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Abstract In these introductory lectures we discuss classes of presently known
nested sums, associated iterated integrals, and special constants which hierarchically
appear in the evaluation of massless and massive Feynman diagrams at higher
loops. These quantities are elements of stuffle and shuffle algebras implying
algebraic relations being widely independent of the special quantities considered.
They are supplemented by structural relations. The generalizations are given in
terms of generalized harmonic sums, (generalized) cyclotomic sums, and sums
containing in addition binomial and inverse-binomial weights. To all these quantities
iterated integrals and special numbers are associated. We also discuss the analytic
continuation of nested sums of different kind to complex values of the external
summation boundN .

1 Introduction

In the solution of physical problems very often new classes of special functions
have been created during the last three centuries, cf. [1–5]. This applies especially
also to the analytic calculation of Feynman-parameter integrals [6] for massless and
massive two- and more-point functions, also containing local operator insertions
and corresponding quantities, cf. [7, 8]. In case of zero mass-scale quantities the
associated integrals map to special numbers, lately having been called periods [9],
see also [10]. In case of single-scale quantities, expressed as a ratio x 2 Œ0; 1� to
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the defining mass scale, the integrals are Poincaré iterated integrals [11, 12] or they
emerge as a Mellin-transform at N 2 N [13] in terms of multiply nested sums. A
systematic way to these structures has been described in [14, 15]. Here an essential
tool consists in representations by Mellin–Barnes [16] integrals. They are applicable
also for integrals of multi-scale more-loop and multi-leg Feynman integrals [17],
which are, however, less explored at present.

In the practical calculations dimensional regularization inD D 4C " space-time
dimensions [18] is used, which is essential to maintain conservation laws due to
the Noether theorem and probability. It provides the singularities of the problem in
terms of poles in ". However, the Feynman parameter integrals are not performed
over rational integrands but hyperexponential ones. Thus one passes through
higher transcendental functions [4, 5] from the beginning. The renormalization is
carried out in the MS-scheme, chosen as the standard. In new calculations various
ingredients as anomalous dimensions and expansion coefficients of the ˇ-functions
needed in the renormalization can thus be used referring to results given in the
literature. At higher orders the calculation of these quantities requests a major
investment and is not easily repeated at present within other schemes in a short
time.

With growing complexity of the perturbative calculations in Quantum Field The-
ories the functions emerging in integration and summation had to be systematized.
While a series of massless two-loop calculations, cf. [19], during the 1980s and
1990s initially still could be performed referring to the classical polylogarithms
[12, 20–23] and Nielsen-integrals [24], the structure of the results became readily
involved. In 1998 a first general standard was introduced [25, 26] by the nested
harmonic sums, and shortly after the harmonic polylogarithms [27]. Further exten-
sions are given by the generalized harmonic sums, the so-called S-sums [28, 29]
and the (generalized) cyclotomic sums [30], see Fig. 1. Considering problems at
even higher loops and a growing number of legs, also associated with more mass
scales, one expects various new levels of generalization to emerge. In particular, also
elliptic integrals will contribute [31]. These structures can be found systematically
by applying symbolic summation, cf. [32], and integration formalisms, cf. [33, 34],
which also allow to proof the relative transcendence of the basis elements found and
are therefore applied in the calculation of Feynman diagrams.

In this survey we present an introduction to a series of well-studied structures
which have been unraveled during the last years. The paper is organized as
follows. In Sect. 2 a survey is given on polylogarithms, Nielsen integrals and
harmonic polylogarithms. In Sect. 3 harmonic sums are discussed. Both harmonic
polylogarithms and harmonic sums obey algebraic and structural relations on which
a survey is given in Sect. 4. In Sect. 5 we discuss properties of the multiple zeta
values which emerge as special constants in the context of harmonic sums and
polylogarithms. The S-sums, associated iterated integrals, and special numbers
are considered in Sect. 6. The generalization of harmonic sums and S-sums to
(generalized) cyclotomic sums, polylogarithms and numbers is given in Sect. 7. A
further generalization, which appears in massive multi-loop calculations, to nested
binomial and inverse-binomial harmonic sums and polylogarithms is outlined in
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Fig. 1 Relations between the different extensions of harmonic sums

Sect. 8. Finally, we discuss in Sect. 9 the analytic continuation of the different kind
of nested sums in the argumentN to complex numbers, which is needed in various
physical applications. Section 10 contains the conclusions. The various mathemat-
ical relations between the different quantities being discussed in the present article
are implemented in the Mathematica package HarmonicSums.m [29, 35].

2 Polylogarithms, Nielsen Integrals, Harmonic
Polylogarithms

Different particle propagators 1=Ak.pi ;mi/ can be linked using Feynman’s integral
representation [36]
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While the momentum integrals over pi can be easily performed, the problem
consists in integrating the Feynman parameters xk . In the simplest cases the
associated integrand is a multi-rational function. In the first integrals one obtains
multi-rational functions, but also logarithms [33]. The logarithms [37] have to be
introduced as new functions being transcendental to the rational functions

Z x

0

dz

1 � z
D � ln.1 � x/; etc. (2)

Iterating this integral by

Z x

0

dz1
z1

Z z1

0

dz2
1 � z2

D Li2.x/ (3)
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one obtains the dilogarithm or Spence-function [20, 21], which may be extended to
the classical polylogarithms [12, 21–23]

Z x

0

dz

z
Lin�1.z/ D Lin.x/; n 2 N : (4)

All these functions are transcendental to the former ones. For an early occurrence
of the dilogarithm in Quantum Field Theory see [38].

The above iterations are special cases in iterating differential forms in
fdz=z; dz=.1� z/g. The general case is described as Nielsen integrals [24].

Sn;p.x/ D .�1/nCp�1
.n � 1/ŠpŠ

Z 1

0

dz

z
lnn�1.z/ lnp.1 � xz/ : (5)

Likewise, one might also consider the set fdz=z; dz=.1C z/g. Nielsen integrals obey
the relation

Sn�1;p.x/ D d

dx
Sn;p.x/ : (6)

One may derive serial representations around x D 0, as e.g.:

Lin.x/ D
1X

kD1

xk

kn
; S1;2.x/ D

1X

kD2

xk

k2
S1.k � 1/; S2;2.x/ D

1X

kD2

xk

k3
S1.k � 1/ ;

(7)

see also [39]. Here S1.n/ D Pn
kD1.1=k/ denotes the harmonic sum. The Nielsen

integrals obey various relations [12, 20–24]. A few examples are:

Li2.1 � x/ D �Li2.x/� ln.x/ ln.1 � x/C �2 (8)

Li2

�

� 1
x

�

D �Li2.�x/� 1

2
ln2.x/� �2 (9)

Li3.1 � x/ D �S1;2.x/� ln.1 � x/Li2.x/� 1

2
ln.x/ ln2.1 � x/C �2 ln.1 � x/C �3

(10)

Li4
�
� x

1 � x

�
D ln.1 � x/ŒLi3.x/� S1;2.x/�C S2;2.x/� Li4.x/� S1;3.x/

�1
2

ln2.1 � x/Li2.x/� 1

24
ln4.1� x/ (11)

Lin.x
2/ D 2n�1 ŒLin.x/C Lin.�x/� (12)

Li2.z/ D 1

n

X

xnDz

Li2.x/; n 2 Nnf0g (13)
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S2;2.1 � x/ D �S2;2.x/C ln.x/S1;2.x/� ŒLi3.x/� ln.x/Li2.x/� �3� ln.1 � x/

C1

4
ln2.x/ ln2.1 � x/C �4

4
: (14)

Here �n D P1
kD1.1=kn/; n � 2; n 2 N are values of Riemann’s �-function.

Going to higher orders in perturbation theory it turns out that the Nielsen integrals
are sufficient for massless and some massive two-loop problems, cf. [26,40], and as
well for the three-loop anomalous dimensions [41], allowing for some extended
arguments as �x; x2. At a given level of complexity, however, one has to refer to a
more general alphabet, namely

A D f!0; !1; !�1g � fdz=z; dz=.1� z/; dz=.1C z/g : (15)

The corresponding iterated integrals are called harmonic polylogarithms (HPLs)
[27]. Possibly the first new integral is

H�1;0;0;1.x/ D
Z x

0

dz

z

Li3.z/

1C z
: (16)

Here we use a systematic notion defining the Poincaré iterated integrals [11, 12],
unlike the case in (5). The weight w D 1 HPLs are

H0.x/ D ln.x/; H1.x/ D � ln.1 � x/; H�1.x/ D ln.1C x/; (17)

with the definition of H0;:::;0.x/ D lnn.x/=nŠ for all x indices equal to zero. The
above functions have the following representation

Lin.x/ D
Z x

0

!n�10 !1; Sp;n.x/ D
Z x

0

!
p
0 !

n
1 ; Hmw.x/ D

Z x

0

kY

lD1
!ml ; (18)

where the corresponding products are non-commutative, mw is of length k and x �
z1 � : : : � zm.

Harmonic polylogarithms obey algebraic and structural relations, which will be
discussed in Sect. 4. Numerical representations of HPLs were given in [42, 43].

3 Harmonic Sums

The harmonic sums are recursively defined by

Sb;a.N / D
NX

kD1

.sign.b//k

kjbj
Sa.k/ ; S;.N / D 1 ; b; ai 2 Znf0g: (19)
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In physics applications they appeared early in [44, 45]. Their systematic use dates
back to Refs. [25, 26]. They can be represented as a Mellin transform

Sa.N / D M Œf .x/� .N / D
Z 1

0

dx xN�1 f .x/; N 2 Nnf0g; (20)

where f .x/ denotes a linear combination of HPLs. For example,

S�2;1;1.N / D .�1/NC1
Z 1

0

dx
H0;1;1.x/� �3

x C 1
� Li4

�
1

2

�

� ln4.2/

24
C ln2.2/�2

4

�7 ln.2/�3
8

C �22
8

(21)

holds. Harmonic sums possess algebraic and structural relations, cf. Sect. 4. In the
limit N ! 1 they define the multiple zeta values, cf. Sect. 5. They are originally
defined at integer argument N . In physical applications they emerge in the context
of the light–cone expansion [46]. The corresponding operator matrix elements are
analytically continued to complex values of N either from the even or the odd
integers, cf. Sect. 9.

4 Algebraic and Structural Relations

4.1 Algebraic Relations

Algebraic relations of harmonic polylogarithms and harmonic sums, respectively,
are implied by their products and depend on their index structure only, i.e. they
are a consequence of the associated shuffle or quasi–shuffle (stuffle) algebras [47].
These properties are widely independent of the specific realization of these algebras.
To one of us (JB) it appeared as a striking surprise, when finding the determinant-
formula for harmonic sums of equal argument [26] Eqs. (157,158)

S a, . . . ,a
„ƒ‚…

k

.N / D 1

k

kX

lD0
S a, . . . ,a
„ƒ‚…

l

.N /S^k�l
mD1a

.N /; a ^ b D sign.ab/.jaj C jbj/ (22)

also in Ramanujan’s notebook [48], but for integer sums, which clearly differ in
value from the former ones. Related relations to again different quantities were given
by Faá die Bruno [49].

Iterated integrals with the same argument x obey shuffle relations w.r.t. their
product,

Ha1;:::;ak .x/ � Hb1;:::;bl .x/ D
X

c2att b

Hc1;:::ckCl
.x/: (23)
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The shuffle-operation runs over all combinations of the sets a and b leaving the order
of these sets unchanged. Likewise, the (generalized) harmonic sums obey quasi-
shuffle or stuffle-relations, which are found recursively using [28, 29]

Sa1;:::;ak .x1; : : : ; xk In/Sb1;:::;bl .y1; : : : ; yl In/ D
nX

iD1

xi1
ia1

Sa2;:::;ak .x2; : : : ; xk I i/ Sb1;:::;bl .y1; : : : ; yl ; i /

C
nX

iD1

yi1
ib1

Sa1;:::;ak .x1; : : : ; xk; i/ Sb2;:::;bl .y2; : : : ; yl I i/

�
nX

iD1

.x1 � y1/i
ia1Cb1

Sa2;:::;ak .x2; : : : ; xk; i/ Sb2;:::;bl .y2; : : : ; yl I i/ ;

xi ; yi 2 C; ai ; bi 2 Nnf0g : (24)

The presence of trace terms in form of lower weight products in addition to the
shuffled terms, cf. [50], leads to the name stuffle relations. In case the corresponding
values exist, both (23,24) can be applied to the multiple zeta values or other special
numbers applying the integral and sum-representations at x D 1 and N ! 1,
cf. [51]. The basis elements applying the (quasi) shuffle relations in case of the har-
monic sums and polylogarithms at a given weight w can be identified by the Lyndon
words [52,53]. Let A D fa; b; c; d; : : :g be an ordered alphabet and A�.A/ the set of
words w given as concatenation products. Under the ordering of A a Lyndon word
is smaller than any of its suffixes. For example, the set fa; a; a; b; b; bg; a < b

is associated to the Lyndon words faaabbb; aababb; aabbabg. Radford showed
[54] that a shuffle algebra is freely generated by the Lyndon words. The number of
Lyndon words can be counted using Witt formulae [55]. Let M be a set of letters q
in which the letter ak emerges nk times, and n D Pq

kD1 nk . The number of Lyndon
words associated to this set is given by

ln.n1; : : : ; nq/ D 1

n

X

d jnk
�.d/

.n=d/Š

.n1=d/Š : : : .nq=d/Š
: (25)

Similarly one may count the basis elements occurring for all combinations at a given
weight, if the alphabet has m letters:

NA.w/ D 1

w

X

d jw
�
�w

d

�
md ; (26)

where � denotes Möbius’ function [56]. In case of the harmonic sums and
polylogarithms one hasm D 3. The original number of harmonic polylogarithms is
3w and in case of the harmonic sums 2 � 3w�1. Algebraic relations for the harmonic
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polylogarithms and harmonic sums are implemented in the FORM-codes summer
[25] and harmpol [27], HPL [57], and also HarmonicSums.m [29, 35].

4.2 Structural Relations

Structural relations of harmonic polylogarithms and harmonic sums are implied by
operations on their arguments x and N , respectively.

4.2.1 Harmonic Polylogarithms

Harmonic polylogarithms satisfy argument-relations, as has been illustrated in (8–
14) for some examples in case of the Nielsen integrals. Not all argument relations
map inside the harmonic polylogarithms, however, cf. [27]. Some of them are valid
only for the sub-alphabet f!0; !1g. While the transformation x ! �x is general

Ha.�x/ D .�1/pH�a.x/; (27)

with the last letter in a different from 0 and p the number of non-zero letters in a.
The transformations

x ! 1 � x; x ! x2 (28)

apply to subsets only. Examples are:

H1;0;1.1 � x/ D �H0.x/H0;1.x/C 2H0;0;1.x/ � �2H0.x/ � 2�3 (29)

H1;0;0;1

�
x2
� D 4 ŒH1;0;0;1.x/ � H1;0;0;�1.x/ � H�1;0;0;1.x/C H�1;0;0;�1.x/� :

(30)

One may transform arguments by x ! 1=y C i",

H1;0;1

�
1

x

�

D H0.x/
�
H0;1.x/C i�H1.x/ � 4�2 C �2

	 � 2ŒH0;0;1.x/ � H0;1;1.x/

C�3�C Œ�H1.x/ � i��H0;1.x/C 2�2H1.x/ � 1

6
H3
0.x/

C1

2
i Œ� C iH1.x/�H2

0.x/ : (31)

An important general transformation is

x ! 1 � t

1C t
(32)
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which acts on the HPLs but not on the subset of Nielsen-integrals. An example is:

H1;�1;0
�
1 � x

1C x

�

D 1

6
H3�1.x/C H�1;�1;1.x/ � H0;�1;�1.x/ � H0;�1;1.x/C 15�3

8

�1
2
�2 ŒH�1.x/ � H0.x/� � 2



�3

8
� ln.2/�2

2

�

� 2 ln.2/�2 :

(33)

In most of these relations also HPLs at argument x D 1 contribute, cf. Sect. 5.
Structural relations of HPLs are implemented in the packages harmpol [27], HPL
[57], and HarmonicSums.m [29, 35].

4.2.2 Harmonic Sums

Harmonic sums obey the duplication relation

Si1;:::;in .N / D 2i1C:::Cin�n
X

˙
S˙i1;:::;˙in .2N /; ik 2 Nnf0g : (34)

This allows to define harmonic sums at half-integer, i.e. rational, values. Ultimately,
one would like to derive expressions for N 2 C, cf. Sect. 9. Another extension is
to N 2 R [14,26]. The representation of harmonic sums through Mellin-transforms
(20) implies analyticity for a finite range around a given value of N . The Mellin-
transform of a harmonic polylogarithm can thus be differentiated for N

d

dN

Z 1

0

dxxN�1Ha.x/ D
Z 1

0

dxxN�1H0.x/Ha.x/ : (35)

In turn, the shuffling relation (23) allows to represent the r.h.s. in (35) as the Mellin-
transform of other HPLs. It turns out that differentiation of harmonic sums for N is
closed under additional association of the multiple zeta values [14]. The number of
basis elements by applying the duplication relation (H), resp. its combination with
the algebraic relations is [58]

NH.w/ D 2 � 3w�1 � 2w�1; NAH .w/ D 1

w

X

d jw
�
�w

d

� �
22 � 3d

	
: (36)

Differentiation in combination with the other relation yields

ND.w/ D 4 � 3w�1;NDH .w/ D 4 � 3w�2 � 2w�2;NADH .w/ D NAH .w/�NAH .w � 1/:

(37)
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Let us close with a remark on observables or related quantities in physics which
are calculated to a certain loop level and can be thoroughly expressed in terms
of harmonic sums. As a detailed investigation of massless and single mass two-
loop quantities showed [40] seven basic functions of up to weight w D 4, cf.
[14], are sufficient to express all quantities. The three-loop anomalous dimensions
[41] contributing to the 1=" poles of the corresponding matrix elements require
15 functions of up to weight w D 5 and further 20 basic functions are needed to
also express the massless Wilson coefficients [7] in deep-inelastic scattering [59],
cf. Ref. [60]. Despite of the complexity of these calculations finally a rather compact
structure is obtained for the representation of the results. Structural relations of
harmonic sums are implemented in the package HarmonicSums.m [29, 35].

5 Multiple Zeta Values

The multiple zeta values (MZVs) [61,62]1 are obtained by the limit N ! 1 of the
harmonic sums

lim
N!1Sa.N / D �a (38)

and may also be represented in terms of linear combinations of harmonic poly-
logarithms Hb.1/ over the alphabet f!0; !1; !�1g.2 In the former case one usually
includes the divergent harmonic sums since all divergent contributions are uniquely
represented in terms of polynomials in �1.1/ � �0 due to the algebraic relations.
Likewise, not all harmonic polylogarithms can be calculated at x D 1, requiring
their re-definition in terms of distributions. Some examples for MZVs, which
already appear in case of Nielsen integrals, are:

Lin.1/ D �n (39)

Lin.�1/ D �
�

1 � 1

2n�1

�

�n (40)

S1;p.1/ D �pC1 (41)

S1;2.�1/ D 1

8
�3 (42)

Li2

�
1

2

�

D 1

2

�
�2 � ln2.2/

	
(43)

1For a detailed account on the literature on MZVs see [63, 64] and the surveys Ref. [65].
2The numbers associated with this alphabet are sometimes also called Euler-Zagier values and
those of the sub-alphabet f!0; !1g multiple zeta values.
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Li3

�
1

2

�

D 7

8
�3 � 1

2
�2 ln.2/C 1

6
ln3.2/ (44)

S2;2.1/ D 1

10
�22 (45)

S2;2.�1/ D �3
4
�22 C 2Li4

�
1

2

�

C 7

4
�3 ln.2/� 1

2
�2 ln2.2/C 1

12
ln4.2/ (46)

S1;3.�1/ D �2
5
�22 C Li4

�
1

2

�

C 7

8
�3 ln.2/� 1

4
�2 ln2.2/C 1

24
ln4.2/ : (47)

In case of physics applications, MZVs played a role in loop calculations rather early,
cf. [66]. Since for Lim.1=2/ for m D 2; 3 these numbers are not elementary, (46,
47) seem to fail to provide a corresponding relation for m D 4. Similarly, for larger
values of m also no reduction has been observed.

A central question concerns the representation of harmonic sums in terms of
polynomial bases. This has been analyzed systematically in [63, 67].3 For MZVs
over f0; 1g a proof on the maximum of basis elements at fixed weight w has been
given in Refs. [68]. At the lowest weights the shuffle and stuffle relations imply all
relations for the MZVs. Starting with weight w D 8 one also needs the duplication
relation (34), and from weight w D 12 also the generalized duplication relations
Sect. 4.1 in [63]. The latter are closely related to the conformal transformation
relations of the HPLs at x D 1, see (32). Let us give one example for the combined
use of the shuffle and stuffle relation for illustration, [51]4:

shuffle W �2;1�2 D 6�3;1;1 C 2�2;2;1 C �2;1;2

stuffle W �2;1�2 D 2�2;2;1 C �41 C �2;3 C �2;1;2

H) �3;1;1 D 1

6
Œ�4;1 C �2;3 � �2;2;1� : (48)

Finally one derives a basis for the MZVs using the above relations. Up to weight
w D 7 reads, cf. [25],

(

.�1.1/; ln.2// I �2I �3I Li4
�
1
2

� I ��5;Li5
�
1
2

�� I �Li6
�
1
2

�
; ��5;�1

� I

�
�7;Li7

�
1
2

�
; ��5;1;1; ��5;1;1

� I
)

(49)

3For some aspects of the earlier development including results by the Leuven-group, Zagier,
Broadhurst, Vermaseren and the Lille-group, see [63].
4Here the �a-values are defined �a1;:::;am D

P
1

n1>n2>:::>nm

Qm
kD1 n

�a1
k .
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In [63] bases were calculated up to w D 12 for the alphabet f0; 1;�1g and to w D 22

for the alphabet f0; 1g in explicit form resp. for w D 24 restricting to basis elements
only. In the latter case the conjecture by Zagier [62] that the shuffle, stuffle and
duplication relations were the only ones was confirmed up to the weights quoted. For
these cases counting relations were conjectured in Refs. [69,70]. One may represent
the basis for the MZVs over the alphabets f0; 1g resp. f0; 1;�1g by polynomial
bases or count just the factors appearing in these polynomials of special numbers
occurring newly in the corresponding weight, which is called Lyndon-basis [63].
In the first case the basis for the MZVs[f0; 1g] is conjectured to be counted by the
Padovan numbers OPk [71] generated by

1C x

1 � x2 � x3
D
1X

kD0
xk OPk; OP1 D OP2 D OP3 D 1: (50)

In case of the Lyndon basis the Perrin numbers Pk appear [72]

3 � x2
1 � x2 � x3 D

1X

kD0
xk OPk; P1 D 0; P2 D 2; P3;D 3 : (51)

Both the above sequences obey the Fibonacci-recurrence [73]

Pd D Pd�2 C Pd�3; d � 3 : (52)

The length of the Lyndon basis at weight w is given by

l.w/ D 1

w

X

d jw
�
�w

d

�
Pd : (53)

Hoffman [74] conjectured that all MZVs over the alphabet f0; 1g can be represented
over a basis of MZVs carrying 2 and 3 as indices only. This has been confirmed up
to w D 24. An explicit proof has been given in [75].

The polynomial basis of the MZVs[f0; 1;�1g] is conjectured to be counted by
the Fibonacci numbers [76]

fd D 1p
5

2

4

 
1C p

5

2

!d

�
 
1 � p

5

2

!d
3

5 (54)

which obey

x

1 � x � x2 D
1X

kD0
xkfk : (55)
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For the corresponding Lyndon basis the counting relation

l.w/ D 1

w

X

d jw
�
�w

d

�
Ld (56)

is conjectured [69, 70], where Ld are the Lucas numbers [77],

Ld D
 
1C p

5

2

!d

C
 
1 � p

5

2

!d

(57)

2 � x
1 � x � x2 D

1X

kD0
xkLk; (58)

Ld D Ld�1 C Ld�2; d � 4; L1 D 1;L2 D 3;L3 D 4: (59)

There is a series of Theorems proven on the MZVs, see also [63], which can be
verified using the data base [63]. The duality theorem [62] in case of the alphabet
f!0; !1g states

Ha.1/ D Ha	 .1/; a	 D aT0 !1 : (60)

In case of the alphabet f!0; !1; !�1g it is implied by the transformation (32), see
[63]. Another relation is the sum theorem, Refs. [78, 79],

X

i1C:::CikDn;i1>1
�i1;:::;ik D �n : (61)

The sum-theorem was conjectured in [80], cf. [81]. For its derivation using the Euler
connection formula for polylogarithms, cf. [82].

Further identities are given by the derivation theorem, [80, 83]. Let I D
.i1; : : : ; ik/ any sequence of positive integers with i1 > 1. Its derivation D.I/ is
given by

D.I/ D .i1 C 1; i2; : : : ; ik/C .i1; i2 C 1; : : : ; ik/C : : : .i1; i2; : : : ; ik C 1/

�D.I / D �.i1C1;i2;:::;ik / C : : :C �.i1;i2;:::;ikC1/ : (62)

The derivation theorem states

�D.I / D �
.D.
.I /// ; (63)

where 
 denotes the duality-operation, cf. (60). An index-word w is called admissi-
ble, if its first letter is not 1. The words form the set H0. jwj D w is the weight and
d.w/ the depth of w. For the MZVs the words w are build in terms of concatenation
products xi1�10 x1x

i2�1
0 x0 : : : x

ik�1
0 x1. The height of a word, ht.w/, counts the number
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of (non-commutative) factors xa0 x
b
1 of w. The operator D and its dual D act as

follows [84],

Dx0 D 0; Dx1 D x0x1; Dx0 D x0x1; Dx1 D 0 :

Define an anti-symmetric derivation

@nx0 D x0.x0 C x1/
n�1x1 :

A generalization of the derivation theorem was given in [83, 85]. The identity

�.@nw/ D 0 (64)

holds for any n � 1 and any word w 2 H0. Further theorems are the Le–Murakami
theorem, [86], the Ohno theorem, [87], which generalizes the sum- and duality
theorem, the Ohno–Zagier theorem, [88], which covers the Le–Murakami theo-
rem and the sum theorem, which generalizes a theorem by Hoffman [80, 81], and
the cyclic sum theorem, [89].

There are also relations for MZVs at repeated arguments, cf. [51, 84, 90], on
which examples are:

�.f2gn/ D 2.2�/2n

.2nC 1/Š

1

2
(65)

�.2; f1gn/ D �.nC 2/ (66)

�.f3; 1gn/ D 1

4n
�.f4gn/ D 2�4n

.4nC 2/Š
(67)

�.f10gn/ D 10.2�/2n

.10nC 5/Š

2

41C
 
1C p

5

2

!10nC5
C
 
1 � p

5

2

!10nC53

5 : (68)

Finally, we mention a main conjecture for the MZVs over f0; 1g. Consider tuples
k D .k1; : : : ; kr / 2 N

r ; k1 � 1. One defines

Z0 WD Q

Z1 WD f0g
Zw WD

X

jkjDw

Q � �.k/ � R : (69)

If further

Z Go WD
1X

wD0
Zw � R .Goncharov/ (70)
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Z Ca WD
1M

wD0
Zw .Cartier/ (71)

the conjecture states

(a) Z Go Š Z Ca. There are no relations over Q between the MZVs of different
weight w.

(b) dimZw D dw, with d0 D 1; d1 D 0; d2 D 1; dw D dw�2 C dw�3.
(c) All algebraic relations between MZVs are given by the extended double-shuffle

relations [91], cf. also [92]. If this conjecture turns out to be true all MZVs are
irrational numbers.

Let us also mention a few interesting relations for Li2.z/ for special arguments
found by Ramanujan [93], which are of use e.g. in massive calculations at three-
loops [94]. These numbers relate to constants beyond the MZVs, which occur for
generalized sums and their extension allowing for binomial and inverse binomial
weights:

Li2

�
1

3

�

� Li2

�
1

9

�

D �2

18
� 1

6
ln2.3/ (72)

Li2

�

�1
2

�

C 1

6
Li2

�
1

9

�

D ��
2

18
C ln.2/ ln.3/� 1

2
ln2.2/� 1

3
ln2.3/ (73)

Li2

�
1

4

�

C 1

3
Li2

�
1

9

�

D �2

18
C 2 ln.2/ ln.3/� 2 ln2.2/� 2

3
ln2.3/ (74)

Li2

�

�1
3

�

� 1

3
Li2

�
1

9

�

D ��
2

18
C 1

6
ln2.3/ (75)

Li2

�

�1
8

�

C 1

3
Li2

�
1

9

�

D �1
2

ln2
�
9

8

�

: (76)

For further specific numbers, which occur in the context of Quantum Field Theory
calculations see also Sects. 6.3, 7, and 9.

6 Generalized Harmonic Sums and Polylogarithms

6.1 Generalized Harmonic Sums

Generalized harmonic sums, also called S-sums, are defined by [28, 29, 95]

Sa1;:::;ak .x1; : : : ; xk IN/ D
NX

i1D1

x
i1
1

i
a1
1

Sa2;:::;ak .x2; : : : ; xk I i1/;

S; D 1 ; xi 2 Rnf0g; ai 2 Nnf0g (77)
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and form a quasi-shuffle and a Hopf algebra [96] under the multiplication (24)
[28]. The multiplication relation in general leads outside the weight sets fai g; fbig.
The S-sums cover (together with the limit N ! 1) the classical polylogarithms,
the Nielsen functions, the harmonic polylogarithms, the multiple polylogarithms
[97], the two-dimensional HPLs [98], and the MZVs [28]. In Ref. [28] four
algorithms were presented allowing to perform the "-expansion of classes of sums
in terms of S-sums, which were coded in two packages [99, 100]. In this way
the "-expansion can be performed using convergent serial representations for the
generalized hypergeometric functions PFQ, The Appell-functions F1;2, and the
Kampé de Fériet function [101].

They can be represented in terms of a Mellin transformation over x 2
Œ0; x1 : : : xk� [29]. E.g. the single sums are given by

Sm.bIN/ D
Z b

0

dxm
xm

: : :

Z x3

0

dx2
x2

Z x2

0

dx1
xN1 � 1
x1 � 1 : (78)

Generalized harmonic sums obey the duplication relation

X
Sam;:::;a1.˙bm; : : : ;˙b1I 2 N/ D 1

2
Pm
iD1 ai�m Sam;:::;a1

�
b2m; : : : ; b

2
1IN

�
; (79)

where the sum on the left hand side is over the 2m possible combinations concerning
˙ and ai 2 N, bi 2 Rnf0g and n 2 N. They also obey differential relations w.r.t.
N , supplementing their set with the generalized harmonic sums at infinity, resp. of
the generalized harmonic polylogarithms at x D 1. The mapping will usually also
require objects with different weights xi . Examples are [29]:

@

@n
S2.2I n/ D �S3.2I n/C H0.2/ S2.2In/C H0;0;�1.1/C 2H0;0;1.1/C H0;1;�1.1/ ;

@

@N
S3
�
1
4 IN

�
D 12




�S3;1
�
1
2 ;

1
2 IN

�
� 1

2

@

@N
S2;1

�
1
2 ;

1
2 IN

�
� 1

2
H1;0

�
1
2

�
S2
�
1
2 IN

�

CH0
�
1
2

�
S2;1

�
1
2 ;

1
2 IN

�
� 1

2
H 1
2

�
1
4

�
H0;1;0

�
1
2

�
C 1

12
H0;0;1;0

�
1
4

�

C1

2
H 1
2 ;0;1;0

�
1
4

�
� 1

12
H0
�
1
4

�
S3
�
1
4 IN

�
� 1

4
S2
�
1
2 IN

�2
�

: (80)

The counting relations for the basis elements are

ND.w/ D NS.w/ �NS.w � 1/; NA;D.w/ D NA.w/�NA.w � 1/; (81)

where NS D .n � 1/ � nw�1 denotes the number of sums, given n letters in the
alphabet, and NA the basis elements after applying the algebraic equations. Explicit
bases for a series of alphabets have been calculated in [29].
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6.2 Generalized Harmonic Polylogarithms

Generalized harmonic polylogarithms are defined as the Poincaré-iterated integrals
[11, 12]

Ha.x/ D
Z x

0

mY

jD1

dzjˇ
ˇaj
ˇ
ˇ � sign

�
aj
�

zj
; aj 2 C; zj � zjC1 : (82)

For aj 2 R; 0 < aj < 1; x > 1 (82) is defined as Cauchy principal value only.
Already A. Jonquière [12] has studied integrals of this type. Sometimes they are
also called Chen-iterated integrals, cf. [11], or Goncharov polylogarithms [97].

The Mellin transforms of generalized harmonic polylogarithms map onto gener-
alized harmonic sums [29]. Furthermore, the generalized harmonic polylogarithms
obey various argument relations similar to the case if the HPLs, cf. Sect. 4.2.1, as

x C b ! x (83)

b � x ! x (84)

1 � x

1C x
! x (85)

kx ! x (86)

1

x
! x : (87)

6.3 Relations Between S -Sums at Infinity

S-sums at infinity exhibit a more divergent behaviour than harmonic sums if a1 > 1.
The degree of divergence is then at least / aN1 , cf. Sect. 9. In the following we will
discuss only convergent S-sums at infinity. They obey stuffle and shuffle relations,
the duplication relation N ! 2N , and the duality relations for the generalized
polylogarithms [29]

1� x ! x (88)

1�x
1Cx ! x (89)

c�x
dCx ! x; c; d 2 R; d ¤ 1 : (90)

Equation (88) implies

Ha1;:::;ak .1/ D H1�a1;:::;1�ak .1/; ak ¤ 0 : (91)
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Examples for (89, 90) are:

S1
�
1
2
I 1� D �S�1.1/ � ln.2/ (92)

S1
�
1
8
I 1� D �S�1.1/C S1

�� 1
2
I 1�

: (93)

In various cases S-sums at infinity reduce to MZVs, cf. also [102],

S1;1;1
�
1
2
; 2; 1I 1� D 3

2
�2 ln.2/C 7

4
�3 (94)

S2;1
�
1
2
; 1I 1� D �1

2
ln.2/�2 C �3 (95)

Sm
�
1
2
I 1� D Lim

�
1
2

�
: (96)

Otherwise, new basis elements occur which have both representations in infinite
sums and iterated integrals. Using the above relations bases for different sets of
S-sums at infinity were calculated in [102].

7 Cyclotomic Harmonic Sums and Polylogarithms
and Their Generalization

The alphabet of the harmonic polylogarithms (15) contains two differential forms
with denominators, which form the first two cyclotomic polynomials: .1 � x/ and
.1 C x/. It turns out that quantum field theoretic calculations are also related to
cyclotomic harmonic polylogarithms and sums [103]. Cyclotomic polynomials are
defined by

˚n.x/ D xn � 1
Y

d jn;d<n
˚d .x/

; d; n 2 NC (97)

and the generating alphabet reads

A D
�

dx

x



[
�
xldx

˚k.x/

ˇ
ˇ
ˇ
ˇ k 2 NC; 0 � l < '.k/



; (98)

where ˚k.x/ denotes the kth cyclotomic polynomial [104], and '.k/ denotes
Euler’s totient function [105]. The Poincaré iterated integrals over the alphabet (98)
are called cyclotomic harmonic polylogarithms, cf. [30]. Due to the regularity of
1=˚n.x/ for x 2 Œ0; 1�, except for ˚1.x/, no more singularities appear beyond
those known in the case of the usual harmonic polylogarithms (or Nielsen integrals).
Cyclotomic harmonic polylogarithms obey shuffle relations, cf. Sect. 4.
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The cyclotomic harmonic sums [30] are related to the cyclotomic harmonic
polylogarithms via a Mellin transform (20). The generalized cyclotomic harmonic
sums are given by

Sfa1;b1;c1g;:::;fal ;bl ;cl g.s1; : : : ; sl IN/ D
NX

k1D1

sk1
.a1k1 C b1/c1

Sfa2;b2;c2g;:::;fal ;bl ;cl g.s2; : : : ; sl I k1/; S; D 1; (99)

where ai ; ci 2 NC; bi 2 N; si 2 Rnf0g; ai > bi ; the weight of this sum is defined
by c1 C � � � C cl and fai ; bi ; ci g denote lists, not sets. If si D ˙1 these are the usual
cyclotomic harmonic sums. The simplest cyclotomic sums are the single sums

Sfa1;b1;c1g.˙1IN/ D
NX

kD1

.˙1/k
.a1k C b1/c1

; (100)

i.e. harmonic sums with cyclic gaps in the summation. The cyclotomic harmonic
sums obey quasi-shuffle relations .A/.

Beyond this the cyclotomic harmonic sums obey structural relations implied
by differentiation for the upper summation bound N , .D/, which require to also
consider their values at N ! 1. There are, furthermore, multiple argument
relations, cf. [30], decomposing Sai ;bi ;ci .k � N/, called synchronization .M/, and
two duplication relations .H1;H2/. Let us consider the cyclotomic harmonic sums
implied by the letters

1

kl1
;
.�1/k
kl2

;
1

.2k C 1/l3
;

.�1/k
.2k C 1/l4

: (101)

The length of the basis can be calculated by

NS.w/ D 4 � 5w�1 (102)

NA.w/ D 1

w

X

d jw
�
�w

d

�
5d (103)

ND.w/ D NS.w/ �NS.w � 1/ (104)

NA;D.w/ D NA.w/�NA.w � 1/ (105)

NA;D;M;H1;H2 .w/ D 1

w

X

d jw
�
�w

d

�
.52 � 3 � 2d / � 1

w � 1

X

d jw�1
�

�
w � 1

d

�

.52 � 3 � 2d /;

(106)
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where NS.w/ denotes the number of all sums. One may calculate the asymptotic
representation of the cyclotomic harmonic sums analytically. Here also the values
of cyclotomic sums at N ! 1 occur. The singularities of the cyclotomic harmonic
sums with sk D ˙1 are situated at the non-positive integers.

The cyclotomic sums forN ! 1 are denoted by �fa1;b1;c1g;:::;fal ;bl ;cl g.s1; : : : ; sl /.
For 8 jskj � 1 divergent series do only occur if a1 D b1 and c1 D 1, where the
degree of divergence is given by �0 as in the case of the harmonic sums and can be
represented algebraically. They are related to the values of the cyclotomic harmonic
polylogarithms at x D 1. At w D 1 the regularized sums may be given in terms
of  .k=l/ and for higher weights in terms of  .m/.k=l/;m � 1. If l is an integer
for which the l-polygon is constructable one obtains representations in terms of
algebraic numbers and logarithms of algebraic numbers, as well as � [30]. In this
way, �2 being a basis element in case of the MZVs, looses its role. At depth w D 2

Catalan’s constant [106] with

�2;1;�2 D �1C C (107)

contributes. At higher depth new numbers emerge, which partly can be given inte-
gral representations involving polylogarithms and roots of the integration variable x.
The cyclotomic sums at infinity, as real representations, are closely related to the
infinite generalized harmonic sums at weights sk which are roots of unity, cf. also
[107]. In [30] basis representations were worked out for w D 1; 2 for the l th roots,
l 2 Œ1; 20�, cf. also [108]. Counting relations for bases of the cyclotomic sums at
infinity have also been derived in Ref. [30].

8 Nested Binomial and Inverse-Binomial Harmonic Sums
and Associated Polylogarithms

In massive calculations further extensions to the nested sums and iterated integrals
being discussed in the previous sections occur. Here summation terms of the kind
Sa;b;c.xI k/, or their linear combinations are modulated by

Sa;b;c.xI k/ !
 
2k

k

!

Sa;b;c.xI k/

Sa;b;c.xI k/ ! 1
 
2k

k

!Sa;b;c.xI k/ ; (108)

building iterated sums [94]. Sums of this kind occur in case of V-type three-loop
graphs for massive operator matrix elements. Simpler sums are obtained in case of
three-loop graphs with two fermionic lines of equal mass. Single sums of this kind
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have been considered earlier, see e.g. [109]. One may envisage generalizations of
(108) in choosing for the binomial a general hypergeometric term, i.e. a function,
the ratio of which by all shifts of arguments being rational. The association of the
corresponding iterated integrals in the foregoing cases has been found easily. Here
the situation is more difficult and the functions representing these iterated sums are
found in establishing differential equations [110]. It is found in the cases occurring
in Ref. [94] that the corresponding differential equations finally factorize and one
obtains iterated integrals over alphabets which also contain root-valued letters

1
p
.x C a/.x C b/

;
1

p
.x C a/.x C b/

1

x C c
; a; b; c 2 Q (109)

beyond those occurring in case of the generalized (cyclotomic) polylogarithms. A
few examples of this type have been considered in [111]. The relative transcendence
of the nested sums and iterated integrals has been proven. The V-type three-loop
graphs require alphabets of about 30 root-valued letters. The corresponding nested
sums do partly diverge / aN ; a 2 N; a � 2. A typical example for a nested binomial
sums is given by:

NX

iD1

 
2i

i

!

.�2/i
iX

jD1

1

j

 
2j

j

!S1;2

�
1
2 ;�1I j

�
(110)

D
Z 1

0
dx
xN � 1

x � 1
r

x

8C x

�
H�w17;�1;0.x/� 2H�w18;�1;0.x/

	

C�2

2

Z 1

0
dx
.�x/N � 1

x C 1

r
x

8C x

�
H�12.x/� 2H�13.x/

	C c3

Z 1

0
dx
.�8x/N � 1

x C 1
8

r
x

1 � x
;

with c3 D P1
jD0 S1;2

�
1
2
;�1I j � .j Š/2=j=.2j /Š=� one of the specific constants

emerging in case of these sums. Here the iterated integrals H� extend to x D 1

as firm bound, contrary to the cases discussed before where x D 0 is chosen. Here
the new letters wk are

w12 D 1
p
x.8 � x/

; w13 D 1

.2 � x/px.8 � x/
;

w17 D 1
p
x.8C x/

; w18 D 1

.2C x/
p
x.8C x/

: (111)

The representations over the letters (109) are needed to eliminate the power growth
/ aN of these sums and can be used to derive the asymptotic representation at large
values of N . While the terms / 8N and / 4N cancel, it may occur that individual
scalar diagrams exhibit contributions / 2N , cf. [94]. This behaviour is expected to
cancel in the complete physics result.
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�
-4 -3 -2 -1 1 2 3 4 Re(N)

Im(N)Fig. 2 Path of the contour
integral (112)

9 Analytic Continuation of Harmonic Sums

The loop-corrections to various physical quantities take a particular simple form in
Mellin-space being expressed in terms of harmonic sums and their generalizations.
Moreover, in this representation the renormalization group equations can be solved
analytically, cf. [59,112]. For a wide variety of non-perturbative parton distributions
Mellin-space representations can be given as well, see e.g. [113].
Thus one obtains complete representations for observables in N -space. In case
of the perturbative part, the singularities are situated at the integers N � N0,
with usually N0 D 1, see e.g. [114]. The harmonic sums possess a unique
polynomial representation in terms of the sum S1.N / and harmonic sums which
can be represented as Mellin transforms having a representation by factorial series
[115, 116]. They are transformed to x-space by a single precise numerical contour
integral around the singularities of the problem to compare with the data measured
in experiment. The analytic continuation of the perturbative evolution kernels and
Wilson coefficients from even or odd integers to complex values of N is unique
[117].5 To perform this integral a representation of the harmonic sums forN 2 C is
required. Accurate numeric representations up to w D 5 have been given in [118],
see also [119]. Arbitrary precise representations can be obtained using the analytic
expressions for the asymptotic representation [14, 60] together with the recursion
relations given in Sect. 3. These are given up to w D 8 in [58]. A path to perform
the inverse Mellin transform

f .x/ D 1

�

Z 1

0

dz Im
�
ei� x�CMŒf �.N D C/

	
; C D c C zei� (112)

is shown in Fig. 2. The asymptotic representations can also be obtained in analytic
form for the S-sums [29], cyclotomic (S)-sums [30], as well as for the nested
binomial cyclotomic S-sums [94, 110].

5For a detailed proof also in case of generalized harmonic sums see [29].
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In case the expressions in N -space result from Mellin transforms of functions
f .x/ � x˛; ˛ 2�0; 1Œ the singularities are shifted by ˛. This is usually the case
for the non-perturbative parton distribution functions, but also in case of some root-
valued harmonic polylogarithms considered in Sect. 8.

The inverse Mellin-transform cannot be performed in the above way for inte-
grands which do not vanish sufficiently fast enough as jN j ! 1. Contributions of
this kind are those leading to distribution-valued terms in x-space as to ı.1 � x/;

Œlnk.1 � x/=.1 � x/�C the Dirac ı-distribution and the C-distribution defined by

Z 1

0

dx Œf .x/�C g.x/ D
Z 1

0

dx Œg.x/ � g.1/� f .x/ : (113)

Also for terms which grow like aN ; a 2 R; a > 1 in N -space, the Mellin transform
cannot be performed numerically in general. They are not supposed to emerge
in physical observables. The physical quantities in hadronic scattering contain
the parton distribution functions, which, however, damp according contributions
occurring in the evolution kernels sufficiently. On the other hand, the inverse
Mellin transform can always be performed analytically changing form nested sum-
representations inN -space to iterated integral representations in x-space as has been
outlined before.

10 Conclusions

Feynman integrals in Quantum Field Theories generate a hierarchic series of
special functions, which allow their unique representation. They emerge in terms of
special nested sums, iterated integrals and numbers. Their variety gradually extends
enlarging the number of loops and legs, as well as the associated mass scales. The
systematic exploration of these structures has been started about 15 years ago and
several levels of complexity have been unraveled since. The relations of the various
associated sums and integrals are schematically illustrated in Fig. 3 and are widely
explored. Many relations are implied by the shuffle resp. stuffle algebras, others are
structural relations. The number of relations grows with the number of admissible
operations.

A large amount of transformations and relations between the different quantities
being discussed in this article are encoded in the package HarmonicSums [29,35]
for public use. For newly emerging structures the algebraic relations are easily
generalized but they will usually apply structural relations of a new kind. With
the present programme revealing their strict (atomic) structure, they are fully
explored analytically and Feynman’s original approach to completely organize the
calculation of observables in Quantum Field Theory is currently extended to massive
calculations at the three-loop level in Quantum Electrodynamics and Quantum
Chromodynamics at the perturbative side. For these quantities efficient numerical
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Fig. 3 Connection between harmonic sums (H-Sums), S-sums (S-Sums) and cyclotomic harmonic
sums (C-Sums), their values at infinity and harmonic polylogarithms (H-Logs), generalized
harmonic polylogarithms (G-Logs) and cyclotomic harmonic polylogarithms (C-Logs) and their
values at special constants

representations have to be derived. Working in Mellin space the treatment may even
remain completely analytic, in a very elegant way, up to a single final numerical
contour integral around the singularities of the problem, cf. Sect. 9.

Despite of the achievements being obtained many more physical classes still
await their systematic exploration in the future. It is clear, however, that the various
concrete structures are realized as combinations of words over certain alphabets,
which may be called the genetic code of the microcosm [120].
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14. Blümlein, J.: Structural relations of harmonic sums and Mellin transforms up to weight w D
5. Comput. Phys. Commun. 180, 2218–2249 (2009). [arXiv:0901.3106 [hep-ph]]
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26. Blümlein, J., Kurth, S.: Harmonic sums and Mellin transforms up to two loop order. Phys.
Rev. D 60, 014018 (1999). [hep-ph/9810241]

27. Remiddi, E., Vermaseren, J.A.M.: Harmonic polylogarithms. Int. J. Mod. Phys. A 15,
725–754 (2000). [hep-ph/9905237]

28. Moch, S.-O., Uwer, P., Weinzierl, S.: Nested sums, expansion of transcendental functions and
multiscale multiloop integrals. J. Math. Phys. 43, 3363–3386 (2002). [hep-ph/0110083]
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30. Ablinger, J., Blümlein, J., Schneider, C.: Harmonic sums and polylogarithms generated by
cyclotomic polynomials. J. Math. Phys. 52, 102301 (2011). [arXiv:1105.6063 [math-ph]]

31. Laporta, S.: High precision "-expansions of massive four loop vacuum bubbles Phys. Lett.
B 549, 115–122 (2002). [hep-ph/0210336]; Analytical expressions of 3 and 4-loop sunrise
Feynman integrals and 4-dimensional lattice integrals. Int. J. Mod. Phys. A 23, 5007–5020
(2008). [arXiv:0803.1007 [hep-ph]];
Bailey, D.H., Borwein, J.M., Broadhurst, D., Glasser, M.L.: Elliptic integral evaluations of
Bessel moments. [arXiv:0801.0891 [hep-th]];
Müller-Stach, S., Weinzierl, S., Zayadeh, R.: Picard-Fuchs equations for Feynman integrals.
[arXiv:1212.4389 [hep-ph]];
Adams, L., Bogner, C., Weinzierl, S.: The two-loop sunrise graph with arbitrary masses.
[arXiv:1302.7004 [hep-ph]]

32. Schneider, C.: The summation package sigma: underlying principles and a rhombus tiling
application. Discret. Math. Theor. Comput. Sci. 6, 365–386 (2004); Solving parameterized
linear difference equations in terms of indefinite nested sums and products. Differ, J.: Equ.
Appl. 11(9), 799–821 (2005); A new sigma approach to multi-summation. Adv. Appl.
Math. 34(4), 740–767 (2005); Product representations in ˘˙-fields. Ann. Comb. 9(1),
75–99 (2005); Symbolic summation assists combinatorics. Sem. Lothar. Combin. 56, 1–36
(2007); A refined difference field theory for symbolic summation. J. Symb. Comp. 43(9),
611–644 (2008). arXiv:0808.2543 [cs.SC]; Parameterized telescoping proves algebraic inde-
pendence of sums. Ann. Comb. 14(4), 533–552 (2010). [arXiv:0808.2596 [cs.SC]]; Structural
theorems for symbolic summation. Appl. Algebra Eng. Comm. Comput. 21(1), 1–32 (2010);
A symbolic summation approach to find optimal nested sum representations. In: Carey,
A., Ellwood, D., Paycha, S., Rosenberg, S. (eds.) Motives, Quantum Field Theory, and
Pseudodifferential Operators, vol. 12, pp. 285–308. Clay Mathematics Proceedings. American
Mathematical Society (2010). [arXiv:0904.2323 [cs.SC]]; and this volume

33. Bronstein, M.: Symbolic Integration I: Transcendental Functions. Springer, Berlin (1997)
34. Raab, C.: Definite integration in differential fields. PhD thesis, Johannes Kepler University

Linz (2012); and this volume
35. Ablinger, J.: A computer algebra toolbox for harmonic sums related to particle physics.

Master’s thesis, Johannes Kepler University (2009). [arXiv:1011.1176 [math-ph]]; Computer
algebra algorithms for special functions in particle physics. PhD thesis, Johannes Kepler
University Linz (2012)

36. Feynman, R.P.: Space - time approach to quantum electrodynamics. Phys. Rev. 76, 769–789
(1949)

37. Napier, J.: Mirifici logarithmorum canonis descriptio, ejusque usus, in utraque trigonometria;
ut etiam in omni logistica mathematica, amplissimi, facillimi, & expeditissimi explacatio.
Andrew Hart, Edinburgh (1614)

38. Racah, G.: Sopra l’rradiazione nell’urto di particelle veloci. Nuovo Com. 11, 461–476 (1934)
39. Fleischer, J., Kotikov, A.V., Veretin, O.L.: Analytic two loop results for selfenergy type and

vertex type diagrams with one nonzero mass. Nucl. Phys. B 547, 343–374 (1999). [hep-
ph/9808242]
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102. Ablinger, J., Blümlein, J., Hasselhuhn, A., Klein, S., Schneider, C., Wißbrock, F.: Massive
3-loop ladder diagrams for quarkonic local operator matrix elements. Nucl. Phys. B 864,
52–84 (2012). [arXiv:1206.2252 [hep-ph]]

103. Ablinger, J., et al.: New results on the 3-loop heavy Flavor Wilson coefficients in deep-
inelastic scattering. [arXiv:1212.5950 [hep-ph]]; Three-loop contributions to the gluonic
massive operator matrix elements at general values of N. PoS LL 2012, 033 (2012).
[arXiv:1212.6823 [hep-ph]]

104. Lang, S.: Algebra, 3rd edn. Springer, New York (2002)
105. Euler, L.: Theoremata arithmetica nova methodo demonstrata. Novi Commentarii academiae

scientiarum imperialis Petropolitanae, vol. 8, pp. 74–104 (1760/1, 1763); Opera Omnia, Ser.
I, vol. 2, pp. 531–555. Takase, M.: Euler’s Theory of Numbers In: Baker, R. (ed.) Euler
Reconsidered, pp. 377–421. Kedrick Press, Heber City (2007). leonhardeuler.web.fc2.com/
eulernumber en.pdf

106. Catalan, E.: Recherches sur la constant G, et sur les integrales euleriennes. Mémoires de
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