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PREFACE

A revolution is currently occurring in physics and engineering
through the manufacture and application of smart structures with de-
signer microstructure. Many of the applications: cloaking, invisibil-
ity, trapped and defect modes, resonances, ultra-refraction, all-angle-
negative refraction, wave guiding along surfaces depend upon subtle
properties of wave localization and are ubiquitous across several fields:
examples are drawn from elasticity, acoustics and electromagnetism.
There are also numerous applications in more traditional fields such
as the non-destructive evaluation and testing of structures. For ex-
ample, prestresses or coatings on elastic media can be used to ma-
nipulate surface and edge waves, and localized modes arise in coated
or deformed waveguides and are modified by fluid flow. In addition,
surface and guided waves play a key role in crack and flaw detec-
tion and a knowledge of surface and resonant modes is invaluable.
Recent work has highlighted how localized defect modes arise in mi-
crostructured media and new homogenization theories can be used to
create continuum descriptions of micromechanical systems, even at
high frequencies.

The aim of these lecture notes is to introduce an interdisciplinary
audience to a variety of interrelated dynamic localisation phenomena
occurring in elasticity, acoustic and electromagnetism. In particular,
these involve surface and edge waves and also trapped modes localised
near defects, shape changes and the edges of elongated waveguides.
The effects of layering, prestress, anisotropy, periodic microstructures
as well as various multi-field phenomena are addressed with referenc-
ing to underlying industrial problems.

The course covered a wide range of subjects/techniques related
to dynamic localisation phenomena. In particular, these includes
asymptotic and perturbation methods, modern homogenization method-
ologies, variational methods, basics of non-linear elasticity, the gen-
eral theory of surface waves, multimodal approach, and advanced ap-
plications of St Venant principle. The objective of the lectures is to
cover the essential and up to date numerical, asymptotic, and analyti-
cal techniques as well as relevant continuum theories that are required
to make progress in, and understand, wave localization and allied ef-



fects. A major focus is on the qualitative physical insight into the
mechanisms of dynamic localisation.

The lectures were chosen to appeal to researchers, primarily but
not exclusively graduate students and postdoctoral researchers, from
Mechanical, Aerospace and Civil Engineering programs and should
naturally also be of interest to Physicists and Applied Mathematicians
and focus on recent work in localized modes and waves that are un-
likely to appear in traditional university graduate courses; the lectures
are also suitable for industrial researchers who encounter resonant or
localised waves. The topics explore the applications in Engineering
and Physics, notably in photonics, showing the interconnections with
acoustics and elasticity that are normally treated independently. Both
theoreticians and experimentalists are expected to gain useful knowl-
edge from these lecture notes.

Richard Craster and Julius Kaplunov
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Modelling microstructured media: periodic
systems and effective media

R. V. Craster & M. Makwana ∗

Abstract My aim in these lectures is to give a broad overview of
the Mathematics and Physics of perfectly periodic systems, draw-
ing heavily upon the literature of solid-state physics: it is essential
to understand how structure on a micro-scale affects longer scale
macro-scale behaviour and periodic systems are a naturally place
to begin. Periodic systems are, on one hand, quite special and the
constructive interference created by periodicity leads to strong ef-
fects that we shall see later, but on the other hand many natural and
man-made structures exhibit, at least some, general periodic struc-
ture. After developing the language of periodic systems we will turn
our attention to the development of asymptotic “effective” media
that are posed entirely upon the macro-scale. Importantly we will
develop asymptotic theories valid at high frequencies. A general ap-
proach valid for continua, semi-discrete (frame) and fully discrete
(mass-spring) systems will be developed. If time allows we will then
look further into some of the remarkable physics that can be seen
when waves move through structured media: defect states, all-angle
negative refraction and ultra-refraction.

1 Motivation

Periodic, or almost periodic, structures surround us and are of considerable
technological importance. One of the most talked about materials at the
moment is graphene, an almost perfect material constructed from a hexago-
nal lattice and graphene has truly remarkable properties some of which are
related to the properties of the waves that pass through it. Many atomistic
systems are remarkably regular in their structure mainly due to the ener-
getic arguments that force the material to adopt such regular patterns. The
attraction of one atom to its neighbour, or neighbours, can be modelled by
discrete mass-string models with the physics of the attraction lumped into
some effective string constants. Historically the study of perfect lattice-like
systems originated in solid-state physics and a huge amount of effort and
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2 R. V. Craster and  M. Makwana

Figure 1: Photographs of cellular solids: (a) open-cell polyurethane (b)
closed-cell polyurethane (c) nickel (d) copper (e) zirconia (f) mullite (g)
glass (h) a polyether foam with both open and closed cells. Taken from the
book of Gibson and Ashby [8].

scientific progress was made in that area: This is fortunate as we can then
use that accumulated knowledge! The books of Kittel [11] and Brillouin
[4] are the classical texts in this area and we will draw upon them in these
lectures. It is also notable that considerable effort went into the properties
of atomic systems with defects, i.e extra atoms or disruption/ disorder in
the atomic structure [1].

Shifting to, yet, another area, that is, structural mechanics and designer
materials one finds that the subjects of solid mechanics also abound with
structured media. Cellular solids, engineering foams, or panels, created
from honeycomb lattices are popular in industry for their lightweight, but
strong, properties. A typical range of engineering foams are shown in Fig.
1, taken from [8], and although not perfectly regular, they still retain some
periodic and regular structure. Once again waves passing through such a
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Figure 2: Micrographs of various Photonic Crystal Fibre structures taken
from the review of Russell et al [15]. The regular array of holes allow for
excellent (low-loss) waveguides in optics and have a host of applications:
sensors, high bandwidth guides, optical filters.
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Figure 3: A water wave cloak: (a) Geometry of the structured cloak con-
sisting of concentric arrays of rigid pillars immersed in a vessel of liquid
of depth h; (b) Diagrammatic view of the cloak; (c-d) Scattering of water
waves on a rigid obstacle (red disc) without (c) and with (d) the water wave
cloak; (e) Photo of the micro-structured cloak used in experiments around
10 Hertz. Figure taken from [9].
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structure are of interest, for instance, can one determine where or whether
the honeycomb has sustained damage or whether some ligaments are broken.
Similarly many buildings, bridges, roofs and other structures are created
from a frame of beams or trusses, a famous example is the Eiffel tower
and a common Civil Engineering task is to find the modes of vibration
of such a structure in, for instance, Earthquake resistant design. Cellular
microstructures also underlie many continuum models in micromechanics
[14].

Modern physics and the new subjects of photonics and metamaterials
utilise the properties of structured media to create the remarkable effects
of cloaking, negative refraction, subwavelength imaging and almost perfect
guiding, optical filtering, designer surfaces and much more. A selection of
photonic crystal fibres are shown in Fig. 2, taken from [15], and interest-
ingly, from our point of view, they consist of a large number of holes in
a matrix material - all equally spaced - but with one or more holes filled,
moved, or removed. So the structure is certainly not infinitely periodic, but
has some features that are clearly regular. Later we will see that there exist,
so-called, stop-bands which are windows of frequencies in which waves do
not propagate through a perfect material: However, the destruction of per-
fect periodicity through the introduction, or removal, of additional features
can create defect or localised modes. These modes only occur for single
frequencies within the stop-band and thereby allow only specific waves to
propagate. This striking result allows one to create very precise guiding
structures which allow light to be controlled accurately - the books [10; 17]
contain considerable discussion and demonstration of this.

Metamaterials are similarly dominated by the optics of structured me-
dia, actually it does not have to limited to optics as similar effects can be
engineered in other wave systems such as acoustics or in water-waves. In the
latter system, recent experiments have verified the efficacy of these cloaking
systems and a recent example is shown in figure 3 taken from the book [9].
Quite incredibly one can make a piece of space, and whatever is enclosed
by it, invisible to incoming waves - the lectures by Sebastien Guenneau will
be covering this, and other exciting areas of metamaterials, and I do not
want to encroach upon this, bar to say that clearly that understanding and
modelling structured media is clearly important in that setting too.

There are three classes of structure of increasing technical difficulty and
complexity: Completely discrete media created from point masses connected
by conceptual springs, then semi-discrete frames, nets or trusses joined at
points but these points are connected via strings or elastic beams that satisfy
ordinary differential equations and finally fully continuum systems where,
say, for holes in a photonic crystal the electromagetic waves obey Maxwell’s
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Figure 4: A chain of masses - the classical linear diatomic chain.

equations. In terms of the physics associated with microstructure one can go
a long way in understanding the techniques and how the dominant physics
can be encapsulated in a model by using the simplest, discrete, systems as
“toy” problems. In these lectures I will endeavour to keep the Mathematics
simple, and not obfuscate the physical ideas, and therefore the discrete
systems are the toys of choice.

A key observation for all the motivational examples chosen is that there
is a very regular structure on a small-scale, and that one might be inter-
ested in hundreds, thousands or even millions or repeating elementary cells,
but that one would ideally be interested in modelling behaviour on some
macro-scale. There is a potentially huge disparity in length-scales which
one would wish to exploit in any asymptotic modelling. Another key ob-
servation is that there are actually three lengthscales in the problem: the
micro-scale of the elementary cell, the macro-scale of the whole structure
and finally the wavelength of oscillations we are interested in. Considera-
tions of whether the waves are long relative to the elementary cell or short,
so multiple scattering occurs, are important.

2 Perfect, infinite, systems

We begin by exploring the properties of the simplest periodic structures:
linear chains, of which the diatomic chain is shown Figure 4 with the atoms
interacting via nearest neighbour interactions; this is an oversimplification
of the real atomic situation but rather good as a toy model that describes
the essential features one expects to see. This is a toy model of salt, NaCl,
in which there are two alternating atoms, Sodium and Chlorine, and one
can label the displacements of each atom by y2n, y2n+1 with the even and
odd masses M2n, M2n+1 taking values M2,M1 respectively. Scaling out the
spring constants, and assuming nearest neighbour interactions one arrives
at a model system:

y2n−1 + y2n+1 − 2y2n = −Ω2M2y2n (1)
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y2n + y2n+2 − 2y2n+1 = −Ω2M1y2n+1 (2)

where Ω is the wave frequency. Note that it is implicit that the time depen-
dence of the system is exp(−iΩt). The difference equations simplify even
further if we consider equal masses and then there is a single difference
equation to consider:

yn+1 + yn−1 − 2yn = −MΩ2yn. (3)

Provided the lattice is infinite, and perfectly periodic, one can sidestep the
explicit solution of the difference equation and instead pose quasi-periodic
conditions. We simply consider one mass and say that as a wave moves
from one mass to the next it undergoes a phase-shift, κ, so that

yn+1 = exp(iκ)yn. (4)

This phase-shift can be interpreted as a wavenumber and it is often called
the Bloch wavenumber and the quasi-periodic condition (4) is called a Bloch
condition: It is more historically fair to call these Floquet-Bloch conditions,
as a digresion Floquet proved one-dimensional results later generalised to
three-dimensions by Bloch and often in one-dimension Floquet’s name is
used. The wave frequency Ω is related to the Bloch wavenumber κ via a
dispersion relation

Ω =
2√
M

sin
(κ
2

)
. (5)

Just to recall: dispersionless waves have the phase and group velocities equal
and most linear wave systems such as those of acoustics, electromagnetism
and elasticity have this property. One can see that in the limit of small
wavenumber, long waves and low frequencies that equation (5) reduces to

Ω ∼ κ√
M

(6)

which is a linear relation and therefore the waves, in that limit, are disper-
sionless.

For the simple chain the dispersion relation is shown in Figure 5(a) from
which we can see the relation is clearly non-linear - also shown are the
asymptotics from homogenization theories.

To whet your appetite for how an “effective” medium would describe a
large number of masses let us generate a continuum description of the dis-
crete system in the long-wave, low frequency limit. We begin by introducing
a long-scale continuous variable η = εn where ε is some small parameter, if
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Figure 5: Dispersion curves for the one-dimensional uniform lattice, (a) and the
diatomic lattice (b). The exact dispersion curves are the solid lines whilst the
asymptotics in (a) and from [7] in (b)) of the perfect lattice are the dashed lines.
In panel (a) the dashed line above the exact curve shows the frequency associated
to the localised defect state. In panel (a) the mass value M = 1 whilst in (b)
M1 = 2 and M2 = 1. Taken from [12].

we were practical people this could be found by considering the frequency,
and the frequency is Ω = εΩ̂ (where Ω̂) is an order one quantity. Let us set

yn = y(η), yn±1 = y(η ± ε) (7)

and then the difference equation becomes, in this new language, that

y(η + ε) + y(η − ε)− 2y(η)−Mε2Ω̂2y(η) = 0. (8)

An expansion in a Taylor series

y(η + ε) ∼ y(η) + εy′(η) +
ε2

2
y′′(η) + . . . (9)

yields, to leading order,
yηη +M Ω̂2y = 0. (10)

This is simply the wave equation (in one dimension with harmonic time
dependence assumed) for a string and suggests (as we would expect) that,
if the wave was long enough, it would see the collection of masses as being
smeared out to produce an effective string. One could go to higher orders in
the expansion and gradually dispersive effects would become evident. But
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Figure 6: Forced lattice at origin. (a) Forcing frequency Ω = 2.05 and (b)
Ω = 1.8.

going to higher orders tends, in general, to be a fair amount of effort for
a reducing amount of increased knowledge (in my opinion). Notably the
dispersion relation one obtains from the effective string is

κ =
√
MΩ (11)

when one replaces η with εn. Therefore this does indeed tie back in with
(5) as one would hope.

If one forces the lattice close to the band-gap edge at Ω = 2 (assuming
M = 1) then one sees two distinct types of behaviour, as shown in figure

−40 −30 −20 −10 0 10 20 30 40
−1

−0.5

0

0.5

1

R
ea

l(y
n)

n

(b)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

R
ea

l(y
n)

n

(a)



10 R. V. Craster and  M. Makwana

6, with spatially decaying solutions for frequencies within the stop-band,
and oscillatory propagating solutions otherwise. Notably in figure 6(a) the
masses are, at least roughly, out-of-phase from their neighbours and the
decay appears exponential and in figure 6(b) the masses are, again, roughly
out-of-phase and there is an apparent longer scale oscillation. Both the
local behaviour and the long-scale features suggest that some asymptotic
progress can be made.

As we have just witnessed some solutions are propagating within the
system, a natural question is how, numerically, to mimic “infinity”. In
continuum systems a method due to Berenger [3] called perfectly matched
layers is highy popular and widely used. Oddly, in discrete systems there
does not appear to have been an analogous development. It is possible
to generate a discrete PML (DPML) by following the arguments of, say,
Turkel in the continuous case and discretise (after a further approximation)
one gets

yn+1 + yn−1 − 2ym +MΩ2

(
1− σ(n)

iΩ

)2

yn = δn,0 (12)

[12] on a lattice −N ≤ n ≤ N with σ(n) = 0 for |n| < Npml. In PML
computations it is often observed, and indeed proved [16], that nonlinear
dependence in σ is advantageous. Here we take σ(n) = (Npml − n)q/N
for n > Npml and a symmetric formula for n < −Npml; in computations
q = 2 unless otherwise indicated. Physically the masses are taken to have a
frequency dependent damping.

Also shown in Fig. 5 is the dispersion curve from the classical example of
the diatomic chain of masses and springs. Notably there are two dispersion
curves (the upper/lower ones called optical and acoustic branches respec-
tively) separated by a so-called stop band, the stop-band of frequencies is
one in which propagation is disallowed and even in this simple system one
can use it as a filter. The Bloch wavenumber κ again plays a vital role
as it is the phase shift across a cell - and is related to the frequency via a
dispersion relation

M1M2Ω
4 − 2(M1 +M2)Ω

2 + 2(1− cosκ) = 0. (13)

Note the range of κ (for 0 to π) caused by the periodicity of the system, and
that there exist standing waves at end of Brillouin zone (the points κ = 0
and π.

2.1 Two-dimensions

There are naturally higher dimensional periodic structures, these are
of more interest than one-dimensional chains, and the prototypical two-
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Figure 7: Comparing discrete PML with the exact solution for frequency
λ = 1.75. The real part of yn is shown with the exact solution as the
crosses connected by lines, the PML numerics are solid circles; these are
visually indistinguishable until we enter the PML region for n > Npml =
150. Similar accuracy occurs for the imaginary part. Figure taken from
[12].

2n 2n+1

M
2n

M
2n+1

Figure 8: A schematic of the diatomic chain.

dimensional lattice is

yn+1,m + yn−1,m + yn,m+1 + yn,m−1 − 4yn,m +Ω2Myn,m = 0 (14)

and now the scalar (in 1D) Bloch wavenumber is replaced by a vector κ =
(κ1, κ2) where

y
n+N̂,m+M̂

= exp(i[N̂κ1 + M̂κ2])yn,m (15)

for integer N,M and the resulting dispersion relation is

MΩ2 = 4− 2(cosκ1 + cosκ2). (16)

The Brillouin zone [4] is no longer a simple line (as in 1D) but now a square
in κ space. More conventionally one just plots the dispersion relation around
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Figure 9: A uniform square lattice is shown in (a), with the irreducible Brillouin
zone is the triangle A,B,C in (b). M = 2 in the dispersion curve (c); the dashed
lines are from the HFH asymptotics. Figure taken from [12]

the edges of the irreducible Brillouin zone although that does carry some
implications regarding the full iso-frequency surfaces [5]. The dispersion
relation (16) is plotted in Fig. 9 and immediate observation is that the
dispersion curves are linear near the origin, and a simple Taylor expansion
then recovers an effective acoustic equation that can be obtained also by
conventional homogenization. Another key observation is that standing
waves occur at the wavenumber vector positions identified by A,B and C
where they are perfectly in-phase/ out-of-phase in oscillation across the
structure.

2.2 Homogenization

The homogenisation technique involves the confluence of two ideas: One
mathematical, the idea of using a long-scale and a short-scale separation
which is called the method of multiple scales. The other, physical, is that
there exist standing wave frequencies, and associated eigenmodes, that en-
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code the multiple scattering of near and far members of the periodic struc-
ture. This latter step is the key modification of standard homogenisation
theory allowing one to model high frequency oscillations in periodic or nearly
periodic structures. The full theory for lattices is in [7] and it can be ex-
tended to continuous systems [6].

In the simplest example of the diatomic lattice in one dimension (the
basic idea carries across to higher dimensions with additional algebra) we
introduce two scales: a long-scale, on the scale of the grid, characterised
by N � 1 where N could be the number of lattice points and introduce a
small parameter ε = 1/N � 1; the small parameter is crucial to the whole
procedure. We introduce a new long-scale coordinate η = 2n/N and take η
to be a continuous, not discrete, variable. The other scale, the short-scale is
taken to be the elementary cell and we specify an integer m that takes the
values m = −1, 0, 1, 2; the elementary cell corresponds to the masses at 2n,
2n + 1 and their immediate neighbours. The two-scales are considered as
independent variables, which is the standard multiple scales trick [2], and
we take

y2n+m = y(η+mε,m) ∼ y(η,m)+mεyη(η,m)+
(mε)2

2
yηη(η,m)+ . . . (17)

as ε � 1. In particular the four displacements used in equations (1),(2) in
this notation are y2n−1 = y(η − ε,−1), y2n = y(η, 0), y2n+1 = y(η + ε, 1)
and y2n+2 = y(η + 2ε, 2).

The asymptotic analysis only uses the displacements at y2n and y2n+1;
their neighbouring displacements are related to these two via

[y2n−1, y2n+2] = [y(η − ε,−1), y(η + 2ε, 2)] = (−1)J [y(η − ε, 1), y(η + 2ε, 0)]
(18)

as we assume that the motion, on the microscale of the elementary cell, is
that of locally standing waves oscillating in-phase or out-of-phase (J = 0, 1
respectively) across the cell.

Equations (1),(2) to order ε2 in matrix form become,

[A0 − λ2M(1 + ε2αg(η)) + εA1(∂, λ) + ε2A2(∂
2, λ)]y(η) = 0, (19)

where ∂ denotes ∂/∂η, y(η) = [y(η, 0), y(η, 1)]T is the displacement vector,
M is a diagonal matrix M = diag [M2, M1], A0 is a constant matrix and
A1 and A2 are matrix differential operators. These matrices depend on
periodicity conditions and, therefore, are different for in-phase and out-of-
phase cases.

The natural separation of scales leads to a hierarchy of equations in
powers of ε where the ansatz

y(η) = y0(η) + εy1(η) + ε2y2(η) + . . . (20)
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Figure 10: Localised modes for M1 = 2, M2 = 1 showing the numerical
solution of (1,2) versus the f0 from the asymptotic equations24), and its
in-phase analogue, with the g(η) =sech2(η). Panel (a) shows a localised in-
phase solution for which the numerics give λ2 ∼ 3.01896 and the asymptotics
give λ2 ∼ 3.01880 that differ in the fourth decimal place. Panel (b) shows
the localised out-of-plane eigensolution for α = 1 and the numerics give
λ2 = 1.99239 with the asymptotics as λ2 = 1.99236. This figure is taken
from [7].

λ2 = λ2
0 + ελ2

1 + ε2λ2
2 + . . . (21)

is adopted. Substituting the ansatz into the lattice equations (19) gives
differential-difference equations that are treated order-by-order in ε.

Let us now look at an example in detail: Standing waves with complete
phase-shift across the structure lead to periodic conditions for the masses

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.2

0

0.2

0.4

2ε n, η

(a) In−phase: α=−1, N=201, ε=0.1, M
2
=1, M

1
=2

f
0

Numerics

−5 −4 −3 −2 −1 0 1 2 3 4 5

−0.2

0

0.2

2ε n, η

(b) Out−of−phase: α=1, N=201, ε=0.1, M
2
=1, M

1
=2



Modelling Microstructured Media: Periodic Systems… 15

which are y(η,−1) = −y(η, 1) and y(η, 0) = −y(η, 2) (c.f. (18)) at each
order. Matrices A0, A1 and A2 become

A0 =

(
2 0
0 2

)
, A1 =

(
0 −2∂
2∂ (2− λ2M1)∂

)
, A2 =

(
0 0

2∂2 (1− 1

2
λ2M1)∂

2

)
.

(22)
At leading order, the separation of scales, and lack of explicit dependence
upon η, leads to y0(η) = f0(η)Y0. The vector Y0 is defined on the scale of
the elementary cell and displacements of the masses are chosen that lead to
standing waves:

Y0 = (1, 0)T , λ2
0 =

2

M2

(23)

and solutions at first and second order lead to the differential eigenvalue
problem that determines f0(η) and λ2

2 as

2

(M1 −M2)
f0ηη + λ2

2f0 = 0. (24)

For α = 0 the Bloch relation yields the local behaviour as εk → π that

λ2 ∼ 2

M2

+
(εk − π)2

2(M1 −M2)
+ . . . (25)

which also follows from expanding the explicit dispersion relation. The
main point though is that this is a systematic way of deriving the long-scale
behaviour.

One can extend these ideas to non-periodic systems where, say, the
masses vary slowly as

M2n = M2(1 + ε2αg(η)), M2n+1 = M1(1 + ε2αg(η)) (26)

and (24)
2

(M1 −M2)
f0ηη + [λ2

2 + αλ2
0g(η)]f0 = 0. (27)

This is a differential-eigenvalue problem that allows one to identify localized
defect states, these are non-zero eigensolutions that exponentially decay at
infinity; typically these occur at frequencies within the stop-bands of the
perfect system. An example, taken from [7], is shown in Fig. 10. It is
notable that the details such as the local oscillation from one mass to the
next emerge naturally through the asmyptotic theory. Another nice detail
is that the asymptotic ODE is just Schroedinger’s equation and so one can
take the entire (and considerable) theory from Physics and apply it to show
when localised defect tates occur and to find estimates.



16 R. V. Craster and  M. Makwana

Extending all this to two-dimensions (and indeed three) is certainly pos-
sible [12; 7] and the asymptotic ODE for f0 gets replaced by a PDE that
captures the long-scale effective anisotropy of the system in its simplest
manner.

3 Conclusions

These lectures have concentrated upon the toy system of masses and springs,
but the underlying ideas are relevant to continuous periodic, or near peri-
odic, systems [6] and frame structures [13]. One can take any periodic
system, not necessarily on a square lattice, and homogenize it to create
effective equations that encapsulate the essential physics within just long-
scale equations.
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Multiscale models of electromagnetic and
plasmonic metamaterials
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Abstract In this chapter, we discuss paradigms central to electro-
magnetic metamaterials and their plasmonic counterparts. We start
with a slab lens with unlimited resolution, which is made possible
using the concept of negative refraction, when the permittivity and
permeability of a medium change sign simultaneously. Pendry’s
perfect lens heavily relies upon existence of surface plasmons that
exist on its boundaries. Correspondences with acoustics are then
investigated in light of spring-mass models which bridge the field of
electromagnetic and acoustic metamaterials, which are composites
within which light or other (e.g. elastic, liquid surface) waves expe-
rience inverted Snell-Descartes laws of refraction upon resonance of
micro-scale resonators. Next, we explain how geometric transforms
introduced for computational easiness in helicoidal fibres, were given
a twist by Pendry’s team in 2006 in order to design invisibility
cloaks. Finally, we apply these mathematical tools to the control of
surface plasmons propagating at structured metal-dielectric inter-
faces. We illustrate transformational plasmonics with a broadband
plasmonic invisibility carpet which has been experimentally vali-
dated by Quidant’s group in 2010 at near infrared frequencies.

1 Introduction: Towards super lenses

A fundamental issue with imaging systems is the constraint on resolution
imposed by the diffraction limit. In ordinary imaging systems that image
only the propagating modes of radiation, features on the object smaller
than the wavelength cannot be reproduced in the image. Images with sub-
wavelength details can be assembled from scanning probes that can sense
the electromagnetic near-fields (popularly known as scanning near-field opti-
cal microscopy). However, the scanning process severely limits image frame
rates, and the probes require near direct contact with the object. The per-
fect lens proposed by Sir John Pendry in 2000 began to address these issues
by providing for the possibility of image transfer of both the near- and far-
field components or radiation with a free-space working distance [14]. The
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DOI 10.1007/978-3-7091-1619-7_2, © CISM, Udine 2013 



20 S. Guenneau

cornerstone of this flat lens is the concept of negative refraction - foreseen
by Victor Veselago in the late sixties [16] - whereby both permittivity and
permeability take negative values and lead to negative refractive index and
near-field enhancements. The subwavelength details of the source are trans-
mitted through the system because they couple to the surface plasmons that
exist on the boundaries between the negative refractive index material and
the dielectric medium. This plasmonic mechanism forms also the basis for
the current interest in metallic structures for super-resolution imaging at
optical frequencies. Although such a near-field magnifier for electrostatic
fields in the cylindrical geometry was proposed back in 1994 by McPhedran,
Nicorovici and Milton [4], these perfect lenses can be flat and can be gen-
eralized to a variety of geometries including the cylindrical and spherical
geometries [7]. There are some fundamental differences in the different ge-
ometries, for example, the focal surfaces. The cylindrical lens has curved
object and image surfaces, whereas the perfect lens has planar object and
image planes that better match typical detector arrays, and display formats.
These imaging devices enabled by negative refractive index metamaterials
have attracted a lot of attention and activity during the past decade [8].

It has nevertheless been realized that the image resolution of these ex-
traordinary devices made of negative refractive index materials suffers from
serious limitations due to the presence of dissipation and spatial disper-
sion [9] that is inherent to the structured composite resonant metamateri-
als. Pendry had originally proposed [14] that a thin film of silver that has
negative dielectric permittivity alone can approximately act as a superlens
with subwavelength image resolution at visible and near ultra-violet fre-
quencies for p-polarized light. Refinements of what Pendry christened the
poor man’s lens were subsequently considered to improve the performance
using the metamaterials at hand: the superlens effect was generalized to an
asymmetric system, for example, a silver film with glass on one side and air
on the other which made the system mechanically more robust. Further,
the image resolution obtained by an asymmetric lens could be better under
certain conditions. This proposal by Pendry and Ramakrishna to use a film
of silver, which displays a (complex valued) negative dielectric constant in
the visible spectrum, with air on one side and other media such as glass
or GaAs on the other side [10] led to the demonstration of subwavelength
imaging through negative refraction by Zhang’s team in 2005 [1].
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2 Square root of εμ for negative ε and μ: Positively
negative

Let us understand why should a medium with �e(ε) < 0 and �e(μ) < 0 be
considered to have a negative refractive index. We start with the case of
passive media.

Before embarking on our journey through the looking glass, we recall
that Maxwell’s equations in an isotropic heterogeneous medium described
by relative permittivity ε and relative permeability μ take the following
form in the absence of charges:

∇× E = −μ0
∂μH
∂t

, and ∇×H = ε0
∂εE
∂t

, (1)

where ∇ = (∂/∂x, ∂/∂y, ∂/∂z) is a gradient acting on the three space vari-
ables and t is the time variable. Moreover, (E ,H) is the electromagnetic
field and μ0ε0 is a constant equal to the inverse of the square of the speed
of light in vacuum usually denoted c.

Assuming a time harmonic dependence in exp(−iωt) with ω the angular
frequency, and a spatial oscillation exp(ix · k) with k = (kx, ky, kz) the
vector wavenumber, that is (E ,H) = (E,H) exp(i(x · k− ωt)), we obtain

k×E = −μ0μωH , and k×H = ε0εωE , (2)

which shows that if ε < 0, μ < 0, k, E, H form a left-handed triad. However,
the Poynting vector S = E ×H remains unchanged, implying that k and
S are in opposite directions in a medium with ε < 0, μ < 0. Physically,
this means the phase velocity and the group velocity (energy flow) are in
opposite direction, which is a hallmark of negative refraction.

2.1 Choosing the negative root in passive media

There is a subtlety with the definition of the refractive index through the
Maxwell relation n =

√
εμ in the negative layer. Care has to be taken for

the choice of the square root in the definition of n. Indeed, the constitutive
parameters for a medium with both �e(ε) < 0 and �e(μ) < 0 satisfy

ε = | ε |eiΦε , μ = | μ |eiΦμ , where Φε , Φμ ∈]π2 , π]. (3)

This leads to an ambiguity in the expression for the refractive index n:

n = | n |eiΦn ,with Φn = 1
2 (Φμ +Φε) ∈]π2 , π]

or Φn = 1
2 (Φμ +Φε)− π ∈]− π

2 , 0] ,
(4)
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Figure 1. Refraction of a light ray (blue arrows) through an interface
separating a non-absorptive positive refractive medium, and an absorptive
positive refractive medium (upper right corner), or an amplifying negative
refractive medium (lower right corner).

depending upon the choice for the square root. We infer from (4) that
the wave is either left-handed with respect to the wave vector k and right-
handed with respect to the direction of the energy flow S (�e(n) < 0 and
�m(n) > 0) or right-handed with respect to k and S (�e(n) > 0 and
�m(n) < 0). Either physical situation seems acceptable.

As we are particularly interested in the case of small loss, we can take
the following two ansatz [8; 15]

ε = εr + iηεi and μ = μr + iημi where 0 < η � 1 , (5)

where εr and μr are negative reals, whereas εi and μi are positive reals. We
obtain

n = ±
√
| εrμr |

[
1− i

η

2

( εi
| εr | +

μi

| μr |
)]

+O(η2) . (6)

We note that a refractive index n such that �e(n) > 0 and �m(n) < 0
corresponds to an exponentially growing wave in a dissipative medium and
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Figure 2. Super lenses via negative refraction: (a) Schematic diagram
depicting the focussing of rays by the Pendry-Veselago lens (ε = μ = −1).
(b) Numerical simulation demonstrating the imaging effect for TE waves
through an array of SRRs (plot of the longitudinal magnetic field intensity).
(c) The perfect lens in (a) and the poor man’s lens in (b) work by excitation
of surface plasmons. (d) Profile of the longitudinal magnetic field in (b)
along the line passing through the source and the image.

should therefore be disregarded in (6). Taking the limit of zero absorption
(η goes to zero) in (6) for �e(n) < 0 and �m(n) > 0, gives n = −√| εrμr |.
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This is a standard practice in physics to obtain the causal solution by con-
sidering a lossy medium and taking the limit of zero loss.

2.2 Overcoming the wavelength limit to resolution

Let us now say a few words on the wavelength limit to resolution in the
perfect lens [14] wherein in the limit of zero absorption ε = μ = −1 leading
to a negative refractive index n = −1 impedanced matched to vacuum as
we have seen above.
Each wave has a wavevector k = (kx, ky, kz) responsible for driving the wave
from object to image, which from (2) satisfies the dispersion relation

kz =
√
ω2/c2 − k2x − k2y , (7)

where kx and ky define the components of the image.
The larger the magnitude of kx, ky we can propagate to the image plane

the better the resolution. The problem is that making these transverse
wave vectors too large gives kz an imaginary value and the wave decays
exponentially along the z-axis. These decaying components of the object
field are often referred to as the near field. They are confined to the vicinity
of the object and serve to lock away high-resolution information. Hence the
biggest Fourier component that we can capture has magnitude k =| k |=
ω/c and the wavelength restriction on resolution follows. How does our
negative slab avoid this limit? The secret it deploys is a surface resonance
which is used to amplify evanescent waves and restore them to the values
taken in the object plane, which is the bold claim which Pendry makes in his
seminal paper on negative refraction makes a perfect lens [14]. Given time,
a resonance can build a substantial amplitude using energy drawn from the
source. Absorption is the great enemy of resonances so low loss materials
are essential if we are to approach the resolution offered by the perfect lens.

For the perfect lens a problem of field divergence [22] is particularly
acute because behind the image the fields continue to grow as we trace
them back towards the lens. For very large values of kx, ky, essential for
high resolution, the fields grow very rapidly. In fact there is a limit to this
process because absorption will eventually damp the resonances responsible
for amplification and the gain provided by the slab will be replaced by
attenuation for the very highest values of kx, ky, capping the divergence
in the fields but at the same time limiting resolution. For example in the
instance of a lossy dielectric, ε = εr + iεi, the resolution limit is given by
[17]

Δ = 2πd/ ln(εi) , (8)
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where d is the thickness of the slab. This shows that reducing loss is essential
in order to achieve a high resolution with the nearly perfect lens.

2.3 Resolving the wavevector in negative refractive media

For simplicity, we only considered the case of passive media, but the gen-
eral issue of resolving the wave vector in negative refractive media with gain
can be also addressed. For this, one has to consider the analytic behavior
of the wave vector k in the complex plane, with a total of eight physically
distinct cases in the four quadrants of two Riemann sheets [15]. The eight
cases along with the different media and circumstances are shown in Fig-
ure 3 where they are located in different regions of the �e(kz) − �m(kz)
plane, kz being the normal component of the wave-vector in the refraction
process between vacuum and the given medium. Primarily, we draw the
readers attention to the regions of the �e(kz) − �m(kz) plane where the
media with �e(ε) < 0 and �e(μ) < 0 lie. It is seen that they both have
�e(kz) < 0. Second, we also stress that refraction of waves is primarily a
propagation effect that is interesting only when the waves can propagate
long distances. While it has been theoretically shown that waves in some
highly absorptive media can refract negatively across an interface, the prop-
agation length of the wave inside the medium is usually so short to preclude
even its experimental study in most cases.

During the past few years, there has been some controversy regarding
the assignment of various physical media to these eight regions [15; 23;
24; 25; 26]. It has been wrongly suggested [23; 24] that for light incident
on a semi-infinite gain medium with �m(ε) < 0, the presence of gain in
the medium could imply a negative sign for the refractive index even if
�e(ε) > 0 and �e(μ) > 0. It has also been mistakenly claimed [24] that
evanescent waves that exponentially grow into bulk of the medium would
exist at the interface of such a positive medium that has gain. While we
will not get into a detailed analysis of this controversy here, we first note
that for a finite medium such as a finite slab or a sphere, all the relevant
physical quantities such as the transmission, reflection or scattering coef-
ficients are invariant with the sign of the wave-vector or the index [26].
Hence the choice of the wave-vector in an infinite medium is primarily of
academic curiosity. Second, the choice of the wave-vector that causes an
exponential increase of the evanescent waves into the bulk of the medium
would be contrary to the presence of surface plasmon waves at the interface
between a metal and a gain medium that has been experimentally measured
recently [27]. In any case, if the evanescent waves were to decay exponen-
tially in absorptive media and amplify exponentially in amplifying media,
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Figure 3. A scheme for the classification of electromagnetic media into
combinations of positive refractive or negative refractive media and absorb-
ing or amplifying media, as proposed by Ramakrishna and Martin [15].

the limit of zero dissipation or gain would become ill-defined. Hence the
choice of a wave-vector that causes exponential amplification for evanescent
waves in gain media is inconsistent. Finally, we should point out that the
choice of the wave-vector in a gain medium has been investigated with care-
ful experiments a long time ago [18]. The experimental results described
therein clearly show that the sign for the square-root (or the wave-vector)
in an amplifying medium is definitely positive. Hence we stress here that
while there are two mathematically valid choices for the branch, the phys-
ical relevant branch for a medium can be chosen only by the imposition
of physical boundary conditions. What boundary condition is physically
correct can only be decided by experiments and there is unambiguous ex-
perimental evidence [18; 27] that the choice of the signs for the wave-vector
in various media and circumstances originally set out in Ref. [15] are the
physically reasonable ones. We also note an attempt to obtain the limit of
semi-infinite media by considering finite slabs with gain and taking the limit
of infinite slab thickness [19] and remark that any such attempt would be
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futile for perfectly coherent, monochromatic waves as the steady-state solu-
tion is effectively obtained at infinite time where all the multiple reflections
from both the interfaces, however far apart, are included in the solution.

3 Engineering negative effective medium parameters

While the negative dielectric permittivity demonstrated by a plasma and
highly conducting metals at visible and ultra-violet frequencies has been
known for over a century, negative magnetic permeability was relatively un-
known except in some narrow frequencies ranges in some magnetic materials
at microwave frequencies [8]. Natural materials with simultaneously neg-
ative dielectric and magnetic permeability were unknown and such effects
became possible only with certain artificially structured materials, examples
of which were first engineered at the turn of the new Millenium [20; 13; 21].

In this section, we discuss how negative effective medium parameters
can be obtained using Pendry’s split ring resonators (SRRs): these are as-
sociated with an anti-phased over-screened response at frequencies slightly
greater than the resonance frequency of a forced oscillator with low levels of
dissipation. We shall see that from a mechanical standpoint SRRs are sim-
ply Helmholtz’s resonators which can be modelled via springs and masses.
Newton’s laws meet Maxwell’s equations in SRRs!

3.1 Asymptotic modelling of resonators with a thin domain: Spring-
mass model behind electromagnetic metamaterials

In what follows, we model the famous split ring resonator introduced by
John Pendry’s team in 1998 [13] in order to achieve artificial magnetism.
Our aim is to better understand the underlying mechanism leading to its
resonant features, using the powerful tool of asymptotic analysis of multi-
structures [3]. The following derivation is adapted from [5] (see also [6]
for the analogous case of transverse electric waves propagating within thin-
walled photonic crystal fibres). We shall see that the derivation unveils a link
between a spring-mass model and a split ring resonator, as schematically
depicted in Figure 4 i.e. it bridges the discrete and continuous models.

Mathematically, electromagnetic waves propagating in dielectric cylin-
drical media (i.e. invariant along the z direction) are characterized by
a relative permittivity, ε(x, y) related to the refractive index n through
ε = n2. The magnetic field H(x, y) is solution of the time-harmonic vec-
tor Maxwell’s equations. Harmonic time dependence, exp(−iωt), with ω
as wave frequency allows us to work directly in the spectral domain, i.e.
with the Maxwell operator. If we consider infinite conducting cylindrical
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Figure 4. (a) Square array of cylinders with capacitive splits (so-called
thin bridges of thickness d small compared to the pitch a) that respond res-
onantly to radiation with the (longitudinal) magnetic field along the cylin-
drical axes. Circulating currents I around the rings tend to shield the
interior due to the inductance while the capacitance due to the gaps gives
rise to a resonance, the so-called artificial magnetism (picture adapted from
[2]). (b) A split ring acts as a Helmholtz resonator: a mass (counterpart
of the capacitance C in electric circuits) is connected to walls via springs
(counterparts of inductance L, say in solenoids) [5]. The physical interpre-
tation is a negative effective permeability upon resonance. (c) Resonant LC
circuit counter part of a Hemholtz resonator.
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inclusions in this dielectric medium (e.g. SRRs as in Figure 4), the problem
(with weak derivatives in R

3) takes the form:

∇× (ε−1∇×H
)
=

ω2

c2
H ,n× (ε−1∇×H) |∂D= 0 , (9)

with c the speed of light in vacuum, and n the unit outward normal to the
boundary ∂D of the infinite conducting inclusions D.

If we consider transverse electric waves propagating in a homogeneous
dielectric matrix (ε is a constant) with infinite conducting SRRs of cross-
section Ω, then the longitudinal component u of the magnetic field H =
(0, 0, u) satisfies the following equation and boundary condition:

∇ · (∇u) + εk2u = 0 ,
∂u

∂n
|∂Ω= 0 , (10)

where k = 2π/λ = ω/c is the wavenumber in vacuum, with λ the (fixed)
wavelength, ω the radian frequency and ∂u/∂n = n · ∇u.
We denote by Ω the double-split rings as shown in Figure 4. Formally,

Ω = {r0 <
√
x2 + y2 < r1} \

N⋃
j=1

Π
(j)
η (11)

where r0 and r1 are functions of variables x, y unless the rings are circular
and

Π(j)
η =

{
(x, y) : 0 < x < lj , | y |< ηhj/2

}
, (12)

is a thin ligament of length lj between the ‘ends of the letter C’. Here ηhj

the thickness of the j-th bridge, with η a small positive non-dimensional

parameter. In our case, we have two thin-bridges Π
(1)
η and Π

(2)
η .

To derive the asymptotic expansions, we introduce the scaled variable ξ =

y/η so that ξ ∈ (−hj/2, hj/2) within Π
(j)
η , and

∂2v

∂y2
=

1

η2
∂2v

∂ξ2
. (13)

In Π
(j)
1 , the time-harmonic wave equation (10) takes the rescaled form(

1

η2
∂2

∂ξ2
+

∂2

∂x2

)
u+ ε

ω2

c2
u = 0 , (14)

where the derivatives are taken in classical sense (the relative permittivity
ε is constant in the thin-bridge), and c is the speed of light in vacuum. The
longitudinal magnetic field u is approximated in the form

u ∼ U (0)(x, y) + η2U (1)(x, y) . (15)
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Assuming some Neumann (perfect conducting in TE polarization) boundary
conditions hold on the lower and upper edges of the thin-domain 1, to leading
order we obtain (see (14) and (15))

∂2U (0)

∂ξ2
= 0 , | ξ |< hj/2 ,

∂U (0)

∂ξ

∣∣
ξ=±h/2

= 0 . (16)

Hence, U (0) = U (0)(x) (it is ξ-independent). Assuming that U (0) is given,
we derive that the function U (1) satisfies the following model problem on
the scaled cross-section of Π1

∂2U (1)

∂ξ2
= −∂2U (0)

∂x2
+

εω2

c2
U (0), | ξ |< hj/2

∂U (1)

∂ξ |ξ=±hj/2

= 0 . (17)

The condition of solvability for the problem (17) has the form

d2U (0)

dx2
+

εω2

c2
U (0) = 0 , 0 < x < lj . (18)

Hence we have shown that to the leading order we can approximate the

longitudinal magnetic field u within the thin bridge Π
(j)
η by the function U (0)

which satisfies the time-harmonic wave equation in one-space dimension.
We now assume that the longitudinal magnetic field is periodic over each
unit cell Y within an array of SRRs: this is a legitimate assumption for
a configuration like in Figure 4(a) as the field is localised inside the core
region of the SRR. This shows that the average of the eigenfield over the cell
vanishes. Indeed, let χ1 denote the value of the field in the large body Σ of
the multi-structure Ω (union of the two C-shaped voids) and let χ2 (which
we normalize to 1) denote the value of the field within the complementary
area of the macro-cell Y \ Ω excluding the ligaments. Applying Green’s
formula, we deduce that

ω2

c2

∫
Y

εu dxdy =

∫
Y ∪Ω

∇ · ∇u dxdy =

∫
∂Y ∪∂Ω

∂u

∂n
dl = 0 , (19)

since u is periodic on ∂Y (and the normal anti-periodic) and Neumann data
hold on ∂Ω.

1If one assumes Dirichlet (perfect conducting in TM polarization) conditions hold on

the upper and lower edges of the thin-domain, this kills the field oscillations in the

split ring resonator. This explains why SRRs only work for TE polarization.



Multiscale Models of Electromagnetic and Plasmonic Metamaterials 31

This shows that the average of the longitudinal magnetic field u over Y
vanishes, hence by neglecting the area of the thin bridges, we obtain

χ1SΣ + χ2SY \Ω = O(η) . (20)

Since we have two thin bridges, we have two separate eigensolutions Vj ,
j = 1, 2, corresponding to the vibrations of the longitudinal magnetic field

in the thin domains Π
(j)
η :

V ′′
j (x) + ε

ω2

c2
Vj(x) = 0 , 0 < x < lj , (21)

Vj(0) = χ2 = −χ1
meas(Ξ)

meas(Y \ Ω) , (22)

ε−1ηhjV
′
j lj = Mω2V (lj) , (23)

where ηhj and lj are the thickness and the length of the thin ligament Π
(j)
η ,

and M = εmeas(Ξ) is the area of the body Ξ. The bridges are both con-
nected to Ξ, hence V1(l1) = V2(l2) = V , where V is the constant longitudinal
magnetic field in the body Ξ. In the context of acoustics, V is a displacment
field, M is the mass of the body Ξ, and the left hand side in (23) has the
physical dimension of a force, hence (23) is nothing but Newton’s second
law (the forces acting on the body equal its mass times its acceleration).

We note that Vj(0) is equal to a non-zero constant unlike in [5] (in that
case we assumed that χ2 = 0 i.e. u = 0 where the bridges meet the region
outside Ω). Here, the constant is chosen in such a way that the average of
the field over the basic cell vanishes, as should be expected for a localised
(stationary) field.
The solution of the problem (21)-(23) has the form

Vj(x) = −
χ2 cos(

ω
c lj)− 1

sin(ωc lj)
sin(

ω

c
x) + χ2 cos(

ω

c
x) , (24)

where c =
√
μ/ρ and the frequency ω is given as the solution of the following

equation

η

(
h1 cot(

ωl1
c

) + h2 cot(
ωl2
c

) + 2C

)
= εMcω . (25)

Looking at a first low frequency, we deduce an explicit asymptotic approx-
imation

ω ∼
√

ηh1

l1
+

ηh2

l2

√
1

εM

(
1 +

meas(Ξ)

meas(Y \ Ω)
)
. (26)
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Figure 5. Band diagram corresponding to a square array of split ring res-
onators as in Fig. 4. The wavenumber is a projection of the Bloch vector
which describes the first Brillouin zone ABC with A = (0, 0), B = (π/d, 0)
and C = (π/d, π/d), where d is the pitch of the array. Dispersion curves
correspond to frequencies of transverse electric waves propagating within
the array. The resonance associated with a constant longitudinal magnetic
field inside each infinite conducting cylinder, see Fig. 6(b), creates a low
frequency stop band (range of frequencies for which no waves can propa-
gate within the array) near the normalised frequency ωd/c = 0.57 (with c
speed of light in vacuum) above which the effective permeability displays a
negative real part [28]. The dotted lines emerging from point A show the
light cone. Its intersection with the second dispersion curve along AC direc-
tion gives the onset of all-angle-negative refraction (also known as dynamic
anisotropy) [29], for which light emanating from a source in vacuum couples
to an array of SRRs and forms an image underneath according the inverted
Snell-Descartes laws of refraction, see Fig. 6(a).
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Figure 6. Imaging effect for transverse electric waves: (a) An electric line
source placed on the upper side of an array of infinite conducting cylinders
(with cross-sections shaped as split ring resonators (SRRs)) is imaged on
the lower side. The asymptotic formula (26) provides us with the resonant
frequency of SRRs (b) at which lensing occurs.

This estimate actually holds for the frequency of the upper edge of the first
phononic band gap of Figure 5. It matches that of a LC resonant circuit as
schematically shown in Figure 4(c).

We report in Figure 5 finite element computations for a periodic cell of
side length d with a double C-shaped void. The central disk has a radius of
0.3d and the two cuts have the same length 0.22d and a thickness 0.03d. We
deduce the frequency estimate is ω∗d/c = 0.57, which is in good agreement
with the finite element value ω∗∗d/c = 0.59 for the lowest point on the
second dispersion curve on Figure 5 occurring at the Γ point (where the
Bloch wavenumber k vanishes). Above this value, one can see that the
group velocity for waves propagating in the CA direction is negative, hence
by tilting the square array through an angle π/4, one can achieve some
form of negative refraction. This leads to a lensing effect most visible for
a source of frequency ωd/c = 0.7 placed above a tilted array of 48 SRRs,
see Fig. 6. Time has now come to make some connections with acoustic
waves, as it seems fairly obvious from the spring mass model underpinning
the split ring resonators that mechanical vibrations should also be enhanced
in SRRs, which opens also routes towards negative refraction for acoustic
waves. Actually, it is enough to look at wave equation (19) to convince
oneself that a simple change of parameter, say replacing the permittivity ε
by the shear modulus μmakes all the section valid for anti-plane shear waves
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propagating in an isotropic elastic material with cracks shaped as SRRs, in
which case u is the anti-plane shear displacement. One could also get rid
of the parameter ε (take it to be 1 and supply (19) with the dispersion
equation for surface liquid waves: ω2 = gk(1 + k2d2) tanh(kh), where ω is
the surface liquid wave frequency, g the constant of gravity, d the liquid
capillarity length, and h the liquid depth. The Neumann condition now
stands for a no-flow condition on rigid cylinders plunging into the liquid,
the equation takes place on the free surface and u is related to the liquid
elevation away from the still surface (in the absence of waves).

Let us now move to the next section, which is concerned with another
electromagnetic paradigm: transformational optics and invisibility cloaks.
Note that the first realization of an invisibility cloak by the group of Smith
and Pendry was based upon split ring resonators [76].

4 A brief history of transformational optics: From
helicoidal fibers to invisibility cloaks

Geometric transforms in computational electromagnetics have been applied
as a mere mathematical tool for over 20 years [32], for instance to map un-
bounded domains onto finite ones, a trick known as perfectly matched layers
in the finite element community [31], and further reinterpreted by mathe-
maticians in more abstract frameworks [54]. Researchers from the electric
engineering [50; 51; 63] and photonics [64; 65; 66; 67] communities have
made use of geometric transforms in order to study twisted fibers, since the
Maxwell’s equations take a particularly tractable form in helicoidal coordi-
nates. However, these works remained some kind of academic curiosity until
six years ago, when a handful of photonics groups announced transparency
could be achieved in metamaterials [37; 30], and the bold claim of cloaking
via anomalous resonance by Milton and Nicorovici[61]. A renewed inter-
est followed in gradient index materials (whose paradigm is the Luneburg
lens [59]) in optics and acoustics owing to their links with transformational
optics and acoustics. Mass media got suddenly interested when two re-
search groups (those of Pendry, Schurig and Smith [74] and Leonhardt [55])
independently proposed a systematic way to control wave trajectories in
curvilinear coordinate systems. These two groups designed a cloak that ren-
ders any object inside it invisible to electromagnetic radiation. The former
team theorized that a coating consisting of a meta-material whose physi-
cal properties are deduced from a coordinate transformation in the Maxwell
system displays anisotropy and heterogeneity of permittivity and permeabil-
ity working as a deformation of the optical space around the object. The
physicists consider the blowup of a point, thereby tearing apart the metric



Multiscale Models of Electromagnetic and Plasmonic Metamaterials 35

space. Though this may seem haphazardous, this can be legitimated by
making use of advanced mathematical treatments [44; 53]. The experimen-
tal validation [76] of their theoretical considerations was given in 2006 for a
copper cylinder invisible to an incident plane wave at 8.5 GHz. In 2008, our
group in Marseille proposed a broadband metallic cloak displaying an effec-
tive anisotropic permittivity, which has been experimentally shown to cloak
some metallic obstacle from 7 to 9 Ghz [41]. In 2009, the group of de Lustrac
proposed a non-magnetic version of Pendry’s cloak which was experimen-
tally demonstrated at microwave frequencies [52]. However, Leonhardt’s
team used mathematical tools of complex analysis in order to conformally
map the Helmholtz equation, thereby ensuring that the (spatially varying)
refractive index be isotropic. These two approaches to cloaking (conformal
and non-conformal) markedly enhance our capabilities to manipulate light,
even in the intense near field limit [82]. Other research groups looked at
how governing equations behave under geometric transforms in other areas
of physics, such as the conductivity equation [42], the Schrödinger equation
for matter waves [43; 80; 38; 45], the acoustic wave equation [36; 35; 71]
and the Navier equation for elastodynamics [60; 34].

5 Transformed conductivity equation:
Correspondences with electrostatics and
magnetostatics

Maybe the simplest way to introduce the field of cloaking is through the em-
blematic example of the conductivity equation as it avoids any unnecessary
technicalities whilst encapsulating much of the physics of invisibility.

Let us consider the two-dimensional conductivity equation in a bounded
cylindrical domain Ω with no source

∇ · (κ(x)∇u) = 0 , (27)

where u represents the static (heat, electric, magnetic) field, at each point
x = (x, y) in Ω. Moreover, κ is the thermal conductivity, permittivity,
permeability depending upon the context. Upon a change of variable x =
(x, y) → x′ = (x′, y′) described by a Jacobian matrix J = ∂(x′, y′)/∂(x, y),
this equation takes the form:

∇ · (J−Tκ(x′)J−1det(J)∇u
)
= 0 . (28)

We note that (27) and (28) have the same structure, except that the trans-
formed conductivity

κ′ = J−TκJ−1det(J) = κJ−TJ−1det(J) = κT−1 , (29)
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is matrix-valued, with T the metric tensor.
An elegant way to derive (28) is to multiply (27) by a smooth function
φ ∈ C∞

0 (Ω) (that is an infinitely differentiable function with a compact
support on Ω) and to further integrate by parts, which yields the following
variational form:∫

Ω

(∇φ · κ∇u) dxdy −
∫
∂Ω

(κ∇u · nφ− κ∇φ · nu) dl = 0 , (30)

where n is the unit outward normal to the boundary ∂Ω of the integration
domain Ω.

We now apply to (30) the coordinate change x = (x, y) → x′ = (x′, y′)
and noting that∇ = J−1∇′, where∇′ is the gradient in the new coordinates,
we end up with

∫
Ω

{(
J−1∇′φ · κJ−1∇′u

)
det(J)

}
dx′dy′

−
∫
∂Ω

{(
κJ−1∇′u · nφ− κJ−1∇′φ · nu) det(J)} dl′ = 0

(31)

Upon integration by parts, using J−1∇′φ · κJ−1∇′u = (∇′φ)TJ−TκJ−1∇′u
we obtain the variational form of (28) which lays the foundation of trans-
formation optics in the static case. Indeed, in the electrostatic case, the
coefficient in (27) plays the role of the inverse of the permittitivy (κ = ε−1),
while in the magnetostatic case, it plays the role of the inverse of the per-
meability (κ = μ−1). The forms of the transformed permittivity ε′ and
permeability μ′ follow from (29).

6 Transformational optics: Geometrical
transformations and equivalent materials

Beside Cartesian coordinates, cylindrical and spherical coordinates, and
even the other orthogonal systems [78], have been commonly used to set
up electromagnetic problems. Using results of the previous section, much
more general coordinate systems are discussed since they do not need to
be orthogonal (and not even real valued). Here, we have used a simple ap-
proach to derive the transformed permittivity and permeability, requiring
only knowledge of changes of variables in integral calculus. However, when
one moves to the time-dependent Maxwell system, a modern approach is to
write the equations of electromagnetism in the language of exterior calculus
that is covariant, i.e. independent of the choice of the coordinate system
[32]. In this way, the Maxwell equations involve only the exterior derivative
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and are purely topological and differential while all the metric information
is contained in the material properties via a Hodge star operator. This
looks rather abstract but can nevertheless be encapsulated in a very simple
and practical equivalence rule co-discovered by A. Nicolet and F. Zolla dur-
ing the 2002 IUTAM symposium organized by A.B. Movchan at Liverpool
University [81; 62]:

When you change your coordinate system, all you have to do is to re-
place your initial material (electric permittivity tensor ε and magnetic per-
meability tensor μ) properties by equivalent material properties given by the

following rule:

ε′ = J−1εJ−T det(J) and μ′ = J−1μJ−T det(J) (32)

where J is the Jacobian matrix of the coordinate transformation consisting
of the partial derivatives of the new coordinates with respect to the original
ones (J−T is the transposed of its inverse).

In Eq.(32), the right hand sides involve matrix products where the matrix
associated with a second rank tensor involving the coefficients of its repre-
sentation in the initial Cartesian coordinate system. The obtained matrix
provides the new coefficients of the tensor corresponding to the equivalent
material. Eq.(32) is consistent with (29), which should not come as a sur-
prise as the tensors of permittivity and permeability should have the same
form in the Maxwell system and the electrostatic and magnetostatic equa-
tions.

However, one word on the modern differential geometry viewpoint of
transformation optics would be in order 2. Explicitly, a map from a coor-
dinate system {u, v, w} to the coordinate system {x, y, z} is given by the
transformation characterized by x(u, v, w), y(u, v, w) and z(u, v, w). As we
start with a given set of equations in a given coordinate system, it seems
at first sight that we have to map these coordinates on the new ones. Nev-
ertheless it is the opposite that has to be done: the new coordinate system
is mapped on the initial one (i.e. the new coordinates are defined as ex-
plicit functions of the initial coordinates) and the equations are then pulled
back, according to differential geometry [32], on the new coordinates. This
provides directly the functions whose derivatives are involved in the com-
putation of the Jacobian matrix. The Jacobian is directly given by:

Jxu =

⎛
⎝ ∂x

∂u
∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

⎞
⎠ =

∂(x, y, z)

∂(u, v, w)
. (33)

2The author wishes to thank A. Nicolet from Aix-Marseille University for his wisdom

and guidance through the wonderland of differential forms over the past fifteen years.



38 S. Guenneau

The equivalence rule (32) can be extended to more general material prop-
erties such as local Ohm’s law and bianisotropic materials [62]. Moreover,
the rule given by Eq. (1) may be easily applied to a composition of trans-
formations. Let us consider three coordinate systems {u, v, w}, {X,Y, Z},
and {x, y, z}.
The two successive changes of coordinates are given by the sets of functions
{X(u, v, w), Y (u, v, w), Z(u, v, w)} and {x(X,Y, Z), y(X,Y, Z), z(X,Y, Z)}.
They lead to the Jacobians JXu and JxX so that the global Jacobian

Jxu =
∂(x, y, z)

∂(u, v, w)
=

∂(x, y, z)

∂(X,Y, Z)

∂(X,Y, Z)

∂(u, v, w)
= JxXJXu (34)

The compound transformation can therefore be considered either as involv-
ing this global Jacobian or as successive applications of Eq. (1). This rule
naturally applies for an arbitrary number of coordinate systems. Note that
the maps are defined from the final u, v, w to the original x, y, z coordi-
nate system and that the product of the Jacobians, corresponding to the
composition of the pull back maps, is in the opposite order.

When the initial material properties ε and μ are isotropic and described
by a scalar, they generally lead to anisotropic properties and are given via
a transformation matrix T=JTJ/ det(J) related to the metric expressed in
the new coordinates so that the Nicolet-Zolla equivalence rule (32) becomes

ε′ = εT−1 , and μ′ = μT−1 . (35)

We note that there is no change in the impedance of the media since
the permittivity and permeability suffer the same transformation. As in-
homogeneous and anisotropic equivalent materials are obtained and as the
theoretical framework is the exterior calculus, the (Whitney) finite element
method is perfectly adapted to the numerical algorithm implementation
[33; 39; 40]. In fact, this goes beyond simple change of coordinates as we
will also consider active transformations, i.e. changes of space (i.e. of man-
ifold) where the equations are written.

6.1 Useful Jacobians in polar in spherical coordinates

It is very often useful to use radial transformations. In this case, the
most simple way is to first perform a transformation to cylindrical or spher-
ical coordinates and to perform the inverse transformation once the radial
transformation has been made. First, the classical transformation from
Cartesian coordinates (x, y, z) to polar coordinates (ρ, θ, z) is introduced
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via a map from ρ, θ to x, y:{
x(ρ, θ) = ρ cos θ
y(ρ, θ) = ρ sin θ.

(36)

The associated Jacobian is

Jxρ(ρ, θ) =
∂(x, y, z)

∂(ρ, θ, z)
=

⎛
⎝ cos θ −ρ sin θ 0

sin θ ρ cos θ 0
0 0 1

⎞
⎠ = R(θ) diag(1, ρ, 1),

(37)
with

R(θ) =

⎛
⎝ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠ and diag(1, ρ, 1) =

⎛
⎝ 1 0 0

0 ρ 0
0 0 1

⎞
⎠ .

R(θ) is a matrix of rotation through an angle θ about the z-axis which has
the well known properties: R(θ)−1 = R(θ)T = R(−θ).

Furthermore, the inverse transformation of (36) is given by the map:⎧⎨
⎩

ρ(x, y) =
√
x2 + y2

θ(x, y) = 2 arctan

(
y

x+
√

x2+y2

)
,

(38)

and is associated with the Jacobian:

Jρx(x, y) = J−1
xρ (ρ(x, y), θ(x, y)) = diag(1,

1

ρ(x, y)
, 1) R(−θ(x, y)). (39)

Similarly, the spherical coordinates are described via a map from ρ, θ, ϕ
to x, y, z: ⎧⎨

⎩
x = ρ cos θ sinϕ
y = ρ sin θ sinϕ
z = ρ cosϕ.

(40)

The spherical Jacobian:

Jxρ(ρ, θ, ϕ) =

⎛
⎝ cos θ sinϕ −ρ sin θ sinϕ ρ cos θ cosϕ

sin θ sinϕ ρ cos θ sinϕ ρ sin θ cosϕ
cosϕ 0 −ρ sinϕ

⎞
⎠ , (41)

can be written as Jxρ = R(θ)M2(ϕ)diag(1, ρ sinϕ, ρ) still involving the
R(θ) matrix together with:
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M2(ϕ) =

⎛
⎝ sinϕ 0 cosϕ

0 1 0
cosϕ 0 − sinϕ

⎞
⎠ , (42)

with the properties: M−1
2 (ϕ) = MT

2 (ϕ) = M2(ϕ). All this, and much
more, can be found in [70; 69].

7 Problems with open boundary conditions

One of the primary applications of non orthogonal coordinates is the mod-
elling of infinite domains [57]. In the electrostatic or magnetostatic case as
well as in the eddy current case, the solution decreases to zero at infinity.
Several types of infinite elements have been introduced (when the problem
was not brutally truncated at finite distance) but the most efficient ones
correspond to a mapping of a finite domain on the exterior infinite domain
[51; 63].

In the case of propagation problems, a transformation of an infinite do-
main into a finite one as presented above would contract the wavelength
to an infinitely small value as the outer boundary is approached so that a
well adapted mesh would be difficult to obtain. In this case, the solution is
to introduce the Perfectly Matched Layers (PML).Such regions have been
introduced by Berenger [31] and, nowadays, in the time harmonic case, the
most natural way to introduce PML is to consider them as maps on a com-
plex space [54] so that the corresponding change of (complex) coordinates
leads to equivalent ε and μ (that are complex, anisotropic, and inhomoge-
neous even if the original ones were real, isotropic, and homogeneous). This
leads automatically to an equivalent medium with the same impedance as
the one of the initial ambient medium since ε and μ are transformed in the
same way and this insures that the interface with the layer is non-reflecting.
Moreover, a correct choice of the complex map leads to an absorbing medium
able to dissipate the outgoing waves. The problem can therefore be properly
truncated under the condition that the artificial boundary is situated in a
region where the field is damped to a negligible value.

For isotropic uniform media outside the region of interest, the cylindrical
PML is an annulus whose characteristics are obtained by multiplying ε and
μ by the following complex matrix:

T−1
PML = J−1

PMLJ
−T
PML det(JPML) = R(θ)diag(

ρ̃

sρρ
,
sρρ

ρ̃
,
sρρ̃

ρ
)R(−θ).

This latest expression is the metric tensor in Cartesian coordinates (x, y, z)
for the cylindrical PML. θ, ρ, ρ̃, and sρ(ρ) are explicit functions of the vari-
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ables x and y, i.e. θ = 2arctan

(
y

x+
√

x2+y2

)
, ρ =

√
x2 + y2, sρ(ρ) =

sρ(
√
x2 + y2), and ρ̃ =

∫√x2+y2

0
sρ(ρ

′)dρ′ where sρ(ρ
′) is an arbitrary but

well chosen complex valued function of a real variable that describes the
radial stretch relating the initial radial distance ρ to the complex one ρ̃.

Another remarkable property of the PML is that they provide the correct
extension to non-Hermitian operators (since TPML is complex and symmet-
ric) that allows the computation of the leaky modes in waveguides [66] and
this may be obtained via a correct choice of the PML parameters, namely
R∗, Rtrunc such that R∗ < ρ < Rtrunc, and sρ(ρ) [72].

8 Helicoidal geometries and twisted optical fibres

The purpose of this section is to show how the Nicolet-Zolla equivalence
rule (32) can be used to study the propagation of modes in twisted waveg-
uides via a two-dimensional model though the translational invariance of
the geometry is lost.

Figure 7. A twisted structure that may be described by the helicoidal
coordinates (courtesy of F. Zolla, Institut Fresnel).

Let us introduce an helicoidal coordinate system [56; 50] (ξ1, ξ2, ξ3) de-
duced from rectangular Cartesian coordinates (x, y, z) in the following way⎧⎪⎨

⎪⎩
x = ξ1 cos(αξ3) + ξ2 sin(αξ3)

y = −ξ1 sin(αξ3) + ξ2 cos(αξ3)

z = ξ3 ,

(43)

where α is a parameter which characterizes the torsion of the structure.
A twisted structure is a structure for which both geometrical and physical
characteristics (here the permittivity ε and the permeability μ) together
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with the boundary conditions only depend on ξ1 and ξ2. Note that such a
structure is invariant along ξ3 but 2π

α -periodic along z (the period may be
shorter depending on the symmetry of the cross section).

This general coordinate system is characterized by the Jacobian of the
transformation (43):

Jhel(ξ1, ξ2, ξ3) =⎛
⎝ cos(αξ3) sin(αξ3) αξ2 cos(αξ3)− αξ1 sin(αξ3)
− sin(αξ3) cos(αξ3) −αξ1 cos(αξ3)− αξ2 sin(αξ3)

0 0 1

⎞
⎠ , (44)

which does depend on the three variables ξ1, ξ2 and ξ3. On the contrary,
the transformation matrix Thel :

Thel(ξ1, ξ2) =
JT
helJhel

det(Jhel)
=

⎛
⎝ 1 0 αξ2

0 1 −αξ1
αξ2 −αξ1 1 + α2(ξ21 + ξ22)

⎞
⎠ , (45)

which describes the change in the material properties, only depends on the
first two variables ξ1 and ξ2 [64; 65; 66]. This matrix may also conveniently
be expressed in terms of twisted cylindrical coordinates:

R(ϕ)

⎛
⎝ 1 0 0

0 1 −ρα
0 −ρα 1 + ρ2α2

⎞
⎠R(−ϕ)

=

⎛
⎝ 1 0 αρ sin(ϕ)

0 1 −αρ cos(ϕ)
αρ sin(ϕ) −αρ cos(ϕ) 1 + ρ2α2

⎞
⎠ ,

with ϕ = 2arctan

(
ξ2

ξ1+
√

ξ21+ξ22

)
, ρ =

√
ξ21 + ξ22 .

Helicoidal coordinates have also been combined with PML to compute
the leaky modes in twisted microstructured optical fibres [66].

ThPML = R(ϕ)

⎛
⎜⎝

ρsρ
ρ̃ 0 0

0 ρ̃
ρsρ

−α ρ̃
sρ

0 −α ρ̃
sρ

ρ(1+α2ρ̃2)
ρ̃sρ

⎞
⎟⎠R(−ϕ). (46)

This is the expression of the “twisted cylindrical PML tensor” in “heli-
coidal Cartesian modelling coordinates” ξ1, ξ2 and all the quantities involved
in the previous expression can be given as explicit functions of these two

variables, joining sρ(ρ) = sρ(
√
ξ21 + ξ22) and ρ̃ =

∫√ξ21+ξ22
0

sρ(ρ
′)dρ′ to the

expressions for ρ and ϕ given here above.
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Figure 8. Map of the norm of the longitudinal component of the electric
field for a strongly twisted fibre (α = 50, 000m−1) with very large losses.The
map is truncated at the inner boundary of the PML, the field unit on the
gray scale is arbitrary, and dimensions on the axes are in m (courtesy of F.
Zolla, Institut Fresnel).

The fact that the equivalent materials are independent from the longi-
tudinal coordinate ξ3 allows a two-dimensional model for the determination
of the propagation modes and of the leaky modes via a classical model pro-
vided it allows completely anisotropic and inhomogeneous media. Luckily,
the finite element method allows such a numerical computation.

Figure (8) shows a microstructured optical fibre or MOF [46; 47; 48;
49; 81]. It is a dielectric waveguide whose structure consists of a bulk of
silica (supposed to be unbounded) drilled by six air holes with a center-to-
center spacing Λ = 6.75μm. Each hole is circular with a radius equal to
rs = 2.5μm. A given wavelength λ0 = 1.55μm is considered for which the
index of silica is about

√
εSi = nSi = 1.444024. Note that for this structure

no propagating mode can be found and the fundamental mode is a leaky
mode. The figure shows the norm of the longitudinal component of the
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electric field for the “fundamental mode” in the case of a very strong twist
(α = 50, 000m−1) for which the losses are very large.

9 Invisibility cloaking

The geometrical transformations can also be used in the reverse sense to de-
sign new materials. In this case, a geometrical transformation is applied to
free space to guess interesting material properties given by the Nicolet-Zolla
equivalence rule. A new device can be built if the new material properties
may be approximated, e.g. using electromagnetical metamaterials [75]. For
instance, a convex domain is mapped on a holey domain with the same exte-
rior boundary. The structure made of the transformed equivalent material
is an invisibility cloak and any object can be perfectly hidden in the central
hole [74; 82].

To compute the transformation matrix T associated with the cloak, we
first map Cartesian coordinates onto polar co-ordinates (ρ, θ, z). The asso-
ciated Jacobian matrix is given by (37). Let us now consider a 2D object
we want to cloak located within a disk of radius R1. As proposed in [74], we
consider a geometric transformation which maps the field within the disk
ρ ≤ R2 onto the annulus R1 ≤ ρ ≤ R2:⎧⎪⎨

⎪⎩
ρ′ = R1 + ρ(R2 −R1)/R2 , 0 ≤ ρ ≤ R2

θ′ = θ , 0 < θ ≤ 2π

z′ = z , z ∈ R ,

(47)

where ρ′, θ′ and z′ are “radially contracted cylindrical coordinates”. More-
over, this transformation maps the field for ρ ≥ R2 onto itself through the
identity transformation. This leads to

Jρρ′ =
∂(ρ, θ, z)

∂(ρ′, θ′, z′)
= diag(c11, 1, 1) (48)

where c11 = R2/(R2 −R1) for 0 ≤ ρ ≤ R2 and c11 = 1 for ρ > R2.
Last, we need to go to Cartesian coordinates x′, y′, z′, which are “radially

contracted Cartesian coordinates” where the modeling takes place to obtain
a representation of the metric tensor in the suitable coordinate system. The
associated Jacobian matrix is given by (39):

Jρ′x′(x′, y′) =
∂(ρ′, θ′, z′)
∂(x′, y′, z′)

= JT
ρx(

1

ρ′
, θ′) = diag(1,

1

ρ′
, 1) R(−θ′). (49)

Applying the composition rule twice, Jxx′ = JxρJρρ′Jρ′x′ , hence the ma-
terial properties of the invisibility cloak are described by the transformation
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matrix T = JT
xx′Jxx′/det(Jxx′). We will also need its inverse that we give

explicitly, taking into account that ρ(ρ′) = c11(ρ
′ −R1):

T−1 = R(θ′)diag(
ρ′ −R1

ρ′
,

ρ′

ρ′ −R1
,
c211(ρ

′ −R1)

ρ′
)R(−θ′). (50)

Figure 9. Cloak with a general shape surrounding a F-shaped metallic
object in presence of a line electric source generating transverse electric
waves. Plot of the real part of the longitudinal magnetic field. (courtesy of
A. Nicolet, Institut Fresnel).

A quite general situation is considered in Fig. 9, where the shape of
the cloak is described by two arbitrary functions R1(θ) and R2(θ) giving an
angle dependent distance from the origin corresponding respectively to the
interior and exterior boundary of the cloak [70; 69].

Three dimensional cloaks

The three-dimensional cloaks may be determined following the same
guidelines but using the spherical coordinates : The Jacobian of the radial
contraction Jρρ′ = diag(c11, 1, 1) is still the same (ρ is now the radius of a
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Figure 10. Three-dimensional cloak with a general shape of revolution
about one axis given by Fourier series (courtesy of G. Dupont, Institut
Fresnel).

sphere). The total Jacobian is therefore :

R(θ)M2(ϕ)diag(1, ρ sinϕ, ρ)diag(c11, 1, 1)diag(1, 1/(ρ
′ sinϕ′), 1/ρ′)

M2(ϕ
′)RT (θ′) = R(θ)M2(ϕ)diag(c11, ρ/ρ

′, ρ/ρ′)M2(ϕ)R
T (θ)

,

where we used the fact that ϕ = ϕ′ and θ = θ′. The matrix for the equivalent
media is finally:

T−1 = R(θ)M2(ϕ)diag(
ρ2

c11ρ′2
, c11, c11)M2(ϕ)R

T (θ). (51)

Three-dimensional arbitrary cloaks can be found by varying their interior
and exterior radii with respect to the angular coordinates: R1(θ, ϕ), R2(θ, ϕ).
An illustrative example is shown in Fig. 10, whereby a plane wave incident
from below is smoothly detoured around the central region inside the cloak
(the amplitude of the electromagnetic field vanishes there).

Let us now move to the last part of the chapter, which introduces the
field of plasmonics and its connections to metamaterials.
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10 Introduction to plasmonics and structured surfaces

At the beginning of the last century, R.M. Wood [148] showed that when he
sends a polarised light on a diffraction grating on metal plate, a very unusual
reflected pattern of dark and light bands can be observed. That was the
first noticed observation of uncommon attenuated reflection on gratings.
A few years later, in 1907, Lord Rayleigh [136] showed theoretically some
basic properties of gratings using a plane wave expansion of the scattered
electromagnetic field. He found that the scattered field was singular at
wavelengths for which one of the spectral orders emerged from the grating
at the grazing angle. He then observed that these wavelengths corresponded
to the Wood anomalies. Furthermore, these singularities appeared only
when the electric field was polarized perpendicular to the grooves. When
the magnetic field was perpendicular, there was no anomaly [149]. More
explanations were given by Palmer [127] for deep gratings.

Figure 11. (a) Kretschmann’s configuration [106]: the metal film is evapo-
rated onto the glass prism. The light is incident through the glass substrate.
The surface plasmon polaritons (SPPs) are excited on the metal-air inter-
face. One of the mandatory conditions for the excitation of the plasmon
is that the projection of the wavevector k// of light matches the one of
the plasmon. We represent the dispersion curves for metal-air interface
(red curve) as well as the light line in air (blue line) and glass (black line).
Curves show how a SPP can be excited on this metal-air interface through
a glass substrate in the region between the blue and the black lines.

Pines [132; 133] suggested that the energy losses of the Wood anomalies
are due to the excitation of conducting electrons associated with a plasmon.
The term surface plasmon polariton (SPP) was coined by Stewart, Hessel
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and Ritchie [142], [94] and [137]. It is only in 1968 that Kretschmann [106]
and Otto [124] demonstrated how to generate Surface Plasmon excitations.
Since then SPPs have found many applications in biology [114] and chem-
istry [108]. As the list of references is extensive, we refer to other books
and papers that describe a complete history of SPPs [120], [97], [135], [88]
and [89]. However, in order to exemplify the mechanism leading to the ex-
citation of SPPs, we present a classical experimental setup (Figure 11) to
generate an SPP.

One word on the SPP terminology would be in order. Surface plasmons
(SPs) are defined as electromagnetic waves associated with a collective oscil-
lation of the electrons in the free electrons plasma on the surface of a metal.
Polaritons are quasiparticles resulting from strong coupling of electromag-
netic waves with an electric or magnetic dipole excitation. They result in
the crossing of the dispersion of light with any interacting resonance. It
corresponds to the mixing of a photon with an excitation of a material.
The most frequently discussed types of polaritons are :
• phonon-polaritons: corresponding to the coupling of an infrared pho-
ton with an optic phonon,

• exciton-polaritons, corresponding to the coupling of visible light with
an exciton,

• surface plasmon-polaritons: corresponding to the coupling of surface
plasmons with light

A polariton can be associated with that wave and is called surface plas-
mon polariton (SPP). In Figure 12 the electromagnetic field distribution of
these surface waves is shown. The field has its maximum amplitude at the
interface and decays exponentially in the direction normal to the interface.
Figure 12 shows how a SPP can be excited on this metal-air interface trough
a glass substrate. The required momentum matching is fulfilled there. From
the theoretical point of view the condition to fulfill is:

kinc// = kSP , (52)

where kinc is the wave vector of the incident electromagnetic field through
the glass substrate and kSP is the wave vector for a surface plasmon on the
air-metal interface. We note this SPP cannot be excited directly from the
air side (as ksp > ω/c). An approximation of this condition can be done if
the metal is thick enough:

kinc = nglassk0 , kinc// = nglassk0 sin θ and kSP =
ω

c

√
ε1ε2

ε1 + ε2
,

(53)



Multiscale Models of Electromagnetic and Plasmonic Metamaterials 49

where c is the speed of light in a vacuum, ε1 and ε2 are respectively dielectric
functions (dielectric (air) and metal (gold)) and ω is the angular frequency.

Figure 12. Schematic representation of the electric field of a Surface Plas-
mon oscillation (left) and amplitude of the magnetic component( right).

We note that there are many different ways of exciting an SPP using rough
surfaces but in this chapter we will assume that we have launched success-
fully the SPP on the metal surface.

11 Origin of the Drude model for metals

Many models have been developed for physical properties of materials such
as permittivity and permeability for metal. In the sequel we will mainly use
the Drude model as well as some experimental data from [126].

Free electron gas model The simplest case is to consider a free electron
gas without any collision. In this case the only force applied to the electron
is the Coulomb force. Let us consider that a charge −e (with a mass m)
is located in an electric field E(t) = E0e

−iωt (where e is the charge of
an electron, t the time variable, r the position vector and ω the angular
frequency).
The equation of motion is given by Newton’s second law:

m
d2r

dt2
− eE = 0 (54)

The immediate solution is given by:

r(t) =
e

mω2
E(t) (55)

Let us now introduce the dielectric displacement D and the polarisation P,
which are functions of the electric field E, the electron density n and the
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Figure 13. An electron in an electric field: E is the electric field, q the
charge of an electron, a = d2r/dt2 is the acceleration and m the mass of the
charge.

displacement r:

D = ε0E+P , P = −n(er) (56)

Using the definition of the polarisation P and substituting in Eq. 55, we
find:

P(t) = − ne2

mω2
E(t) (57)

Introducing P in the definition of D we have:

D(t) = ε(ω).ε0.E(t) = ε0E(t)− ne2

mω2
E(t) (58)

Finally we obtain:

ε(ω) = 1− ne2

ε0mω2
(59)

And if we call ωp the plasma fraquency with

ω2
p =

ne2

ε0m
(60)

we end up with the common formula for the free electron gas (perfect metal):

ε(ω) = 1− ω2
p

ω2
(61)

We note that there are no losses in this case, henceforth this consideration
is clearly not adapted in the optical region for metals.
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Lossy metal By rewriting the equation of motion of an electron of the
plasma sea in an electric field E in presence of collision of electrons, we have
to introduce the collision frequency γ so that the motion equation takes the
new form:

m
d2r

d2t
+mγ

dr

dt
= −eE (62)

where r is the position vector, t the time variable, m the mass and e the
charge of an electron.
As in the previous paragraph, using the solution of 62 and the definition
of the polarisation, we end up with the complex permittivity of the free
electron gas:

ε(ω) = 1− ω2
p

ω2 + iγω
(63)

This function is complex valued and takes into account losses in metal (col-
lision). We will use this model to fit the permittivity of the metal.

12 Basic properties of Surface Plasmon Polaritons

Considering the surface plasmon polariton (SPP) as an electromagnetic
mode localized at the interface between dielectric and metal, we will look
at the relation between the frequency ω and the wave vector k. This wave
is linked to the wave vector k by a dispersion relation. We show the ex-
istence conditions of surface plasmons from the Maxwell’s equations using
the outgoing wave condition (ow.c) and the conditions at the boundary be-
tween the two media. We consider two semi-infinite media, one consisting
of a dielectric environment with real permittivity εd and the other one of a
metal of complex permittivity ε = ε

′
m+ıε

′′
m. As a first step we will consider

perfect non-absorbent metal i.e. ε
′′
m = 0. Figure 14 shows the layout of the

system. The xy− plane is defined as the interface and the z direction is
perpendicular to the interface. The plasmon propagates along the x direc-
tion: this means that the system is translationally invariant along the y−
direction. In this section we will consider both media non magnetic (i.e.
μ = μ0) and we take the general form of the field as follows:
We define Φj (with j = d,m: dielectric or metal) the transverse component
of the EM field with E being the electrical field and H the magnetic field:

Φj =

{
Ejy for a transverse electric polarization (TE), or s-polarization ,
Hjy for a transverse magnetic polarization (TM), or p-polarization .

(64)
We consider a time dependency of the form e−iωt, where ω is the angu-
lar frequency and c the light velocity. In this case the vector Maxwell’s
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Figure 14. Layout of the system: two semi-infinite layers

equations reduce to the scalar Helmholtz equation:

ΔΦj + εj
ω2

c2 Φj = 0 ,
(65)

where εj is the dielectric constant of the medium j (with j = d,m: dielectric
or metal).
Here, k =| k | is the angular wave number. As k is a vector it can be
written as a sum of two vector components: k = kxex + kzey, with ex and
ey the vectors attached to the Cartesian coordinates. Taking into account
the evanescent behavior in z− direction and the propagation in x− direction
we need to satisfy αd > 0 and k′x > 0 (with kx = k′x + k′′x ı). Finally, the
field has the following form in the dielectric and in the metal respectively:

Φd = Ade
αdzei(kxx−ωt) , Φm = Ade

−αmzei(kxx−ωt) . (66)

For a TE wave (and non magnetic media), the transmission conditions
through the interface z = 0 take the form:

Ed

∣∣∣∣ z = 0+
= Em

∣∣∣∣ z = 0−
∂Ed

∂z

∣∣∣∣ z = 0+
=

∂Em

∂z

∣∣∣∣ z = 0− .

Using Eq. 66, this leads to:

Ad = Am , −αdAd = αmAm , (67)

so that −αd = αm, which is impossible as these are positive reals. This
means there is no solution for a TE wave: for this light polarization, one
cannot excite any SPP on a planar metal-dielectric interface.
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Considering now the TM mode, the transmission condition at the dielectric-
metal interface z = 0 becomes:

Hd

∣∣∣∣ z = 0+
= Hm

∣∣∣∣ z = 0− ,

1

εd

∂Hd

∂z

∣∣∣∣ z = 0+
=

1

εm

∂Hm

∂z

∣∣∣∣ z = 0− .

By the same way as above we find:

−αd

εd
=

αm

εm
. (68)

As αd and αm, are positive this means that we have a special existence
condition for surface plasmons (keeping in mind here we assume that the
metal is not lossy i.e. εm is real):

εdεm < 0 . (69)

This existence condition for a p-polarized SPP can be fulfilled for a planar
dielectric-metal interface.
Considering the magnetic component in Eq. 66, and using the transmission
condition in Eq. 68, we obtain the dispersion relation of the propagative
wave vector k along the x− axis:

kx =
ω

c

(
εdεm

εd + εm

)1/2

. (70)

13 From transformational optics to plasmonics

We now wish to apply transformational optics to the case of a (p-polarized)
SPP propagating in the positive x direction at the interface z = 0 between
metal (z < 0) and air (z > 0):{

H2 = (0, Hy2, 0) exp{ı(kx2x− ωt)− kz2z} , z > 0 ,
H1 = (0, Hy1, 0) exp{ı(kx1x− ωt) + kz1z} , z < 0 ,

(71)

where c is the speed of light in vacuum and ε2 = 1− ω2
p

ω2+iγω has the usual

Drude form in the metal(z < 0), for which ωp is the plasma frequency (2175
THz) of the free electron gas and γ is a characteristic collision frequency
of about 4.35 THz [126]. As seen previously, even if the main part of the
energy is located in the dielectric medium, SPP is propagating in both media
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(metal and dielectric) and we have to satisfy the existence condition for that
wave.
The idea is to apply the transformation optics tools for both media. SPPs
are particular solutions of Maxwell’s equations so that the same rules should
be used. Moreover, both media (d′:transformed dielectric,m′:transformed
metal) will be described by spatially varying tensors of permittivity ε′d,m
and permeability μ′

d,m. In the case of a cloak (and rotator, concentrator...)

both sides will be transformed in order to preserve the existing boundary
condition at the interface between the metal and the dielectric part. It is
the natural condition for a cylindrical cloak as the cloak is invariant in the
direction of the cylinder. Here we start with the case of a carpet. Only the
top medium will be transformed.

13.1 Surface plasmon between a metal and an anisotropic medium

If we assume that both tensors of permittivity and permeability can be
represented in a diagonal basis i.e. ε′ = diag(εxx2, εyy2, εzz2) and μ′ =

diag(μxx2, μyy2, μzz2).
From the first Maxwell equation, we know that:{ ∇×H2 = −iωε0ε′E2, z > 0 ,

∇×H1 = −iωε0ε1E1, z < 0 ,
(72)

where Hj is defined by:{
H2 = (0, Hy2 , 0) exp{ı(kx2x− ωt)− kz2z}, z > 0 ,
H1 = (0, Hy1 , 0) exp{ı(kx1x− ωt) + kz1z}, z < 0 ,

with �(kz1) and �(kz1) strictly positive in order to maintain evanescent
fields above and below the interface z = 0. This leads to

{
E2 = − c

ωHy2(
kz2

εxx2
, 0, kx2

εzz2
) exp{ı(kxx− ωt)− kz2z}, z > 0 ,

E1 = − c
ωHy1

(kz1

ε1
, 0, kx2

ε1
) exp{ı(kxx− ωt)− kz1z}, z < 0 ,

with Ej = (Exj , 0, Ezj). The transverse wave numbers are found by invok-
ing the other Maxwell equation{ ∇×E2 = iωμ0μ

′H2, z > 0 ,

∇×E1 = iωμ0H1, z < 0 ,
(73)

which leads to

kzi =

√
εxx2

(
k2x
εzz2

− μyy2

(ω
c

)2)
, j = 1 , 2 , (74)
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The boundary condition at the interface z = 0 requires continuity of the
tangential components of the electromagnetic field, which is ensured if

kz1
ε1

+
kz2
εxx2

= 0 . (75)

Substituting (74) into (75), we obtain the dispersion relation for a surface
plasmon at the interface between a metal and an invisibility carpet [100]
[104]:

kx =
ω

c

√
εzz2ε1(μyy2ε1 − εxx2)

ε21 − εxx2εzz2
. (76)

These properties have been studied in gyrotropic materials and purely anisotropic
dielectrics [92]. The main point of this condition is to preserve the existence
condition of the SPP between a metal and a transformed medium which is
anisotropic and heterogeneous. We see that the new query can come from
the geometrical deformation (i.e. the shape of the bump) in the case of the
carpet of Pendry.

14 Plasmonic carpet: Design of plasmonic paradigms

In the present section we start by showing the particular condition for a
SPP to propagate on a bumped surface then we show numerically that one
can control the SPP on these surfaces using transformational plasmonics.

14.1 Surface plasmon carpets: theoretical study

We now wish to apply transformational optics to plasmonics to hide
under a SPP carpet. In presence of a bump, the electromagnetic field will
scatter on a bumped mirror as shown in Figure 15. We want to avoid this
phenomenon. All the following work stand on the fact that we want to
build a similar carpet as the one of Li and Pendry for SPP. Figure 15 shows
what the SPP cloak-carpet should do. However, we now wish to analyse the
interaction of this SPP with a specific anisotropic heterogeneous structure,
in the present case a three dimensional invisibility carpet [100], deduced
from the following geometric transformation:⎧⎪⎨

⎪⎩
x′ = x
y′ = y

z′ =
z2 − z1

z2
z + z1.

(77)

Here z′ is a stretched coordinate. It is easily seen that this linear geometric
transform maps the surface z0(x, y) of the horizontal plane z(x, y) = 0 onto



56 S. Guenneau

Figure 15. Principle of a three-dimensional invisibility carpet for electro-
magnetic fields: (a) Light incident upon a curved surface undergoes differ-
ent orders of diffraction (shown as black arrows); (b) SPP propagating on a
curved surface is scattered away from the metal interface (typical trajecto-
ries shown as white arrows); (c) Light incident upon a curved surface with
an invisibility carpet (yellow box) undergoes the same diffraction as light
incident upon a flat metal surface. SPP propagating inside the carpet stays
on the curved metal surface.

the surface z(x, y) = z1(x, y), and it leaves the surface z(x, y) = z2(x, y)
unchanged.
The surfaces z1 and z2 are assumed to be differentiable, and this ensures
that the carpet won’t display any singularity on its inner boundary.
The symmetric tensors ε′ and μ′ are fully described by five non vanishing

entries in a Cartesian basis:
The transformation is done only in the z− direction:

Jzz′ =

⎛
⎜⎝

1 0 0
0 1 0
∂z

∂x′
∂z

∂y′
α−1

⎞
⎟⎠ (78)

where α = (z2 − z1)/z2 and with J the Jacobian matrix of the transforma-
tion.
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It follows that transformed tensors of permittivity and permeability are:

ε′ = μ′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

α−1 0 − ∂z

∂x′

0 α−1 − ∂z

∂y′

− ∂z

∂x′ − ∂z

∂y′
α

(
1 +

(
∂z

∂x′

)2

+

(
∂z

∂y′

)2
)

⎞
⎟⎟⎟⎟⎟⎟⎠

(79)

The purpose of the next section is to show that such carpets work equally
well for electromagnetic and plasmonic fields. This is due to the fact that the
transformed medium is valid for any field solution of the Maxwell equations
(which is obviously the case for SPPs). Importantly, we note that this
material is not only heterogeneous anisotropic but also magnetic, which
seems a far technological reach. However, these constraints can be further
relaxed using some quasi-conformal grids in the spirit of Li and Pendry’s
work for two-dimensional carpets [113].

14.2 Gaussian shaped bump in a flat box

Figure 16. Amplitude (a) and real part (b) of the scattered magnetic field
for a plane wave incident from the top on the carpet. (c-d) Top and side
views of the real part of the magnetic field for a SPP launched from the left
at the metal-dielectric interface. Courtesy of M. Kadic, Institut Fresnel.

We now wish to apply the recipe for the design of 3D carpets to specific
geometrical transformations in order to hide smooth and conical shaped
bumps on a metallic surface. We first present the projection of the flat sur-
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face on a smooth cos2 shaped surface. This shape of the bump is described
by:

z1 = h0 cos
(πx

l

)2
cos
(πy

l

)2
with h = 2.10−7 ; l = 1.25 10−6 z2 = 7.5 10−7

(80)

∂z1
∂x

= −2ho cos
(πx

l

)
.cos

(πy
l

)2
. sin

(πx
l

)
.
π

l
(81)

∂z1
∂y

= −2ho cos
(πy

l

)
cos
(πx

l

)2
. sin

(πy
l

)
.
π

l
(82)

We report in Figure 16 the finite element computations which exemplify the
role played by the carpet in the control of the reflection of a plane wave on
the bumped surface with the transformed medium, see Figure 16(panels:
a and b). The bump with the transformed medium is mimicking a flat
mirror. The same result is obtained for a SPP propagating on the metal
surface through the transformed medium without any scattering, see Figure
16(panels: c and d).

15 Plasmonic carpet: Experimental demonstration

Figure 17. SEM micrograph of the structure realized by single-step
electron-beam-lithography. The defect line is used to launch the SPP from
the left to the structure (bump with cloak) (right). The carpet-cloak is
made of TiO2 cones as shown in the zoom (right). Courtesy of J. Renger
and R. Quidant, ICFO Barcelone.
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Figure 18. Leakage radiation principle. Using the Kretschmann configu-
ration principle we can deduce that by reciprocity, a SPP propagating at
the surface of thin film leaks into the substrate. Mapping the leak provides
a direct information about the intensity of the surface field propagating at
the interface. Courtesy of M. Kadic, Institut Fresnel.

Figure 19. Experimental diffraction of a SPP incident from the top (mag-
netic field) (a) The SPP hits the straight reflector. (b) Cloak in front of
the curved reflector nearly compensates for the curved reflector. (c) The
SPP hits the curved reflector. d) Comparison of averaged curvature of SPP
wavefronts in cases a) b) and c). Courtesy of J. Renger and R. Quidant,
ICFO Barcelone.
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The experimental results presented in this section have been obtained in
ICFO in Barcelona by the team of Professor Romain Quidant. The work
has been carried out by Dr. Jan Renger. As pointed out by the numerical
simulations, we choose a configuration in which a gold surface is structured
with TiO2 nanostructures. The TiO2 particles are placed in the crescent-
moon-like carpet and are first fabricated on top of a 60-nm-thin Au film by
combining electron-beam lithography and reactive ion etching. In a second
lithography step, a curved Bragg-type reflector (formed by 15 gold lines
(section = 150 nm 150 nm) periodically separated by half the SPP wave-
length) is added, acting as the object to be hidden behind the carpet. The
shape of the obtained TiO2 particles is conical (h = 200 nm, r = 210 nm)
as a consequence of the etching anisotropy. The SPP was launched at a
ripple-like, 200-nm-wide TiO2-line placed 44 μm away from the reflector.
SPPs propagating on thin metal films deposited on dielectric substrate have
radiative losses into the substrates. This leakage radiation was collected
using a high-numerical aperture objective to map the SPP fields. Addition-
ally for the sake of clarity, we employed spatial filtering in the conjugated
(Fourier-) plane to suppress the direct transmitted light from the excitation
spot and scattered light in order to isolate the carpet properties. Origi-
nal attempts at reflecting SPPs with flat and curved homogeneous metallic
step-like mirror turned out to be inefficient because the SPPs tend to radi-
ate in open space. We therefore decided to consider instead flat and curved
Bragg mirrors, formed by periodically arranged metal ridges, which show a
much higher reflectivity. The leakage radiation microscopy (LRM) images
map the distribution of the SPPs propagating at the gold/air interface and
interacting with the different structures fabricated at the gold surface. In
the case of a bare curved Bragg-reflector, the reflected SPPs are propagat-
ing into different directions depending on their relative angle to the normal
to the mirror lines (see green arrows in Figure 19(c)), thus leading to a
curved wave front. Conversely, adding the crescent-moon-like TiO2 carpet
re-establishes a fringe pattern with a nearly straight wave front (see Figure
19(b)) very similar to the case of a flat Bragg-mirror. The remaining small
lateral modulations are attributed to imperfections in the manufacturing.
Further, we quantify the reduction in the wave front curvature induced by
the presence of the crescent-moon-like TiO2 carpet. Comparing the areas
under the numerically averaged curves b (curved mirror with carpet) and c
(curved mirror without carpet) leads to reduction by a factor 3.7 as shown
in Figure 19(d). Figure 20 further numerically demonstrates that the plas-
monic carpet cloak should work from 650nm to 1000nm.
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Figure 20. Broadband aspect for the SPP carpet. Numerical simulation for
a range of wavelengths (phase and amplitude are represented respectively
on the left and right side): (a) 650nm; (b) 850nm; (c) 1000nm. Courtesy of
M. Kadic, Institut Fresnel.

16 Conclusion

In this chapter, we have reviewed the properties of media with negative per-
mittivity and permeability. We discussed the choice of the sign of the refrac-
tive index. We also proposed a multi-structured point of view for the lens-
ing effect associated with a simplified version of the perfect lens (the poor
man’s lens) consisting of infinite conducting split ring resonators (SRRs). In
this way, we have bridged electromagnetic and acoustic metamaterials us-
ing some spring mass model approximation for SRRs, which allowed us to
approximate the frequencies at which an array of SRRs behaves effectively
as a homogeneous medium with negative permittivity, or shear modulus,
depending upon whether we consider transverse electric waves or anti-plane
shear waves. We then noted that SRRs have been also used to fabricate an
invisibility cloak by Pendry’s team in 2006. Its design is based upon geomet-
rical transformations which may be viewed as a unified formalism bridging
several techniques in electromagnetism: treatment of unbounded domains
and of twisted structures, design of invisibility cloaks... The cornerstone of
the method is to remark that the conductivity equation, and in the same way
electrostatic, magnetostatic and electromagnetic equations, can be written
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in a form such that all the metric properties are encapsulated in the material
properties. The change of coordinates may therefore generate exotic equiv-
alent material properties, via the Nicolet-Zolla equivalence rule (32), and
the rest of the computation is dealt with just as if rectangular Cartesian
coordinates were used. Though this technique is completely general, the
fact that the obtained materials are usually anisotropic and inhomogeneous
makes it of particular interest in the context of the finite element method
where it provides very interesting models that do not require a modification
of the existing code (and thus provides examples whereby the power of this
method unfolds). It further provides a tool to design new electromagnetic
devices such as the invisibility cloaks. It gives also an interpretation of neg-
ative refractive index materials together with a pictural view of the perfect
lens that corresponds to a “folding” of the space [73; 58; 77]. Neverthe-
less, it should be emphasized that the space transformations that do not
correspond to a diffeomorphism lead to material properties that are, if not
impossible to obtain , at least challenging for the optical metamaterial sci-
ence (even in a small frequency range). Thus far, experimental verification
of invisibility cloaks was chiefly achieved for microwaves [76; 52]. Finally,
we looked into plasmonics, which is an emergent subject in photonics al-
lowing for a markedly enhanced control of surface electromagnetic waves
propagating at structured metal- dielectric interfaces. A design of a broad-
band plasmonic carpet was discussed, and its experimental demonstration
put forward.
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Abstract We derive explicit asymptotic formulations for surface,
interfacial and edge waves in elastic solids. The effects of mixed
boundary conditions and layered structure are incorporated. A
hyperbolic-elliptic duality of surface and interfacial waves is em-
phasized along with a parabolic-elliptic duality of the edge bending
wave on a thin elastic plate. The validity of the model for the
Rayleigh wave is illustrated by several moving load problems.

1 Introduction

Surface elastic waves as well as their interfacial and edge analogues seem
to be ’hidden’ within the general equations of elastodynamics. At the same
time the contribution of these waves to the overall dynamic response some-
times is more substantial than that of bulk waves. As an example, we
mention a resonant behaviour of elastic solids caused by high speed moving
loads.

This chapter is centered on explicit models for surface, interfacial and
edge waves, that neglect the effect of bulk waves. We study the classi-
cal Rayleigh surface wave (Rayleigh 1885) along with Schölte-Gogoladze
(Schölte 1949 and Gogoladze 1948) and Stoneley (1924) interfacial waves,
and the edge bending wave on a thin plate discovered by Konenkov (1960),
relying on the methodology established in our recent publications (Kaplunov
et al. 2006, 2010, 2013, Dai et al. 2010, Erbaş et al. 2012). General formula-
tions for homogenous surface and interfacial waves were also developed last
years by Achenbach (1998), Kiselev & Rogerson (2009), Kiselev & Parker
(2010), Parker (2012).
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Our approach is based upon a fundamental result by Friedlander (1948)
and Chadwick (1976) regarding representation of plane homogenous sur-
face and interfacial waves in terms of harmonic functions. On perturbing
the Rayleigh wave eigensolution in slow time we derive in paragraph 2.4 a
hyperbolic-elliptic model for plane strain near-surface motion. The model
consists of a pseudo-static elliptic equation governing decay into the interior,
subject to the Dirichlet boundary condition in the form of a hyperbolic equa-
tion describing propagation of the Rayleigh wave under prescribed surface
stresses. It reveals a hyperbolic-elliptic duality of the Rayleigh wave and
also has obvious advantages for numerical computations. Indeed, we split
the original vector hyperbolic problem into a scalar hyperbolic equation and
a time independent elliptic problem over the interior.

With the help of the Radon integral transform, we extend the consid-
eration above to 3D case including a pseudo-differential formulation for a
coated half-space, see paragraphs 2.4 and 2.6. In addition, the proposed ap-
proach appears to be very promising for mixed dynamic problems for cracks
and stamps, see paragraph 2.5.

In Section 3 we demonstrate that the hyperbolic-elliptic models for in-
terfacial waves are not more difficult than that for the Rayleigh wave. The
results of this section may also be easily generalised to 3D problems.

Resonant effect of moving loads studied in Section 4, is virtually the
ideal setup for testing derived models. We consider a variety of plane strain
problems taking into account mixed boundary conditions along with layered
structure. A number of elegant approximate solutions are obtained in a
surprisingly straightforward manner.

The dispersive nature of the edge bending wave on a thin plate leads to a
parabolic-elliptic asymptotic theory. We arrive at a beam-like fourth-order
equation modelling propagation of disturbances along the edge, see Section
5.

2 Surface waves

We derive an asymptotic hyperbolic-elliptic model for the surface Rayleigh
wave. The plane strain motion is studied in great detail including mixed
boundary value problems. The obtained results are extended to 3D case.

2.1 Equations of linear elastodynamics

Consider an elastic half-space given by

H+

(3)
=
{
(x1;x2;x3)

∣∣−∞ < x1 <∞, −∞ < x2 <∞, 0 ≤ x3 <∞} .
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The equations of motion in 3D elasticity are taken in the form (see e.g.
Achenbach 1973)

∂σim

∂xm

= ρ
∂ 2ui

∂t2
, i = 1, 2, 3, (2.1.1)

where ρ is volume density, t is time, ui are displacement vector components,
σim are stress tensor components, and summation over repeated suffices is
assumed. In case of a free surface wave homogeneous boundary conditions
over the surface x3 = 0 are imposed, yielding

σ3i = 0. (2.1.2)

Below we also consider more general boundary conditions.
The constitutive relations are given by

σik = δikλ divu+ 2μ

(
∂ui

∂xk

+
∂uk

∂xi

)
, (2.1.3)

where u = {u1, u2, u3}, δik is the Kronecker delta, and λ and μ are the Lamé
elastic moduli. In view of the constitutive relations (2.1.3) the equations of
motion take the form

(λ+ μ) grad divu+ μΔ3u = ρ
∂ 2u

∂t2
, (2.1.4)

where Δ3 =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

is the 3D Laplace operator.

2.2 Plane harmonic Rayleigh wave

Let us begin with a 2D problem for a half-plane

H+

(2)
=
{
(x1;x3)

∣∣−∞ < x1 <∞, 0 ≤ x3 <∞} ,
adapting the plane strain assumptions

u2 = 0, ui = ui(x1, x3, t), (i = 1, 3).

In this case, the displacement field {u1, u3} may be expressed through the
elastic wave potentials φ and ψ as

u1 =
∂φ

∂x1

− ∂ψ

∂x3

, u3 =
∂φ

∂x3

+
∂ψ

∂x1

. (2.2.1)

Then, the equations of motion (2.1.4) are rewritten in the form

Δφ− 1

c21

∂ 2φ

∂t2
= 0, Δψ − 1

c22

∂ 2ψ

∂t2
= 0, (2.2.2)
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where c1 =
√

(λ+ 2μ)/ρ and c2 =
√

μ/ρ denote the longitudinal and shear

wave speeds, respectively, and Δ =
∂2

∂x2
1

+
∂2

∂x2
3

. The wave potentials may

then be found in the form of travelling wave solutions

φ = φ(x1 − ct, αx3) = A exp [ik (x1 − ct)− kαx3] , (2.2.3)

ψ = ψ(x1 − ct, βx3) = B exp [ik (x1 − ct)− kβx3] , (2.2.4)

decaying as x3 →∞, where c is the sought for wave speed, and as it readily
follows from (2.2.2),

α =

√
1− c2

c21
, β =

√
1− c2

c22
. (2.2.5)

It is clear that each of the functions φ and ψ in (2.2.3) and (2.2.4) are
harmonic over the half-plane H+

(2)
. We also remark that all the speculations

in what follows are equally valid for the wave travelling in the opposite
direction, i.e. for the functions φ and ψ depending on x1+ct. The boundary
conditions (2.1.2) can now be expressed in terms of the wave potentials as

2
∂ 2φ

∂x1∂x3

+
∂ 2ψ

∂x2
1

− ∂ 2ψ

∂x2
3

= 0,

(
κ2 − 2

) ∂ 2φ

∂x2
1

+ κ2 ∂
2φ

∂x2
3

+ 2
∂ 2ψ

∂x1∂x3

= 0,

(2.2.6)

with

κ =
c1
c2

=

√
2− 2ν

1− 2ν
,

where ν is the Poisson ratio. Substitution of the formulae (2.2.3), (2.2.4)
into (2.2.6) results in the homogeneous algebraic system in A and B

2iαA+ (1 + β2)B = 0

(1 + β2)A− 2iβB = 0

(2.2.7)

which possesses a non-trivial solution provided that the related determinant
equals zero, i.e.

4αβ = (1 + β2)2, (2.2.8)

originating from the classical paper by Lord Rayleigh (1885) and having a
unique root c = cR, provided that

α = αR =

√
1− c2R

c21
, β = βR =

√
1− c2R

c22
. (2.2.9)
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2.3 Plane surface wave of arbitrary profile

We follow the approach in Friedlander (1948) and Chadwick (1976) in
order to generalize the sinusoidal Rayleigh wave solution derived in the
previous subsection to a surface wave of arbitrary profile

φ = φ(x1 − ct, αx3), ψ = ψ(x1 − ct, βx3), (2.3.1)

with α and β defined above, see (2.2.5), and plane harmonic functions φ
and ψ satisfying the elliptic equations

∂ 2φ

∂x2
3

+ α2 ∂
2φ

∂x2
1

= 0,
∂ 2ψ

∂x2
3

+ β2 ∂
2ψ

∂x2
1

= 0, (2.3.2)

arising from the wave equations (2.2.2). On substituting the harmonic func-
tions (2.3.1) into the boundary conditions (2.2.6), we obtain

2
∂ 2φ(x1 − ct, 0)

∂x1∂x3

+
(
1 + β2

) ∂ 2ψ(x1 − ct, 0)

∂x2
1

= 0,

− (1 + β2
) ∂ 2φ(x1 − ct, 0)

∂x2
1

+ 2
∂ 2ψ(x1 − ct, 0)

∂x1∂x3

= 0.

(2.3.3)

Throughout this chapter we employ the Cauchy-Riemann identities for
a plane harmonic function f(x, ky). They are given by

∂f

∂y
= −k ∂f

∂x
,

∂f

∂x
=

1

k

∂f

∂y
, f = −f, (2.3.4)

where bar indicates a harmonic conjugate.
With the help of these identities the conditions (2.3.3) may be trans-

formed to

2α
∂ 2φ

∂x2
1

+
(
1 + β2

) ∂ 2 ψ

∂x2
1

= 0,

(
1 + β2

) ∂ 2φ

∂x2
1

+ 2β
∂ 2ψ

∂x2
1

= 0,

(2.3.5)

leading to the Rayleigh equation (2.2.8). In this case the sought for har-
monic eigenfunctions

φ = φ(x1 − cRt, αRx3), ψ = ψ(x1 − cRt, βRx3) (2.3.6)

are related to each other on the surface x3 = 0 as

∂ψ

∂x1

= − 2

1 + β2
R

∂φ

∂x3

, (2.3.7)
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see (2.3.3)1. Moreover, the last relation specified on the surface may be
extended to the whole interior region as

ψ(x1 − cRt, βRx3) =
2αR

1 + β2
R

φ(x1 − cRt, βRx3), (2.3.8)

or

φ(x1 − cRt, αRx3) = − 2βR

1 + β2
R

ψ(x1 − cRt, αRx3), (2.3.9)

for more details see Chadwick (1976). Thus, the wave potentials are related
through the Hilbert transform, and consequently the Rayleigh wave field
may be expressed through a single harmonic function.

2.4 Hyperbolic-elliptic model

Plane strain problem Consider now non-homogeneous boundary con-
ditions

σ31 = Q(x1, t), σ33 = P (x1, t), (2.4.1)

imposed along the surface x3 = 0 of the half-plane H+

(2)
. These may be

reformulated in terms of the wave potentials as

2
∂ 2φ

∂x1∂x3

+
∂ 2ψ

∂x2
1

− ∂ 2ψ

∂x2
3

=
Q

μ
,

(
κ2 − 2

) ∂ 2φ

∂x2
1

+ κ2 ∂
2φ

∂x2
3

+ 2
∂ 2ψ

∂x1∂x3

=
P

μ
.

(2.4.2)

Let us we perturb the surface wave eigensolutions (2.3.6) in slow time

τ = εt, (ε� 1). (2.4.3)

Throughout this paragraph we assume that the deviation of the analysed
perturbed motion {φ(x1 − cRt, x3, τ), ψ(x1 − cRt, x3, τ)} from the homoge-
neous Rayleigh wave field (2.3.6) is small. On inserting slow time τ into the
original equations of motion (2.2.2) at α = αR and β = βR, and taking into

account the operator identity
∂

∂t
= −cR ∂

∂x1

+ ε
∂

∂τ
, we have

∂ 2φ

∂x2
3

+ α2
R

∂ 2φ

∂x2
1

+ 2
ε

cR

(
1− α2

R

) ∂ 2φ

∂x1∂τ
− ε2

c2R

(
1− α2

R

) ∂ 2φ

∂τ2
= 0,

∂ 2ψ

∂x2
3

+ β2
R

∂ 2ψ

∂x2
1

+ 2
ε

cR

(
1− β2

R

) ∂ 2ψ

∂x1∂τ
− ε2

c2R

(
1− β2

R

) ∂ 2ψ

∂τ2
= 0.

(2.4.4)
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Next, we expand the potentials in asymptotic series as

φ(x1−cRt, x3, τ)=φ0(x1−cRt, αRx3, τ)+εφ1(x1−cRt, x3, τ)+. . . ,

ψ(x1−cRt, x3, τ)=ψ0(x1−cRt, βRx3, τ)+εψ1(x1−cRt, x3, τ)+. . . ,
(2.4.5)

where the leading order terms φ0 and ψ0 coincide with the surface wave
eigensolutions (2.3.6) to within a parametric dependence of slow time.

On substituting the expansion (2.4.5) into the perturbed equations of
motion (2.4.4) we get expressions for O(ε) terms. They are written as

φ1 = φ10 − x3

1− α2
R

αRcR

∂φ0

∂τ
,

ψ1 = ψ10 − x3

1− β2
R

βRcR

∂ψ0

∂τ
,

(2.4.6)

where φ10 = φ10(x1 − cRt, αRx3, τ) and ψ10 = ψ10(x1 − cRt, βRx3, τ) are
arbitrary functions, harmonic in the first two variables, for more details see
Kaplunov et al. (2006).

It is convenient to treat the two sub-problems for boundary conditions,
namely, the cases of vertical (Q = 0, P �= 0) and horizontal (P = 0, Q �= 0)
loading. Let us consider first the effect of a vertical force normalizing it by
P = εPε. On introducing the formulae (2.4.5) and (2.4.6) into the boundary
conditions (2.4.2) we get at x3 = 0

2
∂ 2φ10

∂x1∂x3

+
(
1 + β2

R

) ∂ 2 ψ10

∂x2
1

− 2(1− α2
R)

cRαR

∂2φ0

∂x1∂τ

+
2(1− β2

R)

cRβR

∂2ψ0

∂x3∂τ
= 0,

− (1 + β2
R

) ∂ 2φ10

∂x2
1

+ 2
∂ 2ψ10

∂x1∂x3

− 2(1− α2
R)κ

2

cRαR

∂2φ0

∂x3∂τ

−2(1− β2
R)

cRβR

∂2ψ0

∂x1∂τ
=

Pε

μ
.

(2.4.7)

Then, using the Cauchy-Riemann identities (2.3.4) along with the relations

ψ0(x1−cRt, 0)= − 2αR

1+β2
R

φ0(x1−cRt, 0)= −1+β2
R

2βR

φ0(x1−cRt, 0), (2.4.8)

following from (2.3.8) and (2.3.9), we rewrite the boundary conditions (2.4.7)
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as

2αR

∂ 2φ10

∂x2
1

+
(
1 + β2

R

) ∂ 2 ψ10

∂x2
1

=
2

cR

[
1− β4

R

2βR

− 1− α2
R

αR

]
∂2φ0

∂x1∂τ
,

−(1+β2
R

)∂ 2φ10

∂x2
1

−2βR

∂ 2ψ10

∂x2
1

=
2

cR

[
1−β2

R−
1−β4

R

2β2
R

]
∂2φ0

∂x1∂τ
+
Pε

μ
.

(2.4.9)

It is clear that the determinant of the left hand side of (2.4.9) equals zero.
The solvability condition is

2

cR

∂2φ0

∂x1∂τ
=

1 + β2
R

2μB
Pε, (2.4.10)

where

B =
βR

αR

(1− α2
R) +

αR

βR

(1− β2
R)− (1− β4

R). (2.4.11)

Let the load on the right hand side of (2.4.10) evolve in slow time as

Pε(x1, t) =
∂2pε
∂τ∂x1

, (2.4.12)

with pε = pε(x1 − cRt, τ). Then we readily infer from (2.4.10) that

φ0 =

(
1 + β2

R

)
cR

4μB
pε, (2.4.13)

i. e. φ0 = φ0(x1 − cRt, τ) as was initially assumed.
It is evident, however, that for an arbitrary vertical load P the solu-

tion of the equation (2.4.10) may demonstrate a more general time depen-
dence. Nevertheless, this equation always enables a correct evaluation of
the Rayleigh wave contribution to the overall dynamic response. Moreover,
the developed perturbation procedure is a counterpart of a routine relying
on computation of the residues corresponding to the Rayleigh wave poles,
see the Appendix in Kaplunov et al. (2006). It is also very crucial that the
solution of (2.4.10) will often dominate in the near-surface zone, in partic-
ular for impulse and near-resonant moving loads. For the latter the slow
time may be defined as

τ =

∣∣∣∣1− c

cR

∣∣∣∣t, c ≈ cR, (2.4.14)

where c is the speed of the load.
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Finally, applying the operator asymptotic relationship

2ε

cR

∂2

∂x1∂τ
=

∂2

∂x2
1

− 1

c2R

∂2

∂t2
+O

(
ε2
)
,

we present the equation (2.4.10) for φ = φ0 in terms of the original time t
as

∂ 2φ

∂x2
1

− 1

c2R

∂ 2φ

∂t2
=

1 + β2
R

2μB
P. (2.4.15)

Thus, the asymptotic formulation for the Rayleigh wave has been re-
duced to a scalar problem for the pseudo-static elliptic equation (2.3.2)1
derived in the previous subsection subject to the Dirichlet boundary condi-
tion at x3 = 0 in the form of the wave equation (2.4.15). The shear potential
ψ may then be restored from the relation (2.3.8).

In case of tangential loading a similar asymptotic model consists of a
scalar problem for the elliptic equation (2.3.2)2 subject to a boundary con-
dition at x3 = 0, given by the following hyperbolic equation

∂ 2ψ

∂x2
1

− 1

c2R

∂ 2ψ

∂t2
=

1 + β2
R

2μB
Q, (2.4.16)

with the potential φ determined through the Hilbert transform from (2.3.9).
We remark that the established approximate formulation is oriented to

the Rayleigh wave only and does not incorporate the effect of bulk waves.
The range of validity of the model (see (2.3.2), (2.3.8), (2.3.9), (2.4.15), and
(2.4.16)) covers the problems of near-surface dynamics with the dominant
contribution of the Rayleigh wave.

The consideration above reveals a dual hyperbolic-elliptic nature of the
Rayleigh wave. It is worth noting however that not all the displacement
components demonstrate a wave behaviour along the surface. In particular,
in case of vertical loading only the horizontal displacement u1 is governed
by a hyperbolic equation. The latter follows from (2.4.15) (see also (2.3.3))
and can be written as

∂ 2u1

∂x2
1

− 1

c2R

∂ 2u1

∂t2
=

1− β4
R

4μB

∂P

∂x1

. (2.4.17)

3D problem Let us generalise the plane strain formulation obtained in
the previous subsection, to the 3D case. We start from the equations of
motion (2.1.4), in case of vertical surface loading modelled by the boundary
conditions at x3 = 0

σ31 = σ32 = 0, σ33 = P (x1, x2, t). (2.4.18)
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The Radon integral transform

f (α)(χ, α, x3, t) =

∞∫
−∞

f (χ cosα−η sinα, χ sinα+η cosα, x3, t) dζ, (2.4.19)

where
χ = x1 cosα+ x2 sinα, η = −x1 sinα+ x2 cosα,

with the angle α varying over the interval 0 ≤ α < 2π, reduces the original
3D elastodynamics problem to a 2D problem for associated transforms, for
more details see Georgiadis & Lykotrafitis (2001) and references therein. In
(2.4.19) and below the Radon transforms are denoted by suffice (α). We
also define transformed displacements in the Cartesian frame (χ, η) as

u(α)
χ = u

(α)
1 cosα+ u

(α)
2 sinα, u(α)

η = −u(α)
1 sinα+ u

(α)
2 cosα, (2.4.20)

and set u
(α)
η = 0 assuming that the the anti-plane motion does not induce

surface waves.
It is clear that the aforementioned 2D problem for Radon transforms is

formally identical to that in the theory of plane strain. Then, we introduce
an analogue of wave potentials

u(α)
χ =

∂φ(α)

∂χ
− ∂ψ(α)

∂x3

, u
(α)
3 =

∂φ(α)

∂x3

+
∂ψ(α)

∂χ
(2.4.21)

and follow the perturbation procedure developed in the previous subsec-
tion. The asymptotic formulation for the Rayleigh wave (expressed through
Radon transforms) contains the elliptic equations

∂ 2φ(α)

∂x2
3

+ α2
R

∂ 2φ(α)

∂χ2
= 0,

∂ 2ψ(α)

∂x2
3

+ β2
R

∂ 2ψ(α)

∂χ2
= 0, (2.4.22)

over the interior, along with the hyperbolic equation

∂ 2φ(α)

∂χ2
− 1

c2R

∂ 2φ(α)

∂t2
=

1 + β2
R

2μB
P (α), (2.4.23)

specified on the surface x3 = 0. The relation between the potentials φ(α)

and ψ(α) on the surface now becomes

∂ψ(α)

∂χ
= − 2

1 + β2
R

∂φ(α)

∂x3

. (2.4.24)
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Next, we introduce a pair of the potentials ψ
(α)
1 = ψ(α) cosα and ψ

(α)
2 =

ψ(α) sinα in order to invert the formulae (2.4.22)-(2.4.24). As a result, we
get

∂ 2φ

∂x2
3

+ k21Δφ = 0, (2.4.25)

∂ 2ψi

∂x2
3

+ k22Δψi = 0, (2.4.26)

where now Δ =
∂2

∂x2
1

+
∂2

∂x2
2

, and i = 1, 2, subject to the boundary conditions

(x3 = 0)

Δφ− 1

c2R

∂ 2φ

∂t2
=

1 + β2
R

2μB
P, (2.4.27)

and

∂ψ1

∂x1

=
∂ψ2

∂x2

= − 2

1 + β2
R

∂φ

∂x3

. (2.4.28)

In the formulae above the potentials φ, ψ1 and ψ2 satisfy the vector relation
(Dai et al. 2010)

u = gradφ+ curlΨ, (2.4.29)

where Ψ = (−ψ2, ψ1, 0).

2.5 Plane mixed problems

The methodology in 2.4.1 may also be adapted for mixed boundary
value problems arising in dynamics of cracks and stamps. Consider first
a vertical stamp applied to the surface of the elastic half-plane H+

(2)
. The

boundary conditions at x3 = 0 include zero tangential stresses

σ31 = 0, (2.5.1)

along with normal stresses P and vertical displacements U3 prescribed on
the disjoint parts of the surface S1 and S2, respectively (S1∪S2 = R). Thus

σ33 = P (x1, t), at x1 ∈ S1,

u3 = U3(x1, t), at x1 ∈ S2,
(2.5.2)

see Fig. 1.
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x
3

x
1

P
U3

S1S2

Figure 1. A vertical rigid stamp

On utilizing the formulae (2.3.2), (2.3.8) and (2.4.15), we arrive at a
scalar mixed problem for the elliptic equation (see Erbaş et al. 2012)

∂ 2φ

∂x2
3

+ α2
R

∂ 2φ

∂x2
1

= 0 (2.5.3)

subject to the boundary conditions (x3 = 0)

∂ 2φ

∂x2
1

− 1

c2R

∂ 2φ

∂t2
=

1 + β2
R

2μB
P, at x1 ∈ S1, (2.5.4)

and
∂φ

∂x3

=
1 + β2

R

1− β2
R

U3, at x1 ∈ S2. (2.5.5)

As before, the shear potential ψ is expressed by the relation (2.3.8).

A similar formulation may be deduced for an elastic half-plane, part of
which is coated by a flexible inextensible membrane not resisting to vertical
motion. In this case the boundary conditions on the surface x3 = 0 may be
written as

σ33 = 0, at x3 = 0,

σ31 = Q(x1, t), at x1 ∈ S1, (2.5.6)

u1 = U1(x1, t) at x1 ∈ S2.

where Q and U1 denote the given horizontal stresses and displacements,
respectively, see Fig. 2.

Now a scalar setup for the shear potential ψ is given by the equation

∂ 2ψ

∂x2
3

+ β2
R

∂ 2ψ

∂x2
1

= 0 (2.5.7)
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3
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Figure 2. An inextensible membrane

along with the boundary conditions (x3 = 0)

∂ 2ψ

∂x2
1

− 1

c2R

∂ 2ψ

∂t2
=

1 + β2
R

2μB
Q, at x1 ∈ S1, (2.5.8)

and
∂ψ

∂x3

=
1 + β2

R

1− β2
R

U1, at x1 ∈ S2. (2.5.9)

2.6 Long wave asymptotic model for a surface wave on a coated

half-space

The asymptotic formulation for the Rayleigh wave may also be extended
to a coated half-space in the framework of long-wave approximation. Con-
sider the elastic half-space H+

(3)
coated by an elastic layer occupying the

region −h ≤ x3 ≤ 0, see Fig. 3.

x
1

x3

P

h

0

Figure 3. A half-space coated by an elastic layer

As in subsection 2.4.2, we impose the boundary conditions (2.4.18) on the
upper face of the coating x3 = −h. We also assume continuity of all dis-
placements and stresses at the interface x3 = 0.

A standard asymptotic long-wave technique applied to the coating (here
and below in this subsection for more details see Dai et al. (2010) and
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references therein) results in effective boundary conditions on the interface
x3 = 0, namely

σi3 = ρ0h

{
∂ 2ui

∂t2
− c220

[
∂ 2ui

∂x2
j

+ 4
(
1− κ−2

0

) ∂ 2ui

∂x2
i

+
(
3− 4κ−2

0

) ∂ 2uj

∂xi∂xj

]}
,

σ33 = ρ0h
∂ 2u3

∂t2
+ P, 1 ≤ i �= j ≤ 2,

(2.6.1)

where ρ0 is density of the coating, c10 and c20 are associated bulk wave
speeds, and κ0 = c10/c20. The boundary conditions (2.6.1) coincide with
those earlier proposed by Tiersten (1969).

Thus, the initial problem is reduced to analysis of the uncoated half-
space H+

3 subject to the boundary conditions (2.6.1) imposed on its surface
x3 = 0. In this case the transformed equations

∂ 2φ(α)

∂χ2
+

∂ 2φ(α)

∂x2
3

− 1

c21

∂ 2φ(α)

∂t2
= 0,

∂ 2ψ(α)

∂χ2
+

∂ 2ψ(α)

∂x2
3

− 1

c22

∂ 2ψ(α)

∂t2
= 0,

(2.6.2)

are accompanied by the boundary conditions (x3 = 0)

μ

[
2
∂ 2φ(α)

∂χ∂x3

+
∂ 2ψ(α)

∂χ2
−∂ 2ψ(α)

∂x2
3

]
=μ0h

[
c−2

20

(
∂ 3φ(α)

∂χ∂t2
− ∂ 3ψ(α)

∂x3∂t2

)

−4 (1− κ−2

0

)(∂ 3φ(α)

∂χ3
− ∂ 3ψ(α)

∂x3∂χ2

)]
,

μ

[(
κ2 − 2

) ∂ 2φ(α)

∂χ2
+ κ2

∂ 2φ(α)

∂x2
3

+ 2
∂ 2ψ(α)

∂χ∂x3

]

= μ0hc
−2

20

(
∂ 3φ(α)

∂x3∂t2
+

∂ 3ψ(α)

∂χ∂t2

)
− P (α).

(2.6.3)

A perturbation procedure similar to that in subsection 2.4.1, leads to a
singularly perturbed hyperbolic equation on the surface. It is given by

∂ 2φ(α)

∂χ2
− 1

c2R

∂ 2φ(α)

∂t2
+

bh

αR

∂ 3φ(α)

∂χ2∂x3

=
1 + β2

R

2μB
P (α), (2.6.4)

with

b =
μ0

2μB
(1− β2

R)
[
(1− β2

R0)(αR + βR)− 4βR(1− κ−2

0 )
]
. (2.6.5)
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In the original variables, we get from (2.6.4)

Δφ− 1

c2R

∂ 2φ

∂t2
+

bh

αR

∂

∂x3

(Δφ) =
1 + β2

R

2μB
P, (2.6.6)

which is a boundary condition for the elliptic equation (2.4.25), where now

Δ =
∂2

∂x2
1

+
∂2

∂x2
2

.

The perturbed hyperbolic equation (2.6.6) can also be presented in a
pseudo-differential form, i.e.

Δφ− 1

c2R

∂ 2φ

∂t2
− bh

√−Δ(Δφ) =
1 + β2

R

2μB
P. (2.6.7)

In the plane strain case the last equation becomes

∂ 2φ

∂x2
1

− 1

c2R

∂ 2φ

∂t2
− bh

√
− ∂2

∂x2
1

∂ 2φ

∂x2
1

=
1 + β2

R

2μB
P. (2.6.8)

This equation may also be written through the Hilbert transform. There-
fore, the presence of a coating inevitably leads to an integro-differential
formulation.

In addition, the equation (2.6.8) enables a simple approximation of the
exact dispersion relation, see e.g. Shuvalov & Every (2008) and references
therein. Indeed, we easily deduce from (2.6.8) that

v = cR

(
1− b

2
|kh|+ . . .

)
, (2.6.9)

demonstrating that the Rayleigh wave speed cR is a local extremum over
the long wave domain kh� 1, where k denotes wave number.

3 Interfacial waves

The results obtained for the Rayleigh wave are now generalized to interfa-
cial waves. In view of the existing representation in terms of a single har-
monic function (Kiselev & Parker 2010), we may expect similar hyperbolic-
elliptic formulations for both Schölte-Gogoladze and Stoneley waves, see also
Prikazchikov (2011). In this section we restrict ourselves to plane strain
assumptions, however, 3D formulations may be easily derived using the
Radon transform similarly to what has been done for the Rayleigh wave.
We show that the analysis of interfacial wave fields may be also reduced to
scalar problems for the elliptic equations. As a result, a tedious algebra,
traditionally associated with investigation of interfacial waves, seems to be
mainly overcome.
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3.1 Schölte-Gogoladze wave

Consider an elastic half-plane H+

(2)
, joint with a fluid half-plane

H−

(2)
=
{
(x1;x3)

∣∣−∞ < x1 <∞, x3 < 0
}
,

and concentrate on the interfacial Schölte-Gogoladze wave propagating along
the line x3 = 0 and decaying away from it. This wave has been discovered
independently by Schölte (1949) and Gogoladze (1948).

The equations of motion for an elastic medium are given by (2.2.2),
whereas fluid motion is governed by the Helmholz equation

Δθ − 1

c2f

∂ 2θ

∂t2
= 0, (3.1.1)

where θ is the displacement potential, Δ =
∂2

∂x2
1

+
∂2

∂x2
3

, and cf is the fluid

wave speed. Below we assume zero tangential stresses and continuity of
normal displacements along the interface x3 = 0, leading to the boundary
conditions

σ31 = 0, u3 = v, σ33 − p = P (x1, t), (3.1.2)

where v and p are the vertical displacement and pressure in fluid, respec-
tively, given by

v =
∂θ

∂x3

, p = ρf
∂2θ

∂t2
,

with ρf denoting the volume density of the fluid, and P standing for pre-
scribed vertical stresses along the interface. The boundary conditions (3.1.2)
expressed in terms of the potentials φ, ψ and θ become

2
∂ 2φ

∂x1∂x3

− ∂ 2ψ

∂x2
1

+
∂ 2ψ0

∂x2
3

= 0,

∂φ0

∂x3

+
∂ψ

∂x1

− ∂θ

∂x3

= 0,

μ

[(
κ2 − 2

) ∂ 2φ0

∂x2
1

+ κ2 ∂
2φ

∂x2
3

− 2
∂ 2ψ

∂x1∂x3

]
− ρf

∂ 2θ

∂t2
= P.

(3.1.3)

The equation for the interfacial Schölte-Gogoladze wave speed follows
from (2.2.2), (3.1.1), and (3.1.3) at P = 0. It takes the form

4αSGβSG −
(
1 + β2

SG

)2
=

ρf
ρ

αSG

γSG

(
1− β2

SG

)2
, (3.1.4)
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where

αSG =

√
1− c2SG

c21
, βSG =

√
1− c2SG

c22
, γSG =

√
1− c2SG

c2f
, (3.1.5)

and cSG is the sought for speed of the Schölte-Gogoladze wave. Similarly
to the consideration in 2.4.1, we obtain an approximate hyperbolic-elliptic
formulation for the contribution of the Schölte-Gogoladze wave to the gen-
eral dynamic response. The decay into the interior is again governed by the
elliptic equation

∂ 2φ

∂x2
3

+ α2
SG

∂ 2φ

∂x2
1

= 0, (3.1.6)

while the interfacial dynamics is described by the hyperbolic equation (x3 =
0)

∂ 2φ

∂x2
1

− 1

c2SG

∂ 2φ

∂t2
= AP, (3.1.7)

where

A =
1 + β2

SG

μ

[
2BSG − ρf

ρ

(1− β2
SG)

2
(
γ2
SG − α2

SG − 4α2
SGγ

2
SG

)
2αSGγ3

SG

] , (3.1.8)

and BSG takes the form (2.4.11) to within the substitutions αR = αSG and
βR = βSG. It is readily observed that at ρf = 0 the equation (3.1.7) is
identical to that for the Rayleigh wave, see (2.4.15).

The potentials ψ and θ are related to the potential φ as

ψ(x1 − cSGt, βSGx3) =
2αSG

1 + β2
SG

φ(x1 − cSGt, βSGx3), (3.1.9)

and

θ(x1 − cSGt, γSGx3) = −1− β2
SG

1 + β2
SG

φ(x1 − cSGt, γSGx3). (3.1.10)

3.2 Stoneley wave

Next, we study two joint elastic half-planes H+

(2)
and H−

(2)
in order to

develop an asymptotic model for the Stoneley interfacial wave, see Stoneley
(1924). The equations of motion are now expressed in terms of two sets of
elastic potentials φ(k) and ψ(k) (k = 1, 2) as

Δφ(k) − 1

c2
1k

∂ 2φ(k)

∂t2
= 0, Δψ(k) − 1

c2
2k

∂ 2ψ(k)

∂t2
= 0, (3.2.1)
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where c1k =
√

(λk + 2μk)/ρk and c2k =
√

μk/ρk are the associated bulk
wave speeds for the medium k; in doing so, all the elastic parameters have
to satisfy pretty sophisticated existence conditions for the Stoneley wave
examined by Schölte (1947).

As before, we only consider a jump of normal stresses at the interface.
Thus, we have at x3 = 0

∂φ(1)

∂x1

− ∂φ(2)

∂x1

+
∂ψ(1)

∂x3

− ∂ψ(2)

∂x3

= 0,

∂φ(1)

∂x3

− ∂φ(2)

∂x3

− ∂ψ(1)

∂x1

+
∂ψ(2)

∂x1

= 0,

2μ1

∂ 2φ(1)

∂x1∂x3

− 2μ2

∂ 2φ(2)

∂x1∂x3

+ μ1

[
∂ 2ψ(1)

∂x2
3

− ∂ 2ψ(1)

∂x2
1

]
(3.2.2)

− μ2

[
∂ 2ψ(2)

∂x2
3

− ∂ 2ψ(2)

∂x2
1

]
= 0,

λ1

∂ 2φ(1)

∂x2
1

+ (λ1 + 2μ1)
∂ 2φ(1)

∂x2
3

− λ2

∂ 2φ(2)

∂x2
1

− (λ2 + 2μ2)
∂ 2φ(2)

∂x2
3

− 2μ1

∂ 2ψ(1)

∂x1∂x3

+ 2μ2

∂ 2ψ(2)

∂x1∂x3

= P,

where P = P (x1, t) is a given vertical force.
The transcedental equation for the Stoneley wave speed c = cS (Stoneley

1924) is

c4S
(
(ρ1 − ρ2)

2 − a1a2
)
+ 2c2Sm12(ρ2b1 − ρ1b2) +m2

12b1b2 = 0, (3.2.3)

in which

a1 = (ρ1α2S + ρ2α1S), a2 = (ρ1β2S + ρ2β1S),

bk = 1− αkSβkS , m12 = 2 (μ1 − μ2) ,
(3.2.4)

and

αkS =

√
1− c2S

c2
1k

, βkS =

√
1− c2S

c2
2k

, (k = 1, 2). (3.2.5)

The asymptotic model for the Stoneley wave arising from the boundary
value problem (3.2.1) and (3.2.2), contains the elliptic equation

∂ 2φ(1)

∂x2
3

+ α2
1S

∂ 2φ(1)

∂x2
1

= 0 (3.2.6)
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governing the decay into the interior. The rest of wave potentials is de-
termined by the following relations between the potentials at the interface
x3 = 0

ψ(2)(x1 − cSt, β2Sx3) =
g4

g1β2S

φ
(1)

(x1 − cSt, β2Sx3),

φ(2)(x1 − cSt, α2Sx3) =
g2
g1

φ(1)(x1 − cSt, α2Sx3), (3.2.7)

ψ(1)(x1 − cSt, β1Sx3) =
g3
g4

ψ(2)(x1 − cSt, β1Sx3),

where
g1 = (m12 − ρ1c

2
S)b2 + ρ2c

2
S(1 + α2Sβ1S),

g2 = (ρ2c
2
S +m12)b1 − ρ1c

2
S(1 + α1Sβ2S),

g3 = ρ2c
2
S(α1S + α2S)−m12α1Sb2,

g4 = ρ1c
2
S(α1S + α2S)−m12α2Sb1.

(3.2.8)

Finally, the hyperbolic equation for φ(1) on the interface x3 = 0 is written
as

∂ 2φ(1)

∂x2
− 1

c2S

∂ 2φ(1)

∂t2
=

g1PS

c 2
SBS

, (3.2.9)

where the constant BS is given by

BS = −2c2S
[
(ρ1 − ρ2)

2 − a1a2
]−m12c

2
S (ρ2f2 − ρ1f1)

−m2
12

2
(b2f1+b1f2)− c4S

2
(d1a2+d2a1) + 2m12 (ρ2b1−ρ1b2),

(3.2.10)

with

dk =
ρ2

αkSc21k
+

ρ1
βkSc22k

, fk =
αkS

βkSc2k2
+

βkS

αkSc2k1
, (k = 1, 2).

It is remarkable that the models for the interfacial Stoneley and Schölte-
Gogoladze waves are not more difficult than that for the Rayleigh wave due
to the relations for wave potentials, see (3.1.9), (3.1.10), and (3.2.7).

4 Moving load problems

We illustrate the efficiency of the derived hyperbolic-elliptic formulations
for the Rayleigh wave by modelling near-resonant regimes of moving loads.
As might be expected, the dynamic response caused by a load travelling at
a speed close to the Rayleigh wave speed is not strongly affected by bulk
waves.
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4.1 Steady-state motion of a point force

We begin with the the classical plane strain problem for a steadily moving
vertical point force, see Fig. 4 (see e.g. Cole & Huth 1958).

x

c
P

0

1

x3

Figure 4. A point force travelling along the surface of a half-plane.

The equations of motion are given by (2.2.2), with boundary conditions
on the surface x3 = 0 written as

σ31 = 0, σ33 = P0δ(x1 − ct), (4.1.1)

where c is a constant speed of the load.
The asymptotic model for the Rayleigh wave developed in subsection

2.4, now consists of the scalar boundary value problem

∂ 2φ

∂x2
3

+ α2
R

∂ 2φ

∂s2
= 0, (4.1.2)

subject to the boundary condition (x3 = 0)(
1− c2

c2R

)
∂ 2φ

∂s2
=

1 + β2
R

2μB
P0 δ(s), (4.1.3)

where s = x1 − ct is a moving coordinate. Remarkably, a resonant effect
may be immediately observed from (4.1.3) due to degeneration at c = cR.
This scalar problem may be reformulated as a Dirichlet problem for the

derivative φs =
∂φ

∂s
as

∂ 2φs

∂x2
3

+ α2
R

∂ 2φs

∂s2
= 0, (4.1.4)

subject to

φs(s, 0) =

(
1 + β2

R

)
c2RP0

2μB (c2R − c2)

(
H(s)− 1

2

)
, (4.1.5)
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where a constant of integration is chosen because of symmetry. In fact, the
2D steady-state solution is defined to within the rigid body motion of a
half-plane, which may be determined from the associated transient problem
only, see Kaplunov (1986).

The problem (4.1.4) is easily solved by exploiting the Poisson formula
(e.g. Courant & Hilbert 1989), giving

φs(s, x3) =

(
1 + β2

R

)
P0c

2
R

2πμB (c2R − c2)
arctan

s

αR x3

. (4.1.6)

Therefore (see (2.3.8)),

ψs(s, x3) =
∂ψ

∂s
= − αRP0c

2
R

2πμB (c2R − c2)
ln
(
s2 + β2

R x2
3

)
. (4.1.7)

As a result, the steady-state displacement field is given by

ust
1 (ξ) =

(1 + β2
R)P0v

2
R

2μπB(v2R − v2)

[
arctan

ξ

αR

− 1 + β2
R

2
arctan

ξ

βR

]
,

ust
2 (ξ) = − (1 + β2

R)P0v
2
RαR

4μπB(v2R − v2)

[
ln
(
ξ2 + α2

R

)− 2

1 + β2
R

ln
(
ξ2 + β2

R

)]
,

(4.1.8)

with the following dimensionless parameters

ξ =
s

x3

, v =
c

c2
, vR =

cR
c2

.

It may be verified that the displacement components in (4.1.8) are the
leading order terms in the Taylor expansion of the exact solution in Cole &
Huth (1958) around the resonant Rayleigh wave speed c = cR.

4.2 Transient motion of a point force

Let us now consider the associated transient problem. In this case the
same equation (4.1.2) is subject to the following hyperbolic boundary con-
dition on the surface x3 = 0

∂ 2φ

∂s2
− 1

c2R

∂ 2φ

∂t2
=

1 + β2
R

2μB
P0δ(s). (4.2.1)

The solution of the latter can be written as (here and below in this subsec-
tion see Kaplunov et al. (2010) for more detail)

φ(s, 0, t) = B1

t∫
0

[H (s+ (c− cR)r)−H (s+ (c+ cR)r)] dr. (4.2.2)
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with

B1 =

(
1 + β2

R

)
cRP0

4μB
, (4.2.3)

and the resonant (c = cR) case arising immediately from the analysis of the
integrand.

For the sub-Rayleigh regime (c < cR) we get from (4.2.2)

φ(s, 0, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B1

s− s1
cR − c

, 0 ≤ s < s1;

B1

s− s2
cR + c

, s2 < s < 0;

0, otherwise,

(4.2.4)

with the values s1 and s2 given by

s1 = t(cR − c), s2 = −t(cR + c). (4.2.5)

For the super-Rayleigh regime (c > cR) we have

φ(s, 0, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2B1

cRs

c2 − c2R
, s1 ≤ s ≤ 0;

−B1

s− s2
cR + c

, s2 < s < s1;

0, otherwise.

(4.2.6)

Finally, if c = cR, we obtain

φ(s, 0, t) =

⎧⎨
⎩
−B1

s− s2
2cR

, s2 ≤ s ≤ 0;

0, otherwise,
(4.2.7)

with s2 given now by s2 = −2cRt.
The solutions on the surface (4.2.4), (4.2.6) and (4.2.7) provide an im-

mediate insight into the physics of the original problem. In particular, Fig.
5 shows a clear distinction of the resonant regime from the two others. In
this figure the function φ(s, 0, t) at a fixed time t is plotted for all three
aforementioned cases. If c �= cR, the solution in question is continuous in s,
see Figs 5(a) and 5(b). At the same time, the limiting resonant solution in
Fig. 5(c), demonstrates a discontinuity under a line moving force (s = 0),
which is linearly increasing in time. As a result we should not expect a
steady-state regime at c = cR. Thus, a rather straightforward analysis of
an infinite string under a moving load immediately reveals the resonant
phenomena associated with the Rayleigh wave.
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s

φ(s, 0, t)

s2 s10

−B1t

(a)

s

φ(s, 0, t)

s2 s1 0

−2B1tcR
c+ cR

(b)

s

φ(s, 0, t)

s2 0

−B1t

(c)

Figure 5. The wave potential φ vs. the moving co-ordinate s on the surface
x3 = 0: (a) the sub-Rayleigh regime (c < cR); (b) the super-Rayleigh regime
(c > cR); (c) resonant regime (c = cR).

Once the potential is determined at the surface x3 = 0, the solution is
then restored over the interior through the Poisson formulae. In the sub-
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Rayleigh and super-Rayleigh regimes the displacement components become

u1(ξ, τ) =
2B1 vR

πc2(v2R − v2)

[
arctan

ξ

αR

− 1 + β2
R

2
arctan

ξ

βR

]

− B1

πc2(vR + v)

[
arctan

ξ − ξ2
αR

− 1 + β2
R

2
arctan

ξ − ξ2
βR

]

− B1

πc2(vR − v)

[
arctan

ξ − ξ1
αR

− 1 + β2
R

2
arctan

ξ − ξ1
βR

]
,

(4.2.8)

u3(ξ, τ)=
B1 αR

2πc2(vR+v)

[
ln
(ξ−ξ2)2+α2

R

ξ2 + α2
R

− 2

1+β2
R

ln
(ξ − ξ2)

2+β2
R

ξ2 + β2
R

]

+
B1 αR

2πc2(vR−v)
[
ln
(ξ−ξ1)2+α2

R

ξ2 + α2
R

− 2

1+β2
R

ln
(ξ − ξ1)

2+β2
R

ξ2 + β2
R

]
,

(4.2.9)

with

τ =
c2t

x3

, ξ1 =
s1
x3

= (vR − v)τ, ξ2 =
s2
x3

= −(v + vR)τ, (4.2.10)

and s1, s2 defined by (4.2.5). In the resonant regime the corresponding
displacement components may be found as

u1(ξ, τ) =
B1αRτ

πc2

[
1

ξ2 + α2
R

− 2β2
R

(1 + β2
R)(ξ

2 + β2
R)

]

+
β

2πc2vR

[
arctan

ξ

αR

− arctan
ξ − ξ2
αR

]

− B1(1 + β2
R)

4πc2vR

[
arctan

ξ

βR

− arctan
ξ − ξ2
βR

]
,

(4.2.11)

u3(ξ, τ) =
B1αRξτ

πc2

[
2

(1 + β2
R)(ξ

2 + β2
R)
− 1

ξ2 + α2
R

]

+
B1αR

4πc2vR

[
ln
(ξ − ξ2)

2+α2
R

ξ2 + α2
R

− 2

1+β2
R

ln
(ξ − ξ2)

2+β2
R

ξ2 + β2
R

]
,

(4.2.12)

with ξ2 = −2vRτ .
The obtained displacements (4.2.8)-(4.2.12) are expressed in elementary

functions in contrast to the integral exact solution of the problem, see Ap-
pendix of Kaplunov et al. (2010). Nevertheless, the approximate solution
demonstrates key features of the problem, in particular, an important large
time limit as τ → ∞ immediately follows from the formulae above. In the
sub-Rayleigh regime we have

ui(ξ, τ) ∼ u∞

i (ξ, τ), u∞

i (ξ, τ) = ust
i (ξ) + ur

i (τ) (i = 1, 2), (4.2.13)
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where ust
i (i = 1, 2) are displacements in the related steady-state problem

(4.1.8), and
ur
1(τ) = ur0

1 , ur
2(τ) = ur0

2 + urτ
2 (τ), (4.2.14)

with

ur0
1 =

B1v
(
1− β2

R

)
2c2(v2R − v2)

,

ur0
2 = −B1αR(1− β2

R)

πc2(1 + β2
R)

[
ln(vR + v)

vR + v
+

ln |vR − v|
vR − v

]
,

urτ
2 (τ) = − 2B1vRαR(1− β2

R)

πc2(v2R − v2)(1 + β2
R)

ln τ.

(4.2.15)

Here ur
i (i = 1, 2) are components of the rigid body motion of the half-

plane. It is remarkable that the rigid body motion along the vertical axe
demonstrates a logarithmic growth in time, see (4.2.14) and (4.2.15), ob-
served earlier in Kaplunov (1986). This means that a steady-state regime
in subsection 4.1 cannot be achieved at a large time limit.

The formulae (4.2.13)-(4.2.15) are also valid for the super-Rayleigh case,
except the expression for the rigid body motion component along the hori-
zontal axe, which now becomes

ur0
1 = −B1vR

(
1− β2

R

)
2c2(v2R − v2)

. (4.2.16)

In the resonant case the limiting behaviour as τ →∞ is

ui(ξ, τ) ∼ u∞

i (ξ, τ) (i = 1, 2), (4.2.17)

with

u∞

1 (ξ, τ) =
B1αRτ

πc2

[
1

ξ2 + α2
R

− 2β2
R

(1 + β2
R)(ξ

2 + β2
R)

]
, (4.2.18)

u∞

2 (ξ, τ) =
B1αRξτ

πc2

[
2

(1 + β2
R)(ξ

2 + β2
R)
− 1

ξ2 + α2
R

]

+
B1αR(β

2
R − 1)

4πc2vR(β2
R + 1)

ln τ.

(4.2.19)

Thus, the displacements demonstrate linear growth in time apart from the
vertical displacement at ξ = 0, which increases as ln τ .

Another interesting observation is related to the resonant regime of a
moving semi-infinite strip, in which P = P0H(x − cRt). In this case the
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Figure 6. The sub-Rayleigh transient (a) horizontal and (b) vertical dis-
placements (4.2.8) and (4.2.9) and the large time limits (4.2.13) for v = 0.9.

asymptotic model recovers the classical result of Goldstein (1965) with less
effort.

Numerical illustrations are presented in Fig. 6-8 for the Poisson ratio
ν = 0.25 corresponding to vR ≈ 0.9194.

We plot the dimensionless displacements

Uk =
πμuk

P0

, Ũ2 =
πμ

P0

(u2(ξ, τ)− urτ
2 (τ)) .

Here we subtract from the vertical displacement u2(ξ, τ) the function urτ
2 (τ)

having a logarithmic growth in time, see (4.2.14) and (4.2.15). In this case
we depict only a bounded in time component in order to show convergence
at a large time limit.

The sub-Rayleigh displacements of the half-space (4.2.8) and (4.2.9) are
plotted in Fig. 6 for v = 0.9 and several values of time τ . Similar results for
the super-Rayleigh regime (v = 0.95) are presented in Fig. 7. The solid line
corresponds to the limits (4.2.13) with (4.2.14)–(4.2.15) and (4.2.16). As
might be expected, transient displacements tend to their large time values
as time increases. The resonant displacements (4.2.11) and (4.2.12) are
displayed in Fig. 8 for τ = 10, 30, 50 and 100. They demonstrate a linear
growth in time according to the formulae (4.2.11) and (4.2.12).
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Figure 7. The super-Rayleigh transient (a) horizontal and (b) vertical dis-
placements (4.2.8) and (4.2.9) and the large time limits (4.2.13) for v = 0.95.
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Figure 8. The resonant transient (a) horizontal and (b) vertical displace-
ments (4.2.11) and (4.2.12) for v = vR.
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4.3 Steady-state motion of a stamp

Consider the steady-state motion of a rigid stamp, see Fig. 9, assuming

x
3

x
1

c

Figure 9. Steady-state motion of a rigid stamp

that its effect results in a prescribed surface displacements U3(x1, t) =
f(x1 − ct). We also set P = 0 in the equation (2.5.4) governing the surface
motion outside the stamp. The formulation of the mixed boundary value
problem, obtained in subsection 2.5, may then be specified for the scaled
normal derivative

χ(s, p) =
β2
R − 1

β2
R + 1

∂φ

∂s
, (4.3.1)

where s = x1−ct, p = αRx3, for more details see Erbaş et al. (2012). Thus,
we arrive at a canonical problem for the Laplace equation

∂2χ

∂p2
+

∂2χ

∂s2
= 0, (4.3.2)

with the mixed boundary conditions (p = 0)

χ = f(s), at s ∈ S2 (4.3.3)

and
∂χ

∂p
= 0, at s ∈ S1, (4.3.4)

where and S1 and S2 are the traction free and constrained parts of the
surface p = 0, respectively.

As an example, we consider an exponential stamp f(s) = be−as, where a
and b are positive constants. In this case (e.g. see Sveshnikov & Tikhonov
1978)

χ(s, p) = bRe
{
e−aq

[
1− erf

(√−aq)]} , (4.3.5)

where q = s+ ip and erf(q) is the error function.
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A resonant nature of the Rayleigh wave is clearly seen from the formula
for the normal stress under the stamp

σ33(s, 0) =
2μBα3

R

(
c2 − c2R

)
(β2

R − 1)c2R
χ(s, 0) , at s ∈ S2. (4.3.6)

Thus, the resonant limit as c→ cR, corresponds to an asymptotically van-
ishing stress induced by a displacement of finite magnitude.

4.4 Moving load on a coated half-plane

Let a coated half-plane be loaded by a distributed force of the form (see
Fig. 10)

x
1

x3

P

h
c

0

Figure 10. Distributed moving load on a coated half-plane.

P (x1, t) =
P0l

π [l2 + s2]
,

where l is a typical length, and s = x1−ct. We restrict ourselves to analysis
of the surface motion (x3 = 0), governed by the perturbed hyperbolic equa-
tion (2.6.8). We introduce the dimensionless moving coordinate sl = s/l
along with the parameters

g = 1− c2

c2R
, hl =

bh

l
(4.4.1)

and rewrite (2.6.8) as

gθ − hl

√
− ∂2

∂s2l
θ =

1

1 + s2l
, (4.4.2)

where

θ =
AP0

πl

∂2φ

∂s2l
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denotes scaled normal surface stresses, here and below in this subsection see
Dai et al. (2010) for further detail.

We remark that g and hl are key problem parameters characterising the
thickness of the coating and the proximity of the speed of the load to the
Rayleigh wave speed, respectively. Then, using the Fourier transform, we
present the solution of (4.4.2) as

θ = − 1

2hl

2∑
n=1

eqnEi(1, qn) (4.4.3)

where
qn = − g

hl

[1 + (−1)nisl] , n = 1, 2,

and Ei is the integral exponent.
Two limiting cases may then be investigated. The first limit corresponds

to the solution for an uncoated half-plane as hl/g → 0, whereas the second
one g/hl → 0 reveals that the presence of a coating does not remove the
resonance at c = cR. The reason is that, despite of the dispersion due to
the influence of the coating, the maximum or minimum of the phase speed
is still given by the Rayleigh wave speed.

5 Edge bending wave

In this section we apply the proposed philosophy to the bending wave prop-
agating along the edge of a semi-infinite thin elastic plate. We show that
the dispersive edge bending wave has a parabolic-elliptic duality in contrast
to a hyperbolic-elliptic duality of the non-dispersive surface and interfacial
waves considered above.

5.1 Dispersion relation

Let the geometry of the plate of thickness 2h be given by −∞ < x1 <∞,
0 ≤ x2 <∞, −h ≤ x3 ≤ h, see Fig. 11. We start from the approximate 2D
equation in the classical Kirchhoff theory for plate bending, given by

DΔ2W + 2ρh
∂2W

∂t2
= 0, (5.1.1)

where W (x1, x2, t) is the deflection of the plate, Δ =
∂2

∂x2
1

+
∂2

∂x2
2

, and

D =
2Eh3

3 (1− ν2)
(5.1.2)
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x1

2

3

x

x

Figure 11. Thin elastic plate.

is bending stiffness, with E and ν denoting the Young modulus and the
Poisson ratio, respectively.

The boundary conditions at the edge x2 = 0 can be written as

∂2W

∂x2
2

+ ν
∂2W

∂x2
1

= −M

D
,

∂3W

∂x3
2

+ (2− ν)
∂3W

∂x2
1∂x2

= −N

D
,

(5.1.3)

where M = M(x1, t) and N = N(x1, t) are prescribed bending moment and
shear force, respectively.

The travelling wave solution of (5.1.1) may be found in the form

W (x1, x2, t) =

2∑
j=1

Cje
i(kx1−ωt)−kλjx2 , (5.1.4)

where

λj =

√
1 + (−1)j

√
2ρh

D

ω

k2
, j = 1, 2. (5.1.5)

Substitution of (5.1.4) into the homogeneous edge boundary conditions
(M = N = 0 in (5.1.3)) leads to the dispersion relation

Dk4γ4
e = 2ρhω2, (5.1.6)

originating from Konenkov (1960) and subsequent contributions, see also
Lawrie & Kaplunov (2012) and Norris et al. (2000) and references therein.
Here the coefficient

γe =
[
(1− ν)

(
3ν − 1 + 2

√
2ν2 − 2ν + 1

)]1/4
(5.1.7)
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depends on the Poisson ratio only. In view of the dispersion relation (5.1.6),
we have

λj = λj0 =
√

1 + (−1)jγ2
e , j = 1, 2. (5.1.8)

5.2 Edge bending wave of arbitrary profile

Here we generalise the travelling wave solution to that expressed through
arbitrary plane harmonic function. The equation (5.1.1), written in terms
of the dimensionless variables

ζi =
xi

h
, th =

t

h

√
E

3ρ(1− ν2)
, i = 1, 2 (5.2.1)

becomes

Δ2W +
∂2W

∂t2h
= 0, (5.2.2)

where Δ =
∂2

∂ζ21
+

∂2

∂ζ22
.

Let us assume that

γ4 ∂
4W

∂ζ41
+

∂2W

∂t2h
= 0, (5.2.3)

where γ is a dimensionless parameter. This is a key assumption, lead-
ing below to transformation of the parabolic equation (5.2.2) to an elliptic
equation and finally resulting in the sought for representation in terms of
a plane harmonic function. The philosophy underlying (5.2.3) essentially
mirrors that of subsection 2.3 (see Chadwick 1976), where the surface wave
solution was obtained in the form of a travelling wave of arbitrary profile.
Indeed, while an elastic string seems to be a right 1D object for understand-
ing surface wave propagation, see the classical wave equation (2.4.15), its
counterpart for the edge bending wave is a beam.

The equation (5.2.2) then becomes

(
1− γ4

) ∂4W

∂ζ41
+ 2

∂4W

∂ζ21∂ζ
2
2

+
∂4W

∂ζ42
= 0. (5.2.4)

It also may be expressed in an operator form as

Δ1Δ2W = 0, (5.2.5)

where

Δj =
∂2

∂ζ22
+ λ2

j

∂2

∂ζ21
, j = 1, 2, (5.2.6)
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and
λ2
j = 1 + (−1)jγ2. (5.2.7)

The solution of (5.2.5) is expressed through two decaying as ζ2 → ∞
plane harmonic functions Wj as

W =

2∑
j=1

Wj (ζ1, λjζ2, th) . (5.2.8)

Let us substitute the latter into the homogeneous boundary conditions
(5.1.3) rewritten in terms of dimensionless variables, using the Cauchy-
Riemann identities (2.3.4). The result is

(
ν − λ2

1

) ∂2W1

∂ζ21
+
(
ν − λ2

2

) ∂2W2

∂ζ21
= 0,

λ1

(
λ2
1 − 2 + ν

) ∂3W1

∂ζ31
+ λ2

(
λ2
2 − 2 + ν

) ∂3W2

∂ζ31
= 0,

(5.2.9)

leading to
λ2(ν − λ2

1)
2 − λ1(ν − λ2

2)
2 = 0. (5.2.10)

Due to (5.2.7), the last relation may be re-cast in the form

1− γ4 − (2ν − 2)
√

1− γ4 − ν2 = 0. (5.2.11)

Then,

γ4 = (1− ν)
(
3ν − 1 + 2

√
2ν2 − 2ν + 1

)
= γ4

e , (5.2.12)

which coincides with the root of the dispersion relation (5.1.6) implying
λj = λj0.

Similarly to subsection 2.3.1, the harmonic functions W1 and W2 may
be related to each other. Consequently, a representation in terms of a single
harmonic function may be established from the boundary conditions (5.2.9),
namely

W (x1, x2, t) = Wj (x1, λj0x2, t)−
ν − λ2

j0

ν − λ2
m0

Wj (x1, λm0x2, t) . (5.2.13)

where 1 ≤ j �= m ≤ 2.
It is remarkable that (5.2.13) is even simpler than its Rayleigh wave

counterpart (Chadwick 1976), since it does not involve harmonic conjugate
functions.
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5.3 Parabolic-elliptic model

Now we proceed with the development of an explicit model for the edge
bending wave. In parallel with subsection 2.4, we perturb the equation
(5.1.1) around the edge wave eigensolution constructed in the subsection 5.2.
However, this procedure is now less trivial because of a multi-scale behaviour
in time. Accordingly, we introduce fast (τf = th) and slow (τs = εth) time
variables, where as before ε� 1 is a small parameter. The equation (5.2.2)
may now be written in terms of specified two time-scales as

Δ2W +

(
∂2W

∂τ2f
+ 2ε

∂2W

∂τf∂τs
+ ε2

∂2W

∂τ2s

)
= 0. (5.3.1)

The deflection W may be then expanded in an asymptotic series, i. e.

W =
h2

D

(
W (0) + εW (1) + ...

)
. (5.3.2)

Next, we substitute the expansion (5.3.2) into the governing equation
(5.3.1), having at leading order

Δ2W (0) +
∂2W (0)

∂τ2f
= 0, (5.3.3)

which may be readily transformed to

(
1− γ4

e

) ∂4W (0)

∂ζ41
+ 2

∂4W (0)

∂ζ21∂ζ
2
2

+
∂4W (0)

∂ζ42
= 0, (5.3.4)

by making use of the assumption (5.2.3) at γ = γe. The solution of (5.3.4)
is then given by a combination of harmonic functions, yielding

W (0) =

2∑
j=1

W
(0)

j (ζ1, λj0ζ2, τf , τs) , (5.3.5)

where the scaling factors λj0 (j = 1, 2) are defined by (5.1.8).
At next order we obtain from (5.3.1)

Δ2W (1) +
∂2W (1)

∂τ2f
+ 2

∂2W (0)

∂τf∂τs
= 0, (5.3.6)

which, in view of (5.2.3), may be re-written as

Δ1Δ2W
(1) = −2∂

2W (0)

∂τf∂τs
. (5.3.7)
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For the sake of definiteness, we specify (5.2.3) as

iγ2
e

∂2W
(0)

j

∂ζ21
+

∂W
(0)

j

∂τf
= 0, j = 1, 2. (5.3.8)

Further analysis of (5.3.7) also requires separate consideration for both

plane harmonic functions W
(1)

j , j = 1, 2. Let us first concentrate on W
(1)

1 .
Using properties of harmonic functions we deduce that

Δ2W
(0)

1 = (λ2
20 − λ2

10)
∂2W

(0)

1

∂ζ21
= 2γ2

e

∂2W
(0)

1

∂ζ21
= 2i

∂W
(0)

1

∂τf
. (5.3.9)

Therefore, the equation (5.3.7) may be presented as

Δ1W
(1)

1 = i
∂W (0)

∂τs
. (5.3.10)

It is convenient now to define the function Φ
(1)

1 =
∂W

(1)

1

∂ζ2
. Then the

equation (5.3.10) is rewritten as

Δ1Φ
(1)

1 = i
∂2W

(0)

1

∂ζ2∂τs
. (5.3.11)

Similarly to (2.4.6), the solution of (5.3.11) may be found as

Φ1 =
∂W1

∂ζ2
=

∂W
(0)

1

∂ζ2
+ ε

(
Φ

(1,0)
1 +

1

2
iζ2

∂W
(0)

1

∂τs

)
+ ... . (5.3.12)

We also have for W2

Δ2W
(1)

2 = −i ∂W
(0)

2

∂τs
, (5.3.13)

resulting in

Φ2 =
∂W2

∂ζ2
=

∂W
(0)

2

∂ζ2
+ ε

(
Φ

(1,0)
2 − 1

2
iζ2

∂W
(0)

2

∂τs

)
+ ... . (5.3.14)

Finally, we obtain for the normal derivative

∂W
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D
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2
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(
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⎞
⎠+ ...

⎤
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(5.3.15)
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Now we are in position to treat the non-homogeneous boundary condi-
tions (5.1.3). As above in 2.4.1, the problem may be decomposed into two
separate sub-problems involving a prescribed edge bending moment or shear
force only. First, we study the effect of an edge bending moment normalized
as M = εMε. The boundary conditions rewritten in terms of dimensionless
coordinates, are

∂2W

∂ζ22
+ ν

∂2W

∂ζ21
= −εh2

D
Mε,

∂3W

∂ζ32
+ (2− ν)

∂3W

∂ζ21∂ζ2
= 0.

(5.3.16)

On substituting the asymptotic expansion (5.3.15) into the latter we obtain
at leading order

(
ν − λ2

10

) ∂2W
(0)

1

∂ζ21
+
(
ν − λ2

20

) ∂2W
(0)

2

∂ζ21
= 0,

λ10

(
λ2
10 − 2 + ν

) ∂3W
(0)

1

∂ζ31
+ λ20

(
λ2
20 − 2 + ν

) ∂3W
(0)

2

∂ζ31
= 0,

(5.3.17)

which is an analogue of (5.2.9). It results in the dispersion relation (5.2.10),
implying λj = λj0, j = 1, 2, see also (5.1.8).

At next order, the boundary conditions (5.3.16) are given by

∂2W (1)

∂ζ22
+ ν

∂2W (1)

∂ζ21
= −Mε,

∂3W (1)

∂ζ32
+ (2− ν)

∂3W (1)

∂ζ21∂ζ2
= 0.

(5.3.18)

The relations (5.3.10) and (5.3.13) may be used to deduce that

∂2W (1)

∂ζ21
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− 1

λ2
20

(
i

2

∂W
(0)

2

∂τs
+
∂Φ

(1,0)
2

∂ζ2

)
. (5.3.19)

The boundary conditions (5.3.18) taking into account (5.3.15) and (5.3.19),
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become
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(5.3.20)

Finally, we obtain using also the formula (5.2.13),

2iγ2
e

Q

∂2W (0)

∂ζ1∂τs
= −∂Mε

∂ξ
, (5.3.21)

where

Q =
η (ν + η)

1− ν + η
, (5.3.22)

with

η = λ10λ20 =
√

1− γ4
e . (5.3.23)

Here the coefficient Q depends on the Poisson ratio only, see Fig. 12.
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Figure 12. Coefficient Q vs. the Poisson ratio ν
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The equation (5.3.21) enables calculation of the edge wave contribution
to the overall dynamic response. This observation also follows from a simi-
larity of the developed perturbation procedure and the routine in Kaplunov
et al. (2013a) relying on computation of the residues corresponding to edge
wave poles.

The operator relationship

∂

∂τs
= ε−1

(
iγ2

e

∂2

∂ζ21
+

∂

∂th

)
, (5.3.24)

along with the condition (5.3.8), allow transformation of (5.3.21) to a parabolic
equation at the edge ζ2 = 0. It is given by

γ4
e

∂4W (0)

∂ζ41
+

∂2W (0)

∂t2h
= Q

∂2M

∂ζ21
. (5.3.25)

The equation (5.3.25) (see (5.3.2)) may be re-cast in terms of original
variables as (x2 = 0)

Dγ4
e

∂ 4W

∂x4
1

+ 2ρh
∂2W

∂t2
= Q

∂2M

∂x2
1

. (5.3.26)

The established approximate formulation also contains the elliptic equation

Δ1Δ2W = 0, (5.3.27)

where

Δj =
∂2

∂x2
2

+ λ2
j0

∂2

∂x2
1

, j = 1, 2, (5.3.28)

which should be solved together with the parabolic equation (5.3.26).
In fact, the representation in terms of a single harmonic function (5.2.13)

simplifies things even further since

W (x, 0, t) =
λ2
i0 − λ2

j0

ν − λ2
j0

Wi (x, 0, t) , 1 ≤ i �= j ≤ 2. (5.3.29)

The explicit model for the edge bending wave is then given by a Dirichlet
problem for any of the following two pseudo-static elliptic equations

∂2Wj

∂y2
+ λ2

j0

∂2Wj

∂x2
= 0, (j = 1, 2) (5.3.30)

with the boundary data originating from the parabolic equation (5.3.26).
Then, we exploit the relations (5.2.13) and (5.3.29) to restore the overall 2D
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bending field. Thus, we reveal a dual parabolic-elliptic nature of the studied
wave.

The second type of boundary conditions is given by

∂2W

∂ζ22
+ ν

∂2W

∂ζ21
= 0,

∂3W

∂ζ32
+ (2− ν)

∂3W

∂ζ21∂ζ2
= −h3

D
N,

(5.3.31)

leading to a parabolic beam-like equation. The analysis is rather similar
to that presented in the previous case. Remarkably, now the boundary

conditions lead to a parabolic equation for the rotation angle θ =
∂W

∂x2

evaluated at the edge x2 = 0, namely

Dγ4
e

∂4θ

∂x4
1

+ 2ρh
∂2θ

∂t2
= −Q∂2N

∂x2
1

, (5.3.32)

with the coefficient Q defined by (5.3.22).
The explicit model for a prescribed shear force contains the elliptic equa-

tion (5.3.30) which is to be solved in conjunction with the parabolic equation
(5.3.32), and also the relations (5.2.13) and (5.3.29) as above.

6 Concluding remarks

The context of this chapter is restricted to the framework of linear isotropic
elasticity. We expect various extensions of the developed asymptotic method-
ology to elastic solids demonstrating a more sophisticated constitutive be-
haviour, arising from numerous insights into the properties of surface, in-
terfacial and edge waves, taking into consideration pre-stress (Dowaikh &
Ogden 1990, 1991, Rogerson & Sandiford 1999, Pichugin & Rogerson 2012)
and anisotropy (Fu 2003, 2005, Destrade 2004, 2007, Zakharov 2004, Norris
1994), see also Prikazchikov 2013. The illustrative examples presented in
Section 4 are limited to plane moving load problems associated with the
Rayleigh wave. There is a clear potential for 3D generalisations (Kaplunov
et al. 2013b) and also for analysis of near-interfacial dynamics (Kennedy
& Herrmann 1973a,b ). In addition, we mention important industrially
motivated problems involving viscoelastic coatings.
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Abstract Current status of research on decay of dynamic end ef-
fects in elastic structures aiming at formulation of a dynamic ana-
logue to Saint-Venant’s principle (DSVP) are critically reviewed.
Article concentrates on isotropic homogeneous linear elastic response
over a range of structural geometries including waveguides, with ei-
ther free or constrained lateral surfaces, half space, wedges and
cones. Nearly 200 references are examined in context of DSVP,
starting with early ideas by Boley. Special attention is placed on
available experimental findings on end effects and decay rate in
dynamically excited structures. Current perception of possible ver-
sions of DSVP is classified into several categories, one of which,
namely that of dynamic equivalence, is compatible with much of
known experimental data and has been tacitly applied at various
engineering situations. That observation, along with a perspective
view on evolution of the traditional SVP, provides inspiring ground
for renewed interest in both practical and theoretical aspects of
DSVP formulation.

1 Motivation

The principle named after Saint-Venant (SVP) has been commonly accepted
as a corner stone assumption, widely employed in structural engineering and
theoretical analysis of solid mechanics and related fields. Traditionally, that
principle pertains to phenomena localized at the ends of a structure, ends
to which a self-equilibrated load is applied. Validity of the principle entails
that localization.
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In its original version (Saint-Venant, 1856) the principle argues that ”the
manner of application of a given resultant force and resultant moment on
the two ends of a beam little affected the stress pattern, except very near
the ends, and that all the solutions of a given problem, for end conditions
having the same resultants, rapidly approached one and the same solution”
(Toupin, 1965b, p. 223). The underlying idea, labeled by Toupin as ”the
principle of vanishing end effects”, has been introduced by Saint-Venant
to qualify theoretical elasticity solutions for beams for use in actual engi-
neering conditions. In a broad sense, the assumption, when valid, implies
that the stress field in the interior of a body is not sensitive to spatial
distribution (profile) of prescribed local boundary tractions. Applicability
of SVP has been confirmed over the years for several types of structures.
Authoritative accounts of available research are given in the review by Hor-
gan and Knowles (1983) and in two subsequent updates by Horgan (1989,
1996). Static stress fields that do not conform with SVP have been ex-
posed for thin shells and statically determinate truss structure (Hoff, 1945),
laminate/composite structures (Choi and Horgan, 1977, 1978), monocoque
structures (Hoff, 1945; Nerubailo et al., 2005), and prestressed plates near
points of bifurcation (Durban and Stronge, 1988a; Karp, 2004).

The applicability of SVP in linear elasticity has inspired research and
formulation of similar principles in other branches of mechanics of materials.
Among these are non-linear materials (Roseman, 1976), pre-strained plates
(Durban and Stronge, 1988b), piezoelectric solids (Ruan et al., 2000), heat
transfer phenomena (Oleinik and Iosif’yan, 1976; Chirita and Quintanilla,
1996a; Ignaczak, 2002), and fluid flow (Payne and Song, 1997).

A particularly challenging quest is for possible extension of SVP to in-
clude dynamic structural response, aiming at formulation of a dynamic
Saint-Venant principle (DSVP). Several progress reviews of the classical
Saint-Venant principle contain, inter-alia, short comments related to DSVP
which deserve recollection. The review by Horgan and Knowles (1983, p.
261) concludes with: ”one would not expect to find unqualified decay esti-
mates of the kind discussed here in problems involving elastic wave propa-
gation”. The same conclusion is repeated in the first update of that review
(Horgan, 1989). In a second update a few studies, apparently supporting
validity of DSVP, are mentioned (Horgan, 1996). A further review by Hor-
gan and Simmonds (1994), on application of SVP to composites, refers to
end effects in vibration problems as related to DSVP.

At least five doctoral thesisses have been dedicated to investigation of is-
sues and questions concerning DSVP, including Grandin (1972), Binkowski
(1975) (both supervised by S. Little), Karp (1996) (supervised by D. Dur-
ban), Foster (2003) (supervised by V. Berdichevski) and Babenkova (2004)
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(supervised by J. Kaplunov). Needless to say, each of these studies contains
a review of relevant research literature as known at the time. A related
dissertation, though not directly associated with DSVP, is submitted by
Meitzler (1955).

It is the purpose of the present review to agglomerate and classify avail-
able research work on elastodynamic versions of Saint-Venant principle
(DSVP), both experimental and theoretical. The review, which is an out-
growth of the PhD thesis by Karp (1996), followed by a brief historical
account (Karp, 2005), begins with a retrospective of early studies by Bruno
Boley along with a short discussion of the notion of self-equilibrated load.
Next, in Chapter 3, we review experimental work related to DSVP. Analyt-
ical and numerical studies of DSVP in waveguides with free lateral surfaces
are examined in Chapter 4. Chapters 5, 6, and 7 are devoted to a few avail-
able studies on the validity of DSVP in constrained waveguides, miscella-
neous structures, and composites, respectively. Dynamic decay estimates
for vibrating structures and in viscous materials are reviewed in Chapter 8.
Comparison between the classical SVP and DSVP is suggested in Chapter
9, and finally, concluding remarks are given in Chapter 10.

The present review concentrates on studies concerned with aspects of
DSVP and dynamic end effects in linear elastic materials. It is largely
based on a recently published review by Karp and Durban (2011) with
several extensions and updates. Approximately 200 articles, devoted or
related to the DSVP are reviewed though, in fact, only a fraction of these
papers was originally intended to investigate directly the DSVP. The papers
referenced here were categorized as related to DSVP from the viewpoint of
our present understanding of the topic. For that reason, no attempt has
been made at an exhaustive review with regard to fields which are beyond
linear elastic response. However, within that context, a few neighboring
fields, like evanescent waves, are covered here in part.

A few studies attempt to find a connection between range of influence
of applied load and DSVP. A theorem of this kind states that a sudden
excitation of a body, initially in unperturbed state, will subdivide it into two
regions; the region close to the disturbance zone where the perturbation is
imposed and the rest of the body which is still intact. The surface separating
these two regions is propagating with a characteristic velocity determined
by material properties. Self-equilibrated loads and equivalent excitations,
the key ingredients of SVP, have no special importance to the essence of that
theorem. Rigorous formulation of the theorem can be found in Gurtin (1972)
and more recently in Maremonti and Russo (1989). That interpretation
of DSVP is not addressed in the present review unless it is accompanied
with an estimate of decay. Likewise, left outside the review are studies on
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end effects of Saint-Venant type related to thermal response and problems
governed by parabolic field equations (e.g., Sigillito, 1970), heat conduction
in thermo-microstretch elastic solid (Quintanilla, 2002) and in porous solids
(Iovane and Passarella, 2004), and other phenomena such as flow in ducts
(e.g., Ames et al., 1993).

2 Origins of the Principle

Along the timeline, two aspects have been instrumental in assessing the
causes for both stagnation and progress in studies of DSVP: the notion of
self-equilibrium and its role in validation of SVP, and the original ideas
suggested by Bruno Boley. Accordingly, we proceed with a brief review
of both aspects followed by a short summary emphasizing the conceptual
difficulty arising in treating DSVP.

2.1 Static and Dynamic Self-Equilibrium

The notion of self-equilibrated load is central to the mathematical formu-
lation and validation of the classical SVP. Self-equilibrium of a quasi-static
traction vector t implies zero total force and moment, generally expressed
by ∫

(S)

tdS = 0

∫
(S)

(r× t)dS = 0 (2.1.1)

where S is a small portion of the surface of the body on which the self-
equilibrated traction is applied and r is the position vector. The traction
vector t is the projection of stress tensor , given by t = σ · n where n

is the outward unit vector normal to dS. Then, SVP is stated as ”...the
strains that are produced in a body by the application, to a small part of
its surface, of a system of forces statically equivalent to zero force and zero
couple, are of negligible magnitude at distances which are large compared
with the linear dimensions of the part.” (Love, 1944, p. 132). Validity of
SVP is considered to be established when the effect of self-equilibrated load
can be shown to decay (usually exponentially) with distance resulting in a
small depth of non-negligible straining. That is the localization phenomena,
the focus of the present volume.

Engineering situations in which a self-equilibrated load is applied are
admittedly not common. The association of self-equilibrium with SVP fa-
cilitates mathematical analysis in providing proofs or quantitative estimates
of its validity. The practical usefulness of the classical SVP lies in the con-
cept of equivalence of loads, as suggested by Saint-Venant himself: ”If a
certain set of external forces acting on a certain part of a surface of a body
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is replaced by another system of external forces statically equivalent to the
preceeding system and distributed over the same sector, the stresses corre-
sponding to these two loads will be identical at a sufficient distance from
the point of application of the forces” (Cherepanov, 1979, p. 40).

Whereas analytical proofs and estimations of validity of SVP rely mainly
on the self-equilibrium formulation (Love, 1944), experimental demonstra-
tion of SVP are largely based on the equivalence definition (as stated above).
A classical demonstration has been provided by Frocht (1948) using the pho-
toelastic method (Fig. 1). The experiment shows that far from the edge
on which a concentrated load is applied a uniform stress develops, as in the
case of a uniformly distributed load with identical static equivalents.

Figure 1. Photoelastic photographs of experiment with rectangular blocks
loaded by a concentrated load (from Frocht, 1948, p. 30).

The notion of self-equilibrium is commonly extended to dynamic (time
varying) excitation by either replacing the self-equilibrated traction with
simple harmonic load fulfilling

∫
(S)

(e−iωtt)dS = 0

∫
(S)

(
r× (e−iωtt)

)
dS = 0 (2.1.2)
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for steady state conditions (time denoted by t), or by considering any other
time function f(t)∫

(S)

f(t)tdS = 0

∫
(S)

(r× f(t)t) dS = 0 (2.1.3)

for transients. In both cases self-equilibrium is guaranteed to hold at any
instant of time.

2.2 Early Ideas by Bruno Boley

Research questions related to DSVP were already addressed in 1948 (see
later in Chapter 3), yet Boley was apparently the first to examine explic-
itly an application of SVP to dynamic problems. His ideas on a possible
extension of SVP to dynamic phenomena were expressed in two papers, dat-
ing back to 1955 and 1960, along with a wider generalization to problems
governed by non-elliptic equation in 1958.

Boley investigated the possibility of extending SVP to dynamic problems
by considering two idealized structures; the first consisting of three elastic
semi-infinite bars interconnected by shear springs and subjected to longitu-
dinal self-equilibrated loads (Boley, 1955). The second structure consisting
of two semi-infinite bars connected by springs on which couples with zero
total moment are applied (Boley, 1960a). The original sketches of the prob-
lem are recapitulated here in Fig. 2. In both cases the excitation (load
or velocity) is self-equilibrated at any instant. The criterion for validity of
DSVP is defined as a vanishing ratio between the maximal stresses reaching
a distant portion of the beam and the initial stress at the excited end.

The dynamic response of the two structures was determined analytically,
using transform method, for applied loads (or velocity) with a ramp varia-
tion in time. The time rise of the ramp (t0) served as a parameter, with the
limits of t0 = 0 (representing a step function) and t0 → ∞ (corresponding
to quasi-static conditions) as particular cases. Two main results were ob-
tained, common for all three loading types; longitudinal, shear, and bending
(Timoshenko beam equation was employed allowing for shear contribution
to the dynamic response). For a suddenly applied load (step), stress with a
magnitude of the initial value, or somewhat lower, propagates through the
bars indefinitely. That result led to the conclusion: ”thus the conventional
principle of Saint-Venant certainly does not hold in this case” (Boley, 1955,
p. 205).

The second observation made is the convergence of the dynamic solution
to the static one as the excitation becomes more and more graduate (shown
in Fig. 3). In the limit of the static load, the effect of the self-equilibrated
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(a) (b)

Figure 2. Axial (a) and deflective (b) beam combinations investigated by
Boley (1955, 1960a).

Figure 3. Attenuation patterns of the maximal stress along the axis of the
combined strip imposed by moments with different rise time t0, 0 - for step
function and ∞ - for quasi-static case (from Boley, 1960a).

load practically vanishes beyond one width of the composed beam. The
conclusion is then: ”the conventional usage of the static Saint-Venant prin-
ciple is not too greatly in error for slowly applied loads” (Boley, 1955, p.
206).

Considering the static case as asymptotic solution for the transient dy-
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namic problem led Boley to suggest that the question of validity of SVP for
a dynamic problem is part of the wider issue of how slowly loads must be
applied before the static solution ceases to be a good approximation for the
dynamic problem (Boley, 1960a). Therefore, it was suggested to redefine
the quest for DSVP as a search for the rate of application of the load for
which the quasi-static solution will not introduce unacceptable error. That
direction of research has been followed by Grandin and Little (discussed
later in Chapter 4).

In a short conference paper, which offers newly introduced ideas and
terms, Boley (1958) paved the way to much of subsequent research on
SVP. A question of general validity of SVP to systems governed by elliptic,
parabolic or hyperbolic equations has been raised. For problems governed
by elliptic equations a univocal conclusion was drawn: ”The existence of
the above integral formulas, involving appropriate fundamental solutions,
is a general property of elliptic differential equations, which arise in such
fields as steady heat conduction, electro-and magneto-statics, non-viscous
fluid flow, and so forth, in addition to elasticity; to all these the principle
can then be applied” (Boley, 1958, p. 259). This idea of connection between
ellipticity of governing equations and SVP, together with the notion of self-
equilibrated load, has been employed in many elasticity studies and led to
the first genuine proofs of SVP by Knowles (1966) and Toupin (1965a). An
illustration for validity of Saint-Venant’s principle for a parabolic system,
represented by transient heat problem, is given by Boley (1960b). In par-
ticular, a generalized notion of ”principles of the Saint-Venant type” was
suggested along with a recomendation to state them in terms of ”upper
bound” rather than by order of magnitude. Subsequent studies employing
energy inequalities follow these steps.

In a recent correspondence with one of us (BK), Prof. Boley (2006)
reflected on the issue from a perspective of 50 years, since he made a start on
the topic of DSVP, writing that: ”SVP reminds me in spirit of Pirandello’s
”Six Characters in Search of an Author”, it is indeed a principle in search
of a theorem. The proofs of SVP, for example, are really proofs of a SVP
which may not necessarily be recognized by practicing engineers as the SVP
they are actually using. It is probably close enough, it certainly belongs to
the same species, and so they may feel confident in using it.”

2.3 The Challenge

Boley (1960a, p. 74) concluded his studies on DSVP with an inspiring
observation: ”A discussion given elsewhere indicated that Saint-Venant’s
principle is a general property of elliptic boundary value problems, and
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could not be expected to hold in general in problems of the hyperbolic type,
such as, for example, those of the dynamical theory of elasticity. If the
loading is applied sufficiently slowly, however, then it is intuitively clear
that the static solution will be a good approximation to the dynamic one”.

That perception that SVP is a general property of systems, whose be-
havior is dictated by the nature of their governing equations, has been sup-
ported by several independent studies. For example, Horgan and Wheeler
(1975) wrote in the abstract: ”Third order diffusive type equations, called
pseudo-parabolic, are known to govern a wide variety of physical phenom-
ena. A spatial decay estimate is derived for such an equation, similar to
the known results in the parabolic case”. A similar statement is expressed
by Knops et al. (1990, p. 319): ”Although the treatment is discussed with
special reference to elasticity, it is equally applicable to general systems of
elliptic differential equations, and thus reveals a relationship with the clas-
sical theorems of Phragmen-Lindelof and Liouville”. That view was utilized
by Oleinik and Iosif’yan (1978) several years earlier.

The interconnection between decay behavior and the type of the gov-
erning equations, together with well known non-decaying phenomena in
dynamic problems, are apparently behind the wide spread rejection of SVP
validity to dynamic problems in non-dissipative media. With that skepti-
cism in mind, we attempt here to examine the idea of possible formulation
of a DSVP in its classical sense, even in a restricted version. Surely, an in-
structive start of this review is provided by available experimental evidence
on decay of dynamic end effects, discussed next.

3 Experimental Evidence

Effects of non-uniformity of dynamic excitation applied at an end of a bar
attracted attention of several groups of researchers during the middle of the
previous century. Research was driven by growing interest in experimental
aspects of the split Hopkinson bar system (Wally and Mason, 2000; Field et
al., 2001). Most of these studies were not originally associated with DSVP,
yet they are reviewed below as a prelude to later work and, as will be shown,
they are of significant value for at least one of the interpretations of DSVP.

Davies (1948) observed in his detailed experiments on split Hopkinson
pressure bar system that the pressure distribution over the cross-section of
the bar is not uniform at its free end. Two potential sources for that non-
uniformity were suspected: end effects and the shape of Pochhammer-Chree
modes at high frequencies. No explicit statement on the extent of ”close
region” near the edge is suggested in that review. In a later study it was
found that the edge non-uniformity is smoothed out beyond four to five
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diameters away from the excited end (Davies, 1956).

Miklowitz (1957) and Miklowitz and Nisewanger (1957) investigated
numerically and experimentally the extent of validity of an approximate
Mindlin-Herrmann theory for the analysis of propagation of compressive
waves in a dispersive elastic rod. Strains in both near (0.75, 1, 1.24, 1.5, and
2 diameters) and far (up to 20 diameters) fields, induced by aerodynamic
pressure pulse, were measured. Though limited to uniform excitation over
the cross section, the findings suggest that edge effects for that particular
loading are limited to several diameters off the end: ”The present experi-
ments give further support for this. They indicate that the initial distur-
bance, and the phenomena occurring just behind it, are of three-dimensional
character and are relatively unimportant several diameters from the source”
(Miklowitz and Nisewanger, 1957, p. 244).

Fox and Curtis (1958) devised an experiment aimed to confirm the
asymptotic solution of step pulse excitation of a bar obtained by Folk et
al. (1958) for strains far from the loaded end. Since the asymptotic so-
lution is valid only beyond a distance of 10-20 diameters from the end,
the experimental results do not include data for strains at distances smaller
than 20D from the excited end. Due to different specifications of end excita-
tions employed in the asymptotic analysis (mixed condition with no lateral
extension) and imposed in the experiments (pure stress condition with no
transversal tractions), an additional assumption is required to facilitate the
comparison between the two, even at distances beyond 20 diameters from
the excited end: ”Failure to satisfy the second end condition is expected
to be relatively unimportant for strains at large distances from the end. It
is left to experiment to determine the extent to which this expectation is
fulfilled” (p. 559). An answer to this question, provided later by several
studies, does not refer to that expectation and remained unrelated to it.

Gorham and Ripperger (1959) addressed the same question of non-
uniformity by measuring the difference between surface strain and average
strain within the cross section of a bar, far from the excited end. The
generation of various spatial forms of excitation is achieved by bullets of
different size impinged at the end of the bar. They found no substantial
difference between the two recordings at a distance of 26 bar diameters. No
exact recording of the velocity of the bullets is given, thus preventing any
attempt to estimate the frequency spectrum of the excitation (for higher
velocities more energy is conveyed by modes of high frequencies). A sim-
ilar investigation with bars of a square cross section has been detailed by
Cunningham and Goldsmith (1959) with the important addition of surface
measurement within the near zone. They found that the non-uniformity
becomes unimportant at about 2 to 4 bar widths from the impact end.
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A carefully conducted study on the extent of non-uniformity, made by
Baker and Dove (1962), included embedded strain gauges within the bar
at various distances from the impacted end, in addition to surface strain
gauges. The core measurement device is shown in Fig. 4.

Figure 4. Configuration of the impacted bar with the attached strain
gauges (from Baker and Dove, 1962).

The contact end of the impactor had a curvature of radius 3” while the
diameter of the impacted bar was 1.5”. The findings which resemble those
of Cunningham and Goldsmith (1959) have led the authors to conclude that
the results obtained earlier by Davies (1956) of 4 diameters as representative
distance to which end effect are extended is an overestimation: ”It was
concluded that, when a pulse in longitudinal bar is initiated by central
impact on a small area at one end, the change in the strain profile due to
starting conditions ceases in the vicinity of 2 bar diameters from the impact
end. This is not in agreement with Davies, who reported that four to five
diameters were required” (p. 311). No data on the striker’s velocity at the
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impact is given, though from the experimental set-up it could be estimated
to be of the order of one meter per second.

An additional study on the effect of excitation profile on the strain pulse,
far from the excited end, is reported by Barton and Volterra (1959). The
variation in profile of the excitation was achieved upon employing two strik-
ers in a split Hopkinson bar system. One striker had a flat head and the
other a rounded head. The measurement of the surface strain was taken at
24 diameters off the excited end ”in order to permit the pulse to travel a
sufficient distance to become uniformly distributed over the cross-section of
the bar” (p. 321). A typical comparison of recordings for flat and round
impacting rods is reproduced here in Fig. 5. It is evident that at such
a large distance from the impact end the two strikers had practically an
identical effect.

Figure 5. Surface strain for flat and round strikers of length 100 cm (upper)
and 2.54 cm (lower), at impact velocity of 0.7 m/s, 24 diameters from the
end (from Barton and Volterra, 1959).

Clausing (1959) examined the adequacy of the elementary, one-dimensional
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theory, to predict results of impact of cylinders of different areas. The re-
sponse of the impacted rod was recorded at several distances from the im-
pinged end, starting at a distance of 2.4 diameters. The strikers were of
various diameters and identical length, all with a radius larger than that of
the impacted rod. Since the contact area in all experiments was identical,
the results are not directly relevant to the question of the effect of the profile
of the contact area.

The influence of different end conditions on the dynamic response of
a strip has been examined by Dally et al. (1959) using the photoelastic
method. They found that the fringe pattern is almost identical for reflection
of waves from a free and a fixed end, except for the region close to the
excitation or the end.

The experimental investigation by Flynn and Frocht (1961) appears to
be the first experimental work specifically intended to examine possible ex-
istence of the DSVP. In this work, dynamic characteristics of near and far
fields in a waveguide subjected to uniformly distributed and to concentrated
loads were inspected by the photoelastic method. Two basic observations
have been made in this study: identical stress distribution is obtained far
from the loaded end for both types of transient loadings (uniformly dis-
tributed and concentrated); the parameter that determines the stress mag-
nitude in the far field is the impact velocity rather than the force magnitude
as in the case of classical SVP. The report was labeled by the authors as a
preliminary investigation. A follow up discussion of that paper by Durelli
and Dally indeed encouraged further study whereas a discussion by Borg
(1961) on such demonstration doubted the possible existence of DSVP.

Borg’s comment was based on comparison of the response of a semi-
infinite beam, modeled by Timoshenko theory, with two different loadings of
equal moments applied at the close end. In one case the moment is produced
by normal stresses distributed linearly over the cross section according to
the simple beam theory. In the other case the moment is induced by two
identical concentrated forces separated by small distance, acting normal
to beam axis. It is argued that in the second case only a shear wave is
generated implying wave front propagating with shear velocity, while in the
first case both shear and dilatational waves are generated, giving rise to
substantial difference in wave fronts of the two cases. On this ground it was
concluded that ” a dynamic Saint-Venant Principle does not exist (in the
form considered herein, which most closely parallels the static formulation)
for the Timoshenko representation of the vibrating beam” (Borg, 1961, p.
120). To the Author’s best knowledge the work by Flynn and Frocht (1961)
has escaped notice in subsequent studies of DSVP, while a recent review by
Field et al. (2001) refers to it as confirming the validity of DSVP.
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By the end of the sixties sufficient data has accumulated to enable com-
parison of the spatial extent of dynamic end effects with that of static end
effects. Photoelastic fringe pattern of a semi-infinite strip with concentrated
static load applied at a center of a strip is given by Theocaris (1959). This
pattern is very similar to that reported by Meyer (1964) for a concentrated
impact load, taken from Flynn et al. (1962). In a study by Kawata and
Hashimoto (1967) static and dynamic concentration factors around irreg-
ularities are compared. Fringe patterns exhibit similarity of the affected
region for both static and dynamic cases. The same localized dynamic
response around a hole in a strip is shown in Flynn et al. (1962) with
comparison between uniform and concentrated load excitations of the strip.

Validity of DSVP as a prerequisite for suitability of an experimental set-
up for acoustic emission study was recognized by Kroll and Tatro (1964). To
that end the characteristics of wave propagation in a tensile specimen were
examined for later use in a study of correlation between dislocation motion
and acoustic emission. The authors investigated uniformity of a wave at the
end of the specimen originated by a pointwise source. The results obtained
(though limited to 5 diameters from the edge due to electrical interference)
confirm earlier results by Bell (p. 130): ”Bell has shown that, in three to
five bar diameters, the stress waves have reflected many times and their
resultant becomes an extensional stress wave, which is uniform across the
cross section, travelling at the bar velocity vb. This establishes a dynamic St.
Venant’s principle”. The cited work by Bell (1960) was not available to us.
The authors conclude with (p. 134): ”The dynamic St. Venant’s principle
will insure that the stress wave becomes uniform after several diameters of
travel”.

Hettche and Au (1967) studied the effect of non-uniformity of the stress
field across a semi-infinite plate. Theoretical considerations of that problem
were supported experimentally by impacting cylindrical hollow rods. The
authors state (p. 308) that ” this stress is seen to be maximum at the center
line and vanishes at the surface of the plate, and is critical only within the
first plate thickness from the impact face”.

Bertholf and Karnes (1969) investigated surface and center-line stresses
in the immediate vicinity of the impact end, while the impact velocity was
designed to generate stresses slightly above the yield stress. The conclusions
(p. 541) reported are: ”It is clear that a one-dimensional analysis is inad-
equate for z < 4R. . . . For the elastic pressure bar numerical solution will
determine the length at which the dilatation front becomes negligible and
the uniaxial-stress approximation becomes valid. It is anticipated that this
length will be between 10 and 20 dia.”. That quantitative estimation is not
explained, and actually is not in agreement with a comparable statement
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in an earlier paper by one of the authors (Bertholf, 1967) estimating it to
be 4 diameters. Moreover, the experimental results in the latter reference
are in good agreement with those of Baker and Dove (1962) and others
cited above, while the observation of ”10 and 20 dia.” is consistent with the
practice to be suggested later by Follansbee (1985). No comparison to any
previous analogous results is given, nor have the effects of exceeding yield
stress and high impact velocity (100 m/s) been examined.

Figure 6. Configuration of the impacted bar with an embedded strain
gauge No. 1 and the surface strain gauges Nos. 2-5 (from Habberstad et
al., 1972).

Experimental results for the centerline strain within the near-field region
are reported by Habberstad et al. (1972). The configuration of the embed-
ded strain gauges is displayed in Fig. 6. The striker velocity was 5 m/s
with a flat head in all experiments. Comparison of the center-line strain
with surface strain was made for distances of 2/3, 2, and 3 diameters from
the impact end. Typical result at the distance of 3 diameters is displayed
in Fig. 7, showing clearly that even at that distance considerable difference
exists between center-line and surface strains. By using the same bar in
inverted position the authors confirmed that the recording at distances of
10 and 22 diameters, from the impact end, are identical. This makes 10
diameters the upper limit for practical uniformity of the signal.

Zemanek (1971, 1972) provided experimental and theoretical insight into
the origins and nature of non-uniformity in context of reflection of a wave
from a free end of a bar, raised earlier by Davies (1948). These studies are
detailed in the next chapter.
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Figure 7. Experimental and numerical results for center (a) and surface
(b) strain at a distance of 3 diameters from impact (from Habberstad et al.,
1972).

Experimental observations of impacting rods by Bell (1973, p. 351) led
the author to explicitly support the validity of DSVP (though no particular
reference was given). Bell preserved the velocity of colliding rods with differ-
ent distributions of the contact area while keeping the total area constant.
The experiments revealed that the spatial distribution of the transient load
has little effect on the surface strain of the rod at distances larger than half
the diameter of the examined rod, a distance much smaller than suggested
previously: ” impacts of small hollow cylinders of the same area as the solid
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rod demonstrated that beyond the first half-diameter the experimental re-
sults were insensitive to the major changes in the spatial distribution of
loading at the impact face” (p. 351).

Though not aiming directly to investigate DSVP, two additional exper-
imental studies using photoelasticity provide further evidence for non sen-
sitivity of the far field to details of end excitations. Miles (1976) examined
the effect of surface roughtness on the uniformity of the wave generated
upon impact (Fig. 8). Here the impact velocity remains identical when a
different profile of the excitation is induced by irregularities at the contact
surface.

Figure 8. A fringe pattern in a plate impacted by two different materials
with different surface irregularities (from Miles, 1976).

A recent study by Kawata et al. (2007) investigated dynamic stress field
in a strip, generated by impact on one end, using photoelastic high speed
photography. The fringe patterns obtained (Fig. 9) are identical to those
generated by static loading, as shown by Frocht (1948) (Fig. 1). Both stud-
ies make it clear that the distance at which the non uniformity is preserved
is nearly the same as in the static situations.
Following a gap of nearly three decades, experimental research on DSVP
has been revived in recent years. Reflection of transient disturbance at a
built-in end of a beam, generated by a transversal excitation at the free end,
was investigated by Karp et al. (2008). The variation of end conditions was
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Figure 9. A fringe pattern in a plate impacted at the center of the upper
end of a strip at two instants (from Kawata et al., 2007).

achieved by altering the tightness of screws used to fix the built-in end.
The measurement of the surface axial strain suggested that extremely small
variation in screws tightness can be detected by strain gauges located in the
near field (Fig. 10), but not by strain gauges located in the far field. The
extent of the near field is estimated to be approximately one width of the
beam.

Symmetric excitation of a bar by striker impact in split Hopkinson bar
system (SHPB) was studied by Karp et al. (2009) in the spirit of Bell’s
(1973) comment. The variation of end excitation was realized with various
shapes of the contact surface of the striker. Experimental results, limited
to surface strain measurements, were accompanied by numerical simulation
confirming similarity in behavior between the core and the surface of the
bar.

A similar, not yet published, study was undertaken at Nanyang Tech-
nological University, Singapore, with SHPB having much larger diameter
rods, enabling direct detection of end vibration (Ma et al.). Four different
strikers, having the same contact area with different shapes, used in the
experiment are shown in Fig. 11.

The typical axial surface strain at a distance of x/D = 0.5 from the
impacted end is displayed in Fig. 12. The difference in amplitude for each
striker is evident. That difference becomes negligible beyond the distance
x/D = 1 (not shown here). An interesting observation are the small os-
cillations, notable only at that particular distance, after the main signal
has died out. That phenomenon is more pronounced for certain strikers
and is associated with end vibration consisting of evanescent waves (e.g.,
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Figure 10. Surface strain recording within the near-field (station 1) for
three beam fixation conditions excited by transversal excitation at the free
end of a cantilever beam. Baseline is the recording of excitation when all
screws are tight in. (from Karp et al., 2008).

Ratassepp et al., 2008).
In these experimental studies on SHPB system the same conclusion was

reached, namely that the response of the bar is not sensitive to the form of
the excitation beyond 1.5 diameters of the rod (Fig. 13).

The body of experimental research on DSVP can be summarized by the
observation that most of experimental investigations aim at understanding
the sensitivity of response of waveguides to spatial distribution of the load,
or to the type of boundary conditions (either mixed or pure traction). The
requirement of self-equilibrium of imposed excitation was not invoked, even
in the few studies explicitly addressing the existence of DSVP. The induced
excitations are of impact type (with Zemanek (1972) as exception). The
results confirm that dynamic response of a beam or a rod excited at its end
is not sensitive to the exact stress distribution of the excitation far enough
from the excited end. Almost all experimentally different studies suggest
that the extent of the non-uniformity of the cross-sectional properties pen-
etrates into the bar less than 2 to 4 bar diameters (or plate thickness).
Studies arguing for a larger distance do not report any contradicting re-
sults on small distance, but rather refer to an upper limit due to particular
experimental limitations. Yet, the necessary conditions for equivalence be-
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Figure 11. Surface strain recording (in Volts) within the near field for four
strikers with identical contact area and different form (Fig. 11). Small
oscillations are notable for certain strikers (from Ma et al.)

tween excitations were not identified (nor questioned). Standing out are
Flynn and Frocht (1961), Bell (1973) and Miles (1976) who refer explicitly
to the velocity of the impacting rod as a parameter to be kept constant for
comparison of effects far from the loaded end. Nevertheless, understanding
causes for far field insensitivity remains a major issue for future study. The
next Chapter will provide some insight into this aspect of DSVP.

4 Unconstrained Waveguides

Waveguides with free lateral surfaces can be viewed as a dynamic analogue
of beam-like and plate-like structures, for which the static version of SVP
is most frequently applied. In that sense, the present chapter provides
the complementary part of the previous chapter, where studies related or
dedicated to the existence and validity of DSVP in such waveguides are
reviewed.

The stress free condition is defined by vanishing of traction vector on
lateral surfaces

t = σ · n = 0 (4.0.1)

where t is the traction vector, σ - the stress tensor, and n denotes the
outward unit normal to the surface.

The common features of wave propagation in cylindrical and strip waveg-
uides (e.g., Miklowitz, 1978, p. 222) enable joint treatment of both geome-
tries. Similarity in behavior of cylindrical and rectangular cross-sections
of waveguides is also noted (e.g., Hertelendy, 1968). On these ground, no
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Figure 12. Surface strain recording (in Volts) within the near field for four
strikers with identical contact area and different form (Fig. 11). Small
oscillations are notable for certain strikers (from Ma et al.)

distinction between waveguides with different cross-sections will be made in
the following review.

DeVault and Curtis (1962) examined the relevance of asymptotic solu-
tions obtained for mixed type end data for prediction of actual results in
experiments performed with pure end conditions (e.g., Miklowitz and Nise-
wanger, 1957). An example of the mixed data used therein for asymptotic
evaluation is shown in Fig. 14. They reported (pp. 431-432): ” all the main
features of the observed pulse were correctly predicted despite the differ-
ence between the experimental and the assumed end conditions. if there
is a real difference between predictions and experiment, it is at least small.
This statement refers, of course, to a particular type of load and only to the
behavior either at distances greater then a few diameters from the end of
the bar or at a considerable time after the pressure is applied”.

McCoy (1964) solves analytically the problem of a semi-infinite elastic
rod subjected to a shear stress, with arbitrary radial variation, applied to
an otherwise free end. The solution is obtained by series expansion which
consists of propagating and evanescent waves. That analysis leaded to the
conclusion that (p. 463): ”This fact allows an evaluation of Saint Venant’s
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Figure 13. Surface strain recording (normalized by far field strain) in ex-
periment and finite element calculation of a rod, versus distance from the
excited end, with different strikers (P1 and P4 pin type, B1 and B4 bore
type) (from Karp et al., 2009).

Figure 14. Mixed boundary conditions used by DeVault and Curtis (1962).

principle as applied to dynamic problems. The portion of the energy in a
signal that excites a frequency above the cutoff frequency will propagate
into the rod, whereas the energy which excites frequencies below the cutoff
frequency will set up a vibration confined to the end of the rod. The lower
the frequency the more closely confined to the end is the vibration”.

Novozhilov and Slepian (1965) were apparently the first after Boley to
dedicate a paper for examination of DSVP. Their interest in DSVP was mo-
tivated by practical aspects of use of Timoshenko’s flexural beam equations
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with non-ideal end data. For that purpose they studied decay of end effects
generated in a beam by dynamic (time varying) self-equilibrated load. It
was shown that a steady state (harmonic) load generates a non-zero in-
flow of energy associated with propagating waves. Therefore, no dynamical
counterpart of the static SVP appears to exist in dynamic steady state
fields. For transients, on the other hand, by comparing self-equilibrated
and non-self-equilibrated step loads it was confirmed that the static version
of SVP is applicable even to rapidly changing transients due to localization
of the stress near the wave front. Consequently, a restricted interpretation
(Novozhilov and Slepian, 1965, p. 313) of the principle is suggested: ”The
Saint-Venant principle is applicable for the study of transient process in
beam dynamics since deformation corresponding to suddenly applied self-
equilibrating load localize themselves in the neighborhood of the wave fronts
and in the neighborhood of the cross section over which the load is applied.
This assertion does not extend to self-equilibrating disturbances with the
continuous in-flow of energy into the beam (for example, to periodic distur-
bances)”.

Torvik (1967) used a variational method to find the actual amplitude of
reflecting modes, from a stress-free end of a plate, generated by a single-
mode single-frequency incoming wave. Investigation of both propagating
and evanescent waves was concluded with an interpretation of DSVP (Torvik,
1967, p. 352) stating that ”Below the frequency where more than one prop-
agating mode is possible, an extension of St. Venant’s principle is possible
but extremely restrictive. The energy put into the system will have to be
carried away by the first mode; therefore any two dynamic loadings (at a
given frequency) will give rise to the same amplitude in the first (and only)
propagating mode if they do work on the same displacements of the first
propagating mode at the same rate, even if the stress distribution of the
loaded region differs.”. The author further suggests estimating the distance
beyond which such loads are equivalent by considering the decay distance
of the first evanescent mode. Diligent et. al. (2003) realized experimentally
the configuration calculated by Torvik. They measured directly the excita-
tion of evanescent waves generated at a free end of a plate upon reflection
of the first symmetrical mode. Research conclusion was that evanescent
modes can be neglected beyond distance of five times the plate’s width.

Jones and Norwood (1967) compared the stress at the wave-front gener-
ated by an end excitation of a cylindrical bar under two loadings of mixed
type; step pressure with zero radial displacement and step velocity with zero
shear. By using asymptotic solutions of the exact elasticity equations (valid
beyond 20 diameters from the end) they found, for equivalent pressure and
velocity applied at the end, that the stress distribution at distances greater
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than 20 times the diameter is the same despite the different end data. This
result was regarded as confirming the validity of DSVP in such problems
(p. 723): ”Because the lateral end conditions are markedly different, this
constitutes at least an upper bound on a dynamic Saint-Venant’s principle
for these problems in the range of low frequencies”. The equivalence of the
two types of excitation was judged by the equality P0 = EV0/C0 where P0 is
the amplitude of the step pressure, V0 is the amplitude of the step velocity,
E and C0 are Young modulus and velocity of longitudinal waves in a bar,
respectively.

Bertholf (1967) used numerical integration to evaluate the near field in a
bar subjected to steady state uniform displacement with no shear at its end.
The solution of Pochhammer-Chree frequency equation was considered as
valid only at remote distance from the ends and was used to confirm (p.
734) correctness and accuracy of the numerical solution: ”The results of
applying a plane, harmonic displacement to the end of a semi-infinite bar
compare satisfactory with the Pochhammer-Chree solution at points not
near either the end or the wave front”. The estimate for the distance at
which a reasonable agreement (p. 728) is obtained was 4 bar diameters: ”
the Pochhammer-Chree solution is correct for distances of more than 4 dia
from the end of a semi-infinite bar”.

Kennedy and Jones (1969) investigated the effect of spatial distribution
of a suddenly applied load on the far field in a circular bar. While the
study is in the spirit of the original Saint-Venant’s formulation, connection
to DSVP was not discussed. The resultant of the applied loads remained
constant while their distribution varied, implying self-equilibrium in a static
sense obtained from the difference between these loads. The imposed exci-
tations are given by

σx(0, r, t) = −P (r)H(t) ur(0, r, t) = 0 at x = 0 (4.0.2)

with

P (r) = P0(p+ 1)

[
1−

( r
a

)2]p
p ≥ 0 (4.0.3)

where P0 is kept constant, parameter p describes the degree of the non-
uniformity of the load, a is the radius of the bar and x is the axial coordinate.
For p = 0 the load is uniformly distributed. Numerical integration results
were compared to asymptotic solutions at the far field to gain confidence in
the numerical prediction for the near field. The numerical evaluation was
limited to distances of 5, 10, and 20 diameters from the end. In view of the
findings summarized in chapter 3, the smallest distance of 5D is beyond the
extent of near field. Hence, the article can be viewed as an investigation of
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the effect of the profile of the excitation on the far field. It has been shown
that the double transform solution for the first mode, valid in the far field,
is independent of p. The conclusion is that the excitation profile has no
effect on the average stress in cross sections at distances beyond 5D. The
cross section peak stress is insensitive to excitation profile only beyond 20D.

Karal and Alterman (1971) examined the extent of the strain difference
in the far field of a bar due to application of pure and mixed shocks at
the end. They concluded that already beyond 2D from the excited end
it is immaterial whether the data is pure or mixed (p. 10): ”the output
response for distances equal or greater than two diameters from the end of
the rod exhibits the same general features whether the boundary conditions
are pure or mixed”.

Two numerical and experimental studies by Zemanek (1971, 1972) are
instrumental in providing a possible interpretation of DSVP as related to
evanescent waves. In the first study a clear distinction is made between
near and far fields, along with explanation of the nature of the near field.
In the second paper, results of an experimental investigation of end effects
are modeled by wave reflection from a free end. A clear insight into the
correlation between dynamic end effects, evanescent waves, and complex
wave numbers is suggested.

Yeung Wey Kong et al. (1974) solved numerically the exact elasticity
equations for impact of a rod as part of a study on the effect of mismatch
of contact area between specimen and bars in a split Hopkinson bar sys-
tem. Their concern was the validity of interpretation of experimental results
based on one dimensional theory. Four ratios between the diameter of the
contact area r0 (representing the specimen) and the bar diameterD were ex-
amined (r0/D = 0.18, 0.36, 0.72, 1.0). The strains at the center and surface
of the bar were extracted for stations located at 4D and 8D. Comparison
of the calculated surface strain at 8D for the four specimens discloses con-
siderable difference, both in first order and second order response. It is not
stated explicitly how the imposed boundary conditions were adjusted for
the four specimens, whether it is the normal stress or the total force that
was preserved for all four simulations.

Grandin and Little (1974) adopted the mathematical interpretation (p.
145) according to which the principle does not exist if a self-equilibrated
oscillating load produces non-decaying waves: ”The definition of what is
meant by a Saint-Venant boundary region might lead to different interpre-
tations as to whether a dynamic Saint-Venant principle exists or not. The
approach taken here is to apply an edge stress distribution with null in-
tegrated force at any instant of time and determine if non-decaying waves
are produced. This would indicate that beyond a certain distance the wave
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fronts are independent of edge stress distribution”. That interpretation led
the authors to conclude that DSVP does not exist in steady state problems,
as already suggested by Boley (1955, 1960a) and by Novozhilov and Slepian
(1965). The authors conclude (p. 146) with: ”Examination of the results at
lower frequencies indicated that the stress magnitude of the non-decaying
modes was greatly reduced and the results tend toward the static solution.
It must, however, be noted that the frequencies must be very low before the
non-decaying mode may be neglected contributing to the argument against
the existence of a dynamic Saint-Venant region”.

Binkowski (1975) examined the dynamic response of a circular waveg-
uide subjected to three different end excitations, two of which were self-
equilibrated and harmonic in time. Comparison of the stress field of the
propagating waves generated by these two self-equilibrated loads revealed a
”radically” different response. Based on that finding the author concludes
(p. 60) that ”A dynamic Saint-Venant region does not exist for a solid
circular semi-infinite cylinder”. It should be noted that the comparison is
made at a frequency above the first cut-off, where two propagating modes
are available.

Apparently the first formulation of Saint-Venant type energy inequality
for dynamic response of a cylinder with free lateral surfaces was given by
Ignaczak (1974). For the proof of spatial decay of the total cross-section
energy two assumptions (p. 313) were employed: ”we assume that B is a
semi-infinite nonhomogeneous and isotropic elastic cylinder loaded smoothly
on the end face of the cylinder, and that the stress field is to vanish in a fast
way at infinity”. However, in view of the results obtained by Boley (1955,
1960a) and by Novozhilov and Slepian (1965) it is not clear how the second
assumption can be fulfilled for a general response of a waveguide with free
surfaces.

Sinclair and Miklowitz (1975) considered a plate in plane strain with
free faces excited by suddenly applied normal symmetric loads at the end.
They used double transform for long time solution of two different loads,
uniform and concentrated, on the centerline. It was estimated that the
actual response of a plate to any other form of excitation will lie within the
limits of the solution to these two forms. The authors report that if the
total force is identical, the far field is practically identical as well.

Orazov (1983) investigated the validity of DSVP in an elastic semi-
infinite waveguide with free or clamped surfaces subjected to displacement
or stress on the near end and zero displacement at the remote end (at in-
finity). Under some restricting conditions on the end excitation, the author
proved complete decay of the response at some distance from the end, even
for a waveguide with free surfaces, thus suggesting a proof for DSVP in a
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particular case. It is noted that in general, such conditions give rise also to
non-evanescent waves radiating energy to infinity, resembling Sommerfeld’s
condition.

Kim and Steele (1989) demonstrated the advantage of stiffness matrix
method over collocation method for estimation of end effects associated with
time-harmonic excitation of a bar. Various forms of excitations were solved
to illustrate the method, yet no explicit evaluation of the extent of the end
effects is given.

Gomilko et al. (1995) compared the amplitude of waves induced by a self-
equilibrated excitation to those induced by non-self-equilibrated excitations.
The ratio obtained turned out to be extremely small for excitations with
a low frequency, confirming a version of DSVP. Gomilko et al. (1995, p.
1153) formulated DSVP as follows: ”When a self-balanced system of forces
acts on the end of semi-infinite strip, stresses arise as a result of this system
only near the end. At a significant distance from the point of application of
the forces the effect of such a load is practically zero”.

Karunasena et al. (1995) have presented an explicit verification of the
amplitude and depth of penetration of evanescent waves induced by reflec-
tion of the first propagating mode at a fixed edge. The authors showed that
the evanescent waves generated upon reflection from a fixed end of a com-
posite plate are negligible at distances larger than twice the plate’s width.
This analysis and its results are similar to those suggested by Torvik (1967),
though no connection to DSVP was noted.

Cherukuri and Shawki (1996) confirm, by using finite difference solu-
tions, the results obtained by Fox and Curtis (1958), according to which
beyond two diameters off the impacted end the type of BC (either mixed
of pure) has no effect. The same conclusion, based on energy partition
among propagating modes, was derived by Karp (2008) with the aid of
bi-orthogonality relations for an elastic strip.

Chirita and Quintanilla (1996b) treated both transient and steady state
excitations using energy inequalities. To establish decay for a transient load
it was assumed that the excitations are self-equilibrated at any instant (this
work appears to be among the few studies using differential inequalities
where that condition is required) and allowed for lateral surfaces to remain
free of traction. Under these conditions it has been proved that the cross-
section energy, within the domain of influence, decays linearly with distance.

Similar energy inequalities were established by Iesan and Scalia (1997)
for microstretch material, and by Borrelli and Patria (2000) for a piezo-
electric beam with clamped or free surfaces. Borrelli and Patria remark
(p. 74) that: ”the decay result concerning the energy does not require as-
sumptions on the boundary data on the base”. Knops and Payne (2005)
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derived equivalent inequalities for a nonhomogeneous, anisotropic material
with constrained excitation at the base.

Karp and Durban (1997) enhanced several existing approaches, mainly
similar to Torvik (1967), following Karp (1996). The central idea was to
abandon the quasi-static notion of the ”self-equilibrated load”, and to re-
place it with a ”system of equivalent loads”. That idea is further developed
in Karp (2009), where, in particular, it was shown that DSVP formulation
based on ”dynamic equivalents” coincides with the ”static equivalents” in
the limit of zero frequency. Moreover, it was demonstrated that the extent
of non-uniformity associated with the end effect is the same for both static
and dynamic situations, as demonstrated by the photoelastic fringes shown
here in Figs. 1 and 10.

Tyas and Watson (2000) examined numerically the transient response
of a bar to concentrated and arbitrary distributed loads in the context of
reconstruction of the applied load out of measured strain history. Employing
a finite element code they showed that for low frequency load, its magnitude
can be deduced from measurements taken far enough from the edge (five
times the radius). It is stated (p. 1549) that the study is not intended to
postulate a dynamic version of SVP: ”Unlike previous work of this type,
these findings have not been used to postulate a dynamic Saint-Venant’s
principle for the pressure bar”.

Meng and Li (2001) suggested improvements of the interpretation of
data from split Hopkinson pressure bar tests by invoking DSVP. Their view
of DSVP resembles a direct extension of static SVP stated as insensitivity
to the spatial distribution of the applied surface load. Using finite element
code the authors found that the surface response of the output bar (the sec-
ond bar in SHPB system) beyond 1.5 rod diameters is insensitive to spatial
distribution of the end load. For the sake of comparison, the average pres-
sure was held constant. Application of that conclusion to the improvement
of the split Hopkinson bar system is detailed in a subsequent paper (Meng
and Li, 2003).

Berdichevsky and Foster (2003) considered (p. 3293) the lack of orthog-
onality of the eigenfunctions as a major reason for difficulties in establishing
DSVP: ”In dynamics, Saint-Venant’s principle of exponential decay of stress
resulting from a self-equilibrating load is not valid. It is not clear how to
formulate the conditions that eliminate the penetrating modes”. Such con-
ditions have been derived later by Babenkova and Kaplunov (2005) and
by Karp (2009). The conclusion (p. 3296) is that ”An unpleasant conse-
quence is that, in general, one cannot trust the predictions of dynamical
one-dimension beam theory that takes into account only the total force and
moment at the beam end”.
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In order to bypass that difficulty Foster and Berdichevsky (2000) and
Berdichevsky and Foster (2003) suggested a novel approach to measure
quantitatively, by statistical average, the degree of violation of SVP in
structural dynamics. Using statistical distribution of a self-equilibrated
load, they evaluated quantitatively the frequency range of a harmonic, self-
equilibrated load, for which the error involved in assuming SVP is accept-
able. It was shown with high probability that for a frequency region below
some value, the error of classical theory is very low. In a subsequent study
Foster and Berdichevsky (2004) enhanced that work to estimate (p. 2551)
the effect of end effects in end vibration of a semi-infinite beam: ”In the
case of a dynamic load, Lamb (1916) showed that a traveling wave is also
excited, so that a self-equilibrated end load will cause some level of stress to
penetrate into the beam: Saint-Venant’s principle is violated”. Furthermore
(p. 2552), ”Our major conclusion is that over a wide range of frequencies,
the maximum propagating stress is small compared with the maximum ap-
plied stress. Saint-Venant’s principle may be said to apply in this problem,
until the frequency approaches a critical high level. Below this frequency of
vibration, the error involved is considerably smaller for flexural vibrations
than it is for longitudinal vibrations”.

This topic was further investigated by Babenkova and Kaplunov (2004)
who examine conditions on a low frequency excitation for not generating
propagating waves. The condition that the symmetric non-self-equilibrated
excitation σ0(y), with y as a normalized coordinate in the transverse direc-
tion, will not induce propagating waves is given by

1∫
0

(
1− 1

4
νλ2y2

)
σ0(y)dy = 0 (4.0.4)

where ν is Poisson’s ratio and λ the non-dimensional frequency. This for-
mula involves a low-frequency corrector to the applied self-equilibrated load
required to ensure validity of Saint-Venant principle and can be considered
as a deviation from the self-equilibrium conditions for static decay, as the
authors write (p. 2168): ”The derived low-frequency decay conditions repre-
sent a starting point for an asymptotic refinement of 2D boundary conditions
in dynamics of thin plates and shells. It is important that these conditions
allow us to take into account deviations from the classical formulation of
the Saint-Venant principle”. An earlier work by these authors (Babenkova
and Kaplunov, 2003) examines the application of DSVP involving similar
correction to the quasi-static self equilibrated load with low frequency while
applied to a finite strip. Extension for high frequency oscillating load was
formulated by Babenkova and Kaplunov (2005).
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A follow up study by Babenkova et al. (2005) evaluates the ratio of
the power generated by self-equilibrated loads to the power generated by
non-self-equilibrated loads for low frequencies; the interpretation given to
DSVP resembles that of Gomilko et al. (1995). An interesting (p. 405)
analogy is proposed: ”In the problem of the propagation of harmonic waves
in a half-strip, homogeneous (non-decaying) modes, which are determined
by the real roots of the well-known dispersion equations , can serve as an
analogue of the Saint-Venant solution”. With that analogy the authors
extend the principle (p. 1165) for high frequency excitations: ”However, in
contrast to statics, high-frequency behaviour is often characterized by short-
wave propagating sinusoidal modes that do not decay along with polynomial
terms. These propagating modes have to satisfy the Sommerfeld condition
at infinity. Thus, we do not require a total decay. We require only the
absence of polynomial modes that do not satisfy the radiation condition at
infinity”.

It is probably a telling sign, indicating that research on DSVP is still in
the formative period, that none of the studies discussed in Chapter 3 were
referenced in papers reviewed up to this point in Chapter 4. In particular,
there is no reference to the investigations by Davies (1956), Baker and Dove
(1962), and Cunningham and Goldsmith (1959), which bear direct impli-
cation to DSVP. This comment applies also to review articles by Horgan
and Knowles (1983), Horgan (1989, 1996), Field et al. (2001), Karp (2005).
Understanding of DSVP has evolved along more than one avenue, not in a
linear pattern, with several diversities over the time line.

Karp (2008) investigated the sensitivity of far field response to the form
of end excitation of an elastic, semi-infinite strip. Since, as stated by Torvik
(1967), below the first cut-off frequency only one mode can be generated re-
gardless of the form of the excitation, the study examined higher frequencies.
It was found that moderately non-uniform excitations exhibit similar energy
partition among the propagating modes, suggesting a degree of insensitivity
to form even at high frequencies. This can explain similar far-field response
detected in experiments by Barton and Voltera (1959) with rounded head
strikers, albeit the high frequency spectrum of the excitation.

Adherence to the equivalence of loads required by classical SVP led Karp
(2009) to formulate a DSVP based on dynamic equivalence of loads. Dy-
namically equivalent loads are defined as loads generating identical far-field
response within the waveguide. Such formulation of DSVP, based on dy-
namically equivalent loads, is consistent with experimental results on insen-
sitivity of the far field to details of end excitation and can be related directly
to evanescent waves. It was also shown that the requirement on excitation
for no-radiation (no far field response) is mathematically reduced to the
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static requirement of self-equilibrium of load, as necessary for decay in the
static case. The suggested (p. 3072) formulation of the principle reads: ”If
a certain set of external excitations acting on a certain part of a surface of
a body is replaced by another system of external excitations dynamically
equivalent to the preceeding system and distributed over the same sector,
the stresses corresponding to these two excitations will be practically identi-
cal at a sufficient distance from the point of application of the excitations”.
Further unification of classical SVP and DSVP is proposed (p. 3075): ”
unification of static and dynamic formulations of SVP can be achieved by
noting that in both cases the validity of the principle stems from far-field
response being not sensitive to the form of the excitation”.

That formulation of DSVP enables one to mitigate the objection, raised
by Borg, to counter-example the validity of DSVP. Borg compared two anti-
symmetric responses of a Timoshenko beam model. His argument is based
on the observation that a pure bending disturbance of a beam propagates
with higher velocity than a shear disturbance, and therefore two equal-
magnitude moments will generate different far-field response. While this
observation is correct it does not contradict the DSVP formulation suggested
since the shear mode is a second anti-symmetric mode, available only above
the first anti-symmetric cut-off frequency (e.g., Abramson et. al., 1958,
p. 157), whereas in Karp (2009) it is suggested to restrict the validity of
DSVP to frequencies below the first cut-off. In other words, these two equal-
magnitude moments do not comply with the requirements for equivalent
excitations (as defined in Karp, 2009).

The studies reviewed in this chapter cover analytical research of solu-
tions relevant to experimental findings reviewed in Chapter 3. The papers
reviewed in the following sections are of less direct connection to experi-
ments, though various versions of DSVP are discussed therein.

5 Constrained Waveguides

The search for DSVP in constrained waveguides has concentrated on two
types of constrains: clamped faces and energy leaking surfaces. Though the
dynamic response of waveguides with constrained surfaces has been treated
by several methods, those dedicated to DSVP are limited to use of energy
inequality methods (with Orazov, 1983; Karp and Durban, 2005; and Karp,
2011 as exceptions). It is worth noting that elastodynamic solutions for a
strip with clamped surfaces (e.g., Mindlin, 1960, Karp and Durban, 2005)
suggest that any end disturbance, with frequency below the first cut-off
frequency, will generate response decaying in the axial direction leaving no
response at all far from the loaded end.
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5.1 Clamped Lateral Surfaces

Clamped surfaces are defined by zero displacement u over the generators
of the waveguide

u = 0. (5.1.1)

Orazov (1983) used the general formulation of elasticity equations along
with eigenfunction analysis to derive decay estimates in a waveguide with
general cross-section. The decay rate was associated with the wave number
having the lowest imaginary part. As mentioned already, the author em-
phasizes that the same result is valid also for a waveguide with free lateral
surfaces.

Knops (1989) determined spatial decay estimate of cross-sectional energy
for a quasi-linear, semi-infinite cylinder, with anisotropy induced by finite
prestress. In that study clamped faces were chosen for simplicity of the
analysis (p. 193). The end excitation was taken as harmonic in time.
As an intermediate result, facilitating an energy inequality, it was proven
(corollary 3.1) that the cross-sectional work function Φ vanish far from
the loaded end. Energy inequalities derived from that corollary lead to a
somewhat complicated mathematical result, from which it follows that (p.
202): ”We have demonstrated that within the disturbed region 0 < z < βt
the energy is bounded above by the sum of a constant term and a term that
decays exponentially with distance from the base of the beam”.

A similar result has been derived by Flavin et al. (1990) for non-linear
materials, by Borrelli and Patria (1995) for a mixture of two linear elastic
solids, by Borrelli and Patria (1996) for a magnetoelastic cylinder, Chirita
and Quintanilla (1996b) for elastic materials, Iesan and Scalia (1997) for
microstretch elastic bodies and by Aron and Chirita (1997) for micropolar
elastic cylinders.

Quintanilla (1999) established energy decay estimates for the spatial
behavior in thermoelasticity without energy dissipation. The derivation of
the inequality was made for clamped lateral surfaces with the concluding
(p. 221) remark that: ”The analysis presented in this section also works
if we substitute the boundary conditions imposed at the beginning by t =
0” (where t is the traction vector on the lateral surfaces). However, that
statement has not been supported by other evidence and indeed contradicts
the known phenomenon of propagation of non-attenuating waves under such
conditions.

Borrelli and Patria (2000) derive a Saint-Venant type decay relation for
piezoelectric material, similar to those obtained by Chirita and Quintanilla
(1996b) for clamped surfaces excited by harmonic excitation and for a body
with free surfaces excited by a transient force. Yilmaz (2007) derived sim-
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ilar energy decay estimates for a system of coupled parabolic-hyperbolic
equations with clamed surfaces under non-linear conditions.

Chirita and Ciarleta (2008) gave spatial decay estimate for an anisotropic
homogeneous and compressible cylinder. The lateral surface and far end of
the cylinder are constrained by zero displacement condition. An exponen-
tial decay result for excitation frequency below some critical frequency has
been derived. Algebraic decay has been obtained for frequencies above that
critical frequency though it is not explained how such decay is possible at
high frequencies without exclusion of propagating waves.

Tibullo and Vaccaro (2008) derive a theorem of influence domain and
decay estimation for strongly elliptic, anisotropic materials. They conclude
(p. 993) that: ” inside of the influence domain, a spatial estimate of Saint-
Venant type has been established, which describes the exponential decay of
solutions with respect to the distance from the loaded end”.

A study on evanescent waves characteristics in a strip with various
boundary data on the faces is undertaken by Karp and Durban (2005) in the
context of incremental finite elasticity. In particular, the authors point out
that the response of a strip with clamped surfaces consist of decaying fields
regardless of the self-equilibrium of the excitation, provided the frequency
is below the first cut-off frequency. Frequency map (Fig. 15) shows that for
the symmetric fields, the first non-dimensional frequency is Ω = 1. That
result is in agreement with previously reviewed results for decaying fields in
waveguides with clamped surfaces below a specific frequency.

5.2 Energy Leaking Surfaces

The boundary conditions for waveguides with energy leaking surfaces
are expressed by the inequality

t · u �= 0 (5.2.1)

on lateral surfaces, where t is surface traction and u is the displacement
vector. Nappa (1998) establish energy decay estimates for both bounded
and unbounded bodies with boundary condition of this type. The suggested
interpretation of the DSVP is again a combination of domain of influence
theorem and spatial energy decay relation within that domain. Extension of
this interpretation of the DSVP and energy estimates was made for various
domains, among them by Chirita and Nappa (1999) for incremental response
of a non-linear material, by Chirita and Ciarletta (1999) for thermodynamic
processes, and by Gales (2002) for swelling porous elastic solids.

In several studies it was assumed that the displacement or the load at
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Figure 15. Frequency map (wave number k versus frequency Ω ) for sym-
metric fields in a strip with clamped surfaces made of elastic material with
Poisson’s ratio ν = 0.25 (Blatz-Ko material without prestretch). Thin
lines (composed of black dots) indicate real and purely imaginary branches.
Thick lines (composed of hollow circles) indicate complex branches (two
curves for each eigenvalue). Purely real wave numbers are associated with
propagating waves. (from Karp and Durban, 2005).

the surfaces are imposed, e.g.

u = ũ or t = t̃. (5.2.2)

If this prescribed data is constant over time, an imposed displacement
is actually sort of clamping while imposed traction represents leaking en-
ergy. If the data has time dependence, both stand for leaking energy. Such
boundary condition was examined by Scalia (2001) to establish energy de-
cay estimates for anisotropic, inhomogeneous linear material with voids.
Ciarletta et al. (2002) extended that analysis for porous elastic mixtures
and, in Ciarletta (2002), for a thin plate with transverse shear deformation
in steady state excitation under clamped lateral conditions, and also for
a transient excitation with a dictated displacement at the lateral surfaces.
Additional spatial estimates in linear thermoelasto-dynamics for imposed
displacement at the lateral surface were derived by Chirita and Ciarletta
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(2003), and energy decay estimates for various boundary conditions are re-
ported by Knops and Payne (2005).

Sliding and inextensional surfaces for a waveguide under plane strain (in
x, y coordinates) conditions are defined by

τxy = uy = 0 sliding lateral surface (5.2.3)

σy = ux = 0 inextensional lateral surface (5.2.4)

Dynamic response of such waveguides has a simple solution which ap-
pears in text books on elastic waves (e.g., Achenbach, 1973, Graff, 1975,
Miklowitz, 1978).

The study of evanescent waves in such waveguides, within the context
of incremental elasticity, is reported by Karp and Durban (2005). An in-
teresting result which has emerged is that non-self-equilibrating excitations
induce decaying fields within the strip, as has already been noted in the
equivalent static case by Karp and Durban (2002). The decay rates are
of the same order as for waveguides with free surfaces. Similar work has
been done by Wijeyewickrema et al. (2008), with emphasis on propagating
waves.

Recently, Karp (2011) combined the mathematical simplicity of waveg-
uide analysis with sliding boundaries conditions analysis to demonstrate
validity and practical aspects of DSVP. In that study the sensitivity of sur-
face strain within the near field (Saint Venant region) to the fine details
of end excitation has been confirmed. Results were interpreted with a new
measure, the Saint-Venant’s ratio (SVR), defined as the ratio of surface ax-
ial strain to strain amplitude in the far-field associated with propagating
wave. That measure represents deviation of the near field from the far field.
For example, SVR = 1 when there is no end effect at all (the profile of
the excitation is identical to the profile of the propagating wave at a given
frequency). The variation of SVR with non-dimensional distance x/h for
various excitations is reproduced here in Fig. 16. The resemblance of these
curves to those obtained for a rod subjected to a transient excitation in Fig.
13, is notable.

6 Special Geometries

Extension of SVP to half-space, wedge and a cone is not a straightfor-
ward task since these geometries lack any natural length scale, as opposed
to a beam to which Saint Venant originally referred to (de Saint-Venant,
1886). Therefore, for formulation of SVP for such cases the length scale is
taken from the load spatial parameters, as demonstrated in statics by von-
Mises (1945) and Sternberg (1954) for a half space and by Horvay (1957),
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Figure 16. Variation of SVR for five excitation forms S (resembling dam-
aged joint) with frequency Ω = 0.5 (below first cut-off) and S2−in excitation
also with frequency Ω = 1.5 (close to first cut-off). Four Si−in excitations
represent damaged joint at the center line of the strip while S5−out excita-
tion represents damage at the outer edges. (from Karp, 2011).

Markenscoff (1994) and Stephen (2008) for a wedge. Few studies examine
the possibilities to extend findings in these geometries to the dynamic case.

6.1 Half-Space

Miyao et al. (1975) studied the application of SVP to dynamic response
of a semi-infinite body subjected to an impulsive torque on the surface of
a hemispherical pit. The temporal variation of the excitation applied to
the body was a step load with several additional cases of gradually profiled
loads. It was found that the stresses just behind the wave front are strongly
influenced by the spatial distribution of shear forces on the pit. Stresses
behind the wave-front, far enough from the pit, are not sensitive to such
variations of load distribution. The distance at which that insensitivity
manifests is smaller for excitations that gradually change with time. It is
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interesting to bring the note (p. 963) stating: ”Compared with the results
previously obtained for the rod, the difference among stress systems pro-
duced by several systems of applied load distributions is more remarkable
for the semi-infinite body”.

Kim and Soedel (1988) solved the problem of dynamic response of a
half-space on which a step load is applied. Emphasis of the article is on a
novel method enabling a simple solution for arbitrary spatial distribution
of the step load. Upon preserving the equivalent static load, the result is
that far enough from the loaded area, the strains behind the wave-front are
insensitive to the spatial distribution of the load. The same conclusion was
obtained later by Awrejcewicz and Pyryev (2003). No explicit reference to
DSVP was made.

Wang and Kim (1997), on the other hand, analyzed the effect of an
impulse load with varying contact area acting on a half-space (modeling
impact against a stop). Comparison of the response included the full time
history of the stress at a distant point while preserving the total load. Con-
clusion was that at distances greater than five times the diameter of the
loaded area, the size of the loaded area has a fairly small effect on the stress
generated. This conclusion is directly related to DSVP, and has been used
in the study to confirm the method suggested for analysis of such problems.

Awrejcewicz and Pyryev (2003) compared the response of a half-space
to a step load with different spatial distributions preserving the integral
intensity of the load. They conclude that Saint-Venant’s principle cannot
be applied to the wave front, but rather to its trail (behind the wave front)
- after the lapse of time ensuring the passage of a Rayleigh wave at a point
of consideration.

A more definite conclusion regarding the non-validity of SVP to dynamic
excitation of a half-space has been put forward by Ziv (2002, 2003): ” half-
space response is hypersensitive to the type of loading, to the way it is
distributed on the source rim, and to the geometry of the source rim under
the load” (Ziv, 2002, p. 402). Therefore (Ziv, 2003, p. 254-255): ”Saint-
Venant’s principle for wave propagation problems cannot be formulated.
The source geometry and its load must be tackled directly as they are
prescribed; i.e. two different configurations sharing the same resultant are
not interchangeable”.

Ignaczak (2002) considered the issue of SVP in microperiodic, layered,
thermoelastic semi-space, thus formulating a time dependent energy decay
estimate.
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6.2 Wedge and Cone

Budaev et al. (1996) summarize two previously published studies, Bu-
dayev et al. (1994) and Morozov and Narbut (1995) on Saint-Venant’s prin-
ciple in a wedge and cone, both for static and dynamic excitations. Three
types of end excitations, applied on the surface generators of the wedge or
cone, were considered: torsion, anti-plane, and normal traction. The crite-
rion for validity of both SVP and DSVP is whether differently distributed
loads with identical moment generate the same asymptotic result far from
the wedge apex. For the static normal loads they find (p. 32) that SVP
is not valid since: ”... it is possible to find forces f1(r) and f2(r), having
the same couple M1, for which the solutions will be quite different”. For
anti-plane shear excitation it is demonstrated (p. 33) that SVP does not
hold, neither for the static case, nor for the dynamic case: ”... so the error
of substitution of one system by another is not small...”. For torsion, both
static and dynamic, the principle does hold (p. 36): ”...then the validity of
the Saint-Venant principle is deduced from previous analysis. In fact, the
stresses in the cone under torsion at some large distance from the apex are
mainly characterized by the moment of boundary forces”.

7 Composites and Laminates

From studies on the validity of the classical SVP it is known that the decay
rate in laminates and in composite materials can be much lower than in
isotropic elastic materials (e.g., Horgan and Simmonds, 1994). This makes
the depth of penetration of end effects to be significantly larger as is evident
from studies on dynamic response of composite waveguides available in the
literature. Apart from that extended depth of penetration of end effects,
there is no substantial difference in analysis between elastic composite and
isotropic homogeneous waveguides. The papers cited below were chosen due
to specific comments related to DSVP, and for explicit association made
between evanescent waves, edge vibrations and DSVP.

End effects in anisotropic cylindrical shells were discussed by Bhat-
tacharyya and Vendhan (1991). Detailed mathematical and physical in-
terpretation of evanescent waves was given, followed by the observation of
low spatial attenuation at frequencies near cut-off frequencies. The evanes-
cent waves (p. 71) were associated with Saint-Venant’s zone: ”...The effect
of the attenuating modes on the dynamic stress field is localized near the
end zone of the shell, the extent of the zone being dependent on the roots
for a specific ”end” problem. This is simply the Saint-Venant zone, so well
known in static problems, and hence the end effect is essentially a dynamic
Saint-Venant effect”. The term ”roots” refers here to wave numbers which
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are the roots of the Pochhammer-Chree equation.

Dong and Huang (1985) applied the finite element method to investi-
gate edge vibrations in laminated composite plates by considering explicitly
the evanescent waves. They regard that treatment as related (p. 437) to
DSVP: ”The analysis procedure may be considered as the dynamic counter-
part of the quantitative analysis of Saint-Venant’s principle”. That view is
an extension of a similar static analysis made earlier by Dong and Goetschel
(1982). The outcome of this work is that dynamic edge vibrations are anal-
ogous to static end effects regardless of self-equilibrium of the excitation,
as suggested already by Torvik (1967). The authors derive a characteristic
equation for use in finite element analysis to find (p. 435) that: ”... equa-
tion (16) represents the dynamic counterpart of Saint-Venant’s principle
for the determination of the decay rates into the plate’s interior of self-
equilibrated edge vibrations”. A similar study and connection with DSVP
for an anisotropic composite cylinder can be found in the paper by Huang
and Dong (1984). It is not clarified in what sense the ”edge vibrations”
are ”self-equilibrated” except for these evanescent waves being a natural
extension of the static eigenfunctions which are indeed self-equilibrated in
a static problem.

The papers by Scalia (2001) and Chirita and Ciarleta (2008) mentioned
above, in a different context, analyzed anisotropic materials and therefore
belong as well to this group of studies.

8 Related Studies

In this chapter two neighboring areas in which DSVP is questioned or in-
voked are reviewed. Neither is a natural part of the categories detailed here,
yet both could be integrated in further studies on DSVP.

8.1 Structural Vibrations

Vibration, by its nature, is not associated with spatial propagation of
energy. Two distinct phenomena of structural vibration can be identified.
One is the global vibration of beam, plate or shell-like structures, typical to
a finite structure. The second is edge vibration associated with evanescent
waves and can exist also in a semi-infinite structure (e.g., Kaul and McCoy,
1964). Since end vibration consists of evanescent waves, references to that
phenomenon have been reviewed in chapter 4, including for example the
work of Foster and Berdichevski (2004), albeit the vibration oriented title.
Yet, to make a clear distinction between studies of finite and semi-infinite
structures, this chapter reviews both types of vibration: structure vibration



154 B. Karp and D. Durban

and end vibration, if treated in the context of a finite structure (e.g., Gales,
2003).

Duva and Simmonds (1991, 1992) studied possible ways for obtaining ac-
curate natural frequencies of beams, especially those weak in shear. The first
order approximate frequency values were deduced from elementary beam
theory. Two methods for arriving at more accurate values were examined:
refined beam theories and implementing end effects. Based on analysis of
two-dimensional end effects in vibration of a cantilevered beam the authors
demonstrated that the contribution of end effects to correction of natural
frequency of a beam (either weak in shear or not) is more meaningful in
comparison with the correction obtained with higher order beam theory.
Accordingly, a correction factor for the natural frequency is suggested.

A technique to bypass the need to consider end effects in analysis of
vibration was suggested by Chen et al. (2003). The treatment of dynamic
response of a laminated beam by conventional state space method com-
bined with differential quadrature method shows (p. 75) that: ”It also can
cope with arbitrary boundary conditions without applying Saint-Venant’s
principle”.

End effects in a rectangular plate of thickness h and dimensions axb, are
considered by Kathnelson (1997). To clarify the extent and the magnitude
of end effects an asymptotic analysis of the exact shear edge effect solution
near a free side of a rectangular isotropic linear elastic plate is carried out.
It is argued that in the dynamic case the end effects are identical.

Differential inequalities leading to energy estimates were derived by Flavin
and Knops (1987) for a finite cylinder, either with clamped faces or made
of viscoelastic material. That work was followed by a series of subsequent
studies employing differential inequalities (cited above in the context of
waveguides with free or constrained surfaces). Combining the treatment of
waveguides with clamped faces with viscoelastic material response in one
paper appears to reflect the common feature of spatial decay of energy (as
opposed to a previous paper by Ignaczak, 1974). The authors succeeded
in proving that the effect of dynamic excitation remains localized at the
vicinity of the excited end for both cases.

Two remarks made by Flavin and Knops (1987) extend the validity of
that result to waveguides with free lateral surfaces or without viscous dis-
sipation. The first (Remark 2, p. 255) reads: ”The results remain valid if
η = 0 (no viscosity) provided that special initial conditions, appropriate to
the forced oscillation are adopted.”. The second (Remark 4, p. 261) states:
”Theorem 2 continues to be valid in the absence of damping provided that
the complementary oscillation (undumped in the ideal elastic case) which
co-exists with the forced oscillation is subtracted out”. It is suggested in
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Karp (2009) that the ”complementary oscillation” can be considered as an
equivalent excitation having the same average power and frequency as the
main load (and opposite phase), and that the ”special initial condition” is
an excitation that does not generate propagating modes.

Chirita (1995) considered spatial decay in problems governed by parabolic
and hyperbolic equations. The principle derived consists of two parts: do-
main of influence and energy decay estimate within that domain.

Iesan and Scalia (1997) established a spatial decay estimate for a finite
cylinder, made of micro stretch elastic solid, and excited at one of its ends.
Both free and clamped lateral surfaces were considered, leading to expo-
nential decay below some critical frequency. Since both formulations refer
to steady state response of a finite rod, it is clear that the end excitation
should have zero average power. Otherwise, energy inflow will not allow
for the response to settle into a steady state. Then, the decay measures
obtained reflect upon the evanescent waves.

Essentially an identical problem was studied by Gales (2003). Here, the
amplitude of the steady-state vibration of a finite cylinder made of a mix-
ture consisting of three components (an elastic solid, a viscous fluid and a
gas) was investigated. An exponential decay estimate of Saint-Venant type
in terms of the distance from one end of the cylinder was obtained with the
decay constant depending on excitation frequency, constitutive coefficients
and the first positive eigenvalue of the fixed membrane problem for the
given cross-sectional geometry (as derived by Toupin, 1965a). The author
concludes (p. 152) with: ”To the amplitude of the steady-state vibration
we associate a cross-sectional measure and, provided the exciting frequency
is lower than a certain critical frequency, we derive a first-order differen-
tial inequality, which by integration leads to a spatial decay estimate of
Saint-Venant type. The result proves that the above cross-sectional mea-
sure decays faster than a certain exponential function of the distance from
the loaded end”.

The problem of thermoelastic vibrating plate was addressed by D’Apice
(2005). Saint-Venant type decay is derived for frequency of vibration below
a specific value, with an exponential decay of energy contents in the cross
section.

Experimental investigation of end effects on the frequency of vibration
of a cantilever elastic beam was conducted by Karp et al. (2008). An
aluminum beam was clamped by six screws at one end and excited by a
lateral impact at its free end. The level of tightness of the screws was the
controlled variable and considered as a variation of end conditions without
changing the global characteristics of the structure as a cantilever beam.
It was found that complete release of any of the six screws had significant
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effect on near field response (Fig. 17) but not on the far field. FFT (fast
Fourier transform) analysis of the far field response revealed no sensitivity
to absence of one screw. Removal of two or more screws did have an effect
on the vibration frequencies of the beam (not reported in the article).

Figure 17. Axial surface strain recording in the close vicinity to clamped
end of a beam, with three different ”clamping” conditions subjected to
transversal excitation at the far end of the beam (from Karp et al., 2008).

Evans and Porter (2008) used Green’s function to demonstrate existence
of edge waves for a semi-infinite plate within the context of plate theory.
Specifically, the authors have shown that plane waves incident on a pinned
point on the straight edge of an elastic plate can generate edge waves which
radiate energy to infinity along the edge. Various aspects of edge waves are
discussed in a recent volume of Mathematics and Mechanics of Solids accu-
mulate several reports on edge vibration and resonance, including Kaplunov
and Lawrie (2012), Zacharov (2012), Pichugin and Rogerson (2012), Pag-
neux (2006, 2012), Kaplunov and Fu (2012).
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8.2 Viscoelastic Materials

Since spatial decay of energy can not be granted in elastic materials
due to existence of propagating modes, even when a self-equilibrated load
is applied, viscosity was introduced to provide a dissipating mechanism
ensuring the required decay. That type of material is mainly studied by
authors who considered the spatial decay of end effects as a criterion for a
valid version of Saint-Venant’s principle.

Murray (1970) looked at the question of spatial and temporal decay of
discontinuities induced at a surface in a mildly nonlinear Maxwell rod with
finite nonlinear viscous damping governed by a first order partial differen-
tial equation. Various degrees of spatial decay behavior were derived for
different characteristics of the problem.

Rauch (1976) investigated the qualitative behavior of dissipative wave
equations of a bounded domain with a general cross-section. Munoz Rivera
et al. (1996) employed integral theorems to establish decay rates for vis-
coelastic plates with memory. The decay considered is a function of time,
which formally excludes it from being of Saint-Venant’s type.

In the work by Chirita (1997) energy decay estimates were obtained for
transient response of a finite length bar, made of anisotropic viscoelastic
material, with lateral surfaces free of traction, for both self-equilibrated
and general dynamic load. An analogous asymptotic result was obtained
for a semi-infinite cylinder. Existence of exponential spatial decay for both
self-equilibrated and generally non-self-equilibrated loads, derived in that
work, emphasize the question of relevance of self-equilibrium for a dynamic
version of SVP. It also exposes the substantial difference between dissipating
and non-dissipating media in the context of DSVP.

Ciarletta and Chirita (1999) establish decay estimate for a viscoelastic
material with voids. De Cicco and Nappa (1999) derived an exponential
decay estimate for a micropolar viscoelastic finite cylinder in a form similar
to Toupin’s (1965a) decay estimate for a quasi-static case.

More than ten studies on decay of dynamic disturbances in viscoelastic
materials appeared in the literature (reviewed here in previous chapters).
Because the damping coefficient enters implicitly into decay estimations, it
is difficult to figure out mathematically the role of damping and possibly
relate these works to decay estimates derived originally for elastic materials
without any dissipating mechanisms. No equivalence criterion is invoked in
these studies.
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9 Comparing SVP with DSVP

It is a standard practice in physics to require a general formulation and
solution of a dynamic problem to degenerate to its quasi-static equivalent
by taking the limit of vanishing frequency ω → 0. Following that practice,
it is expected that any valid version of DSVP will degenerate to the classical
SVP at that limit. Successful degeneration of one the DSVP version can
provide some credibility to that version.

Classification of the articles reviewed in Chapter 4 discloses five ap-
proaches to what DSVP should be (summarized in Section 10.1 below).
Among these five only the dynamic equivalence approach appears to be
legitimate for degeneration to SVP. Excluded are approaches denying exis-
tence of DSVP and those introducing viscosity. That comparison between
SVP and DSVP and degeneration of DSVP to SVP is suggested below. The
comparison is not complete due to the currently early stages of the research
on that version of DSVP. Yet, it might be valuable in pointing to potentially
constructive research direction on the topic.

9.1 Mathematical Formulation and Foundation

Mathematical foundation of the classical SVP is based mainly of two
methods: energy inequality (e.g., Knowles, 1966, Toupin, 1965a) and eigen-
function expansion (e.g., Horvay, 1953). Let us begin the comparison with
the eigenfunction expansion method.

Eigenfunction expansion method commonly regarded as an accurate
quantitative estimation of validity of SVP (e.g., Goetshel and Hu, 1985;
Horgan, 1989). It is commonly related to a semi-infinite strip, resembling a
beam like or plate like structure, with a typical width of 2h. The response of
the strip to a self-equilibrated load is captured by eigenfunctions, decaying
exponentially from the loaded end, providing the effect of localization. The
complete displacement response of the strip in the (x, y) plane with x as an
axial direction is given by

u(x, y) =
∑
n

AnUn(y)e
−ξnx (9.1.1)

where the sum is taken over the infinite set of eigenfunctions Un(y) each
associated with eigenvalue ξn. Positive real part of the eigenvalue Re{ξn}
dictates the rate of spatial decay of the amplitude of each mode n. The
dynamic response of the same semi-infinite strip is described in a similar
way by (e.g., Achenbach, 1973)

u(x, y, t) =
∑
n

AnUn(y)e
i(ξnx−ωt) (9.1.2)
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Except for the additional time variable and frequency parameter, there are
only semantic differences between the quasi-static solution and the dynamic
one. Here Un(y) are wave modes and ξn are wave numbers. The decaying
wave modes are termedevanescent, spatial decay of which is dictated now
by Im{ξn} due to the i factor in the exponent. By taking the limit of zero
frequency, one derives the quasi-static solution from the dynamic one. The
spatial decay rate of both static and dynamic fields is governed by the same
variable ξn.

The values of the decay rates ξn of the static fields are obtained from
the Fadle-Papkovich equation (Timoshenko and Goodier, 1972). The val-
ues of the decay rates ξn of the evanescent waves are obtained from the
Rayleigh-Lamb equation (Mindlin, 1960; Graff, 1975). That equation is de-
generated to Fadle-Papkovich equation by taking the limit of zero frequency
(Miklowitz, 1978).

Let us contrast now SVP and DSVP as they are formulated using energy
methods. In the static case the decay of energy contained in the body due to
application of self-equilibrated load is exponential (Toupin, 1965a; Knowles,
1966). The decay rate obtained is considered to be an approximate to the
exact one obtained from eigenfunction expansion ξn.

An equivalent examination of energy decay due to dynamic self-equilibrated
load revealed non-decaying (propagating) modes that deliver energy to in-
finity without attenuation. Yet, since self-equilibrated loads are not a result
of difference between dynamically equivalent loads, that result does not
necessarily disprove DSVP. Indeed, it has been shown by Karp (2009) that
under some limiting conditions a difference between any two dynamically
equivalent loads result in excitation having zero average power. From waveg-
uide analysis it is obtained that for such excitations the energy content in
a waveguide will indeed decay with rate dictated by ξn. Such decay was
obtained using energy inequalities only for waveguide with clamped lateral
surfaces (as reviewed in Sec. 5.1) and a more general proof is remained to
be wanted.

9.2 Practical Application

The application of SVP consists of replacing the actual system of loads by
other system having identical static equivalents, namely, same total force
and couple. According to the dynamic equivalence version the usage of
DSVP is by replacing the original excitation by other excitation having
identical dynamic equivalents, namely, total average power and frequency
(below first cut-off frequency). Apparently, static and dynamic equivalences
are different. Difference between two statically equivalent loads results in
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self-equilibrated load whereas difference between two dynamically equivalent
excitations lead to excitation with zero input power. Yet, it was shown for
a simple waveguide (Karp, 2009) that any excitation having zero net power
applied to a wave guide is self equilibrated in the static sense in the limit
of zero frequency.

The mathematical derivation of the classical SVP out of DSVP by tak-
ing the limit of zero frequency enable one to generalize the statements of
the principle, emphasizing their oneness. One common reference to SVP
can now be generalized to be written as: ”Principle of elastic equivalence
of a statically/dynamically equivalent system of loads/excitations”: Engi-
neers customary refer to a different statement, reading now: ”The far field
strain produced in a body, by application of statically/dynamically equiva-
lent loads/excitations, is the same”. These two statements, combining SVP
and DSVP, are in a complete agreement with the spirit of Saint-Venant’s
ideas as expressed by Ericksen (1979, p. 7): ”St.-Venant’s principle gave a
rule of thumb for dividing all solutions into equivalence classes ...”.

Finally, in both static and dynamic problems the meaning of the princi-
ple is that the far field response is not sensitive to the details of the applied
excitation, rather to its integral properties. In the static case these integral
properties are the static equivalents. In the dynamic case it is the time aver-
age input power. The unified statement of the principle is thus: ”A property
of a structure according to which the strain far from the loaded end has low
sensitivity to the spatial distribution of static/dynamic loads/excitations”.

10 Concluding Comments

10.1 Theoretical Formulation

Most of existing studies on DSVP look either for conditions under which
spatial decay can be granted, or search for the distance beyond which the
fine details of the excitation has only minor importance, if at all. Each
of the two approaches has brunched into several views as to what DSVP
should be. These views can be grouped roughly into five categories: DSVP
is not valid even if self-equilibrated excitation is applied (Boley, 1955, 1960a;
Slepiyan and Novhozilov, 1965; Grandin and Little, 1974; Ziv, 2003; Foster
and Berdichevsky, 2004); DSVP is valid regardless of the self-equilibrium
of the excitation provided some attenuating conditions are added, such as
clamping of the lateral surfaces, energy leaking surfaces, or viscosity (Flavin
and Knops, 1987; Nappa, 1998; Ciarletta and Chirita, 1999); DSVP is valid
only approximately when the frequency is low enough (Boley 1955, 1960a;
Grandin and Little, 1974) or when the excitation deviates slightly from self-
equilibrium (Gomilko et al., 1995; Babenkova and Kaplunov, 2004); DSVP
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is valid only statistically (Foster and Berdichevsky, 2004); and finally, DSVP
is valid for dynamically equivalent loads, equivalence that can be defined
rigorously at any frequency below the first cut-off frequency (Torvik, 1967;
Karp, 2009).

At present, there is apparently no guiding idea as how to select one
approach over the other. Nevertheless, it should be possible to follow the
original spirit of classical SVP in considering primarily practical aspects of
DSVP. As vividly described by Toupin (1965b) and by Benvenuto (1997),
Saint Venant used heuristics to propose his assumption aiming at liberating
engineers from dealing with beam problems associated with either unknown
boundary details or intractable analytically. In Chapter 3 we have tried to
provide clear experimental evidence for that quest suggesting that similar
practical approach should be valid in the case of dynamic excitation as well.
The comparison between the classical SVP and the dynamic equivalence in-
terpretation of DSVP brought in Chapter 9 provide a further demonstration
of the possible formulation of DSVP and probably for its potential benefit.

10.2 Application of DSVP

A review by Walley and Mason (2000) on the history of the split Hopkin-
son bar system for material characterization exemplifies the need for DSVP
and the interpretation associated with that (p. 2): ”This issue was resolved
by theoretical work and experimental checks on whether the Saint Venant
Principle could be extended to dynamic ’non-equilibrium’ loading problems
... And from about 1953 onwards it became standard to use strain gauges
bonded to the outside of Hopkinson bars to measure strain pulses propa-
gating down them”. The same view was expressed by Field et al. (2001) in
summary of main developments in such systems. According to that sum-
mary (p. 112), the 50’s are characterized by: ”Experimental checks of the St
Venant hypothesis and hence legitimation of the use of surface strain gauges
to measure stress pulse propagation”. Typical example for application of
DSVP is found in Pope and Field (1984, p. 817): ”Miniature semiconduc-
tor strain gauges are sited 10 bar diameters from the input end and by the
dynamic equivalent of St Venant’s principle the bar can accurately record
the total force on the end face, independent of the pressure distribution”.

These assertions, along with additional considerations of separation of
signals, are the basis for guidance in locating strain gauges in split Hopkin-
son system by Follansbee (1985, p. 199) ”However, these end effects quickly
dampen after the wave has propagated about ten bar diameters”, and in
the newer version by Gray III (2000, p. 463): ”The length of the pressure
bars must first ensure one-dimensional wave propagation for a given pulse
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length; for experimental measurements on most engineering materials, this
propagation requires approximately 10 bar diameters”. From experiments
detailed in chapter 3 and from recent studies (e.g., Meng and Li, 2001;
Karp et al., 2008, 2009) it can be safely stated that the distance at which
a one-dimensional wave is attained is much smaller (2-3 diameters). From
Pochhammer-Chree solution and Davies’ (1948) studies it is evident that
an additional restriction of low frequency should be imposed.

Another practical aspect of DSVP is detailed by Duva and Simmonds
(1991). The authors examined influence of end effects on the lower natural
vibration frequencies of a laminated beam and the correction to the classical
prediction that should follow. A direct association of end effects with DSVP
(p. 178) was made: ”...It is senseless to proceed without discussing end
effects. For the relatively low frequencies of vibration we are considering,
these effects should be confined to end zones of width O(H) as suggested by
the useful discussions by Boley (1955, 1960) and Grandin and Little (1974)
of a dynamic St-Venant’s Principle for a semi-infinite elastic strip”.

In a few additional engineering situations researchers have relied upon
DSVP, either implicitly or explicitly, deliberately or tacitly. The dynamic
equivalence version of DSVP is applied in the field of active noise and vi-
bration control (without reference to DSVP). For example, the cancellation
of an unwanted sound field is achieved by an array of sources activated to
generate a secondary acoustic field having the same frequency and average
power with an inverse polarity to the main source, resulting in a destruc-
tive interference (Rosenhouse, 2002). Kuznetsov and Stepanov (2007) used
the idea of equivalence for dealing with source replacement (p. 326), stat-
ing that: ”The equivalence of a model is understood in the sense that the
pressure levels and interference structures of the amplitude and phase of a
volume low-frequency source and of a point multipole should be sufficiently
close to provide the required accuracy of measurements.”. Another practical
aspect of source equivalence is found in ambient noise modeling of urban
landscape (e.g., Hornikx and Forssen, 2009). Kundu et al. (1991) used
equivalent source replacement based on validity of SVP (p. 153): ”In the
proposed method unknown sources are placed not at the near field boundary
but at the location of the structure. Then the Saint-Venant’s principle is
utilized to justify that at a distant point the effect of structure’s vibration
can be effectively modeled by an equivalent vibrating point force and vi-
brating moment at the structure’s position”. It is worthy to note that such
application of SVP to dynamic response of a half-space was later regarded
by several researches as not valid (see section 6.1).

The possible application of the concept of DSVP to the emerging field
of structural health monitoring was demonstrated by Karp et al. (2008)
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and Karp (2011). It was shown that by estimating the extent of end effects,
along with the identification of dynamic equivalence, it is possible to expose
incipient damage at joints of beam-like and plate-like structures.

It can be extrapolated from those representative examples that several
engineering fields should benefit from applying the dynamic equivalence ver-
sion of DSVP. It is conceivable that DSVP can be used in other engineering
situations as well. This might include: source recognition in acoustics and
acoustic emission (e.g., Kroll and Tatro, 1964), earthquakes analysis (e.g.,
Kundu et al., 1991), force reconstruction in measurement systems relying
on wave guiding (e.g., Tyas and Watson, 2000), energy trapping at dis-
continuities associated with evanescent waves (e.g., Evans, 1992; Kaplunov
and Sorokin, 1995; Aslanyan et al., 2000; McIver et al., 2002; Chamberlain,
2004), and dynamic material characterization (e.g., Waldman and Lee, 2002;
Sasso et al., 2008; Gilat et al. 2009) where uniformity of the field within
the cross-section is required.

10.3 Vision of DSVP

There are definite contradictions and lack of clarity related to the pos-
sible validity of DSVP in elastic problems. In particular, this is due to
convincing demonstrations for non validity of DSVP (non-decaying field
due to self-equilibrated excitation), and general the inherent non-decaying
property of fields governed by hyperbolic partial differential equations. That
unease can somewhat be mitigated by appreciating that even the study of
the classical SVP is not yet complete. A brief review of the history of
the ideas related to the classical SVP expose parallel counter examples and
mixed attitudes to the essence of SVP.

Examples for structures for which the classical SVP is not valid were
discussed years before, and also after, proofs for validity of SVP were de-
rived. Four such structures are shown here in Figures 18 and 19. Additional
counter examples for SVP are given by Horvay (1957), Toupin (1965b) and
more recently by Huang (1989) and by Markenscoff (1994). It appears that
these counter examples for validity of the classical SVP did not lead the
community to doubt its existence, nor its usefulness.

It is instructive to quote several prominent scientists referring to the
meaning of the classical SVP. von-Mises (1945) wrote a century after Saint-
Venant introduced his assumption (p. 562): ”What Saint Venant originally
had in mind was doubtlessly the case of a long cylinder with infinite ratio of
length to diameter. The purpose of the present paper was to show that an
extension of the principle to bodies of finite dimensions is not legitimate”. In
a similar spirit, Sternberg (1954, p. 401) wrote: ”For Saint-Venant’s prin-
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(a) (b)
Figure 18. Two structures for which the classical SVP is not valid: (a)
from Donnell (1962), (b) from Sternberg (1954).

ciple is a statement about relative orders of magnitude and does not tell
us anything about the extent of the region within which a self-equilibrated
system of tractions, applied to a portion of the surface of an elastic body,
”materially” influences the stress distribution in the body”. The non uni-
vocal meaning of SVP is also evidenced from discussion brought by Naghdi
(1960). Even three decades later Levine and Quintanilla (1989, p., 71) noted
that: ”we believe that the study of the principle and problem is not finished
even in the simple case of cylinders”.

These citations, along with several counter examples, related to the clas-
sical SVP may suggest that existence of clear examples for non-validity of
DSVP and some disagreement concerning its very essence, does not nec-
essarily mean the search for DSVP in linearly elastic material is hopeless.
Moreover, the wide range of experimental situations in which one of the ver-
sions of DSVP appears to be valid, might motivate one to search for ways to
relax the apparent contradictions, made explicit in Section 2.3. The use of
energy inequalities is one of avenues to be followed in providing a rigorous
proof for decaying fields generated by excitations having zero net power.
Such a research is expected to provide clearer definitions of the conditions
under which DSVP is expected to be valid, and when it does not.

Unification of the classical SVP with the equivalence version of DSVP
raises an additional question on whether that version can also be general-
ized to other Saint-Venant type decay estimates (not reviewed here) such
as in quasi-linear or non-linear elasticity, non-mechanical waveguides (op-
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(a) (b)
Figure 19. Two structures for which the classical SVP is not valid: (a)
from Toupin, (1965a), (b) from Hoff (1945).

tical), and to heat problems. For example, in the proof of the static SVP,
correspondence between the energy inequalities (Toupin, 1965a; Knowles
1966) and direct elasticity solutions with eigenfunctions (Timoshenko and
Goodier, 1972) has been established. Can such correspondence be shown to
hold for dynamic or heat problems? In that context, it is an open question
how to settle the apparent contradiction between established energy decay,
obtained by several authors, and the non-decaying propagating modes in a
non-dissipating structure with free surfaces.

Since DSVP is related to localizied phenomena, it is natural to expect
existence of connections with the various topics covered in this volume. Such
possible connections are ought to be pursued, both in continuum mechanics
and electromagnetic fields.

Apparent inconsistencies, between several views of DSVP and engineer-
ing practice, define clear objectives for additional future research. Since dy-
namic phenomena encompass a richer spectrum in comparison with static
cases, it is expected that applications will exceed the well established limits
of the classical SVP. Applying the principle should be supported by firm
experimental evidence, both in validity and in quantitative estimation. The
work reviewed in chapter 3 provides a promising start for fruitful research
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to come. Engineers in particular are expected to recognize the validity of
the DSVP (at least in one of its versions) and to assimilate its use.

Both theory and engineering practice call for such an undertaking, with
research program including related issues like stability of solutions and well
posedness. The theoretical basis of the DSVP should be widened and it is
hoped that the present review will contribute towards formulating a uni-
fied theory, compatible with the body of knowledge already available, on a
dynamic analogue of Saint-Venant’s principle. Note: This article is an ex-
tended and updated version of a review published few years ago in Applied
Mechanics Reviews (Karp and Durban, 2011).
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Abstract This chapter considers localized modes for acoustic and
elastic waves. We first discuss trapped modes for acoustic scalar
waves that are perfectly localized solutions near defects in waveg-
uides with a real resonance frequency. Emphasis is given on the
trapping mechanism coming from the evanescent nature of trans-
verse modes in waveguides. We then study the case of quasi-trapped
modes where the wave is strongly localized but can radiate energy.
Complex resonance frequencies are shown to appear through ap-
proximate models and general principles. Eventually, we focus on
elastic wave localization near traction free edges in plates and rods.
The complicated polarization of the wave in elasticity is shown to
increase the ability for trapping with very simple geometries.

1 Introduction

Modes are solutions of the wave equation without sources. They provide
a very powerful tool to understand the response of wave systems when
excited by a source because they represent an intrinsic basis corresponding
to various kind of resonances. When the frequency is close to a resonance
frequency the solution is dominantly given by the corresponding mode. The
more often, modes are defined for closed cavity where the boundaries are
able to quantify the frequencies. Here, we are concerned with trapped modes
and localized solutions that exist for open geometry with confinement in at
least one direction. These waveguide structures support evanescent waves
that facilitate the trapping. Trapped modes were introduced more than
fifty years ago (see for instance Jones (1953)) and since then have induced
an important amount of works (Callan et al., 1991; Evans et al., 1994;
Kaplunov and Sorokin, 1995; Granot, 2002; Bonnet-BenDhia and Mercier,
2007). Recent comprehensive reviews can be found in Linton and McIver
(2007) and Postnova and Craster (2008).
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In these notes, in section 2, a reminder on the usual modes in a closed
cavity is presented, followed by a brief introduction to trapped modes in
open geometries. Section 3 is dedicated to trapped modes for scalar waves.
The basic mechanism of trapping is illustrated with the simple model of
the potential well. Then, the case of waveguides with Dirichlet bound-
ary conditions is dealt with. Acoustic waveguides with Neumann boundary
conditions give a more subtle situation where trapping occurs owing to sym-
metries that allow to localize the solution. Waves localized but radiating
energy are discussed in section 4. A simple model permits to introduce the
complex resonance frequencies corresponding to these quasi-trapped modes
and basic analytical properties in the complex frequency plane are pre-
sented. In section 5, we look at elastic waveguides and their particularity.
It is shown that the vectorial nature of the elastic waves, with longitudinal
and transversal polarizations, offers the ability to trap the solution near
traction free edge, either in plates or in rods.

2 Different kinds of modes

In the first four sections of these notes we will consider scalar waves. In
the harmonic regime, with the time dependence chosen as e−iωt, they are
governed the Helmholtz equation

�φ+ k2φ = 0, (1)

where k = ω/c. If c does not depend on ω the scalar wave is dispersion-
less: typically it corresponds to acoustic waves (Morse and Ingard, 1968).
If dc/dω = 0 the wave is dispersive as is the case for instance for water
waves (Cobelli et al., 2011). The Helmholtz equation (1) has to be supple-
mented by boundary conditions. The more often1 they are of the Dirichlet
or Neumann type: φ = 0 at the wall for Dirichlet and ∂nφ = 0 for Neu-
mann. Depending on the physical problem, Dirichlet or Neumann boundary
conditions (BC) are applied as summarized below:
• Acoustics (Neumann BC at hard wall)
• Electromagnetism 2D (Neumann or Dirichlet BC for perfect metal)
• Elasticity with SH polarization (Neumann BC for stress free interface)
• Quantum mechanics (Dirichlet BC at hard wall)
• Water waves (Neumann BC at vertical hard wall)

In all these cases we have to deal with a scalar wave represented by a single
scalar function φ. In the following, a heuristic introduction to the notion

1Note that mixed boundary conditions exist also: they correspond to a local impedance

or a local admittance.
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of modes for the usual case of a closed cavity and the unusual case of open
geometry is given.

2.1 Modes in cavity (usual)

The usual modes are solutions of the homogeneous Helmholtz equation
(1) in a closed cavity. Figure 1 displays the example of a mode in an acoustic
cavity with hard wall. The wave cannot escape the cavity and the boundary
conditions are able to select a particular set of discrete frequencies kn and
eigenmodes φn that satisfy

�φn + k2nφn = 0, (2)

with ∂nφn = 0 on the boundary, and where n is the index of the mode. The

Figure 1. A mode in an acoustic cavity.

set of modes φn provides an orthonormal basis2 with the property:

(φm|φn) = δnm, (3)

where the scalar product is defined as (φ|ψ) = ∫ φ(x)ψ(x)dx. The useful-
ness of the modes can now be illustrated when we want to solve the wave
equation in the same cavity with a source s:

�φ+ k2φ = s(x). (4)

2It comes from the self-adjointness of the problem, for details on the mathematical

aspects see for instance Stakgold (1998).
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The sought φ can be expanded on the mode basis as

φ(x) =
∑
n

cnφn(x). (5)

Inserting this expansion in the wave equation and using the orthonormality
(3), the coefficients cn are found to be

cn =
(s|φn)

k2 − k2n
. (6)

When k � kn, the solution is dominantly given3 by the mode φn. We see
here the intrinsic character of the modes: they provide a set of functions
independent of sources and they govern the wave with source when the
imposed frequency is close to a resonance frequency.

2.2 Modes in open geometry (unusual)

We have seen that a closed cavity sustains an infinite of modes. In open
geometry the wave has the ability to radiate towards infinity so that in gen-
eral there is no homogeneous solution of the Helmholtz equation with finite
energy. Nevertheless, for open geometry where the wave can be evanescent
towards infinity, we will see that it is possible to obtain trapped mode. A

Figure 2. Trapped modes in three different waveguides with Dirichlet
boundary conditions. (top) bump, (bottom) bends.

3Assuming that the projection of the source term (s|φn) is not zero.
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trapped mode is defined as an homogeneous solution of the wave equation
(�φ+ k2φ = 0) with finite energy,∫

|φ|2dx finite.

It is associated with a real resonance frequency k and the set of resonance
frequencies of trapped modes for a given geometry is discrete. Waveguides
are the typical geometries where trapped modes may exist because in such
geometries the wave propagates towards infinity through a finite number of
propagating transverse modes and an infinite number of evanescent waves.
For instance, for waveguides with Dirichlet boundary conditions, there is a
frequency threshold below which the wave is purely evanescent in the leads
towards infinity. Below this threshold, the wave cannot escape from a de-
fect in the waveguide and a trapped mode can be easily found. Figure 2

Figure 3. Trapped modes in bent waveguides with a mixing of Dirichlet
and Neumann boundary conditions in the leads.

shows three examples of trapped mode for waveguides with Dirichlet bound-
ary conditions4. Boundary conditions of different types can also support
trapped modes. Figure 3 correspond to trapped modes in bent waveguides
with a mixing of Dirichlet and Neumann boundary conditions. The trap-
ping is still rather ”easy” since a waveguide with Neumann BC on one side

4This situation is common in quantum mechanics where these modes are called bound

states.



186 V. Pagneux

and Dirichlet BC on the other side still has a non-zero frequency threshold
where the wave cannot propagate. The case of waveguides with Neumann
boundary conditions (as in acoustics) needs a little more of subtlety. The
plane is always propagating with no cut-on frequencies and the wave is able
to radiate towards infinity even for low frequencies. Nevertheless, as will
be described with more details in the next section, by using symmetry of
the geometry it is possible to recover the same situation as for Dirichlet
waveguides where the antisymmetric part of the wave is evanescent below
a threshold frequency. Examples of trapped modes for symmetric acoustic
waveguides are shown in Figure 4.

Figure 4. Trapped modes for symmetric waveguides with Neumann bound-
ary conditions (acoustic case).

3 Trapped modes for scalar waves

Trapped modes can exist in waveguides, i.e. system confined in at least one
direction, where evanescent waves are able to localize the energy around a
defect. The basic mechanism of trapping is well described by the simple
model of the potential well.

3.1 Trapping mechanism: the potential well

The potential well is illustrated in Figure 5. In this model, the wave is
governed by the Schrodinger equation

φ” + (k2 − V (x))φ = 0, (7)

where V is the potential (further details on the physical context can be found
for instance in Landau and Lifshitz (1977)). For this model, V is constant
(V = V0) except in a the central region |x| < a where it is zero (see Fig. 5).
The equations inside the well and outside the well are respectively

|x| < a : φ” + k2φ = 0 (8)
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Figure 5. The potential well.

and
|x| > a : φ” + (k2 − V0)φ = 0. (9)

Inside the well, for |x| < a, the wave can always propagate, but the propa-
gation of the wave outside the well, for |x| > a, is controlled by the sign of
k2 − V0. If k2 < V0, the wave is evanescent and the it will be seen that a
trapped mode exists.

Trapping case: k2 < V0. In this case, the wave is evanescent outside
the well. A trapped mode is a solution of the homogeneous wave equation
(7) with outgoing radiation condition outside the well. Benefiting from the
symmetry of the problem with respect to x = 0, we are looking for a trapped
mode even in x. Inside the well, |x| < a, the solution is

φ = A cos kx (10)

and for |x| > a the outgoing radiation condition selects a solution of the
form

φ = Be−α|x|. (11)

The continuity of φ and φ′ at x = a yields an implicit equation on k:

k tan ka = α, (12)

where α =
√
V0 − k2. This implicit equation can solved graphically as shown

in Figure 6. Whatever the value of V0, it is obvious that it posses at least
one solution kR that corresponds to the resonance frequency of a trapped
mode. When V0 goes to zero, it is possible to obtain an approximate explicit
resonance frequency:

k2R � V0 − V 2
0 a

2.

It is typical of a trapped mode with a weak defect: the resonance frequency
is asymptotically close to (and below) the threshold (or the cut-on frequency,
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Figure 6. Resolution of the implicit equation of the trapped mode.

here represented by
√
V0) where the wave becomes propagative. This kind of

results are also found for trapped in waveguides with small defect (Nazarov,
2011). The shape of the trapped mode calculated for a = 1 and V0 =
2 is shown in Figure 7. The corresponding resonance frequency solution
of the implicit equation (12) is numerically found to be kR = 0.89. The

Figure 7. Shape of the trapped mode for a = 1 and V0 = 2. The resonance
frequency is kR = 0.89.

structure of trapping appears. Inside the well, playing the role of a defect,
the wave is propagating and it cannot radiate towards infinity since the
wave is evanescent outside. Actually, we have the same situation as in a
closed cavity with the evanescent region playing the role of effective walls.
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Scattering case: k2 > V0. When the frequency is above the threshold
(k2 > V0) the wave is propagating everywhere. The trapping is not possible
and the solution to the wave equation is in the form of a scattering state
(Landau and Lifshitz, 1977). For x < −a

φ = eiβx +Re−iβx, (13)

and for x > a
φ = Teiβx, (14)

where β =
√
k2 − V0. The scattering coefficients can be found (Landau and

Lifshitz, 1977) from the linear system of four equations with four unknowns
obtained by applying the continuity of φ and φ′ at x = ±a with the solution
inside the well (|x| < a) given by

φ = A cos kx+B sin kx. (15)

It appears that no trapping is possible in this case because as soon as

Figure 8. Spectrum of the potential well.

the wave is nonzero it has to radiate energy towards infinity. A sketch of
the spectrum along the frequency axis k is shown in Figure 8. Above the
threshold, we have the scattering states for the continuous set of k such
that k >

√
V0. Below the threshold, no wave can propagate towards infinity

and the trapping is possible for some discrete values of k. These resonance
frequencies are selected by interference effect in the propagating well with
the effective wall effects of the evanescence regions. In this particular model
of the potential well there is at least one trapped mode, but in other sit-
uations with a similar threshold frequency it is possible that no trapping
occurs (Nazarov, 2011).

The simple mechanism of trapping that has been described is the typi-
cal one in other wave system for open geometries in 1D, 2D and 3D. The
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important property is the existence of a frequency gap for which the wave
is evanescent towards infinity. Then, for frequencies inside the gap, the
evanescence environment is able to play the role of an effective wall for a
defect and we recover the situation of a closed cavity. In the following, we
focus on waveguides in 2D that naturally present cut-on frequencies creating
the frequency gap.

3.2 Dirichlet waveguide

Trapped modes are solutions of the homogeneous wave equation with
outgoing radiation conditions. We have seen that evanescence is the way to
be trapped and the perfect candidates are thus waveguide geometries. We
begin with Dirichlet waveguides where previously discussed frequency gap
appears more simply than for Neumann waveguides. The transverse modes

Figure 9. Dirichlet waveguide of width h.

of the waveguide are necessary to make to appear the evanescent character
of the propagation. They are defined as solution of the wave equation in a
straight waveguide (Figure 9) sought in the separable form:

φ(x, y) = eiαxg(y). (16)

Inserting this form into the wave equation gives the ordinary differential
equation on the function g:

d2g

dy2
+ (k2 − α2)g = 0. (17)

On the other hand, the Dirichlet boundary conditions on the wall, φ = 0
for y = 0 = h, implies that

g(0) = g(h) = 0. (18)

Equations (17) with (18) have an infinite discrete set of solutions

gn(y) =

√
2

h
sin(

nπy

h
) (19)
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indexed by the integer n ≥ 1. The pre-factor
√
2/h is chosen so as to ensure

the orthonormality of the transverse modes

∫ h

0

gn(y)gm(y)dy = δnm.

Each transverse mode is associated to an axial wavenumber α indexed by
n ≥ 1:

α2
n = k2 −

(nπ
h

)2
. (20)

Here comes the propagating or evanescent waves. For a given frequency
k, a transverse mode is either propagating (real αn ) or evanescent (imag-
inary αn) depending on the sign of α2

n. Thus for k > nπ/h the wave is
propagating and for k < nπ/h the wave is evanescent. Since n ≥ 1 there
appears that all the transverse modes are evanescent for k < π/h. The

Figure 10. Spectrum of the Dirichlet waveguide with lead width h.

general solution of the wave equation can be expanded5 on the infinite set
of transverse modes6 as

φ =

∞∑
0

(cne
iαnx + dne

−iαnx)gn(y), (21)

which means that for k < π/h any wave solution is only composed of evanes-
cent waves. For k > π/h, at least the mode with n = 1 is propagating and
when the frequency increases more and more transverse modes are prop-
agating with the cut-on frequencies at kc,n = nπ/h. In the presence of a
defect, similarly to the model of the potential well, a sketch of the spec-
trum along the frequency axis k can be given (Figure 10). For a Dirichlet

5The terms e±iαnx correspond respectively to right/left going waves.
6These transverse modes play the role of generalized Fourier series modes and form a

complete basis on 0 ≤ y ≤ h (Stakgold, 1998).
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waveguide, with leads towards infinity of width h, the wave cannot prop-
agate in a gap 0 < k < π/h. Thus a the existence of a trapped mode is
possible in this gap, depending of the shape of the defect between the leads.
For a local perturbation of the width of the waveguide corresponding to an
increase of the volume it can be proven that a trapped mode exists and
asymptotic approximations of the resonance frequencies can be obtained
(Nazarov, 2011). Figure 11 displays the pattern of such a trapped mode.
For the case of bent quantum waveguides, there is an important literature
discussing the existence of trapped modes often called bound states in this
quantum mechanics community (Duclos and Exner, 1995).

Figure 11. Trapped mode for a defect in Dirichlet waveguide.

3.3 Neumann waveguide

The question of trapped modes in waveguides with Neumann boundary
conditions is more involved because the plane transverse mode can always
propagate. Indeed, when seeking a separable solution of the form φ =
eiαxg(y) in the geometry shown in Figure 12, the ODE for g is the same as
for Dirichlet waveguides,

g” + (k2 − α2)g = 0, (22)

but the Neumann boundary conditions imply that

g′(0) = g′(h) = 0. (23)

The transverse modes are thus of the form

gn(y) =

√
2− δ0

h
cos(

nπy

h
), (24)

where n ≥ 0 and with the pre-factor permitting the orthonormality

∫ h

0

gn(y)gm(y) dy = δnm.

Following the same reasoning as in the previous section, the transverse
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Figure 12. Neumann waveguide of width h.

Figure 13. Structure of the spectrum for a Neumann waveguide with lead
width h.

mode indexed by n is propagating if k > nπ/h. The novelty here is that
the plane transverse mode (with n = 0) has no cut-on frequency and can
propagate for any frequency. The spectrum is shown in Figure 13.

Thus, the wave can radiate towards infinity whatever the frequency. To
create a gap we need to decouple the plane wave mode from the other ones.
The ”trick” is then to use the symmetry of the geometry in order to get the
decoupling. Indeed, for a waveguide symmetric with respect with the axis
x (Figure 14), the symmetric part (even w.r.t. y) of the solution φs and the
antisymmetric part (odd w.r.t. y) φa of the solution are defined as

φs(x, y) =
1

2
(φ(x, y) + φ(x,−y)) (25)

and

φa(x, y) =
1

2
(φ(x, y)− φ(x,−y)) . (26)

These two parts of the wave are decoupled owing to the symmetry of the

Figure 14. A symmetric waveguide.

geometry. Consequently, we have in fact two decoupled problem for wave
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propagation in this case: the symmetric part of the wave associated with the
even transverse modes indexed by even integers (n=0,2,4,...) and the anti-
symmetric part of the wave associated with odd transverse modes indexed
by odd integers (n=1,3,5,...). Since the plane mode with n = 0 belongs to
the first part, the decoupling due to the symmetry allows to recover the same
threshold (cut-on frequency) as for the waveguide with Neumann boundary
conditions. The gap exists for the antisymmetric part of the wave (Figure
15). The existence of trapped modes for Neumann waveguides using this

Figure 15. Spectrum for a symmetric waveguide with lead width h.

symmetry argument is the classical one in the literature (Evans et al., 1994).
In Figure 16 the example of such a trapped mode is shown for the geometry
of an acoustic expansion chamber.

Figure 16. A trapped mode in symmetric Neumann waveguide.

3.4 Approximate mode matching

The determination of trapped modes is difficult and needs usually full
numerical computations, but, for some geometries, it is possible to find sim-
ple approximations. In the case of a rectangular obstacle (Fig 17), mode
matching techniques can be applied and useful simple analytical approxi-
mations can be found. Consider the geometry shown in Figure 17: it is
symmetric with Neumann boundary conditions and as such can accept a
trapped mode solution (remind that it is a solution of the homogeneous
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Figure 17. Trapped mode for a symmetric rectangular obstacle in a Neu-
mann waveguide.

Helmholtz equation (1) with outgoing radiation condition). The trapped
mode has to be an antisymmetric solution as discussed in the previous sec-
tion, and by symmetry the domain can be reduced to the rectangle drawn
in Figure 17 and reproduced in Figure 18. To apply an approximate mode
matching technique we choose to keep just the plane mode in the central
region of Figure 18 but to take into account the full set of evanescent waves
outside the obstacle. Thus the solution for 0 < x < a is approximated by

φ(x, y) = A cos(kx) (27)

and outside the obstacle (x > a) the solution is expanded on the full series
of evanescent modes,

φ(x, y) =
∑
n≥0

cne
−Kngn(y), (28)

where Kn =
√
γ2
n − k2, γn = (2n+ 1)π/h and gn(y) = 2/

√
h sin γny. Note

that, since we are in the frequency gap k < π/h (see previous section),
γn > k for all n. The following interface boundary conditions have to be

Figure 18. Partition of the problem.

satisfied at x = a:

φ(a+, y) = φ(a−, y) for b < y < h/2 (29)
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and

∂xφ(a
+, y) = ∂xφ(a

−, y) for b < y < h/2, (30)

∂xφ(a
+, y) = 0 for 0 < y < b. (31)

Mode matching consists in projecting equations (29–31) on the transverse
modes that have been taken into account in the solution expansion in (27–
28). Projection of the continuity of φ on the plane mode,

∫ h/2

b

φ(a+, y) dy =

∫ h/2

b

φ(a−, y) dy, (32)

yields a first relation between the unknown coefficients A and cn:

∑
n≥0

cn

∫ h/2

b

gn(y) dy = A(h/2− b) cos(ka). (33)

On the other hand projection of equations (30-31) on each of the outside
transverse modes is done through

∫ h/2

0

∂xφ(a
+, y)gn(y) dy =

∫ h/2

b

∂xφ(a
+, y)gn(y) dy (34)

=

∫ h/2

b

∂xφ(a
−, y)gn(y) dy, (35)

and it gives for each n ≥ 0:

Kncn = Ak sin(ka)

∫ h/2

b

gn(y) dy. (36)

Eventually, by eliminating cn between (33) and (36), we obtain

tan(ka) =
h

8
(h− 2b)

1∑
n≥0

cos(γnb)

γn

k√
γ2
n − k2

(37)

where k is the unknown. This determines implicitly the resonance frequency.
The k = kR solution is a good approximation when the rectangular obstacle
is long enough because it neglects the higher order modes for x < a.
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3.5 Mathematical proof: variational technique

These notes are not really mathematically oriented and the rigorous
approach to trapped modes can be found in the functional analysis literature
(Duclos and Exner, 1995; A.S. Bonnet-BenDhia and Mahé, 1997; Bonnet-
BenDhia and Mercier, 2007; Nazarov, 2011). Nevertheless we briefly present
here the popular variational technique often used to prove the existence of
trapped mode.

The idea comes from the min-max principle for an hermitian matrix of

finite size (M = M
T
). It states that the eigenvalues λn of M verify

min(λn) ≤ (x|Mx)

(x|x)
∀x = 0. We recognize here the Rayleigh quotient. This latter can be also
defined for the eigenvalue problem corresponding to trapped mode under
the form

Q(ψ) =

∫ |∇ψ|2dx∫ |ψ|2dx .

Here ψ is a square integrable7 test function respecting the imposed boundary
conditions (i.e. ψ must be in the domain of the operator). Then, the
variational min-max principle (Bonnet-BenDhia and Mercier, 2007) states
that if

Q(ψ0) <
π2

h2

for some test function ψ0 then there exists a trapped mode with resonance
frequency kR such that

kR ≤
√
Q(ψ0).

What is nice here is that it is sufficient to cleverly choose a test function
which is not a solution of the wave equation to prove the existence of a
trapped mode. Let us take the simple example of the trapped mode for
the Neumann waveguide with a rectangular obstacle (Figure 19). We can
choose the test function defined by

ψ0 = sign(y) cos(
πx

2a
)

for |x| < a and

ψ0 = 0

7In the sense that the function and its gradient are square integrable so that the Rayleigh

quotient is well defined.
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Figure 19. Trapped mode in the Neumann waveguide with rectangular
obstacle.

for |x| > a.
Of course this test function is not a solution of the Helmholtz equation

but it is square integrable (as is its gradient) and it verifies the Neumann
boundary condition at the wall. A simple computation shows that

Q(ψ0) =

∫ |∇ψ0|2dx∫ |ψ0|2dx =
π2

4a2
.

From the variational principle min-max principle, we know that a trapped
mode exists if

Q(ψ0) =
π2

4a2
≤ π2

h2
. (38)

Hence, from the variational principle and (38), we can conclude that a

Figure 20. Spectrum of the Neumann waveguide with rectangular obstacle.

trapped mode exists if
a > h/2

and that the corresponding resonance frequency will satisfy

kR <
π

2a
.

The corresponding scheme of the spectrum is shown in Figure 20.
By this example, we see how powerful is this variational technique: with

the very simple choice of the test function ψ0 it has been possible to rigor-
ously prove the existence of the trapped mode and to find an upper bound
for the resonance frequency.
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3.6 Higher frequencies

So far, we have focused on trapped modes at low frequencies. Their exis-
tence can be understood from the existence of a frequency gap 0 < k < π/h
where the waves are evanescent in outgoing leads of the waveguide. For
higher frequencies, trapped modes can also exist but their existence is more
difficult to show. Heuristically, it can be argued there that for higher cut-on
frequencies there exists ”gaps” with a finite number of transverse mode that
can radiate. A trapped mode has to be in ”good interferences” in order to
annihilate the component on this finite number of modes. In such a situa-
tion, McIver et al. (2001) have chosen the term embedded trapped modes to
stress that no symmetry is able to decouple the modes from the continuous
spectrum of scattering states8. By taking an obstacle with several parame-
ters they have shown that is possible to construct trapped mode above the
threshold of evanescence given by symmetries of the geometry.

Figure 21 displays the example of a trapped mode with a resonance
frequency above the threshold of evanescence (k > π/h ) for a Dirichlet
waveguide. In this case two propagating transverse modes might radiate
towards infinity.

Figure 21. Trapped mode for a Dirichlet waveguide at higher frequencies.

4 Quasi-trapped modes and edge waves

4.1 Quasi-trapped modes and complex resonance

The trapped modes previously discussed are very particular object that
are perfectly localized in infinite waveguide. But waves can also be localized

8These modes are often called BIC (Bound States in the Continuum) in quantum me-

chanics.
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with a small leakage. This corresponds to quasi-trapped modes (or complex
resonance as we shall see).

Figure 22. Localized wave in a thin slot.

As an example, consider the geometry shown in Figure 22: a semi-infinite
acoustic waveguide (Neumann) with a thin slot at the edge. It can be
thought as a system coupling the closed thin slot with the trivial semi-
infinite waveguide, and, intuitively, it is not surprising that this geometry
can posses solution with the wave strongly localized in the slot when the
frequency is close to the resonance frequency of the closed slot. The solution
plotted in Figure 22 corresponds to such a quasi-trapped wave close to the
λ/4 resonance (kL � π/2) of the slot. Here, by energy conservation, the
reflected power flux is equal to the incident one (and so the wave is leaking
towards infinity), but the amplitude in the slot is much larger than in the
principal waveguide.

Figure 23. Approximate model for the thin slot quasi-trapping.

To gain further insight, it is useful to look at an approximate solution to
this problem. We are at low frequencies so that we can just take the plane
wave transverse mode in each part of the waveguide (kh2 < π). For x < 0,
the wave in the slot is given by

p = A cos k(x+ L), (39)

and in the principal waveguide (x > 0):

p = e−ikx +Reikx. (40)
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The approximate model is summarized in Figure 23. It remains to apply
the matching at the interface x = 0 that consists in the continuity of p and
hp′. These yield the two equations:

A cos(kL) = 1 +R (41)

and
−Akh1 sin(kL) = −ikh2(1−R). (42)

Eliminating the coefficient A, we find the reflection coefficient R to be

R =
1 + i

h1

h2
tan(kL)

1− i
h1

h2
tan(kL)

. (43)

This simple result is interesting because it illustrates the behavior of a quasi-
trapped mode. First, note that |R| = 1 for real frequency due to energy
conservation. Next, by inspecting what happens for complex k, from (43),
it appears that R has pole for k solution of

1− i
h1

h2
tan(kL) = 0. (44)

This complex value of k is the complex resonance frequency (Flax et al.,
1981; Aslanyan et al., 2000) corresponding to a quasi-trapped mode. For
very thin slot the asymptotic solution of (44) is given by

kRL � π

2
− iε (nπ) (45)

where ε = h1/h2 � 1. Hence, we recover the intuitive λ/4 resonance
foreseen in Figure 22, but with an imaginary part due to the leakage of the
wave towards infinity.

More generally (independently of the approximate solution presented
above), a complex resonance is associated to a mode with complex resonance
frequency. It is mode since it is a solution of the homogeneous wave equation
with outgoing radiation towards infinity (it can radiate because k has an
imaginary part9). Thus a complex resonance frequency is both (Aslanyan
et al., 2000):
• a complex k for which there is a solution to the homogeneous Helmholtz
equation with outgoing radiation condition

9 This imaginary part has to be negative as will be seen in the next section.
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• a complex k that is a pole of the reflection coefficient (or more gener-
ally the scattering matrix)

Both definitions are valid because a pole of the reflection coefficient gives a
solution to the wave equation without incident wave.

In the time domain, the negative imaginary part of the frequency gives
the ringing time of the mode (similar to the radioactive half-life) since with
the chosen convention of time dependence e−iωt the wave decreases as eωit

where ωi = c Imag(kR). Besides, a complex resonance has a quality factor
measuring (as for the harmonic oscillator) how sharp is the resonance. Fig-
ure 24 displays a quasi trapped mode for a complex resonance with a very
large quality factor. This huge quality factor is due to the weak coupling
between the mode of the rectangular cavity and the lead of the waveguide
where the the wave can leak.

Figure 24. Example of long lived state with quality factor Q � 105.

4.2 Some properties for complex resonance

It is possible to show that the imaginary part of the complex resonance
frequency is positive due to outgoing radiation condition. Let us consider
the geometry depicted in Figure 25. A quasi-trapped mode is solution to
the wave equation

�p+ k2p = 0, (46)

with Neumann boundary condition on the walls and outgoing radiation
condition on Sout. Multiplying this equation by p and integrating on the
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Figure 25. Cavity coupled to a a waveguide.

volume V gives∫
Sout

p ∂np−
∫ ∫

V

|∇p|2 + k2
∫ ∫

V

|p|2 = 0. (47)

The outgoing radiation condition is translated10 into ∂np = ikp on Sout so
that we obtain

ik

∫
Sout

|p|2 −
∫ ∫

V

|∇p|2 + k2
∫ ∫

V

|p|2 = 0. (48)

Taking the imaginary part of this equation yields

ikr

∫
Sout

|p|2 + 2kikr

∫ ∫
V

|p|2 = 0 (49)

where kr and ki are the real and imaginary part of k. Eventually, it comes
that

ki = −

∫
Sout

|p|2

2

∫ ∫
V

|p|2
. (50)

Equation (50) demonstrates that the imaginary part of the complex reso-
nance frequency has to be negative. With11 k = ω/c, we conclude that the

10Here, for the sake of simplicity, we assume that only the plane transverse mode has to

be taken into account but the exact outgoing radiation condition using the Dirichlet

to Neumann operator works similarly.
11In this section we are in the dispersionless case where c does not depend on ω so that

k and ω are interchangeable.
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complex resonance frequency can only be located in the lower half plane
Im(ω) < 0.

Figure 26. Analytical structure of R in the complex frequency plane.

Besides, by time reversal symmetry (complex conjugation) it appears
that12

R(ω) =
1

R(ω)
. (51)

It means that a pole ωR of the reflection coefficient (complex resonance
frequency) is associated to a zero of R at ωR. Locally, near the complex
resonance frequency, the reflection coefficient can thus be expressed as

R(ω) = eiθ
ω − ωR

ω − ωR
. (52)

The phase θ is slowly varying for ω in the neighborhood of ωR and it is
real for real ω because then |R| = 1 by energy conservation. It is termed a
background phase term for it represents the slow variation in the scattering
compared to the rapid variation due the close resonance frequency ωR. This
local expression for R is very useful: it encodes very simply the local behav-
ior of the quasi-resonance and it explains the universal 2π shift observed for
the phase of the scattering. Figure 26 summarizes the analytical structure
of the reflection coefficient. Poles (or complex resonance frequency) of R
are in the lower half plane and they are mirrored by zeros in the upper half
plane.
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Figure 27. 2D edge resonance in an acoustic waveguide, obtained by sym-
metry from the trapped mode with a rectangular obstacle.

4.3 Edge waves

A 2D trapped mode in an acoustic waveguide (with Neumann boundary
conditions) is solution of the Helmholtz equation

(∂xx + ∂yy) p+ k2Rp = 0, (53)

with the outgoing boundary condition

p(x, y)→ 0 (54)

when x → 0. By symmetry w.r.t. the vertical axis, the trapped mode
examined in Figure 19 can be converted to a trapped mode in the semi-
infinite waveguide shown in Figure 27. This solution is essentially 2D, but
what does it imply in 3D?

We consider the extension of the previous geometry to 3D as displayed
in Figure 28. An edge wave for the 3D geometry is sought as a solution of
the 3D Helmholtz equation

(∂xx + ∂yy + ∂zz) p+ k2p = 0 (55)

with Neumann boundary conditions at the walls and the outgoing radiation

φ(x, y, z)→ 0 (56)

when x→ 0. The edge wave propagating along the z axis is written as

p(x, y, z) = eiβzφ(x, y). (57)

12This property is also valid for the scattering matrix (Flax et al., 1981; Aslanyan et al.,

2000).
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Figure 28. From 2D to 3D.

Inserting Equation (57) into the 3D Helmholtz equation yields the equation
for φ:

(∂xx + ∂yy)φ+ (k2 − β2) φ = 0, (58)

with Neumann boundary condition and the condition that φ(x, y)→ 0 when
x → 0. The equations and the boundary conditions for φ of the 3D edge
wave are exactly the same as those of the 2D trapped mode. It means that
φ is a 2D trapped mode and by comparing Equations (53) and (58):

k2 − β2 = k2R. (59)

This gives immediately the dispersion relation of the 3D edge wave

ω2

c2
= β2 + k2R. (60)

Hence a 2D trapped mode can be converted into a 3D edge wave and the 2D
resonance frequency becomes the cut-on frequency in 3D. The corresponding
dispersion relation is plotted in Figure 29.

A 2D quasi trapped mode can also be extended to 3D. It is then converted
into a 3D leaky edge mode. It is damped (leaky) as it propagates along the
z axis since the wave is not perfectly localized at the edge and it radiates
continuously some energy. Mathematically, the leakage Im(β) > 0 comes
from the differentiation of the dispersion relation,

Im(kR)Re(kR) + Im(β)Re(β) = 0,

that implies
Im(kR) < 0⇒ Im(β) > 0.
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Figure 29. Dispersion relation of the 3D edge wave.

4.4 The simplest edge

Let us examine the simplest case of edge: the semi-infinite strip with a
cut at x = 0 (Figure 30). Is a trapping of the scalar acoustic wave possible
near the edge with a simple boundary condition?

For Dirichlet boundary conditions at the edge x = 0,

φ(0, y) = 0

automatically results in

φ(x, y) =
∑
n

cn(e
iknx − e−iknx)gn(y).

For Neumann boundary conditions, ∂xφ(0, y) = 0 imposes

φ(x, y) =
∑
n

cn(e
iknx + e−iknx)gn(y).

We conclude that neither Dirichlet nor Neumann boundary conditions at
the edge is able to support an acoustic solution with outgoing boundary
conditions towards x→∞. A richer boundary condition is needed to trap
the wave. For scalar waves, impedance at the edge can sustain trapping
(but they add a parameter in the problem). In the next section, we will see
that elastic waves (vectorial waves) have the ability to trap the wave near
the simplest edge with a traction free surface.
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Figure 30. The simplest edge: the semi-infinite strip.

5 Edge resonance in elastic waveguides

5.1 Elastic waveguides

The considered geometry is depicted in Figure 31. The equations of
linear elastodynamics for isotropic solid are

−ρω2w = ∇.σ, (61)

where ρ is the mass density, w = (ux, uy, uz)
T is the elastic displacement

and σ is the stress tensor. Owing to the elastic Lamé parameters λ and μ,
the Hooke law links the strain tensor to the stress tensor through

σ = λ divw Id + μ(∇w +∇wT ). (62)

Equation (61) can be be rewritten in term of displacement only:

−ρω2w = (λ+ 2μ)∇(∇.w)− μ∇∧∇ ∧w. (63)

Figure 31. Elastic waveguide.

In free space plane wave solutions can be sought in the form

w = w0 eikx, (64)
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that makes to appear two different polarizations. The longitudinal wave is
such that

k ∧w0 = 0 (65)

with a dispersion relation given by

k2 =
ω2

c2L
(66)

with c2L ≡ (λ+ 2μ)/ρ. The transversal waves are such that

k.w0 = 0 (67)

with the dispersion relation

k2 =
ω2

c2T
(68)

with c2T = μ/ρ. In contrast with acoustic waves (scalar waves), the elas-
tic waves can be called vectorial waves since they have different kinds of
polarizations.

In waveguides (Figure 31), the transverse modes are of the form

w = w0(y) e
ikx, (69)

with k = q ex and ∂z = 0. Because of the different kinds of polarizations,
two families of transverse modes exist:
• SH transverse modes (anti-plane strain). Their non zero components
are uz and (σxz , σyz). It corresponds to a scalar wave equivalent to
acoustic problem with uz replacing the pressure and with Neumann
boundary conditions at the free stress interface.

• Lamb modes (plane strain). Their non-zero components are (ux , uy)
and (σxx , σxy , σyy , σzz). It corresponds to a vectorial wave
that is composed of one longitudinal polarization and one transversal
polarization.

Having discussed the acoustic case in the previous sections, we now focus
on Lamb modes that are vectorial waves. To find the transverse modes it is
convenient to write the displacement with two potentials

w = ∇φ+∇ψ × ez, (70)

and each of the potentials φ and ψ obeys a scalar wave equation

(Δ + k2l )φ = 0 (71)
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and
(Δ + k2t )ψ = 0. (72)

The complexity comes from the stress free boundary conditions σ.n = 0
with n = ±ey at y = ±h. They are

σxy = (λ+ 2μ)φyy + λφxx − 2μψxy = 0 at y = ±h
and

σyy = μ(ψyy − ψxx + 2φxy) = 0 at y = ±h.
For transverse modes, the x-dependancies are of the form f(x, y) = F (y)eiqx.
By using φ and ψ that verify (71) and (72) and the boundary conditions,
some algebra show that the global dispersion relation can be factorized in
two simpler dispersion relations:

tanhαh

tanhβh
=

4q2αβ

(q2 + α2)2
for symmetric modes (73)

tanhαh

tanhβh
=

(q2 + α2)2

4q2αβ
for antisymmetric modes (74)

with α = (q2 − k2t )
1/2 and β = (q2 − k2l )

1/2. Symmetric modes have an
axial displacement ux even w.r.t. y whilst antisymmetric modes have ux

odd w.r.t. y.
Each of the dispersion relation 73 and 74 can be written as D(Ω,K) = 0

where Ω = kth is the dimensionless frequency and K = qh is the dimension-
less wavenumber. An example of the behavior of the dispersion behavior
of Lamb modes is shown in Figures 32 and 33 for an elastic material with
Poisson ratio ν = 0.3 (cL/cT � 1.87). At low frequencies, only modes S0

and A0 are propagating; the slope of the curve for S0 gives the wave speed
of longitudinal vibrations in thin plate under the plane stress approxima-
tion whilst the parabolic behavior of mode A0 corresponds to the Kirchhoff
equation for thin plate with flexural vibrations. For a given frequency Ω,
there is a finite number of propagating modes and an infinity of evanescent
modes (with an non-zero imaginary part of the wavenumber, not shown in
the Figures). Note the atypical behavior near the cut-on frequency of modes
S1 and S2 in Figure 32: this pair of modes becomes propagating at points
C1 and C2 with a non-zero wavenumber K. Moreover, the mode S2 has a
negative phase velocity (K < 0) on a narrow band of frequencies.

5.2 Multimodal method in elastic waveguides

It has been remarked that the structure of the Lamb mode spectra is
much more complicated than the one of transverse acoustic modes presented
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Figure 32. Dispersion diagram of the symmetric Lamb modes.

earlier. In this section, we examine a formalism (Pagneux and Maurel, 2002,
2004, 2006) that facilitates the use of these modes; it make to appear a
structure where the projection on the transverse Lamb modes is done using
a bi-orthogonality relation.

Elasticity equation can be re-written as

∂x

(
X
Y

)
=

(
0 F
G 0

)(
X
Y

)
, (75)

where vectors X and Y are

X =

(
ux

σxy

)
and Y =

(−σxx

uy

)
,

and where F and G are the matrices of differential operators

F =

(
−f1

λ
−f1∂y

f1∂y −ρω2 − f2∂y2

)
, and G =

⎛
⎝ρω2 ∂y

−∂y 1

μ

⎞
⎠ , (76)

with f1 = λ/(λ+2μ) and f2 = 4μ(λ+μ)/(λ+2μ). The boundary conditions
at the stress surfaces, σ.n = 0 (i.e. σxy = σyy = 0 at y = ±h), can be
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Figure 33. Dispersion diagram of the antisymmetric Lamb modes.

expressed directly on components X and Y for σxy is the second component
of X and σyy : Y → σyy(Y) = f1σxx + f2∂yuy.

The equation to find the transverse Lamb modes takes the explicit form
(the x dependance eiqx implies that ∂x becomes iq) of an eigenvalue problem

iq

(
X
Y

)
=

(
0 F
G 0

)(
X
Y

)
, (77)

and the boundary conditions (i.e. σxy = σyy = 0 at y = ±h) does not
involve the eigenvalue q. Lamb modes are thus eigenvectors of this eigen-
problem with eigenvalues q. There is an infinity of modes: right-going
transverse modes have eigenvalues qn and eigenvectors [Xn,Yn]

T and left-
going transverse modes have eigenvalues −qn and eigenvectors [−Xn,Yn]

T .
Assuming the completeness of Lamb modes, any solution can be expanded
as (

X
Y

)
=
∑
n≥0

a+n

(
Xn

Yn

)
+
∑
n≥0

a−n

(−Xn

Yn

)
. (78)

The terms of the series can be rearranged to give

X =
∑
n≥0

anXn (79)
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and

Y =
∑
n≥0

bnYn (80)

with

an = a+n − a−n

and

bn = a+n + a−n .

Note that the sum are restricted to positive index numbers.
The operators F and G have a very nice property:

(FỸ|Y) = (Ỹ|FY) + [σyyũy − σ̃yyuy]
h
−h

(GX̃|X) = (X̃|GX) + [uxσ̃xy − ũxσxy]
h
−h.

(81)

Hence, F and G are symmetric with the inner product defined by13

((
u1

v1

)
|
(
u2

v2

))
=

∫ h

−h

(u1u2 + v1v2)dy

for the elastic waves with stress free boundary conditions at y = ±h since
σxy(±h) = 0 and σyy(±h) = 0, see (81). It is then easy to show that
(k2m − k2n)(Xm|Yn) = 0 for two Lamb modes with indices m and n. The
chosen formalism and the properties of F and G allow to directly prove the
bi-orthogonality condition:

(Xn|Ym) = Jnδmn. (82)

Eventually, the projections on the Lamb modes are made easy: from the
equations (79) and (80), the components an and bn are given by

(Yn|X) = Jnan

and

(Xn|Y) = Jnbn.

5.3 2D edge resonance

Let us consider a very simple configuration: a 2D semi infinite elastic
waveguide of width h embedded in vacuum. The edge is at x = 0 and the
guide is in the (x > 0,−h < y < h) region (geometry of Figure 34). If the

13This inner product is not a scalar product because the vectors X and Y are complex.
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wave is excited at x = 0 by a source imposing X(x = 0, y) or Y(x = 0, y),
the solution has only right-going wave and can be expressed as⎧⎪⎪⎨

⎪⎪⎩
X =

∑
n≥0

αne
iqnxXn(y),

Y =
∑
n≥0

αne
iqnxYn(y),

(83)

because a−n = 0. The coefficients αn are uniquely determined by the bi-
orthogonality relation (82)

(X(x = 0, y)|Yn) = Jnαn or (Y(x = 0, y)|Xn) = Jnαn.

That means that, for this problem posed with an initial condition on X
or Y (a mixed condition since it is concerned with one component of dis-
placement and one component of the stress tensor), we have the uniqueness
of the solution: the solution is zero for X(x = 0, y) = 0 or Y(x = 0, y) = 0.

What happens now if the the constraint σ.n is imposed as a source at x =
0? It gives the values of σxx and σxy which corresponds to one component
of X and one component of Y. Thus, to impose the constraint σ.n at
x = 0 is a mixed condition in the XY formalism, and the bi-orthogonality
relation does not allow the projection of the solution on the Lamb modes:
it seems that uniqueness is not ensured. Said differently, if σxx = 0 and
σxy = 0 are imposed at x = 0, it is possible to have a non-zero solution
with outgoing radiation condition in the very simple problem of the semi-
infinite elastic waveguide. This solution corresponds to a localized mode of
vibration, trapped on the free edge at x = 0.

Figure 34. Reflection of the S0 Lamb mode by a free edge.

The linear elastic equation can be written in a dimensionless from by
normalizing all the lengths by the semi-width h and the stress by the Lamé
coefficient μ:

∂x

(
X
Y

)
=

(
0 F
G 0

)(
X
Y

)
, (84)



Trapped Modes and Edge Resonances in Acoustics and Elasticity 215

with

F = 1
γ

( −1 −(γ − 2)∂y
(γ − 2)∂y −γΩ2 − 4(γ − 1)∂y2

)
(85)

and

G =

(
Ω2 ∂y
−∂y 1

)
, (86)

with γ = (λ + 2μ)/μ = c2L/c
2
T . The boundary conditions σ.n = 0 at the

traction free surfaces are{
σxy = 0
σyy = 1/γ((γ − 2)σxx + 4(γ − 1)∂yuy) = 0

at y = ±1, (87)

on the horizontal faces and{
σxy = 0
σxx = 0

at x = 0. (88)

Since γ = 2(1−ν)/(1−2ν) (0 < ν < 1/2 is the Poisson ratio) and Ω = kTh,
when made dimensionless, the problem of vibrations of the semi-infinite
elastic waveguide depends only on two parameters: the frequency Ω and the
Poisson ratio ν.

In the following we will consider only symmetric waves (with Lamb
modes Sn) for frequency below the cut-on frequency of the mode S1 (see
points C1 and C2 in Figure 32): only the mode S0 is propagating. To
study the edge resonance it is convenient to pose the problem as a reflection
problem. The situation is described in Figure 34 with a left-going S0 inci-
dent wave and a reflected right-going field composed of the propagating S0

(with reflection coefficient R) and the remaining evanescent Lamb modes
(S1, S2, S3, ...). The solution can be written as14

(
X
Y

)
= e−ik0x

(
X0

−Y0

)
+Reik0x

(
X0

Y0

)
+

+∞∑
n=1

ane
iknx

(
Xn

Yn

)
. (89)

For real frequency Ω, the conservation of energy imposes that |R| = 1.
Several authors have studied that reflection coefficient (Shaw, 1956; Torvik,
1967; Auld and Tsao, 1977; M. Koshiba et al., 1983; Gregory and Gladwell,
1983; Le Clezio et al., 2003) and they all showed the same behavior of R
as a function of the real frequency. Figure 35 displays this behavior for a

14In contrast to the previous section, the convention here is X−
0 = X+

0 and Y−
0 = −Y+

0

in order to have a reflection coefficient R tending to 1 at low frequencies.
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Figure 35. Phase of the reflection coefficient R as a function of frequency
for ν = 0.3.

Poisson ratio ν = 0.3: the phase of R has a rapid variation of the phase
near a particular frequency. This is the typical behavior of a quasi-trapped
mode, i.e. a complex resonance frequency that has a finite quality factor in
the harmonic regime (Ω real). By using the variational tools of functional
analysis, Roitberg et al. (1998) have proved that a trapped mode exists for
this free edge. The works in Zernov et al. (2006) and Pagneux (2006) have
shown that, in fact, there is one complex resonance frequency ΩR for each
value of the Poisson ratio ν.

The complex resonance frequency ΩR is written as

ΩR(ν) = Ω′
R(ν) + iΩ”R(ν)

which corresponds to a quality factor Q = Ω′
R/(2|Ω”R|). As seen in section

4, a complex resonance frequency is associated to a quasi-trapping with-
out incident mode and it is also a pole of the reflection coefficient R with
Im(Ω) < 0. The edge resonance frequency ΩR(ν) corresponds to a pole of
R(Ω, ν).

Figures 36 and 37 show the behavior of ΩR as a function of the Poisson
ratio. The real part is monotone and it corresponds to the value of the
frequency of quasi-resonance in the harmonic regime (cf. Figure 36). A



Trapped Modes and Edge Resonances in Acoustics and Elasticity 217

very accurate empirical expression (Pagneux, 2006) for this real part is

Re(ΩR) = 0.652ν2 + 0.898ν + 1.9866

whose error is less than 10−3.
The imaginary part of the complex resonance frequency has a more com-

plicated behavior: Figure 28, which shows −Ω”R on a logarithmic scale,
demonstrates that there are two values of the Poisson ratio where the quasi-
trapped mode becomes a perfectly trapped mode with a real resonance fre-
quency. The perfect resonance at ν = 0 is due to a particular symmetry of
the elasticity equation discovered by Roitberg et al. (1998). They showed
that, for ν = 0 (i.e. λ = 0), the elastic field can be decomposed into two
parts that are decoupled:(

ux

uy

)
=

(
1
2h

∫ h

−h
uxdy

0

)
+

(
ux − 1

2h

∫ h

−h
uxdy

uy

)
. (90)

The first part contains the propagating S0 mode and the second part all
the remaining evanescent waves. This subtle decoupling is similar to the
simpler one that was presented for trapped modes in Neumann waveguides
in section 3, and it allows the trapped mode at the real ΩR that does
not radiate through the propagating S0 Lamb mode. The other perfect
resonance at ν = 0.2248 can be explained by the uncoupled reflection of the
Lamé mode (Pagneux, 2006). Note the low values of Im(ΩR) that imply
that the edge resonance has a large quality factor.

5.4 Edge resonance for cylinders

The edge resonance exists also for semi-infinite cylinders with traction
free boundary conditions (Gregory and Gladwell, 1989; Holst and Vassiliev,
2000; Pagneux, 2012). The problem under study corresponds to the semi-
infinite circular rod geometry with the vertical edge at z = 0 and the hori-
zontal surfaces at r = a, where (r, θ, z) are the cylindrical coordinates. The
domain of the solid rod is defined by r < a and z > 0.

We consider elastic waves that are axially symmetric with displacement
components in the radial and axial directions (Zemanek, 1972; Graff, 1991):
w = (ur(r, z), 0, uz(r, z))

T . By taking into account these symmetries and
by making dimensionless the equations (renormalizing all the lengths by a
and the stress tensor by μ), the equations become

−Ω2ur = ∂rσrr + ∂zσrz +
σrr − σθθ

r
,

−Ω2uz = ∂rσrz + ∂zσzz +
σrz

r
,

(91)
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Figure 36. Real part of the complex resonance frequency.

Figure 37. Imaginary part of the complex resonance frequency.
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σrr = 2∂rur + (γ − 2)(
1

r
∂r(rur) + ∂zuz),

σθθ = 2
ur

r
+ (γ − 2)(

1

r
∂r(rur) + ∂zuz),

σzz = 2∂zuz + (γ − 2)(
1

r
∂r(rur) + ∂zuz),

σrz = ∂zur + ∂ruz,

(92)

with the frequency Ω = ωa/cT . It is similar to the one defined in 2D with
the 2D semi-height h replaced by the radius a.

The stress free boundary conditions at the horizontal surface (r = 1)
and at the free edge (z = 0) are

σrr = σrz = 0 at r = 1,
σzz = σrz = 0 at z = 0.

(93)

Note that, as in 2D, there are only two parameters: the frequency Ω and
the Poisson ratio ν.

In this axisymmetric geometry the Lamb modes are replaced by the
Pochhammer modes (Graff, 1991) whose dispersion relation is

(−k2 + b2)2J0(d)J1(b) + 4bdk2J0(b)J1(d)− 2dΩ2J1(d)J1(b) = 0

with b =
√
Ω2 − k2 and d =

√
Ω2/γ − k2. We will consider frequency Ω

such that only the first mode, n = 0, is a propagating mode and it will be
called the L0 mode. All the other modes, Ln with n ≥ 1, are evanescent
with Im(kn) > 0.

As in 2D, there is one complex resonance frequency ΩR for each value
of the Poisson ratio ν. The real value of ΩR is displayed in Figure 36. The
quasi-linear behavior as a function of ν is very well approximated (Pagneux,
2012) by the empirical formula

Re(ΩR) = 1.9624ν + 2.3573,

accurate up to 0.3%. Figure 37 shows the behavior of the imaginary part of
ΩR. Once again, as in 2D, there are two values of the Poisson ratio where
the trapping is perfect with a zero imaginary part of ΩR and no radiation
from the edge. The first value (ν = 0) was discovered by Holst and Vassiliev
(2000) by the use of a symmetry similar the one of equation (90) and the
second value (ν = 0.1267) was found in Pagneux (2012) and it is linked to
the Lamé mode. The shape of the localized vibration is shown if FIgure 38.

5.5 Edge resonance in 3D plate

The study of the 2D elastic edge resonance has been extended to 3D
in Zernov and Kaplunov (2008). These authors have shown that along the
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Figure 38. Shape of the localized vibration at edge resonance for ν = 0.3.

stress free straight edge there are two edge waves: the first one has no cut-
on frequency and is similar to a generalized Rayleigh wave, the second one
is the 3D counterpart of the 2D edge resonance we have considered before
with ΩR playing the role of the cut-on frequency.

Another 3D plate configuration is the one depicted in Figure 39. In this
case, it can be shown (Pagneux and Clorennec, 2012) that there exists also
a edge resonance for axisymmetric vibration around the hole.

Figure 39. Hole in a 3D plate.
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5.6 Concluding remarks

In these notes, we looked at the perfectly localized trapped modes and
the ubiquitous slightly radiating quasi-trapped modes. In practice, the dif-
ference between these two families of modes is not so clear since, in an ex-
periment, the inevitable attenuation prevents an infinite quality factor (i.e.
a perfect resonance). It remains that the study of trapped modes provides
clues to efficient resonance mechanisms. The specific ability of trapping for
elastic waves near surface with traction-free boundary condition has also
been discussed. The well known Rayleigh surface wave already testifies to
this ability. Few examples in elastic waveguides have been examined in this
chapter and the conclusion might be that we have to mind the edge effects
in elastodynamics.
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Surface waves in elastic half spaces coated
with crystalline films

David J. Steigmann
Department of Mechanical Engineering, University of California, Berkeley,
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Abstract A two-dimensional model of thin-film substrate interac-
tions is obtained from three-dimensional elasticity theory for films
having various kinds of crystalline symmetry. Extensions to electro-
elastic behaviour are also discussed.

1 Introduction

Considered here is the general theory of surface wave propagation in elastic
thin-film/substrate systems. Elasticity is of course an inherently nonlinear
subject, although a great many applications are amenable to analysis using
the linear theory, including those developed here. Thus for the sake of com-
pleteness and to establish the logical progression of our work we present a
brief tutorial on the general nonlinear purely mechanical theory as a prelude
to linearization.

The main contribution of the present work is the derivation of and so-
lution to an asymptotic two-dimensional theory for the dynamics of a thin
film bonded to a substrate, as distinct from the asymptotic treatment of
the underlying three-dimensional equations [6]. Here the small parameter is
the film thickness, and the considered model furnishes the rigorous leading-
order system when this is small against the wavelength of a propagating
surface wave.

The purely elastic theory is developed first, followed by an extension to
electroelasticity. We draw particular attention to some non-standard effects
associated with the propagation of Love waves in conventional isotropic
elastic half spaces coated with thin films having various kinds of crystalline
symmetry.

Standard notation is used throughout. Thus we use bold face for vec-
tors and tensors and indices to denote their components. Latin indices take
values in {1, 2, 3}; Greek in {1, 2}. The latter are associated with surface
coordinates and associated vector and tensor components. A dot between
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bold symbols is used to denote the standard inner product. Thus, if A1 and
A2 are second-order tensors, then A1 ·A2 = tr(A1A

t
2), where tr(·) is the

trace and the superscript t is used to denote the transpose. The norm of a
tensor A is |A| = √

A ·A. The linear operator Sym(·) delivers the sym-
metric part of its second-order tensor argument. The notation ⊗ identifies
the standard tensor product of vectors. If C is a fourth-order tensor, then
C[A] is the second-order tensor with orthogonal components CijklAkl. The
transpose Ct is defined by B·Ct[A] = A·C[B], and C is said to possess major
symmetry if Ct = C. If A ·C[B] = A

t ·C[B] and A ·C[B] = A ·C[Bt
] then C is

said to possess minor symmetry. We use symbols such as Div and Grad to
denote the three-dimensional divergence and gradient operators, while div
and ∇ are reserved, after Section 2, for their two-dimensional counterparts.
Thus, for example, DivA =Aij,jei and divA = Aiα,αei, where {ei} is an
orthonormal basis and subscripts preceded by commas are used to denote
partial derivatives with respect to Cartesian coordinates. Finally, the nota-
tion FA stands for the tensor-valued derivative of a scalar-valued function
F (A).

2 Brief resumé of nonlinear elasticity theory

Background material on nonlinear elasticity theory is given in [3; 9; 1]. The
basic problem in this theory is to find a deformation function mapping the
position x of a material point of a body, in some reference configuration κ, to
the position y of the same material point of the body in its current configu-
ration at time t. Thus we seek a function χ(·, t) such that y = χ(x, t). This
is presumed to be invertible at each fixed t, to reflect the notion that any
given position may be occupied by one, and only one, material point at any
instant. The inverse function theorem then requires that the deformation
gradient,

F = Gradχ, (1)

the gradient of χ(·, t) with respect to x, be invertible.
The motion χ must be such as to satisfy the linear momentum balance

divT+ ρb = ρytt, (2)

where yt = ∂χ(x, t)/∂t, etc., ρ is the mass density in the current config-
uration, b is the body force per unit mass, T is the Cauchy stress, and
div is the divergence operator with respect to position y. Granted (2), the
moment-of-momentum balance is simply the requirement that the Cauchy
stress be symmetric, i.e.

T = Tt. (3)
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Standard boundary data consist in the specification of y and the traction

t = Tn (4)

on complementary parts of the boundary, where n is the exterior unit normal
to the bounding surface of the body in its current configuration.

For purposes of analysis it is convenient to recast (2) as a differential
equation defined on the specified reference configuration κ. The relevant
equation is

DivP+ ρκb = ρκytt, (5)

where ρκ is the mass density in κ, and

P = TF∗ (6)

is the Piola stress, in which

F∗ = JF−t (7)

is the cofactor of the deformation gradient, with

J = detF. (8)

Normally we denote the inverse by appending a superscript −1; here −t is
the transposed inverse, or inverted transpose, the two being equivalent by
virtue of the commutativity of the inverse and transpose operations. If κ is
a configuration that could in principle be occupied by the material (e.g., an
initial configuration), then the requirement

J > 0 (9)

is imposed to reflect the physical requirement that matter deforms without
self penetration.

The referential and current mass densities are connected by

ρκ = ρJ (10)

and conservation of mass requires that ρκ be independent of t when ex-
pressed as a function of x and t. Accordingly it is regarded as an assigned
function of x.

The connection between the Cauchy and Piola stresses is most readily
understood by expressing the force acting on an arbitrary material surface
S ⊂ κ in the alternative forms∫

s

tda =

∫
S

pdA, (11)



228 D. J. Steigmann

where s = χ(S, t) is the image of the material surface in the current con-
figuration, consisting of the same set of material points. Using Nanson’s
formula

αn = F∗N, (12)

in which N is the exterior unit normal to S and α = |F∗N| is the areal
stretch of S, we then use (4) to obtain

∫
S

pdA =

∫
s

Tnda =

∫
S

TF∗NdA, (13)

and hence
p = PN. (14)

Thus the Piola stress operates on the referential unit normal to furnish the
force per unit reference area.

To model elastic bodies we assume the stress T (or P) to be given by
an empirical function of F, which may depend parametrically on x if the
material properties are non-uniform, as in a functionally graded material.
Thermodynamic considerations pertaining to the non-existence of perpetual
motion machines imply that the stress is determined via an empirical strain-
energy function W (F), i.e. [9]

P = WF, (15)

the gradient of W with respect to F. This too depends parametrically on x

in non-uniform materials. Here, however, we are concerned exclusively with
uniform materials, for which there is no such dependence.

Combining (6) with (15) we conclude that the function W must be such
that (WF)F

t is symmetric; that is, equal to its own transpose. This in turn
is equivalent to

(WF)F
t ·Ω = 0 (16)

for all skew tensors Ω (Ωt = −Ω). The symmetries inherent in the dot
product imply that (16) is equivalent to

WF ·ΩF = 0. (17)

Fix Ω and consider the one-parameter family of tensors Q(u) defined by
the initial-value problem

Q̇ = ΩQ with Q(0) = I, (18)

where I is the identity tensor and the superposed dot is the derivative with
respect to u. The components of the identity are simply the Kronecker deltas
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δij . It is well known that the set of such Q′s coincides precisely the group
of rotation tensors, i.e.

Q−1 = Qt; detQ = 1. (19)

Consider an associated one-parameter family of deformation gradients de-
fined by

F(u) = Q(u)F0, with F0 = F(0). (20)

This is a rotation superposed on a deformation with gradient F0. Then,

Ḟ = Q̇F0 = Q̇Q
t
F = ΩF, (21)

and for this family of deformations we find, using (17) and the chain rule,
that

Ẇ = WF · Ḟ = 0, (22)

so that W (F(u)) is independent of u, i.e.

W (QF0) = W (F0), (23)

in which the rotation Q is arbitrary.
A necessary condition follows on identifying Q with the transpose of the

rotation factor R0 in the polar decomposition

F = RU (24)

of the deformation gradient, where U is the positive definite, symmetric
right-stretch tensor. This yields the conclusion that W is determined by
the stretch, i.e. W (F0) = W (U0). However, this is inconvenient in practice
because U is not easily obtained from F. To circumvent this we note that
there is a one-to-one relation between the right stretch and the symmetric
Cauchy-Green deformation tensor C = U2 = FtF; the former is the unique
positive definite symmetric square root of the latter. We conclude that U

is determined by C and hence (dropping subscripts in (23)) that W (F) =
Ŵ (C) for some function Ŵ . In turn, the Cauchy-Green tensor stands in
one-to-one relation to the symmetric Lagrange strain

ε = 1

2
(FtF− I) (25)

and so we may write W (F) = W̄ (ε) for some function W̄ . An elementary
application of the chain rule then furnishes

WF = FW̄ε, (26)
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where, on the right-hand side, W̄ε is the symmetric tensor-valued gradient
with respect to strain. Accordingly, the 2nd Piola-Kirchhoff stress S, defined
by

P = FS, (27)

is given by
S = W̄ε. (28)

Comparison of (6) and (27) yields JT = FSFt, and so the symmetry of
S, implied by (23), yields the symmetry of T. It follows that (23) is both
necessary and sufficient for the symmetry of the Cauchy stress.

We neglect body forces, and thus reduce (5) and (15) to the system

Div(WF) = ρκχtt (29)

for the determination of the motion χ(x, t), in which ρκ is an assigned
constant if, as we assume, the material properties are uniform.

In this work we restrict attention to deformations for which the strong
ellipticity condition is satisfied, i.e.

a⊗ b ·WFF[a⊗ b] > 0 for all a⊗ b �= 0. (30)

3 Leading order model for a thin, nonlinearly elastic

film in the long-wave limit

We seek equations of motion for a thin film bonded to a substrate that are
valid to leading order in the film thickness, presumed to be small against
the length scale afforded by the wavelength of a propagating surface wave.
Thus the model to be derived and studied is valid in the long-wave limit.

Consider a planar film of thickness h, bonded to an elastic half space.
The interface between film and substrate, denoted by Ω, is an unbounded
plane with unit normal k directed away from the substrate. It proves ad-
vantageous to decompose three-dimensional position x in the film in terms
of position r to a projected point on Ω and a linear coordinate ς in the
direction of the normal. Thus,

x = r+ ςk, with r ∈ Ω and ς ∈ [0, h]. (31)

The motion of the film may then be regarded as a function of r and ς, i.e.
y = χ(x, t) = χ̂(r, ς, t); we also write F(x, t) = F̂(r, ς, t). It then follows
from the definition of the gradient that

(∇y)dr+ y′dς = dy = F̂dx = F̂1dr+ F̂k⊗ kdς, (32)



Surface Waves in Elastic Half Spaces Coated with Crystalline Films 231

where (·)′ = ∂(·)/∂ς, ∇(·) is the (two-dimensional) gradient with respect to
r and

1 = I− k⊗ k (33)

is the projection onto the plane Ω. This yields

∇y = F̂1 and y′ = F̂k. (34)

Using a similar notation for the Piola stress, we write P = P̂1+ P̂k⊗ k

and find that
DivP = div(P̂1) + P̂

′

k, (35)

where, in contrast to its use in (2), div is now the (two-dimensional) refer-
ential divergence operator on Ω. Thus (5) may be recast in the convenient
form

div(P̂1) + P̂
′

k = ρκχ̂tt. (36)

We seek a two-dimensional model of the thin film, in terms of differential
operators defined entirely on Ω. To effect the dimension reduction, we adopt
the weak form of the equations of motion in which the film thickness is made
explicit. We then estimate this for small thickness and extract the leading-
order local equations.

To this end let y(x, t, μ) be a one-parameter (μ) family of motions, let
the actual motion y = χ(x, t) be its value at μ = 0, and let

ẏ =
∂

∂μ
y(x, t, μ)|μ=0. (37)

Then the weak form of (5), holding in an arbitrary subvolume π of the film,
is ∫

π

P · ḞdV =

∫
∂π

PN · ẏdA−
∫
π

ρκẏ · yttdV, (38)

in which
Ḟ = ∇ẏ + ẏ′ ⊗ k, (39)

where ẏ′ = (y
′
)· = (ẏ)

′
. We remark that, on the film/substrate interface Ω,

the deformation gradient is

F0 = ∇y0 + d⊗ k, (40)

where, here and henceforth, the notation (·)0 stands for the restriction (·)|Ω
of a variable defined in the film. This is the interior limit of the considered
quantity as ς → 0. In particular,

y0(r, t) = ŷ(r, 0, t) and d(r, t) = ŷ′(r, 0, t), (41)
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and these are independent vector fields on Ω.
Proceeding from (38) and (39), we have

∫
π

P · ḞdV =

∫
π

(P1·∇ẏ+Pk·ẏ′)dV =

∫
ω

∫ h

0

(P1·∇ẏ+Pk·ẏ′)dςdA, (42)

where ω ⊂ Ω is an arbitrary part of Ω and we have selected π = ω × [0, h].
For an arbitrary function g(r,ς) we use the Taylor expansion

∫ h

0

gdς := I(r,h) = hI ′(r,0) + o(h), with I ′(r,h) = g(r,h), (43)

to derive the estimate

I(r,h) = hg0 + o(h), (44)

and thus estimate (42) as

∫
π

P · ḞdV = h

∫
ω

(P01 · ∇ẏ0 +P0k · ḋ)dA+ o(h). (45)

Similarly, ∫
π

ρκẏ · yttdV = h

∫
ω

ρκẏ0 · y0ttdA+ o(h). (46)

The remaining integral in (38) may be decomposed as

∫
∂π

PN · ẏdA =

∫
∂ω

∫ h

0

P1ν · ẏdςdS +

∫
ω+

P+k · ẏ+dA−
∫
ω

P0k · ẏ0dA,

(47)
where ω+ is the upper surface of the film at a distance h from ω, k and −k
are the exterior unit normals to the film at ω+ and ω, the superscript + is
used to denote the values of variables at ς = h, and ν is the external unit
normal to the cylindrical generating surface ∂ω × [0, h].

Traction continuity at the film/substrate interface Ω implies that

P0k = Psk, (48)

where Ps is the limiting value of the substrate stress on Ω. Assuming the
upper surface of the film to be traction free, i.e. P+k = 0, and using the
rule (44), we then have

∫
∂π

PN · ẏdA = h

∫
∂ω

P01ν · ẏ0dS −
∫
ω

Psk · ẏ0dA+ o(h). (49)
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Substituting this, together with (45) and (46), into (38), we conclude that

∫
ω

Psk · ẏ0dA = O(h) (50)

and hence, from the arbitrariness of ω and ẏ0, that Psk = O(h), i.e.

Psk = hl+ o(h), (51)

in which l(r, t) is independent of h. Substituting back into the balance (38),
dividing by h and passing to the limit then yields

∫
ω

[P01 · ∇ẏ0 +P0k · ḋ+ ẏ0 · (ρκy0tt + l)]dA =

∫
∂ω

P01ν · ẏ0dS. (52)

Applying Green’s theorem in the form

∫
∂ω

P01ν · ẏ0dS =

∫
∂ω

ν · (P01)
t
ẏ0dS =

∫
ω

div[(P01)
t
ẏ0]dA =

∫
ω

[ẏ0 · div(P01)+P
0
1 · ∇ẏ0]dA, (53)

we reduce (52) to

∫
ω

{P0k · ḋ− ẏ0 · [div(P01)− l− ρκy0tt]}dA = 0, (54)

and then invoke the arbitrariness of ω and the independence of ẏ0 and ḋ to
extract the local equations

P0k = 0 and div(P01)− l = ρκy0tt on Ω. (55)

On multiplying the second of these by h, using (51) and neglecting terms
of order o(h) we obtain

hdiv(P01)−Psk = hρκy0tt. (56)

This is the rigorous leading-order (in h) boundary condition for the sub-
strate at the film/substrate interface Ω, reducing to the usual traction-free
condition Psk = 0 in the absence of the film (h = 0). It is also seen to fur-
nish the leading order equation of motion for the film/substrate interface.
Similarly, the first of (55) is the leading-order approximation of the traction
continuity condition (48), with (51). This condition implies that, to leading
order, the film is in a state of plane stress.
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In these equations the stress P0 is given by

P0 = WF(∇y0 + d⊗ k) (57)

and so (55) may be regarded as a system for the independent fields y0 and
d on Ω.

It happens that in the presence of strong ellipticity (55)1 may be solved
for d in terms of ∇y0. To see this we fix y0 and define G(d) = W (∇y0 +
d⊗ k). Let σ(u) = G(d(u)), for some parameter u. Then,

σ̇(u) = WF(F0) · ḋ⊗ k = ḋ ·P0k, and thus Gd = P0k. (58)

Further,

σ̈(u) = d̈ ·P0k+ ḋ⊗ k · M(F0)[ḋ⊗ k], (59)

where

M = WFF, (60)

and so

Gdd = A(F
0
), (61)

where A is the acoustic tensor defined by

Av = {M(F0)[v ⊗ k]}k (62)

for all vectors v. In terms of components,

Aij = ∂2W/∂Fi3∂Fj3, (63)

having made the identification e3 = k. It follows from (30) that Gdd is
positive definite and hence, from the implicit function theorem, that (55)1
(i.e. Gd = 0), has a unique solution d = d̄(∇y0), say, as claimed. Further,
the foregoing implies that this solution minimizes the energy W (∇y0 +
d⊗ k) with respect to d.

In this work it is convenient to work with strain-dependent moduli. To
elaborate, consider a one-parameter family F(u) of deformations and let
ε(u) be the associated strain. Using the connection (27) we then have

M[Ḟ] = Ṗ = ḞS+ FC[ε̇], with ε̇ = 1

2
(ḞtF+ FtḞ), (64)

where the superposed dots are derivatives with respect to the parameter,
and

C = W̄εε (65)
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are the strain-dependent moduli. We note that this possesses both major
and minor symmetries whereasM possesses only major symmetry. Accord-
ingly,

M[B] = BS+ FC[Sym(BtF)], for all tensors B, (66)

and the strong-ellipticity condition (30) is thus seen to be equivalent to

(b · Sb) |a|2 + Fta⊗ b · C[Fta⊗ b] > 0. (67)

For our purposes the relevant restriction pertains to small perturbations of
the reference configuration associated with F = I. This is

(b · SRb) |a|2 + a⊗ b · CR[a⊗ b] > 0, (68)

where SR is the residual stress in that configuration and CR is the associated
tensor of elastic moduli. There are equal respectively to the values of S and
C at ε = 0.

4 Linearization

To linearize the equations we introduce the displacement field

u(x, t) = χ(x, t)− x, (69)

and assume that supx∈κ |H(x, t)| � 1, where

H = Gradu (70)

is the displacement gradient. From (1) and (69) we have the exact expres-
sions

F = I+H and ε = 1

2
(H+Ht +HtH), (71)

and our assumptions imply that supx∈κ |ε(x, t)| � 1. Accordingly, the esti-
mate

W̄ε = W̄ε(0) + W̄εε(0)[SymH] + o(|H|) (72)

is appropriate, in which the coefficients are the values of the stress and
moduli at ε = 0, and furnishes the linearized stress-deformation relations

S � SR + CR[H] and P = (I+H)S � SR +HSR + CR[H]. (73)

The residual stress and associated moduli are necessarily uniform if the
material is homogeneous. Assuming the body to be in equilibrium without
tractions prior to undergoing the small displacement, we have

DivSR = 0 in κ and SRN = 0 on ∂κt, (74)
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the first of which is then identically satisfied.
The thin-film condition (55)1 may be expressed in the form

SRk+H0SRk+ (CR[H0])k = 0, (75)

and as this purports to hold for all deformations it follows that

SRk = 0 and (CR[H0])k = 0, (76)

the first of these implying that SR is a (symmetric) two-tensor of the form
SR = SRαβeα ⊗ eβ , where {eα} is an orthonormal basis in the plane Ω.
To investigate the consequences of the second restriction we write H0, the
restriction of the film displacement gradient to Ω, in the form (40), obtaining

H0 = ∇u0 + u′

0 ⊗ k, (77)

where u0(r, t) is the displacement of the film/substrate interface and u′
0 is

the restriction to Ω of the through-thickness derivative u′ of the displace-
ment field in the film. The stated restriction may then be written in the
form

(CR[∇u0])k+ARu
′

0 = 0, (78)

where AR is the relevant acoustic tensor, defined for all v by

ARv = (CR[v ⊗ k])k, (79)

and which is positive definite by (68) and (76)1. Consequently,

u′

0 = a(∇u0), with a(·) = −A−1

R (CR[·])k, (80)

implying that H0 is determined entirely by the interfacial displacement.
The interfacial equation of motion (56) requires an expression for P01,

which, on making use of (73)2, is given to linear order by

P01 = SR +H0SR + (CR[H0])1, with H0 = ∇u0 + a(∇u0)⊗ k. (81)

This is used in (56) in the form

Psk = h[div(P01)− ρκu0tt], (82)

in which Ps is the restriction to Ω of the substrate stress, assumed here to
be given constitutively by Ps = σ0, where

σ = E [G]; G = Gradw, (83)
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in which E is the substrate elasticity tensor (possessing major and minor
symmetries) and w(x, t) is the substrate displacement field. This satisfies
w0 = u0 in a perfectly bonded film-substrate system but of course w′

0 �= u′
0,

in general. This expression for the stress presumes the substrate to be free
of residual stress. Generalizations are of course possible, but the present
simplification suffices for our purposes.

To make the equations explicit it is convenient to decompose the inter-
facial displacement into tangential and normal parts, i.e.

u0 = v + wk, where v = 1u0 and w = k · u0. (84)

In the same way we write

a = α+ ak, where α = 1a and a = k · a. (85)

These furnish

∇u0 = ∇v + k⊗∇w and a⊗ k = α⊗ k+ ak⊗ k, (86)

and hence afford the representation

CR[H0] = (Cijαβvα,β + Cij3αw,α + Cijβ3αβ + aCij33)ei ⊗ ej , (87)

in which the subscript R has been suppressed on the right-hand side.

The material properties considered in this work exhibit reflection sym-
metry with respect to the unit normal k, i.e.

W̄ (ε) = W̄ (QεQt), with Q = I− 2k⊗ k. (88)

These have the property that all components Cijkl of the elastic moduli
having an odd number of subscripts equal to 3 vanish [5]; hence the simpli-
fication

CR[H0] = Cλμαβvα,βeλ ⊗ eμ + aCαβ33eα ⊗ eβ + (C33αβvα,β + aC3333)k⊗ k

+Cα3β3(w,β + αβ)(eα ⊗ k+ k⊗ eα). (89)

Using the definition (79) of the acoustic tensor we then obtain

ARb = Cα3β3bβeα + Cb3k, where C = C3333, (90)

yielding

b ·ARb = Cα3β3bαbβ + Cb23. (91)
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The acoustic tensor is then positive definite as required if and only if C > 0
and (Cα3β3) is positive definite. Further, (84) and (85) give

ARa = Cα3β3αβeα + Cak and (CR[∇u0])k = C33αβvα,βk+ Cα3β3w,βeα,
(92)

and it follows from (78) that

α = −∇w, a = −C−1C33αβvα,β . (93)

The restriction H0 to Ω of the film displacement gradient is thus given
by

H0 = ∇v + ak⊗ k+ k⊗∇w −∇w ⊗ k, (94)

and (89), together with the minor symmetry of CR, yields

CR[H0] = D[∇v] = Dλμαβvα,βeλ ⊗ eμ, (95)

where
Dλμαβ = Cλμαβ − C−1C33λμC33αβ (96)

are the plane-stress moduli. This in turn furnishes

P01 = SR + (∇v)SR + k⊗ (SR∇w) +D[∇v], (97)

and eq. (82) for the interfacial motion reduces to

σ0k = h[div{(∇v)SR +D[∇v]}+ kdiv(SR∇w)− ρκvtt − ρκwttk]. (98)

The substrate displacement is described by the classical equation of mo-
tion

Divσ = ρswtt, (99)

where ρs is the substrate mass density.

5 Surface waves: Love modes in hexagonal and cubic

crystal films

We are interested in localized surface waves of the form

w(x, t) = F (x, t)d (100)

in which d is the fixed polarization vector, x is decomposed as in (31) in
which ς < 0 for the substrate, and

F (x, t) = exp(ηkς) exp[ik(n · r− ct)], (101)
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in which η is a constant - assumed positive to ensure decay with depth into
the substrate, n ∈ Ω is the propagation direction, c is the wave speed, and
k is the wave number. The induced interfacial displacement is

u0 = w0 = Gd, where G = F0 = exp[ik(n · r− ct)]. (102)

The gradient of the interfacial displacement is

∇u0 = d⊗∇G = ikGd⊗ n. (103)

It proves convenient to decompose the polarization in the form (84), i.e.

d = δ + dk; δ = 1d, d = k · d. (104)

Then,
∇v = ikGδ ⊗ n and ∇w = ikGdn. (105)

Using these results with ∇∇G = −k2Gn⊗ n and u0tt = −k2c2Gd, after
some effort we reduce the bracketed term on the right-hand side of (82) to

div(P01)− ρκu0tt = Gk2{(ρκc2 − n · SRn)d−Aδ}, (106)

where
A = Dβαλμnαnμeβ ⊗ eλ (107)

is the (symmetric) plane-stress acoustic tensor associated with the propa-
gation direction.

The induced stress in the substrate is given by (83) with

G = d⊗GradF, where GradF = kF (in+ ηk), (108)

yielding
G = kF (id⊗ n+ ηd⊗ k) (109)

and hence

σ = kFB, where B = iE [d⊗ n] + ηE [d⊗ k]. (110)

Using this in the interfacial equation of motion (82) leads to the algebraic
problem

Bk = ε{(ρκc2 − n · SRn)d−Aδ}, (111)

where
ε = hk � 1 (112)

is the dimensionless film thickness.
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5.1 Substrate motion

From (100) and (101) we have wtt = −k2c2Fd and

Divσ = kB(GradF ) = k2FB(in+ ηk), (113)

which reduce the substrate equation of motion (cf. (99)) to the algebraic
problem

−(E [d⊗ n])n+ iη{(E [d⊗ k])n+ (E [d⊗ n])k}+ η2(E [d⊗ k])k = −ρsc2d.
(114)

In isotropic substrates, to which attention is restricted in this work,

E [G] = λs(trG)I+ 2μsG, (115)

where λs and μs are the substrate Lamé moduli, assumed here to satisfy
the usual strong ellipticity conditions λs +2μs > 0 and μs > 0. In this case
straightforward calculation reduces (114) to the system

μs(idn+ ηδ) = ε[(ρκc
2 − n · SRn)δ −Aδ]

iλs(n · δ) + η(λs + 2μs)d = ε(ρκc
2 − n · SRn)d. (116)

Further,

(E [d⊗ k])k = (λs + 2μs)dk+ μsδ, (E [d⊗ n])k = λs(n · δ)k + μsdn,

(E [d⊗ n])n = (λs+μs)(n · δ)n+μsd, (E [d⊗ k])n = λsdn+μs(n · δ)k.(117)
Love waves are polarized in the plane Ω. Accordingly, d = 0 and (116)2

requires that
n · δ = 0. (118)

Eqs. (117) simplify dramatically to

(E [d⊗ k])k = μsδ, (E [d⊗ n])k = 0, (E [d⊗ n])n = μsδ

and (E [d⊗ k])n = 0, (119)

and (99) delivers

η =
√

1− s2, where s = c/cs (120)

and cs =
√
μs/ρs is the shear-wave speed in the substrate. Finally, (116)1

reduces to the propagation condition

μsηδ = ε[(ρκc
2 − n · SRn)δ −Aδ], (121)
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which requires that δ be an eigenvector of the acoustic tensor A. The re-
striction (118) and the symmetry of the acoustic tensor imply that the
propagation direction n is then also an eigenvector.

5.2 Hexagonal (fibre) symmetry

In this subsection explicit dispersion relations are derived for films hav-
ing hexagonal symmetry. In the linear theory, the associated constitutive
equations are of precisely the same form as those for materials exhibiting
transverse isotropy, or fibre symmetry. Accordingly, the results derived are
applicable to both fibre-reinforced film materials or hexagonal crystalline
materials.

In particular, the components of C relative to an orthonormal basis {ei}
are (see [11])

Cijkl = λδijδkl + μT (δikδjl + δilδjk) + α(δijmkml +mimjδkl)

+(μL − μT )(mimkδjl +mimlδjk +mjmkδil +mjmlδik)

+βmimjmkml, (122)

where δij is the Kronecker delta; α, β, λ, μT and μL are material constants;
and the unit vector m, with components mi, is the fiber axis, assumed
here to be uniform. Spencer [11] shows that μT is the shear modulus for
shearing in planes transverse to m, whereas μL is the shear modulus for
shearing parallel to m. The remaining material constants in (122) may be
interpreted in terms of extensional moduli and Poisson ratios [11].

The general form of the residual stress may be derived by enumerating
the strain invariants for transverse isotropy that are linear in the (infinitesi-
mal) strain. These are [11] I ·ε and m⊗m · ε. Comparison with the leading
term in (72) then furnishes

SR = ST (I−m⊗m)+SLm⊗m, (123)

where ST is the constant residual stress in the isotropic plane and SL is the
constant residual uniaxial stress along m.

Necessary and sufficient conditions for strong ellipticity in the absence
of residual stress are [8; 12]:

μL > 0, ϕ > 0, μT > 0, λ+ 2μT > 0, (124)

and
|λ+ α+ μL| < μL +

√
ϕ(λ+ 2μT ), (125)
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where
ϕ = λ+ 4μL − 2μT + 2α+ β. (126)

We first assume the axis of transverse isotropy to coincide with the unit
normal k(= e

3
) to the film, and later consider the case when the axis lies

in the interfacial plane; the film material exhibits reflection symmetry with
respect to the interface in both cases.

(a) Fibre axis orthogonal to the interfacial plane

In this case the plane-stress condition (76)1, with m = k, yields

SR = S1, (127)

with S constant. Using (93)2, a straightforward but involved calculation
[12] leads to

a = −(λ̄+ ᾱ)divv, (128)

where λ̄ = λ/ϕ and ᾱ = α/ϕ. Further,

D[∇v] = ϕ{[λ̄− (λ̄+ ᾱ)2](divv)1+ μ̄T [∇v + (∇v)
t
]}, (129)

where μ̄T = μT /ϕ, yielding

Aδ = (D[δ ⊗ n])n

= ϕ{[λ̄− (λ̄+ ᾱ)2](δ · n)n+ μ̄T [δ + (δ · n)n]}, (130)

and hence
Aδ = μT δ (131)

in the case of Love waves. Substituting into (121), we conclude that the
polarization δ is an arbitrary vector in the interfacial plane and from (120)
that √

1− s2 = ε(rs2 − S + μT

μs

), (132)

where
r = ρκ/ρs (133)

is the ratio of film density to substrate density. This is the relevant dis-
persion relation. To solve it we assume that 1− s2 = O(ε2) and derive the
consistent estimate [12]

s ∼ 1− 1

2
ε2(r − S + μT

μs

)2 + o(ε2). (134)
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(b) Fibres lying in the interfacial plane

In this case (76)1 yields

SR = Sm⊗m, (135)

a uniform uniaxial stress along the fibres, while (93)2 gives

a = − 1

λ+2μT
[λdivv + αm · (∇v)m]. (136)

With some effort (95) and (96) may be reduced to [13]

D[∇v ] = [λ(θ + a) + αm · (∇v)m]I+ [α(θ + a) + βm· (∇v)m]m⊗m

+2μT (Sym∇v+ ak⊗ k)

+ 2(μL − μT )[(Sym∇v)m⊗m+m⊗ (Sym∇v)m]. (137)

For Love waves the latter is used to derive

Aδ = (D[δ ⊗ n])n

= α(1− λ

λ+ 2μT

)(m · n)(m · δ)n+ μT δ

+(β − α2

λ+ 2μT

)(m · n)2(m · δ)[(m · n)n+ (m · δ)δ]

+(μL − μT )[(m · n)2δ + 2(m · n)(m · δ)n+ (m · δ)2δ],(138)
and the propagation condition (121), projected onto the directions of δ and
n, furnishes

(m · n)(m · δ)[δ(m · n)2 + α(1− λ

λ+ 2μT

) + 2(μL − μT )] = 0 and

ε[ρκc
2 − S(m · n)2 − μL + δ(m · n)2(m · δ)2] = μsη, (139)

where

δ = β − α2

λ+ 2μT

. (140)

Typical data on carbon fibre/epoxy composites furnish a non-zero value
of the bracketed expression in the first relation, implying that

(m · n)(m · δ) = 0, (141)

and hence that either the direction of propagation or the polarization is
parallel to the fibres.
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In the first case we have m · n = ±1 and (139)2 delivers the associated
dispersion relation

μsη = ε(ρκc
2 − S − μL), (142)

which is solved as before to obtain the estimate

s ∼ 1− 1

2
ε2(r − S + μL

μs

)2 + o(ε2). (143)

In the second case m = ±δ and the dispersion relation is

μsη = ε(ρκc
2 − μL), (144)

yielding

s ∼ 1− 1

2
ε2(r − μL

μs

)2 + o(ε2). (145)

We observe that in both cases the deformation is a shear, not in the
isotropic plane, but rather in the plane containing the fibres. The operative
material property is therefore μL, the longitudinal shear modulus [15].

5.3 Cubic symmetry

In the case of cubic crystal symmetry we assume the cubic axes to be
aligned with {ei} = {eα,k}. The residual stress is necessarily a pure pres-
sure which vanishes by virtue of the plane-stress condition (76)1. Accord-
ingly, the strain energy W̄ (ε) is a homogeneous quadratic function which
depends on the strain via the combinations [10]

(ε11 + ε22 + ε33)
2, ε11ε22 + ε11ε33 + ε22ε33 and ε212 + ε213 + ε223.

These are common to all five subclasses of cubic symmetry.
It proves convenient to express the strain-energy function in terms of the

spherical and deviatoric part of the strain, the latter being defined by

ε̄ = ε− 1

3
(trε)I, (146)

yielding

ε11ε22 + ε11ε33 + ε22ε33 = 1

3
(trε)2 − 1

2
(ε̄211 + ε̄222 + ε̄233) (147)

and hence

W̄ (ε) = 1

2
[C1(ε11+ε22+ε33)

2+C2(ε̄
2
11+ε̄222+ε̄233)]+C3(ε

2
12+ε213+ε223), (148)

where C1,2,3 are material constants. To ensure strong ellipticity in accor-
dance with our assumptions thus far it is enough to require that W̄ (ε) be
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positive definite. Because (148) is the sum of independent quadratic forms
this in turn is equivalent to the restrictions

C1 > 0, C2 > 0 and C3 > 0. (149)

According to (73) the stress in the film is then given by

P = C[ε]
= C1(trε)I + C2(ε̄11e1 ⊗ e1 + ε̄22e2 ⊗ e2 + ε̄33e3 ⊗ e3)

+C3[ε12(e1⊗e2+e2⊗e1)+ε13(e1⊗e3+e3⊗e1)+ε23(e2⊗e3+e3⊗e2)], (150)

and the plane-stress condition (76)2 yields the restrictions

C1(trε)+ C2ε̄33 = 0 and εα3 = 0 (151)

on the interfacial values of the strain in the film.
Using (84) and (85) and the fact that ε is the symmetric part of the

displacement gradient, we have

ε = Sym(∇v) + ak⊗ k+ 1

2
[k⊗ (∇w +α)+ (∇w +α)⊗ k], (152)

and thus conclude that (151)2 is equivalent to (93)1. Further, a = ε33,
trε = θ + a, where θ = divv, ε̄33 = 2

3
a− 1

2
θ and (93)2 delivers

a = −(C1 +
2

3
C2)

−1(C1 − 1

3
C2)θ. (153)

The plane-stress moduli are defined by (95) and (96) and hence given by

D[∇v] = C1(θ+a)1+C2(ε̄11e1⊗e1+ ε̄22e2⊗e2)+C3ε12(e1⊗e2+e2⊗e1),
(154)

where

ε̄11 = 1

3C1+2C2

[(3C1+2C2)v1,1+C2v2,2], ε̄22 = 1

3C1+2C2

[(3C1+2C2)v2,2+C2v1,1]
(155)

and
θ + a = 3C2

3C1+2C2

(v1,1 + v2,2). (156)

To obtain D[δ⊗n] for use in (121) we simply replace ∇v by δ⊗n, arriving
at

Aδ = (D[δ ⊗ n])n

= 3C1C2

3C1+2C2

(δ · n)n+ C2

3C1+2C2

[(3C1 + C2)δ1n
2
1 + C2δ2n1n2]e1

+ C2

3C1+2C2

[(3C1 + C2)δ2n
2
2 + C2δ1n1n2]e2

+ 1

2
C3(δ1n

2
2 + δ2n1n2)e1 +

1

2
C3(δ1n1n2 + δ2n

2
1)e2. (157)
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An explicit expression for A follows by using δα = eα · δ with δ1e1 =
(e1⊗e1)δ, δ1e2 = (e2⊗e1)δ, etc.; thus, in the case of Love waves (δ ·n = 0),

A = (C2
3C1+C2

3C1+2C2

n2
1 +

1

2
C3n

2
2)e1 ⊗ e1 + (C2

3C1+C2

3C1+2C2

n2
2 +

1

2
C3n

2
1)e2 ⊗ e2

+n1n2(
C2

2

3C1+2C2

+ 1

2
C3)(e1 ⊗ e2 + e2 ⊗ e1). (158)

Recalling that the propagation condition (121) implies that n is an eigen-
vector, we have An = ξn for some ξ ∈ R, where

An = (C2
3C1+C2

3C1+2C2

n2
1 +

1

2
C3n

2
2)n1e1 + (C2

3C1+C2

3C1+2C2

n2
2 +

1

2
C3n

2
1)n2e2

+n1n2(
C2

2

3C1+2C2

+ 1

2
C3)(n2e1 + n1e2). (159)

Taking the scalar product of the equation An = ξn with n2e1 and n1e2
yields two equations for ξn1n2, which we subtract to derive

n1n2(n
2
1 − n2

2)
3C1+C2

3C1+2C2

= 0, (160)

and with (149) this yields the possibilities

n1n2 = 0 or n2
1 = n2

2. (161)

The first alternative implies that n ∈ {eα} and hence that δ ∈ {eα};
the propagation and polarization directions are aligned with the crystallo-
graphic axes. Eq. (157) then provides

Aδ = 1

2
C3δ (162)

and (121) yields the dispersion relation

μsη = ε(ρκc
2 − 1

2
C3), (163)

which is solved as before to obtain

s ∼ 1− 1

2
ε2(r − C3

2μs

)2 + o(ε2). (164)

The second alternative implies that n2
1 = n2

2 = n2, with n = ±1/√2.
These yield the two families

n(1) = 1
√
2
(e1 + e2), with δ(1) =

1
√
2
(e1 − e2), and

n(2) = 1
√
2
(e1 − e2), with δ(2) =

1
√
2
(e1 + e2), (165)
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corresponding to propagation and polarization at 45 degrees to the crystal-
lographic axes. In either case we have

A = 1

2
(C2

3C1+C2

3C1+2C2

+ 1

2
C3)1+n1n2(

C2

2

3C1+2C2

+ 1

2
C3)(e1⊗e2+e2⊗e1), (166)

implying that
Aδ = 3

2

C1C2

3C1+2C2

δ. (167)

Finally, substitution into (121) furnishes the dispersion relation

μsη = ε(ρκc
2 − 3

2

C1C2

3C1+2C2

), (168)

and thus
s ∼ 1− 1

2
ε2[r − 3

2μs

C1C2

(3C1+2C2)
]2 + o(ε2). (169)

6 Survey of nonlinear and linearized electroelasticity

Here we review the basic theory of nonlinear electroelasticity as a prelude
to the development of a model for thin electro-elastic films. For further
background reference may be made to [4; 7; 14] In nonlinear electroelasticity
we assume the existence of a free energy per unit mass, ϕ say, that depends
on the deformation gradient F and electric field e. Here we restrict attention
to the purely electromechanical theory and suppress thermal and electrical
conduction. We also assume the material to be non-magnetizable.

The Cauchy stress is [7]

T = ρϕFF
t +TM , (170)

where
TM = ε0(e⊗ e− 1

2
e2I), with e = |e| , (171)

is the Maxwell stress in which ε0 is the free-space permittivity. The material
polarization is

p = −ρϕe. (172)

By an argument similar to that leading from (3) to (23) [7], we find
that the free energy depends on the deformation and electric field via the
Cauchy-Green deformation tensorC = FtF and the pullback E = Fte; thus,

ϕ(F, e) = Φ(C,E). (173)

Straightforward application of the chain rule yields

ϕe = FΦE and ϕF = 2FΦC + e⊗ ΦE, (174)
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and hence
T = σ + TM , (175)

where
σ = 2ρFΦCF

t, (176)

together with
p = −ρFΦE. (177)

In the absence of a magnetic induction field or volumetric distributions
of charge, the equations to be solved are

divT = ρχtt, curle = 0 and divd = 0, (178)

where
d = ε0e+ p (179)

is the electric displacement and curl is the spatial curl operator, together
with curlh = 0, where h is the magnetic field. The latter is valid in the
absence of currents under the so-called quasi-electrostatic approximation
[4], according to which time derivatives appearing in Maxwell’s equations
are negligible compared to time derivatives occurring in the equation of
motion. Further, for non-magnetizable bodies it is possible to show that
h = χt × p. This is a nonlinear term and hence negligible in the linear
theory to be discussed; the restriction curlh = 0 is then effectively reduced
to an identity and plays no role in the linear theory.

Appended to this system are the boundary conditions

ta +T+

Mn = Tn, n · [d] = σ and n× [e] = 0, (180)

the first applying on a part of the boundary where the applied traction ta
is specified, where n is the exterior unit normal to the boundary, σ is the
areal density of surface charge on the boundary, and where [·] = (·)+− (·)−,
with the superscripts ± referring respectively to limits as the boundary is
approached from the exterior and interior of the body.

We require the referential forms of the equations, expressed in terms of
differential operators with respect to x. To derive the relevant version of
(178)2, we use Stokes’ theorem∫

s

n · curleda =

∫
∂s

e · dy =

∫
∂S

e · Fdx =

∫
∂S

E · dx =

∫
S

N · CurlEdA,

(181)
where S is an arbitrary material surface with s = χ(S, t) its image in the
current configuration, and Curl is the referential curl operator, to conclude
that (178)2 is equivalent to

CurlE = 0, (182)
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which implies that

E =−GradV (183)

for some scalar potential V. A slight generalization of the argument delivers
the referential version of the jump condition (180)3:

N× [E] = 0. (184)

In the same way we use the divergence theorem to deduce that, for an
arbitrary material subvolume π with P = χ(π, t),

∫
P

divddv =

∫
∂P

d · nda =

∫
∂π

d · F∗
NdA

=

∫
∂π

JF−1d ·NdA =

∫
π

Div(JF−1d)dV, (185)

and thus that (178)3 is equivalent to

DivD = 0, where D = JF−1d. (186)

Again the procedure may be generalized to derive the appropriate version
of (180)2:

N · [D] = Σ, (187)

where Σ = σ |F∗N| is the referential surface charge density.
A convenient definition of the referential polarization is

Π = JF−1p. (188)

This yields (cf. (177))

Π = −ρκΦE (189)

and thus (cf. (179))

D = Π+ ε0JC
−1E. (190)

Lastly, the referential equation of motion is given precisely by (2) in
which T is now given by (170) or (175). Then,

P = (σ +TM)F∗ = 2FWC +TMF∗, (191)

with

TMF∗ = ε0F
∗[E⊗ (C

−1
E)− 1

2
e2I], (192)

and where W = ρκΦ is the strain-energy function.
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To linearize the theory we suppose the norms of the electric field and
the displacement gradient to be small and use the strain measure defined
by (25) to obtain

σF∗ = FW̄ε

= (I+H){C[ε] + SE + ...}

� C[H] + SE, (193)

where W̄ is the strain energy expressed as a function of ε and E, and C
and S respectively are the values of W̄εε and W̄Eε when the strain and
electric field vanish. Here and henceforth, for convenience, we assume that
the associated values of stress and polarization vanish. Thus we assume the
absence of residual stress and residual polarization. To linear order we also
have

P � σF∗, (194)

since the Maxwell stress is quadratic in the electric field.
In the same way we have

−Π = W̄E � QE+Rε, (195)

where Q and R respectively are the values of W̄EE and W̄εE at zero strain
and electric field. Combining this with (190) and JC−1E � E we obtain

D � ε0E− W̄E. (196)

In component form, eqs. (5) and (186) are given, to linear order, by

ρκuitt = Cijkluk,jl + SijkEk,j (197)

and
[(ε0δij −Qij)Ej ],i = Sijkuj,ki, (198)

where
Sijk = ∂2W̄/∂Ek∂εij , (199)

ui are the displacement components, Ei = −V,i and commas followed by
subscripts are used to denote partial derivatives with respect to the initial
Cartesian coordinates xi.

Relevant to our analysis of thin-film substrate problems are restrictions
on the various moduli ensuring the existence of propagating plane harmonic
waves. To explore this we consider plane harmonic bulk waves of the form

ui = ai exp[i(k · x− ωt)], V = v exp[i(k · x− ωt)], (200)
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where ai are the (constant) components of the displacement polarization, v
is a constant, ω is the frequency and k is the wave vector. The direction of
propagation is n and k = kn, where k is the wave number; the wavespeed
c is then given by ω = kc. Substitution into (197) and (198) furnishes the
algebraic system

−ρκω2ui = −Cijklkjkluk + SijkkjkkV and Sijkkikkuj + ηijkikjV = 0,
(201)

where
ηij = ε0δij −Qij . (202)

We assume that η is non-singular so that k · ηk �= 0 for any non-zero k.
Then,

V = −(k · ηk)−1Sijkkjkkuj (203)

and
ρκc

2ui = [Aij + (k · ηk)−1
ΓiΓj ]uj , (204)

where
Aij = Cijklnknl and Γi = Sijknjnk. (205)

Accordingly, sufficient conditions for propagation are the positivity of the
tensors A and η [2], the former generalizing the classical propagation con-
dition of conventional elasticity theory.

7 Thin-film model

Suppose the film is coated with a very thin layer of perfectly conducting
electrode material carrying a charge density Σ. We assume that the sub-
strate to which the film is attached is also a perfect conductor. Then the
electric and polarization fields exterior to the film vanish. The jump condi-
tions (180)2,3, applied at the interfaces between the film and the electrode
and substrate, then yield

n · d(i) = −σ and n× e(i) = 0, (206)

where the superscript (i) refers to the limit as the interface is approached
from the interior of the film. The associated referential forms are

N ·D(i) = −Σ and N×E(i) = 0. (207)

To make the first of these explicit we write N ·D+ = −Σ+ and N ·D0 =
−Σ0, these being respectively equal to the surface charges at the elec-
trode/film interface and the film/substrate interface where N = ±k.
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The weak form of the equation of motion in the film material is given
by (38), but with the stress P now given by (194). The weak form of (186)
is given by ∫

π

D ·GradV̇ dV =

∫
∂π

D ·NV̇ dA, (208)

in which V̇ is the variation of the electric potential and the integrand on
the right-hand side is the limit from the interior of the film.

Proceeding as in (47) we decompose the electric displacement into a part
in the interfacial plane and a part orthogonal to it, i.e.

D = 1D+Dk, with D = k ·D. (209)

Thus,

∫
∂π

D ·NV̇ dA =

∫
∂ω

(

∫ h

0

1D · νV̇ dς)dS +

∫
ω+

D+V̇ +dA−
∫
ω

D0V̇0dA,

(210)
where ω ⊂ Ω is an arbitrary part of the film/substrate interface Ω and ω+

is its projection onto the electrode/film interface. Using (207)1 and the
estimate (44) we derive∫

∂π

D ·NV̇ dA = h

∫
∂ω

1D0 · νV̇0dS −
∫
ω+

Σ+V̇ +dA−
∫
ω

Σ0V̇0dA+ o(h).

(211)
This is further reduced, using

V + = V0 + hV ′

0 + o(h), (212)

to obtain∫
∂π

D ·NV̇ dA = −
∫
ω

(Σ0+Σ+)V̇0dA+h

∫
∂ω

1D0·νV̇0dS−h
∫
ω

Σ+V̇ ′

0dA+o(h).

(213)
In the same way,∫

π

D ·GradV̇ dV = h

∫
ω

(1D0 · ∇V̇0 +D0V̇
′

0)dA+ o(h), (214)

having used the decomposition

GradV̇ = ∇V̇ + V̇ ′k, (215)

and the balance law (208) yields

−
∫
ω

(Σ0 +Σ+)V̇0dA+ h(

∫
∂ω

1D0 · νV̇0dS −
∫
ω

Σ+V̇ ′

0dA)
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= h

∫
ω

(1D0 · ∇V̇0 +D0V̇
′

0)dA+ o(h). (216)

We have implicitly imposed (182) and (207)2 as constraints, the latter in

the form k×E(i) = 0. Thus, CurlĖ = 0 and k× Ė
(i)

= 0, implying that
Ė = −GradV̇ with k×GradV̇ (i) = 0 at the interfaces. From (215) we then
have k×∇V̇0 = 0 in particular, implying that V̇0 is uniform on Ω. On Ω+

we have

0 = k×∇V̇ + = k×∇V̇0 + hk×∇V̇ ′

0 + o(h), (217)

yielding

∇V̇ ′

0 = h−1o(h) (218)

and hence

−V̇0

∫
ω

(Σ0 +Σ+)dA+hV̇0

∫
∂ω

1D0 · νdS−hV̇ ′

0

∫
ω

(D0 +Σ+)dA+ o(h) = 0.

(219)
Because V̇0 and ω are arbitrary it follows that Σ0 +Σ+ = O(h). At leading
order we have

Σ+ = −Σ0, (220)

leaving

V̇0

∫
∂ω

1D0 · νdS − V̇ ′

0

∫
ω

(D0 +Σ+)dA+ h−1o(h) = 0. (221)

Passing to the limit and invoking the arbitrariness and independence of V̇0

and V̇ ′
0 results in

∫
ω

div(1D0)dA = 0 and

∫
ω

(D0 − Σ0)dA = 0, (222)

and the arbitrariness of ω finally yields

div(1D0) = 0 and D0 = Σ0, (223)

pointwise on Ω.
Under the stated conditions the Maxwell stress exterior to the film van-

ishes. The traction boundary condition (180)1 is then identical in form to
(4), after making the appropriate adjustment in the definition of the stress.
The procedure used in Section 3 to derive the equation of motion for the
film/substrate interface carries over unchanged and culminates in (55) in
the case when the upper surface of the film is traction free.
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8 Linear theory for cubic symmetry: Love modes and

extinguished waves

In the linear approximation the constitutive equations are

P = W̄ε and D = ε0E− W̄E, (224)

and to make these explicit we require an expression for W̄ (ε,E) that is
homogeneous of degree two.

Here we consider various subclasses of cubic symmetry. For example,
the strain-energy function pertaining to the hextetrahedral subgroup is [10]

W̄ (ε,E) = 1

2
[C1(ε11 + ε22 + ε33)

2 + C2(ε̄
2
11 + ε̄222 + ε̄233)] + C3(ε

2
12 + ε213 + ε223)

+ 1

2
D1(E

2
1 + E2

2 + E2
3) + 2D2(E1ε23 + E2ε13 + E3ε12), (225)

where C1,2,3 and D1,2 are material parameters and we impose inequalities
(149) to ensure that a sufficient condition for propagation, discussed in
Section 6, is satisfied. The associated stress is

P = C1(trε)I + C2(ε̄11e1 ⊗ e1 + ε̄22e2 ⊗ e2 + ε̄33e3 ⊗ e3)

+(C3ε12 +D1E3)(e1 ⊗ e2 + e2 ⊗ e1) + (C3ε13 +D1E2)(e1 ⊗ e3 + e3 ⊗ e1)

+(C3ε23 +D1E1)(e2 ⊗ e3 + e3 ⊗ e2), (226)

and the electric displacement is

D = (ε0 −D1)E− 2D2(ε23e1 + ε13e2 + ε12e3). (227)

Equation (223)2 then furnishes the restriction Σ0 = (ε0 −D1)E3 − 2D2ε12,
implying that E3(= −V ′

0) satisfies

(ε0 −D1)E3 = Σ0 + 2D2ε12, (228)

whereas the restriction (55)1 on the film stress at the film/substrate interface
reduces to

0 = P0k = [C1(trε)+C2ε̄33]k+(C3ε13+D1E2)e1+(C3ε23+D1E1)e2, (229)

yielding
ε13 = −(D1/C3)E2 and ε23 = −(D1/C3)E1. (230)

Recalling that 1E = −∇V0 at the interface, and hence that Eα =
−V0,α = 0, we conclude that ε3α = 0 in the film at the interface, as in
the purely elastic theory. Further, E3 is uniform at the interfacial plane
because ∇V ′

0 vanishes. Thus, if the assigned surface charge Σ0 is uniform,
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and if D2 �= 0, then (228) implies that ε12 is uniform on Ω. This situation
pertains not only to the hextetrahedral subgroup of the cubic symmetry
group, but also to the tetardoidal and gyroidal subgroups [10]. In contrast,
D2 = 0 in higher-symmetry materials characterized by the hexoctahedral

and diploidal subgroups, and so for these there is no requirement that ε12
be uniform.

Proceeding, we have

1D0 = (ε0 −D1)1E− 2D2(ε23e1 + ε13e2), (231)

which vanishes identically, ensuring that (223)1 is automatically satisfied.
The equation of motion for the film/substrate interface is

σ0k = h[div(P01)− ρκu0tt] (232)

in which σ is the stress in the substrate, assumed to be an isotropic, non-
polarizable elastic solid, and

P01 = C1(trε)1+C2(ε̄11e1⊗e1+ε̄22e2⊗e2)+(C3ε12+D1E3)(e1⊗e2+e2⊗e1).
(233)

Our results yield

div{E3(e1 ⊗ e2 + e2 ⊗ e1)} = 0, (234)

implying that (232) reduces to the purely elastic problem treated in Section
5. Accordingly a uniform surface charge on a polarizable cubic crystal film
has no effect on propagating waves.

However, we have seen that ∇ε12 = 0 on Ω if the film properties are
such that D2 �= 0. For Love waves, the in-plane displacement gradient is (cf.
(105)1) ∇v = ikGδ ⊗ n, with δ · n = 0. Writing n = cos θe1 + sin θe2 and
δ = − sin θe1 + cos θe2, we use this to derive

2∇ε12 = −k2G(cos2 θ − sin2 θ)n (235)

and thus conclude that cos2 θ = sin2 θ, yielding θ = ±45◦. This implies
that waves propagating along the crystallographic axes are extinguished
by the application of a uniform surface charge in polarizable cubic films
belonging to the hextetrahedral, tetardoidal or gyroidal subclasses. We
know of no experimental corroboration of this remarkable and potentially
useful prediction.
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