grain sizes with a transition domain in between. This tanh–shape indicates
that when d is large compared to the intrinsic length scale, ls, strain gradi-
ent effects are small and the kinematic hardening arising from the microcurl
model vanishes. The model saturates when d is of the order of ls or smaller.
The transition domain exhibits a strong size dependence, the polycrystalline
aggregate becoming harder for decreasing grain sizes. The position of the
transition zone, the maximum extra–stress (the distance between the two
plateaus) and the scaling law exponent, m, in the size dependent domain
are controlled by the material parameters used in the model. The two latter
effects are controlled by the coupling modulus, Hχ, they both increase for
higher values of Hχ as shown in Fig. 8. The scaling exponent is defined
as the slope in the log–log diagram in the inflection domain, reflecting the
scaling law:

Σ12 ∝ dm. (147)

It is obtained with the sets of material parameters given in Table 2. The
found values range from −0.26 to −0.64 including the well–known Hall–
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Figure 8. Effect of the mean grain size, d, on the macroscopic flow stress,
Σ12|1%, at 1% plastic strain. The results are obtained for the 24–grain
aggregate using the different sets of material parameters given in Table 2.
The scaling law exponent, m, is identified in each case.

Petch exponent m = −0.5. In fact it was shown in (Cordero et al., 2010)
that values of m ranging from 0 to −2 can be simulated with the microcurl
model in the case of two–phase microstructures. In each case, these val-
ues are obtained without classical isotropic hardening, meaning that the
linear kinematic hardening produced by the model is able to reproduce a
wide range of scaling laws. Note that conventional strain gradient plasticity
models do not lead to tanh–shape curves but rather to unbounded stress
increase for vanishingly small microstructures (Cordero et al., 2010).

4.3 Grain size effects in idealised aluminium polycrystals

Similar finite element simulations have been performed on idealised alu-
minium aggregates of 52 grains shown in Fig. 6(b). An additional isotropic
hardening component is added as in (Méric et al., 1991) to obtain a more re-
alistic response of large aluminium grains. The size–independent hardening



170 S. Forest et al.

Figure 9. Macroscopic stress–strain response of the 52–grain aggregate
under simple shear for various mean grain sizes, d. The set of material
parameters used is labelled (g) in Table 3.

law reads:

Rα = τc +Q

n∑
β

hαβ
(
1− exp

(
−b γβ

cum

))
, (148)

where n is the number of slip systems (here n = 2), Q and b are material
coefficients defining non–linear isotropic hardening, hαβ is the interaction
matrix and γβ

cum is the accumulated micro–plastic slip on the slip system
β. Cumulative plastic slip results from the integration of the differential
equation γ̇β

cum = |γ̇β |. The material parameters used in these simulations
are given in Table 3. The macroscopic stress–strain curves presented in Fig.
9 are obtained by applying a simple shear loading controlled by the average
strain component E12 on the 52–grain aggregate with various mean grain
sizes, d, taken in the size dependent domain. The chosen set of material
parameters has the label (g) in Table 3. These parameters are such that
an acceptable description of aluminium polycrystals is obtained for large
grains and that a Hall–Petch–like behaviour is found in a plausible range
of grain sizes. However we did not attempt to calibrate the amplitude of
the extra–hardening so that simulation predictions remain qualitative. The
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Table 3. Sets of material parameters used in the 52–grain aggregate case
(Fig 6(b)).

Set μ [MPa] τc [MPa] Q [MPa] b hαα hαβ, α�=β

e 27000 0.75 7.9 10.2 1 4.4
f 27000 0.75 7.9 10.2 1 4.4
g 27000 0.75 7.9 10.2 1 4.4

Set Hχ [MPa] A [MPa mm2] ls [μm]

e 1.0 106 1.0 10−2 1.0 10−1

f 3.5 105 1.0 10−2 1.7 10−1

g 5.0 104 1.0 10−2 4.5 10−1

curves of Fig. 9 show again that the kinematic hardening produced by the
model is strongly size dependent. The evolution of the macroscopic flow
stress at 1% plastic strain in the 52–grain aggregate is shown in Fig. 10 in
the same way as it was done in Fig. 8. The set of material parameters (g)
of Table 3 gives the ideal Hall–Petch scaling law exponent m = −0.5.

An important output of the simulations is the dependence of the stress
and strain fields in the grains of the polycrystal on grain size. Figures 11 and
12 show the contour plots of the field of accumulated plastic slip, computed
as

ṗ =

√
2

3
ε̇
∼

p : ε̇
∼

p, (149)

where ε
∼

p is the symmetric part of the plastic deformation, H
∼

p, and the
contour plots of the norm Γ of the dislocation density tensor,

Γ =
√

Γ
∼

: Γ
∼

, (150)

respectively. The considered grain sizes are taken in the size dependent
domain where the evolution of the fields is assumed to be physically rele-
vant. The chosen set of material parameters has the label (g) in Table 3,
it corresponds to an intrinsic length scale ls = 0.45μm and gives a scaling
law exponent m = −0.5. The mean value of the accumulated plastic slip
is the same in every case, only its distribution varies with the size of the
microstructure as shown in Fig. 11.

The first contour plot of each figure is obtained for d = 200μm � ls =
0.45μm, at the very beginning of the size–dependent behaviour domain ac-
cording to Fig. 10. At this size, the simulated fields show that p is quite
inhomogeneous and that some deformation bands appear; Γ is localised at
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Figure 10. Effect of the mean grain size, d, on the macroscopic flow stress,
Σ12|1%, at 1% plastic strain. The results are obtained for the 52–grain
aggregate using the different sets of material parameters given in Table 3.
The scaling law exponent, m, is identified in each case.

the grain boundaries and almost vanishes in the grain cores. The contour
plots obtained for 2μm< d < 20μm show a significant evolution of both
fields. One observes the progressive building of a network of strain localiza-
tion bands. These bands are slip bands as they are parallel to the slip plane
directions represented on the 1μm contour plot of Fig. 11. They compensate
the larger blue zones where plastic strain cannot develop due to the higher
energy cost associated with its gradient. Plastic strain becomes stronger
inside the localization bands. This is due to the fact that the contour plots
are given for fixed mean value of p, which implies that the applied total
strain is higher for small grain sizes as suggested by Fig. 9. The field of the
norm of the dislocation density tensor is still high close to grain boundaries
and spreads over the grain cores. The last contour plot of each figure is
obtained for d = 1μm, a size close to ls. Here the model starts to saturate,
which can be seen from the simulated fields. The field of p does not evolve
anymore and Γ decreases. In fact, as ls controls the strain gradient effects,
strong strain gradients cannot develop because they become energetically
too expensive when the microstructure size is too small.
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d = 200μm d = 20μm d = 10μm

d = 4μm d = 2μm d = 1μm

Figure 11. Grain size effect on the accumulated plastic slip. These contour
plots are obtained with the 52–grain aggregate for the same mean value of
p = 0.01. The set of material parameters (g) of Table 3 is used. The pairs
of slip plane directions are represented for each grain on the 1μm contour
plot.
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d = 200μm d = 20μm d = 10μm

d = 4μm d = 2μm d = 1μm

Figure 12. Grain size effect on the norm of the dislocation density tensor.
These contour plots are obtained with the 52–grain aggregate for the same
mean value of p = 0.01. The set of material parameters (g) of Table 3 is
used. The pairs of slip plane directions are represented for each grain on
the 1μm contour plot.
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5 Micromorphic approach vs. phase field models

There are strong links between generalized continuum mechanics and phase
field models which are striving in modern field theories of materials. Mindlin’s
and Casal’s second gradient model of mechanics and the Cahn–Hilliard dif-
fusion theory were developed almost simultaneously. More generally, the
necessity of introducing additional degrees of freedom in continuum models
arose in the 1960s in order to account for microstructure effects on the over-
all material’s response. However, generalized continuum mechanics, with
paradigms like Eringen’s micromorphic model and Aifantis strain gradient
plasticity, developed along an independent track from phase field approach
embodied by Khachaturyan’s views, for instance.

The links have been seen recently within the context of plasticity and
damage mechanics. The computational mechanics community aimed at in-
troducing the evolution of microstructures into their simulations (Ubachs
et al., 2004; Ammar et al., 2009a) whereas physicists started introducing
plasticity into the thermodynamical setting (Gaubert et al., 2008). Cooper-
ation between these communities becomes necessary when tackling damage
mechanics and crack propagation simulation (Aslan and Forest, 2009; Miehe
et al., 2010a). First attempts to present a general constitutive framework
encompassing classical enhanced mechanical and thermodynamical models
have been proposed recently (Forest, 2009; Aslan and Forest, 2011; Miehe,
2011). Such an approach is presented in this chapter and extended to so-
phisticated descriptions of interactions between viscoplasticity and phase
transformations.

The micromorphic model originates from Eringen’s introduction of mi-
crodeformation tensor at each material point that accounts for the changes
of a triad of microstructure vectors. In the present chapter, the micro-
morphic approach denotes an extension of this theory to other variables
than total deformation, namely plastic strain, hardening variables, and even
temperature and concentration. The gist of the micromorphic model is to
associate a microstructure quantity (e.g. microdeformation) to an overall
quantity (e.g. macroscopic deformation). The deviation of the microvariable
from the macrovariable and the gradient of the microvariable are sources of
stored energy and dissipation. They are controlled by generalized stresses
which contribute to the power of internal forces.

On the other hand, the phase field approach has proved to be an efficient
method to model the motion of interfaces and growth of precipitates based
on a sound thermodynamical formulation including non convex free energy
potentials (Finel et al., 2010). The effect of microelasticity on the morpho-
logical aspects and kinetics of phase transformation is classically studied but
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the occurrence of plasticity is recent (Ubachs et al., 2004; Gaubert et al.,
2008, 2010). Beyond plasticity, damage and crack propagation are the sub-
ject of both generalized continuum and phase field approaches (Frémond
and Nedjar, 1996; Ubachs et al., 2007; Aslan and Forest, 2009; Miehe et al.,
2010a,b). Phase field simulations usually rely on finite differences or fast
Fourier methods. More recently, the finite element method was also used
in order to tackle more general boundary conditions (Ammar et al., 2009a;
Miehe et al., 2010a; Rajagopal et al., 2010).

The objective of the present chapter is to formulate a thermomechanical
theory of continua with additional degrees of freedom. It is shown in a first
part that the theory encompasses available generalized continuum theories
and phase field models provided that well–suited free energy and dissipa-
tion potentials are selected. The current strain gradient plasticity models
are then extended to account simultaneously for plastic strain gradient and
plastic strain rate gradient in order to address viscoplastic instabilities oc-
curring in metal plasticity like dynamic strain ageing. The second part of
the work exposes how the well–known elastoviscoplastic constitutive frame-
work can be incorporated into the available phase field approach in order to
investigate the coupling between viscoplasticity and phase transformation.
An original approach is proposed that resorts to standard homogenization
techniques used in the mechanics of heterogeneous materials.

5.1 Thermomechanics with additional degrees of freedom

General setting. The displacement variables of mechanics can be com-
plemented by additional degrees of freedom (dof), φ, that can be scalars as
well as tensor variables of given rank:

DOF = {u , φ}, (151)

A first gradient theory is built on the basis of this set of degrees of freedom :

STRAIN = {ε
∼

, φ, ∇φ} (152)

The strain tensor, ε
∼

, is the symmetric part of the gradient of the displace-
ment field. The main assumption of the proposed theory is that the gradient
of the additional degrees of freedom contribute to the work of internal forces
in the energy equation, in contrast to internal variables and concentration
in diffusion theory. Depending on the invariance properties of the variable
φ, it can itself contribute to the work of internal forces together with its
gradient. It is not the case for the displacement itself which is not an ob-
jective vector. The virtual power of internal forces is then extended to the
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virtual power done by the additional variable and its first gradient:

P(i)(u̇ �, φ̇�) = −

∫
D

p(i)(u̇ �, φ̇�) dV

p(i)(u̇ �, φ̇�) = σ
∼

: ∇u̇ � + aφ̇� + b .∇φ̇� (153)

where D is a subdomain of the current configuration Ω of the body. Stars
denote virtual fields. The Cauchy stress tensor is σ

∼

and a and b are gen-
eralized stresses associated with the additional dof and its first gradient,
respectively. Similarly, the power of contact forces must be extended as
follows:

P(c)(u̇ �, φ̇�) =

∫
D

p(c)(u̇ �, φ̇�) dV, p(c)(u̇ �, φ̇�) = t .u̇ � + ac φ̇� (154)

where t is the traction vector and ac a generalized traction. In general, the
power of forces acting at a distance must also be extended in the form:

P(e)(u̇ �, φ̇�) =

∫
D

p(e)(u̇ �, φ̇�) dV, p(e)(u̇ �, φ̇�) = ρf .u̇ �+aeφ̇�+b e·∇φ̇�

(155)
where ρf accounts for given simple body forces and ae for generalized vol-
ume forces. The power of inertial forces also requires, for the sake of gen-
erality, the introduction of an inertia I associated with the acceleration of
the additional degrees of freedom :

P(a)(u̇ �, φ̇�) =

∫
D

p(a)(u̇ �, φ̇�) dV, p(a)(u̇ �, φ̇�) = −ρü .u̇ � − Iφ̈ φ̇�

(156)
Following (Germain, 1973a), given body couples and double forces working
with the gradient of the velocity field, could also be introduced in the theory.
The generalized principle of virtual power with respect to the velocity and
additional dof, is formulated as

P(i)(u̇ �, φ̇�)+P(e)(u̇ �, φ̇�)+P(c)(u̇ �, φ̇�)+P(a)(u̇ �, φ̇�) = 0, ∀D ⊂ Ω, ∀u̇ �, φ̇
(157)

The method of virtual power according to (Maugin, 1980) is used then to
derive the standard local balance of momentum equation:

divσ
∼

+ ρf = ρü , ∀x ∈ Ω (158)

and the generalized balance of micromorphic momentum equation:

div(b − b e)− a+ ae = Iφ̈, ∀x ∈ Ω (159)
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The method also delivers the associated boundary conditions for the simple
and generalized tractions:

t = σ
∼

.n , ac = (b − b e).n , ∀x ∈ ∂D (160)

The local balance of energy is also enhanced by the generalized power al-
ready included in the power of internal forces (153):

ρε̇ = p(i) − div q + ρr (161)

where ε is the specific internal energy, q the heat flux vector and r denotes
external heat sources. The entropy principle takes the usual local form:

−ρ(ψ̇ + ηṪ ) + p(i) −
q

T
.∇T ≥ 0 (162)

where it is assumed that the entropy production vector is still equal to the
heat vector divided by temperature, as in classical thermomechanics. Again,
the enhancement of the theory goes through the enriched power density
of internal forces (153). The entropy principle is exploited according to
classical continuum thermodynamics to derive the state laws. At this stage
it is necessary to be more specific on the dependence of the state functions
ψ, η,σ

∼

, a, b on state variables and to distinguish between dissipative and
non–dissipative mechanisms. The introduction of dissipative mechanisms
may require an increase in the number of state variables. These different
situations are considered in the following subsections.

Micromorphic model as a special case. The micromorphic model
as initially proposed by Eringen (Eringen and Suhubi, 1964) and Mindlin
(Mindlin, 1964) amounts to introducing a generally non compatible mi-
crodeformation field:

φ ≡ χ
∼

where χ
∼

is a generally non–symmetric second order tensor defined at each
material point. When the microdeformation reduces to its skew symmetric
part, the Cosserat model is retrieved (Ehlers and Volk, 1998; Forest and
Sievert, 2006). The microdeformation is to be compared to the deformation
gradient:

e
∼

= u ⊗∇− χ
∼

(163)

If the internal constraint e
∼

≡ 0 is enforced, the microdeformation coincides
with the deformation and the micromorphic model reduces to Mindlin’s
second gradient theory. The free energy density depends of the following
state variables:

STATE = {ε
∼

, e
∼

, K
∼

:= χ
∼

⊗∇, T, α}
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where α denotes the set of internal variables required to represent dissipative
mechanical phenomena. The Clausius–Duhem inequality (162) becomes, in
the isothermal case,

(σ
∼

− ρ
∂ψ

∂ε
∼

) : ε̇
∼

+(a
∼

− ρ
∂ψ

∂e
∼

) : ė
∼

+(b
∼

− ρ
∂ψ

∂K
∼

)
...K̇
∼

− (ρη+ ρ
∂ψ

∂T
)Ṫ − ρ

∂ψ

∂T
α̇ ≥ 0

(164)
where a

∼

was taken as the stress conjugate to the relative deformation rate
ė
∼

in the power of internal forces, which corresponds to an alternative form
for (153). The state laws for micromorphic media are obtained by assuming
that the first four contribution are non–dissipative:

σ
∼

= ρ
∂ψ

∂ε
∼

, a
∼

= ρ
∂ψ

∂e
∼

, b
∼

= ρ
∂ψ

∂K
∼

, η = −
∂ψ

∂T
(165)

Elastoviscoplastic micromorphic media are then obtained by a specific choice
of the internal variables α and their evolution rules (Forest and Sievert,
2006).

Phase field model as a special case. Enhancing the mechanical power
in the energy balance is plausible in the presence of microstructure induced
mechanical phenomena, as proposed by Eringen. However, this is also pos-
sible in other contexts, namely when the dof φ has a more general meaning
of an order parameter. Fried and Gurtin (Fried and Gurtin, 1993; Gurtin,
1996) suggested to consider the following reduced state space:

STATE = {ε
∼

, φ, ∇φ, T, α} (166)

and the following state laws

σ
∼

= ρ
∂ψ

∂ε
∼

, b = ρ
∂ψ

∂∇φ
, η = −

∂ψ

∂T
(167)

so that, in the isothermal case, the dissipation rate reduces to

avφ̇+Xα̇ ≥ 0, with av = a− ρ
∂ψ

∂φ
, X = −ρ

∂ψ

∂α
(168)

The choice of a convex potential Ω(av, X) providing the evolution laws:

φ̇ =
∂Ω

∂av
, α̇ =

∂Ω

∂X
(169)

ensures the positivity of the dissipation rate.
As an illustration, let us consider a quadratic contribution of av to the
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dissipation potential. We are lead to the following relationships

φ̇ =
1

β
av =

1

β
(a− ρ

∂ψ

∂φ
) (170)

where β is a material parameter. The latter equation can be combined with
the balance law (159), in the absence of volume or inertial forces, and the
state law (167) to derive

βφ̇ = div

(
ρ

∂ψ

∂∇φ

)
− ρ

∂ψ

∂φ
(171)

which corresponds to a general Ginzburg-Landau equation.
The authors in (Ubachs et al., 2004) have combined the micromorphic ap-
proach and the Cahn–Hilliard approach to diffusion in order to derive an
alternative equation to Cahn–Hilliard.

5.2 Constitutive framework for gradient and micromorphic vis-
coplasticity

We now exploit the established general structure to propose a constitu-
tive framework for elastoviscoplastic materials exhibiting plastic strain gra-
dient. The attention is focused on an isotropic elastoviscoplastic medium
characterized by the cumulated plastic strain, p. The proposed formulation
encompasses Aifantis–like strain gradient plasticity models and introduces
additional strain rate gradient effects. The total strain is split into its elastic
and plastic parts: ε

∼

= ε
∼

e+ ε
∼

p. In this context, the additional dof φ has the
meaning of a microplastic strain (Forest and Aifantis, 2010) to be compared
with p itself.

Two variants of the constitutive framework are considered which handle
in a slightly different way the dissipative contribution due to the generalized
stresses.

Introduction of viscous generalized stresses The free energy density
is assumed to depend on the following state variables:

STATE = {ε
∼

e, e := φ− p, p, K := ∇φ} (172)

The isothermal Clausius–Duhem inequality take the form:

(σ
∼

−ρ
∂ψ

∂ε
∼

e
) : ε̇

∼

e+(a−ρ
∂ψ

∂e
) : ė+(b −ρ

∂ψ

∂K
) ·K̇ +σ

∼

: ε̇
∼

p+aṗ−ρ
∂ψ

∂T
α̇ ≥ 0

(173)
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The following state laws are adopted

σ
∼

= ρ
∂ψ

∂ε
∼

e
, R = ρ

∂ψ

∂p
(174)

To ensure the positivity of the dissipation rate associated with the general-
ized stress a and b , we adopt the viscoelastic constitutive equations

a = ρ
∂ψ

∂e
+ βė, b = ρ

∂ψ

∂K
+ κK̇ (175)

where β and κ are generalized viscosity coefficients. This viscoelastic for-
mulation amounts to splitting the generalized stresses a and b into elastic
(reversible) and viscous parts. Regarding viscoplastic deformation, a vis-
coplastic potential Ω(σ

∼

, a−R) is chosen such that:

ε̇
∼

p =
∂Ω

∂σ
∼

, ṗ =
∂Ω

∂a− R
(176)

In order to evidence the kind of gradient elastoviscoplastic models we aim
at, we illustrate the case of a quadratic free energy potential:

ρψ =
1

2
ε
∼

e : C
≈

: ε
∼

e +R0p+
1

2
Hp2 +

1

2
Hφe

2 +
1

2
AK ·K

σ
∼

= C
≈

: ε
∼

e, R = R0 +Hp, a = Hφe + βė, b = AK + κK̇

The viscoplastic potential is based on the yield function that introduces the
equivalent stress measure σeq and a threshold

Ω(σ
∼

, a−R) =
K

n+ 1

〈
σeq + a−R

K

〉n+1

ε̇
∼

p = ṗ
∂σeq

∂σ
∼

, ṗ =

〈
σeq + a−R

K

〉n

where 〈·〉 denotes the positive part of the quantity in brackets, and K and
n are usual viscosity parameters. The decomposition (175) and the gener-
alized balance (159) become

a = Hφ(φ− p) + β(φ̇ − ṗ) = div(AK + κK̇ ) (177)

We finally obtain the following linear partial differential equation, under the
condition of plastic loading, in the absence of volume and inertial forces:

Hφφ−AΔφ + βφ̇− κΔφ̇ = Hφp+ κṗ (178)
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where Δ is the Laplace operator. When the viscous parts are dropped
in (175), the Helmholtz type equation used in strain gradient plasticity
and damage (Peerlings et al., 2001; Engelen et al., 2003; Forest, 2009) is
retrieved. It is classically used for the regularization of strain localization
phenomena. The rate dependent part in the previous equation is expected
to be useful in the simulation of strain rate localization phenomena which
occur for instance in strain ageing materials (Mazière et al., 2010).

Under plastic loading, the equivalent stress can then be decomposed into
the following contributions:

σeq = R− a+Kṗ1/n = R0 +Hp−AΔφ − κΔφ̇+Kṗ1/n (179)

If κ = 0, the micromorphic model is retrieved. If, furthermore, the con-
straint φ ≡ p is enforced, Aifantis well–known strain gradient plasticity
model is recovered.

Decomposition of the generalized strain measures. It is proposed
now to consider the decomposition of the additional dof and its gradient
into elastic and plastic parts:

φ = φe + φp, K = K e +K p (180)

The decomposition of φ itself is allowed only if it is an objective quantity.
This would not apply for instance for φ ≡ R

∼

, the Cosserat microrotation.
But it is allowed for a strain variable (Forest and Sievert, 2006). Such
generalized kinematic decompositions were proposed in (Forest and Sievert,
2006) for strain gradient, Cosserat and micromorphic media, also at finite
deformation. It is generalized here for more general dofs, possibly related
to physically coupled phenomena.

The selected state variables then are

STATE = {ε
∼

e, φe, K e, p} (181)

which leads to the following Clausius–Duhem inequality

(σ
∼

−ρ
∂ψ

∂ε
∼

e
) : ε̇

∼

e+(a−ρ
∂ψ

∂φe
)φ̇e+(b−ρ

∂ψ

∂K e )·K̇
e+σ

∼

: ε̇
∼

p+aφ̇p+b ·K̇ p−Rṗ ≥ 0

(182)
The retained state laws are

σ
∼

= ρ
∂ψ

∂ε
∼

e
, a = ρ

∂ψ

∂φe
, b = ρ

∂ψ

∂K e (183)

The residual dissipation then is

σ
∼

: ε̇
∼

p + aφ̇p + b · K̇ p −Rṗ ≥ 0 (184)
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A simple choice of dissipation potential is

Ω(σ
∼

, R, a) =
K

n+ 1

〈
σeq + a−R

K

〉n+1

+
Ka

ma + 1

(
|a|

Ka

)ma+1

+
Kb

mb + 1

(
beq
Kb

)mb+1

where beq is a norm of b and from which the evolution rules are derived

ε̇
∼

p = ṗ
∂σeq

∂σ
∼

, ṗ = −
∂Ω

∂R
=

〈
σeq + a−R

K

〉n

, (185)

φ̇p =
∂Ω

∂a
= ṗ+

(
|a|

Ka

)ma

signa, K̇ p =
∂Ω

∂b
=

(
beq
Kb

)mb ∂beq
∂b

(186)

The time variation of the additional dof therefore deviates from the cumu-
lated plastic strain rate by a viscous term characterized by the material
parameters Ka and ma. The residual dissipation rate becomes

(σeq −R+ a)ṗ+
|a|ma+1

Kma
a

+

(
beq
Kb

)mb ∂beq
∂b

· b ≥ 0 (187)

which is indeed always positive.
Let us illustrate the type of partial differential equation provided by

such a model. For that purpose, a simple quadratic free energy potential is
chosen:

ρψ =
1

2
ε
∼

e : C
≈

: ε
∼

e +R0p+
1

2
Hp2 +

1

2
Hφφ

e2 +
1

2
AK e ·K e (188)

As a result, the corresponding state laws can be combined with the extra–
balance equation (159):

a = Hφφ
e = div b = div(AK e) (189)

which leads to the following partial differential equation, under the condition
of material homogeneity:

Hφ(φ− φp) = AΔφ −AdivK p (190)

If Ka = ∞ (infinite viscosity), equation (186) shows that φp coincides with
p. If, furthermore, Kb = ∞, the plastic part of K vanishes. The equation
(189) then reduces to the Helmholtz–type equation (178) where β and κ are
set to zero. An alternative expression of (189) can be worked out by taking
the viscous laws into account

a = Ka(φ̇
p − ṗ) = div b = divKbK̇

p (191)
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which leads to the following partial differential equation

Ka(φ̇
p − ṗ) = Kb div K̇

p (192)

When the elastic contributions φe and K e are neglected, the previous equa-
tion reduces to

Ka(φ̇− ṗ) = KbΔφ̇ (193)

which is identical to (178) after taking A = Hφ = 0.

5.3 Phase field models for elastoviscoplastic materials

In this section, the additional degree of freedom is a phase field variable.
We show how the constitutive framework for elastoviscoplastic materials
can be embedded in the existing phase field approach which combines diffu-
sion and phase field equations to model the motion of boundaries between
phases. The migration of interfaces and growth of precipitates are strongly
influenced by the mechanical behaviour of the phases.

One observes in current literature a strong endeavour to develop mi-
crostructure evolution simulation schemes coupled with complex mechanical
material behaviour ranging from heterogeneous elasticity to general elasto-
viscoplasticity. The main difficulty of such a task lies in the tight coupling
between the complex interface evolutions and the fields, common to many
moving boundary problems. The phase field approach has emerged as a
powerful method for easily tackling the morphological evolutions involved
in phase transformations. Phase field models have incorporated elastic-
ity quite early (Wang et al., 1993) and have succeeded in predicting some
complex microstructure evolutions driven by the interplay of diffusion and
elasticity. It is only very recently that some phase field models have been
enriched with nonlinear mechanical behaviour, extending the range of ap-
plications and materials which can be handled by the phase field approach
(Ubachs et al., 2004; Gaubert et al., 2008; Ammar et al., 2009b; Gaubert
et al., 2010).

There are essentially two ways of introducing linear and nonlinear me-
chanical constitutive equations into the standard phase field approach:

1. The material behaviour is described by a unified set of constitutive
equations including material parameters that explicitly depend on the
concentration or the phase variable. Each parameter is usually in-
terpolated between the limit values known for each phase. This is
the formulation adopted in the finite element simulations of Cahn–
Hilliard like equations coupled with viscoplasticity in (Ubachs et al.,
2004, 2007) for tin–lead solders. The same methodology is used in
(Gaubert et al., 2008, 2010) to simulate the role of viscoplasticity on
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rafting of γ’ precipitates in single crystal nickel base superalloys under
load.

2. One distinct set of constitutive equations is attributed to each indi-
vidual phase k at any material point. Each phase at a material point
then possesses its own stress/strain tensor σ

∼k
, ε
∼k

. The overall strain
and stress quantities σ

∼

, ε
∼

at this material point must then be aver-
aged or interpolated from the values attributed to each phase. This
is particularly important for points inside the smooth interface zone.
At this stage, several mixture rules are available to perform this aver-
aging or interpolation. This approach makes possible to mix different
types of constitutive equations for each phase, like hyperelastic non-
linear behaviour for one phase and conventional elastic–plastic model
with internal variables for the other one. No correspondence of ma-
terial parameters is needed between the phase behaviour laws. This
is the approach proposed in (Steinbach and Apel, 2006) for incorpo-
rating elasticity in a multi–phase field model. For that purpose, the
authors resort to a well–known homogeneous stress hypothesis taken
from homogenization theory in the mechanics of heterogeneous materi-
als (Besson et al., 2009). In the present work, we propose to generalize
this procedure to nonlinear material behaviour and to other mixture
rules also taken from homogenization theory.

It must be emphasized that the latter procedure is very similar to what has
already been proposed for handling diffusion in phase field models by (Kim
et al., 1999). Two concentration fields cα and cβ are indeed introduced, and
the real concentration field is obtained by a mixture rule together with an
internal constraint on the diffusion potentials. Introducing two concentra-
tion fields gives an additional degree of freedom for controlling the energy of
the interface with respect to its thickness. If this possibility is not obvious
when mechanics is introduced, adding a degree of freedom for describing
the stresses/strains within a diffuse interface could be valuable to get rid of
some spurious effects due to unrealistic interface thickness.

Coupling with diffusion. In the context of mass diffusion and phase
field evolution, the local form of the energy principle is

ė = σ
∼

: ε̇
∼

+ aφ̇+ b ·∇φ̇ (194)

The total strain is partitioned into the elastic strain ε
∼

e, the eigenstrain ε
∼

�

due to phase transformation and the plastic strain ε
∼

p:

ε
∼

= ε
∼

e + ε
∼

� + ε
∼

p (195)
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According to the thermodynamics of irreversible processes, the second law
states that the variation of entropy is always larger than or equal to the
rate of entropy flux induced by diffusion:

T η̇ −∇.(μJ ) � 0 (196)

where J is the diffusion flux and μ is the chemical potential. The conser-
vation law for mass diffusion is then

ċ = −∇.J (197)

Accordingly, the fundamental inequality containing first and second princi-
ples in the isothermal case is written as

−ρψ̇ + σ
∼

: ε̇
∼∼

+ aφ̇+ b ·∇φ̇+ μċ− J .∇μ � 0 (198)

Assuming that the free energy density depends on the order parameter φ
and its gradient, the concentration c, the elastic strain ε

∼

e and the set of
internal variables Vk associated to material hardening5:

STATE = {φ, ∇φ, c, ε
∼

e, Vk}

The Clausius-Duhem inequality now becomes:(
a− ρ

∂ψ

∂φ

)
φ̇+

(
b − ρ

∂ψ

∂∇φ

)
·∇φ̇+

(
μ− ρ

∂ψ

∂c

)
ċ

+

(
σ
∼

−
∂ψ

∂ε
∼

e

)
: ε̇

∼∼

e − J .∇μ+ σ
∼

: ε̇
∼∼

p − ρ
∂ψ

∂Vk

V̇k � 0 (199)

The following reversible mechanisms and corresponding state laws are cho-
sen:

b = ρ
∂ψ

∂∇φ
, μ = ρ

∂ψ

∂c
, σ

∼

= ρ
∂ψ

∂ε
∼

e
, Ak := ρ

∂ψ

∂Vk

(200)

The residual dissipation then is(
a− ρ

∂ψ

∂φ

)
φ̇− J .∇μ+ σ

∼

: ε̇
∼∼

p −AkV̇k � 0 (201)

Three contributions appear in the above residual dissipation rate. The first
is the phase field dissipation, associated with configuration changes of atoms
and related to the evolution of the order parameter:

Dφ = avφ̇ with av = a− ρ
∂ψ

∂φ
(202)

5
In this section, the notation for internal variables is changed to (Vk)k∈{α,β} since α is

now an index denoting one phase.
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where av is the chemical force associated with the dissipative processes
(Gurtin, 1996). The second contribution is the chemical dissipation due
to diffusion, associated with mass transport. The last contribution is the
mechanical dissipation, as discussed earlier.

An efficient way of defining the complementary laws related to the dis-
sipative processes and ensuring the positivity of the dissipation for any
thermodynamic process is to assume the existence of a dissipation potential
Ω(av,∇μ,σ

∼

, Ak), which is a convex function of its arguments:

φ̇ =
∂Ω

∂av
, J = −

∂Ω

∂∇μ
, V̇k = −

∂Ω

∂Ak

, ε̇
∼∼

p =
∂Ω

∂σ
∼

(203)

These equations represent the evolution law for the order parameter, the
diffusion flux as well as the evolution laws for the internal variables.

Partition of free energy and dissipation potential. The total free
energy is postulated to have the form of a Ginzburg-Landau free energy
functional accounting for interfaces through the square of the order param-
eter gradient. The free energy density ψ is then split into a chemical free
energy density ψch, a coherent mechanical energy density ψmech, and the
square of the order parameter gradient:

ρψ(φ,∇φ, c, ε
∼

e, Vk) = ρψch(φ, c) + ρψmech(φ, c, ε∼, Vk) +
A

2
∇φ ·∇φ (204)

The irreversible part of the behaviour is described by the dissipation poten-
tial, which can be split into three parts related to the three contributions
in the residual dissipation in Eq.(201): the phase field part Ωφ(φ, c, a

v)
, the chemical part Ωc(φ, c,∇μ) and the mechanical dissipation potential
Ωmech(φ, c,σ∼ , Ak):

Ω(av,∇μ, φ, c,σ
∼

, Ak) = Ωφ(c, φ, a
v) + Ωc(c, φ,∇μ) + Ωmech(φ, c,σ∼ , Ak)

(205)
The chemical free energy density ψch of a binary alloy is a function of the
order parameter φ and of the concentration field c. The coexistence of both
phases α and β discriminated by φ is possible if ψch is non–convex with
respect to φ. Following (Kim et al., 1998), ψch is built with the free energy
densities of the two phases ψα and ψβ as follows:

ψch(φ, c) = h(φ)ψα(c) + (1− h(φ))ψβ(c) +Wg(φ) (206)

Here, the interpolating function h(φ) is chosen as h(φ) = φ2(3 − 2φ), and
g(φ) = φ2(1−φ)2 is the double well potential accounting for the free energy
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penalty of the interface. The height W of the potential barrier is related
to the interfacial energy σ and the interfacial thickness δ as W = 6Λσ/δ.
Assuming that the interface region ranges from θ to 1−θ, then Λ = log((1−
θ)/θ). In the present work θ = 0.05 (Kim et al., 1998; Ammar et al., 2009a).

The densities ψα and ψβ are chosen to be quadratic functions of the
concentration only:

ρψα(c) =
kα
2
(c− aα)

2 and ρψβ(c) =
kβ
2
(c− aβ)

2 (207)

where aα and aβ are the unstressed equilibrium concentrations of both
phases which correspond respectively to the minima of ψα and ψβ in the
present model. kα and kβ are the curvatures of the free energies.

Quadratic expressions are chosen for the chemical dissipation, which
ensures the positivity of the dissipation rate:

Ωφ(a
v) =

1

2
(1/β)av2 and Ωc(∇μ) =

1

2
L(φ)∇μ.∇μ (208)

where av is given by Eq. (202), β is inversely proportional to the interface
mobility and L(φ) is the Onsager coefficient, related to the chemical diffu-
sivities Dα and Dβ in both phases by means of the interpolation function
h(φ) as:

L(φ) = h(φ)Dα/kα + (1− h(φ))Dβ/kβ (209)

The state laws and evolution equations for the phase field and chemical
contributions can be derived as:

b = A∇φ, μ = ρ
∂ψch
∂c

+ ρ
∂ψmech

∂c
(210)

φ̇ =
1

β
av =

1

β

(
a− ρ

∂ψch
∂φ

− ρ
∂ψmech

∂φ

)
, J = −L(φ)∇μ (211)

Substituting the previous equations into the balance equations for general-
ized stresses and mass concentration, the Ginzburg-Landau and usual dif-
fusion equations are retrieved, which represent respectively the evolution
equations for order parameter and concentration:

div b − a = −βφ̇+ div(A∇φ) − ρ
∂ψch
∂φ

− ρ
∂ψmech

∂φ
= 0 (212)

ċ = −∇.(−L(φ)∇μ) = −∇.

(
−L(φ)

(
∇

∂ρψch
∂c

+∇
∂ρψmech

∂c

))
(213)

Note the coupling of mechanics and diffusion and phase field evolution
through the partial derivatives of the mechanical free energy with respect
to concentration and order parameter.
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Multiphase approach for the mechanical contribution. The sec-
ond contribution to the free energy density is due to mechanical effects.
Assuming that elastic behaviour and hardening are uncoupled, the mechan-
ical part of the free energy density ρψmech is decomposed into a coherent
elastic energy density ρψe and a plastic part ρψp as:

ρψmech(φ, c, ε∼, Vk) = ρψe(φ, c, ε
∼

) + ρψp(φ, c, Vk) (214)

Moreover, the irreversible mechanical behaviour, related to the dissipative
processes, is obtained by a plastic dissipation potential Ωmech(φ, c,σ∼ , Ak).
It is assumed to be a function of order parameter, concentration, Cauchy
stress tensor as well as the set of thermodynamic force associated variables
Ak in order to describe the hardening state in each phase.

In the diffuse interface region where both phases coexist, we propose to
use well-known results of homogenization theory to interpolate the local be-
haviour. The homogenization procedure in the mechanics of heterogeneous
materials consists in replacing an heterogeneous medium by an equivalent
homogeneous one, which is defined by an effective constitutive law relating
the macroscopic variables, namely macroscopic stress σ

∼

and strain ε
∼

tensors,
which are obtained by averaging the corresponding non-uniform local stress
and strain in each phase. Each material point within a diffuse interface can
be seen as a local mixture of the two abutting phases α and β with propor-
tions given by complementary functions of φ. The strain and stress at each
material point are then defined by the following mixture laws which would
proceed from space averaging in a conventional homogenization problem,
but which must be seen as arbitrary interpolations in the present case:

ε
∼

= χ ε
∼
α + (1− χ) ε

∼
β and σ

∼

= χσ
∼
α + (1 − χ)σ

∼
β (215)

where ε
∼
α, ε

∼
β are local fictitious strains and σ

∼
α, σ

∼
β are local fictitious

stresses in α and β phases respectively and χ(x , t) is a shape function
which must take the value 0 in the β–phase and 1 in the α–phase. The
following choice is made in the phase field context:

χ(x , t) ≡ φ(x , t) (216)

The partition hypothesis, already used for the effective total strain tensor
in Eq. (195), requires, in a similar way, a decomposition of the total strain
in each phase into elastic, transformation and plastic parts:

ε
∼
α = ε

∼

e
α + ε

∼

�
α + ε

∼

p
α and ε

∼
β = ε

∼

e
β + ε

∼

�
β + ε

∼

p
β (217)

where each point may depend on the local concentration c, but not on
order parameter φ. In the proposed model, the elastoplastic and phase
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field behaviours of each phase are treated independently and the effective
behaviour is obtained using homogenization relation (215). It is assumed
that the mechanical state of α and β phases at a given time are completely
described by a finite number of local state variables (ε

∼

e
k, Vk) defined at each

material point. The set of internal variables Vk, of scalar or tensorial nature,
represents the state of hardening of phase k: for instance, a scalar isotropic
hardening variable, and a tensorial kinematic hardening variable. According
to the homogenization theory, the effective elastic and plastic free energy
densities are given by the rule of mixtures as follows:

ρψe(φ, c, ε
∼

) = φρψeα(c, ε
∼

e
α) + (1 − φ)ρψeβ(c, ε

∼

e
β) (218)

ρψp(φ, c, Vk) = φρψpα(c, Vα) + (1− φ)ρψpβ(c, Vβ) (219)

Similarly, a mixture rule is used to mix the dissipation potentials of the
individual phases:

Ωmech(φ, c,σ∼ , Ak) = φΩmechα(c,σ∼α, Aα) + (1− φ)Ωmechβ
(c,σ

∼
β , Aβ)

(220)
where the Aα,β are the thermodynamic forces associated with the internal
variables attributed to each phase.

Knowing the free energy and dissipation potentials, the evolution of all
variables can be computed. The remaining questions is the way of estimat-
ing the previously defined fictitious stress and strain tensors ε

∼α,β
,σ
∼α,β

from
the knowledge of the stress and strain tensors ε

∼

and σ
∼

. Several homoge-
nization schemes exist in the literature that can be used to define these
new fictitious variables. The most simple schemes are the Voigt/Taylor and
Reuss/Static models. We develop the Voigt/Taylor scenario in the sequel.

Voigt/Taylor model coupled phase field mechanical theory. Ac-
cording to Voigt’s scheme, the fictitious strains are not distinguished from
the local strain. The local stress is then computed in terms of the fictitious
stress tensors by averaging with respect to both phases weighted by the
volume fractions:

σ
∼

= φσ
∼
α + (1− φ)σ

∼
β, ε

∼

= ε
∼
α = ε

∼
β (221)

The stresses of both phases σ
∼
α and σ

∼
β are given by Hooke’s law for each

phase:

σ
∼
α = C

≈

α : (ε
∼
α − ε

∼

�
α − ε

∼

p
α), σ

∼
β = C

≈

β : (ε
∼
β − ε

∼

�
β − ε

∼

p
β) (222)

where C
≈

α and C
≈

β are respectively the tensor of elasticity moduli in α and
β phases. As a result,

σ
∼

= φC
≈

α : (ε
∼
α − ε

∼

�
α − ε

∼

p
α) + (1 − φ)C

≈

β : (ε
∼
β − ε

∼

�
β − ε

∼

p
β) (223)
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From the above relation, it follows that the strain-stress relationship in
the homogeneous effective medium obeys Hooke’s law with the following
equation:

σ
∼

= C
≈
eff : (ε

∼

− ε
∼

p − ε
∼

�)

where the effective elasticity tensor C
≈
eff is obtained from the mixture rule

of the elasticity matrix for both phases:

C
≈
eff = φC

≈

α + (1 − φ)C
≈

β (224)

and the effective eigenstrain ε
∼

� and plastic strain ε
∼

p vary continuously be-
tween their respective values in the bulk phases as follows:

ε
∼

� = C
≈

−1

eff
: (φC

≈

α : ε
∼

�
α + (1− φ)C

≈

β : ε
∼

�
β)

ε
∼

p = C
≈

−1

eff
: (φC

≈

α : ε
∼

p
α + (1 − φ)C

≈

β : ε
∼

p
β)

(225)

In the case of nonhomogeneous elasticity, it must be noted that ε
∼

� and ε
∼

p

are not the average of their respective values for each phase.
The proposed approach differs from the one most commonly used in

phase field models, as popularized by Khachaturyan and co-workers, e.g.
(Khachaturyan, 1983). The latter rely on mixture laws for all quantities
within the interface, including the elastic moduli, the transformation and
plastic strain. The effect of these different choices on the simulation of
moving phase boundaries has been tested in (Ammar et al., 2009b) and
(Ammar et al., 2011). In particular, the impact of plasticity on the kinetics
of precipitate growth has been evidenced.

6 Summary and Outlook

The general thermomechanical setting for modeling size effects in the me-
chanics and thermodynamics of materials is based on the main assumption
that microstructure effects can be accounted for by the introduction of ad-
ditional degrees of freedom in addition to displacement, temperature and
concentration. The additional dof and its gradient are expected to con-
tribute to the power of internal forces of the medium and to arise in the
energy local balance equations and/or entropy inequality. They induce gen-
eralized stresses that fulfill an additional balance equation with associated
extra boundary conditions. A clear separation between balance equations
and constitutive functionals is adopted in the formulation. Constitutive
equations derive from the definition of a specific free energy density and
dissipation potential.
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The crossing of mechanical and physical approaches turns out to be fer-
tile in providing motivated coupling between both kinds of phenomena. As
an example, we have shown that the mechanics of heterogeneous materials
can be useful to develop a sophisticated and flexible constitutive framework
of coupled viscoplasticity and diffusion.

It was not possible to address applications that already exist in this
context. In particular, the presented models predict that viscoplasticity
affects the morphology and kinetics of precipitate growth in metals or during
oxidation (Ammar et al., 2009a; Gaubert et al., 2010; Ammar et al., 2011).

Special attention must now be dedicated to more precise description of
coherent vs. incoherent interfaces (Murdoch, 1978; Johnson and Alexander,
1986; Appolaire et al., 2010), and the associated specific interface conditions
that can be deduced from asymptotic analysis of phase field models. On the
other hand, the targeted applications of strain gradient plasticity are crys-
tal plasticity and grain boundary migration (Cordero et al., 2010; Mayeur
et al., 2011; Abrivard, 2009), whereas strain rate gradients are thought to
be relevant for ageing materials (Mazière et al., 2010).
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