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Abstract We derive explicit asymptotic formulations for surface,
interfacial and edge waves in elastic solids. The effects of mixed
boundary conditions and layered structure are incorporated. A
hyperbolic-elliptic duality of surface and interfacial waves is em-
phasized along with a parabolic-elliptic duality of the edge bending
wave on a thin elastic plate. The validity of the model for the
Rayleigh wave is illustrated by several moving load problems.

1 Introduction

Surface elastic waves as well as their interfacial and edge analogues seem
to be ’hidden’ within the general equations of elastodynamics. At the same
time the contribution of these waves to the overall dynamic response some-
times is more substantial than that of bulk waves. As an example, we
mention a resonant behaviour of elastic solids caused by high speed moving
loads.

This chapter is centered on explicit models for surface, interfacial and
edge waves, that neglect the effect of bulk waves. We study the classi-
cal Rayleigh surface wave (Rayleigh 1885) along with Schölte-Gogoladze
(Schölte 1949 and Gogoladze 1948) and Stoneley (1924) interfacial waves,
and the edge bending wave on a thin plate discovered by Konenkov (1960),
relying on the methodology established in our recent publications (Kaplunov
et al. 2006, 2010, 2013, Dai et al. 2010, Erbaş et al. 2012). General formula-
tions for homogenous surface and interfacial waves were also developed last
years by Achenbach (1998), Kiselev & Rogerson (2009), Kiselev & Parker
(2010), Parker (2012).
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Our approach is based upon a fundamental result by Friedlander (1948)
and Chadwick (1976) regarding representation of plane homogenous sur-
face and interfacial waves in terms of harmonic functions. On perturbing
the Rayleigh wave eigensolution in slow time we derive in paragraph 2.4 a
hyperbolic-elliptic model for plane strain near-surface motion. The model
consists of a pseudo-static elliptic equation governing decay into the interior,
subject to the Dirichlet boundary condition in the form of a hyperbolic equa-
tion describing propagation of the Rayleigh wave under prescribed surface
stresses. It reveals a hyperbolic-elliptic duality of the Rayleigh wave and
also has obvious advantages for numerical computations. Indeed, we split
the original vector hyperbolic problem into a scalar hyperbolic equation and
a time independent elliptic problem over the interior.

With the help of the Radon integral transform, we extend the consid-
eration above to 3D case including a pseudo-differential formulation for a
coated half-space, see paragraphs 2.4 and 2.6. In addition, the proposed ap-
proach appears to be very promising for mixed dynamic problems for cracks
and stamps, see paragraph 2.5.

In Section 3 we demonstrate that the hyperbolic-elliptic models for in-
terfacial waves are not more difficult than that for the Rayleigh wave. The
results of this section may also be easily generalised to 3D problems.

Resonant effect of moving loads studied in Section 4, is virtually the
ideal setup for testing derived models. We consider a variety of plane strain
problems taking into account mixed boundary conditions along with layered
structure. A number of elegant approximate solutions are obtained in a
surprisingly straightforward manner.

The dispersive nature of the edge bending wave on a thin plate leads to a
parabolic-elliptic asymptotic theory. We arrive at a beam-like fourth-order
equation modelling propagation of disturbances along the edge, see Section
5.

2 Surface waves

We derive an asymptotic hyperbolic-elliptic model for the surface Rayleigh
wave. The plane strain motion is studied in great detail including mixed
boundary value problems. The obtained results are extended to 3D case.

2.1 Equations of linear elastodynamics

Consider an elastic half-space given by

H+

(3)
=
{
(x1;x2;x3)

∣∣−∞ < x1 <∞, −∞ < x2 <∞, 0 ≤ x3 <∞} .
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The equations of motion in 3D elasticity are taken in the form (see e.g.
Achenbach 1973)

∂σim

∂xm

= ρ
∂ 2ui

∂t2
, i = 1, 2, 3, (2.1.1)

where ρ is volume density, t is time, ui are displacement vector components,
σim are stress tensor components, and summation over repeated suffices is
assumed. In case of a free surface wave homogeneous boundary conditions
over the surface x3 = 0 are imposed, yielding

σ3i = 0. (2.1.2)

Below we also consider more general boundary conditions.
The constitutive relations are given by

σik = δikλ divu+ 2μ

(
∂ui

∂xk

+
∂uk

∂xi

)
, (2.1.3)

where u = {u1, u2, u3}, δik is the Kronecker delta, and λ and μ are the Lamé
elastic moduli. In view of the constitutive relations (2.1.3) the equations of
motion take the form

(λ+ μ) grad divu+ μΔ3u = ρ
∂ 2u

∂t2
, (2.1.4)

where Δ3 =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

is the 3D Laplace operator.

2.2 Plane harmonic Rayleigh wave

Let us begin with a 2D problem for a half-plane

H+

(2)
=
{
(x1;x3)

∣∣−∞ < x1 <∞, 0 ≤ x3 <∞} ,
adapting the plane strain assumptions

u2 = 0, ui = ui(x1, x3, t), (i = 1, 3).

In this case, the displacement field {u1, u3} may be expressed through the
elastic wave potentials φ and ψ as

u1 =
∂φ

∂x1

− ∂ψ

∂x3

, u3 =
∂φ

∂x3

+
∂ψ

∂x1

. (2.2.1)

Then, the equations of motion (2.1.4) are rewritten in the form

Δφ− 1

c21

∂ 2φ

∂t2
= 0, Δψ − 1

c22

∂ 2ψ

∂t2
= 0, (2.2.2)
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where c1 =
√

(λ+ 2μ)/ρ and c2 =
√

μ/ρ denote the longitudinal and shear

wave speeds, respectively, and Δ =
∂2

∂x2
1

+
∂2

∂x2
3

. The wave potentials may

then be found in the form of travelling wave solutions

φ = φ(x1 − ct, αx3) = A exp [ik (x1 − ct)− kαx3] , (2.2.3)

ψ = ψ(x1 − ct, βx3) = B exp [ik (x1 − ct)− kβx3] , (2.2.4)

decaying as x3 →∞, where c is the sought for wave speed, and as it readily
follows from (2.2.2),

α =

√
1− c2

c21
, β =

√
1− c2

c22
. (2.2.5)

It is clear that each of the functions φ and ψ in (2.2.3) and (2.2.4) are
harmonic over the half-plane H+

(2)
. We also remark that all the speculations

in what follows are equally valid for the wave travelling in the opposite
direction, i.e. for the functions φ and ψ depending on x1+ct. The boundary
conditions (2.1.2) can now be expressed in terms of the wave potentials as

2
∂ 2φ

∂x1∂x3

+
∂ 2ψ

∂x2
1

− ∂ 2ψ

∂x2
3

= 0,

(
κ2 − 2

) ∂ 2φ

∂x2
1

+ κ2 ∂
2φ

∂x2
3

+ 2
∂ 2ψ

∂x1∂x3

= 0,

(2.2.6)

with

κ =
c1
c2

=

√
2− 2ν

1− 2ν
,

where ν is the Poisson ratio. Substitution of the formulae (2.2.3), (2.2.4)
into (2.2.6) results in the homogeneous algebraic system in A and B

2iαA+ (1 + β2)B = 0

(1 + β2)A− 2iβB = 0

(2.2.7)

which possesses a non-trivial solution provided that the related determinant
equals zero, i.e.

4αβ = (1 + β2)2, (2.2.8)

originating from the classical paper by Lord Rayleigh (1885) and having a
unique root c = cR, provided that

α = αR =

√
1− c2R

c21
, β = βR =

√
1− c2R

c22
. (2.2.9)
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2.3 Plane surface wave of arbitrary profile

We follow the approach in Friedlander (1948) and Chadwick (1976) in
order to generalize the sinusoidal Rayleigh wave solution derived in the
previous subsection to a surface wave of arbitrary profile

φ = φ(x1 − ct, αx3), ψ = ψ(x1 − ct, βx3), (2.3.1)

with α and β defined above, see (2.2.5), and plane harmonic functions φ
and ψ satisfying the elliptic equations

∂ 2φ

∂x2
3

+ α2 ∂
2φ

∂x2
1

= 0,
∂ 2ψ

∂x2
3

+ β2 ∂
2ψ

∂x2
1

= 0, (2.3.2)

arising from the wave equations (2.2.2). On substituting the harmonic func-
tions (2.3.1) into the boundary conditions (2.2.6), we obtain

2
∂ 2φ(x1 − ct, 0)

∂x1∂x3

+
(
1 + β2

) ∂ 2ψ(x1 − ct, 0)

∂x2
1

= 0,

− (1 + β2
) ∂ 2φ(x1 − ct, 0)

∂x2
1

+ 2
∂ 2ψ(x1 − ct, 0)

∂x1∂x3

= 0.

(2.3.3)

Throughout this chapter we employ the Cauchy-Riemann identities for
a plane harmonic function f(x, ky). They are given by

∂f

∂y
= −k ∂f

∂x
,

∂f

∂x
=

1

k

∂f

∂y
, f = −f, (2.3.4)

where bar indicates a harmonic conjugate.
With the help of these identities the conditions (2.3.3) may be trans-

formed to

2α
∂ 2φ

∂x2
1

+
(
1 + β2

) ∂ 2 ψ

∂x2
1

= 0,

(
1 + β2

) ∂ 2φ

∂x2
1

+ 2β
∂ 2ψ

∂x2
1

= 0,

(2.3.5)

leading to the Rayleigh equation (2.2.8). In this case the sought for har-
monic eigenfunctions

φ = φ(x1 − cRt, αRx3), ψ = ψ(x1 − cRt, βRx3) (2.3.6)

are related to each other on the surface x3 = 0 as

∂ψ

∂x1

= − 2

1 + β2
R

∂φ

∂x3

, (2.3.7)



78 J. Kaplunov and D. Prikazchikov

see (2.3.3)1. Moreover, the last relation specified on the surface may be
extended to the whole interior region as

ψ(x1 − cRt, βRx3) =
2αR

1 + β2
R

φ(x1 − cRt, βRx3), (2.3.8)

or

φ(x1 − cRt, αRx3) = − 2βR

1 + β2
R

ψ(x1 − cRt, αRx3), (2.3.9)

for more details see Chadwick (1976). Thus, the wave potentials are related
through the Hilbert transform, and consequently the Rayleigh wave field
may be expressed through a single harmonic function.

2.4 Hyperbolic-elliptic model

Plane strain problem Consider now non-homogeneous boundary con-
ditions

σ31 = Q(x1, t), σ33 = P (x1, t), (2.4.1)

imposed along the surface x3 = 0 of the half-plane H+

(2)
. These may be

reformulated in terms of the wave potentials as

2
∂ 2φ

∂x1∂x3

+
∂ 2ψ

∂x2
1

− ∂ 2ψ

∂x2
3

=
Q

μ
,

(
κ2 − 2

) ∂ 2φ

∂x2
1

+ κ2 ∂
2φ

∂x2
3

+ 2
∂ 2ψ

∂x1∂x3

=
P

μ
.

(2.4.2)

Let us we perturb the surface wave eigensolutions (2.3.6) in slow time

τ = εt, (ε� 1). (2.4.3)

Throughout this paragraph we assume that the deviation of the analysed
perturbed motion {φ(x1 − cRt, x3, τ), ψ(x1 − cRt, x3, τ)} from the homoge-
neous Rayleigh wave field (2.3.6) is small. On inserting slow time τ into the
original equations of motion (2.2.2) at α = αR and β = βR, and taking into

account the operator identity
∂

∂t
= −cR ∂

∂x1

+ ε
∂

∂τ
, we have

∂ 2φ

∂x2
3

+ α2
R

∂ 2φ

∂x2
1

+ 2
ε

cR

(
1− α2

R

) ∂ 2φ

∂x1∂τ
− ε2

c2R

(
1− α2

R

) ∂ 2φ

∂τ2
= 0,

∂ 2ψ

∂x2
3

+ β2
R

∂ 2ψ

∂x2
1

+ 2
ε

cR

(
1− β2

R

) ∂ 2ψ

∂x1∂τ
− ε2

c2R

(
1− β2

R

) ∂ 2ψ

∂τ2
= 0.

(2.4.4)
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Next, we expand the potentials in asymptotic series as

φ(x1−cRt, x3, τ)=φ0(x1−cRt, αRx3, τ)+εφ1(x1−cRt, x3, τ)+. . . ,

ψ(x1−cRt, x3, τ)=ψ0(x1−cRt, βRx3, τ)+εψ1(x1−cRt, x3, τ)+. . . ,
(2.4.5)

where the leading order terms φ0 and ψ0 coincide with the surface wave
eigensolutions (2.3.6) to within a parametric dependence of slow time.

On substituting the expansion (2.4.5) into the perturbed equations of
motion (2.4.4) we get expressions for O(ε) terms. They are written as

φ1 = φ10 − x3

1− α2
R

αRcR

∂φ0

∂τ
,

ψ1 = ψ10 − x3

1− β2
R

βRcR

∂ψ0

∂τ
,

(2.4.6)

where φ10 = φ10(x1 − cRt, αRx3, τ) and ψ10 = ψ10(x1 − cRt, βRx3, τ) are
arbitrary functions, harmonic in the first two variables, for more details see
Kaplunov et al. (2006).

It is convenient to treat the two sub-problems for boundary conditions,
namely, the cases of vertical (Q = 0, P �= 0) and horizontal (P = 0, Q �= 0)
loading. Let us consider first the effect of a vertical force normalizing it by
P = εPε. On introducing the formulae (2.4.5) and (2.4.6) into the boundary
conditions (2.4.2) we get at x3 = 0

2
∂ 2φ10

∂x1∂x3

+
(
1 + β2

R

) ∂ 2 ψ10

∂x2
1

− 2(1− α2
R)

cRαR

∂2φ0

∂x1∂τ

+
2(1− β2

R)

cRβR

∂2ψ0

∂x3∂τ
= 0,

− (1 + β2
R

) ∂ 2φ10

∂x2
1

+ 2
∂ 2ψ10

∂x1∂x3

− 2(1− α2
R)κ

2

cRαR

∂2φ0

∂x3∂τ

−2(1− β2
R)

cRβR

∂2ψ0

∂x1∂τ
=

Pε

μ
.

(2.4.7)

Then, using the Cauchy-Riemann identities (2.3.4) along with the relations

ψ0(x1−cRt, 0)= − 2αR

1+β2
R

φ0(x1−cRt, 0)= −1+β2
R

2βR

φ0(x1−cRt, 0), (2.4.8)

following from (2.3.8) and (2.3.9), we rewrite the boundary conditions (2.4.7)
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as

2αR

∂ 2φ10

∂x2
1

+
(
1 + β2

R

) ∂ 2 ψ10

∂x2
1

=
2

cR

[
1− β4

R

2βR

− 1− α2
R

αR

]
∂2φ0

∂x1∂τ
,

−(1+β2
R

)∂ 2φ10

∂x2
1

−2βR

∂ 2ψ10

∂x2
1

=
2

cR

[
1−β2

R−
1−β4

R

2β2
R

]
∂2φ0

∂x1∂τ
+
Pε

μ
.

(2.4.9)

It is clear that the determinant of the left hand side of (2.4.9) equals zero.
The solvability condition is

2

cR

∂2φ0

∂x1∂τ
=

1 + β2
R

2μB
Pε, (2.4.10)

where

B =
βR

αR

(1− α2
R) +

αR

βR

(1− β2
R)− (1− β4

R). (2.4.11)

Let the load on the right hand side of (2.4.10) evolve in slow time as

Pε(x1, t) =
∂2pε
∂τ∂x1

, (2.4.12)

with pε = pε(x1 − cRt, τ). Then we readily infer from (2.4.10) that

φ0 =

(
1 + β2

R

)
cR

4μB
pε, (2.4.13)

i. e. φ0 = φ0(x1 − cRt, τ) as was initially assumed.
It is evident, however, that for an arbitrary vertical load P the solu-

tion of the equation (2.4.10) may demonstrate a more general time depen-
dence. Nevertheless, this equation always enables a correct evaluation of
the Rayleigh wave contribution to the overall dynamic response. Moreover,
the developed perturbation procedure is a counterpart of a routine relying
on computation of the residues corresponding to the Rayleigh wave poles,
see the Appendix in Kaplunov et al. (2006). It is also very crucial that the
solution of (2.4.10) will often dominate in the near-surface zone, in partic-
ular for impulse and near-resonant moving loads. For the latter the slow
time may be defined as

τ =

∣∣∣∣1− c

cR

∣∣∣∣t, c ≈ cR, (2.4.14)

where c is the speed of the load.
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Finally, applying the operator asymptotic relationship

2ε

cR

∂2

∂x1∂τ
=

∂2

∂x2
1

− 1

c2R

∂2

∂t2
+O

(
ε2
)
,

we present the equation (2.4.10) for φ = φ0 in terms of the original time t
as

∂ 2φ

∂x2
1

− 1

c2R

∂ 2φ

∂t2
=

1 + β2
R

2μB
P. (2.4.15)

Thus, the asymptotic formulation for the Rayleigh wave has been re-
duced to a scalar problem for the pseudo-static elliptic equation (2.3.2)1
derived in the previous subsection subject to the Dirichlet boundary condi-
tion at x3 = 0 in the form of the wave equation (2.4.15). The shear potential
ψ may then be restored from the relation (2.3.8).

In case of tangential loading a similar asymptotic model consists of a
scalar problem for the elliptic equation (2.3.2)2 subject to a boundary con-
dition at x3 = 0, given by the following hyperbolic equation

∂ 2ψ

∂x2
1

− 1

c2R

∂ 2ψ

∂t2
=

1 + β2
R

2μB
Q, (2.4.16)

with the potential φ determined through the Hilbert transform from (2.3.9).
We remark that the established approximate formulation is oriented to

the Rayleigh wave only and does not incorporate the effect of bulk waves.
The range of validity of the model (see (2.3.2), (2.3.8), (2.3.9), (2.4.15), and
(2.4.16)) covers the problems of near-surface dynamics with the dominant
contribution of the Rayleigh wave.

The consideration above reveals a dual hyperbolic-elliptic nature of the
Rayleigh wave. It is worth noting however that not all the displacement
components demonstrate a wave behaviour along the surface. In particular,
in case of vertical loading only the horizontal displacement u1 is governed
by a hyperbolic equation. The latter follows from (2.4.15) (see also (2.3.3))
and can be written as

∂ 2u1

∂x2
1

− 1

c2R

∂ 2u1

∂t2
=

1− β4
R

4μB

∂P

∂x1

. (2.4.17)

3D problem Let us generalise the plane strain formulation obtained in
the previous subsection, to the 3D case. We start from the equations of
motion (2.1.4), in case of vertical surface loading modelled by the boundary
conditions at x3 = 0

σ31 = σ32 = 0, σ33 = P (x1, x2, t). (2.4.18)
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The Radon integral transform

f (α)(χ, α, x3, t) =

∞∫
−∞

f (χ cosα−η sinα, χ sinα+η cosα, x3, t) dζ, (2.4.19)

where
χ = x1 cosα+ x2 sinα, η = −x1 sinα+ x2 cosα,

with the angle α varying over the interval 0 ≤ α < 2π, reduces the original
3D elastodynamics problem to a 2D problem for associated transforms, for
more details see Georgiadis & Lykotrafitis (2001) and references therein. In
(2.4.19) and below the Radon transforms are denoted by suffice (α). We
also define transformed displacements in the Cartesian frame (χ, η) as

u(α)
χ = u

(α)
1 cosα+ u

(α)
2 sinα, u(α)

η = −u(α)
1 sinα+ u

(α)
2 cosα, (2.4.20)

and set u
(α)
η = 0 assuming that the the anti-plane motion does not induce

surface waves.
It is clear that the aforementioned 2D problem for Radon transforms is

formally identical to that in the theory of plane strain. Then, we introduce
an analogue of wave potentials

u(α)
χ =

∂φ(α)

∂χ
− ∂ψ(α)

∂x3

, u
(α)
3 =

∂φ(α)

∂x3

+
∂ψ(α)

∂χ
(2.4.21)

and follow the perturbation procedure developed in the previous subsec-
tion. The asymptotic formulation for the Rayleigh wave (expressed through
Radon transforms) contains the elliptic equations

∂ 2φ(α)

∂x2
3

+ α2
R

∂ 2φ(α)

∂χ2
= 0,

∂ 2ψ(α)

∂x2
3

+ β2
R

∂ 2ψ(α)

∂χ2
= 0, (2.4.22)

over the interior, along with the hyperbolic equation

∂ 2φ(α)

∂χ2
− 1

c2R

∂ 2φ(α)

∂t2
=

1 + β2
R

2μB
P (α), (2.4.23)

specified on the surface x3 = 0. The relation between the potentials φ(α)

and ψ(α) on the surface now becomes

∂ψ(α)

∂χ
= − 2

1 + β2
R

∂φ(α)

∂x3

. (2.4.24)
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Next, we introduce a pair of the potentials ψ
(α)
1 = ψ(α) cosα and ψ

(α)
2 =

ψ(α) sinα in order to invert the formulae (2.4.22)-(2.4.24). As a result, we
get

∂ 2φ

∂x2
3

+ k21Δφ = 0, (2.4.25)

∂ 2ψi

∂x2
3

+ k22Δψi = 0, (2.4.26)

where now Δ =
∂2

∂x2
1

+
∂2

∂x2
2

, and i = 1, 2, subject to the boundary conditions

(x3 = 0)

Δφ− 1

c2R

∂ 2φ

∂t2
=

1 + β2
R

2μB
P, (2.4.27)

and

∂ψ1

∂x1

=
∂ψ2

∂x2

= − 2

1 + β2
R

∂φ

∂x3

. (2.4.28)

In the formulae above the potentials φ, ψ1 and ψ2 satisfy the vector relation
(Dai et al. 2010)

u = gradφ+ curlΨ, (2.4.29)

where Ψ = (−ψ2, ψ1, 0).

2.5 Plane mixed problems

The methodology in 2.4.1 may also be adapted for mixed boundary
value problems arising in dynamics of cracks and stamps. Consider first
a vertical stamp applied to the surface of the elastic half-plane H+

(2)
. The

boundary conditions at x3 = 0 include zero tangential stresses

σ31 = 0, (2.5.1)

along with normal stresses P and vertical displacements U3 prescribed on
the disjoint parts of the surface S1 and S2, respectively (S1∪S2 = R). Thus

σ33 = P (x1, t), at x1 ∈ S1,

u3 = U3(x1, t), at x1 ∈ S2,
(2.5.2)

see Fig. 1.
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x
3

x
1

P
U3

S1S2

Figure 1. A vertical rigid stamp

On utilizing the formulae (2.3.2), (2.3.8) and (2.4.15), we arrive at a
scalar mixed problem for the elliptic equation (see Erbaş et al. 2012)

∂ 2φ

∂x2
3

+ α2
R

∂ 2φ

∂x2
1

= 0 (2.5.3)

subject to the boundary conditions (x3 = 0)

∂ 2φ

∂x2
1

− 1

c2R

∂ 2φ

∂t2
=

1 + β2
R

2μB
P, at x1 ∈ S1, (2.5.4)

and
∂φ

∂x3

=
1 + β2

R

1− β2
R

U3, at x1 ∈ S2. (2.5.5)

As before, the shear potential ψ is expressed by the relation (2.3.8).

A similar formulation may be deduced for an elastic half-plane, part of
which is coated by a flexible inextensible membrane not resisting to vertical
motion. In this case the boundary conditions on the surface x3 = 0 may be
written as

σ33 = 0, at x3 = 0,

σ31 = Q(x1, t), at x1 ∈ S1, (2.5.6)

u1 = U1(x1, t) at x1 ∈ S2.

where Q and U1 denote the given horizontal stresses and displacements,
respectively, see Fig. 2.

Now a scalar setup for the shear potential ψ is given by the equation

∂ 2ψ

∂x2
3

+ β2
R

∂ 2ψ

∂x2
1

= 0 (2.5.7)
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x

UQ

S2
S

1

x
3

1

1

Figure 2. An inextensible membrane

along with the boundary conditions (x3 = 0)

∂ 2ψ

∂x2
1

− 1

c2R

∂ 2ψ

∂t2
=

1 + β2
R

2μB
Q, at x1 ∈ S1, (2.5.8)

and
∂ψ

∂x3

=
1 + β2

R

1− β2
R

U1, at x1 ∈ S2. (2.5.9)

2.6 Long wave asymptotic model for a surface wave on a coated

half-space

The asymptotic formulation for the Rayleigh wave may also be extended
to a coated half-space in the framework of long-wave approximation. Con-
sider the elastic half-space H+

(3)
coated by an elastic layer occupying the

region −h ≤ x3 ≤ 0, see Fig. 3.

x
1

x3

P

h

0

Figure 3. A half-space coated by an elastic layer

As in subsection 2.4.2, we impose the boundary conditions (2.4.18) on the
upper face of the coating x3 = −h. We also assume continuity of all dis-
placements and stresses at the interface x3 = 0.

A standard asymptotic long-wave technique applied to the coating (here
and below in this subsection for more details see Dai et al. (2010) and
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references therein) results in effective boundary conditions on the interface
x3 = 0, namely

σi3 = ρ0h

{
∂ 2ui

∂t2
− c220

[
∂ 2ui

∂x2
j

+ 4
(
1− κ−2

0

) ∂ 2ui

∂x2
i

+
(
3− 4κ−2

0

) ∂ 2uj

∂xi∂xj

]}
,

σ33 = ρ0h
∂ 2u3

∂t2
+ P, 1 ≤ i �= j ≤ 2,

(2.6.1)

where ρ0 is density of the coating, c10 and c20 are associated bulk wave
speeds, and κ0 = c10/c20. The boundary conditions (2.6.1) coincide with
those earlier proposed by Tiersten (1969).

Thus, the initial problem is reduced to analysis of the uncoated half-
space H+

3 subject to the boundary conditions (2.6.1) imposed on its surface
x3 = 0. In this case the transformed equations

∂ 2φ(α)

∂χ2
+

∂ 2φ(α)

∂x2
3

− 1

c21

∂ 2φ(α)

∂t2
= 0,

∂ 2ψ(α)

∂χ2
+

∂ 2ψ(α)

∂x2
3

− 1

c22

∂ 2ψ(α)

∂t2
= 0,

(2.6.2)

are accompanied by the boundary conditions (x3 = 0)

μ

[
2
∂ 2φ(α)

∂χ∂x3

+
∂ 2ψ(α)

∂χ2
−∂ 2ψ(α)

∂x2
3

]
=μ0h

[
c−2

20

(
∂ 3φ(α)

∂χ∂t2
− ∂ 3ψ(α)

∂x3∂t2

)

−4 (1− κ−2

0

)(∂ 3φ(α)

∂χ3
− ∂ 3ψ(α)

∂x3∂χ2

)]
,

μ

[(
κ2 − 2

) ∂ 2φ(α)

∂χ2
+ κ2

∂ 2φ(α)

∂x2
3

+ 2
∂ 2ψ(α)

∂χ∂x3

]

= μ0hc
−2

20

(
∂ 3φ(α)

∂x3∂t2
+

∂ 3ψ(α)

∂χ∂t2

)
− P (α).

(2.6.3)

A perturbation procedure similar to that in subsection 2.4.1, leads to a
singularly perturbed hyperbolic equation on the surface. It is given by

∂ 2φ(α)

∂χ2
− 1

c2R

∂ 2φ(α)

∂t2
+

bh

αR

∂ 3φ(α)

∂χ2∂x3

=
1 + β2

R

2μB
P (α), (2.6.4)

with

b =
μ0

2μB
(1− β2

R)
[
(1− β2

R0)(αR + βR)− 4βR(1− κ−2

0 )
]
. (2.6.5)
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In the original variables, we get from (2.6.4)

Δφ− 1

c2R

∂ 2φ

∂t2
+

bh

αR

∂

∂x3

(Δφ) =
1 + β2

R

2μB
P, (2.6.6)

which is a boundary condition for the elliptic equation (2.4.25), where now

Δ =
∂2

∂x2
1

+
∂2

∂x2
2

.

The perturbed hyperbolic equation (2.6.6) can also be presented in a
pseudo-differential form, i.e.

Δφ− 1

c2R

∂ 2φ

∂t2
− bh

√−Δ(Δφ) =
1 + β2

R

2μB
P. (2.6.7)

In the plane strain case the last equation becomes

∂ 2φ

∂x2
1

− 1

c2R

∂ 2φ

∂t2
− bh

√
− ∂2

∂x2
1

∂ 2φ

∂x2
1

=
1 + β2

R

2μB
P. (2.6.8)

This equation may also be written through the Hilbert transform. There-
fore, the presence of a coating inevitably leads to an integro-differential
formulation.

In addition, the equation (2.6.8) enables a simple approximation of the
exact dispersion relation, see e.g. Shuvalov & Every (2008) and references
therein. Indeed, we easily deduce from (2.6.8) that

v = cR

(
1− b

2
|kh|+ . . .

)
, (2.6.9)

demonstrating that the Rayleigh wave speed cR is a local extremum over
the long wave domain kh� 1, where k denotes wave number.

3 Interfacial waves

The results obtained for the Rayleigh wave are now generalized to interfa-
cial waves. In view of the existing representation in terms of a single har-
monic function (Kiselev & Parker 2010), we may expect similar hyperbolic-
elliptic formulations for both Schölte-Gogoladze and Stoneley waves, see also
Prikazchikov (2011). In this section we restrict ourselves to plane strain
assumptions, however, 3D formulations may be easily derived using the
Radon transform similarly to what has been done for the Rayleigh wave.
We show that the analysis of interfacial wave fields may be also reduced to
scalar problems for the elliptic equations. As a result, a tedious algebra,
traditionally associated with investigation of interfacial waves, seems to be
mainly overcome.
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3.1 Schölte-Gogoladze wave

Consider an elastic half-plane H+

(2)
, joint with a fluid half-plane

H−

(2)
=
{
(x1;x3)

∣∣−∞ < x1 <∞, x3 < 0
}
,

and concentrate on the interfacial Schölte-Gogoladze wave propagating along
the line x3 = 0 and decaying away from it. This wave has been discovered
independently by Schölte (1949) and Gogoladze (1948).

The equations of motion for an elastic medium are given by (2.2.2),
whereas fluid motion is governed by the Helmholz equation

Δθ − 1

c2f

∂ 2θ

∂t2
= 0, (3.1.1)

where θ is the displacement potential, Δ =
∂2

∂x2
1

+
∂2

∂x2
3

, and cf is the fluid

wave speed. Below we assume zero tangential stresses and continuity of
normal displacements along the interface x3 = 0, leading to the boundary
conditions

σ31 = 0, u3 = v, σ33 − p = P (x1, t), (3.1.2)

where v and p are the vertical displacement and pressure in fluid, respec-
tively, given by

v =
∂θ

∂x3

, p = ρf
∂2θ

∂t2
,

with ρf denoting the volume density of the fluid, and P standing for pre-
scribed vertical stresses along the interface. The boundary conditions (3.1.2)
expressed in terms of the potentials φ, ψ and θ become

2
∂ 2φ

∂x1∂x3

− ∂ 2ψ

∂x2
1

+
∂ 2ψ0

∂x2
3

= 0,

∂φ0

∂x3

+
∂ψ

∂x1

− ∂θ

∂x3

= 0,

μ

[(
κ2 − 2

) ∂ 2φ0

∂x2
1

+ κ2 ∂
2φ

∂x2
3

− 2
∂ 2ψ

∂x1∂x3

]
− ρf

∂ 2θ

∂t2
= P.

(3.1.3)

The equation for the interfacial Schölte-Gogoladze wave speed follows
from (2.2.2), (3.1.1), and (3.1.3) at P = 0. It takes the form

4αSGβSG −
(
1 + β2

SG

)2
=

ρf
ρ

αSG

γSG

(
1− β2

SG

)2
, (3.1.4)
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where

αSG =

√
1− c2SG

c21
, βSG =

√
1− c2SG

c22
, γSG =

√
1− c2SG

c2f
, (3.1.5)

and cSG is the sought for speed of the Schölte-Gogoladze wave. Similarly
to the consideration in 2.4.1, we obtain an approximate hyperbolic-elliptic
formulation for the contribution of the Schölte-Gogoladze wave to the gen-
eral dynamic response. The decay into the interior is again governed by the
elliptic equation

∂ 2φ

∂x2
3

+ α2
SG

∂ 2φ

∂x2
1

= 0, (3.1.6)

while the interfacial dynamics is described by the hyperbolic equation (x3 =
0)

∂ 2φ

∂x2
1

− 1

c2SG

∂ 2φ

∂t2
= AP, (3.1.7)

where

A =
1 + β2

SG

μ

[
2BSG − ρf

ρ

(1− β2
SG)

2
(
γ2
SG − α2

SG − 4α2
SGγ

2
SG

)
2αSGγ3

SG

] , (3.1.8)

and BSG takes the form (2.4.11) to within the substitutions αR = αSG and
βR = βSG. It is readily observed that at ρf = 0 the equation (3.1.7) is
identical to that for the Rayleigh wave, see (2.4.15).

The potentials ψ and θ are related to the potential φ as

ψ(x1 − cSGt, βSGx3) =
2αSG

1 + β2
SG

φ(x1 − cSGt, βSGx3), (3.1.9)

and

θ(x1 − cSGt, γSGx3) = −1− β2
SG

1 + β2
SG

φ(x1 − cSGt, γSGx3). (3.1.10)

3.2 Stoneley wave

Next, we study two joint elastic half-planes H+

(2)
and H−

(2)
in order to

develop an asymptotic model for the Stoneley interfacial wave, see Stoneley
(1924). The equations of motion are now expressed in terms of two sets of
elastic potentials φ(k) and ψ(k) (k = 1, 2) as

Δφ(k) − 1

c2
1k

∂ 2φ(k)

∂t2
= 0, Δψ(k) − 1

c2
2k

∂ 2ψ(k)

∂t2
= 0, (3.2.1)
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where c1k =
√

(λk + 2μk)/ρk and c2k =
√

μk/ρk are the associated bulk
wave speeds for the medium k; in doing so, all the elastic parameters have
to satisfy pretty sophisticated existence conditions for the Stoneley wave
examined by Schölte (1947).

As before, we only consider a jump of normal stresses at the interface.
Thus, we have at x3 = 0

∂φ(1)

∂x1

− ∂φ(2)

∂x1

+
∂ψ(1)

∂x3

− ∂ψ(2)

∂x3

= 0,

∂φ(1)

∂x3

− ∂φ(2)

∂x3

− ∂ψ(1)

∂x1

+
∂ψ(2)

∂x1

= 0,

2μ1

∂ 2φ(1)

∂x1∂x3

− 2μ2

∂ 2φ(2)

∂x1∂x3

+ μ1

[
∂ 2ψ(1)

∂x2
3

− ∂ 2ψ(1)

∂x2
1

]
(3.2.2)

− μ2

[
∂ 2ψ(2)

∂x2
3

− ∂ 2ψ(2)

∂x2
1

]
= 0,

λ1

∂ 2φ(1)

∂x2
1

+ (λ1 + 2μ1)
∂ 2φ(1)

∂x2
3

− λ2

∂ 2φ(2)

∂x2
1

− (λ2 + 2μ2)
∂ 2φ(2)

∂x2
3

− 2μ1

∂ 2ψ(1)

∂x1∂x3

+ 2μ2

∂ 2ψ(2)

∂x1∂x3

= P,

where P = P (x1, t) is a given vertical force.
The transcedental equation for the Stoneley wave speed c = cS (Stoneley

1924) is

c4S
(
(ρ1 − ρ2)

2 − a1a2
)
+ 2c2Sm12(ρ2b1 − ρ1b2) +m2

12b1b2 = 0, (3.2.3)

in which

a1 = (ρ1α2S + ρ2α1S), a2 = (ρ1β2S + ρ2β1S),

bk = 1− αkSβkS , m12 = 2 (μ1 − μ2) ,
(3.2.4)

and

αkS =

√
1− c2S

c2
1k

, βkS =

√
1− c2S

c2
2k

, (k = 1, 2). (3.2.5)

The asymptotic model for the Stoneley wave arising from the boundary
value problem (3.2.1) and (3.2.2), contains the elliptic equation

∂ 2φ(1)

∂x2
3

+ α2
1S

∂ 2φ(1)

∂x2
1

= 0 (3.2.6)
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governing the decay into the interior. The rest of wave potentials is de-
termined by the following relations between the potentials at the interface
x3 = 0

ψ(2)(x1 − cSt, β2Sx3) =
g4

g1β2S

φ
(1)

(x1 − cSt, β2Sx3),

φ(2)(x1 − cSt, α2Sx3) =
g2
g1

φ(1)(x1 − cSt, α2Sx3), (3.2.7)

ψ(1)(x1 − cSt, β1Sx3) =
g3
g4

ψ(2)(x1 − cSt, β1Sx3),

where
g1 = (m12 − ρ1c

2
S)b2 + ρ2c

2
S(1 + α2Sβ1S),

g2 = (ρ2c
2
S +m12)b1 − ρ1c

2
S(1 + α1Sβ2S),

g3 = ρ2c
2
S(α1S + α2S)−m12α1Sb2,

g4 = ρ1c
2
S(α1S + α2S)−m12α2Sb1.

(3.2.8)

Finally, the hyperbolic equation for φ(1) on the interface x3 = 0 is written
as

∂ 2φ(1)

∂x2
− 1

c2S

∂ 2φ(1)

∂t2
=

g1PS

c 2
SBS

, (3.2.9)

where the constant BS is given by

BS = −2c2S
[
(ρ1 − ρ2)

2 − a1a2
]−m12c

2
S (ρ2f2 − ρ1f1)

−m2
12

2
(b2f1+b1f2)− c4S

2
(d1a2+d2a1) + 2m12 (ρ2b1−ρ1b2),

(3.2.10)

with

dk =
ρ2

αkSc21k
+

ρ1
βkSc22k

, fk =
αkS

βkSc2k2
+

βkS

αkSc2k1
, (k = 1, 2).

It is remarkable that the models for the interfacial Stoneley and Schölte-
Gogoladze waves are not more difficult than that for the Rayleigh wave due
to the relations for wave potentials, see (3.1.9), (3.1.10), and (3.2.7).

4 Moving load problems

We illustrate the efficiency of the derived hyperbolic-elliptic formulations
for the Rayleigh wave by modelling near-resonant regimes of moving loads.
As might be expected, the dynamic response caused by a load travelling at
a speed close to the Rayleigh wave speed is not strongly affected by bulk
waves.
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4.1 Steady-state motion of a point force

We begin with the the classical plane strain problem for a steadily moving
vertical point force, see Fig. 4 (see e.g. Cole & Huth 1958).

x

c
P

0

1

x3

Figure 4. A point force travelling along the surface of a half-plane.

The equations of motion are given by (2.2.2), with boundary conditions
on the surface x3 = 0 written as

σ31 = 0, σ33 = P0δ(x1 − ct), (4.1.1)

where c is a constant speed of the load.
The asymptotic model for the Rayleigh wave developed in subsection

2.4, now consists of the scalar boundary value problem

∂ 2φ

∂x2
3

+ α2
R

∂ 2φ

∂s2
= 0, (4.1.2)

subject to the boundary condition (x3 = 0)(
1− c2

c2R

)
∂ 2φ

∂s2
=

1 + β2
R

2μB
P0 δ(s), (4.1.3)

where s = x1 − ct is a moving coordinate. Remarkably, a resonant effect
may be immediately observed from (4.1.3) due to degeneration at c = cR.
This scalar problem may be reformulated as a Dirichlet problem for the

derivative φs =
∂φ

∂s
as

∂ 2φs

∂x2
3

+ α2
R

∂ 2φs

∂s2
= 0, (4.1.4)

subject to

φs(s, 0) =

(
1 + β2

R

)
c2RP0

2μB (c2R − c2)

(
H(s)− 1

2

)
, (4.1.5)
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where a constant of integration is chosen because of symmetry. In fact, the
2D steady-state solution is defined to within the rigid body motion of a
half-plane, which may be determined from the associated transient problem
only, see Kaplunov (1986).

The problem (4.1.4) is easily solved by exploiting the Poisson formula
(e.g. Courant & Hilbert 1989), giving

φs(s, x3) =

(
1 + β2

R

)
P0c

2
R

2πμB (c2R − c2)
arctan

s

αR x3

. (4.1.6)

Therefore (see (2.3.8)),

ψs(s, x3) =
∂ψ

∂s
= − αRP0c

2
R

2πμB (c2R − c2)
ln
(
s2 + β2

R x2
3

)
. (4.1.7)

As a result, the steady-state displacement field is given by

ust
1 (ξ) =

(1 + β2
R)P0v

2
R

2μπB(v2R − v2)

[
arctan

ξ

αR

− 1 + β2
R

2
arctan

ξ

βR

]
,

ust
2 (ξ) = − (1 + β2

R)P0v
2
RαR

4μπB(v2R − v2)

[
ln
(
ξ2 + α2

R

)− 2

1 + β2
R

ln
(
ξ2 + β2

R

)]
,

(4.1.8)

with the following dimensionless parameters

ξ =
s

x3

, v =
c

c2
, vR =

cR
c2

.

It may be verified that the displacement components in (4.1.8) are the
leading order terms in the Taylor expansion of the exact solution in Cole &
Huth (1958) around the resonant Rayleigh wave speed c = cR.

4.2 Transient motion of a point force

Let us now consider the associated transient problem. In this case the
same equation (4.1.2) is subject to the following hyperbolic boundary con-
dition on the surface x3 = 0

∂ 2φ

∂s2
− 1

c2R

∂ 2φ

∂t2
=

1 + β2
R

2μB
P0δ(s). (4.2.1)

The solution of the latter can be written as (here and below in this subsec-
tion see Kaplunov et al. (2010) for more detail)

φ(s, 0, t) = B1

t∫
0

[H (s+ (c− cR)r)−H (s+ (c+ cR)r)] dr. (4.2.2)
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with

B1 =

(
1 + β2

R

)
cRP0

4μB
, (4.2.3)

and the resonant (c = cR) case arising immediately from the analysis of the
integrand.

For the sub-Rayleigh regime (c < cR) we get from (4.2.2)

φ(s, 0, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B1

s− s1
cR − c

, 0 ≤ s < s1;

B1

s− s2
cR + c

, s2 < s < 0;

0, otherwise,

(4.2.4)

with the values s1 and s2 given by

s1 = t(cR − c), s2 = −t(cR + c). (4.2.5)

For the super-Rayleigh regime (c > cR) we have

φ(s, 0, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2B1

cRs

c2 − c2R
, s1 ≤ s ≤ 0;

−B1

s− s2
cR + c

, s2 < s < s1;

0, otherwise.

(4.2.6)

Finally, if c = cR, we obtain

φ(s, 0, t) =

⎧⎨
⎩
−B1

s− s2
2cR

, s2 ≤ s ≤ 0;

0, otherwise,
(4.2.7)

with s2 given now by s2 = −2cRt.
The solutions on the surface (4.2.4), (4.2.6) and (4.2.7) provide an im-

mediate insight into the physics of the original problem. In particular, Fig.
5 shows a clear distinction of the resonant regime from the two others. In
this figure the function φ(s, 0, t) at a fixed time t is plotted for all three
aforementioned cases. If c �= cR, the solution in question is continuous in s,
see Figs 5(a) and 5(b). At the same time, the limiting resonant solution in
Fig. 5(c), demonstrates a discontinuity under a line moving force (s = 0),
which is linearly increasing in time. As a result we should not expect a
steady-state regime at c = cR. Thus, a rather straightforward analysis of
an infinite string under a moving load immediately reveals the resonant
phenomena associated with the Rayleigh wave.
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s

φ(s, 0, t)

s2 s10

−B1t

(a)

s

φ(s, 0, t)

s2 s1 0

−2B1tcR
c+ cR

(b)

s

φ(s, 0, t)

s2 0

−B1t

(c)

Figure 5. The wave potential φ vs. the moving co-ordinate s on the surface
x3 = 0: (a) the sub-Rayleigh regime (c < cR); (b) the super-Rayleigh regime
(c > cR); (c) resonant regime (c = cR).

Once the potential is determined at the surface x3 = 0, the solution is
then restored over the interior through the Poisson formulae. In the sub-
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Rayleigh and super-Rayleigh regimes the displacement components become

u1(ξ, τ) =
2B1 vR

πc2(v2R − v2)

[
arctan

ξ

αR

− 1 + β2
R

2
arctan

ξ

βR

]

− B1

πc2(vR + v)

[
arctan

ξ − ξ2
αR

− 1 + β2
R

2
arctan

ξ − ξ2
βR

]

− B1

πc2(vR − v)

[
arctan

ξ − ξ1
αR

− 1 + β2
R

2
arctan

ξ − ξ1
βR

]
,

(4.2.8)

u3(ξ, τ)=
B1 αR

2πc2(vR+v)

[
ln
(ξ−ξ2)2+α2

R

ξ2 + α2
R

− 2

1+β2
R

ln
(ξ − ξ2)

2+β2
R

ξ2 + β2
R

]

+
B1 αR

2πc2(vR−v)
[
ln
(ξ−ξ1)2+α2

R

ξ2 + α2
R

− 2

1+β2
R

ln
(ξ − ξ1)

2+β2
R

ξ2 + β2
R

]
,

(4.2.9)

with

τ =
c2t

x3

, ξ1 =
s1
x3

= (vR − v)τ, ξ2 =
s2
x3

= −(v + vR)τ, (4.2.10)

and s1, s2 defined by (4.2.5). In the resonant regime the corresponding
displacement components may be found as

u1(ξ, τ) =
B1αRτ

πc2

[
1

ξ2 + α2
R

− 2β2
R

(1 + β2
R)(ξ

2 + β2
R)

]

+
β

2πc2vR

[
arctan

ξ

αR

− arctan
ξ − ξ2
αR

]

− B1(1 + β2
R)

4πc2vR

[
arctan

ξ

βR

− arctan
ξ − ξ2
βR

]
,

(4.2.11)

u3(ξ, τ) =
B1αRξτ

πc2

[
2

(1 + β2
R)(ξ

2 + β2
R)
− 1

ξ2 + α2
R

]

+
B1αR

4πc2vR

[
ln
(ξ − ξ2)

2+α2
R

ξ2 + α2
R

− 2

1+β2
R

ln
(ξ − ξ2)

2+β2
R

ξ2 + β2
R

]
,

(4.2.12)

with ξ2 = −2vRτ .
The obtained displacements (4.2.8)-(4.2.12) are expressed in elementary

functions in contrast to the integral exact solution of the problem, see Ap-
pendix of Kaplunov et al. (2010). Nevertheless, the approximate solution
demonstrates key features of the problem, in particular, an important large
time limit as τ → ∞ immediately follows from the formulae above. In the
sub-Rayleigh regime we have

ui(ξ, τ) ∼ u∞

i (ξ, τ), u∞

i (ξ, τ) = ust
i (ξ) + ur

i (τ) (i = 1, 2), (4.2.13)
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where ust
i (i = 1, 2) are displacements in the related steady-state problem

(4.1.8), and
ur
1(τ) = ur0

1 , ur
2(τ) = ur0

2 + urτ
2 (τ), (4.2.14)

with

ur0
1 =

B1v
(
1− β2

R

)
2c2(v2R − v2)

,

ur0
2 = −B1αR(1− β2

R)

πc2(1 + β2
R)

[
ln(vR + v)

vR + v
+

ln |vR − v|
vR − v

]
,

urτ
2 (τ) = − 2B1vRαR(1− β2

R)

πc2(v2R − v2)(1 + β2
R)

ln τ.

(4.2.15)

Here ur
i (i = 1, 2) are components of the rigid body motion of the half-

plane. It is remarkable that the rigid body motion along the vertical axe
demonstrates a logarithmic growth in time, see (4.2.14) and (4.2.15), ob-
served earlier in Kaplunov (1986). This means that a steady-state regime
in subsection 4.1 cannot be achieved at a large time limit.

The formulae (4.2.13)-(4.2.15) are also valid for the super-Rayleigh case,
except the expression for the rigid body motion component along the hori-
zontal axe, which now becomes

ur0
1 = −B1vR

(
1− β2

R

)
2c2(v2R − v2)

. (4.2.16)

In the resonant case the limiting behaviour as τ →∞ is

ui(ξ, τ) ∼ u∞

i (ξ, τ) (i = 1, 2), (4.2.17)

with

u∞

1 (ξ, τ) =
B1αRτ

πc2

[
1

ξ2 + α2
R

− 2β2
R

(1 + β2
R)(ξ

2 + β2
R)

]
, (4.2.18)

u∞

2 (ξ, τ) =
B1αRξτ

πc2

[
2

(1 + β2
R)(ξ

2 + β2
R)
− 1

ξ2 + α2
R

]

+
B1αR(β

2
R − 1)

4πc2vR(β2
R + 1)

ln τ.

(4.2.19)

Thus, the displacements demonstrate linear growth in time apart from the
vertical displacement at ξ = 0, which increases as ln τ .

Another interesting observation is related to the resonant regime of a
moving semi-infinite strip, in which P = P0H(x − cRt). In this case the
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Figure 6. The sub-Rayleigh transient (a) horizontal and (b) vertical dis-
placements (4.2.8) and (4.2.9) and the large time limits (4.2.13) for v = 0.9.

asymptotic model recovers the classical result of Goldstein (1965) with less
effort.

Numerical illustrations are presented in Fig. 6-8 for the Poisson ratio
ν = 0.25 corresponding to vR ≈ 0.9194.

We plot the dimensionless displacements

Uk =
πμuk

P0

, Ũ2 =
πμ

P0

(u2(ξ, τ)− urτ
2 (τ)) .

Here we subtract from the vertical displacement u2(ξ, τ) the function urτ
2 (τ)

having a logarithmic growth in time, see (4.2.14) and (4.2.15). In this case
we depict only a bounded in time component in order to show convergence
at a large time limit.

The sub-Rayleigh displacements of the half-space (4.2.8) and (4.2.9) are
plotted in Fig. 6 for v = 0.9 and several values of time τ . Similar results for
the super-Rayleigh regime (v = 0.95) are presented in Fig. 7. The solid line
corresponds to the limits (4.2.13) with (4.2.14)–(4.2.15) and (4.2.16). As
might be expected, transient displacements tend to their large time values
as time increases. The resonant displacements (4.2.11) and (4.2.12) are
displayed in Fig. 8 for τ = 10, 30, 50 and 100. They demonstrate a linear
growth in time according to the formulae (4.2.11) and (4.2.12).
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Figure 7. The super-Rayleigh transient (a) horizontal and (b) vertical dis-
placements (4.2.8) and (4.2.9) and the large time limits (4.2.13) for v = 0.95.
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Figure 8. The resonant transient (a) horizontal and (b) vertical displace-
ments (4.2.11) and (4.2.12) for v = vR.
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4.3 Steady-state motion of a stamp

Consider the steady-state motion of a rigid stamp, see Fig. 9, assuming

x
3

x
1

c

Figure 9. Steady-state motion of a rigid stamp

that its effect results in a prescribed surface displacements U3(x1, t) =
f(x1 − ct). We also set P = 0 in the equation (2.5.4) governing the surface
motion outside the stamp. The formulation of the mixed boundary value
problem, obtained in subsection 2.5, may then be specified for the scaled
normal derivative

χ(s, p) =
β2
R − 1

β2
R + 1

∂φ

∂s
, (4.3.1)

where s = x1−ct, p = αRx3, for more details see Erbaş et al. (2012). Thus,
we arrive at a canonical problem for the Laplace equation

∂2χ

∂p2
+

∂2χ

∂s2
= 0, (4.3.2)

with the mixed boundary conditions (p = 0)

χ = f(s), at s ∈ S2 (4.3.3)

and
∂χ

∂p
= 0, at s ∈ S1, (4.3.4)

where and S1 and S2 are the traction free and constrained parts of the
surface p = 0, respectively.

As an example, we consider an exponential stamp f(s) = be−as, where a
and b are positive constants. In this case (e.g. see Sveshnikov & Tikhonov
1978)

χ(s, p) = bRe
{
e−aq

[
1− erf

(√−aq)]} , (4.3.5)

where q = s+ ip and erf(q) is the error function.
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A resonant nature of the Rayleigh wave is clearly seen from the formula
for the normal stress under the stamp

σ33(s, 0) =
2μBα3

R

(
c2 − c2R

)
(β2

R − 1)c2R
χ(s, 0) , at s ∈ S2. (4.3.6)

Thus, the resonant limit as c→ cR, corresponds to an asymptotically van-
ishing stress induced by a displacement of finite magnitude.

4.4 Moving load on a coated half-plane

Let a coated half-plane be loaded by a distributed force of the form (see
Fig. 10)

x
1

x3

P

h
c

0

Figure 10. Distributed moving load on a coated half-plane.

P (x1, t) =
P0l

π [l2 + s2]
,

where l is a typical length, and s = x1−ct. We restrict ourselves to analysis
of the surface motion (x3 = 0), governed by the perturbed hyperbolic equa-
tion (2.6.8). We introduce the dimensionless moving coordinate sl = s/l
along with the parameters

g = 1− c2

c2R
, hl =

bh

l
(4.4.1)

and rewrite (2.6.8) as

gθ − hl

√
− ∂2

∂s2l
θ =

1

1 + s2l
, (4.4.2)

where

θ =
AP0

πl

∂2φ

∂s2l
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denotes scaled normal surface stresses, here and below in this subsection see
Dai et al. (2010) for further detail.

We remark that g and hl are key problem parameters characterising the
thickness of the coating and the proximity of the speed of the load to the
Rayleigh wave speed, respectively. Then, using the Fourier transform, we
present the solution of (4.4.2) as

θ = − 1

2hl

2∑
n=1

eqnEi(1, qn) (4.4.3)

where
qn = − g

hl

[1 + (−1)nisl] , n = 1, 2,

and Ei is the integral exponent.
Two limiting cases may then be investigated. The first limit corresponds

to the solution for an uncoated half-plane as hl/g → 0, whereas the second
one g/hl → 0 reveals that the presence of a coating does not remove the
resonance at c = cR. The reason is that, despite of the dispersion due to
the influence of the coating, the maximum or minimum of the phase speed
is still given by the Rayleigh wave speed.

5 Edge bending wave

In this section we apply the proposed philosophy to the bending wave prop-
agating along the edge of a semi-infinite thin elastic plate. We show that
the dispersive edge bending wave has a parabolic-elliptic duality in contrast
to a hyperbolic-elliptic duality of the non-dispersive surface and interfacial
waves considered above.

5.1 Dispersion relation

Let the geometry of the plate of thickness 2h be given by −∞ < x1 <∞,
0 ≤ x2 <∞, −h ≤ x3 ≤ h, see Fig. 11. We start from the approximate 2D
equation in the classical Kirchhoff theory for plate bending, given by

DΔ2W + 2ρh
∂2W

∂t2
= 0, (5.1.1)

where W (x1, x2, t) is the deflection of the plate, Δ =
∂2

∂x2
1

+
∂2

∂x2
2

, and

D =
2Eh3

3 (1− ν2)
(5.1.2)
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x1

2

3

x

x

Figure 11. Thin elastic plate.

is bending stiffness, with E and ν denoting the Young modulus and the
Poisson ratio, respectively.

The boundary conditions at the edge x2 = 0 can be written as

∂2W

∂x2
2

+ ν
∂2W

∂x2
1

= −M

D
,

∂3W

∂x3
2

+ (2− ν)
∂3W

∂x2
1∂x2

= −N

D
,

(5.1.3)

where M = M(x1, t) and N = N(x1, t) are prescribed bending moment and
shear force, respectively.

The travelling wave solution of (5.1.1) may be found in the form

W (x1, x2, t) =

2∑
j=1

Cje
i(kx1−ωt)−kλjx2 , (5.1.4)

where

λj =

√
1 + (−1)j

√
2ρh

D

ω

k2
, j = 1, 2. (5.1.5)

Substitution of (5.1.4) into the homogeneous edge boundary conditions
(M = N = 0 in (5.1.3)) leads to the dispersion relation

Dk4γ4
e = 2ρhω2, (5.1.6)

originating from Konenkov (1960) and subsequent contributions, see also
Lawrie & Kaplunov (2012) and Norris et al. (2000) and references therein.
Here the coefficient

γe =
[
(1− ν)

(
3ν − 1 + 2

√
2ν2 − 2ν + 1

)]1/4
(5.1.7)
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depends on the Poisson ratio only. In view of the dispersion relation (5.1.6),
we have

λj = λj0 =
√

1 + (−1)jγ2
e , j = 1, 2. (5.1.8)

5.2 Edge bending wave of arbitrary profile

Here we generalise the travelling wave solution to that expressed through
arbitrary plane harmonic function. The equation (5.1.1), written in terms
of the dimensionless variables

ζi =
xi

h
, th =

t

h

√
E

3ρ(1− ν2)
, i = 1, 2 (5.2.1)

becomes

Δ2W +
∂2W

∂t2h
= 0, (5.2.2)

where Δ =
∂2

∂ζ21
+

∂2

∂ζ22
.

Let us assume that

γ4 ∂
4W

∂ζ41
+

∂2W

∂t2h
= 0, (5.2.3)

where γ is a dimensionless parameter. This is a key assumption, lead-
ing below to transformation of the parabolic equation (5.2.2) to an elliptic
equation and finally resulting in the sought for representation in terms of
a plane harmonic function. The philosophy underlying (5.2.3) essentially
mirrors that of subsection 2.3 (see Chadwick 1976), where the surface wave
solution was obtained in the form of a travelling wave of arbitrary profile.
Indeed, while an elastic string seems to be a right 1D object for understand-
ing surface wave propagation, see the classical wave equation (2.4.15), its
counterpart for the edge bending wave is a beam.

The equation (5.2.2) then becomes

(
1− γ4

) ∂4W

∂ζ41
+ 2

∂4W

∂ζ21∂ζ
2
2

+
∂4W

∂ζ42
= 0. (5.2.4)

It also may be expressed in an operator form as

Δ1Δ2W = 0, (5.2.5)

where

Δj =
∂2

∂ζ22
+ λ2

j

∂2

∂ζ21
, j = 1, 2, (5.2.6)
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and
λ2
j = 1 + (−1)jγ2. (5.2.7)

The solution of (5.2.5) is expressed through two decaying as ζ2 → ∞
plane harmonic functions Wj as

W =

2∑
j=1

Wj (ζ1, λjζ2, th) . (5.2.8)

Let us substitute the latter into the homogeneous boundary conditions
(5.1.3) rewritten in terms of dimensionless variables, using the Cauchy-
Riemann identities (2.3.4). The result is

(
ν − λ2

1

) ∂2W1

∂ζ21
+
(
ν − λ2

2

) ∂2W2

∂ζ21
= 0,

λ1

(
λ2
1 − 2 + ν

) ∂3W1

∂ζ31
+ λ2

(
λ2
2 − 2 + ν

) ∂3W2

∂ζ31
= 0,

(5.2.9)

leading to
λ2(ν − λ2

1)
2 − λ1(ν − λ2

2)
2 = 0. (5.2.10)

Due to (5.2.7), the last relation may be re-cast in the form

1− γ4 − (2ν − 2)
√

1− γ4 − ν2 = 0. (5.2.11)

Then,

γ4 = (1− ν)
(
3ν − 1 + 2

√
2ν2 − 2ν + 1

)
= γ4

e , (5.2.12)

which coincides with the root of the dispersion relation (5.1.6) implying
λj = λj0.

Similarly to subsection 2.3.1, the harmonic functions W1 and W2 may
be related to each other. Consequently, a representation in terms of a single
harmonic function may be established from the boundary conditions (5.2.9),
namely

W (x1, x2, t) = Wj (x1, λj0x2, t)−
ν − λ2

j0

ν − λ2
m0

Wj (x1, λm0x2, t) . (5.2.13)

where 1 ≤ j �= m ≤ 2.
It is remarkable that (5.2.13) is even simpler than its Rayleigh wave

counterpart (Chadwick 1976), since it does not involve harmonic conjugate
functions.
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5.3 Parabolic-elliptic model

Now we proceed with the development of an explicit model for the edge
bending wave. In parallel with subsection 2.4, we perturb the equation
(5.1.1) around the edge wave eigensolution constructed in the subsection 5.2.
However, this procedure is now less trivial because of a multi-scale behaviour
in time. Accordingly, we introduce fast (τf = th) and slow (τs = εth) time
variables, where as before ε� 1 is a small parameter. The equation (5.2.2)
may now be written in terms of specified two time-scales as

Δ2W +

(
∂2W

∂τ2f
+ 2ε

∂2W

∂τf∂τs
+ ε2

∂2W

∂τ2s

)
= 0. (5.3.1)

The deflection W may be then expanded in an asymptotic series, i. e.

W =
h2

D

(
W (0) + εW (1) + ...

)
. (5.3.2)

Next, we substitute the expansion (5.3.2) into the governing equation
(5.3.1), having at leading order

Δ2W (0) +
∂2W (0)

∂τ2f
= 0, (5.3.3)

which may be readily transformed to

(
1− γ4

e

) ∂4W (0)

∂ζ41
+ 2

∂4W (0)

∂ζ21∂ζ
2
2

+
∂4W (0)

∂ζ42
= 0, (5.3.4)

by making use of the assumption (5.2.3) at γ = γe. The solution of (5.3.4)
is then given by a combination of harmonic functions, yielding

W (0) =

2∑
j=1

W
(0)

j (ζ1, λj0ζ2, τf , τs) , (5.3.5)

where the scaling factors λj0 (j = 1, 2) are defined by (5.1.8).
At next order we obtain from (5.3.1)

Δ2W (1) +
∂2W (1)

∂τ2f
+ 2

∂2W (0)

∂τf∂τs
= 0, (5.3.6)

which, in view of (5.2.3), may be re-written as

Δ1Δ2W
(1) = −2∂

2W (0)

∂τf∂τs
. (5.3.7)
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For the sake of definiteness, we specify (5.2.3) as

iγ2
e

∂2W
(0)

j

∂ζ21
+

∂W
(0)

j

∂τf
= 0, j = 1, 2. (5.3.8)

Further analysis of (5.3.7) also requires separate consideration for both

plane harmonic functions W
(1)

j , j = 1, 2. Let us first concentrate on W
(1)

1 .
Using properties of harmonic functions we deduce that

Δ2W
(0)

1 = (λ2
20 − λ2

10)
∂2W

(0)

1

∂ζ21
= 2γ2

e

∂2W
(0)

1

∂ζ21
= 2i

∂W
(0)

1

∂τf
. (5.3.9)

Therefore, the equation (5.3.7) may be presented as

Δ1W
(1)

1 = i
∂W (0)

∂τs
. (5.3.10)

It is convenient now to define the function Φ
(1)

1 =
∂W

(1)

1

∂ζ2
. Then the

equation (5.3.10) is rewritten as

Δ1Φ
(1)

1 = i
∂2W

(0)

1

∂ζ2∂τs
. (5.3.11)

Similarly to (2.4.6), the solution of (5.3.11) may be found as

Φ1 =
∂W1

∂ζ2
=

∂W
(0)

1

∂ζ2
+ ε

(
Φ

(1,0)
1 +

1

2
iζ2

∂W
(0)

1

∂τs

)
+ ... . (5.3.12)

We also have for W2

Δ2W
(1)

2 = −i ∂W
(0)

2

∂τs
, (5.3.13)

resulting in

Φ2 =
∂W2

∂ζ2
=

∂W
(0)

2

∂ζ2
+ ε

(
Φ

(1,0)
2 − 1

2
iζ2

∂W
(0)

2

∂τs

)
+ ... . (5.3.14)

Finally, we obtain for the normal derivative

∂W

∂ζ2
=

h2

D

⎡
⎣∂

(
W

(0)

1 +W
(0)

2

)
∂ζ2

+ε

⎛
⎝Φ

(1,0)
1 +Φ

(1,0)
2 + i

ζ2
2

∂
(
W

(0)

1 −W
(0)

2

)
∂τs

⎞
⎠+ ...

⎤
⎦ .

(5.3.15)
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Now we are in position to treat the non-homogeneous boundary condi-
tions (5.1.3). As above in 2.4.1, the problem may be decomposed into two
separate sub-problems involving a prescribed edge bending moment or shear
force only. First, we study the effect of an edge bending moment normalized
as M = εMε. The boundary conditions rewritten in terms of dimensionless
coordinates, are

∂2W

∂ζ22
+ ν

∂2W

∂ζ21
= −εh2

D
Mε,

∂3W

∂ζ32
+ (2− ν)

∂3W

∂ζ21∂ζ2
= 0.

(5.3.16)

On substituting the asymptotic expansion (5.3.15) into the latter we obtain
at leading order

(
ν − λ2

10

) ∂2W
(0)

1

∂ζ21
+
(
ν − λ2

20

) ∂2W
(0)

2

∂ζ21
= 0,

λ10

(
λ2
10 − 2 + ν

) ∂3W
(0)

1

∂ζ31
+ λ20

(
λ2
20 − 2 + ν

) ∂3W
(0)

2

∂ζ31
= 0,

(5.3.17)

which is an analogue of (5.2.9). It results in the dispersion relation (5.2.10),
implying λj = λj0, j = 1, 2, see also (5.1.8).

At next order, the boundary conditions (5.3.16) are given by

∂2W (1)

∂ζ22
+ ν

∂2W (1)

∂ζ21
= −Mε,

∂3W (1)

∂ζ32
+ (2− ν)

∂3W (1)

∂ζ21∂ζ2
= 0.

(5.3.18)

The relations (5.3.10) and (5.3.13) may be used to deduce that

∂2W (1)

∂ζ21

∣∣∣∣
ζ2=0

=
1

λ2
10

(
i

2

∂W
(0)

1

∂τs
−∂Φ

(1,0)
1

∂ζ2

)
− 1

λ2
20

(
i

2

∂W
(0)

2

∂τs
+
∂Φ

(1,0)
2

∂ζ2

)
. (5.3.19)

The boundary conditions (5.3.18) taking into account (5.3.15) and (5.3.19),
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become

(
1− ν

λ2
10

)
∂Φ

(1,0)
1

∂ζ2
+

(
1− ν

λ2
20

)
∂Φ

(1,0)
2

∂ζ2

+
i

2

(
1 +

ν

λ2
10

)
∂W

(0)

1

∂τs
− i

2

(
1 +

ν

λ2
20

)
∂W

(0)

2

∂τs
= −Mε,

(
2− ν − λ2

10

) ∂2Φ
(1,0)
1

∂ζ21
+
(
2− ν − λ2

20

) ∂2Φ
(1,0)
2

∂ζ21

+i
∂2W

(0)

1

∂ζ2∂τs
− i

∂2W
(0)

2

∂ζ2∂τs
= 0.

(5.3.20)

Finally, we obtain using also the formula (5.2.13),

2iγ2
e

Q

∂2W (0)

∂ζ1∂τs
= −∂Mε

∂ξ
, (5.3.21)

where

Q =
η (ν + η)

1− ν + η
, (5.3.22)

with

η = λ10λ20 =
√

1− γ4
e . (5.3.23)

Here the coefficient Q depends on the Poisson ratio only, see Fig. 12.
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Figure 12. Coefficient Q vs. the Poisson ratio ν
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The equation (5.3.21) enables calculation of the edge wave contribution
to the overall dynamic response. This observation also follows from a simi-
larity of the developed perturbation procedure and the routine in Kaplunov
et al. (2013a) relying on computation of the residues corresponding to edge
wave poles.

The operator relationship

∂

∂τs
= ε−1

(
iγ2

e

∂2

∂ζ21
+

∂

∂th

)
, (5.3.24)

along with the condition (5.3.8), allow transformation of (5.3.21) to a parabolic
equation at the edge ζ2 = 0. It is given by

γ4
e

∂4W (0)

∂ζ41
+

∂2W (0)

∂t2h
= Q

∂2M

∂ζ21
. (5.3.25)

The equation (5.3.25) (see (5.3.2)) may be re-cast in terms of original
variables as (x2 = 0)

Dγ4
e

∂ 4W

∂x4
1

+ 2ρh
∂2W

∂t2
= Q

∂2M

∂x2
1

. (5.3.26)

The established approximate formulation also contains the elliptic equation

Δ1Δ2W = 0, (5.3.27)

where

Δj =
∂2

∂x2
2

+ λ2
j0

∂2

∂x2
1

, j = 1, 2, (5.3.28)

which should be solved together with the parabolic equation (5.3.26).
In fact, the representation in terms of a single harmonic function (5.2.13)

simplifies things even further since

W (x, 0, t) =
λ2
i0 − λ2

j0

ν − λ2
j0

Wi (x, 0, t) , 1 ≤ i �= j ≤ 2. (5.3.29)

The explicit model for the edge bending wave is then given by a Dirichlet
problem for any of the following two pseudo-static elliptic equations

∂2Wj

∂y2
+ λ2

j0

∂2Wj

∂x2
= 0, (j = 1, 2) (5.3.30)

with the boundary data originating from the parabolic equation (5.3.26).
Then, we exploit the relations (5.2.13) and (5.3.29) to restore the overall 2D



Explicit Models for Surface, Interfacial and Edge Waves  111

bending field. Thus, we reveal a dual parabolic-elliptic nature of the studied
wave.

The second type of boundary conditions is given by

∂2W

∂ζ22
+ ν

∂2W

∂ζ21
= 0,

∂3W

∂ζ32
+ (2− ν)

∂3W

∂ζ21∂ζ2
= −h3

D
N,

(5.3.31)

leading to a parabolic beam-like equation. The analysis is rather similar
to that presented in the previous case. Remarkably, now the boundary

conditions lead to a parabolic equation for the rotation angle θ =
∂W

∂x2

evaluated at the edge x2 = 0, namely

Dγ4
e

∂4θ

∂x4
1

+ 2ρh
∂2θ

∂t2
= −Q∂2N

∂x2
1

, (5.3.32)

with the coefficient Q defined by (5.3.22).
The explicit model for a prescribed shear force contains the elliptic equa-

tion (5.3.30) which is to be solved in conjunction with the parabolic equation
(5.3.32), and also the relations (5.2.13) and (5.3.29) as above.

6 Concluding remarks

The context of this chapter is restricted to the framework of linear isotropic
elasticity. We expect various extensions of the developed asymptotic method-
ology to elastic solids demonstrating a more sophisticated constitutive be-
haviour, arising from numerous insights into the properties of surface, in-
terfacial and edge waves, taking into consideration pre-stress (Dowaikh &
Ogden 1990, 1991, Rogerson & Sandiford 1999, Pichugin & Rogerson 2012)
and anisotropy (Fu 2003, 2005, Destrade 2004, 2007, Zakharov 2004, Norris
1994), see also Prikazchikov 2013. The illustrative examples presented in
Section 4 are limited to plane moving load problems associated with the
Rayleigh wave. There is a clear potential for 3D generalisations (Kaplunov
et al. 2013b) and also for analysis of near-interfacial dynamics (Kennedy
& Herrmann 1973a,b ). In addition, we mention important industrially
motivated problems involving viscoelastic coatings.
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