Modelling microstructured media: periodic
systems and effective media

R. V. Craster & M. Makwana *

Abstract My aim in these lectures is to give a broad overview of
the Mathematics and Physics of perfectly periodic systems, draw-
ing heavily upon the literature of solid-state physics: it is essential
to understand how structure on a micro-scale affects longer scale
macro-scale behaviour and periodic systems are a naturally place
to begin. Periodic systems are, on one hand, quite special and the
constructive interference created by periodicity leads to strong ef-
fects that we shall see later, but on the other hand many natural and
man-made structures exhibit, at least some, general periodic struc-
ture. After developing the language of periodic systems we will turn
our attention to the development of asymptotic “effective” media
that are posed entirely upon the macro-scale. Importantly we will
develop asymptotic theories valid at high frequencies. A general ap-
proach valid for continua, semi-discrete (frame) and fully discrete
(mass-spring) systems will be developed. If time allows we will then
look further into some of the remarkable physics that can be seen
when waves move through structured media: defect states, all-angle
negative refraction and ultra-refraction.

1 Motivation

Periodic, or almost periodic, structures surround us and are of considerable
technological importance. One of the most talked about materials at the
moment is graphene, an almost perfect material constructed from a hexago-
nal lattice and graphene has truly remarkable properties some of which are
related to the properties of the waves that pass through it. Many atomistic
systems are remarkably regular in their structure mainly due to the ener-
getic arguments that force the material to adopt such regular patterns. The
attraction of one atom to its neighbour, or neighbours, can be modelled by
discrete mass-string models with the physics of the attraction lumped into
some effective string constants. Historically the study of perfect lattice-like
systems originated in solid-state physics and a huge amount of effort and
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Figure 1: Photographs of cellular solids: (a) open-cell polyurethane (b)
closed-cell polyurethane (c) nickel (d) copper (e) zirconia (f) mullite (g)
glass (h) a polyether foam with both open and closed cells. Taken from the
book of Gibson and Ashby [8].

scientific progress was made in that area: This is fortunate as we can then
use that accumulated knowledge! The books of Kittel [11] and Brillouin
[4] are the classical texts in this area and we will draw upon them in these
lectures. It is also notable that considerable effort went into the properties
of atomic systems with defects, i.e extra atoms or disruption/ disorder in
the atomic structure [1].

Shifting to, yet, another area, that is, structural mechanics and designer
materials one finds that the subjects of solid mechanics also abound with
structured media. Cellular solids, engineering foams, or panels, created
from honeycomb lattices are popular in industry for their lightweight, but
strong, properties. A typical range of engineering foams are shown in Fig.
1, taken from [8], and although not perfectly regular, they still retain some
periodic and regular structure. Once again waves passing through such a
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Figure 2: Micrographs of various Photonic Crystal Fibre structures taken
from the review of Russell et al [15]. The regular array of holes allow for
excellent (low-loss) waveguides in optics and have a host of applications:
sensors, high bandwidth guides, optical filters.
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rigid pillar

Figure 3: A water wave cloak: (a) Geometry of the structured cloak con-
sisting of concentric arrays of rigid pillars immersed in a vessel of liquid
of depth h; (b) Diagrammatic view of the cloak; (c-d) Scattering of water
waves on a rigid obstacle (red disc) without (¢) and with (d) the water wave
cloak; (e) Photo of the micro-structured cloak used in experiments around
10 Hertz. Figure taken from [9].
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structure are of interest, for instance, can one determine where or whether
the honeycomb has sustained damage or whether some ligaments are broken.
Similarly many buildings, bridges, roofs and other structures are created
from a frame of beams or trusses, a famous example is the Eiffel tower
and a common Civil Engineering task is to find the modes of vibration
of such a structure in, for instance, Earthquake resistant design. Cellular
microstructures also underlie many continuum models in micromechanics
[14].

Modern physics and the new subjects of photonics and metamaterials
utilise the properties of structured media to create the remarkable effects
of cloaking, negative refraction, subwavelength imaging and almost perfect
guiding, optical filtering, designer surfaces and much more. A selection of
photonic crystal fibres are shown in Fig. 2, taken from [15], and interest-
ingly, from our point of view, they consist of a large number of holes in
a matrix material - all equally spaced - but with one or more holes filled,
moved, or removed. So the structure is certainly not infinitely periodic, but
has some features that are clearly regular. Later we will see that there exist,
so-called, stop-bands which are windows of frequencies in which waves do
not propagate through a perfect material: However, the destruction of per-
fect periodicity through the introduction, or removal, of additional features
can create defect or localised modes. These modes only occur for single
frequencies within the stop-band and thereby allow only specific waves to
propagate. This striking result allows one to create very precise guiding
structures which allow light to be controlled accurately - the books [10; 17]
contain considerable discussion and demonstration of this.

Metamaterials are similarly dominated by the optics of structured me-
dia, actually it does not have to limited to optics as similar effects can be
engineered in other wave systems such as acoustics or in water-waves. In the
latter system, recent experiments have verified the efficacy of these cloaking
systems and a recent example is shown in figure 3 taken from the book [9].
Quite incredibly one can make a piece of space, and whatever is enclosed
by it, invisible to incoming waves - the lectures by Sebastien Guenneau will
be covering this, and other exciting areas of metamaterials, and I do not
want to encroach upon this, bar to say that clearly that understanding and
modelling structured media is clearly important in that setting too.

There are three classes of structure of increasing technical difficulty and
complexity: Completely discrete media created from point masses connected
by conceptual springs, then semi-discrete frames, nets or trusses joined at
points but these points are connected via strings or elastic beams that satisfy
ordinary differential equations and finally fully continuum systems where,
say, for holes in a photonic crystal the electromagetic waves obey Maxwell’s
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Figure 4: A chain of masses - the classical linear diatomic chain.

equations. In terms of the physics associated with microstructure one can go
a long way in understanding the techniques and how the dominant physics
can be encapsulated in a model by using the simplest, discrete, systems as
“toy” problems. In these lectures I will endeavour to keep the Mathematics
simple, and not obfuscate the physical ideas, and therefore the discrete
systems are the toys of choice.

A key observation for all the motivational examples chosen is that there
is a very regular structure on a small-scale, and that one might be inter-
ested in hundreds, thousands or even millions or repeating elementary cells,
but that one would ideally be interested in modelling behaviour on some
macro-scale. There is a potentially huge disparity in length-scales which
one would wish to exploit in any asymptotic modelling. Another key ob-
servation is that there are actually three lengthscales in the problem: the
micro-scale of the elementary cell, the macro-scale of the whole structure
and finally the wavelength of oscillations we are interested in. Considera-
tions of whether the waves are long relative to the elementary cell or short,
so multiple scattering occurs, are important.

2 Perfect, infinite, systems

We begin by exploring the properties of the simplest periodic structures:
linear chains, of which the diatomic chain is shown Figure 4 with the atoms
interacting via nearest neighbour interactions; this is an oversimplification
of the real atomic situation but rather good as a toy model that describes
the essential features one expects to see. This is a toy model of salt, NaCl,
in which there are two alternating atoms, Sodium and Chlorine, and one
can label the displacements of each atom by ya,, y2n+1 with the even and
odd masses Ma,,, My, 1 taking values My, M; respectively. Scaling out the
spring constants, and assuming nearest neighbour interactions one arrives
at a model system:

Yon—1 + Yant1 — 2Yan = —Q>Maya, (1)
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Yon + Yonta — 2Yant1 = — QL2 Miyon i1 (2)

where € is the wave frequency. Note that it is implicit that the time depen-
dence of the system is exp(—i€2t). The difference equations simplify even
further if we consider equal masses and then there is a single difference
equation to consider:

Yn+1 + Yn—1 — 2yn - _MQ2yn- (3)

Provided the lattice is infinite, and perfectly periodic, one can sidestep the
explicit solution of the difference equation and instead pose quasi-periodic
conditions. We simply consider one mass and say that as a wave moves
from one mass to the next it undergoes a phase-shift, x, so that

Ynt1 = exp(ik)yn. (4)

This phase-shift can be interpreted as a wavenumber and it is often called
the Bloch wavenumber and the quasi-periodic condition (4) is called a Bloch
condition: It is more historically fair to call these Floquet-Bloch conditions,
as a digresion Floquet proved one-dimensional results later generalised to
three-dimensions by Bloch and often in one-dimension Floquet’s name is
used. The wave frequency € is related to the Bloch wavenumber k via a
dispersion relation

2 K

Q= sin (7> . )
VM 2 )

Just to recall: dispersionless waves have the phase and group velocities equal

and most linear wave systems such as those of acoustics, electromagnetism

and elasticity have this property. One can see that in the limit of small

wavenumber, long waves and low frequencies that equation (5) reduces to

K

QNﬁ (6)

which is a linear relation and therefore the waves, in that limit, are disper-
sionless.

For the simple chain the dispersion relation is shown in Figure 5(a) from
which we can see the relation is clearly non-linear - also shown are the
asymptotics from homogenization theories.

To whet your appetite for how an “effective” medium would describe a
large number of masses let us generate a continuum description of the dis-
crete system in the long-wave, low frequency limit. We begin by introducing
a long-scale continuous variable = en where ¢ is some small parameter, if
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Figure 5: Dispersion curves for the one-dimensional uniform lattice, (a) and the
diatomic lattice (b). The exact dispersion curves are the solid lines whilst the
asymptotics in (a) and from [7] in (b)) of the perfect lattice are the dashed lines.
In panel (a) the dashed line above the exact curve shows the frequency associated
to the localised defect state. In panel (a) the mass value M = 1 whilst in (b)
M, =2 and M, = 1. Taken from [12].

we were practical people this could be found by considering the frequency,
and the frequency is = &) (where ) is an order one quantity. Let us set

Yn =y(1M), ynt1 =yn*xe) (7)

and then the difference equation becomes, in this new language, that

y(n+¢) +y(n —e) — 2y(n) — Me2Q?y(n) = 0. (8)

An expansion in a Taylor series

€
y(n+e)~yln) +ey'(n) + Ey”(n) +... (9)

yields, to leading order, K
Yoy + MQ%y = 0. (10)

This is simply the wave equation (in one dimension with harmonic time
dependence assumed) for a string and suggests (as we would expect) that,
if the wave was long enough, it would see the collection of masses as being
smeared out to produce an effective string. One could go to higher orders in
the expansion and gradually dispersive effects would become evident. But
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Figure 6: Forced lattice at origin. (a) Forcing frequency = 2.05 and (b)
Q=18.

going to higher orders tends, in general, to be a fair amount of effort for
a reducing amount of increased knowledge (in my opinion). Notably the
dispersion relation one obtains from the effective string is

K=vVMQ (11)

when one replaces n with en. Therefore this does indeed tie back in with
(5) as one would hope.

If one forces the lattice close to the band-gap edge at 2 = 2 (assuming
M = 1) then one sees two distinct types of behaviour, as shown in figure



10 R. V. Craster and M. Makwana

6, with spatially decaying solutions for frequencies within the stop-band,
and oscillatory propagating solutions otherwise. Notably in figure 6(a) the
masses are, at least roughly, out-of-phase from their neighbours and the
decay appears exponential and in figure 6(b) the masses are, again, roughly
out-of-phase and there is an apparent longer scale oscillation. Both the
local behaviour and the long-scale features suggest that some asymptotic
progress can be made.

As we have just witnessed some solutions are propagating within the
system, a natural question is how, numerically, to mimic “infinity”. In
continuum systems a method due to Berenger [3] called perfectly matched
layers is highy popular and widely used. Oddly, in discrete systems there
does not appear to have been an analogous development. It is possible
to generate a discrete PML (DPML) by following the arguments of, say,
Turkel in the continuous case and discretise (after a further approximation)
one gets

o(n))”

Yn+1 + Yn—1 — 2Ym + MQ2 <]. — ’LQ) Yn = 6n,0 (12)
[12] on a lattice —N < n < N with o(n) = 0 for |n| < Nppy. In PML
computations it is often observed, and indeed proved [16], that nonlinear
dependence in o is advantageous. Here we take o(n) = (Npmi — n)?/N
for n > Ny and a symmetric formula for n < —Npy,;; in computations
q = 2 unless otherwise indicated. Physically the masses are taken to have a
frequency dependent damping.

Also shown in Fig. 5 is the dispersion curve from the classical example of
the diatomic chain of masses and springs. Notably there are two dispersion
curves (the upper/lower ones called optical and acoustic branches respec-
tively) separated by a so-called stop band, the stop-band of frequencies is
one in which propagation is disallowed and even in this simple system one
can use it as a filter. The Bloch wavenumber s again plays a vital role
as it is the phase shift across a cell - and is related to the frequency via a
dispersion relation

My Myt — 2(My + M3)Q? +2(1 — cos ) = 0. (13)

Note the range of « (for 0 to 7) caused by the periodicity of the system, and
that there exist standing waves at end of Brillouin zone (the points Kk = 0
and 7.

2.1 Two-dimensions

There are naturally higher dimensional periodic structures, these are
of more interest than one-dimensional chains, and the prototypical two-
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Figure 7: Comparing discrete PML with the exact solution for frequency
A = 1.75. The real part of y, is shown with the exact solution as the
crosses connected by lines, the PML numerics are solid circles; these are
visually indistinguishable until we enter the PML region for n > Ny, =
150. Similar accuracy occurs for the imaginary part. Figure taken from
[12].
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Figure 8: A schematic of the diatomic chain.

dimensional lattice is
Yn+1,m + Yn—1,m + Yn,m+1 + Yn,m—1 — 4yn,m + Q21\4yn,m =0 (14)

and now the scalar (in 1D) Bloch wavenumber is replaced by a vector k =
(K1, ko) where

Yt mint = XP([NEL + MEo])ynm (15)
for integer N, M and the resulting dispersion relation is
MQ? =4 — 2(cos Ky + cos k). (16)

The Brillouin zone [4] is no longer a simple line (as in 1D) but now a square
in k space. More conventionally one just plots the dispersion relation around
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Figure 9: A uniform square lattice is shown in (a), with the irreducible Brillouin
zone is the triangle A,B,C in (b). M = 2 in the dispersion curve (c); the dashed
lines are from the HFH asymptotics. Figure taken from [12]

the edges of the irreducible Brillouin zone although that does carry some
implications regarding the full iso-frequency surfaces [5]. The dispersion
relation (16) is plotted in Fig. 9 and immediate observation is that the
dispersion curves are linear near the origin, and a simple Taylor expansion
then recovers an effective acoustic equation that can be obtained also by
conventional homogenization. Another key observation is that standing
waves occur at the wavenumber vector positions identified by A, B and C
where they are perfectly in-phase/ out-of-phase in oscillation across the
structure.

2.2 Homogenization

The homogenisation technique involves the confluence of two ideas: One
mathematical, the idea of using a long-scale and a short-scale separation
which is called the method of multiple scales. The other, physical, is that
there exist standing wave frequencies, and associated eigenmodes, that en-



Modelling Microstructured Media: Periodic Systems. . . 13

code the multiple scattering of near and far members of the periodic struc-
ture. This latter step is the key modification of standard homogenisation
theory allowing one to model high frequency oscillations in periodic or nearly
periodic structures. The full theory for lattices is in [7] and it can be ex-
tended to continuous systems [6].

In the simplest example of the diatomic lattice in one dimension (the
basic idea carries across to higher dimensions with additional algebra) we
introduce two scales: a long-scale, on the scale of the grid, characterised
by N > 1 where N could be the number of lattice points and introduce a
small parameter e = 1/N <« 1; the small parameter is crucial to the whole
procedure. We introduce a new long-scale coordinate n = 2n/N and take 7
to be a continuous, not discrete, variable. The other scale, the short-scale is
taken to be the elementary cell and we specify an integer m that takes the
values m = —1,0,1,2; the elementary cell corresponds to the masses at 2n,
2n + 1 and their immediate neighbours. The two-scales are considered as
independent variables, which is the standard multiple scales trick [2], and
we take

(me)?

Yont+m = y(n+me, m) ~ y(n,m)+mey,(n, m)+ Tynn(n, m)+... (17)

as € < 1. In particular the four displacements used in equations (1),(2) in
this notation are ya,—1 = y(n -5 *1)3 Yan = y(77,0)7 Y2n+1 = y(77 +é, 1)
and Yony2 = y(n + 2¢,2).

The asymptotic analysis only uses the displacements at ys, and yo,+1;
their neighbouring displacements are related to these two via

[Yon—1,Y2nt2] = [y(n —&,—1),y(n+2¢,2)] = (=1)’[y(n — &, 1), y(n + 2¢,0)]
(18)
as we assume that the motion, on the microscale of the elementary cell, is
that of locally standing waves oscillating in-phase or out-of-phase (J = 0,1
respectively) across the cell.
Equations (1),(2) to order €2 in matrix form become,

[Ag — N2M (1 + 2ag(n)) + €A1(9,)) + €2 42(9%, Ny (n) = 0, (19)

where 0 denotes /91, y(n) = [y(n,0), y(n,1)]T is the displacement vector,
M is a diagonal matrix M = diag [Ma, M;], Ao is a constant matrix and
Ay and A; are matrix differential operators. These matrices depend on
periodicity conditions and, therefore, are different for in-phase and out-of-
phase cases.

The natural separation of scales leads to a hierarchy of equations in
powers of € where the ansatz

y(n) = yo(n) +ey1(n) +2y2(n) + ... (20)
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Figure 10: Localised modes for M; = 2, My = 1 showing the numerical
solution of (1,2) versus the fy from the asymptotic equations24), and its
in-phase analogue, with the g(n) =sech?(n). Panel (a) shows a localised in-
phase solution for which the numerics give A ~ 3.01896 and the asymptotics
give A2 ~ 3.01880 that differ in the fourth decimal place. Panel (b) shows
the localised out-of-plane eigensolution for @ = 1 and the numerics give
A2 = 1.99239 with the asymptotics as A\? = 1.99236. This figure is taken
from [7].

M =224 23+ (21)

is adopted. Substituting the ansatz into the lattice equations (19) gives
differential-difference equations that are treated order-by-order in €.

Let us now look at an example in detail: Standing waves with complete
phase-shift across the structure lead to periodic conditions for the masses
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which are y(n,—1) = —y(n,1) and y(n,0) = —y(n,2) (c.f. (18)) at each
order. Matrices Ag, A1 and A become

2 0 0 —20 0 0
Ao = (o 2) » A= <2a (2 /\2M1)8) Az = (282 (1- ;le)a?) :

(22)
At leading order, the separation of scales, and lack of explicit dependence
upon 7, leads to yo(n) = fo(n)Yo. The vector Yy is defined on the scale of
the elementary cell and displacements of the masses are chosen that lead to

standing waves:
2

= E
and solutions at first and second order lead to the differential eigenvalue
problem that determines fo(n) and A3 as

Yo= (1,07, A} (23)

2

mfonn + )\%fo =0. (24)

For a = 0 the Bloch relation yields the local behaviour as ek — 7 that

2 (ek —m)?

NSy T
My " 2(M; — M)

+... (25)
which also follows from expanding the explicit dispersion relation. The
main point though is that this is a systematic way of deriving the long-scale
behaviour.

One can extend these ideas to non-periodic systems where, say, the
masses vary slowly as

Moy, = My(1 + %ag(n)), Mopy1 = Mi(1+ e%ag(n)) (26)

and (24)
2

(My — M)

This is a differential-eigenvalue problem that allows one to identify localized
defect states, these are non-zero eigensolutions that exponentially decay at
infinity; typically these occur at frequencies within the stop-bands of the
perfect system. An example, taken from [7], is shown in Fig. 10. Tt is
notable that the details such as the local oscillation from one mass to the
next emerge naturally through the asmyptotic theory. Another nice detail
is that the asymptotic ODE is just Schroedinger’s equation and so one can
take the entire (and considerable) theory from Physics and apply it to show
when localised defect tates occur and to find estimates.

Jonn + [)‘g + a/\gg(n)]fo =0. (27)
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Extending all this to two-dimensions (and indeed three) is certainly pos-
sible [12; 7] and the asymptotic ODE for f; gets replaced by a PDE that
captures the long-scale effective anisotropy of the system in its simplest
manner.

3 Conclusions

These lectures have concentrated upon the toy system of masses and springs,
but the underlying ideas are relevant to continuous periodic, or near peri-
odic, systems [6] and frame structures [13]. One can take any periodic
system, not necessarily on a square lattice, and homogenize it to create
effective equations that encapsulate the essential physics within just long-
scale equations.
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