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Abstract A two-dimensional model of thin-film substrate interac-
tions is obtained from three-dimensional elasticity theory for films
having various kinds of crystalline symmetry. Extensions to electro-
elastic behaviour are also discussed.

1 Introduction

Considered here is the general theory of surface wave propagation in elastic
thin-film/substrate systems. Elasticity is of course an inherently nonlinear
subject, although a great many applications are amenable to analysis using
the linear theory, including those developed here. Thus for the sake of com-
pleteness and to establish the logical progression of our work we present a
brief tutorial on the general nonlinear purely mechanical theory as a prelude
to linearization.

The main contribution of the present work is the derivation of and so-
lution to an asymptotic two-dimensional theory for the dynamics of a thin
film bonded to a substrate, as distinct from the asymptotic treatment of
the underlying three-dimensional equations [6]. Here the small parameter is
the film thickness, and the considered model furnishes the rigorous leading-
order system when this is small against the wavelength of a propagating
surface wave.

The purely elastic theory is developed first, followed by an extension to
electroelasticity. We draw particular attention to some non-standard effects
associated with the propagation of Love waves in conventional isotropic
elastic half spaces coated with thin films having various kinds of crystalline
symmetry.

Standard notation is used throughout. Thus we use bold face for vec-
tors and tensors and indices to denote their components. Latin indices take
values in {1, 2, 3}; Greek in {1, 2}. The latter are associated with surface
coordinates and associated vector and tensor components. A dot between
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bold symbols is used to denote the standard inner product. Thus, if A1 and
A2 are second-order tensors, then A1 ·A2 = tr(A1A

t
2), where tr(·) is the

trace and the superscript t is used to denote the transpose. The norm of a
tensor A is |A| = √

A ·A. The linear operator Sym(·) delivers the sym-
metric part of its second-order tensor argument. The notation ⊗ identifies
the standard tensor product of vectors. If C is a fourth-order tensor, then
C[A] is the second-order tensor with orthogonal components CijklAkl. The
transpose Ct is defined by B·Ct[A] = A·C[B], and C is said to possess major
symmetry if Ct = C. If A ·C[B] = A

t ·C[B] and A ·C[B] = A ·C[Bt
] then C is

said to possess minor symmetry. We use symbols such as Div and Grad to
denote the three-dimensional divergence and gradient operators, while div
and ∇ are reserved, after Section 2, for their two-dimensional counterparts.
Thus, for example, DivA =Aij,jei and divA = Aiα,αei, where {ei} is an
orthonormal basis and subscripts preceded by commas are used to denote
partial derivatives with respect to Cartesian coordinates. Finally, the nota-
tion FA stands for the tensor-valued derivative of a scalar-valued function
F (A).

2 Brief resumé of nonlinear elasticity theory

Background material on nonlinear elasticity theory is given in [3; 9; 1]. The
basic problem in this theory is to find a deformation function mapping the
position x of a material point of a body, in some reference configuration κ, to
the position y of the same material point of the body in its current configu-
ration at time t. Thus we seek a function χ(·, t) such that y = χ(x, t). This
is presumed to be invertible at each fixed t, to reflect the notion that any
given position may be occupied by one, and only one, material point at any
instant. The inverse function theorem then requires that the deformation
gradient,

F = Gradχ, (1)

the gradient of χ(·, t) with respect to x, be invertible.
The motion χ must be such as to satisfy the linear momentum balance

divT+ ρb = ρytt, (2)

where yt = ∂χ(x, t)/∂t, etc., ρ is the mass density in the current config-
uration, b is the body force per unit mass, T is the Cauchy stress, and
div is the divergence operator with respect to position y. Granted (2), the
moment-of-momentum balance is simply the requirement that the Cauchy
stress be symmetric, i.e.

T = Tt. (3)
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Standard boundary data consist in the specification of y and the traction

t = Tn (4)

on complementary parts of the boundary, where n is the exterior unit normal
to the bounding surface of the body in its current configuration.

For purposes of analysis it is convenient to recast (2) as a differential
equation defined on the specified reference configuration κ. The relevant
equation is

DivP+ ρκb = ρκytt, (5)

where ρκ is the mass density in κ, and

P = TF∗ (6)

is the Piola stress, in which

F∗ = JF−t (7)

is the cofactor of the deformation gradient, with

J = detF. (8)

Normally we denote the inverse by appending a superscript −1; here −t is
the transposed inverse, or inverted transpose, the two being equivalent by
virtue of the commutativity of the inverse and transpose operations. If κ is
a configuration that could in principle be occupied by the material (e.g., an
initial configuration), then the requirement

J > 0 (9)

is imposed to reflect the physical requirement that matter deforms without
self penetration.

The referential and current mass densities are connected by

ρκ = ρJ (10)

and conservation of mass requires that ρκ be independent of t when ex-
pressed as a function of x and t. Accordingly it is regarded as an assigned
function of x.

The connection between the Cauchy and Piola stresses is most readily
understood by expressing the force acting on an arbitrary material surface
S ⊂ κ in the alternative forms∫

s

tda =

∫
S

pdA, (11)
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where s = χ(S, t) is the image of the material surface in the current con-
figuration, consisting of the same set of material points. Using Nanson’s
formula

αn = F∗N, (12)

in which N is the exterior unit normal to S and α = |F∗N| is the areal
stretch of S, we then use (4) to obtain

∫
S

pdA =

∫
s

Tnda =

∫
S

TF∗NdA, (13)

and hence
p = PN. (14)

Thus the Piola stress operates on the referential unit normal to furnish the
force per unit reference area.

To model elastic bodies we assume the stress T (or P) to be given by
an empirical function of F, which may depend parametrically on x if the
material properties are non-uniform, as in a functionally graded material.
Thermodynamic considerations pertaining to the non-existence of perpetual
motion machines imply that the stress is determined via an empirical strain-
energy function W (F), i.e. [9]

P = WF, (15)

the gradient of W with respect to F. This too depends parametrically on x

in non-uniform materials. Here, however, we are concerned exclusively with
uniform materials, for which there is no such dependence.

Combining (6) with (15) we conclude that the function W must be such
that (WF)F

t is symmetric; that is, equal to its own transpose. This in turn
is equivalent to

(WF)F
t ·Ω = 0 (16)

for all skew tensors Ω (Ωt = −Ω). The symmetries inherent in the dot
product imply that (16) is equivalent to

WF ·ΩF = 0. (17)

Fix Ω and consider the one-parameter family of tensors Q(u) defined by
the initial-value problem

Q̇ = ΩQ with Q(0) = I, (18)

where I is the identity tensor and the superposed dot is the derivative with
respect to u. The components of the identity are simply the Kronecker deltas
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δij . It is well known that the set of such Q′s coincides precisely the group
of rotation tensors, i.e.

Q−1 = Qt; detQ = 1. (19)

Consider an associated one-parameter family of deformation gradients de-
fined by

F(u) = Q(u)F0, with F0 = F(0). (20)

This is a rotation superposed on a deformation with gradient F0. Then,

Ḟ = Q̇F0 = Q̇Q
t
F = ΩF, (21)

and for this family of deformations we find, using (17) and the chain rule,
that

Ẇ = WF · Ḟ = 0, (22)

so that W (F(u)) is independent of u, i.e.

W (QF0) = W (F0), (23)

in which the rotation Q is arbitrary.
A necessary condition follows on identifying Q with the transpose of the

rotation factor R0 in the polar decomposition

F = RU (24)

of the deformation gradient, where U is the positive definite, symmetric
right-stretch tensor. This yields the conclusion that W is determined by
the stretch, i.e. W (F0) = W (U0). However, this is inconvenient in practice
because U is not easily obtained from F. To circumvent this we note that
there is a one-to-one relation between the right stretch and the symmetric
Cauchy-Green deformation tensor C = U2 = FtF; the former is the unique
positive definite symmetric square root of the latter. We conclude that U

is determined by C and hence (dropping subscripts in (23)) that W (F) =
Ŵ (C) for some function Ŵ . In turn, the Cauchy-Green tensor stands in
one-to-one relation to the symmetric Lagrange strain

ε = 1

2
(FtF− I) (25)

and so we may write W (F) = W̄ (ε) for some function W̄ . An elementary
application of the chain rule then furnishes

WF = FW̄ε, (26)
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where, on the right-hand side, W̄ε is the symmetric tensor-valued gradient
with respect to strain. Accordingly, the 2nd Piola-Kirchhoff stress S, defined
by

P = FS, (27)

is given by
S = W̄ε. (28)

Comparison of (6) and (27) yields JT = FSFt, and so the symmetry of
S, implied by (23), yields the symmetry of T. It follows that (23) is both
necessary and sufficient for the symmetry of the Cauchy stress.

We neglect body forces, and thus reduce (5) and (15) to the system

Div(WF) = ρκχtt (29)

for the determination of the motion χ(x, t), in which ρκ is an assigned
constant if, as we assume, the material properties are uniform.

In this work we restrict attention to deformations for which the strong
ellipticity condition is satisfied, i.e.

a⊗ b ·WFF[a⊗ b] > 0 for all a⊗ b �= 0. (30)

3 Leading order model for a thin, nonlinearly elastic

film in the long-wave limit

We seek equations of motion for a thin film bonded to a substrate that are
valid to leading order in the film thickness, presumed to be small against
the length scale afforded by the wavelength of a propagating surface wave.
Thus the model to be derived and studied is valid in the long-wave limit.

Consider a planar film of thickness h, bonded to an elastic half space.
The interface between film and substrate, denoted by Ω, is an unbounded
plane with unit normal k directed away from the substrate. It proves ad-
vantageous to decompose three-dimensional position x in the film in terms
of position r to a projected point on Ω and a linear coordinate ς in the
direction of the normal. Thus,

x = r+ ςk, with r ∈ Ω and ς ∈ [0, h]. (31)

The motion of the film may then be regarded as a function of r and ς, i.e.
y = χ(x, t) = χ̂(r, ς, t); we also write F(x, t) = F̂(r, ς, t). It then follows
from the definition of the gradient that

(∇y)dr+ y′dς = dy = F̂dx = F̂1dr+ F̂k⊗ kdς, (32)
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where (·)′ = ∂(·)/∂ς, ∇(·) is the (two-dimensional) gradient with respect to
r and

1 = I− k⊗ k (33)

is the projection onto the plane Ω. This yields

∇y = F̂1 and y′ = F̂k. (34)

Using a similar notation for the Piola stress, we write P = P̂1+ P̂k⊗ k

and find that
DivP = div(P̂1) + P̂

′

k, (35)

where, in contrast to its use in (2), div is now the (two-dimensional) refer-
ential divergence operator on Ω. Thus (5) may be recast in the convenient
form

div(P̂1) + P̂
′

k = ρκχ̂tt. (36)

We seek a two-dimensional model of the thin film, in terms of differential
operators defined entirely on Ω. To effect the dimension reduction, we adopt
the weak form of the equations of motion in which the film thickness is made
explicit. We then estimate this for small thickness and extract the leading-
order local equations.

To this end let y(x, t, μ) be a one-parameter (μ) family of motions, let
the actual motion y = χ(x, t) be its value at μ = 0, and let

ẏ =
∂

∂μ
y(x, t, μ)|μ=0. (37)

Then the weak form of (5), holding in an arbitrary subvolume π of the film,
is ∫

π

P · ḞdV =

∫
∂π

PN · ẏdA−
∫
π

ρκẏ · yttdV, (38)

in which
Ḟ = ∇ẏ + ẏ′ ⊗ k, (39)

where ẏ′ = (y
′
)· = (ẏ)

′
. We remark that, on the film/substrate interface Ω,

the deformation gradient is

F0 = ∇y0 + d⊗ k, (40)

where, here and henceforth, the notation (·)0 stands for the restriction (·)|Ω
of a variable defined in the film. This is the interior limit of the considered
quantity as ς → 0. In particular,

y0(r, t) = ŷ(r, 0, t) and d(r, t) = ŷ′(r, 0, t), (41)
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and these are independent vector fields on Ω.
Proceeding from (38) and (39), we have

∫
π

P · ḞdV =

∫
π

(P1·∇ẏ+Pk·ẏ′)dV =

∫
ω

∫ h

0

(P1·∇ẏ+Pk·ẏ′)dςdA, (42)

where ω ⊂ Ω is an arbitrary part of Ω and we have selected π = ω × [0, h].
For an arbitrary function g(r,ς) we use the Taylor expansion

∫ h

0

gdς := I(r,h) = hI ′(r,0) + o(h), with I ′(r,h) = g(r,h), (43)

to derive the estimate

I(r,h) = hg0 + o(h), (44)

and thus estimate (42) as

∫
π

P · ḞdV = h

∫
ω

(P01 · ∇ẏ0 +P0k · ḋ)dA+ o(h). (45)

Similarly, ∫
π

ρκẏ · yttdV = h

∫
ω

ρκẏ0 · y0ttdA+ o(h). (46)

The remaining integral in (38) may be decomposed as

∫
∂π

PN · ẏdA =

∫
∂ω

∫ h

0

P1ν · ẏdςdS +

∫
ω+

P+k · ẏ+dA−
∫
ω

P0k · ẏ0dA,

(47)
where ω+ is the upper surface of the film at a distance h from ω, k and −k
are the exterior unit normals to the film at ω+ and ω, the superscript + is
used to denote the values of variables at ς = h, and ν is the external unit
normal to the cylindrical generating surface ∂ω × [0, h].

Traction continuity at the film/substrate interface Ω implies that

P0k = Psk, (48)

where Ps is the limiting value of the substrate stress on Ω. Assuming the
upper surface of the film to be traction free, i.e. P+k = 0, and using the
rule (44), we then have

∫
∂π

PN · ẏdA = h

∫
∂ω

P01ν · ẏ0dS −
∫
ω

Psk · ẏ0dA+ o(h). (49)
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Substituting this, together with (45) and (46), into (38), we conclude that

∫
ω

Psk · ẏ0dA = O(h) (50)

and hence, from the arbitrariness of ω and ẏ0, that Psk = O(h), i.e.

Psk = hl+ o(h), (51)

in which l(r, t) is independent of h. Substituting back into the balance (38),
dividing by h and passing to the limit then yields

∫
ω

[P01 · ∇ẏ0 +P0k · ḋ+ ẏ0 · (ρκy0tt + l)]dA =

∫
∂ω

P01ν · ẏ0dS. (52)

Applying Green’s theorem in the form

∫
∂ω

P01ν · ẏ0dS =

∫
∂ω

ν · (P01)
t
ẏ0dS =

∫
ω

div[(P01)
t
ẏ0]dA =

∫
ω

[ẏ0 · div(P01)+P
0
1 · ∇ẏ0]dA, (53)

we reduce (52) to

∫
ω

{P0k · ḋ− ẏ0 · [div(P01)− l− ρκy0tt]}dA = 0, (54)

and then invoke the arbitrariness of ω and the independence of ẏ0 and ḋ to
extract the local equations

P0k = 0 and div(P01)− l = ρκy0tt on Ω. (55)

On multiplying the second of these by h, using (51) and neglecting terms
of order o(h) we obtain

hdiv(P01)−Psk = hρκy0tt. (56)

This is the rigorous leading-order (in h) boundary condition for the sub-
strate at the film/substrate interface Ω, reducing to the usual traction-free
condition Psk = 0 in the absence of the film (h = 0). It is also seen to fur-
nish the leading order equation of motion for the film/substrate interface.
Similarly, the first of (55) is the leading-order approximation of the traction
continuity condition (48), with (51). This condition implies that, to leading
order, the film is in a state of plane stress.
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In these equations the stress P0 is given by

P0 = WF(∇y0 + d⊗ k) (57)

and so (55) may be regarded as a system for the independent fields y0 and
d on Ω.

It happens that in the presence of strong ellipticity (55)1 may be solved
for d in terms of ∇y0. To see this we fix y0 and define G(d) = W (∇y0 +
d⊗ k). Let σ(u) = G(d(u)), for some parameter u. Then,

σ̇(u) = WF(F0) · ḋ⊗ k = ḋ ·P0k, and thus Gd = P0k. (58)

Further,

σ̈(u) = d̈ ·P0k+ ḋ⊗ k · M(F0)[ḋ⊗ k], (59)

where

M = WFF, (60)

and so

Gdd = A(F
0
), (61)

where A is the acoustic tensor defined by

Av = {M(F0)[v ⊗ k]}k (62)

for all vectors v. In terms of components,

Aij = ∂2W/∂Fi3∂Fj3, (63)

having made the identification e3 = k. It follows from (30) that Gdd is
positive definite and hence, from the implicit function theorem, that (55)1
(i.e. Gd = 0), has a unique solution d = d̄(∇y0), say, as claimed. Further,
the foregoing implies that this solution minimizes the energy W (∇y0 +
d⊗ k) with respect to d.

In this work it is convenient to work with strain-dependent moduli. To
elaborate, consider a one-parameter family F(u) of deformations and let
ε(u) be the associated strain. Using the connection (27) we then have

M[Ḟ] = Ṗ = ḞS+ FC[ε̇], with ε̇ = 1

2
(ḞtF+ FtḞ), (64)

where the superposed dots are derivatives with respect to the parameter,
and

C = W̄εε (65)
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are the strain-dependent moduli. We note that this possesses both major
and minor symmetries whereasM possesses only major symmetry. Accord-
ingly,

M[B] = BS+ FC[Sym(BtF)], for all tensors B, (66)

and the strong-ellipticity condition (30) is thus seen to be equivalent to

(b · Sb) |a|2 + Fta⊗ b · C[Fta⊗ b] > 0. (67)

For our purposes the relevant restriction pertains to small perturbations of
the reference configuration associated with F = I. This is

(b · SRb) |a|2 + a⊗ b · CR[a⊗ b] > 0, (68)

where SR is the residual stress in that configuration and CR is the associated
tensor of elastic moduli. There are equal respectively to the values of S and
C at ε = 0.

4 Linearization

To linearize the equations we introduce the displacement field

u(x, t) = χ(x, t)− x, (69)

and assume that supx∈κ |H(x, t)| � 1, where

H = Gradu (70)

is the displacement gradient. From (1) and (69) we have the exact expres-
sions

F = I+H and ε = 1

2
(H+Ht +HtH), (71)

and our assumptions imply that supx∈κ |ε(x, t)| � 1. Accordingly, the esti-
mate

W̄ε = W̄ε(0) + W̄εε(0)[SymH] + o(|H|) (72)

is appropriate, in which the coefficients are the values of the stress and
moduli at ε = 0, and furnishes the linearized stress-deformation relations

S � SR + CR[H] and P = (I+H)S � SR +HSR + CR[H]. (73)

The residual stress and associated moduli are necessarily uniform if the
material is homogeneous. Assuming the body to be in equilibrium without
tractions prior to undergoing the small displacement, we have

DivSR = 0 in κ and SRN = 0 on ∂κt, (74)
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the first of which is then identically satisfied.
The thin-film condition (55)1 may be expressed in the form

SRk+H0SRk+ (CR[H0])k = 0, (75)

and as this purports to hold for all deformations it follows that

SRk = 0 and (CR[H0])k = 0, (76)

the first of these implying that SR is a (symmetric) two-tensor of the form
SR = SRαβeα ⊗ eβ , where {eα} is an orthonormal basis in the plane Ω.
To investigate the consequences of the second restriction we write H0, the
restriction of the film displacement gradient to Ω, in the form (40), obtaining

H0 = ∇u0 + u′

0 ⊗ k, (77)

where u0(r, t) is the displacement of the film/substrate interface and u′
0 is

the restriction to Ω of the through-thickness derivative u′ of the displace-
ment field in the film. The stated restriction may then be written in the
form

(CR[∇u0])k+ARu
′

0 = 0, (78)

where AR is the relevant acoustic tensor, defined for all v by

ARv = (CR[v ⊗ k])k, (79)

and which is positive definite by (68) and (76)1. Consequently,

u′

0 = a(∇u0), with a(·) = −A−1

R (CR[·])k, (80)

implying that H0 is determined entirely by the interfacial displacement.
The interfacial equation of motion (56) requires an expression for P01,

which, on making use of (73)2, is given to linear order by

P01 = SR +H0SR + (CR[H0])1, with H0 = ∇u0 + a(∇u0)⊗ k. (81)

This is used in (56) in the form

Psk = h[div(P01)− ρκu0tt], (82)

in which Ps is the restriction to Ω of the substrate stress, assumed here to
be given constitutively by Ps = σ0, where

σ = E [G]; G = Gradw, (83)
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in which E is the substrate elasticity tensor (possessing major and minor
symmetries) and w(x, t) is the substrate displacement field. This satisfies
w0 = u0 in a perfectly bonded film-substrate system but of course w′

0 �= u′
0,

in general. This expression for the stress presumes the substrate to be free
of residual stress. Generalizations are of course possible, but the present
simplification suffices for our purposes.

To make the equations explicit it is convenient to decompose the inter-
facial displacement into tangential and normal parts, i.e.

u0 = v + wk, where v = 1u0 and w = k · u0. (84)

In the same way we write

a = α+ ak, where α = 1a and a = k · a. (85)

These furnish

∇u0 = ∇v + k⊗∇w and a⊗ k = α⊗ k+ ak⊗ k, (86)

and hence afford the representation

CR[H0] = (Cijαβvα,β + Cij3αw,α + Cijβ3αβ + aCij33)ei ⊗ ej , (87)

in which the subscript R has been suppressed on the right-hand side.

The material properties considered in this work exhibit reflection sym-
metry with respect to the unit normal k, i.e.

W̄ (ε) = W̄ (QεQt), with Q = I− 2k⊗ k. (88)

These have the property that all components Cijkl of the elastic moduli
having an odd number of subscripts equal to 3 vanish [5]; hence the simpli-
fication

CR[H0] = Cλμαβvα,βeλ ⊗ eμ + aCαβ33eα ⊗ eβ + (C33αβvα,β + aC3333)k⊗ k

+Cα3β3(w,β + αβ)(eα ⊗ k+ k⊗ eα). (89)

Using the definition (79) of the acoustic tensor we then obtain

ARb = Cα3β3bβeα + Cb3k, where C = C3333, (90)

yielding

b ·ARb = Cα3β3bαbβ + Cb23. (91)
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The acoustic tensor is then positive definite as required if and only if C > 0
and (Cα3β3) is positive definite. Further, (84) and (85) give

ARa = Cα3β3αβeα + Cak and (CR[∇u0])k = C33αβvα,βk+ Cα3β3w,βeα,
(92)

and it follows from (78) that

α = −∇w, a = −C−1C33αβvα,β . (93)

The restriction H0 to Ω of the film displacement gradient is thus given
by

H0 = ∇v + ak⊗ k+ k⊗∇w −∇w ⊗ k, (94)

and (89), together with the minor symmetry of CR, yields

CR[H0] = D[∇v] = Dλμαβvα,βeλ ⊗ eμ, (95)

where
Dλμαβ = Cλμαβ − C−1C33λμC33αβ (96)

are the plane-stress moduli. This in turn furnishes

P01 = SR + (∇v)SR + k⊗ (SR∇w) +D[∇v], (97)

and eq. (82) for the interfacial motion reduces to

σ0k = h[div{(∇v)SR +D[∇v]}+ kdiv(SR∇w)− ρκvtt − ρκwttk]. (98)

The substrate displacement is described by the classical equation of mo-
tion

Divσ = ρswtt, (99)

where ρs is the substrate mass density.

5 Surface waves: Love modes in hexagonal and cubic

crystal films

We are interested in localized surface waves of the form

w(x, t) = F (x, t)d (100)

in which d is the fixed polarization vector, x is decomposed as in (31) in
which ς < 0 for the substrate, and

F (x, t) = exp(ηkς) exp[ik(n · r− ct)], (101)
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in which η is a constant - assumed positive to ensure decay with depth into
the substrate, n ∈ Ω is the propagation direction, c is the wave speed, and
k is the wave number. The induced interfacial displacement is

u0 = w0 = Gd, where G = F0 = exp[ik(n · r− ct)]. (102)

The gradient of the interfacial displacement is

∇u0 = d⊗∇G = ikGd⊗ n. (103)

It proves convenient to decompose the polarization in the form (84), i.e.

d = δ + dk; δ = 1d, d = k · d. (104)

Then,
∇v = ikGδ ⊗ n and ∇w = ikGdn. (105)

Using these results with ∇∇G = −k2Gn⊗ n and u0tt = −k2c2Gd, after
some effort we reduce the bracketed term on the right-hand side of (82) to

div(P01)− ρκu0tt = Gk2{(ρκc2 − n · SRn)d−Aδ}, (106)

where
A = Dβαλμnαnμeβ ⊗ eλ (107)

is the (symmetric) plane-stress acoustic tensor associated with the propa-
gation direction.

The induced stress in the substrate is given by (83) with

G = d⊗GradF, where GradF = kF (in+ ηk), (108)

yielding
G = kF (id⊗ n+ ηd⊗ k) (109)

and hence

σ = kFB, where B = iE [d⊗ n] + ηE [d⊗ k]. (110)

Using this in the interfacial equation of motion (82) leads to the algebraic
problem

Bk = ε{(ρκc2 − n · SRn)d−Aδ}, (111)

where
ε = hk � 1 (112)

is the dimensionless film thickness.
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5.1 Substrate motion

From (100) and (101) we have wtt = −k2c2Fd and

Divσ = kB(GradF ) = k2FB(in+ ηk), (113)

which reduce the substrate equation of motion (cf. (99)) to the algebraic
problem

−(E [d⊗ n])n+ iη{(E [d⊗ k])n+ (E [d⊗ n])k}+ η2(E [d⊗ k])k = −ρsc2d.
(114)

In isotropic substrates, to which attention is restricted in this work,

E [G] = λs(trG)I+ 2μsG, (115)

where λs and μs are the substrate Lamé moduli, assumed here to satisfy
the usual strong ellipticity conditions λs +2μs > 0 and μs > 0. In this case
straightforward calculation reduces (114) to the system

μs(idn+ ηδ) = ε[(ρκc
2 − n · SRn)δ −Aδ]

iλs(n · δ) + η(λs + 2μs)d = ε(ρκc
2 − n · SRn)d. (116)

Further,

(E [d⊗ k])k = (λs + 2μs)dk+ μsδ, (E [d⊗ n])k = λs(n · δ)k + μsdn,

(E [d⊗ n])n = (λs+μs)(n · δ)n+μsd, (E [d⊗ k])n = λsdn+μs(n · δ)k.(117)
Love waves are polarized in the plane Ω. Accordingly, d = 0 and (116)2

requires that
n · δ = 0. (118)

Eqs. (117) simplify dramatically to

(E [d⊗ k])k = μsδ, (E [d⊗ n])k = 0, (E [d⊗ n])n = μsδ

and (E [d⊗ k])n = 0, (119)

and (99) delivers

η =
√

1− s2, where s = c/cs (120)

and cs =
√
μs/ρs is the shear-wave speed in the substrate. Finally, (116)1

reduces to the propagation condition

μsηδ = ε[(ρκc
2 − n · SRn)δ −Aδ], (121)
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which requires that δ be an eigenvector of the acoustic tensor A. The re-
striction (118) and the symmetry of the acoustic tensor imply that the
propagation direction n is then also an eigenvector.

5.2 Hexagonal (fibre) symmetry

In this subsection explicit dispersion relations are derived for films hav-
ing hexagonal symmetry. In the linear theory, the associated constitutive
equations are of precisely the same form as those for materials exhibiting
transverse isotropy, or fibre symmetry. Accordingly, the results derived are
applicable to both fibre-reinforced film materials or hexagonal crystalline
materials.

In particular, the components of C relative to an orthonormal basis {ei}
are (see [11])

Cijkl = λδijδkl + μT (δikδjl + δilδjk) + α(δijmkml +mimjδkl)

+(μL − μT )(mimkδjl +mimlδjk +mjmkδil +mjmlδik)

+βmimjmkml, (122)

where δij is the Kronecker delta; α, β, λ, μT and μL are material constants;
and the unit vector m, with components mi, is the fiber axis, assumed
here to be uniform. Spencer [11] shows that μT is the shear modulus for
shearing in planes transverse to m, whereas μL is the shear modulus for
shearing parallel to m. The remaining material constants in (122) may be
interpreted in terms of extensional moduli and Poisson ratios [11].

The general form of the residual stress may be derived by enumerating
the strain invariants for transverse isotropy that are linear in the (infinitesi-
mal) strain. These are [11] I ·ε and m⊗m · ε. Comparison with the leading
term in (72) then furnishes

SR = ST (I−m⊗m)+SLm⊗m, (123)

where ST is the constant residual stress in the isotropic plane and SL is the
constant residual uniaxial stress along m.

Necessary and sufficient conditions for strong ellipticity in the absence
of residual stress are [8; 12]:

μL > 0, ϕ > 0, μT > 0, λ+ 2μT > 0, (124)

and
|λ+ α+ μL| < μL +

√
ϕ(λ+ 2μT ), (125)
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where
ϕ = λ+ 4μL − 2μT + 2α+ β. (126)

We first assume the axis of transverse isotropy to coincide with the unit
normal k(= e

3
) to the film, and later consider the case when the axis lies

in the interfacial plane; the film material exhibits reflection symmetry with
respect to the interface in both cases.

(a) Fibre axis orthogonal to the interfacial plane

In this case the plane-stress condition (76)1, with m = k, yields

SR = S1, (127)

with S constant. Using (93)2, a straightforward but involved calculation
[12] leads to

a = −(λ̄+ ᾱ)divv, (128)

where λ̄ = λ/ϕ and ᾱ = α/ϕ. Further,

D[∇v] = ϕ{[λ̄− (λ̄+ ᾱ)2](divv)1+ μ̄T [∇v + (∇v)
t
]}, (129)

where μ̄T = μT /ϕ, yielding

Aδ = (D[δ ⊗ n])n

= ϕ{[λ̄− (λ̄+ ᾱ)2](δ · n)n+ μ̄T [δ + (δ · n)n]}, (130)

and hence
Aδ = μT δ (131)

in the case of Love waves. Substituting into (121), we conclude that the
polarization δ is an arbitrary vector in the interfacial plane and from (120)
that √

1− s2 = ε(rs2 − S + μT

μs

), (132)

where
r = ρκ/ρs (133)

is the ratio of film density to substrate density. This is the relevant dis-
persion relation. To solve it we assume that 1− s2 = O(ε2) and derive the
consistent estimate [12]

s ∼ 1− 1

2
ε2(r − S + μT

μs

)2 + o(ε2). (134)
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(b) Fibres lying in the interfacial plane

In this case (76)1 yields

SR = Sm⊗m, (135)

a uniform uniaxial stress along the fibres, while (93)2 gives

a = − 1

λ+2μT
[λdivv + αm · (∇v)m]. (136)

With some effort (95) and (96) may be reduced to [13]

D[∇v ] = [λ(θ + a) + αm · (∇v)m]I+ [α(θ + a) + βm· (∇v)m]m⊗m

+2μT (Sym∇v+ ak⊗ k)

+ 2(μL − μT )[(Sym∇v)m⊗m+m⊗ (Sym∇v)m]. (137)

For Love waves the latter is used to derive

Aδ = (D[δ ⊗ n])n

= α(1− λ

λ+ 2μT

)(m · n)(m · δ)n+ μT δ

+(β − α2

λ+ 2μT

)(m · n)2(m · δ)[(m · n)n+ (m · δ)δ]

+(μL − μT )[(m · n)2δ + 2(m · n)(m · δ)n+ (m · δ)2δ],(138)
and the propagation condition (121), projected onto the directions of δ and
n, furnishes

(m · n)(m · δ)[δ(m · n)2 + α(1− λ

λ+ 2μT

) + 2(μL − μT )] = 0 and

ε[ρκc
2 − S(m · n)2 − μL + δ(m · n)2(m · δ)2] = μsη, (139)

where

δ = β − α2

λ+ 2μT

. (140)

Typical data on carbon fibre/epoxy composites furnish a non-zero value
of the bracketed expression in the first relation, implying that

(m · n)(m · δ) = 0, (141)

and hence that either the direction of propagation or the polarization is
parallel to the fibres.
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In the first case we have m · n = ±1 and (139)2 delivers the associated
dispersion relation

μsη = ε(ρκc
2 − S − μL), (142)

which is solved as before to obtain the estimate

s ∼ 1− 1

2
ε2(r − S + μL

μs

)2 + o(ε2). (143)

In the second case m = ±δ and the dispersion relation is

μsη = ε(ρκc
2 − μL), (144)

yielding

s ∼ 1− 1

2
ε2(r − μL

μs

)2 + o(ε2). (145)

We observe that in both cases the deformation is a shear, not in the
isotropic plane, but rather in the plane containing the fibres. The operative
material property is therefore μL, the longitudinal shear modulus [15].

5.3 Cubic symmetry

In the case of cubic crystal symmetry we assume the cubic axes to be
aligned with {ei} = {eα,k}. The residual stress is necessarily a pure pres-
sure which vanishes by virtue of the plane-stress condition (76)1. Accord-
ingly, the strain energy W̄ (ε) is a homogeneous quadratic function which
depends on the strain via the combinations [10]

(ε11 + ε22 + ε33)
2, ε11ε22 + ε11ε33 + ε22ε33 and ε212 + ε213 + ε223.

These are common to all five subclasses of cubic symmetry.
It proves convenient to express the strain-energy function in terms of the

spherical and deviatoric part of the strain, the latter being defined by

ε̄ = ε− 1

3
(trε)I, (146)

yielding

ε11ε22 + ε11ε33 + ε22ε33 = 1

3
(trε)2 − 1

2
(ε̄211 + ε̄222 + ε̄233) (147)

and hence

W̄ (ε) = 1

2
[C1(ε11+ε22+ε33)

2+C2(ε̄
2
11+ε̄222+ε̄233)]+C3(ε

2
12+ε213+ε223), (148)

where C1,2,3 are material constants. To ensure strong ellipticity in accor-
dance with our assumptions thus far it is enough to require that W̄ (ε) be
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positive definite. Because (148) is the sum of independent quadratic forms
this in turn is equivalent to the restrictions

C1 > 0, C2 > 0 and C3 > 0. (149)

According to (73) the stress in the film is then given by

P = C[ε]
= C1(trε)I + C2(ε̄11e1 ⊗ e1 + ε̄22e2 ⊗ e2 + ε̄33e3 ⊗ e3)

+C3[ε12(e1⊗e2+e2⊗e1)+ε13(e1⊗e3+e3⊗e1)+ε23(e2⊗e3+e3⊗e2)], (150)

and the plane-stress condition (76)2 yields the restrictions

C1(trε)+ C2ε̄33 = 0 and εα3 = 0 (151)

on the interfacial values of the strain in the film.
Using (84) and (85) and the fact that ε is the symmetric part of the

displacement gradient, we have

ε = Sym(∇v) + ak⊗ k+ 1

2
[k⊗ (∇w +α)+ (∇w +α)⊗ k], (152)

and thus conclude that (151)2 is equivalent to (93)1. Further, a = ε33,
trε = θ + a, where θ = divv, ε̄33 = 2

3
a− 1

2
θ and (93)2 delivers

a = −(C1 +
2

3
C2)

−1(C1 − 1

3
C2)θ. (153)

The plane-stress moduli are defined by (95) and (96) and hence given by

D[∇v] = C1(θ+a)1+C2(ε̄11e1⊗e1+ ε̄22e2⊗e2)+C3ε12(e1⊗e2+e2⊗e1),
(154)

where

ε̄11 = 1

3C1+2C2

[(3C1+2C2)v1,1+C2v2,2], ε̄22 = 1

3C1+2C2

[(3C1+2C2)v2,2+C2v1,1]
(155)

and
θ + a = 3C2

3C1+2C2

(v1,1 + v2,2). (156)

To obtain D[δ⊗n] for use in (121) we simply replace ∇v by δ⊗n, arriving
at

Aδ = (D[δ ⊗ n])n

= 3C1C2

3C1+2C2

(δ · n)n+ C2

3C1+2C2

[(3C1 + C2)δ1n
2
1 + C2δ2n1n2]e1

+ C2

3C1+2C2

[(3C1 + C2)δ2n
2
2 + C2δ1n1n2]e2

+ 1

2
C3(δ1n

2
2 + δ2n1n2)e1 +

1

2
C3(δ1n1n2 + δ2n

2
1)e2. (157)
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An explicit expression for A follows by using δα = eα · δ with δ1e1 =
(e1⊗e1)δ, δ1e2 = (e2⊗e1)δ, etc.; thus, in the case of Love waves (δ ·n = 0),

A = (C2
3C1+C2

3C1+2C2

n2
1 +

1

2
C3n

2
2)e1 ⊗ e1 + (C2

3C1+C2

3C1+2C2

n2
2 +

1

2
C3n

2
1)e2 ⊗ e2

+n1n2(
C2

2

3C1+2C2

+ 1

2
C3)(e1 ⊗ e2 + e2 ⊗ e1). (158)

Recalling that the propagation condition (121) implies that n is an eigen-
vector, we have An = ξn for some ξ ∈ R, where

An = (C2
3C1+C2

3C1+2C2

n2
1 +

1

2
C3n

2
2)n1e1 + (C2

3C1+C2

3C1+2C2

n2
2 +

1

2
C3n

2
1)n2e2

+n1n2(
C2

2

3C1+2C2

+ 1

2
C3)(n2e1 + n1e2). (159)

Taking the scalar product of the equation An = ξn with n2e1 and n1e2
yields two equations for ξn1n2, which we subtract to derive

n1n2(n
2
1 − n2

2)
3C1+C2

3C1+2C2

= 0, (160)

and with (149) this yields the possibilities

n1n2 = 0 or n2
1 = n2

2. (161)

The first alternative implies that n ∈ {eα} and hence that δ ∈ {eα};
the propagation and polarization directions are aligned with the crystallo-
graphic axes. Eq. (157) then provides

Aδ = 1

2
C3δ (162)

and (121) yields the dispersion relation

μsη = ε(ρκc
2 − 1

2
C3), (163)

which is solved as before to obtain

s ∼ 1− 1

2
ε2(r − C3

2μs

)2 + o(ε2). (164)

The second alternative implies that n2
1 = n2

2 = n2, with n = ±1/√2.
These yield the two families

n(1) = 1
√
2
(e1 + e2), with δ(1) =

1
√
2
(e1 − e2), and

n(2) = 1
√
2
(e1 − e2), with δ(2) =

1
√
2
(e1 + e2), (165)
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corresponding to propagation and polarization at 45 degrees to the crystal-
lographic axes. In either case we have

A = 1

2
(C2

3C1+C2

3C1+2C2

+ 1

2
C3)1+n1n2(

C2

2

3C1+2C2

+ 1

2
C3)(e1⊗e2+e2⊗e1), (166)

implying that
Aδ = 3

2

C1C2

3C1+2C2

δ. (167)

Finally, substitution into (121) furnishes the dispersion relation

μsη = ε(ρκc
2 − 3

2

C1C2

3C1+2C2

), (168)

and thus
s ∼ 1− 1

2
ε2[r − 3

2μs

C1C2

(3C1+2C2)
]2 + o(ε2). (169)

6 Survey of nonlinear and linearized electroelasticity

Here we review the basic theory of nonlinear electroelasticity as a prelude
to the development of a model for thin electro-elastic films. For further
background reference may be made to [4; 7; 14] In nonlinear electroelasticity
we assume the existence of a free energy per unit mass, ϕ say, that depends
on the deformation gradient F and electric field e. Here we restrict attention
to the purely electromechanical theory and suppress thermal and electrical
conduction. We also assume the material to be non-magnetizable.

The Cauchy stress is [7]

T = ρϕFF
t +TM , (170)

where
TM = ε0(e⊗ e− 1

2
e2I), with e = |e| , (171)

is the Maxwell stress in which ε0 is the free-space permittivity. The material
polarization is

p = −ρϕe. (172)

By an argument similar to that leading from (3) to (23) [7], we find
that the free energy depends on the deformation and electric field via the
Cauchy-Green deformation tensorC = FtF and the pullback E = Fte; thus,

ϕ(F, e) = Φ(C,E). (173)

Straightforward application of the chain rule yields

ϕe = FΦE and ϕF = 2FΦC + e⊗ ΦE, (174)
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and hence
T = σ + TM , (175)

where
σ = 2ρFΦCF

t, (176)

together with
p = −ρFΦE. (177)

In the absence of a magnetic induction field or volumetric distributions
of charge, the equations to be solved are

divT = ρχtt, curle = 0 and divd = 0, (178)

where
d = ε0e+ p (179)

is the electric displacement and curl is the spatial curl operator, together
with curlh = 0, where h is the magnetic field. The latter is valid in the
absence of currents under the so-called quasi-electrostatic approximation
[4], according to which time derivatives appearing in Maxwell’s equations
are negligible compared to time derivatives occurring in the equation of
motion. Further, for non-magnetizable bodies it is possible to show that
h = χt × p. This is a nonlinear term and hence negligible in the linear
theory to be discussed; the restriction curlh = 0 is then effectively reduced
to an identity and plays no role in the linear theory.

Appended to this system are the boundary conditions

ta +T+

Mn = Tn, n · [d] = σ and n× [e] = 0, (180)

the first applying on a part of the boundary where the applied traction ta
is specified, where n is the exterior unit normal to the boundary, σ is the
areal density of surface charge on the boundary, and where [·] = (·)+− (·)−,
with the superscripts ± referring respectively to limits as the boundary is
approached from the exterior and interior of the body.

We require the referential forms of the equations, expressed in terms of
differential operators with respect to x. To derive the relevant version of
(178)2, we use Stokes’ theorem∫

s

n · curleda =

∫
∂s

e · dy =

∫
∂S

e · Fdx =

∫
∂S

E · dx =

∫
S

N · CurlEdA,

(181)
where S is an arbitrary material surface with s = χ(S, t) its image in the
current configuration, and Curl is the referential curl operator, to conclude
that (178)2 is equivalent to

CurlE = 0, (182)
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which implies that

E =−GradV (183)

for some scalar potential V. A slight generalization of the argument delivers
the referential version of the jump condition (180)3:

N× [E] = 0. (184)

In the same way we use the divergence theorem to deduce that, for an
arbitrary material subvolume π with P = χ(π, t),

∫
P

divddv =

∫
∂P

d · nda =

∫
∂π

d · F∗
NdA

=

∫
∂π

JF−1d ·NdA =

∫
π

Div(JF−1d)dV, (185)

and thus that (178)3 is equivalent to

DivD = 0, where D = JF−1d. (186)

Again the procedure may be generalized to derive the appropriate version
of (180)2:

N · [D] = Σ, (187)

where Σ = σ |F∗N| is the referential surface charge density.
A convenient definition of the referential polarization is

Π = JF−1p. (188)

This yields (cf. (177))

Π = −ρκΦE (189)

and thus (cf. (179))

D = Π+ ε0JC
−1E. (190)

Lastly, the referential equation of motion is given precisely by (2) in
which T is now given by (170) or (175). Then,

P = (σ +TM)F∗ = 2FWC +TMF∗, (191)

with

TMF∗ = ε0F
∗[E⊗ (C

−1
E)− 1

2
e2I], (192)

and where W = ρκΦ is the strain-energy function.
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To linearize the theory we suppose the norms of the electric field and
the displacement gradient to be small and use the strain measure defined
by (25) to obtain

σF∗ = FW̄ε

= (I+H){C[ε] + SE + ...}

� C[H] + SE, (193)

where W̄ is the strain energy expressed as a function of ε and E, and C
and S respectively are the values of W̄εε and W̄Eε when the strain and
electric field vanish. Here and henceforth, for convenience, we assume that
the associated values of stress and polarization vanish. Thus we assume the
absence of residual stress and residual polarization. To linear order we also
have

P � σF∗, (194)

since the Maxwell stress is quadratic in the electric field.
In the same way we have

−Π = W̄E � QE+Rε, (195)

where Q and R respectively are the values of W̄EE and W̄εE at zero strain
and electric field. Combining this with (190) and JC−1E � E we obtain

D � ε0E− W̄E. (196)

In component form, eqs. (5) and (186) are given, to linear order, by

ρκuitt = Cijkluk,jl + SijkEk,j (197)

and
[(ε0δij −Qij)Ej ],i = Sijkuj,ki, (198)

where
Sijk = ∂2W̄/∂Ek∂εij , (199)

ui are the displacement components, Ei = −V,i and commas followed by
subscripts are used to denote partial derivatives with respect to the initial
Cartesian coordinates xi.

Relevant to our analysis of thin-film substrate problems are restrictions
on the various moduli ensuring the existence of propagating plane harmonic
waves. To explore this we consider plane harmonic bulk waves of the form

ui = ai exp[i(k · x− ωt)], V = v exp[i(k · x− ωt)], (200)
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where ai are the (constant) components of the displacement polarization, v
is a constant, ω is the frequency and k is the wave vector. The direction of
propagation is n and k = kn, where k is the wave number; the wavespeed
c is then given by ω = kc. Substitution into (197) and (198) furnishes the
algebraic system

−ρκω2ui = −Cijklkjkluk + SijkkjkkV and Sijkkikkuj + ηijkikjV = 0,
(201)

where
ηij = ε0δij −Qij . (202)

We assume that η is non-singular so that k · ηk �= 0 for any non-zero k.
Then,

V = −(k · ηk)−1Sijkkjkkuj (203)

and
ρκc

2ui = [Aij + (k · ηk)−1
ΓiΓj ]uj , (204)

where
Aij = Cijklnknl and Γi = Sijknjnk. (205)

Accordingly, sufficient conditions for propagation are the positivity of the
tensors A and η [2], the former generalizing the classical propagation con-
dition of conventional elasticity theory.

7 Thin-film model

Suppose the film is coated with a very thin layer of perfectly conducting
electrode material carrying a charge density Σ. We assume that the sub-
strate to which the film is attached is also a perfect conductor. Then the
electric and polarization fields exterior to the film vanish. The jump condi-
tions (180)2,3, applied at the interfaces between the film and the electrode
and substrate, then yield

n · d(i) = −σ and n× e(i) = 0, (206)

where the superscript (i) refers to the limit as the interface is approached
from the interior of the film. The associated referential forms are

N ·D(i) = −Σ and N×E(i) = 0. (207)

To make the first of these explicit we write N ·D+ = −Σ+ and N ·D0 =
−Σ0, these being respectively equal to the surface charges at the elec-
trode/film interface and the film/substrate interface where N = ±k.
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The weak form of the equation of motion in the film material is given
by (38), but with the stress P now given by (194). The weak form of (186)
is given by ∫

π

D ·GradV̇ dV =

∫
∂π

D ·NV̇ dA, (208)

in which V̇ is the variation of the electric potential and the integrand on
the right-hand side is the limit from the interior of the film.

Proceeding as in (47) we decompose the electric displacement into a part
in the interfacial plane and a part orthogonal to it, i.e.

D = 1D+Dk, with D = k ·D. (209)

Thus,

∫
∂π

D ·NV̇ dA =

∫
∂ω

(

∫ h

0

1D · νV̇ dς)dS +

∫
ω+

D+V̇ +dA−
∫
ω

D0V̇0dA,

(210)
where ω ⊂ Ω is an arbitrary part of the film/substrate interface Ω and ω+

is its projection onto the electrode/film interface. Using (207)1 and the
estimate (44) we derive∫

∂π

D ·NV̇ dA = h

∫
∂ω

1D0 · νV̇0dS −
∫
ω+

Σ+V̇ +dA−
∫
ω

Σ0V̇0dA+ o(h).

(211)
This is further reduced, using

V + = V0 + hV ′

0 + o(h), (212)

to obtain∫
∂π

D ·NV̇ dA = −
∫
ω

(Σ0+Σ+)V̇0dA+h

∫
∂ω

1D0·νV̇0dS−h
∫
ω

Σ+V̇ ′

0dA+o(h).

(213)
In the same way,∫

π

D ·GradV̇ dV = h

∫
ω

(1D0 · ∇V̇0 +D0V̇
′

0)dA+ o(h), (214)

having used the decomposition

GradV̇ = ∇V̇ + V̇ ′k, (215)

and the balance law (208) yields

−
∫
ω

(Σ0 +Σ+)V̇0dA+ h(

∫
∂ω

1D0 · νV̇0dS −
∫
ω

Σ+V̇ ′

0dA)



Surface Waves in Elastic Half Spaces Coated with Crystalline Films 253

= h

∫
ω

(1D0 · ∇V̇0 +D0V̇
′

0)dA+ o(h). (216)

We have implicitly imposed (182) and (207)2 as constraints, the latter in

the form k×E(i) = 0. Thus, CurlĖ = 0 and k× Ė
(i)

= 0, implying that
Ė = −GradV̇ with k×GradV̇ (i) = 0 at the interfaces. From (215) we then
have k×∇V̇0 = 0 in particular, implying that V̇0 is uniform on Ω. On Ω+

we have

0 = k×∇V̇ + = k×∇V̇0 + hk×∇V̇ ′

0 + o(h), (217)

yielding

∇V̇ ′

0 = h−1o(h) (218)

and hence

−V̇0

∫
ω

(Σ0 +Σ+)dA+hV̇0

∫
∂ω

1D0 · νdS−hV̇ ′

0

∫
ω

(D0 +Σ+)dA+ o(h) = 0.

(219)
Because V̇0 and ω are arbitrary it follows that Σ0 +Σ+ = O(h). At leading
order we have

Σ+ = −Σ0, (220)

leaving

V̇0

∫
∂ω

1D0 · νdS − V̇ ′

0

∫
ω

(D0 +Σ+)dA+ h−1o(h) = 0. (221)

Passing to the limit and invoking the arbitrariness and independence of V̇0

and V̇ ′
0 results in

∫
ω

div(1D0)dA = 0 and

∫
ω

(D0 − Σ0)dA = 0, (222)

and the arbitrariness of ω finally yields

div(1D0) = 0 and D0 = Σ0, (223)

pointwise on Ω.
Under the stated conditions the Maxwell stress exterior to the film van-

ishes. The traction boundary condition (180)1 is then identical in form to
(4), after making the appropriate adjustment in the definition of the stress.
The procedure used in Section 3 to derive the equation of motion for the
film/substrate interface carries over unchanged and culminates in (55) in
the case when the upper surface of the film is traction free.
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8 Linear theory for cubic symmetry: Love modes and

extinguished waves

In the linear approximation the constitutive equations are

P = W̄ε and D = ε0E− W̄E, (224)

and to make these explicit we require an expression for W̄ (ε,E) that is
homogeneous of degree two.

Here we consider various subclasses of cubic symmetry. For example,
the strain-energy function pertaining to the hextetrahedral subgroup is [10]

W̄ (ε,E) = 1

2
[C1(ε11 + ε22 + ε33)

2 + C2(ε̄
2
11 + ε̄222 + ε̄233)] + C3(ε

2
12 + ε213 + ε223)

+ 1

2
D1(E

2
1 + E2

2 + E2
3) + 2D2(E1ε23 + E2ε13 + E3ε12), (225)

where C1,2,3 and D1,2 are material parameters and we impose inequalities
(149) to ensure that a sufficient condition for propagation, discussed in
Section 6, is satisfied. The associated stress is

P = C1(trε)I + C2(ε̄11e1 ⊗ e1 + ε̄22e2 ⊗ e2 + ε̄33e3 ⊗ e3)

+(C3ε12 +D1E3)(e1 ⊗ e2 + e2 ⊗ e1) + (C3ε13 +D1E2)(e1 ⊗ e3 + e3 ⊗ e1)

+(C3ε23 +D1E1)(e2 ⊗ e3 + e3 ⊗ e2), (226)

and the electric displacement is

D = (ε0 −D1)E− 2D2(ε23e1 + ε13e2 + ε12e3). (227)

Equation (223)2 then furnishes the restriction Σ0 = (ε0 −D1)E3 − 2D2ε12,
implying that E3(= −V ′

0) satisfies

(ε0 −D1)E3 = Σ0 + 2D2ε12, (228)

whereas the restriction (55)1 on the film stress at the film/substrate interface
reduces to

0 = P0k = [C1(trε)+C2ε̄33]k+(C3ε13+D1E2)e1+(C3ε23+D1E1)e2, (229)

yielding
ε13 = −(D1/C3)E2 and ε23 = −(D1/C3)E1. (230)

Recalling that 1E = −∇V0 at the interface, and hence that Eα =
−V0,α = 0, we conclude that ε3α = 0 in the film at the interface, as in
the purely elastic theory. Further, E3 is uniform at the interfacial plane
because ∇V ′

0 vanishes. Thus, if the assigned surface charge Σ0 is uniform,
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and if D2 �= 0, then (228) implies that ε12 is uniform on Ω. This situation
pertains not only to the hextetrahedral subgroup of the cubic symmetry
group, but also to the tetardoidal and gyroidal subgroups [10]. In contrast,
D2 = 0 in higher-symmetry materials characterized by the hexoctahedral

and diploidal subgroups, and so for these there is no requirement that ε12
be uniform.

Proceeding, we have

1D0 = (ε0 −D1)1E− 2D2(ε23e1 + ε13e2), (231)

which vanishes identically, ensuring that (223)1 is automatically satisfied.
The equation of motion for the film/substrate interface is

σ0k = h[div(P01)− ρκu0tt] (232)

in which σ is the stress in the substrate, assumed to be an isotropic, non-
polarizable elastic solid, and

P01 = C1(trε)1+C2(ε̄11e1⊗e1+ε̄22e2⊗e2)+(C3ε12+D1E3)(e1⊗e2+e2⊗e1).
(233)

Our results yield

div{E3(e1 ⊗ e2 + e2 ⊗ e1)} = 0, (234)

implying that (232) reduces to the purely elastic problem treated in Section
5. Accordingly a uniform surface charge on a polarizable cubic crystal film
has no effect on propagating waves.

However, we have seen that ∇ε12 = 0 on Ω if the film properties are
such that D2 �= 0. For Love waves, the in-plane displacement gradient is (cf.
(105)1) ∇v = ikGδ ⊗ n, with δ · n = 0. Writing n = cos θe1 + sin θe2 and
δ = − sin θe1 + cos θe2, we use this to derive

2∇ε12 = −k2G(cos2 θ − sin2 θ)n (235)

and thus conclude that cos2 θ = sin2 θ, yielding θ = ±45◦. This implies
that waves propagating along the crystallographic axes are extinguished
by the application of a uniform surface charge in polarizable cubic films
belonging to the hextetrahedral, tetardoidal or gyroidal subclasses. We
know of no experimental corroboration of this remarkable and potentially
useful prediction.
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