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Abstract Current status of research on decay of dynamic end ef-
fects in elastic structures aiming at formulation of a dynamic ana-
logue to Saint-Venant’s principle (DSVP) are critically reviewed.
Article concentrates on isotropic homogeneous linear elastic response
over a range of structural geometries including waveguides, with ei-
ther free or constrained lateral surfaces, half space, wedges and
cones. Nearly 200 references are examined in context of DSVP,
starting with early ideas by Boley. Special attention is placed on
available experimental findings on end effects and decay rate in
dynamically excited structures. Current perception of possible ver-
sions of DSVP is classified into several categories, one of which,
namely that of dynamic equivalence, is compatible with much of
known experimental data and has been tacitly applied at various
engineering situations. That observation, along with a perspective
view on evolution of the traditional SVP, provides inspiring ground
for renewed interest in both practical and theoretical aspects of
DSVP formulation.

1 Motivation

The principle named after Saint-Venant (SVP) has been commonly accepted
as a corner stone assumption, widely employed in structural engineering and
theoretical analysis of solid mechanics and related fields. Traditionally, that
principle pertains to phenomena localized at the ends of a structure, ends
to which a self-equilibrated load is applied. Validity of the principle entails
that localization.
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In its original version (Saint-Venant, 1856) the principle argues that ”the
manner of application of a given resultant force and resultant moment on
the two ends of a beam little affected the stress pattern, except very near
the ends, and that all the solutions of a given problem, for end conditions
having the same resultants, rapidly approached one and the same solution”
(Toupin, 1965b, p. 223). The underlying idea, labeled by Toupin as ”the
principle of vanishing end effects”, has been introduced by Saint-Venant
to qualify theoretical elasticity solutions for beams for use in actual engi-
neering conditions. In a broad sense, the assumption, when valid, implies
that the stress field in the interior of a body is not sensitive to spatial
distribution (profile) of prescribed local boundary tractions. Applicability
of SVP has been confirmed over the years for several types of structures.
Authoritative accounts of available research are given in the review by Hor-
gan and Knowles (1983) and in two subsequent updates by Horgan (1989,
1996). Static stress fields that do not conform with SVP have been ex-
posed for thin shells and statically determinate truss structure (Hoff, 1945),
laminate/composite structures (Choi and Horgan, 1977, 1978), monocoque
structures (Hoff, 1945; Nerubailo et al., 2005), and prestressed plates near
points of bifurcation (Durban and Stronge, 1988a; Karp, 2004).

The applicability of SVP in linear elasticity has inspired research and
formulation of similar principles in other branches of mechanics of materials.
Among these are non-linear materials (Roseman, 1976), pre-strained plates
(Durban and Stronge, 1988b), piezoelectric solids (Ruan et al., 2000), heat
transfer phenomena (Oleinik and Iosif’yan, 1976; Chirita and Quintanilla,
1996a; Ignaczak, 2002), and fluid flow (Payne and Song, 1997).

A particularly challenging quest is for possible extension of SVP to in-
clude dynamic structural response, aiming at formulation of a dynamic
Saint-Venant principle (DSVP). Several progress reviews of the classical
Saint-Venant principle contain, inter-alia, short comments related to DSVP
which deserve recollection. The review by Horgan and Knowles (1983, p.
261) concludes with: ”one would not expect to find unqualified decay esti-
mates of the kind discussed here in problems involving elastic wave propa-
gation”. The same conclusion is repeated in the first update of that review
(Horgan, 1989). In a second update a few studies, apparently supporting
validity of DSVP, are mentioned (Horgan, 1996). A further review by Hor-
gan and Simmonds (1994), on application of SVP to composites, refers to
end effects in vibration problems as related to DSVP.

At least five doctoral thesisses have been dedicated to investigation of is-
sues and questions concerning DSVP, including Grandin (1972), Binkowski
(1975) (both supervised by S. Little), Karp (1996) (supervised by D. Dur-
ban), Foster (2003) (supervised by V. Berdichevski) and Babenkova (2004)
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(supervised by J. Kaplunov). Needless to say, each of these studies contains
a review of relevant research literature as known at the time. A related
dissertation, though not directly associated with DSVP, is submitted by
Meitzler (1955).

It is the purpose of the present review to agglomerate and classify avail-
able research work on elastodynamic versions of Saint-Venant principle
(DSVP), both experimental and theoretical. The review, which is an out-
growth of the PhD thesis by Karp (1996), followed by a brief historical
account (Karp, 2005), begins with a retrospective of early studies by Bruno
Boley along with a short discussion of the notion of self-equilibrated load.
Next, in Chapter 3, we review experimental work related to DSVP. Analyt-
ical and numerical studies of DSVP in waveguides with free lateral surfaces
are examined in Chapter 4. Chapters 5, 6, and 7 are devoted to a few avail-
able studies on the validity of DSVP in constrained waveguides, miscella-
neous structures, and composites, respectively. Dynamic decay estimates
for vibrating structures and in viscous materials are reviewed in Chapter 8.
Comparison between the classical SVP and DSVP is suggested in Chapter
9, and finally, concluding remarks are given in Chapter 10.

The present review concentrates on studies concerned with aspects of
DSVP and dynamic end effects in linear elastic materials. It is largely
based on a recently published review by Karp and Durban (2011) with
several extensions and updates. Approximately 200 articles, devoted or
related to the DSVP are reviewed though, in fact, only a fraction of these
papers was originally intended to investigate directly the DSVP. The papers
referenced here were categorized as related to DSVP from the viewpoint of
our present understanding of the topic. For that reason, no attempt has
been made at an exhaustive review with regard to fields which are beyond
linear elastic response. However, within that context, a few neighboring
fields, like evanescent waves, are covered here in part.

A few studies attempt to find a connection between range of influence
of applied load and DSVP. A theorem of this kind states that a sudden
excitation of a body, initially in unperturbed state, will subdivide it into two
regions; the region close to the disturbance zone where the perturbation is
imposed and the rest of the body which is still intact. The surface separating
these two regions is propagating with a characteristic velocity determined
by material properties. Self-equilibrated loads and equivalent excitations,
the key ingredients of SVP, have no special importance to the essence of that
theorem. Rigorous formulation of the theorem can be found in Gurtin (1972)
and more recently in Maremonti and Russo (1989). That interpretation
of DSVP is not addressed in the present review unless it is accompanied
with an estimate of decay. Likewise, left outside the review are studies on
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end effects of Saint-Venant type related to thermal response and problems
governed by parabolic field equations (e.g., Sigillito, 1970), heat conduction
in thermo-microstretch elastic solid (Quintanilla, 2002) and in porous solids
(Iovane and Passarella, 2004), and other phenomena such as flow in ducts
(e.g., Ames et al., 1993).

2 Origins of the Principle

Along the timeline, two aspects have been instrumental in assessing the
causes for both stagnation and progress in studies of DSVP: the notion of
self-equilibrium and its role in validation of SVP, and the original ideas
suggested by Bruno Boley. Accordingly, we proceed with a brief review
of both aspects followed by a short summary emphasizing the conceptual
difficulty arising in treating DSVP.

2.1 Static and Dynamic Self-Equilibrium

The notion of self-equilibrated load is central to the mathematical formu-
lation and validation of the classical SVP. Self-equilibrium of a quasi-static
traction vector t implies zero total force and moment, generally expressed
by ∫

(S)

tdS = 0

∫
(S)

(r× t)dS = 0 (2.1.1)

where S is a small portion of the surface of the body on which the self-
equilibrated traction is applied and r is the position vector. The traction
vector t is the projection of stress tensor , given by t = σ · n where n

is the outward unit vector normal to dS. Then, SVP is stated as ”...the
strains that are produced in a body by the application, to a small part of
its surface, of a system of forces statically equivalent to zero force and zero
couple, are of negligible magnitude at distances which are large compared
with the linear dimensions of the part.” (Love, 1944, p. 132). Validity of
SVP is considered to be established when the effect of self-equilibrated load
can be shown to decay (usually exponentially) with distance resulting in a
small depth of non-negligible straining. That is the localization phenomena,
the focus of the present volume.

Engineering situations in which a self-equilibrated load is applied are
admittedly not common. The association of self-equilibrium with SVP fa-
cilitates mathematical analysis in providing proofs or quantitative estimates
of its validity. The practical usefulness of the classical SVP lies in the con-
cept of equivalence of loads, as suggested by Saint-Venant himself: ”If a
certain set of external forces acting on a certain part of a surface of a body
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is replaced by another system of external forces statically equivalent to the
preceeding system and distributed over the same sector, the stresses corre-
sponding to these two loads will be identical at a sufficient distance from
the point of application of the forces” (Cherepanov, 1979, p. 40).

Whereas analytical proofs and estimations of validity of SVP rely mainly
on the self-equilibrium formulation (Love, 1944), experimental demonstra-
tion of SVP are largely based on the equivalence definition (as stated above).
A classical demonstration has been provided by Frocht (1948) using the pho-
toelastic method (Fig. 1). The experiment shows that far from the edge
on which a concentrated load is applied a uniform stress develops, as in the
case of a uniformly distributed load with identical static equivalents.

Figure 1. Photoelastic photographs of experiment with rectangular blocks
loaded by a concentrated load (from Frocht, 1948, p. 30).

The notion of self-equilibrium is commonly extended to dynamic (time
varying) excitation by either replacing the self-equilibrated traction with
simple harmonic load fulfilling

∫
(S)

(e−iωtt)dS = 0

∫
(S)

(
r× (e−iωtt)

)
dS = 0 (2.1.2)
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for steady state conditions (time denoted by t), or by considering any other
time function f(t)∫

(S)

f(t)tdS = 0

∫
(S)

(r× f(t)t) dS = 0 (2.1.3)

for transients. In both cases self-equilibrium is guaranteed to hold at any
instant of time.

2.2 Early Ideas by Bruno Boley

Research questions related to DSVP were already addressed in 1948 (see
later in Chapter 3), yet Boley was apparently the first to examine explic-
itly an application of SVP to dynamic problems. His ideas on a possible
extension of SVP to dynamic phenomena were expressed in two papers, dat-
ing back to 1955 and 1960, along with a wider generalization to problems
governed by non-elliptic equation in 1958.

Boley investigated the possibility of extending SVP to dynamic problems
by considering two idealized structures; the first consisting of three elastic
semi-infinite bars interconnected by shear springs and subjected to longitu-
dinal self-equilibrated loads (Boley, 1955). The second structure consisting
of two semi-infinite bars connected by springs on which couples with zero
total moment are applied (Boley, 1960a). The original sketches of the prob-
lem are recapitulated here in Fig. 2. In both cases the excitation (load
or velocity) is self-equilibrated at any instant. The criterion for validity of
DSVP is defined as a vanishing ratio between the maximal stresses reaching
a distant portion of the beam and the initial stress at the excited end.

The dynamic response of the two structures was determined analytically,
using transform method, for applied loads (or velocity) with a ramp varia-
tion in time. The time rise of the ramp (t0) served as a parameter, with the
limits of t0 = 0 (representing a step function) and t0 → ∞ (corresponding
to quasi-static conditions) as particular cases. Two main results were ob-
tained, common for all three loading types; longitudinal, shear, and bending
(Timoshenko beam equation was employed allowing for shear contribution
to the dynamic response). For a suddenly applied load (step), stress with a
magnitude of the initial value, or somewhat lower, propagates through the
bars indefinitely. That result led to the conclusion: ”thus the conventional
principle of Saint-Venant certainly does not hold in this case” (Boley, 1955,
p. 205).

The second observation made is the convergence of the dynamic solution
to the static one as the excitation becomes more and more graduate (shown
in Fig. 3). In the limit of the static load, the effect of the self-equilibrated
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(a) (b)

Figure 2. Axial (a) and deflective (b) beam combinations investigated by
Boley (1955, 1960a).

Figure 3. Attenuation patterns of the maximal stress along the axis of the
combined strip imposed by moments with different rise time t0, 0 - for step
function and ∞ - for quasi-static case (from Boley, 1960a).

load practically vanishes beyond one width of the composed beam. The
conclusion is then: ”the conventional usage of the static Saint-Venant prin-
ciple is not too greatly in error for slowly applied loads” (Boley, 1955, p.
206).

Considering the static case as asymptotic solution for the transient dy-
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namic problem led Boley to suggest that the question of validity of SVP for
a dynamic problem is part of the wider issue of how slowly loads must be
applied before the static solution ceases to be a good approximation for the
dynamic problem (Boley, 1960a). Therefore, it was suggested to redefine
the quest for DSVP as a search for the rate of application of the load for
which the quasi-static solution will not introduce unacceptable error. That
direction of research has been followed by Grandin and Little (discussed
later in Chapter 4).

In a short conference paper, which offers newly introduced ideas and
terms, Boley (1958) paved the way to much of subsequent research on
SVP. A question of general validity of SVP to systems governed by elliptic,
parabolic or hyperbolic equations has been raised. For problems governed
by elliptic equations a univocal conclusion was drawn: ”The existence of
the above integral formulas, involving appropriate fundamental solutions,
is a general property of elliptic differential equations, which arise in such
fields as steady heat conduction, electro-and magneto-statics, non-viscous
fluid flow, and so forth, in addition to elasticity; to all these the principle
can then be applied” (Boley, 1958, p. 259). This idea of connection between
ellipticity of governing equations and SVP, together with the notion of self-
equilibrated load, has been employed in many elasticity studies and led to
the first genuine proofs of SVP by Knowles (1966) and Toupin (1965a). An
illustration for validity of Saint-Venant’s principle for a parabolic system,
represented by transient heat problem, is given by Boley (1960b). In par-
ticular, a generalized notion of ”principles of the Saint-Venant type” was
suggested along with a recomendation to state them in terms of ”upper
bound” rather than by order of magnitude. Subsequent studies employing
energy inequalities follow these steps.

In a recent correspondence with one of us (BK), Prof. Boley (2006)
reflected on the issue from a perspective of 50 years, since he made a start on
the topic of DSVP, writing that: ”SVP reminds me in spirit of Pirandello’s
”Six Characters in Search of an Author”, it is indeed a principle in search
of a theorem. The proofs of SVP, for example, are really proofs of a SVP
which may not necessarily be recognized by practicing engineers as the SVP
they are actually using. It is probably close enough, it certainly belongs to
the same species, and so they may feel confident in using it.”

2.3 The Challenge

Boley (1960a, p. 74) concluded his studies on DSVP with an inspiring
observation: ”A discussion given elsewhere indicated that Saint-Venant’s
principle is a general property of elliptic boundary value problems, and
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could not be expected to hold in general in problems of the hyperbolic type,
such as, for example, those of the dynamical theory of elasticity. If the
loading is applied sufficiently slowly, however, then it is intuitively clear
that the static solution will be a good approximation to the dynamic one”.

That perception that SVP is a general property of systems, whose be-
havior is dictated by the nature of their governing equations, has been sup-
ported by several independent studies. For example, Horgan and Wheeler
(1975) wrote in the abstract: ”Third order diffusive type equations, called
pseudo-parabolic, are known to govern a wide variety of physical phenom-
ena. A spatial decay estimate is derived for such an equation, similar to
the known results in the parabolic case”. A similar statement is expressed
by Knops et al. (1990, p. 319): ”Although the treatment is discussed with
special reference to elasticity, it is equally applicable to general systems of
elliptic differential equations, and thus reveals a relationship with the clas-
sical theorems of Phragmen-Lindelof and Liouville”. That view was utilized
by Oleinik and Iosif’yan (1978) several years earlier.

The interconnection between decay behavior and the type of the gov-
erning equations, together with well known non-decaying phenomena in
dynamic problems, are apparently behind the wide spread rejection of SVP
validity to dynamic problems in non-dissipative media. With that skepti-
cism in mind, we attempt here to examine the idea of possible formulation
of a DSVP in its classical sense, even in a restricted version. Surely, an in-
structive start of this review is provided by available experimental evidence
on decay of dynamic end effects, discussed next.

3 Experimental Evidence

Effects of non-uniformity of dynamic excitation applied at an end of a bar
attracted attention of several groups of researchers during the middle of the
previous century. Research was driven by growing interest in experimental
aspects of the split Hopkinson bar system (Wally and Mason, 2000; Field et
al., 2001). Most of these studies were not originally associated with DSVP,
yet they are reviewed below as a prelude to later work and, as will be shown,
they are of significant value for at least one of the interpretations of DSVP.

Davies (1948) observed in his detailed experiments on split Hopkinson
pressure bar system that the pressure distribution over the cross-section of
the bar is not uniform at its free end. Two potential sources for that non-
uniformity were suspected: end effects and the shape of Pochhammer-Chree
modes at high frequencies. No explicit statement on the extent of ”close
region” near the edge is suggested in that review. In a later study it was
found that the edge non-uniformity is smoothed out beyond four to five
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diameters away from the excited end (Davies, 1956).

Miklowitz (1957) and Miklowitz and Nisewanger (1957) investigated
numerically and experimentally the extent of validity of an approximate
Mindlin-Herrmann theory for the analysis of propagation of compressive
waves in a dispersive elastic rod. Strains in both near (0.75, 1, 1.24, 1.5, and
2 diameters) and far (up to 20 diameters) fields, induced by aerodynamic
pressure pulse, were measured. Though limited to uniform excitation over
the cross section, the findings suggest that edge effects for that particular
loading are limited to several diameters off the end: ”The present experi-
ments give further support for this. They indicate that the initial distur-
bance, and the phenomena occurring just behind it, are of three-dimensional
character and are relatively unimportant several diameters from the source”
(Miklowitz and Nisewanger, 1957, p. 244).

Fox and Curtis (1958) devised an experiment aimed to confirm the
asymptotic solution of step pulse excitation of a bar obtained by Folk et
al. (1958) for strains far from the loaded end. Since the asymptotic so-
lution is valid only beyond a distance of 10-20 diameters from the end,
the experimental results do not include data for strains at distances smaller
than 20D from the excited end. Due to different specifications of end excita-
tions employed in the asymptotic analysis (mixed condition with no lateral
extension) and imposed in the experiments (pure stress condition with no
transversal tractions), an additional assumption is required to facilitate the
comparison between the two, even at distances beyond 20 diameters from
the excited end: ”Failure to satisfy the second end condition is expected
to be relatively unimportant for strains at large distances from the end. It
is left to experiment to determine the extent to which this expectation is
fulfilled” (p. 559). An answer to this question, provided later by several
studies, does not refer to that expectation and remained unrelated to it.

Gorham and Ripperger (1959) addressed the same question of non-
uniformity by measuring the difference between surface strain and average
strain within the cross section of a bar, far from the excited end. The
generation of various spatial forms of excitation is achieved by bullets of
different size impinged at the end of the bar. They found no substantial
difference between the two recordings at a distance of 26 bar diameters. No
exact recording of the velocity of the bullets is given, thus preventing any
attempt to estimate the frequency spectrum of the excitation (for higher
velocities more energy is conveyed by modes of high frequencies). A sim-
ilar investigation with bars of a square cross section has been detailed by
Cunningham and Goldsmith (1959) with the important addition of surface
measurement within the near zone. They found that the non-uniformity
becomes unimportant at about 2 to 4 bar widths from the impact end.
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A carefully conducted study on the extent of non-uniformity, made by
Baker and Dove (1962), included embedded strain gauges within the bar
at various distances from the impacted end, in addition to surface strain
gauges. The core measurement device is shown in Fig. 4.

Figure 4. Configuration of the impacted bar with the attached strain
gauges (from Baker and Dove, 1962).

The contact end of the impactor had a curvature of radius 3” while the
diameter of the impacted bar was 1.5”. The findings which resemble those
of Cunningham and Goldsmith (1959) have led the authors to conclude that
the results obtained earlier by Davies (1956) of 4 diameters as representative
distance to which end effect are extended is an overestimation: ”It was
concluded that, when a pulse in longitudinal bar is initiated by central
impact on a small area at one end, the change in the strain profile due to
starting conditions ceases in the vicinity of 2 bar diameters from the impact
end. This is not in agreement with Davies, who reported that four to five
diameters were required” (p. 311). No data on the striker’s velocity at the
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impact is given, though from the experimental set-up it could be estimated
to be of the order of one meter per second.

An additional study on the effect of excitation profile on the strain pulse,
far from the excited end, is reported by Barton and Volterra (1959). The
variation in profile of the excitation was achieved upon employing two strik-
ers in a split Hopkinson bar system. One striker had a flat head and the
other a rounded head. The measurement of the surface strain was taken at
24 diameters off the excited end ”in order to permit the pulse to travel a
sufficient distance to become uniformly distributed over the cross-section of
the bar” (p. 321). A typical comparison of recordings for flat and round
impacting rods is reproduced here in Fig. 5. It is evident that at such
a large distance from the impact end the two strikers had practically an
identical effect.

Figure 5. Surface strain for flat and round strikers of length 100 cm (upper)
and 2.54 cm (lower), at impact velocity of 0.7 m/s, 24 diameters from the
end (from Barton and Volterra, 1959).

Clausing (1959) examined the adequacy of the elementary, one-dimensional
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theory, to predict results of impact of cylinders of different areas. The re-
sponse of the impacted rod was recorded at several distances from the im-
pinged end, starting at a distance of 2.4 diameters. The strikers were of
various diameters and identical length, all with a radius larger than that of
the impacted rod. Since the contact area in all experiments was identical,
the results are not directly relevant to the question of the effect of the profile
of the contact area.

The influence of different end conditions on the dynamic response of
a strip has been examined by Dally et al. (1959) using the photoelastic
method. They found that the fringe pattern is almost identical for reflection
of waves from a free and a fixed end, except for the region close to the
excitation or the end.

The experimental investigation by Flynn and Frocht (1961) appears to
be the first experimental work specifically intended to examine possible ex-
istence of the DSVP. In this work, dynamic characteristics of near and far
fields in a waveguide subjected to uniformly distributed and to concentrated
loads were inspected by the photoelastic method. Two basic observations
have been made in this study: identical stress distribution is obtained far
from the loaded end for both types of transient loadings (uniformly dis-
tributed and concentrated); the parameter that determines the stress mag-
nitude in the far field is the impact velocity rather than the force magnitude
as in the case of classical SVP. The report was labeled by the authors as a
preliminary investigation. A follow up discussion of that paper by Durelli
and Dally indeed encouraged further study whereas a discussion by Borg
(1961) on such demonstration doubted the possible existence of DSVP.

Borg’s comment was based on comparison of the response of a semi-
infinite beam, modeled by Timoshenko theory, with two different loadings of
equal moments applied at the close end. In one case the moment is produced
by normal stresses distributed linearly over the cross section according to
the simple beam theory. In the other case the moment is induced by two
identical concentrated forces separated by small distance, acting normal
to beam axis. It is argued that in the second case only a shear wave is
generated implying wave front propagating with shear velocity, while in the
first case both shear and dilatational waves are generated, giving rise to
substantial difference in wave fronts of the two cases. On this ground it was
concluded that ” a dynamic Saint-Venant Principle does not exist (in the
form considered herein, which most closely parallels the static formulation)
for the Timoshenko representation of the vibrating beam” (Borg, 1961, p.
120). To the Author’s best knowledge the work by Flynn and Frocht (1961)
has escaped notice in subsequent studies of DSVP, while a recent review by
Field et al. (2001) refers to it as confirming the validity of DSVP.



128 B. Karp and D. Durban

By the end of the sixties sufficient data has accumulated to enable com-
parison of the spatial extent of dynamic end effects with that of static end
effects. Photoelastic fringe pattern of a semi-infinite strip with concentrated
static load applied at a center of a strip is given by Theocaris (1959). This
pattern is very similar to that reported by Meyer (1964) for a concentrated
impact load, taken from Flynn et al. (1962). In a study by Kawata and
Hashimoto (1967) static and dynamic concentration factors around irreg-
ularities are compared. Fringe patterns exhibit similarity of the affected
region for both static and dynamic cases. The same localized dynamic
response around a hole in a strip is shown in Flynn et al. (1962) with
comparison between uniform and concentrated load excitations of the strip.

Validity of DSVP as a prerequisite for suitability of an experimental set-
up for acoustic emission study was recognized by Kroll and Tatro (1964). To
that end the characteristics of wave propagation in a tensile specimen were
examined for later use in a study of correlation between dislocation motion
and acoustic emission. The authors investigated uniformity of a wave at the
end of the specimen originated by a pointwise source. The results obtained
(though limited to 5 diameters from the edge due to electrical interference)
confirm earlier results by Bell (p. 130): ”Bell has shown that, in three to
five bar diameters, the stress waves have reflected many times and their
resultant becomes an extensional stress wave, which is uniform across the
cross section, travelling at the bar velocity vb. This establishes a dynamic St.
Venant’s principle”. The cited work by Bell (1960) was not available to us.
The authors conclude with (p. 134): ”The dynamic St. Venant’s principle
will insure that the stress wave becomes uniform after several diameters of
travel”.

Hettche and Au (1967) studied the effect of non-uniformity of the stress
field across a semi-infinite plate. Theoretical considerations of that problem
were supported experimentally by impacting cylindrical hollow rods. The
authors state (p. 308) that ” this stress is seen to be maximum at the center
line and vanishes at the surface of the plate, and is critical only within the
first plate thickness from the impact face”.

Bertholf and Karnes (1969) investigated surface and center-line stresses
in the immediate vicinity of the impact end, while the impact velocity was
designed to generate stresses slightly above the yield stress. The conclusions
(p. 541) reported are: ”It is clear that a one-dimensional analysis is inad-
equate for z < 4R. . . . For the elastic pressure bar numerical solution will
determine the length at which the dilatation front becomes negligible and
the uniaxial-stress approximation becomes valid. It is anticipated that this
length will be between 10 and 20 dia.”. That quantitative estimation is not
explained, and actually is not in agreement with a comparable statement
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in an earlier paper by one of the authors (Bertholf, 1967) estimating it to
be 4 diameters. Moreover, the experimental results in the latter reference
are in good agreement with those of Baker and Dove (1962) and others
cited above, while the observation of ”10 and 20 dia.” is consistent with the
practice to be suggested later by Follansbee (1985). No comparison to any
previous analogous results is given, nor have the effects of exceeding yield
stress and high impact velocity (100 m/s) been examined.

Figure 6. Configuration of the impacted bar with an embedded strain
gauge No. 1 and the surface strain gauges Nos. 2-5 (from Habberstad et
al., 1972).

Experimental results for the centerline strain within the near-field region
are reported by Habberstad et al. (1972). The configuration of the embed-
ded strain gauges is displayed in Fig. 6. The striker velocity was 5 m/s
with a flat head in all experiments. Comparison of the center-line strain
with surface strain was made for distances of 2/3, 2, and 3 diameters from
the impact end. Typical result at the distance of 3 diameters is displayed
in Fig. 7, showing clearly that even at that distance considerable difference
exists between center-line and surface strains. By using the same bar in
inverted position the authors confirmed that the recording at distances of
10 and 22 diameters, from the impact end, are identical. This makes 10
diameters the upper limit for practical uniformity of the signal.

Zemanek (1971, 1972) provided experimental and theoretical insight into
the origins and nature of non-uniformity in context of reflection of a wave
from a free end of a bar, raised earlier by Davies (1948). These studies are
detailed in the next chapter.
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Figure 7. Experimental and numerical results for center (a) and surface
(b) strain at a distance of 3 diameters from impact (from Habberstad et al.,
1972).

Experimental observations of impacting rods by Bell (1973, p. 351) led
the author to explicitly support the validity of DSVP (though no particular
reference was given). Bell preserved the velocity of colliding rods with differ-
ent distributions of the contact area while keeping the total area constant.
The experiments revealed that the spatial distribution of the transient load
has little effect on the surface strain of the rod at distances larger than half
the diameter of the examined rod, a distance much smaller than suggested
previously: ” impacts of small hollow cylinders of the same area as the solid
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rod demonstrated that beyond the first half-diameter the experimental re-
sults were insensitive to the major changes in the spatial distribution of
loading at the impact face” (p. 351).

Though not aiming directly to investigate DSVP, two additional exper-
imental studies using photoelasticity provide further evidence for non sen-
sitivity of the far field to details of end excitations. Miles (1976) examined
the effect of surface roughtness on the uniformity of the wave generated
upon impact (Fig. 8). Here the impact velocity remains identical when a
different profile of the excitation is induced by irregularities at the contact
surface.

Figure 8. A fringe pattern in a plate impacted by two different materials
with different surface irregularities (from Miles, 1976).

A recent study by Kawata et al. (2007) investigated dynamic stress field
in a strip, generated by impact on one end, using photoelastic high speed
photography. The fringe patterns obtained (Fig. 9) are identical to those
generated by static loading, as shown by Frocht (1948) (Fig. 1). Both stud-
ies make it clear that the distance at which the non uniformity is preserved
is nearly the same as in the static situations.
Following a gap of nearly three decades, experimental research on DSVP
has been revived in recent years. Reflection of transient disturbance at a
built-in end of a beam, generated by a transversal excitation at the free end,
was investigated by Karp et al. (2008). The variation of end conditions was
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Figure 9. A fringe pattern in a plate impacted at the center of the upper
end of a strip at two instants (from Kawata et al., 2007).

achieved by altering the tightness of screws used to fix the built-in end.
The measurement of the surface axial strain suggested that extremely small
variation in screws tightness can be detected by strain gauges located in the
near field (Fig. 10), but not by strain gauges located in the far field. The
extent of the near field is estimated to be approximately one width of the
beam.

Symmetric excitation of a bar by striker impact in split Hopkinson bar
system (SHPB) was studied by Karp et al. (2009) in the spirit of Bell’s
(1973) comment. The variation of end excitation was realized with various
shapes of the contact surface of the striker. Experimental results, limited
to surface strain measurements, were accompanied by numerical simulation
confirming similarity in behavior between the core and the surface of the
bar.

A similar, not yet published, study was undertaken at Nanyang Tech-
nological University, Singapore, with SHPB having much larger diameter
rods, enabling direct detection of end vibration (Ma et al.). Four different
strikers, having the same contact area with different shapes, used in the
experiment are shown in Fig. 11.

The typical axial surface strain at a distance of x/D = 0.5 from the
impacted end is displayed in Fig. 12. The difference in amplitude for each
striker is evident. That difference becomes negligible beyond the distance
x/D = 1 (not shown here). An interesting observation are the small os-
cillations, notable only at that particular distance, after the main signal
has died out. That phenomenon is more pronounced for certain strikers
and is associated with end vibration consisting of evanescent waves (e.g.,
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Figure 10. Surface strain recording within the near-field (station 1) for
three beam fixation conditions excited by transversal excitation at the free
end of a cantilever beam. Baseline is the recording of excitation when all
screws are tight in. (from Karp et al., 2008).

Ratassepp et al., 2008).
In these experimental studies on SHPB system the same conclusion was

reached, namely that the response of the bar is not sensitive to the form of
the excitation beyond 1.5 diameters of the rod (Fig. 13).

The body of experimental research on DSVP can be summarized by the
observation that most of experimental investigations aim at understanding
the sensitivity of response of waveguides to spatial distribution of the load,
or to the type of boundary conditions (either mixed or pure traction). The
requirement of self-equilibrium of imposed excitation was not invoked, even
in the few studies explicitly addressing the existence of DSVP. The induced
excitations are of impact type (with Zemanek (1972) as exception). The
results confirm that dynamic response of a beam or a rod excited at its end
is not sensitive to the exact stress distribution of the excitation far enough
from the excited end. Almost all experimentally different studies suggest
that the extent of the non-uniformity of the cross-sectional properties pen-
etrates into the bar less than 2 to 4 bar diameters (or plate thickness).
Studies arguing for a larger distance do not report any contradicting re-
sults on small distance, but rather refer to an upper limit due to particular
experimental limitations. Yet, the necessary conditions for equivalence be-



134 B. Karp and D. Durban

Figure 11. Surface strain recording (in Volts) within the near field for four
strikers with identical contact area and different form (Fig. 11). Small
oscillations are notable for certain strikers (from Ma et al.)

tween excitations were not identified (nor questioned). Standing out are
Flynn and Frocht (1961), Bell (1973) and Miles (1976) who refer explicitly
to the velocity of the impacting rod as a parameter to be kept constant for
comparison of effects far from the loaded end. Nevertheless, understanding
causes for far field insensitivity remains a major issue for future study. The
next Chapter will provide some insight into this aspect of DSVP.

4 Unconstrained Waveguides

Waveguides with free lateral surfaces can be viewed as a dynamic analogue
of beam-like and plate-like structures, for which the static version of SVP
is most frequently applied. In that sense, the present chapter provides
the complementary part of the previous chapter, where studies related or
dedicated to the existence and validity of DSVP in such waveguides are
reviewed.

The stress free condition is defined by vanishing of traction vector on
lateral surfaces

t = σ · n = 0 (4.0.1)

where t is the traction vector, σ - the stress tensor, and n denotes the
outward unit normal to the surface.

The common features of wave propagation in cylindrical and strip waveg-
uides (e.g., Miklowitz, 1978, p. 222) enable joint treatment of both geome-
tries. Similarity in behavior of cylindrical and rectangular cross-sections
of waveguides is also noted (e.g., Hertelendy, 1968). On these ground, no
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Figure 12. Surface strain recording (in Volts) within the near field for four
strikers with identical contact area and different form (Fig. 11). Small
oscillations are notable for certain strikers (from Ma et al.)

distinction between waveguides with different cross-sections will be made in
the following review.

DeVault and Curtis (1962) examined the relevance of asymptotic solu-
tions obtained for mixed type end data for prediction of actual results in
experiments performed with pure end conditions (e.g., Miklowitz and Nise-
wanger, 1957). An example of the mixed data used therein for asymptotic
evaluation is shown in Fig. 14. They reported (pp. 431-432): ” all the main
features of the observed pulse were correctly predicted despite the differ-
ence between the experimental and the assumed end conditions. if there
is a real difference between predictions and experiment, it is at least small.
This statement refers, of course, to a particular type of load and only to the
behavior either at distances greater then a few diameters from the end of
the bar or at a considerable time after the pressure is applied”.

McCoy (1964) solves analytically the problem of a semi-infinite elastic
rod subjected to a shear stress, with arbitrary radial variation, applied to
an otherwise free end. The solution is obtained by series expansion which
consists of propagating and evanescent waves. That analysis leaded to the
conclusion that (p. 463): ”This fact allows an evaluation of Saint Venant’s
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Figure 13. Surface strain recording (normalized by far field strain) in ex-
periment and finite element calculation of a rod, versus distance from the
excited end, with different strikers (P1 and P4 pin type, B1 and B4 bore
type) (from Karp et al., 2009).

Figure 14. Mixed boundary conditions used by DeVault and Curtis (1962).

principle as applied to dynamic problems. The portion of the energy in a
signal that excites a frequency above the cutoff frequency will propagate
into the rod, whereas the energy which excites frequencies below the cutoff
frequency will set up a vibration confined to the end of the rod. The lower
the frequency the more closely confined to the end is the vibration”.

Novozhilov and Slepian (1965) were apparently the first after Boley to
dedicate a paper for examination of DSVP. Their interest in DSVP was mo-
tivated by practical aspects of use of Timoshenko’s flexural beam equations
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with non-ideal end data. For that purpose they studied decay of end effects
generated in a beam by dynamic (time varying) self-equilibrated load. It
was shown that a steady state (harmonic) load generates a non-zero in-
flow of energy associated with propagating waves. Therefore, no dynamical
counterpart of the static SVP appears to exist in dynamic steady state
fields. For transients, on the other hand, by comparing self-equilibrated
and non-self-equilibrated step loads it was confirmed that the static version
of SVP is applicable even to rapidly changing transients due to localization
of the stress near the wave front. Consequently, a restricted interpretation
(Novozhilov and Slepian, 1965, p. 313) of the principle is suggested: ”The
Saint-Venant principle is applicable for the study of transient process in
beam dynamics since deformation corresponding to suddenly applied self-
equilibrating load localize themselves in the neighborhood of the wave fronts
and in the neighborhood of the cross section over which the load is applied.
This assertion does not extend to self-equilibrating disturbances with the
continuous in-flow of energy into the beam (for example, to periodic distur-
bances)”.

Torvik (1967) used a variational method to find the actual amplitude of
reflecting modes, from a stress-free end of a plate, generated by a single-
mode single-frequency incoming wave. Investigation of both propagating
and evanescent waves was concluded with an interpretation of DSVP (Torvik,
1967, p. 352) stating that ”Below the frequency where more than one prop-
agating mode is possible, an extension of St. Venant’s principle is possible
but extremely restrictive. The energy put into the system will have to be
carried away by the first mode; therefore any two dynamic loadings (at a
given frequency) will give rise to the same amplitude in the first (and only)
propagating mode if they do work on the same displacements of the first
propagating mode at the same rate, even if the stress distribution of the
loaded region differs.”. The author further suggests estimating the distance
beyond which such loads are equivalent by considering the decay distance
of the first evanescent mode. Diligent et. al. (2003) realized experimentally
the configuration calculated by Torvik. They measured directly the excita-
tion of evanescent waves generated at a free end of a plate upon reflection
of the first symmetrical mode. Research conclusion was that evanescent
modes can be neglected beyond distance of five times the plate’s width.

Jones and Norwood (1967) compared the stress at the wave-front gener-
ated by an end excitation of a cylindrical bar under two loadings of mixed
type; step pressure with zero radial displacement and step velocity with zero
shear. By using asymptotic solutions of the exact elasticity equations (valid
beyond 20 diameters from the end) they found, for equivalent pressure and
velocity applied at the end, that the stress distribution at distances greater
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than 20 times the diameter is the same despite the different end data. This
result was regarded as confirming the validity of DSVP in such problems
(p. 723): ”Because the lateral end conditions are markedly different, this
constitutes at least an upper bound on a dynamic Saint-Venant’s principle
for these problems in the range of low frequencies”. The equivalence of the
two types of excitation was judged by the equality P0 = EV0/C0 where P0 is
the amplitude of the step pressure, V0 is the amplitude of the step velocity,
E and C0 are Young modulus and velocity of longitudinal waves in a bar,
respectively.

Bertholf (1967) used numerical integration to evaluate the near field in a
bar subjected to steady state uniform displacement with no shear at its end.
The solution of Pochhammer-Chree frequency equation was considered as
valid only at remote distance from the ends and was used to confirm (p.
734) correctness and accuracy of the numerical solution: ”The results of
applying a plane, harmonic displacement to the end of a semi-infinite bar
compare satisfactory with the Pochhammer-Chree solution at points not
near either the end or the wave front”. The estimate for the distance at
which a reasonable agreement (p. 728) is obtained was 4 bar diameters: ”
the Pochhammer-Chree solution is correct for distances of more than 4 dia
from the end of a semi-infinite bar”.

Kennedy and Jones (1969) investigated the effect of spatial distribution
of a suddenly applied load on the far field in a circular bar. While the
study is in the spirit of the original Saint-Venant’s formulation, connection
to DSVP was not discussed. The resultant of the applied loads remained
constant while their distribution varied, implying self-equilibrium in a static
sense obtained from the difference between these loads. The imposed exci-
tations are given by

σx(0, r, t) = −P (r)H(t) ur(0, r, t) = 0 at x = 0 (4.0.2)

with

P (r) = P0(p+ 1)

[
1−

( r
a

)2]p
p ≥ 0 (4.0.3)

where P0 is kept constant, parameter p describes the degree of the non-
uniformity of the load, a is the radius of the bar and x is the axial coordinate.
For p = 0 the load is uniformly distributed. Numerical integration results
were compared to asymptotic solutions at the far field to gain confidence in
the numerical prediction for the near field. The numerical evaluation was
limited to distances of 5, 10, and 20 diameters from the end. In view of the
findings summarized in chapter 3, the smallest distance of 5D is beyond the
extent of near field. Hence, the article can be viewed as an investigation of
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the effect of the profile of the excitation on the far field. It has been shown
that the double transform solution for the first mode, valid in the far field,
is independent of p. The conclusion is that the excitation profile has no
effect on the average stress in cross sections at distances beyond 5D. The
cross section peak stress is insensitive to excitation profile only beyond 20D.

Karal and Alterman (1971) examined the extent of the strain difference
in the far field of a bar due to application of pure and mixed shocks at
the end. They concluded that already beyond 2D from the excited end
it is immaterial whether the data is pure or mixed (p. 10): ”the output
response for distances equal or greater than two diameters from the end of
the rod exhibits the same general features whether the boundary conditions
are pure or mixed”.

Two numerical and experimental studies by Zemanek (1971, 1972) are
instrumental in providing a possible interpretation of DSVP as related to
evanescent waves. In the first study a clear distinction is made between
near and far fields, along with explanation of the nature of the near field.
In the second paper, results of an experimental investigation of end effects
are modeled by wave reflection from a free end. A clear insight into the
correlation between dynamic end effects, evanescent waves, and complex
wave numbers is suggested.

Yeung Wey Kong et al. (1974) solved numerically the exact elasticity
equations for impact of a rod as part of a study on the effect of mismatch
of contact area between specimen and bars in a split Hopkinson bar sys-
tem. Their concern was the validity of interpretation of experimental results
based on one dimensional theory. Four ratios between the diameter of the
contact area r0 (representing the specimen) and the bar diameterD were ex-
amined (r0/D = 0.18, 0.36, 0.72, 1.0). The strains at the center and surface
of the bar were extracted for stations located at 4D and 8D. Comparison
of the calculated surface strain at 8D for the four specimens discloses con-
siderable difference, both in first order and second order response. It is not
stated explicitly how the imposed boundary conditions were adjusted for
the four specimens, whether it is the normal stress or the total force that
was preserved for all four simulations.

Grandin and Little (1974) adopted the mathematical interpretation (p.
145) according to which the principle does not exist if a self-equilibrated
oscillating load produces non-decaying waves: ”The definition of what is
meant by a Saint-Venant boundary region might lead to different interpre-
tations as to whether a dynamic Saint-Venant principle exists or not. The
approach taken here is to apply an edge stress distribution with null in-
tegrated force at any instant of time and determine if non-decaying waves
are produced. This would indicate that beyond a certain distance the wave
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fronts are independent of edge stress distribution”. That interpretation led
the authors to conclude that DSVP does not exist in steady state problems,
as already suggested by Boley (1955, 1960a) and by Novozhilov and Slepian
(1965). The authors conclude (p. 146) with: ”Examination of the results at
lower frequencies indicated that the stress magnitude of the non-decaying
modes was greatly reduced and the results tend toward the static solution.
It must, however, be noted that the frequencies must be very low before the
non-decaying mode may be neglected contributing to the argument against
the existence of a dynamic Saint-Venant region”.

Binkowski (1975) examined the dynamic response of a circular waveg-
uide subjected to three different end excitations, two of which were self-
equilibrated and harmonic in time. Comparison of the stress field of the
propagating waves generated by these two self-equilibrated loads revealed a
”radically” different response. Based on that finding the author concludes
(p. 60) that ”A dynamic Saint-Venant region does not exist for a solid
circular semi-infinite cylinder”. It should be noted that the comparison is
made at a frequency above the first cut-off, where two propagating modes
are available.

Apparently the first formulation of Saint-Venant type energy inequality
for dynamic response of a cylinder with free lateral surfaces was given by
Ignaczak (1974). For the proof of spatial decay of the total cross-section
energy two assumptions (p. 313) were employed: ”we assume that B is a
semi-infinite nonhomogeneous and isotropic elastic cylinder loaded smoothly
on the end face of the cylinder, and that the stress field is to vanish in a fast
way at infinity”. However, in view of the results obtained by Boley (1955,
1960a) and by Novozhilov and Slepian (1965) it is not clear how the second
assumption can be fulfilled for a general response of a waveguide with free
surfaces.

Sinclair and Miklowitz (1975) considered a plate in plane strain with
free faces excited by suddenly applied normal symmetric loads at the end.
They used double transform for long time solution of two different loads,
uniform and concentrated, on the centerline. It was estimated that the
actual response of a plate to any other form of excitation will lie within the
limits of the solution to these two forms. The authors report that if the
total force is identical, the far field is practically identical as well.

Orazov (1983) investigated the validity of DSVP in an elastic semi-
infinite waveguide with free or clamped surfaces subjected to displacement
or stress on the near end and zero displacement at the remote end (at in-
finity). Under some restricting conditions on the end excitation, the author
proved complete decay of the response at some distance from the end, even
for a waveguide with free surfaces, thus suggesting a proof for DSVP in a
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particular case. It is noted that in general, such conditions give rise also to
non-evanescent waves radiating energy to infinity, resembling Sommerfeld’s
condition.

Kim and Steele (1989) demonstrated the advantage of stiffness matrix
method over collocation method for estimation of end effects associated with
time-harmonic excitation of a bar. Various forms of excitations were solved
to illustrate the method, yet no explicit evaluation of the extent of the end
effects is given.

Gomilko et al. (1995) compared the amplitude of waves induced by a self-
equilibrated excitation to those induced by non-self-equilibrated excitations.
The ratio obtained turned out to be extremely small for excitations with
a low frequency, confirming a version of DSVP. Gomilko et al. (1995, p.
1153) formulated DSVP as follows: ”When a self-balanced system of forces
acts on the end of semi-infinite strip, stresses arise as a result of this system
only near the end. At a significant distance from the point of application of
the forces the effect of such a load is practically zero”.

Karunasena et al. (1995) have presented an explicit verification of the
amplitude and depth of penetration of evanescent waves induced by reflec-
tion of the first propagating mode at a fixed edge. The authors showed that
the evanescent waves generated upon reflection from a fixed end of a com-
posite plate are negligible at distances larger than twice the plate’s width.
This analysis and its results are similar to those suggested by Torvik (1967),
though no connection to DSVP was noted.

Cherukuri and Shawki (1996) confirm, by using finite difference solu-
tions, the results obtained by Fox and Curtis (1958), according to which
beyond two diameters off the impacted end the type of BC (either mixed
of pure) has no effect. The same conclusion, based on energy partition
among propagating modes, was derived by Karp (2008) with the aid of
bi-orthogonality relations for an elastic strip.

Chirita and Quintanilla (1996b) treated both transient and steady state
excitations using energy inequalities. To establish decay for a transient load
it was assumed that the excitations are self-equilibrated at any instant (this
work appears to be among the few studies using differential inequalities
where that condition is required) and allowed for lateral surfaces to remain
free of traction. Under these conditions it has been proved that the cross-
section energy, within the domain of influence, decays linearly with distance.

Similar energy inequalities were established by Iesan and Scalia (1997)
for microstretch material, and by Borrelli and Patria (2000) for a piezo-
electric beam with clamped or free surfaces. Borrelli and Patria remark
(p. 74) that: ”the decay result concerning the energy does not require as-
sumptions on the boundary data on the base”. Knops and Payne (2005)
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derived equivalent inequalities for a nonhomogeneous, anisotropic material
with constrained excitation at the base.

Karp and Durban (1997) enhanced several existing approaches, mainly
similar to Torvik (1967), following Karp (1996). The central idea was to
abandon the quasi-static notion of the ”self-equilibrated load”, and to re-
place it with a ”system of equivalent loads”. That idea is further developed
in Karp (2009), where, in particular, it was shown that DSVP formulation
based on ”dynamic equivalents” coincides with the ”static equivalents” in
the limit of zero frequency. Moreover, it was demonstrated that the extent
of non-uniformity associated with the end effect is the same for both static
and dynamic situations, as demonstrated by the photoelastic fringes shown
here in Figs. 1 and 10.

Tyas and Watson (2000) examined numerically the transient response
of a bar to concentrated and arbitrary distributed loads in the context of
reconstruction of the applied load out of measured strain history. Employing
a finite element code they showed that for low frequency load, its magnitude
can be deduced from measurements taken far enough from the edge (five
times the radius). It is stated (p. 1549) that the study is not intended to
postulate a dynamic version of SVP: ”Unlike previous work of this type,
these findings have not been used to postulate a dynamic Saint-Venant’s
principle for the pressure bar”.

Meng and Li (2001) suggested improvements of the interpretation of
data from split Hopkinson pressure bar tests by invoking DSVP. Their view
of DSVP resembles a direct extension of static SVP stated as insensitivity
to the spatial distribution of the applied surface load. Using finite element
code the authors found that the surface response of the output bar (the sec-
ond bar in SHPB system) beyond 1.5 rod diameters is insensitive to spatial
distribution of the end load. For the sake of comparison, the average pres-
sure was held constant. Application of that conclusion to the improvement
of the split Hopkinson bar system is detailed in a subsequent paper (Meng
and Li, 2003).

Berdichevsky and Foster (2003) considered (p. 3293) the lack of orthog-
onality of the eigenfunctions as a major reason for difficulties in establishing
DSVP: ”In dynamics, Saint-Venant’s principle of exponential decay of stress
resulting from a self-equilibrating load is not valid. It is not clear how to
formulate the conditions that eliminate the penetrating modes”. Such con-
ditions have been derived later by Babenkova and Kaplunov (2005) and
by Karp (2009). The conclusion (p. 3296) is that ”An unpleasant conse-
quence is that, in general, one cannot trust the predictions of dynamical
one-dimension beam theory that takes into account only the total force and
moment at the beam end”.
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In order to bypass that difficulty Foster and Berdichevsky (2000) and
Berdichevsky and Foster (2003) suggested a novel approach to measure
quantitatively, by statistical average, the degree of violation of SVP in
structural dynamics. Using statistical distribution of a self-equilibrated
load, they evaluated quantitatively the frequency range of a harmonic, self-
equilibrated load, for which the error involved in assuming SVP is accept-
able. It was shown with high probability that for a frequency region below
some value, the error of classical theory is very low. In a subsequent study
Foster and Berdichevsky (2004) enhanced that work to estimate (p. 2551)
the effect of end effects in end vibration of a semi-infinite beam: ”In the
case of a dynamic load, Lamb (1916) showed that a traveling wave is also
excited, so that a self-equilibrated end load will cause some level of stress to
penetrate into the beam: Saint-Venant’s principle is violated”. Furthermore
(p. 2552), ”Our major conclusion is that over a wide range of frequencies,
the maximum propagating stress is small compared with the maximum ap-
plied stress. Saint-Venant’s principle may be said to apply in this problem,
until the frequency approaches a critical high level. Below this frequency of
vibration, the error involved is considerably smaller for flexural vibrations
than it is for longitudinal vibrations”.

This topic was further investigated by Babenkova and Kaplunov (2004)
who examine conditions on a low frequency excitation for not generating
propagating waves. The condition that the symmetric non-self-equilibrated
excitation σ0(y), with y as a normalized coordinate in the transverse direc-
tion, will not induce propagating waves is given by

1∫
0

(
1− 1

4
νλ2y2

)
σ0(y)dy = 0 (4.0.4)

where ν is Poisson’s ratio and λ the non-dimensional frequency. This for-
mula involves a low-frequency corrector to the applied self-equilibrated load
required to ensure validity of Saint-Venant principle and can be considered
as a deviation from the self-equilibrium conditions for static decay, as the
authors write (p. 2168): ”The derived low-frequency decay conditions repre-
sent a starting point for an asymptotic refinement of 2D boundary conditions
in dynamics of thin plates and shells. It is important that these conditions
allow us to take into account deviations from the classical formulation of
the Saint-Venant principle”. An earlier work by these authors (Babenkova
and Kaplunov, 2003) examines the application of DSVP involving similar
correction to the quasi-static self equilibrated load with low frequency while
applied to a finite strip. Extension for high frequency oscillating load was
formulated by Babenkova and Kaplunov (2005).
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A follow up study by Babenkova et al. (2005) evaluates the ratio of
the power generated by self-equilibrated loads to the power generated by
non-self-equilibrated loads for low frequencies; the interpretation given to
DSVP resembles that of Gomilko et al. (1995). An interesting (p. 405)
analogy is proposed: ”In the problem of the propagation of harmonic waves
in a half-strip, homogeneous (non-decaying) modes, which are determined
by the real roots of the well-known dispersion equations , can serve as an
analogue of the Saint-Venant solution”. With that analogy the authors
extend the principle (p. 1165) for high frequency excitations: ”However, in
contrast to statics, high-frequency behaviour is often characterized by short-
wave propagating sinusoidal modes that do not decay along with polynomial
terms. These propagating modes have to satisfy the Sommerfeld condition
at infinity. Thus, we do not require a total decay. We require only the
absence of polynomial modes that do not satisfy the radiation condition at
infinity”.

It is probably a telling sign, indicating that research on DSVP is still in
the formative period, that none of the studies discussed in Chapter 3 were
referenced in papers reviewed up to this point in Chapter 4. In particular,
there is no reference to the investigations by Davies (1956), Baker and Dove
(1962), and Cunningham and Goldsmith (1959), which bear direct impli-
cation to DSVP. This comment applies also to review articles by Horgan
and Knowles (1983), Horgan (1989, 1996), Field et al. (2001), Karp (2005).
Understanding of DSVP has evolved along more than one avenue, not in a
linear pattern, with several diversities over the time line.

Karp (2008) investigated the sensitivity of far field response to the form
of end excitation of an elastic, semi-infinite strip. Since, as stated by Torvik
(1967), below the first cut-off frequency only one mode can be generated re-
gardless of the form of the excitation, the study examined higher frequencies.
It was found that moderately non-uniform excitations exhibit similar energy
partition among the propagating modes, suggesting a degree of insensitivity
to form even at high frequencies. This can explain similar far-field response
detected in experiments by Barton and Voltera (1959) with rounded head
strikers, albeit the high frequency spectrum of the excitation.

Adherence to the equivalence of loads required by classical SVP led Karp
(2009) to formulate a DSVP based on dynamic equivalence of loads. Dy-
namically equivalent loads are defined as loads generating identical far-field
response within the waveguide. Such formulation of DSVP, based on dy-
namically equivalent loads, is consistent with experimental results on insen-
sitivity of the far field to details of end excitation and can be related directly
to evanescent waves. It was also shown that the requirement on excitation
for no-radiation (no far field response) is mathematically reduced to the
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static requirement of self-equilibrium of load, as necessary for decay in the
static case. The suggested (p. 3072) formulation of the principle reads: ”If
a certain set of external excitations acting on a certain part of a surface of
a body is replaced by another system of external excitations dynamically
equivalent to the preceeding system and distributed over the same sector,
the stresses corresponding to these two excitations will be practically identi-
cal at a sufficient distance from the point of application of the excitations”.
Further unification of classical SVP and DSVP is proposed (p. 3075): ”
unification of static and dynamic formulations of SVP can be achieved by
noting that in both cases the validity of the principle stems from far-field
response being not sensitive to the form of the excitation”.

That formulation of DSVP enables one to mitigate the objection, raised
by Borg, to counter-example the validity of DSVP. Borg compared two anti-
symmetric responses of a Timoshenko beam model. His argument is based
on the observation that a pure bending disturbance of a beam propagates
with higher velocity than a shear disturbance, and therefore two equal-
magnitude moments will generate different far-field response. While this
observation is correct it does not contradict the DSVP formulation suggested
since the shear mode is a second anti-symmetric mode, available only above
the first anti-symmetric cut-off frequency (e.g., Abramson et. al., 1958,
p. 157), whereas in Karp (2009) it is suggested to restrict the validity of
DSVP to frequencies below the first cut-off. In other words, these two equal-
magnitude moments do not comply with the requirements for equivalent
excitations (as defined in Karp, 2009).

The studies reviewed in this chapter cover analytical research of solu-
tions relevant to experimental findings reviewed in Chapter 3. The papers
reviewed in the following sections are of less direct connection to experi-
ments, though various versions of DSVP are discussed therein.

5 Constrained Waveguides

The search for DSVP in constrained waveguides has concentrated on two
types of constrains: clamped faces and energy leaking surfaces. Though the
dynamic response of waveguides with constrained surfaces has been treated
by several methods, those dedicated to DSVP are limited to use of energy
inequality methods (with Orazov, 1983; Karp and Durban, 2005; and Karp,
2011 as exceptions). It is worth noting that elastodynamic solutions for a
strip with clamped surfaces (e.g., Mindlin, 1960, Karp and Durban, 2005)
suggest that any end disturbance, with frequency below the first cut-off
frequency, will generate response decaying in the axial direction leaving no
response at all far from the loaded end.
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5.1 Clamped Lateral Surfaces

Clamped surfaces are defined by zero displacement u over the generators
of the waveguide

u = 0. (5.1.1)

Orazov (1983) used the general formulation of elasticity equations along
with eigenfunction analysis to derive decay estimates in a waveguide with
general cross-section. The decay rate was associated with the wave number
having the lowest imaginary part. As mentioned already, the author em-
phasizes that the same result is valid also for a waveguide with free lateral
surfaces.

Knops (1989) determined spatial decay estimate of cross-sectional energy
for a quasi-linear, semi-infinite cylinder, with anisotropy induced by finite
prestress. In that study clamped faces were chosen for simplicity of the
analysis (p. 193). The end excitation was taken as harmonic in time.
As an intermediate result, facilitating an energy inequality, it was proven
(corollary 3.1) that the cross-sectional work function Φ vanish far from
the loaded end. Energy inequalities derived from that corollary lead to a
somewhat complicated mathematical result, from which it follows that (p.
202): ”We have demonstrated that within the disturbed region 0 < z < βt
the energy is bounded above by the sum of a constant term and a term that
decays exponentially with distance from the base of the beam”.

A similar result has been derived by Flavin et al. (1990) for non-linear
materials, by Borrelli and Patria (1995) for a mixture of two linear elastic
solids, by Borrelli and Patria (1996) for a magnetoelastic cylinder, Chirita
and Quintanilla (1996b) for elastic materials, Iesan and Scalia (1997) for
microstretch elastic bodies and by Aron and Chirita (1997) for micropolar
elastic cylinders.

Quintanilla (1999) established energy decay estimates for the spatial
behavior in thermoelasticity without energy dissipation. The derivation of
the inequality was made for clamped lateral surfaces with the concluding
(p. 221) remark that: ”The analysis presented in this section also works
if we substitute the boundary conditions imposed at the beginning by t =
0” (where t is the traction vector on the lateral surfaces). However, that
statement has not been supported by other evidence and indeed contradicts
the known phenomenon of propagation of non-attenuating waves under such
conditions.

Borrelli and Patria (2000) derive a Saint-Venant type decay relation for
piezoelectric material, similar to those obtained by Chirita and Quintanilla
(1996b) for clamped surfaces excited by harmonic excitation and for a body
with free surfaces excited by a transient force. Yilmaz (2007) derived sim-
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ilar energy decay estimates for a system of coupled parabolic-hyperbolic
equations with clamed surfaces under non-linear conditions.

Chirita and Ciarleta (2008) gave spatial decay estimate for an anisotropic
homogeneous and compressible cylinder. The lateral surface and far end of
the cylinder are constrained by zero displacement condition. An exponen-
tial decay result for excitation frequency below some critical frequency has
been derived. Algebraic decay has been obtained for frequencies above that
critical frequency though it is not explained how such decay is possible at
high frequencies without exclusion of propagating waves.

Tibullo and Vaccaro (2008) derive a theorem of influence domain and
decay estimation for strongly elliptic, anisotropic materials. They conclude
(p. 993) that: ” inside of the influence domain, a spatial estimate of Saint-
Venant type has been established, which describes the exponential decay of
solutions with respect to the distance from the loaded end”.

A study on evanescent waves characteristics in a strip with various
boundary data on the faces is undertaken by Karp and Durban (2005) in the
context of incremental finite elasticity. In particular, the authors point out
that the response of a strip with clamped surfaces consist of decaying fields
regardless of the self-equilibrium of the excitation, provided the frequency
is below the first cut-off frequency. Frequency map (Fig. 15) shows that for
the symmetric fields, the first non-dimensional frequency is Ω = 1. That
result is in agreement with previously reviewed results for decaying fields in
waveguides with clamped surfaces below a specific frequency.

5.2 Energy Leaking Surfaces

The boundary conditions for waveguides with energy leaking surfaces
are expressed by the inequality

t · u �= 0 (5.2.1)

on lateral surfaces, where t is surface traction and u is the displacement
vector. Nappa (1998) establish energy decay estimates for both bounded
and unbounded bodies with boundary condition of this type. The suggested
interpretation of the DSVP is again a combination of domain of influence
theorem and spatial energy decay relation within that domain. Extension of
this interpretation of the DSVP and energy estimates was made for various
domains, among them by Chirita and Nappa (1999) for incremental response
of a non-linear material, by Chirita and Ciarletta (1999) for thermodynamic
processes, and by Gales (2002) for swelling porous elastic solids.

In several studies it was assumed that the displacement or the load at
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Figure 15. Frequency map (wave number k versus frequency Ω ) for sym-
metric fields in a strip with clamped surfaces made of elastic material with
Poisson’s ratio ν = 0.25 (Blatz-Ko material without prestretch). Thin
lines (composed of black dots) indicate real and purely imaginary branches.
Thick lines (composed of hollow circles) indicate complex branches (two
curves for each eigenvalue). Purely real wave numbers are associated with
propagating waves. (from Karp and Durban, 2005).

the surfaces are imposed, e.g.

u = ũ or t = t̃. (5.2.2)

If this prescribed data is constant over time, an imposed displacement
is actually sort of clamping while imposed traction represents leaking en-
ergy. If the data has time dependence, both stand for leaking energy. Such
boundary condition was examined by Scalia (2001) to establish energy de-
cay estimates for anisotropic, inhomogeneous linear material with voids.
Ciarletta et al. (2002) extended that analysis for porous elastic mixtures
and, in Ciarletta (2002), for a thin plate with transverse shear deformation
in steady state excitation under clamped lateral conditions, and also for
a transient excitation with a dictated displacement at the lateral surfaces.
Additional spatial estimates in linear thermoelasto-dynamics for imposed
displacement at the lateral surface were derived by Chirita and Ciarletta
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(2003), and energy decay estimates for various boundary conditions are re-
ported by Knops and Payne (2005).

Sliding and inextensional surfaces for a waveguide under plane strain (in
x, y coordinates) conditions are defined by

τxy = uy = 0 sliding lateral surface (5.2.3)

σy = ux = 0 inextensional lateral surface (5.2.4)

Dynamic response of such waveguides has a simple solution which ap-
pears in text books on elastic waves (e.g., Achenbach, 1973, Graff, 1975,
Miklowitz, 1978).

The study of evanescent waves in such waveguides, within the context
of incremental elasticity, is reported by Karp and Durban (2005). An in-
teresting result which has emerged is that non-self-equilibrating excitations
induce decaying fields within the strip, as has already been noted in the
equivalent static case by Karp and Durban (2002). The decay rates are
of the same order as for waveguides with free surfaces. Similar work has
been done by Wijeyewickrema et al. (2008), with emphasis on propagating
waves.

Recently, Karp (2011) combined the mathematical simplicity of waveg-
uide analysis with sliding boundaries conditions analysis to demonstrate
validity and practical aspects of DSVP. In that study the sensitivity of sur-
face strain within the near field (Saint Venant region) to the fine details
of end excitation has been confirmed. Results were interpreted with a new
measure, the Saint-Venant’s ratio (SVR), defined as the ratio of surface ax-
ial strain to strain amplitude in the far-field associated with propagating
wave. That measure represents deviation of the near field from the far field.
For example, SVR = 1 when there is no end effect at all (the profile of
the excitation is identical to the profile of the propagating wave at a given
frequency). The variation of SVR with non-dimensional distance x/h for
various excitations is reproduced here in Fig. 16. The resemblance of these
curves to those obtained for a rod subjected to a transient excitation in Fig.
13, is notable.

6 Special Geometries

Extension of SVP to half-space, wedge and a cone is not a straightfor-
ward task since these geometries lack any natural length scale, as opposed
to a beam to which Saint Venant originally referred to (de Saint-Venant,
1886). Therefore, for formulation of SVP for such cases the length scale is
taken from the load spatial parameters, as demonstrated in statics by von-
Mises (1945) and Sternberg (1954) for a half space and by Horvay (1957),
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Figure 16. Variation of SVR for five excitation forms S (resembling dam-
aged joint) with frequency Ω = 0.5 (below first cut-off) and S2−in excitation
also with frequency Ω = 1.5 (close to first cut-off). Four Si−in excitations
represent damaged joint at the center line of the strip while S5−out excita-
tion represents damage at the outer edges. (from Karp, 2011).

Markenscoff (1994) and Stephen (2008) for a wedge. Few studies examine
the possibilities to extend findings in these geometries to the dynamic case.

6.1 Half-Space

Miyao et al. (1975) studied the application of SVP to dynamic response
of a semi-infinite body subjected to an impulsive torque on the surface of
a hemispherical pit. The temporal variation of the excitation applied to
the body was a step load with several additional cases of gradually profiled
loads. It was found that the stresses just behind the wave front are strongly
influenced by the spatial distribution of shear forces on the pit. Stresses
behind the wave-front, far enough from the pit, are not sensitive to such
variations of load distribution. The distance at which that insensitivity
manifests is smaller for excitations that gradually change with time. It is
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interesting to bring the note (p. 963) stating: ”Compared with the results
previously obtained for the rod, the difference among stress systems pro-
duced by several systems of applied load distributions is more remarkable
for the semi-infinite body”.

Kim and Soedel (1988) solved the problem of dynamic response of a
half-space on which a step load is applied. Emphasis of the article is on a
novel method enabling a simple solution for arbitrary spatial distribution
of the step load. Upon preserving the equivalent static load, the result is
that far enough from the loaded area, the strains behind the wave-front are
insensitive to the spatial distribution of the load. The same conclusion was
obtained later by Awrejcewicz and Pyryev (2003). No explicit reference to
DSVP was made.

Wang and Kim (1997), on the other hand, analyzed the effect of an
impulse load with varying contact area acting on a half-space (modeling
impact against a stop). Comparison of the response included the full time
history of the stress at a distant point while preserving the total load. Con-
clusion was that at distances greater than five times the diameter of the
loaded area, the size of the loaded area has a fairly small effect on the stress
generated. This conclusion is directly related to DSVP, and has been used
in the study to confirm the method suggested for analysis of such problems.

Awrejcewicz and Pyryev (2003) compared the response of a half-space
to a step load with different spatial distributions preserving the integral
intensity of the load. They conclude that Saint-Venant’s principle cannot
be applied to the wave front, but rather to its trail (behind the wave front)
- after the lapse of time ensuring the passage of a Rayleigh wave at a point
of consideration.

A more definite conclusion regarding the non-validity of SVP to dynamic
excitation of a half-space has been put forward by Ziv (2002, 2003): ” half-
space response is hypersensitive to the type of loading, to the way it is
distributed on the source rim, and to the geometry of the source rim under
the load” (Ziv, 2002, p. 402). Therefore (Ziv, 2003, p. 254-255): ”Saint-
Venant’s principle for wave propagation problems cannot be formulated.
The source geometry and its load must be tackled directly as they are
prescribed; i.e. two different configurations sharing the same resultant are
not interchangeable”.

Ignaczak (2002) considered the issue of SVP in microperiodic, layered,
thermoelastic semi-space, thus formulating a time dependent energy decay
estimate.
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6.2 Wedge and Cone

Budaev et al. (1996) summarize two previously published studies, Bu-
dayev et al. (1994) and Morozov and Narbut (1995) on Saint-Venant’s prin-
ciple in a wedge and cone, both for static and dynamic excitations. Three
types of end excitations, applied on the surface generators of the wedge or
cone, were considered: torsion, anti-plane, and normal traction. The crite-
rion for validity of both SVP and DSVP is whether differently distributed
loads with identical moment generate the same asymptotic result far from
the wedge apex. For the static normal loads they find (p. 32) that SVP
is not valid since: ”... it is possible to find forces f1(r) and f2(r), having
the same couple M1, for which the solutions will be quite different”. For
anti-plane shear excitation it is demonstrated (p. 33) that SVP does not
hold, neither for the static case, nor for the dynamic case: ”... so the error
of substitution of one system by another is not small...”. For torsion, both
static and dynamic, the principle does hold (p. 36): ”...then the validity of
the Saint-Venant principle is deduced from previous analysis. In fact, the
stresses in the cone under torsion at some large distance from the apex are
mainly characterized by the moment of boundary forces”.

7 Composites and Laminates

From studies on the validity of the classical SVP it is known that the decay
rate in laminates and in composite materials can be much lower than in
isotropic elastic materials (e.g., Horgan and Simmonds, 1994). This makes
the depth of penetration of end effects to be significantly larger as is evident
from studies on dynamic response of composite waveguides available in the
literature. Apart from that extended depth of penetration of end effects,
there is no substantial difference in analysis between elastic composite and
isotropic homogeneous waveguides. The papers cited below were chosen due
to specific comments related to DSVP, and for explicit association made
between evanescent waves, edge vibrations and DSVP.

End effects in anisotropic cylindrical shells were discussed by Bhat-
tacharyya and Vendhan (1991). Detailed mathematical and physical in-
terpretation of evanescent waves was given, followed by the observation of
low spatial attenuation at frequencies near cut-off frequencies. The evanes-
cent waves (p. 71) were associated with Saint-Venant’s zone: ”...The effect
of the attenuating modes on the dynamic stress field is localized near the
end zone of the shell, the extent of the zone being dependent on the roots
for a specific ”end” problem. This is simply the Saint-Venant zone, so well
known in static problems, and hence the end effect is essentially a dynamic
Saint-Venant effect”. The term ”roots” refers here to wave numbers which
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are the roots of the Pochhammer-Chree equation.

Dong and Huang (1985) applied the finite element method to investi-
gate edge vibrations in laminated composite plates by considering explicitly
the evanescent waves. They regard that treatment as related (p. 437) to
DSVP: ”The analysis procedure may be considered as the dynamic counter-
part of the quantitative analysis of Saint-Venant’s principle”. That view is
an extension of a similar static analysis made earlier by Dong and Goetschel
(1982). The outcome of this work is that dynamic edge vibrations are anal-
ogous to static end effects regardless of self-equilibrium of the excitation,
as suggested already by Torvik (1967). The authors derive a characteristic
equation for use in finite element analysis to find (p. 435) that: ”... equa-
tion (16) represents the dynamic counterpart of Saint-Venant’s principle
for the determination of the decay rates into the plate’s interior of self-
equilibrated edge vibrations”. A similar study and connection with DSVP
for an anisotropic composite cylinder can be found in the paper by Huang
and Dong (1984). It is not clarified in what sense the ”edge vibrations”
are ”self-equilibrated” except for these evanescent waves being a natural
extension of the static eigenfunctions which are indeed self-equilibrated in
a static problem.

The papers by Scalia (2001) and Chirita and Ciarleta (2008) mentioned
above, in a different context, analyzed anisotropic materials and therefore
belong as well to this group of studies.

8 Related Studies

In this chapter two neighboring areas in which DSVP is questioned or in-
voked are reviewed. Neither is a natural part of the categories detailed here,
yet both could be integrated in further studies on DSVP.

8.1 Structural Vibrations

Vibration, by its nature, is not associated with spatial propagation of
energy. Two distinct phenomena of structural vibration can be identified.
One is the global vibration of beam, plate or shell-like structures, typical to
a finite structure. The second is edge vibration associated with evanescent
waves and can exist also in a semi-infinite structure (e.g., Kaul and McCoy,
1964). Since end vibration consists of evanescent waves, references to that
phenomenon have been reviewed in chapter 4, including for example the
work of Foster and Berdichevski (2004), albeit the vibration oriented title.
Yet, to make a clear distinction between studies of finite and semi-infinite
structures, this chapter reviews both types of vibration: structure vibration
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and end vibration, if treated in the context of a finite structure (e.g., Gales,
2003).

Duva and Simmonds (1991, 1992) studied possible ways for obtaining ac-
curate natural frequencies of beams, especially those weak in shear. The first
order approximate frequency values were deduced from elementary beam
theory. Two methods for arriving at more accurate values were examined:
refined beam theories and implementing end effects. Based on analysis of
two-dimensional end effects in vibration of a cantilevered beam the authors
demonstrated that the contribution of end effects to correction of natural
frequency of a beam (either weak in shear or not) is more meaningful in
comparison with the correction obtained with higher order beam theory.
Accordingly, a correction factor for the natural frequency is suggested.

A technique to bypass the need to consider end effects in analysis of
vibration was suggested by Chen et al. (2003). The treatment of dynamic
response of a laminated beam by conventional state space method com-
bined with differential quadrature method shows (p. 75) that: ”It also can
cope with arbitrary boundary conditions without applying Saint-Venant’s
principle”.

End effects in a rectangular plate of thickness h and dimensions axb, are
considered by Kathnelson (1997). To clarify the extent and the magnitude
of end effects an asymptotic analysis of the exact shear edge effect solution
near a free side of a rectangular isotropic linear elastic plate is carried out.
It is argued that in the dynamic case the end effects are identical.

Differential inequalities leading to energy estimates were derived by Flavin
and Knops (1987) for a finite cylinder, either with clamped faces or made
of viscoelastic material. That work was followed by a series of subsequent
studies employing differential inequalities (cited above in the context of
waveguides with free or constrained surfaces). Combining the treatment of
waveguides with clamped faces with viscoelastic material response in one
paper appears to reflect the common feature of spatial decay of energy (as
opposed to a previous paper by Ignaczak, 1974). The authors succeeded
in proving that the effect of dynamic excitation remains localized at the
vicinity of the excited end for both cases.

Two remarks made by Flavin and Knops (1987) extend the validity of
that result to waveguides with free lateral surfaces or without viscous dis-
sipation. The first (Remark 2, p. 255) reads: ”The results remain valid if
η = 0 (no viscosity) provided that special initial conditions, appropriate to
the forced oscillation are adopted.”. The second (Remark 4, p. 261) states:
”Theorem 2 continues to be valid in the absence of damping provided that
the complementary oscillation (undumped in the ideal elastic case) which
co-exists with the forced oscillation is subtracted out”. It is suggested in
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Karp (2009) that the ”complementary oscillation” can be considered as an
equivalent excitation having the same average power and frequency as the
main load (and opposite phase), and that the ”special initial condition” is
an excitation that does not generate propagating modes.

Chirita (1995) considered spatial decay in problems governed by parabolic
and hyperbolic equations. The principle derived consists of two parts: do-
main of influence and energy decay estimate within that domain.

Iesan and Scalia (1997) established a spatial decay estimate for a finite
cylinder, made of micro stretch elastic solid, and excited at one of its ends.
Both free and clamped lateral surfaces were considered, leading to expo-
nential decay below some critical frequency. Since both formulations refer
to steady state response of a finite rod, it is clear that the end excitation
should have zero average power. Otherwise, energy inflow will not allow
for the response to settle into a steady state. Then, the decay measures
obtained reflect upon the evanescent waves.

Essentially an identical problem was studied by Gales (2003). Here, the
amplitude of the steady-state vibration of a finite cylinder made of a mix-
ture consisting of three components (an elastic solid, a viscous fluid and a
gas) was investigated. An exponential decay estimate of Saint-Venant type
in terms of the distance from one end of the cylinder was obtained with the
decay constant depending on excitation frequency, constitutive coefficients
and the first positive eigenvalue of the fixed membrane problem for the
given cross-sectional geometry (as derived by Toupin, 1965a). The author
concludes (p. 152) with: ”To the amplitude of the steady-state vibration
we associate a cross-sectional measure and, provided the exciting frequency
is lower than a certain critical frequency, we derive a first-order differen-
tial inequality, which by integration leads to a spatial decay estimate of
Saint-Venant type. The result proves that the above cross-sectional mea-
sure decays faster than a certain exponential function of the distance from
the loaded end”.

The problem of thermoelastic vibrating plate was addressed by D’Apice
(2005). Saint-Venant type decay is derived for frequency of vibration below
a specific value, with an exponential decay of energy contents in the cross
section.

Experimental investigation of end effects on the frequency of vibration
of a cantilever elastic beam was conducted by Karp et al. (2008). An
aluminum beam was clamped by six screws at one end and excited by a
lateral impact at its free end. The level of tightness of the screws was the
controlled variable and considered as a variation of end conditions without
changing the global characteristics of the structure as a cantilever beam.
It was found that complete release of any of the six screws had significant
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effect on near field response (Fig. 17) but not on the far field. FFT (fast
Fourier transform) analysis of the far field response revealed no sensitivity
to absence of one screw. Removal of two or more screws did have an effect
on the vibration frequencies of the beam (not reported in the article).

Figure 17. Axial surface strain recording in the close vicinity to clamped
end of a beam, with three different ”clamping” conditions subjected to
transversal excitation at the far end of the beam (from Karp et al., 2008).

Evans and Porter (2008) used Green’s function to demonstrate existence
of edge waves for a semi-infinite plate within the context of plate theory.
Specifically, the authors have shown that plane waves incident on a pinned
point on the straight edge of an elastic plate can generate edge waves which
radiate energy to infinity along the edge. Various aspects of edge waves are
discussed in a recent volume of Mathematics and Mechanics of Solids accu-
mulate several reports on edge vibration and resonance, including Kaplunov
and Lawrie (2012), Zacharov (2012), Pichugin and Rogerson (2012), Pag-
neux (2006, 2012), Kaplunov and Fu (2012).
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8.2 Viscoelastic Materials

Since spatial decay of energy can not be granted in elastic materials
due to existence of propagating modes, even when a self-equilibrated load
is applied, viscosity was introduced to provide a dissipating mechanism
ensuring the required decay. That type of material is mainly studied by
authors who considered the spatial decay of end effects as a criterion for a
valid version of Saint-Venant’s principle.

Murray (1970) looked at the question of spatial and temporal decay of
discontinuities induced at a surface in a mildly nonlinear Maxwell rod with
finite nonlinear viscous damping governed by a first order partial differen-
tial equation. Various degrees of spatial decay behavior were derived for
different characteristics of the problem.

Rauch (1976) investigated the qualitative behavior of dissipative wave
equations of a bounded domain with a general cross-section. Munoz Rivera
et al. (1996) employed integral theorems to establish decay rates for vis-
coelastic plates with memory. The decay considered is a function of time,
which formally excludes it from being of Saint-Venant’s type.

In the work by Chirita (1997) energy decay estimates were obtained for
transient response of a finite length bar, made of anisotropic viscoelastic
material, with lateral surfaces free of traction, for both self-equilibrated
and general dynamic load. An analogous asymptotic result was obtained
for a semi-infinite cylinder. Existence of exponential spatial decay for both
self-equilibrated and generally non-self-equilibrated loads, derived in that
work, emphasize the question of relevance of self-equilibrium for a dynamic
version of SVP. It also exposes the substantial difference between dissipating
and non-dissipating media in the context of DSVP.

Ciarletta and Chirita (1999) establish decay estimate for a viscoelastic
material with voids. De Cicco and Nappa (1999) derived an exponential
decay estimate for a micropolar viscoelastic finite cylinder in a form similar
to Toupin’s (1965a) decay estimate for a quasi-static case.

More than ten studies on decay of dynamic disturbances in viscoelastic
materials appeared in the literature (reviewed here in previous chapters).
Because the damping coefficient enters implicitly into decay estimations, it
is difficult to figure out mathematically the role of damping and possibly
relate these works to decay estimates derived originally for elastic materials
without any dissipating mechanisms. No equivalence criterion is invoked in
these studies.
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9 Comparing SVP with DSVP

It is a standard practice in physics to require a general formulation and
solution of a dynamic problem to degenerate to its quasi-static equivalent
by taking the limit of vanishing frequency ω → 0. Following that practice,
it is expected that any valid version of DSVP will degenerate to the classical
SVP at that limit. Successful degeneration of one the DSVP version can
provide some credibility to that version.

Classification of the articles reviewed in Chapter 4 discloses five ap-
proaches to what DSVP should be (summarized in Section 10.1 below).
Among these five only the dynamic equivalence approach appears to be
legitimate for degeneration to SVP. Excluded are approaches denying exis-
tence of DSVP and those introducing viscosity. That comparison between
SVP and DSVP and degeneration of DSVP to SVP is suggested below. The
comparison is not complete due to the currently early stages of the research
on that version of DSVP. Yet, it might be valuable in pointing to potentially
constructive research direction on the topic.

9.1 Mathematical Formulation and Foundation

Mathematical foundation of the classical SVP is based mainly of two
methods: energy inequality (e.g., Knowles, 1966, Toupin, 1965a) and eigen-
function expansion (e.g., Horvay, 1953). Let us begin the comparison with
the eigenfunction expansion method.

Eigenfunction expansion method commonly regarded as an accurate
quantitative estimation of validity of SVP (e.g., Goetshel and Hu, 1985;
Horgan, 1989). It is commonly related to a semi-infinite strip, resembling a
beam like or plate like structure, with a typical width of 2h. The response of
the strip to a self-equilibrated load is captured by eigenfunctions, decaying
exponentially from the loaded end, providing the effect of localization. The
complete displacement response of the strip in the (x, y) plane with x as an
axial direction is given by

u(x, y) =
∑
n

AnUn(y)e
−ξnx (9.1.1)

where the sum is taken over the infinite set of eigenfunctions Un(y) each
associated with eigenvalue ξn. Positive real part of the eigenvalue Re{ξn}
dictates the rate of spatial decay of the amplitude of each mode n. The
dynamic response of the same semi-infinite strip is described in a similar
way by (e.g., Achenbach, 1973)

u(x, y, t) =
∑
n

AnUn(y)e
i(ξnx−ωt) (9.1.2)
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Except for the additional time variable and frequency parameter, there are
only semantic differences between the quasi-static solution and the dynamic
one. Here Un(y) are wave modes and ξn are wave numbers. The decaying
wave modes are termedevanescent, spatial decay of which is dictated now
by Im{ξn} due to the i factor in the exponent. By taking the limit of zero
frequency, one derives the quasi-static solution from the dynamic one. The
spatial decay rate of both static and dynamic fields is governed by the same
variable ξn.

The values of the decay rates ξn of the static fields are obtained from
the Fadle-Papkovich equation (Timoshenko and Goodier, 1972). The val-
ues of the decay rates ξn of the evanescent waves are obtained from the
Rayleigh-Lamb equation (Mindlin, 1960; Graff, 1975). That equation is de-
generated to Fadle-Papkovich equation by taking the limit of zero frequency
(Miklowitz, 1978).

Let us contrast now SVP and DSVP as they are formulated using energy
methods. In the static case the decay of energy contained in the body due to
application of self-equilibrated load is exponential (Toupin, 1965a; Knowles,
1966). The decay rate obtained is considered to be an approximate to the
exact one obtained from eigenfunction expansion ξn.

An equivalent examination of energy decay due to dynamic self-equilibrated
load revealed non-decaying (propagating) modes that deliver energy to in-
finity without attenuation. Yet, since self-equilibrated loads are not a result
of difference between dynamically equivalent loads, that result does not
necessarily disprove DSVP. Indeed, it has been shown by Karp (2009) that
under some limiting conditions a difference between any two dynamically
equivalent loads result in excitation having zero average power. From waveg-
uide analysis it is obtained that for such excitations the energy content in
a waveguide will indeed decay with rate dictated by ξn. Such decay was
obtained using energy inequalities only for waveguide with clamped lateral
surfaces (as reviewed in Sec. 5.1) and a more general proof is remained to
be wanted.

9.2 Practical Application

The application of SVP consists of replacing the actual system of loads by
other system having identical static equivalents, namely, same total force
and couple. According to the dynamic equivalence version the usage of
DSVP is by replacing the original excitation by other excitation having
identical dynamic equivalents, namely, total average power and frequency
(below first cut-off frequency). Apparently, static and dynamic equivalences
are different. Difference between two statically equivalent loads results in
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self-equilibrated load whereas difference between two dynamically equivalent
excitations lead to excitation with zero input power. Yet, it was shown for
a simple waveguide (Karp, 2009) that any excitation having zero net power
applied to a wave guide is self equilibrated in the static sense in the limit
of zero frequency.

The mathematical derivation of the classical SVP out of DSVP by tak-
ing the limit of zero frequency enable one to generalize the statements of
the principle, emphasizing their oneness. One common reference to SVP
can now be generalized to be written as: ”Principle of elastic equivalence
of a statically/dynamically equivalent system of loads/excitations”: Engi-
neers customary refer to a different statement, reading now: ”The far field
strain produced in a body, by application of statically/dynamically equiva-
lent loads/excitations, is the same”. These two statements, combining SVP
and DSVP, are in a complete agreement with the spirit of Saint-Venant’s
ideas as expressed by Ericksen (1979, p. 7): ”St.-Venant’s principle gave a
rule of thumb for dividing all solutions into equivalence classes ...”.

Finally, in both static and dynamic problems the meaning of the princi-
ple is that the far field response is not sensitive to the details of the applied
excitation, rather to its integral properties. In the static case these integral
properties are the static equivalents. In the dynamic case it is the time aver-
age input power. The unified statement of the principle is thus: ”A property
of a structure according to which the strain far from the loaded end has low
sensitivity to the spatial distribution of static/dynamic loads/excitations”.

10 Concluding Comments

10.1 Theoretical Formulation

Most of existing studies on DSVP look either for conditions under which
spatial decay can be granted, or search for the distance beyond which the
fine details of the excitation has only minor importance, if at all. Each
of the two approaches has brunched into several views as to what DSVP
should be. These views can be grouped roughly into five categories: DSVP
is not valid even if self-equilibrated excitation is applied (Boley, 1955, 1960a;
Slepiyan and Novhozilov, 1965; Grandin and Little, 1974; Ziv, 2003; Foster
and Berdichevsky, 2004); DSVP is valid regardless of the self-equilibrium
of the excitation provided some attenuating conditions are added, such as
clamping of the lateral surfaces, energy leaking surfaces, or viscosity (Flavin
and Knops, 1987; Nappa, 1998; Ciarletta and Chirita, 1999); DSVP is valid
only approximately when the frequency is low enough (Boley 1955, 1960a;
Grandin and Little, 1974) or when the excitation deviates slightly from self-
equilibrium (Gomilko et al., 1995; Babenkova and Kaplunov, 2004); DSVP
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is valid only statistically (Foster and Berdichevsky, 2004); and finally, DSVP
is valid for dynamically equivalent loads, equivalence that can be defined
rigorously at any frequency below the first cut-off frequency (Torvik, 1967;
Karp, 2009).

At present, there is apparently no guiding idea as how to select one
approach over the other. Nevertheless, it should be possible to follow the
original spirit of classical SVP in considering primarily practical aspects of
DSVP. As vividly described by Toupin (1965b) and by Benvenuto (1997),
Saint Venant used heuristics to propose his assumption aiming at liberating
engineers from dealing with beam problems associated with either unknown
boundary details or intractable analytically. In Chapter 3 we have tried to
provide clear experimental evidence for that quest suggesting that similar
practical approach should be valid in the case of dynamic excitation as well.
The comparison between the classical SVP and the dynamic equivalence in-
terpretation of DSVP brought in Chapter 9 provide a further demonstration
of the possible formulation of DSVP and probably for its potential benefit.

10.2 Application of DSVP

A review by Walley and Mason (2000) on the history of the split Hopkin-
son bar system for material characterization exemplifies the need for DSVP
and the interpretation associated with that (p. 2): ”This issue was resolved
by theoretical work and experimental checks on whether the Saint Venant
Principle could be extended to dynamic ’non-equilibrium’ loading problems
... And from about 1953 onwards it became standard to use strain gauges
bonded to the outside of Hopkinson bars to measure strain pulses propa-
gating down them”. The same view was expressed by Field et al. (2001) in
summary of main developments in such systems. According to that sum-
mary (p. 112), the 50’s are characterized by: ”Experimental checks of the St
Venant hypothesis and hence legitimation of the use of surface strain gauges
to measure stress pulse propagation”. Typical example for application of
DSVP is found in Pope and Field (1984, p. 817): ”Miniature semiconduc-
tor strain gauges are sited 10 bar diameters from the input end and by the
dynamic equivalent of St Venant’s principle the bar can accurately record
the total force on the end face, independent of the pressure distribution”.

These assertions, along with additional considerations of separation of
signals, are the basis for guidance in locating strain gauges in split Hopkin-
son system by Follansbee (1985, p. 199) ”However, these end effects quickly
dampen after the wave has propagated about ten bar diameters”, and in
the newer version by Gray III (2000, p. 463): ”The length of the pressure
bars must first ensure one-dimensional wave propagation for a given pulse
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length; for experimental measurements on most engineering materials, this
propagation requires approximately 10 bar diameters”. From experiments
detailed in chapter 3 and from recent studies (e.g., Meng and Li, 2001;
Karp et al., 2008, 2009) it can be safely stated that the distance at which
a one-dimensional wave is attained is much smaller (2-3 diameters). From
Pochhammer-Chree solution and Davies’ (1948) studies it is evident that
an additional restriction of low frequency should be imposed.

Another practical aspect of DSVP is detailed by Duva and Simmonds
(1991). The authors examined influence of end effects on the lower natural
vibration frequencies of a laminated beam and the correction to the classical
prediction that should follow. A direct association of end effects with DSVP
(p. 178) was made: ”...It is senseless to proceed without discussing end
effects. For the relatively low frequencies of vibration we are considering,
these effects should be confined to end zones of width O(H) as suggested by
the useful discussions by Boley (1955, 1960) and Grandin and Little (1974)
of a dynamic St-Venant’s Principle for a semi-infinite elastic strip”.

In a few additional engineering situations researchers have relied upon
DSVP, either implicitly or explicitly, deliberately or tacitly. The dynamic
equivalence version of DSVP is applied in the field of active noise and vi-
bration control (without reference to DSVP). For example, the cancellation
of an unwanted sound field is achieved by an array of sources activated to
generate a secondary acoustic field having the same frequency and average
power with an inverse polarity to the main source, resulting in a destruc-
tive interference (Rosenhouse, 2002). Kuznetsov and Stepanov (2007) used
the idea of equivalence for dealing with source replacement (p. 326), stat-
ing that: ”The equivalence of a model is understood in the sense that the
pressure levels and interference structures of the amplitude and phase of a
volume low-frequency source and of a point multipole should be sufficiently
close to provide the required accuracy of measurements.”. Another practical
aspect of source equivalence is found in ambient noise modeling of urban
landscape (e.g., Hornikx and Forssen, 2009). Kundu et al. (1991) used
equivalent source replacement based on validity of SVP (p. 153): ”In the
proposed method unknown sources are placed not at the near field boundary
but at the location of the structure. Then the Saint-Venant’s principle is
utilized to justify that at a distant point the effect of structure’s vibration
can be effectively modeled by an equivalent vibrating point force and vi-
brating moment at the structure’s position”. It is worthy to note that such
application of SVP to dynamic response of a half-space was later regarded
by several researches as not valid (see section 6.1).

The possible application of the concept of DSVP to the emerging field
of structural health monitoring was demonstrated by Karp et al. (2008)
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and Karp (2011). It was shown that by estimating the extent of end effects,
along with the identification of dynamic equivalence, it is possible to expose
incipient damage at joints of beam-like and plate-like structures.

It can be extrapolated from those representative examples that several
engineering fields should benefit from applying the dynamic equivalence ver-
sion of DSVP. It is conceivable that DSVP can be used in other engineering
situations as well. This might include: source recognition in acoustics and
acoustic emission (e.g., Kroll and Tatro, 1964), earthquakes analysis (e.g.,
Kundu et al., 1991), force reconstruction in measurement systems relying
on wave guiding (e.g., Tyas and Watson, 2000), energy trapping at dis-
continuities associated with evanescent waves (e.g., Evans, 1992; Kaplunov
and Sorokin, 1995; Aslanyan et al., 2000; McIver et al., 2002; Chamberlain,
2004), and dynamic material characterization (e.g., Waldman and Lee, 2002;
Sasso et al., 2008; Gilat et al. 2009) where uniformity of the field within
the cross-section is required.

10.3 Vision of DSVP

There are definite contradictions and lack of clarity related to the pos-
sible validity of DSVP in elastic problems. In particular, this is due to
convincing demonstrations for non validity of DSVP (non-decaying field
due to self-equilibrated excitation), and general the inherent non-decaying
property of fields governed by hyperbolic partial differential equations. That
unease can somewhat be mitigated by appreciating that even the study of
the classical SVP is not yet complete. A brief review of the history of
the ideas related to the classical SVP expose parallel counter examples and
mixed attitudes to the essence of SVP.

Examples for structures for which the classical SVP is not valid were
discussed years before, and also after, proofs for validity of SVP were de-
rived. Four such structures are shown here in Figures 18 and 19. Additional
counter examples for SVP are given by Horvay (1957), Toupin (1965b) and
more recently by Huang (1989) and by Markenscoff (1994). It appears that
these counter examples for validity of the classical SVP did not lead the
community to doubt its existence, nor its usefulness.

It is instructive to quote several prominent scientists referring to the
meaning of the classical SVP. von-Mises (1945) wrote a century after Saint-
Venant introduced his assumption (p. 562): ”What Saint Venant originally
had in mind was doubtlessly the case of a long cylinder with infinite ratio of
length to diameter. The purpose of the present paper was to show that an
extension of the principle to bodies of finite dimensions is not legitimate”. In
a similar spirit, Sternberg (1954, p. 401) wrote: ”For Saint-Venant’s prin-
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(a) (b)
Figure 18. Two structures for which the classical SVP is not valid: (a)
from Donnell (1962), (b) from Sternberg (1954).

ciple is a statement about relative orders of magnitude and does not tell
us anything about the extent of the region within which a self-equilibrated
system of tractions, applied to a portion of the surface of an elastic body,
”materially” influences the stress distribution in the body”. The non uni-
vocal meaning of SVP is also evidenced from discussion brought by Naghdi
(1960). Even three decades later Levine and Quintanilla (1989, p., 71) noted
that: ”we believe that the study of the principle and problem is not finished
even in the simple case of cylinders”.

These citations, along with several counter examples, related to the clas-
sical SVP may suggest that existence of clear examples for non-validity of
DSVP and some disagreement concerning its very essence, does not nec-
essarily mean the search for DSVP in linearly elastic material is hopeless.
Moreover, the wide range of experimental situations in which one of the ver-
sions of DSVP appears to be valid, might motivate one to search for ways to
relax the apparent contradictions, made explicit in Section 2.3. The use of
energy inequalities is one of avenues to be followed in providing a rigorous
proof for decaying fields generated by excitations having zero net power.
Such a research is expected to provide clearer definitions of the conditions
under which DSVP is expected to be valid, and when it does not.

Unification of the classical SVP with the equivalence version of DSVP
raises an additional question on whether that version can also be general-
ized to other Saint-Venant type decay estimates (not reviewed here) such
as in quasi-linear or non-linear elasticity, non-mechanical waveguides (op-
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(a) (b)
Figure 19. Two structures for which the classical SVP is not valid: (a)
from Toupin, (1965a), (b) from Hoff (1945).

tical), and to heat problems. For example, in the proof of the static SVP,
correspondence between the energy inequalities (Toupin, 1965a; Knowles
1966) and direct elasticity solutions with eigenfunctions (Timoshenko and
Goodier, 1972) has been established. Can such correspondence be shown to
hold for dynamic or heat problems? In that context, it is an open question
how to settle the apparent contradiction between established energy decay,
obtained by several authors, and the non-decaying propagating modes in a
non-dissipating structure with free surfaces.

Since DSVP is related to localizied phenomena, it is natural to expect
existence of connections with the various topics covered in this volume. Such
possible connections are ought to be pursued, both in continuum mechanics
and electromagnetic fields.

Apparent inconsistencies, between several views of DSVP and engineer-
ing practice, define clear objectives for additional future research. Since dy-
namic phenomena encompass a richer spectrum in comparison with static
cases, it is expected that applications will exceed the well established limits
of the classical SVP. Applying the principle should be supported by firm
experimental evidence, both in validity and in quantitative estimation. The
work reviewed in chapter 3 provides a promising start for fruitful research
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to come. Engineers in particular are expected to recognize the validity of
the DSVP (at least in one of its versions) and to assimilate its use.

Both theory and engineering practice call for such an undertaking, with
research program including related issues like stability of solutions and well
posedness. The theoretical basis of the DSVP should be widened and it is
hoped that the present review will contribute towards formulating a uni-
fied theory, compatible with the body of knowledge already available, on a
dynamic analogue of Saint-Venant’s principle. Note: This article is an ex-
tended and updated version of a review published few years ago in Applied
Mechanics Reviews (Karp and Durban, 2011).
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