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Preface

The research topics of computer algebra, special functions and quantum field theory
have been deriving outstanding achievements from computational, algorithmic and
theoretical point of view. As it turns out, there is a strong overlap of common
interests concerning mathematical, physical and computer science aspects, and
in the last years, the topics started a vital and promising interaction in the field
of the automated computation of multi-loop and multi-leg Feynman diagrams in
precision calculations. This observation has led, e.g. to an intensive cooperation
between RISC (Research Institute for Symbolic Computation) of the Johannes
Kepler University Linz and DESY (Deutsches Elektronen-Synchrotron). In order
to push forward the interaction of the three research fields, the summer school
and conference “Integration, Summation and Special Functions in Quantum Field
Theory” organized by the European Network LHCPhenonet in cooperation with
RISC and DESY was held at Hagenberg/Austria. Here central topics have been
introduced with the special emphasis to present the current developments and to
point out further possible connections.

This book collects the presented work in form of survey articles for a general
readership. It aims at pushing forward the interdisciplinary ties between the very
active research areas of computer algebra, special functions and quantum field
theory. The driving questions of this book can be summarized as follows:

• How do special functions, such as generalized hypergeometric series, Appell
functions, nested harmonic sums, nested multiple polylogarithms and multiple
zeta values, emerge in quantum field theories?

• What properties do these functions and constants have and how are they related
to each other?

• How can one extract information from such functions or how can one simplify
voluminous expressions in terms of such functions with computer algebra, in
particular with the help of symbolic summation and symbolic integration?

• What is the irreducible analytic and algebraic structure of multi-loop and multi-
leg Feynman integrals?

v
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This book tries to throw light to the underlying problems and to work out possible
future cooperations between the different fields:

Computer Algebra
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Special Functions �� �� Quantum Field Theory

We emphasize that the interdisciplinary aspects are also reflected in the spirit
of the articles. The authors have different backgrounds concerning mathematics,
computer science and theoretical physics, and their different approaches bring in
new aspects that shall push forward the presented topics of this book.

In this regard, we highlight the following rising aspects:
In Harmonic Sums, Polylogarithms, Special Numbers, and their Generalizations

(J. Ablinger, J. Blümlein), special functions such as nested sums, associated iterated
integrals and special constants which hierarchically appear in the evaluation of
massless and massive Feynman diagrams at higher loops are discussed. In particular,
the properties of harmonic sums and their generalizations of cyclotomic sums,
generalized harmonic sums and sums containing binomial and inverse-binomial
weights are worked out that give rise to the simplification of such sums by means of
computer algebra.

In Multiple Zeta Values and Modular Forms in Quantum Field Theory (D. Broadhurst),
properties of special functions like multiple zeta values and alternating Euler sums
are worked out, and it is indicated where they arise in quantum field theory. In
particular, the article deals with massive Feynman diagrams whose evaluations
yield polylogarithms of the sixth root of unity, products of elliptic integrals and
L-functions of modular forms inside their critical strips.

In Computer-Assisted Proofs of Some Identities for Bessel Functions of Frac-
tional Order (S. Gerhold, M. Kauers, C. Koutschan, P. Paule, C. Schneider,
B. Zimmermann), big parts of the computer algebra software of the combinatorics
group of RISC are used to prove a collection of identities involving Bessel functions
and other special functions. These identities appear in the famous Handbook of
Mathematical Functions by Abramowitz and Stegun, as well as in its successor,
the DLMF, but their proofs were lost. Here generating functions and symbolic
summation techniques are utilized to produce new proofs for them.

In Conformal Methods for Massless Feynman Integrals and Large Nf Methods (J. A.
Gracey), the large N method based on conformal integration methods is presented
that calculates high-order information on the renormalization group functions in a
quantum field theory. The possible future directions for the large N methods are
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discussed in light of the development of more recent techniques such as the Laporta
algorithm.

In The Holonomic Toolkit (M. Kauers), an overview over standard techniques for
holonomic functions is given covering, e.g. big parts of Feynman integrals coming
from quantum field theory. It gives a collection of standard examples and states
several fundamental properties of holonomic objects. Two techniques which are
most useful in applications are explained in some more detail: closure properties,
which can be used to prove identities among holonomic functions, and guessing,
which can be used to generate plausible conjectures for equations satisfied by a
given function.

In Orthogonal Polynomials (T. H. Koornwinder), an introduction to orthogonal
polynomials is presented. It works out the general theory and properties of such
special functions, and it is concerned with constructive aspects on how certain
formulas can be derived. Special classes, such as Jacobi polynomials, Laguerre
polynomials and Hermite polynomials, are discussed in details. It ends with some
remarks about the usage of computer algebra for this theory.

In Creative Telescoping for Holonomic Functions (C. Koutschan), a broad overview
of the available summation and integration algorithms for holonomic functions is
presented. In particular, it is worked out how the underlying algorithms can be
executed within the Mathematica package HolonomicFunctions. Special emphasis
is put on concrete examples that are of particular relevance for problems coming,
e.g. from special functions and physics.

In Renormalization and Mellin transforms (D. Kreimer and E. Panzer), the Hopf
algebraic framework is utilized to study renormalization in a kinetic scheme. Here
a direct combinatorial description of renormalized amplitudes in terms of Mellin
transform coefficients is given using the universal property of rooted trees. The
application to scalar quantum field theory reveals the scaling behaviour of individual
Feynman graphs.

In Relativistic Coulomb Integrals and Zeilberger’s Holonomic Systems Approach I
(P. Paule, S. K. Suslov), symbolic summation algorithms such as Zeilberger’s
extension of Gosper’s algorithm and a parameterized variant are utilized to calculate
recurrence relations and transformation formulas for generalized hypergeometric
series. More precisely, the basic facts within the theory of relativistic Coulomb
integrals are presented, and the presented summation technology is used to tackle
open problems there.

In Hypergeometric Functions in Mathematica R� (O. Pavlyk), a short introduction
to the constructive theory of generalized hypergeometric functions is given dealing,
e.g. with differential equations, Mellin transforms and Meijer’s G-functions. Special
emphasis is put on concrete examples and notes on the implementation in the
computer algebra system Mathematica.

In Solving Linear Recurrence Equations with Polynomial Coefficients (M. Petkovšek,
H. Zakrajšek), computer algebra algorithms for finding polynomial, rational,
hypergeometric, d’Alembertian and Liouvillian solutions of linear recurrences
with polynomial coefficients are described. In particular, an alternative proof of
a recent result of Reutenauer’s is given that Liouvillian sequences are precisely
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the interlacing of d’Alembertian ones. In addition, algorithms for factoring linear
recurrence operators and finding the minimal annihilator of a given holonomic
sequence are presented.

In Generalization of Risch’s Algorithm to Special Functions (C. G. Raab), indefinite
integration algorithms in differential fields are presented. In particular, the basic
ideas of Risch’s algorithm for elementary functions and generalizations thereof
are introduced. These algorithms give rise to more general algorithms dealing also
with definite integration, i.e. calculating linear recurrences and differential equations
integrals involving extra parameters.

In Multiple Hypergeometric Series – Appell Series and Beyond (M. J. Schlosser),
a collection of basic material on multiple hypergeometric series of Appell type is
presented covering contiguous relations, recurrences, partial differential equations,
integral representations and transformations. More general series and related types
such as Horn functions, Kampé de Fériet series and Lauricella series are introduced.

In Simplifying Multiple Sums in Difference Fields (C. Schneider), difference field
algorithms for symbolic summation are presented. This includes the simplification
of indefinite nested sums, computing recurrence relations of definite sums and
solving recurrence relations. Special emphasis is put on new aspects in how
the summation problems are rephrased in terms of difference fields, how the
problems are solved there and how the derived results can be reinterpreted as
solutions of the input problem. In this way, large-scale summation problems for the
evaluation of Feynman diagrams in quantum field theories can be solved completely
automatically.

In Potential of FORM 4.0 (J. A. M. Vermaseren), the computer algebra system
FORM is presented that is heavily used in quantum field theory for large-scale cal-
culations. Special emphasis is put on the main new features concerning factorization
algorithms, polynomial arithmetic, special functions and code simplification.

Finally, in Feynman Graphs (S. Weinzierl), Feynman graphs and the associated
Feynman integrals are discussed. It presents four different definitions from the
mathematical and physical point of view. In particular, the most prominent class
of special functions, the multiple polylogarithms, with their algebraic properties are
worked out, which appear in the evaluation of Feynman integrals. The final part
is devoted to Feynman integrals, which cannot be expressed in terms of multiple
polylogarithms. Methods from algebraic geometry provide tools to tackle these
integrals.

In addition, we want to emphasize the following fascinating presentations that
are not part of this book, but which contributed substantially to our summer school
and conference “Integration, Summation and Special Functions in Quantum Field
Theory”: the key note lecture Mate is Meta by Bruno Buchberger, Hypergeometric
Functions and Loop Integrals by Nigel Glover, Polynomial GCDs and Factorization by
Jürgen Gerhard and Holonomic Summation and Integration by Frédéric Chyzak.

The present project has been supported in part by the EU Network LHCPhe-
nonet PITN-GA-2010-264564; the Austrian Science Fund (FWF) grants (P20347-
N18, DK W1214); the Research Institute for Symbolic Computation, RISC; and
Deutsches Elektronen-Synchrotron, DESY, which are kindly acknowledged.
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Harmonic Sums, Polylogarithms, Special
Numbers, and Their Generalizations

Jakob Ablinger and Johannes Blümlein

Abstract In these introductory lectures we discuss classes of presently known
nested sums, associated iterated integrals, and special constants which hierarchically
appear in the evaluation of massless and massive Feynman diagrams at higher
loops. These quantities are elements of stuffle and shuffle algebras implying
algebraic relations being widely independent of the special quantities considered.
They are supplemented by structural relations. The generalizations are given in
terms of generalized harmonic sums, (generalized) cyclotomic sums, and sums
containing in addition binomial and inverse-binomial weights. To all these quantities
iterated integrals and special numbers are associated. We also discuss the analytic
continuation of nested sums of different kind to complex values of the external
summation boundN .

1 Introduction

In the solution of physical problems very often new classes of special functions
have been created during the last three centuries, cf. [1–5]. This applies especially
also to the analytic calculation of Feynman-parameter integrals [6] for massless and
massive two- and more-point functions, also containing local operator insertions
and corresponding quantities, cf. [7, 8]. In case of zero mass-scale quantities the
associated integrals map to special numbers, lately having been called periods [9],
see also [10]. In case of single-scale quantities, expressed as a ratio x 2 Œ0; 1� to

J. Ablinger
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2 J. Ablinger and J. Blümlein

the defining mass scale, the integrals are Poincaré iterated integrals [11, 12] or they
emerge as a Mellin-transform at N 2 N [13] in terms of multiply nested sums. A
systematic way to these structures has been described in [14, 15]. Here an essential
tool consists in representations by Mellin–Barnes [16] integrals. They are applicable
also for integrals of multi-scale more-loop and multi-leg Feynman integrals [17],
which are, however, less explored at present.

In the practical calculations dimensional regularization inD D 4C " space-time
dimensions [18] is used, which is essential to maintain conservation laws due to
the Noether theorem and probability. It provides the singularities of the problem in
terms of poles in ". However, the Feynman parameter integrals are not performed
over rational integrands but hyperexponential ones. Thus one passes through
higher transcendental functions [4, 5] from the beginning. The renormalization is
carried out in the MS-scheme, chosen as the standard. In new calculations various
ingredients as anomalous dimensions and expansion coefficients of the ˇ-functions
needed in the renormalization can thus be used referring to results given in the
literature. At higher orders the calculation of these quantities requests a major
investment and is not easily repeated at present within other schemes in a short
time.

With growing complexity of the perturbative calculations in Quantum Field The-
ories the functions emerging in integration and summation had to be systematized.
While a series of massless two-loop calculations, cf. [19], during the 1980s and
1990s initially still could be performed referring to the classical polylogarithms
[12, 20–23] and Nielsen-integrals [24], the structure of the results became readily
involved. In 1998 a first general standard was introduced [25, 26] by the nested
harmonic sums, and shortly after the harmonic polylogarithms [27]. Further exten-
sions are given by the generalized harmonic sums, the so-called S-sums [28, 29]
and the (generalized) cyclotomic sums [30], see Fig. 1. Considering problems at
even higher loops and a growing number of legs, also associated with more mass
scales, one expects various new levels of generalization to emerge. In particular, also
elliptic integrals will contribute [31]. These structures can be found systematically
by applying symbolic summation, cf. [32], and integration formalisms, cf. [33, 34],
which also allow to proof the relative transcendence of the basis elements found and
are therefore applied in the calculation of Feynman diagrams.

In this survey we present an introduction to a series of well-studied structures
which have been unraveled during the last years. The paper is organized as
follows. In Sect. 2 a survey is given on polylogarithms, Nielsen integrals and
harmonic polylogarithms. In Sect. 3 harmonic sums are discussed. Both harmonic
polylogarithms and harmonic sums obey algebraic and structural relations on which
a survey is given in Sect. 4. In Sect. 5 we discuss properties of the multiple zeta
values which emerge as special constants in the context of harmonic sums and
polylogarithms. The S-sums, associated iterated integrals, and special numbers
are considered in Sect. 6. The generalization of harmonic sums and S-sums to
(generalized) cyclotomic sums, polylogarithms and numbers is given in Sect. 7. A
further generalization, which appears in massive multi-loop calculations, to nested
binomial and inverse-binomial harmonic sums and polylogarithms is outlined in
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Harmonic SumsS-Sums Cyclotomic Sums

Cyclotomic S-Sums

Fig. 1 Relations between the different extensions of harmonic sums

Sect. 8. Finally, we discuss in Sect. 9 the analytic continuation of the different kind
of nested sums in the argumentN to complex numbers, which is needed in various
physical applications. Section 10 contains the conclusions. The various mathemat-
ical relations between the different quantities being discussed in the present article
are implemented in the Mathematica package HarmonicSums.m [29, 35].

2 Polylogarithms, Nielsen Integrals, Harmonic
Polylogarithms

Different particle propagators 1=Ak.pi ;mi/ can be linked using Feynman’s integral
representation [36]

1

A
�1
1 : : : A

�n
n

D � .
Pn

kD1 �k/Qn
kD1 � .�k/

Z 1

0

nY

kD1

dxk

Qn
kD1 x

�k�1

�Pn
kD1 xkAk

�Pn
kD1 �k

ı

 

1�
nX

kD1

xk

!

; �i 2 R: (1)

While the momentum integrals over pi can be easily performed, the problem
consists in integrating the Feynman parameters xk . In the simplest cases the
associated integrand is a multi-rational function. In the first integrals one obtains
multi-rational functions, but also logarithms [33]. The logarithms [37] have to be
introduced as new functions being transcendental to the rational functions

Z x

0

dz

1 � z
D � ln.1 � x/; etc. (2)

Iterating this integral by

Z x

0

dz1
z1

Z z1

0

dz2
1 � z2

D Li2.x/ (3)
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one obtains the dilogarithm or Spence-function [20, 21], which may be extended to
the classical polylogarithms [12, 21–23]

Z x

0

dz

z
Lin�1.z/ D Lin.x/; n 2 N : (4)

All these functions are transcendental to the former ones. For an early occurrence
of the dilogarithm in Quantum Field Theory see [38].

The above iterations are special cases in iterating differential forms in
fdz=z; dz=.1� z/g. The general case is described as Nielsen integrals [24].

Sn;p.x/ D .�1/nCp�1
.n � 1/ŠpŠ

Z 1

0

dz

z
lnn�1.z/ lnp.1 � xz/ : (5)

Likewise, one might also consider the set fdz=z; dz=.1C z/g. Nielsen integrals obey
the relation

Sn�1;p.x/ D d

dx
Sn;p.x/ : (6)

One may derive serial representations around x D 0, as e.g.:

Lin.x/ D
1X

kD1

xk

kn
; S1;2.x/ D

1X

kD2

xk

k2
S1.k � 1/; S2;2.x/ D

1X

kD2

xk

k3
S1.k � 1/ ;

(7)

see also [39]. Here S1.n/ D Pn
kD1.1=k/ denotes the harmonic sum. The Nielsen

integrals obey various relations [12, 20–24]. A few examples are:

Li2.1 � x/ D �Li2.x/� ln.x/ ln.1 � x/C �2 (8)

Li2

�

� 1
x

�

D �Li2.�x/� 1
2

ln2.x/� �2 (9)

Li3.1 � x/ D �S1;2.x/� ln.1 � x/Li2.x/� 1
2

ln.x/ ln2.1 � x/C �2 ln.1 � x/C �3
(10)

Li4
�
� x

1 � x
�
D ln.1 � x/ŒLi3.x/� S1;2.x/�C S2;2.x/� Li4.x/� S1;3.x/

�1
2

ln2.1 � x/Li2.x/� 1

24
ln4.1� x/ (11)

Lin.x
2/ D 2n�1 ŒLin.x/C Lin.�x/� (12)

Li2.z/ D 1

n

X

xnDz

Li2.x/; n 2 Nnf0g (13)
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S2;2.1 � x/ D �S2;2.x/C ln.x/S1;2.x/� ŒLi3.x/� ln.x/Li2.x/� �3� ln.1 � x/

C1
4

ln2.x/ ln2.1 � x/C �4

4
: (14)

Here �n DP1kD1.1=kn/; n � 2; n 2 N are values of Riemann’s �-function.
Going to higher orders in perturbation theory it turns out that the Nielsen integrals

are sufficient for massless and some massive two-loop problems, cf. [26,40], and as
well for the three-loop anomalous dimensions [41], allowing for some extended
arguments as �x; x2. At a given level of complexity, however, one has to refer to a
more general alphabet, namely

A D f!0; !1; !�1g � fdz=z; dz=.1� z/; dz=.1C z/g : (15)

The corresponding iterated integrals are called harmonic polylogarithms (HPLs)
[27]. Possibly the first new integral is

H�1;0;0;1.x/ D
Z x

0

dz

z

Li3.z/

1C z
: (16)

Here we use a systematic notion defining the Poincaré iterated integrals [11, 12],
unlike the case in (5). The weight w D 1 HPLs are

H0.x/ D ln.x/; H1.x/ D � ln.1 � x/; H�1.x/ D ln.1C x/; (17)

with the definition of H0;:::;0.x/ D lnn.x/=nŠ for all x indices equal to zero. The
above functions have the following representation

Lin.x/ D
Z x

0

!n�10 !1; Sp;n.x/ D
Z x

0

!
p
0 !

n
1 ; Hmw.x/ D

Z x

0

kY

lD1
!ml ; (18)

where the corresponding products are non-commutative, mw is of length k and x �
z1 � : : : � zm.

Harmonic polylogarithms obey algebraic and structural relations, which will be
discussed in Sect. 4. Numerical representations of HPLs were given in [42, 43].

3 Harmonic Sums

The harmonic sums are recursively defined by

Sb;a.N / D
NX

kD1

.sign.b//k

kjbj
Sa.k/ ; S;.N / D 1 ; b; ai 2 Znf0g: (19)
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In physics applications they appeared early in [44, 45]. Their systematic use dates
back to Refs. [25, 26]. They can be represented as a Mellin transform

Sa.N / D M Œf .x/� .N / D
Z 1

0

dx xN�1 f .x/; N 2 Nnf0g; (20)

where f .x/ denotes a linear combination of HPLs. For example,

S�2;1;1.N / D .�1/NC1
Z 1

0

dx
H0;1;1.x/� �3

x C 1 � Li4

�
1

2

�

� ln4.2/

24
C ln2.2/�2

4

�7 ln.2/�3
8

C �22
8

(21)

holds. Harmonic sums possess algebraic and structural relations, cf. Sect. 4. In the
limit N ! 1 they define the multiple zeta values, cf. Sect. 5. They are originally
defined at integer argument N . In physical applications they emerge in the context
of the light–cone expansion [46]. The corresponding operator matrix elements are
analytically continued to complex values of N either from the even or the odd
integers, cf. Sect. 9.

4 Algebraic and Structural Relations

4.1 Algebraic Relations

Algebraic relations of harmonic polylogarithms and harmonic sums, respectively,
are implied by their products and depend on their index structure only, i.e. they
are a consequence of the associated shuffle or quasi–shuffle (stuffle) algebras [47].
These properties are widely independent of the specific realization of these algebras.
To one of us (JB) it appeared as a striking surprise, when finding the determinant-
formula for harmonic sums of equal argument [26] Eqs. (157,158)

S a, . . . ,a
„ƒ‚…

k

.N / D 1

k

kX

lD0
S a, . . . ,a
„ƒ‚…

l

.N /S^k�l
mD1a

.N /; a ^ b D sign.ab/.jaj C jbj/ (22)

also in Ramanujan’s notebook [48], but for integer sums, which clearly differ in
value from the former ones. Related relations to again different quantities were given
by Faá die Bruno [49].

Iterated integrals with the same argument x obey shuffle relations w.r.t. their
product,

Ha1;:::;ak .x/ � Hb1;:::;bl .x/ D
X

c2att b

Hc1;:::ckCl
.x/: (23)
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The shuffle-operation runs over all combinations of the sets a and b leaving the order
of these sets unchanged. Likewise, the (generalized) harmonic sums obey quasi-
shuffle or stuffle-relations, which are found recursively using [28, 29]

Sa1;:::;ak .x1; : : : ; xk In/Sb1;:::;bl .y1; : : : ; yl In/ D
nX

iD1

xi1
ia1

Sa2;:::;ak .x2; : : : ; xk I i/ Sb1;:::;bl .y1; : : : ; yl ; i /

C
nX

iD1

yi1
ib1

Sa1;:::;ak .x1; : : : ; xk; i/ Sb2;:::;bl .y2; : : : ; yl I i/

�
nX

iD1

.x1 � y1/i
ia1Cb1

Sa2;:::;ak .x2; : : : ; xk; i/ Sb2;:::;bl .y2; : : : ; yl I i/ ;

xi ; yi 2 C; ai ; bi 2 Nnf0g : (24)

The presence of trace terms in form of lower weight products in addition to the
shuffled terms, cf. [50], leads to the name stuffle relations. In case the corresponding
values exist, both (23,24) can be applied to the multiple zeta values or other special
numbers applying the integral and sum-representations at x D 1 and N ! 1,
cf. [51]. The basis elements applying the (quasi) shuffle relations in case of the har-
monic sums and polylogarithms at a given weight w can be identified by the Lyndon
words [52,53]. Let A D fa; b; c; d; : : :g be an ordered alphabet and A�.A/ the set of
words w given as concatenation products. Under the ordering of A a Lyndon word
is smaller than any of its suffixes. For example, the set fa; a; a; b; b; bg; a < b

is associated to the Lyndon words faaabbb; aababb; aabbabg. Radford showed
[54] that a shuffle algebra is freely generated by the Lyndon words. The number of
Lyndon words can be counted using Witt formulae [55]. Let M be a set of letters q
in which the letter ak emerges nk times, and n DPq

kD1 nk . The number of Lyndon
words associated to this set is given by

ln.n1; : : : ; nq/ D 1

n

X

d jnk
�.d/

.n=d/Š

.n1=d/Š : : : .nq=d/Š
: (25)

Similarly one may count the basis elements occurring for all combinations at a given
weight, if the alphabet has m letters:

NA.w/ D 1

w

X

d jw
�
�w

d

�
md ; (26)

where � denotes Möbius’ function [56]. In case of the harmonic sums and
polylogarithms one hasm D 3. The original number of harmonic polylogarithms is
3w and in case of the harmonic sums 2 � 3w�1. Algebraic relations for the harmonic
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polylogarithms and harmonic sums are implemented in the FORM-codes summer
[25] and harmpol [27], HPL [57], and also HarmonicSums.m [29, 35].

4.2 Structural Relations

Structural relations of harmonic polylogarithms and harmonic sums are implied by
operations on their arguments x and N , respectively.

4.2.1 Harmonic Polylogarithms

Harmonic polylogarithms satisfy argument-relations, as has been illustrated in (8–
14) for some examples in case of the Nielsen integrals. Not all argument relations
map inside the harmonic polylogarithms, however, cf. [27]. Some of them are valid
only for the sub-alphabet f!0; !1g. While the transformation x ! �x is general

Ha.�x/ D .�1/pH�a.x/; (27)

with the last letter in a different from 0 and p the number of non-zero letters in a.
The transformations

x ! 1 � x; x ! x2 (28)

apply to subsets only. Examples are:

H1;0;1.1 � x/ D �H0.x/H0;1.x/C 2H0;0;1.x/ � �2H0.x/ � 2�3 (29)

H1;0;0;1

�
x2
� D 4 ŒH1;0;0;1.x/ �H1;0;0;�1.x/ �H�1;0;0;1.x/C H�1;0;0;�1.x/� :

(30)

One may transform arguments by x ! 1=y C i",

H1;0;1

�
1

x

�

D H0.x/
�
H0;1.x/C i�H1.x/ � 4�2 C �2

	 � 2ŒH0;0;1.x/ � H0;1;1.x/

C�3�C Œ�H1.x/ � i��H0;1.x/C 2�2H1.x/ � 1
6

H3
0.x/

C1
2
i Œ� C iH1.x/�H2

0.x/ : (31)

An important general transformation is

x ! 1 � t
1C t (32)
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which acts on the HPLs but not on the subset of Nielsen-integrals. An example is:

H1;�1;0
�
1 � x
1C x

�

D 1

6
H3�1.x/C H�1;�1;1.x/ �H0;�1;�1.x/ �H0;�1;1.x/C 15�3

8

�1
2
�2 ŒH�1.x/ � H0.x/� � 2



�3

8
� ln.2/�2

2

�

� 2 ln.2/�2 :

(33)

In most of these relations also HPLs at argument x D 1 contribute, cf. Sect. 5.
Structural relations of HPLs are implemented in the packages harmpol [27], HPL
[57], and HarmonicSums.m [29, 35].

4.2.2 Harmonic Sums

Harmonic sums obey the duplication relation

Si1;:::;in .N / D 2i1C:::Cin�n
X

˙
S˙i1;:::;˙in .2N /; ik 2 Nnf0g : (34)

This allows to define harmonic sums at half-integer, i.e. rational, values. Ultimately,
one would like to derive expressions for N 2 C, cf. Sect. 9. Another extension is
to N 2 R [14,26]. The representation of harmonic sums through Mellin-transforms
(20) implies analyticity for a finite range around a given value of N . The Mellin-
transform of a harmonic polylogarithm can thus be differentiated for N

d

dN

Z 1

0

dxxN�1Ha.x/ D
Z 1

0

dxxN�1H0.x/Ha.x/ : (35)

In turn, the shuffling relation (23) allows to represent the r.h.s. in (35) as the Mellin-
transform of other HPLs. It turns out that differentiation of harmonic sums for N is
closed under additional association of the multiple zeta values [14]. The number of
basis elements by applying the duplication relation (H), resp. its combination with
the algebraic relations is [58]

NH.w/ D 2 � 3w�1 � 2w�1; NAH .w/ D 1

w

X

d jw
�
�w

d

� �
22 � 3d 	 : (36)

Differentiation in combination with the other relation yields

ND.w/ D 4 � 3w�1;NDH .w/ D 4 � 3w�2 � 2w�2;NADH .w/ D NAH .w/�NAH .w� 1/:
(37)
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Let us close with a remark on observables or related quantities in physics which
are calculated to a certain loop level and can be thoroughly expressed in terms
of harmonic sums. As a detailed investigation of massless and single mass two-
loop quantities showed [40] seven basic functions of up to weight w D 4, cf.
[14], are sufficient to express all quantities. The three-loop anomalous dimensions
[41] contributing to the 1=" poles of the corresponding matrix elements require
15 functions of up to weight w D 5 and further 20 basic functions are needed to
also express the massless Wilson coefficients [7] in deep-inelastic scattering [59],
cf. Ref. [60]. Despite of the complexity of these calculations finally a rather compact
structure is obtained for the representation of the results. Structural relations of
harmonic sums are implemented in the package HarmonicSums.m [29, 35].

5 Multiple Zeta Values

The multiple zeta values (MZVs) [61,62]1 are obtained by the limit N !1 of the
harmonic sums

lim
N!1Sa.N / D �a (38)

and may also be represented in terms of linear combinations of harmonic poly-
logarithms Hb.1/ over the alphabet f!0; !1; !�1g.2 In the former case one usually
includes the divergent harmonic sums since all divergent contributions are uniquely
represented in terms of polynomials in �1.1/ � �0 due to the algebraic relations.
Likewise, not all harmonic polylogarithms can be calculated at x D 1, requiring
their re-definition in terms of distributions. Some examples for MZVs, which
already appear in case of Nielsen integrals, are:

Lin.1/ D �n (39)

Lin.�1/ D �
�

1 � 1

2n�1

�

�n (40)

S1;p.1/ D �pC1 (41)

S1;2.�1/ D 1

8
�3 (42)

Li2

�
1

2

�

D 1

2

�
�2 � ln2.2/

	
(43)

1For a detailed account on the literature on MZVs see [63, 64] and the surveys Ref. [65].
2The numbers associated with this alphabet are sometimes also called Euler-Zagier values and
those of the sub-alphabet f!0; !1g multiple zeta values.
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Li3

�
1

2

�

D 7

8
�3 � 1

2
�2 ln.2/C 1

6
ln3.2/ (44)

S2;2.1/ D 1

10
�22 (45)

S2;2.�1/ D �3
4
�22 C 2Li4

�
1

2

�

C 7

4
�3 ln.2/� 1

2
�2 ln2.2/C 1

12
ln4.2/ (46)

S1;3.�1/ D �2
5
�22 C Li4

�
1

2

�

C 7

8
�3 ln.2/� 1

4
�2 ln2.2/C 1

24
ln4.2/ : (47)

In case of physics applications, MZVs played a role in loop calculations rather early,
cf. [66]. Since for Lim.1=2/ for m D 2; 3 these numbers are not elementary, (46,
47) seem to fail to provide a corresponding relation for m D 4. Similarly, for larger
values of m also no reduction has been observed.

A central question concerns the representation of harmonic sums in terms of
polynomial bases. This has been analyzed systematically in [63, 67].3 For MZVs
over f0; 1g a proof on the maximum of basis elements at fixed weight w has been
given in Refs. [68]. At the lowest weights the shuffle and stuffle relations imply all
relations for the MZVs. Starting with weight w D 8 one also needs the duplication
relation (34), and from weight w D 12 also the generalized duplication relations
Sect. 4.1 in [63]. The latter are closely related to the conformal transformation
relations of the HPLs at x D 1, see (32). Let us give one example for the combined
use of the shuffle and stuffle relation for illustration, [51]4:

shuffle W �2;1�2 D 6�3;1;1 C 2�2;2;1 C �2;1;2
stuffle W �2;1�2 D 2�2;2;1 C �41 C �2;3 C �2;1;2
H) �3;1;1 D 1

6
Œ�4;1 C �2;3 � �2;2;1� : (48)

Finally one derives a basis for the MZVs using the above relations. Up to weight
w D 7 reads, cf. [25],

(

.�1.1/; ln.2// I �2I �3ILi4
�
1
2

� I ��5;Li5
�
1
2

�� I �Li6
�
1
2

�
; ��5;�1

� I

�
�7;Li7

�
1
2

�
; ��5;1;1; ��5;1;1

� I
)

(49)

3For some aspects of the earlier development including results by the Leuven-group, Zagier,
Broadhurst, Vermaseren and the Lille-group, see [63].
4Here the �a-values are defined �a1;:::;am D

P1
n1>n2>:::>nm

Qm
kD1 n

�a1
k .
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In [63] bases were calculated up to w D 12 for the alphabet f0; 1;�1g and to w D 22
for the alphabet f0; 1g in explicit form resp. for w D 24 restricting to basis elements
only. In the latter case the conjecture by Zagier [62] that the shuffle, stuffle and
duplication relations were the only ones was confirmed up to the weights quoted. For
these cases counting relations were conjectured in Refs. [69,70]. One may represent
the basis for the MZVs over the alphabets f0; 1g resp. f0; 1;�1g by polynomial
bases or count just the factors appearing in these polynomials of special numbers
occurring newly in the corresponding weight, which is called Lyndon-basis [63].
In the first case the basis for the MZVs[f0; 1g] is conjectured to be counted by the
Padovan numbers OPk [71] generated by

1C x
1 � x2 � x3 D

1X

kD0
xk OPk; OP1 D OP2 D OP3 D 1: (50)

In case of the Lyndon basis the Perrin numbers Pk appear [72]

3 � x2
1 � x2 � x3 D

1X

kD0
xk OPk; P1 D 0; P2 D 2; P3;D 3 : (51)

Both the above sequences obey the Fibonacci-recurrence [73]

Pd D Pd�2 C Pd�3; d � 3 : (52)

The length of the Lyndon basis at weight w is given by

l.w/ D 1

w

X

d jw
�
�w

d

�
Pd : (53)

Hoffman [74] conjectured that all MZVs over the alphabet f0; 1g can be represented
over a basis of MZVs carrying 2 and 3 as indices only. This has been confirmed up
to w D 24. An explicit proof has been given in [75].

The polynomial basis of the MZVs[f0; 1;�1g] is conjectured to be counted by
the Fibonacci numbers [76]

fd D 1p
5

2

4

 
1Cp5
2

!d

�
 
1 �p5
2

!d
3

5 (54)

which obey

x

1 � x � x2 D
1X

kD0
xkfk : (55)
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For the corresponding Lyndon basis the counting relation

l.w/ D 1

w

X

d jw
�
�w

d

�
Ld (56)

is conjectured [69, 70], where Ld are the Lucas numbers [77],

Ld D
 
1Cp5
2

!d

C
 
1 �p5
2

!d

(57)

2 � x
1 � x � x2 D

1X

kD0
xkLk; (58)

Ld D Ld�1 C Ld�2; d � 4; L1 D 1;L2 D 3;L3 D 4: (59)

There is a series of Theorems proven on the MZVs, see also [63], which can be
verified using the data base [63]. The duality theorem [62] in case of the alphabet
f!0; !1g states

Ha.1/ D Ha	 .1/; a	 D aT0 !1 : (60)

In case of the alphabet f!0; !1; !�1g it is implied by the transformation (32), see
[63]. Another relation is the sum theorem, Refs. [78, 79],

X

i1C:::CikDn;i1>1
�i1;:::;ik D �n : (61)

The sum-theorem was conjectured in [80], cf. [81]. For its derivation using the Euler
connection formula for polylogarithms, cf. [82].

Further identities are given by the derivation theorem, [80, 83]. Let I D
.i1; : : : ; ik/ any sequence of positive integers with i1 > 1. Its derivation D.I/ is
given by

D.I/ D .i1 C 1; i2; : : : ; ik/C .i1; i2 C 1; : : : ; ik/C : : : .i1; i2; : : : ; ik C 1/
�D.I / D �.i1C1;i2;:::;ik / C : : :C �.i1;i2;:::;ikC1/ : (62)

The derivation theorem states

�D.I / D �
.D.
.I /// ; (63)

where 
 denotes the duality-operation, cf. (60). An index-word w is called admissi-
ble, if its first letter is not 1. The words form the set H0. jwj D w is the weight and
d.w/ the depth of w. For the MZVs the words w are build in terms of concatenation
products xi1�10 x1x

i2�1
0 x0 : : : x

ik�1
0 x1. The height of a word, ht.w/, counts the number
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of (non-commutative) factors xa0 x
b
1 of w. The operator D and its dual D act as

follows [84],

Dx0 D 0; Dx1 D x0x1; Dx0 D x0x1; Dx1 D 0 :

Define an anti-symmetric derivation

@nx0 D x0.x0 C x1/n�1x1 :

A generalization of the derivation theorem was given in [83, 85]. The identity

�.@nw/ D 0 (64)

holds for any n � 1 and any word w 2 H0. Further theorems are the Le–Murakami
theorem, [86], the Ohno theorem, [87], which generalizes the sum- and duality
theorem, the Ohno–Zagier theorem, [88], which covers the Le–Murakami theo-
rem and the sum theorem, which generalizes a theorem by Hoffman [80, 81], and
the cyclic sum theorem, [89].

There are also relations for MZVs at repeated arguments, cf. [51, 84, 90], on
which examples are:

�.f2gn/ D 2.2�/2n

.2nC 1/Š
1

2
(65)

�.2; f1gn/ D �.nC 2/ (66)

�.f3; 1gn/ D 1

4n
�.f4gn/ D 2�4n

.4nC 2/Š (67)

�.f10gn/ D 10.2�/2n

.10nC 5/Š

2

41C
 
1Cp5
2

!10nC5
C
 
1 �p5
2

!10nC53

5 : (68)

Finally, we mention a main conjecture for the MZVs over f0; 1g. Consider tuples
k D .k1; : : : ; kr / 2 N

r ; k1 � 1. One defines

Z0 WD Q

Z1 WD f0g
Zw WD

X

jkjDw

Q � �.k/ � R : (69)

If further

Z Go WD
1X

wD0
Zw � R .Goncharov/ (70)
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Z Ca WD
1M

wD0
Zw .Cartier/ (71)

the conjecture states

(a) Z Go Š Z Ca. There are no relations over Q between the MZVs of different
weight w.

(b) dimZw D dw, with d0 D 1; d1 D 0; d2 D 1; dw D dw�2 C dw�3.
(c) All algebraic relations between MZVs are given by the extended double-shuffle

relations [91], cf. also [92]. If this conjecture turns out to be true all MZVs are
irrational numbers.

Let us also mention a few interesting relations for Li2.z/ for special arguments
found by Ramanujan [93], which are of use e.g. in massive calculations at three-
loops [94]. These numbers relate to constants beyond the MZVs, which occur for
generalized sums and their extension allowing for binomial and inverse binomial
weights:

Li2

�
1

3

�

� Li2

�
1

9

�

D �2

18
� 1
6

ln2.3/ (72)

Li2

�

�1
2

�

C 1

6
Li2

�
1

9

�

D ��
2

18
C ln.2/ ln.3/� 1

2
ln2.2/� 1

3
ln2.3/ (73)

Li2

�
1

4

�

C 1

3
Li2

�
1

9

�

D �2

18
C 2 ln.2/ ln.3/� 2 ln2.2/� 2

3
ln2.3/ (74)

Li2

�

�1
3

�

� 1
3

Li2

�
1

9

�

D ��
2

18
C 1

6
ln2.3/ (75)

Li2

�

�1
8

�

C 1

3
Li2

�
1

9

�

D �1
2

ln2
�
9

8

�

: (76)

For further specific numbers, which occur in the context of Quantum Field Theory
calculations see also Sects. 6.3, 7, and 9.

6 Generalized Harmonic Sums and Polylogarithms

6.1 Generalized Harmonic Sums

Generalized harmonic sums, also called S-sums, are defined by [28, 29, 95]

Sa1;:::;ak .x1; : : : ; xk IN/ D
NX

i1D1

x
i1
1

i
a1
1

Sa2;:::;ak .x2; : : : ; xk I i1/;

S; D 1 ; xi 2 Rnf0g; ai 2 Nnf0g (77)
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and form a quasi-shuffle and a Hopf algebra [96] under the multiplication (24)
[28]. The multiplication relation in general leads outside the weight sets fai g; fbig.
The S-sums cover (together with the limit N ! 1) the classical polylogarithms,
the Nielsen functions, the harmonic polylogarithms, the multiple polylogarithms
[97], the two-dimensional HPLs [98], and the MZVs [28]. In Ref. [28] four
algorithms were presented allowing to perform the "-expansion of classes of sums
in terms of S-sums, which were coded in two packages [99, 100]. In this way
the "-expansion can be performed using convergent serial representations for the
generalized hypergeometric functions PFQ, The Appell-functions F1;2, and the
Kampé de Fériet function [101].

They can be represented in terms of a Mellin transformation over x 2
Œ0; x1 : : : xk� [29]. E.g. the single sums are given by

Sm.bIN/ D
Z b

0

dxm
xm

: : :

Z x3

0

dx2
x2

Z x2

0

dx1
xN1 � 1
x1 � 1 : (78)

Generalized harmonic sums obey the duplication relation

X
Sam;:::;a1.˙bm; : : : ;˙b1I 2 N/ D

1

2
Pm
iD1 ai�m Sam;:::;a1

�
b2m; : : : ; b

2
1IN

�
; (79)

where the sum on the left hand side is over the 2m possible combinations concerning
˙ and ai 2 N, bi 2 Rnf0g and n 2 N. They also obey differential relations w.r.t.
N , supplementing their set with the generalized harmonic sums at infinity, resp. of
the generalized harmonic polylogarithms at x D 1. The mapping will usually also
require objects with different weights xi . Examples are [29]:

@

@n
S2.2I n/ D �S3.2I n/C H0.2/ S2.2In/C H0;0;�1.1/C 2H0;0;1.1/C H0;1;�1.1/ ;

@

@N
S3
�
1
4 IN

�
D 12




�S3;1
�
1
2 ;

1
2 IN

�
� 1
2

@

@N
S2;1

�
1
2 ;

1
2 IN

�
� 1
2

H1;0
�
1
2

�
S2
�
1
2 IN

�

CH0
�
1
2

�
S2;1

�
1
2 ;

1
2 IN

�
� 1
2

H 1
2

�
1
4

�
H0;1;0

�
1
2

�
C 1

12
H0;0;1;0

�
1
4

�

C1
2

H 1
2 ;0;1;0

�
1
4

�
� 1

12
H0
�
1
4

�
S3
�
1
4 IN

�
� 1
4

S2
�
1
2 IN

�2
�

: (80)

The counting relations for the basis elements are

ND.w/ D NS.w/ �NS.w � 1/; NA;D.w/ D NA.w/�NA.w� 1/; (81)

where NS D .n � 1/ � nw�1 denotes the number of sums, given n letters in the
alphabet, and NA the basis elements after applying the algebraic equations. Explicit
bases for a series of alphabets have been calculated in [29].
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6.2 Generalized Harmonic Polylogarithms

Generalized harmonic polylogarithms are defined as the Poincaré-iterated integrals
[11, 12]

Ha.x/ D
Z x

0

mY

jD1

dzjˇ
ˇaj
ˇ
ˇ � sign

�
aj
�

zj
; aj 2 C; zj � zjC1 : (82)

For aj 2 R; 0 < aj < 1; x > 1 (82) is defined as Cauchy principal value only.
Already A. Jonquière [12] has studied integrals of this type. Sometimes they are
also called Chen-iterated integrals, cf. [11], or Goncharov polylogarithms [97].

The Mellin transforms of generalized harmonic polylogarithms map onto gener-
alized harmonic sums [29]. Furthermore, the generalized harmonic polylogarithms
obey various argument relations similar to the case if the HPLs, cf. Sect. 4.2.1, as

x C b ! x (83)

b � x ! x (84)

1 � x
1C x ! x (85)

kx ! x (86)

1

x
! x : (87)

6.3 Relations Between S -Sums at Infinity

S-sums at infinity exhibit a more divergent behaviour than harmonic sums if a1 > 1.
The degree of divergence is then at least / aN1 , cf. Sect. 9. In the following we will
discuss only convergent S-sums at infinity. They obey stuffle and shuffle relations,
the duplication relation N ! 2N , and the duality relations for the generalized
polylogarithms [29]

1� x ! x (88)

1�x
1Cx ! x (89)

c�x
dCx ! x; c; d 2 R; d ¤ 1 : (90)

Equation (88) implies

Ha1;:::;ak .1/ D H1�a1;:::;1�ak .1/; ak ¤ 0 : (91)
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Examples for (89, 90) are:

S1
�
1
2
I1� D �S�1.1/ � ln.2/ (92)

S1
�
1
8
I1� D �S�1.1/C S1

�� 1
2
I1� : (93)

In various cases S-sums at infinity reduce to MZVs, cf. also [102],

S1;1;1
�
1
2
; 2; 1I1� D 3

2
�2 ln.2/C 7

4
�3 (94)

S2;1
�
1
2
; 1I1� D �1

2
ln.2/�2 C �3 (95)

Sm
�
1
2
I1� D Lim

�
1
2

�
: (96)

Otherwise, new basis elements occur which have both representations in infinite
sums and iterated integrals. Using the above relations bases for different sets of
S-sums at infinity were calculated in [102].

7 Cyclotomic Harmonic Sums and Polylogarithms
and Their Generalization

The alphabet of the harmonic polylogarithms (15) contains two differential forms
with denominators, which form the first two cyclotomic polynomials: .1 � x/ and
.1 C x/. It turns out that quantum field theoretic calculations are also related to
cyclotomic harmonic polylogarithms and sums [103]. Cyclotomic polynomials are
defined by

˚n.x/ D xn � 1
Y

d jn;d<n
˚d .x/

; d; n 2 NC (97)

and the generating alphabet reads

A D
�

dx

x



[
�
xldx

˚k.x/

ˇ
ˇ
ˇ
ˇ k 2 NC; 0 � l < '.k/



; (98)

where ˚k.x/ denotes the kth cyclotomic polynomial [104], and '.k/ denotes
Euler’s totient function [105]. The Poincaré iterated integrals over the alphabet (98)
are called cyclotomic harmonic polylogarithms, cf. [30]. Due to the regularity of
1=˚n.x/ for x 2 Œ0; 1�, except for ˚1.x/, no more singularities appear beyond
those known in the case of the usual harmonic polylogarithms (or Nielsen integrals).
Cyclotomic harmonic polylogarithms obey shuffle relations, cf. Sect. 4.
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The cyclotomic harmonic sums [30] are related to the cyclotomic harmonic
polylogarithms via a Mellin transform (20). The generalized cyclotomic harmonic
sums are given by

Sfa1;b1;c1g;:::;fal ;bl ;cl g.s1; : : : ; sl IN/ D
NX

k1D1

sk1
.a1k1 C b1/c1 Sfa2;b2;c2g;:::;fal ;bl ;cl g.s2; : : : ; sl I k1/; S; D 1; (99)

where ai ; ci 2 NC; bi 2 N; si 2 Rnf0g; ai > bi ; the weight of this sum is defined
by c1 C � � � C cl and fai ; bi ; ci g denote lists, not sets. If si D ˙1 these are the usual
cyclotomic harmonic sums. The simplest cyclotomic sums are the single sums

Sfa1;b1;c1g.˙1IN/ D
NX

kD1

.˙1/k
.a1k C b1/c1 ; (100)

i.e. harmonic sums with cyclic gaps in the summation. The cyclotomic harmonic
sums obey quasi-shuffle relations .A/.

Beyond this the cyclotomic harmonic sums obey structural relations implied
by differentiation for the upper summation bound N , .D/, which require to also
consider their values at N ! 1. There are, furthermore, multiple argument
relations, cf. [30], decomposing Sai ;bi ;ci .k � N/, called synchronization .M/, and
two duplication relations .H1;H2/. Let us consider the cyclotomic harmonic sums
implied by the letters

1

kl1
;
.�1/k
kl2

;
1

.2k C 1/l3 ;
.�1/k

.2k C 1/l4 : (101)

The length of the basis can be calculated by

NS.w/ D 4 � 5w�1 (102)

NA.w/ D 1

w

X

d jw
�
�w

d

�
5d (103)

ND.w/ D NS.w/ �NS.w� 1/ (104)

NA;D.w/ D NA.w/�NA.w� 1/ (105)

NA;D;M;H1;H2 .w/ D
1

w

X

d jw
�
�w

d

�
.52 � 3 � 2d / � 1

w � 1
X

d jw�1
�

�
w� 1
d

�

.52 � 3 � 2d /;

(106)
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where NS.w/ denotes the number of all sums. One may calculate the asymptotic
representation of the cyclotomic harmonic sums analytically. Here also the values
of cyclotomic sums at N !1 occur. The singularities of the cyclotomic harmonic
sums with sk D ˙1 are situated at the non-positive integers.

The cyclotomic sums forN !1 are denoted by �fa1;b1;c1g;:::;fal ;bl ;cl g.s1; : : : ; sl /.
For 8 jskj � 1 divergent series do only occur if a1 D b1 and c1 D 1, where the
degree of divergence is given by �0 as in the case of the harmonic sums and can be
represented algebraically. They are related to the values of the cyclotomic harmonic
polylogarithms at x D 1. At w D 1 the regularized sums may be given in terms
of  .k=l/ and for higher weights in terms of  .m/.k=l/;m � 1. If l is an integer
for which the l-polygon is constructable one obtains representations in terms of
algebraic numbers and logarithms of algebraic numbers, as well as � [30]. In this
way, �2 being a basis element in case of the MZVs, looses its role. At depth w D 2

Catalan’s constant [106] with

�2;1;�2 D �1C C (107)

contributes. At higher depth new numbers emerge, which partly can be given inte-
gral representations involving polylogarithms and roots of the integration variable x.
The cyclotomic sums at infinity, as real representations, are closely related to the
infinite generalized harmonic sums at weights sk which are roots of unity, cf. also
[107]. In [30] basis representations were worked out for w D 1; 2 for the l th roots,
l 2 Œ1; 20�, cf. also [108]. Counting relations for bases of the cyclotomic sums at
infinity have also been derived in Ref. [30].

8 Nested Binomial and Inverse-Binomial Harmonic Sums
and Associated Polylogarithms

In massive calculations further extensions to the nested sums and iterated integrals
being discussed in the previous sections occur. Here summation terms of the kind
Sa;b;c.xI k/, or their linear combinations are modulated by

Sa;b;c.xI k/!
 
2k

k

!

Sa;b;c.xI k/

Sa;b;c.xI k/! 1
 
2k

k

!Sa;b;c.xI k/ ; (108)

building iterated sums [94]. Sums of this kind occur in case of V-type three-loop
graphs for massive operator matrix elements. Simpler sums are obtained in case of
three-loop graphs with two fermionic lines of equal mass. Single sums of this kind
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have been considered earlier, see e.g. [109]. One may envisage generalizations of
(108) in choosing for the binomial a general hypergeometric term, i.e. a function,
the ratio of which by all shifts of arguments being rational. The association of the
corresponding iterated integrals in the foregoing cases has been found easily. Here
the situation is more difficult and the functions representing these iterated sums are
found in establishing differential equations [110]. It is found in the cases occurring
in Ref. [94] that the corresponding differential equations finally factorize and one
obtains iterated integrals over alphabets which also contain root-valued letters

1
p
.x C a/.x C b/ ;

1
p
.x C a/.x C b/

1

x C c ; a; b; c 2 Q (109)

beyond those occurring in case of the generalized (cyclotomic) polylogarithms. A
few examples of this type have been considered in [111]. The relative transcendence
of the nested sums and iterated integrals has been proven. The V-type three-loop
graphs require alphabets of about 30 root-valued letters. The corresponding nested
sums do partly diverge/ aN ; a 2 N; a � 2. A typical example for a nested binomial
sums is given by:

NX

iD1

 
2i

i

!

.�2/i
iX

jD1

1

j

 
2j

j

!S1;2

�
1
2 ;�1I j

�
(110)

D
Z 1

0
dx
xN � 1
x � 1

r
x

8C x
�
H�w17;�1;0.x/� 2H�w18;�1;0.x/

	

C�2
2

Z 1

0
dx
.�x/N � 1
x C 1

r
x

8C x
�
H�12.x/� 2H�13.x/

	C c3
Z 1

0
dx
.�8x/N � 1
x C 1

8

r
x

1 � x ;

with c3 D P1
jD0 S1;2

�
1
2
;�1I j � .j Š/2=j=.2j /Š=� one of the specific constants

emerging in case of these sums. Here the iterated integrals H� extend to x D 1

as firm bound, contrary to the cases discussed before where x D 0 is chosen. Here
the new letters wk are

w12 D 1
p
x.8 � x/ ; w13 D 1

.2 � x/px.8 � x/ ;

w17 D 1
p
x.8C x/ ; w18 D 1

.2C x/px.8C x/ : (111)

The representations over the letters (109) are needed to eliminate the power growth
/ aN of these sums and can be used to derive the asymptotic representation at large
values of N . While the terms / 8N and / 4N cancel, it may occur that individual
scalar diagrams exhibit contributions / 2N , cf. [94]. This behaviour is expected to
cancel in the complete physics result.
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�
-4 -3 -2 -1 1 2 3 4 Re(N)

Im(N)Fig. 2 Path of the contour
integral (112)

9 Analytic Continuation of Harmonic Sums

The loop-corrections to various physical quantities take a particular simple form in
Mellin-space being expressed in terms of harmonic sums and their generalizations.
Moreover, in this representation the renormalization group equations can be solved
analytically, cf. [59,112]. For a wide variety of non-perturbative parton distributions
Mellin-space representations can be given as well, see e.g. [113].
Thus one obtains complete representations for observables in N -space. In case
of the perturbative part, the singularities are situated at the integers N � N0,
with usually N0 D 1, see e.g. [114]. The harmonic sums possess a unique
polynomial representation in terms of the sum S1.N / and harmonic sums which
can be represented as Mellin transforms having a representation by factorial series
[115, 116]. They are transformed to x-space by a single precise numerical contour
integral around the singularities of the problem to compare with the data measured
in experiment. The analytic continuation of the perturbative evolution kernels and
Wilson coefficients from even or odd integers to complex values of N is unique
[117].5 To perform this integral a representation of the harmonic sums forN 2 C is
required. Accurate numeric representations up to w D 5 have been given in [118],
see also [119]. Arbitrary precise representations can be obtained using the analytic
expressions for the asymptotic representation [14, 60] together with the recursion
relations given in Sect. 3. These are given up to w D 8 in [58]. A path to perform
the inverse Mellin transform

f .x/ D 1

�

Z 1

0

dz Im
�
ei� x�CMŒf �.N D C/	 ; C D c C zei� (112)

is shown in Fig. 2. The asymptotic representations can also be obtained in analytic
form for the S-sums [29], cyclotomic (S)-sums [30], as well as for the nested
binomial cyclotomic S-sums [94, 110].

5For a detailed proof also in case of generalized harmonic sums see [29].
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In case the expressions in N -space result from Mellin transforms of functions
f .x/ 	 x˛; ˛ 2�0; 1Œ the singularities are shifted by ˛. This is usually the case
for the non-perturbative parton distribution functions, but also in case of some root-
valued harmonic polylogarithms considered in Sect. 8.

The inverse Mellin-transform cannot be performed in the above way for inte-
grands which do not vanish sufficiently fast enough as jN j ! 1. Contributions of
this kind are those leading to distribution-valued terms in x-space as to ı.1 � x/;
Œlnk.1 � x/=.1 � x/�C the Dirac ı-distribution and theC-distribution defined by

Z 1

0

dx Œf .x/�C g.x/ D
Z 1

0

dx Œg.x/ � g.1/� f .x/ : (113)

Also for terms which grow like aN ; a 2 R; a > 1 in N -space, the Mellin transform
cannot be performed numerically in general. They are not supposed to emerge
in physical observables. The physical quantities in hadronic scattering contain
the parton distribution functions, which, however, damp according contributions
occurring in the evolution kernels sufficiently. On the other hand, the inverse
Mellin transform can always be performed analytically changing form nested sum-
representations inN -space to iterated integral representations in x-space as has been
outlined before.

10 Conclusions

Feynman integrals in Quantum Field Theories generate a hierarchic series of
special functions, which allow their unique representation. They emerge in terms of
special nested sums, iterated integrals and numbers. Their variety gradually extends
enlarging the number of loops and legs, as well as the associated mass scales. The
systematic exploration of these structures has been started about 15 years ago and
several levels of complexity have been unraveled since. The relations of the various
associated sums and integrals are schematically illustrated in Fig. 3 and are widely
explored. Many relations are implied by the shuffle resp. stuffle algebras, others are
structural relations. The number of relations grows with the number of admissible
operations.

A large amount of transformations and relations between the different quantities
being discussed in this article are encoded in the package HarmonicSums [29,35]
for public use. For newly emerging structures the algebraic relations are easily
generalized but they will usually apply structural relations of a new kind. With
the present programme revealing their strict (atomic) structure, they are fully
explored analytically and Feynman’s original approach to completely organize the
calculation of observables in Quantum Field Theory is currently extended to massive
calculations at the three-loop level in Quantum Electrodynamics and Quantum
Chromodynamics at the perturbative side. For these quantities efficient numerical



24 J. Ablinger and J. Blümlein

H-Sums

S−1 2(n)

S-Sums

S1 2
1
2 1;n

)
C-Sums

S(2 1 −1)(n)

H-Logs

H−1 1(x)

C-Logs

H(4 1) (0 0)(x)

G-Logs

H2 3(x)

integral representation (inv. Mellin transform)

Mellin transform

S−1 2( )S1 2
1
2 1;

)
S(2 1 −1)( )

n→

H−1 1(1)H(4 1) (0 0)(1) H2 3(c)

x→
1

x→
1

x→
c∈

R

power series expansion

Fig. 3 Connection between harmonic sums (H-Sums), S-sums (S-Sums) and cyclotomic harmonic
sums (C-Sums), their values at infinity and harmonic polylogarithms (H-Logs), generalized
harmonic polylogarithms (G-Logs) and cyclotomic harmonic polylogarithms (C-Logs) and their
values at special constants

representations have to be derived. Working in Mellin space the treatment may even
remain completely analytic, in a very elegant way, up to a single final numerical
contour integral around the singularities of the problem, cf. Sect. 9.

Despite of the achievements being obtained many more physical classes still
await their systematic exploration in the future. It is clear, however, that the various
concrete structures are realized as combinations of words over certain alphabets,
which may be called the genetic code of the microcosm [120].
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lagsgesellschaft Geest and Portig, Leipzig (1967)



Harmonic Sums, Polylogarithms, Special Numbers, and Their Generalizations 25

4. Kratzer, A., Franz, W.: Transzendente Funktionen. Akademische Verlagsgesellschaft Geest
and Portig, Leipzig (1963)

5. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press,
Cambridge (2006)

6. Nakanishi, N.: Parametric integral formulas and analytic properties in perturbation theory.
Suppl. Progr. Theor. Phys. 18, 1–125 (1961); Graph Theory and Feynman Integrals. Gordon
and Breach, New York (1970);
Bogner, C., Weinzierl, S.: Feynman graph polynomials. Int. J. Mod. Phys. A 25, 2585–2618
(2010). [arXiv:1002.3458 [hep-ph]];
Weinzierl, S.: (this volume)

7. Vermaseren, J.A.M., Vogt, A., Moch, S.: The third-order QCD corrections to deep-inelastic
scattering by photon exchange. Nucl. Phys. B 724, 3–182 (2005). [arXiv:hep-ph/0504242]
and refences therein
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113. Blümlein, J., Hasselhuhn, A., Kovacikova, P., Moch, S.: O.˛s/ heavy flavor corrections to
charged current deep-inelastic scattering in Mellin space. Phys. Lett. B 700, 294–304 (2011).
[arXiv:1104.3449 [hep-ph]]

114. Blümlein, J., Vogt, A.: The evolution of unpolarized singlet structure functions at small x.
Phys. Rev. D 58, 014020 (1998). [hep-ph/9712546]

115. Nielsen, N.: Handbuch der Theorie der Gammafunktion. Teubner, Leipzig (1906); Reprinted
by Chelsea Publishing Company, Bronx, New York (1965)
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120. Blümlein, J., Riemann, T., Schneider, C.: DESY Annual Report (2013)

http://en.wikipedia.org/wiki/Carlson%27s_theorem


Multiple Zeta Values and Modular Forms
in Quantum Field Theory

David Broadhurst

Abstract This article introduces multiple zeta values and alternating Euler sums,
exposing some of the rich mathematical structure of these objects and indicating
situations where they arise in quantum field theory. Then it considers massive
Feynman diagrams whose evaluations yield polylogarithms of the sixth root of unity,
products of elliptic integrals, and L-functions of modular forms inside their critical
strips.

1 Sums and Nested Sums

We begin by generalizing the single sum of a zeta value to the nested sum that
defines a multiple zeta value (MZV) [1–4].

1.1 Zeta Values

For integer s > 1, the zeta values

�.s/ D
1X

nD1

1
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C. Schneider and J. Blümlein (eds.), Computer Algebra in Quantum Field Theory,
Texts & Monographs in Symbolic Computation, DOI 10.1007/978-3-7091-1616-6 2,
© Springer-Verlag Wien 2013

33

mailto:David.Broadhurst@open.ac.uk


34 D. Broadhurst

divide themselves into two radically different classes. At even integers we have

�.2/ D �2

6

�.4/ D �4

90

�.6/ D �6

945

�.8/ D �8

9;450

�.10/ D �10

93;555

and hence integer relations such as

5�.4/� 2�2.2/ D 0: (1)

Yet no such relations have been found for odd arguments.
To prove (1), consider the wonderful formula

cos.z/

sin.z/
D

1X

nD�1

1

z � n�

in which the cotangent function is given by the sum of its pole terms, each with unit
residue. Multiplying by z, to remove the singularity at z D 0, and then combining
the terms with positive and negative n, we obtain

z cos.z/

sin.z/
D 1 � 2z2

1X

nD1

1

n2�2 � z2
:

Expanding about z D 0 we obtain

1 � z2=2ŠC z4=4ŠCO.z6/
1 � z2=3ŠC z4=5ŠCO.z6/ D 1 � 2 �.2/

z2

�2
� 2 �.4/ z4

�4
CO.z6/

and easily prove that �.2/ D �2=6 and �.4/ D �4=90.

1.2 Double Sums

For integers a > 1 and b > 0, let
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�.a; b/ D
X

m>n>0

1

manb

which is a multiple zeta value (MZV) with weight aC b and depth 2. Then, when a
and b are both greater than 1, the double sum in the product

�.a/�.b/ D
X

m>0

1

ma

X

n>0

1

nb

can be split into three terms, with m > n > 0, m D n > 0 and n > m > 0. Hence

�.a/�.b/ D �.a; b/C �.aC b/C �.b; a/: (2)

There are further algebraic relations. Consider the sums

T .a; b; c/ D
1X

jD1

1X

kD1

1

.j C k/aj bkc :

Multiplying the numerator by .j C k/ � j � k D 0 we obtain

0 D T .a � 1; b; c/� T .a; b � 1; c/ � T .a; b; c � 1/

and hence by repeated application of

T .a; b; c/ D T .aC 1; b � 1; c/C T .aC 1; b; c � 1/

we may reduce these Tornheim double sums [5] to MZVs. For example

T .1; 1; 1/ D 2�.2; 1/:
We also have

T .1; 1; 1/ D
1X

jD1

1X

kD1

1

.j C k/jk D
1X

jD1

1

j 2

1X

kD1

�
1

k
� 1

j C k
�

:

But now the inner sum has only j terms and hence

T .1; 1; 1/ D
1X

jD1

1

j 2

jX

nD1

1

n
D �.2; 1/C �.3/:

Comparing the two results for T .1; 1; 1/, we find that

�.2; 1/ D �.3/:
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More generally, for a > 1, Euler found that

�.a; 1/ D a

2
�.aC 1/� 1

2

a�1X

bD2
�.aC 1 � b/�.b/: (3)

Moreover, Euler found the evaluation of all MZVs with odd weight and depth 2.
For odd a > 1 and even b > 0 we have

�.a; b/ D �1C C.a; b; aC b/
2

�.aC b/

C
.aCb�3/=2X

kD1
C.a; b; 2k C 1/�.aC b � 2k � 1/�.2k C 1/ (4)

where

C.a; b; c/ D
 
c � 1
a � 1

!

C
 
c � 1
b � 1

!

:

For example, we obtain

�.3; 2/ D �11
2
�.5/C �2

2
�.3/

�.2; 3/ D �.2/�.3/� �.5/� �.3; 2/

D 9

2
�.5/� �

2

3
�.3/

using (4) and (2).
With weight w D aC b < 8 there is only one double sum �.a; b/ not covered by

Euler’s explicit formulas, namely

�.4; 2/ D �2.3/� 4
3
�.6/

with an evaluation whose proof will be considered later.
To obtain such evaluations by empirical methods, you may use the EZFace

interface1 which supports the lindep function of Pari-GP. For example, the
input
lindep([z(4,2),z(3)O2,z(6)])
produces the output
3., -3., 4.

1http://oldweb.cecm.sfu.ca/cgi-bin/EZFace/zetaform.cgi

http://oldweb.cecm.sfu.ca/cgi-bin/EZFace/zetaform.cgi
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corresponding to the integer relation

3�.4; 2/� 3�2.3/C 4�.6/ D 0:

At weight w D 8, it appears that �.5; 3/ cannot be reduced to zeta values and their
products, though we have no way of proving that such a reduction cannot exist. We
cannot even prove that �.3/=�3 is irrational. I shall take �.5; 3/ as an (empirically)
irreducible MZV of weight 8 and depth 2. Then all other double sums of weight 8
may be reduced to �.5; 3/ and zeta values. For example,

20�.6; 2/D 40�.5/�.3/� 8�.5; 3/� 49�.8/:

It is proven that the number of irreducible double sums of even weight w D 2n is
no greater than dn=3e�1. Up to weight w D 12, we may take the irreducible double
sums to be �.5; 3/, �.7; 3/ and �.9; 3/. Later we shall see that the proven reduction

�.7; 5/ D 14

9
�.9; 3/C 28

3
�.7/�.5/� 24; 257�12

2; 298; 646; 350
(5)

sets us a puzzle. There is only one irreducible MZV with weight 12 and depth 2.

1.3 Triple Sums

The first MZV of depth 3 that has not been reduced to MZVs of lesser depth (and
their products) occurs at weight 11. It is proven that

�.a; b; c/ D
X

l>m>n>0

1

lambnc

is reducible when the weight w D a C b C c is even or less than 11. I conjectured
that all MZVs of depth 3 are expressible in terms of Q-linear combinations of the
set

B3 D f�.2aC 1; 2b C 1; 2c C 1/ja � b � c; a > cg

together with double sums, �.a; b/, single sums, �.c/, and their products. This was
borne out by investigations with Borwein and Girgensohn [6] and more recently
with Blümlein and Vermaseren in [7], with the associated MZV DataMine2

providing strong evidence for many of the claims made in this article. The conjecture

2http://www.nikhef.nl/�form/datamine/

http://www.nikhef.nl/~form/datamine/
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implies that the number of irreducible MZVs of weight w D 2nC 3 and depth 3 is
dn2=12e � 1, with the sequence

1; 2; 2; 4; 5; 6; 8; 10; 11; 14; 16; 18; 21; 24; 26; 30

giving the numbers for odd weights from 11 to 41.

1.4 A Quadruple Sum

The mystery of MZVs really begins here. At weight 12 there first appears a
quadruple sum that has not been reduced to MZVs with depths less than 4. In the
DataMine we take this to be

�.6; 4; 1; 1/ D
X

k>l>m>n>0

1

k6l4mn

and prove, by exhaustion, that the following methods are insufficient to reduce it.

2 Shuffles, Stuffles and Duality for MZVs

Next we consider the sources of relations between MZVs.

2.1 Shuffles of Words

For integers sj > 0 and s1 > 1, the MZV

�.s1; s2; : : : ; sk/ D
X

n1>n2>:::>nk>0

1

n
s1
1 n

s2
2 : : : n

sk

k

may be encoded by a word of length w DPk
jD1 sj in the two letter alphabet .A;B/,

as follows. We write A, s1 � 1 times, then B , then A, s2 � 1 times, then B , and so
on, until we end with B . For example

�.5; 3/ D Z.AAAABAAB/

�.6; 4; 1; 1/ D Z.AAAAABAAABBB/
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where the functionZ takes a word as it argument and evaluates to the corresponding
MZV. Note that the word must begin withA and end withB . The weight of the MZV
is the length of the word and the depth is the number of B’s in the word.

We may evaluate the MZV from an iterated integral defined by its word. For
example

�.2; 1/ D Z.ABB/ D
Z 1

0

dx1
x1

Z x1

0

dx2
1 � x2

Z x2

0

dx3
1 � x3 (6)

where we use the differential form dx=x whenever we see the letter A and the
differential form dx=.1 � x/ whenever we see the letter B . Then the equality of
the nested sum �.2; 1/ with the iterated integral Z.ABB/ follows from binomial
expansion of 1=.1� x2/ and 1=.1� x3/ in (6).

The shuffle algebra of MZVs is the identity

Z.U /Z.V / D
X

W 2S .U;V /

Z.W / (7)

where S .U; V / is the set of words obtained by all permutations of the letters of UV
that preserve the order of letters in U and the order of letters in V . For example,
suppose that U D ab and V D xy. Then S .U; V / consists of the words

S .ab; xy/ D fabxy; axby; xaby; axyb; xayb; xyabg :

The only legal two-letter word is AB. Hence setting a D x D A and b D y D B

we obtain

Z.AB/Z.AB/ D 2Z.ABAB/C 4Z.AABB/

which shows that

�2.2/ D 2�.2; 2/C 4�.3; 1/:

2.2 Stuffles of Nested Sums

We also have the “stuffle” identity

�.2/�.2/ D �.2; 2/C �.4/C �.2; 2/

from shuffling the arguments in a product of zetas and adding in the extra “stuff” that
originates when summation variables are equal. Hence we conclude that �.3; 1/ D
1
4
�.4/. The evaluation �.2; 2/ D 3

4
�.4/ requires the extra piece of information

�2.2/ D 5
2
�.4/ obtained from expanding the cotangent function.
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Like the shuffle algebra, the stuffle algebra can be used to express any product of
MZVs as a sum of MZVs. For example

�.3; 1/�.2/D �.3; 1; 2/C �.3; 3/C �.3; 2; 1/C �.5; 1/C �.2; 3; 1/:

2.3 Duality

By combining shuffles, stuffles and reductions of �.2/, �.4/ and �.6/ to powers of
�2 we may prove that

Z.AAABAB/ D �.4; 2/ D �2.3/� 4
3
�.6/:

Moreover, we obtain the same value for the depth-4 MZV

Z.ABABBB/ D �.2; 2; 1; 1/

since Z.W / D Z. QW /, where the dual QW of a word W is obtained by writing it
backwards and then exchanging A and B . This duality was observed by Zagier.
It follows from the transformation x ! 1 � x in the iterated integral, which
exchanges the differential forms dx=x and dx=.1 � x/ and reverses the ordering
of the integrations. Hence

�.2; 3; 1/ D Z.ABAABB/ D Z.AABBAB/ D �.3; 1; 2/:

2.4 Conjectured Enumeration of Irreducible MZVs

Thus we arrive at a well-defined question: for a given weight w > 2 and a given
depth d > 0, what is rank-deficiencyDw;d of all the algebraic relations that follow
from the shuffle and stuffle algebras algebras of MZVs, combined with duality
and the reduction of even zeta values to powers of �2? Note that Dw;d is an
upper limit for the number of irreducible MZVs at this weight and depth. There
may conceivably (but rather improbably) be fewer, since we cannot rule out the
possibility of additional integer relations. We cannot even prove that �.3/=�3 is
irrational.

In 1996, Dirk Kreimer and I conjectured [8] that the answer to this question is
given by the generating function

Y

w>2

Y

d>0

.1 � xwyd /Dw;d ‹D 1 � x3y

1 � x2 C
x12y2.1 � y2/
.1 � x4/.1 � x6/ (8)
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Table 1 Number of basis elements for MZVs as a function of weight and depth in a minimal
depth representation. Underlined are the values we have verified with our programs

w /d 1 2 3 4 5 6 7 8 9 10

3 1
4
5 1
6
7 1
8 1
9 1
10 1
11 1 1
12 1 1
13 1 2
14 2 1
15 1 2 1
16 2 3
17 1 4 2
18 2 5 1
19 1 5 5
20 3 7 3
21 1 6 9 1
22 3 11 7
23 1 8 15 4
24 3 16 14 1
25 1 10 23 11
26 4 20 27 5
27 1 11 36 23 2
28 4 27 45 16
29 1 14 50 48 7
30 4 35 73 37 2

which produces the values of Dw;d in Table 1, with underlined values verified by
work with Johannes Blümlein and Jos Vermaseren [7].

To explain how I guessed the final term in the generating function (8), we shall
need to consider alternating Euler sums.

3 MZVs in QFT

The counterterms in the renormalization of the coupling in �4 theory, at L
loops, may involve MZVs with weights up to 2L � 3 [9]. Those associated
with subdivergence-free diagrams may be obtained from finite massless two-point
diagrams with one less loop.
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The first irreducible MZV of depth 2, namely �.5; 3/, occurs in a counterterm
coming from the most symmetric six-loop diagram for the �4 coupling, in which
each of the 4 vertices connected to an external line is connected to each of the 3
other vertices, giving 12 internal propagators (or edges, as mathematicians prefer to
call them). It hence diverges, at large loop momenta, in the manner of

R
d24k=k24.

Its contribution to the ˇ-function of �4-theory is scheme-independent and may be
computed to high accuracy by using Gegenbauer polynomial expansions in x-space,
which give the counterterm as a four-fold sum that is far from obviously a MZV.
Accelerated convergence of truncations of this sum gave an empirical Q-linear of
combination of �.5/�.3/ with

�.5; 3/� 29
12
�.8/

and the latter combination was found to occur in another six-loop counterterm.
I shall attempt to demystify the multiple of �.8/ after discussing alternating Euler
sums.

At seven loops, Dirk Kreimer and I found the combination

�.3; 5; 3/� �.3/�.5; 3/

in three different counterterms, where it occurs in combination with rational
multiples of �.11/ and �2.3/�.5/.

4 Alternating Euler Sums

This second topic is closely related to the first, namely alternating sums of the form

1X

n1>n2>:::>nk>0

"
n1
1 : : : "

nk
k

n
s1
1 : : : n

sk
k

with positive integers sj and signs "j D ˙1. We may compactly indicate the
presence of an alternating sign, when "j D �1, by placing a bar over the
corresponding integer exponent sj . Thus we write

�.3; 1/ D
X

m>n>0

.�1/mCn
m3n

�.3; 6; 3; 6; 3/ D
X

j>k>l>m>n>0

.�1/kCm
j 3k6l3m6n3

using the same symbol � as we did for the MZVs. Such sums may be studied using
EZFace and the DataMine.
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4.1 Three-Letter Alphabet

Alternating sums have a stuffle algebra, from their representation as nested sums,
and a shuffle algebra, from their representation as iterated integrals. In the integral
representation we need a third letter, C , in our alphabet, corresponding to the
differential form dx=.1C x/. Consider

Z.ABC/ D
Z 1

0

dx

x

Z x

0

dy

1 � y
Z y

0

dz

1C z
:

The z-integral gives log.1C y/ D �Pj>0.�y/j =j and hence

Z.ABC/ D �
X

j>0

Z 1

0

dx

x

Z x

0

dy

1 � y
.�y/j
j

:

Expanding 1=.1� y/ DPk>0 y
k�1 and integrating over y we obtain

Z.ABC/ D �
X

k>0

X

j>0

Z 1

0

dx

x

xjCk

j C k
.�1/j
j

and the final integration gives

Z.ABC/ D �
X

k>0

X

j>0

1

.j C k/2
.�1/j
j

:

Finally, the substitution k D m � j gives

Z.ABC/ D �
X

m>j>0

.�1/j
m2j

D ��.2; 1/:

It takes a bit of practice to translate between words and sums. Here’s another
example:

Z.ACCAC/ D .�1/3
X

l>0

X

k>0

X

j>0

.�1/l
.j C k C l/2

.�1/k
j C k

.�1/j
j 2

gives

Z.ACCAC/ D �
X

m>n>j>0

.�1/m
m2nj 2

D ��.2; 1; 2/

after the substitutions l D m � n and k D n � j .
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Going from sums to words is quite tricky. For example, try to find the word W
and the sign ".W / such that

�.3; 6; 3; 6; 3/ D ".W /Z.W /:

Note that ".W / isC1 or �1 according as whether there is an odd or even number of
letters C in the word W . The word W begins AABAAAAACAA : : :. The next letter
is either B or C , but which is it?

4.2 Shuffles and Stuffles for Alternating Sums

The six shuffles in

S .ab; xy/ D fabxy; axby; xaby; axyb; xayb; xyabg

give six different words, with a D A, b D B , x D y D C :

Z.AB/Z.CC/ D Z.ABCC/CZ.ACBC/CZ.CABC/

CZ.ACCB/CZ.CACB/CZ.CCAB/

which translates to

�.2/�.1; 1/ D �.2; 1; 1/C �.2; 1; 1/C �.1; 2; 1/C �.2; 1; 1/C �.1; 2; 1/C �.1; 1; 2/:

The stuffles for this product are

�.2/�.1; 1/ D �.2; 1; 1/C �.3; 1/C �.1; 2; 1/C �.1; 3/C �.1; 1; 2/:

4.3 Transforming Words

The transformation x D .1 � y/=.1C y/ gives

d log.x/ D d log.1 � y/ � d log.1C y/
d log.1 � x/ D d log.y/� d log.1C y/
d log.1C x/ D � d log.1C y/
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and maps x D 0 and x D 1 to y D 1 and y D 0. Thus, if we take a word W , write
it backwards, and make the transformations

A! .B C C/
B ! .A � C/

we may obtain an expression for Z.W / by expanding the brackets.
For example the transformation

AB! .A� C/.B C C/ D ABC AC � CB � CC

gives

Z.AB/ D Z.AB/CZ.AC/�Z.CB/ �Z.CC/:

Combining this with the shuffle

Z.C/Z.C / D Z.CC/CZ.CC/

we obtain

0 D Z.AC/�Z.CB/ � 1
2
Z.C /Z.C / D ��.2/C �.1; 1/ � 1

2
�.1/�.1/:

Combining this with the stuffle

�.1/�.1/ D �.1; 1/C �.2/C �.1; 1/

we obtain

�.2/ D �1
2
�.2/

which is also obtainable as follows.

4.4 Doubling Relations

For a > 1 we have

�.a/C �.a/ D
X

n>0

1C .�1/n
na

D
X

k>0

2

.2k/a
D 21�a�.a/
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by the substitution n D 2k. Hence

�.a/ D .21�a � 1/�.a/:

At a D 2, we obtain �.2/ D ��.2/=2, as above. Note also that �.1/ D � log.2/.
We may take any MZV and convert it into a combination of MZVs and

alternating sums, by doubling the summation variables. For example, we obtain

22�a�b�.a; b/ D
X

m>n>0

2

.2m/a
2

.2n/b

D
X

j>k>0

1C .�1/j
j a

1C .�1/k
ka

D �.a; b/C �.a; b/C �.a; b/C �.a; b/

by the transformations j D 2m and k D 2n.
More complicated doubling relations were used in constructing the DataMine.

With these, it was possible to avoid using the time-consuming transformations
A! .B CC/ and B ! .A�C/ as algebraic input. It was verified that the output,
obtained by shuffling, stuffling and doubling, satisfied the relations that follow from
word transformation.

4.5 Conjectured Enumeration of Irreducible Alternating Sums

Before considering the enumeration of irreducible MZVs, in the .A;B/ alphabet,
I already had a rather simple conjecture for the generator of the number, Ew;d , of
irreducible sums of weight w and depth d in the .A;B; C / alphabet, namely

Y

w>2

Y

d>0

.1 � xwyd /Ew;d ‹D 1 � x3y

.1 � xy/.1 � x2/ : (9)

If this be true, it is easy to obtainEw;d by Möbius transformation of the binomial
coefficients in Pascal’s triangle. Let [8]

T .a; b/ D 1

aC b
X

cja;b
�.c/

.a=c C b=c/Š
.a=c/Š.b=c/Š

(10)

where the sum is over all positive integers c that divide both a and b and the Möbius
function is defined by

�.c/ D
8
<

:

1 when c D 1
0 when c is divisible by the square of a prime
.�1/k when c is the product of k distinct primes.

(11)
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When w and d have the same parity, and w > d , one obtains from (9)

Ew;d D T
�

w � d
2

; d

�

: (12)

The DataMine now provides extensive evidence to support this conjecture. It
was verified at depth 6 up to weight 12, solving the algebraic input in rational
arithmetic, and then up to weight 18, using arithmetic modulo a 31-bit prime. At
depth 5, the corresponding weights are 17 and 21. At depth 4, they are 22 and 30.

5 Pushdown from MZVs to Alternating Sums

Now consider the integersMw;d generated by an even simpler process:

Y

w>2

Y

d>0

.1 � xwyd /Mw;d D 1 � x3y

1 � x2 : (13)

But what is the question, to which this is the answer?
I conjectured that Mw;d is the number of irreducible sums of weight w and depth

d in the .A;B; C / alphabet that suffice for the evaluation of MZVs in the .A;B/
alphabet.

5.1 Pushdown at Weight 12

As already hinted, the first place that this conjecture becomes non-trivial is at weight
12, where the enumerations M12;4 D 0 and M12;2 D 2 are to be contrasted with
the enumerations D12;4 D 1 and D12;2 D 1 of irreducible MZVs. The conjecture
requires that

�.6; 4; 1; 1/ D
X

k>l>m>n>0

1

k6l4mn

be reducible to sums of lesser depth, if we include an alternating double sum in the
basis.

In 1996, I found such a “pushdown” empirically, using the integer-relation search
routine PSLQ [10]. It took another decade to prove such an integer relation, by
the laborious process of solving all the known algebraic relations in the .A;B; C /
alphabet at weight 12 and depths up to 4. Jos Vermaseren derived this proven identity
from the DataMine:
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�.6; 4; 1; 1/ D �64
27
A.7; 5/� 7;967

1;944
�.9; 3/C 1

12
�4.3/C 11;431

1;296
�.7/�.5/

�799
72
�.9/�.3/C 3�.2/�.7; 3/C 7

2
�.2/�2.5/C 10�.2/�.7/�.3/

C3
5
�2.2/�.5; 3/� 1

5
�2.2/�.5/�.3/� 18

35
�3.2/�2.3/

�5;607;853
6;081;075

�6.2/

where

A.7; 5/ D Z.AAAAAA.B � C/AAAAB/ D �.7; 5/C �.7; 5/:
It is now proven that all MZVs of weight up to 12 are reducible to Q-linear

combinations of �.5; 3/, �.7; 3/, �.3; 5; 3/, �.9; 3/, �.7; 5/, single zeta values, and
products of these terms.

5.2 Enumeration of MZVs Revisited

I can now explain the rather simple-minded procedure that Dirk Kreimer and I used
in 1996 to arrive at the conjecture [8]

Y

w>2

Y

d>0

.1 � xwyd /Dw;d ‹D 1 � x3y

1 � x2 C
x12y2.1 � y2/
.1 � x4/.1� x6/

for the number Dw;d of irreducible sums in the .A;B/ alphabet of pure MZVs.
We added the third term to the much simpler conjectured generator for the much
complicated question answered by Mw;d , namely the number of irreducibles in
the .A;B; C / alphabet that suffice for reductions of MZVs. The numerator, x12y2

.1 � y2/, of this term was determined by the single pushdown observed at weight
12, from an MZV of depth 4 to an alternating sum of depth 2. The denominator,
.1�x4/.1�x6/, was chosen to agree with the empirical numberD2n;2 D dn=3e�1
of double non-alternating irreducible sums of weight 2n. Then we assumed that the
enumeration of all other pushdowns would be generated by filtration. It was possible
to check this, in a few cases, using PSLQ in 1996.

The list of explicit pushdowns that have now been obtained, in accord with the
conjecture, has grown since then.

At weights 15, 16, 17, we have found pushdowns from MZVs to these alternating
sums: �.6; 3; 6/, �.13; 3/, �.6; 5; 6/.
At weight 18, there were pushdowns to �.15; 3/ and �.6; 5; 4; 3/.
At weight 19, to �.8; 3; 8/ and �.6; 7; 6/.
At weight 20, to �.17; 3/, �.8; 5; 4; 3/ and �.6; 5; 6; 3/.
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Our most ambitious efforts were at weight 21, where 3 MZVs of depth 5 are
pushed down to the alternating sums �.8; 5; 8/, �.6; 9; 6/and �.8; 3; 10/. Moreover
the first pushdown from an MZV of depth 7 to an alternating sum of depth 5 is
predicted at weight 21. A demanding PSLQ computation gave a relation of the form

�.6; 2; 3; 3; 5; 1; 1/D �326
81
�.3; 6; 3; 6; 3/C : : : (14)

where the remaining 150 terms are formed by MZVs with depth no greater than
5, and their products. At such weight and depth, it becomes rather non-trivial to
decide on a single alternating sum that might replace a MZV of greater depth. It
took several attempts to discover that the alternating sum

�.3; 6; 3; 6; 3/ D
X

j>k>l>m>n>0

.�1/kCm
.jk2lm2n/3

is an “honorary MZV” that performs this task.

5.3 Suppression of � in Massless Diagrams

Now I can demystify, somewhat, the combination

�.5; 3/� 29
12
�.8/

that occurs in scheme-independent counterterms of �4 theory at six loops. Dirk
Kreimer and I discovered that the combinations [8]

N.a; b/ D �.a; b/� �.b; a/;

with distinct odd integers a and b, simplify the results for counterterms. In
particular, the use of

N.3; 5/ D 27

80

�

�.5; 3/� 29
12
�.8/

�

C 45

64
�.3/�.5/

removes all powers of � from both subdivergence-free diagrams that contribute to
the six-loop ˇ-function. In each case, the contribution is a Z-linear combination of
N.3; 5/ and �.3/�.5/.

At higher loop numbers, Oliver Schnetz has found that N.3; 7/ suppresses the
appearance �10. However, at 8 loops he found that N.3; 9/ and N.5; 7/ are not
sufficient to remove�12. Like the maths, the physics becomes different at weight 12.
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6 Magnetic Moment of the Electron

The magnetic moment of an electron, with charge�e and massm, is slightly greater
than the Bohr magneton

e„
2m
D 9:274 
 10�24 J T�1

which was the value predicted by Dirac. Here I included „ D h=.2�/, which we
usually set to unity in QFT.

Using perturbation theory, we may expand in powers of the fine structure
constant:

˛ D e2

4�"0„c D
1

137:035999 : : :
:

In QFT, we usually set "0 D 1 and c D 1 and expand in powers of ˛=� D e2=.4�2/,
obtaining a perturbation expansion

magnetic moment

Bohr magneton
D 1C A1 ˛

�
C A2

�˛

�

�2 CA3
� ˛

�

�3 C : : :

which is known up to three loops.
In 1947, Schwinger [11] found the first correction termA1 D 1

2
: In 1950, Karplus

and Kroll [12] claimed the value

28�.3/� 54�.2/ log.2/C 125

6
�.2/� 2;687

288
D �2:972604271 : : :

for the coefficient of the next correction. It turned out that they had made a mistake
in this rather difficult calculation. The correct result

A2 D 3

4
�.3/� 3�.2/ log.2/C 1

2
�.2/C 197

144
D �0:3284789655 : : :

was not obtained until 1957 [13, 14]. Not until 1996 was the next coefficient

A3 D �215
24
�.5/C 83

12
�.3/�.2/� 13

8
�.4/� 50

3
�.3; 1/

C 139

18
�.3/� 596

3
�.2/ log.2/C 17;101

135
�.2/C 28;259

5;184
(15)

D 1:181241456 : : :
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found, by Stefano Laporta and Ettore Remiddi [15]. The irrational numbers
appearing on the second line are those already seen in A2. On the first line we see
zeta values and a new number, namely the alternating double sum

�.3; 1/ D
X

m>n>0

.�1/mCn
m3n

� �0:11787599965050932684101395083413761 : : :

I visited Stefano and Ettore in Bologna when they were working on this
formidable calculation and recommended to them a method of integration by parts,
in D dimensions, that I had found useful for related calculations in the quantum
field theory of electrons and photons [16]. Here D D 4 � 2" is eventually set to 4,
the number of dimensions of space-time. But it turns out to be easier if we keep it as
a variable until the final stage of the calculation. Then if we find parts of the result
that are singular at " D 0 we need not worry: all that matters is that the complete
result is finite. Based on D-dimensional experience, I expected their final result to
look simplest when written in terms of �.3; 1/.

The D-dimensional calculation that informed this intuition involved three-loop
massive diagrams contributing to charge renormalization in QED [16]. These
yielded Saalschützian F32 hypergeometric series, with parameters differing from
1
2

by multiples of ", namely

W.a1; a2I a3; a4/ D
1X

nD0

. 1
2
� a1"/n. 12 � a2"/n

. 1
2
C a3"/nC1. 12 C a4"/nC1

with .˛/n � � .˛Cn/=� .˛/. In particular, I needed the expansions ofW.1; 1I 1; 0/
and W.1; 0I 1; 1/ in ". The result for the most difficult three-loop diagram had the
value �2 log.2/ � 3

2
�.3/ at " D 0. Noting that this also occurs in the two-loop

contribution to the magnetic moment, I expanded the charge-renormalization result
to O."/, where I found only �.3; 1/ and �.4/. I thus hazarded the guess that these
two sums would exhaust the weight-4 contributions to the magnetic moment at three
loops, which happily is the case.

One may also write (15) in terms of a polylog that is not evaluated on the unit
circle, such as

Li4.1=2/ D
1X

nD1

1

n4

�
1

2

�n
D � 1

24
log4.2/C 1

4
�.2/ log2.2/C 1

4
�.4/� 1

2
�.3; 1/;

but then the result for A3 will acquire extra terms, involving powers of log2.2/.
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7 Three-Loop Massive Bubble Diagrams

Here we consider three-loop diagrams with a massive particle in at least one of the
internal lines. If this mass is much larger than the scales set by external momenta,
we may set the latter to zero, and obtain vacuum bubbles.

7.1 Tetrahedral Bubbles from Two-Loop Propagators

There are ten distinct colourings of a tetrahedron by mass, shown in Fig. 1.
The massive lines in V2A and V2N are adjacent and non-adjacent, respectively;

in the dual cases, V4A and V4N , it is the massless lines that are adjacent and non-
adjacent; in cases V3T , V3S and V3L, the massive lines form a triangle, star and line,
and hence the massless lines form a star, triangle and line.

Defining the finite two-point function (with space-like p2)

I.r1 : : : r5Ip2=m2/ WD p2

�4

Z

d4k

Z

d4l P1.k/P2.pC k/P3.k � l/P4.l/P5.pC l/ (16)

with Pj .k/ WD 1=.k2 Cm2rj /, in 4 dimensions, we obtain

V.r1 : : : r5; 0/� V.r1 : : : r5; 1/ D
Z 1

0

dx I.r1 : : : r5I x/
�
1

x
� 1

x C 1


CO."/
(17)

for the difference of vacuum diagrams with a massless and massive sixth propagator.
This difference is finite in 4 dimensions.

Suppressing the parameters r1 : : : r5, temporarily, we exploit the dispersion
relation

I.x/ D
Z 1

s0

ds�.s/

�
1

s C x �
1

s



(18)

where �2�i�.s/ D I.�s C i0/ � I.�s � i0/ is the discontinuity across the cut
Œ�1;�s0� on the negative axis. Integration by parts then gives

I.x/ D
Z 1

s0

ds� 0.s/
�

� log
�
1C x

s

�
C log

�

1C x

s0

�

(19)

where the constant term in the logarithmic weight function may be dropped if
�.s0/ D 0, as occurs when s0 D 0. As x !1, we obtain the universal asymptotic
value

6�.3/ D I.1/ D
Z 1

s0

ds � 0.s/ flog.s/� log.s0/g (20)
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V1 V2A V2N V3T V3S

V3L V4A V4N V5 V6

Fig. 1 Colourings of a tetrahedron by mass, denoted by a blob

with the log.s0/ term dropped when s0 D 0. The finite difference in (17) is obtained
from (19) as

Z 1

0

dx I.x/

�
1

x
� 1

x C 1


D
Z 1

s0

ds� 0.s/ fL2.s/ � L2.s0/g (21)

with a dilogarithmic weight function

L2.s/ WD
Z 1

0

dx

x.x C 1/ log

�
1C x
1C x=s

�

D Li2.1�1=s/ D �1
2

log2.s/�Li2.1�s/
(22)

that is chosen to satisfy L2.1/ D 1, thus enabling one to drop L2.s0/ for s0 D 0 and
s0 D 1, which covers all the cases with N � 3 massive particles in the two-point
function, and hence N C 1 � 4 massive particles in vacuum diagrams.

We now prove that the two terms in the weight function (22) can be separated to
yield the finite parts of the vacuum diagrams combined in (17), as follows:

F.r1 : : : r5; 0/ D 1

2

Z 1

s0

ds� 0.r1 : : : r5I s/
˚
log2.s/� log2.s0/

�
(23)

F.r1 : : : r5; 1/ D �
Z 1

s0

ds � 0.r1 : : : r5I s/ fLi2.1 � s/� Li2.1 � s0/g (24)

with constant terms in the weight functions that are inert when s0 D 0 and when
s0 D 1. The proof uses the representation

I.x/ D 6�.3/C
Z 1

s0

ds� 0.s/ f� log.x C s/C log.x C s0/g (25)

in which the asymptotic value (20) is subtracted. Then one obtains

Z 1

0

dx
I.1/� I.x/

x C 1 D �
Z 1

s0

ds� 0.s/ fLi2.1 � s/ � Li2.1 � s0/g : (26)
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Specializing the analysis to cases with rj D 0 or 1, we obtain from [17]

� 0.r1 : : : r5I s/ D
n
� 0a.r1 : : : r5I s/

�
s � .r1 C r2/2

�
C .1$ 4; 2$ 5/

o

C
n
� 0b.r1 : : : r5I s/

�
s � .r2 C r3 C r4/2

�
C .1$ 2; 4$ 5/

o

� 0a.r1 : : : r5I s/ WD 2<
Z 1

.r4Cr5/2
dx
T .x; r1; r2; r3; r4; r5/

�.s; r1; r2/

@

@x

�
�.x; r1; r2/

x � s C i0
�

(27)

� 0b.r1 : : : r5I s/ WD 2<
Z .
p
s�r2/2

.r3Cr4/2
dx

@

@s

�
T .x; s; r2; r5; r4; r3/

x � r1 C i0
�

(28)

T .s; a; b; c; d; e/ WD arctanh

�
�.s; a; b/�.s; d; e/

x2 � x.aC b � 2c C d C e/C .a � b/.d � e/
�

(29)

�.a; b; c/ WD
p
a2 C b2 C c2 � 2ab � 2bc � 2ca (30)

with integration by parts in (27) giving a logarithmic result, in all cases, and
differentiation in (28) giving a logarithmic result when r1r3r5 D r2r3r4 D 0, i.e.
when there is no intermediate state with three massive particles.

7.2 The Totally Massive Case

We were able to hand nine cases by methods that avoided intermediate states with
three massive particles. Now there is no option, since

F6 D �
Z 1

4

ds � 0.s/Li2.1 � s/ (31)

involves intermediate states with two and three massive particles in

� 0.s/ D � 0a.s/.s � 4/C � 0b.s/.s � 9/ : (32)

We may, however, simplify matters by separating these contributions in

F6 � F5 D
Z 1

4

ds � 0.s/Li2.1 � 1=s/ D Fa C Fb (33)

Fa WD
Z 1

4

ds � 0a.s/ fLi2.1 � 1=s/ � �.2/g (34)

Fb WD
Z 1

9

ds � 0b.s/ fLi2.1 � 1=s/� �.2/g (35)

where F5 may be evaluated without encountering elliptic integrals.
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The two-particle cut gives a logarithm in

� 0a.s/ D
2

s � 3

(

arccosh.s=2� 1/� 2�
p
3s.s � 4/

)

(36)

while the three-particle cut gives the elliptic3 integral

� 0b.s/ D �2
Z .
p
s�1/2

4

dx

x � 1
�.x; 1; 1/

�.x; s; 1/

x C s � 1
�2.x; s; 1/C xs : (37)

At large s, contributions (36) and (37) are each O.log.s/=s/, while their sum is
O.log.s/=s2/. The integrals (34) and (35) converge separately, thanks to the �.2/ in
their weight functions, to which the combination (33) is blind.

It appears that we need to integrate the product of a dilog and an elliptic integral.
To avoid this, we may we reverse the order of integration. Setting x D 1=u2 2
Œ4;1� in (37), which now becomes the outer integration, and s D .1=uC v/.1=uC
1=v/ 2 Œ.1=u C 1/2;1� in the inner, we then integrate by parts on v 2 Œ0; 1� to
convert the dilog to a product of logs, with the result [18]

Fb D 2

Z 1
2

0

du

�
dA.u/

du

�Z 1

0

dv

�
@B.u; v/

@v

�

C.u; v/D.u; v/ (38)

A.u/ WD log

�
u2

1� u2

�

(39)

B.u; v/ WD log

�
.1C uv/.uC v/

uC v C uv2

�

(40)

C.u; v/ WD log

�
.1C uv/.uC v/

u2v

�

(41)

D.u; v/ WD log

 
1C 2uvC v2 C .1 � v2/p1 � 4u2

1C 2uvC v2 � .1 � v2/p1 � 4u2

!

(42)

which establishes that Fb is the integral of a trilogarithm.
The NAG routine D01FCF is notably efficient at evaluating rectangular double

integrals in double-precision FORTRAN, which was ample to to discover the
remarkable relation

F6 D F3S C F4N � F2N D 4
�
Cl22.�=3/C 4�.4/C 2�.3; 1/

�
(43)

3I am told that Källén was disappointed to find that the two-loop electron propagator involves an
elliptic integral, unlike the simpler photon propagator.
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where Cl2.�=3/ D P
n>0 sin.n�=3/=n2. This corresponds to a direct relation

between diagrams

V6 C V2N D V3S C V4N CO."/ (44)

verified to 15 digits. It stands as testament to the oft remarked fact that results
in quantum field theory have a simplicity that tends to increase with the labour
expended.

8 Massive Banana Diagrams

To progress beyond diagrams that yield polylogs and elliptic integrals we now turn
attention to vacuum diagrams with merely two vertices. I shall call these “banana”
diagrams. TheL-loop banana diagram hasLC1 edges, each representing a massive
propagator with unit mass. To avoid ultra-violate divergences, let us consider these
in two space-time dimensions.

8.1 Schwinger’s Bananas

LetA be the diagonalN 
N matrix with entriesAi;j D ıi;j ˛i . LetU be the column
vector of length N with unit entries, Ui D 1. Then B D U QU is the N 
 N matrix
with unit entries, Bi;j D 1. The banana diagram with N C 1 edges of unit mass, in
two space-time dimensions, may be evaluated by Schwinger’s trick as a multiple of
the N -dimensional integral

V NC1 D
Z

˛i>0

d˛1 : : : d˛N
Det.AC B/.Tr.A/C 1/ (45)

where

Det.AC B/ D
NX

iD0

1

˛i

NY

jD0
˛j

is the first Symanzik polynomial, with ˛0 D 1 fixed by momentum conservation,
and the second Symanzik polynomial

Tr.A/C 1 D
NX

iD0
˛i

results from the fact that the N C 1 edges are propagators with unit mass.
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8.2 Bessels’s Bananas

We may also evaluate banana diagrams in x-space, since the two-dimensional
Fourier transform of the p-space Euclidean propagator 1=.p2 C m2/, with p2 D
p20 Cp21 , yields the Bessel functionK0.mx/, with x2 D x20 C x21 . The normalization
in (45) corresponds to

V NC1 D 2N
Z 1

0

ŒK0.t/�
NC1t dt (46)

which differs by a power of 2 from the Bessel moments that I studied with Bailey,
Borwein and Glasser [19].

Hence I but a bar over V and use the subscript N C 1 to indicate the number of
Bessel functions.

8.3 Known Bananas

It is proven that [19]

V 1 D 1 (47)

V 2 D 1 (48)

V 3 D 3L�3.2/ (49)

V 4 D 7�.3/ (50)

where

L�3.s/ D
X

n�0

�
1

.3nC 1/s �
1

.3nC 2/s
�

is the Dirichlet L function with conductor �3.
The zero-loop evaluation (47) merely checks our normalization.
The one-loop evaluation

V 2 D
Z 1

0

d˛1
.˛1 C 1/2 D 1

follows neatly from (45), since with N D 1 we have Det.AC B/ D Tr.A/C 1 D
˛1 C 1.

I shall now use fa; b; c; : : :g for the Schwinger parameters f˛1; ˛2; ˛3; : : :g.
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8.4 Three-Edge Banana and Sixth Root of Unity

At two loops, the Schwinger method gives the banana diagram with 3 edges as

V 3 D
Z 1

0

Z 1

0

da db

.abC aC b/.aC b C 1/ :

To proceed we may take partial fractions with respect to b. Then

a2 C aC 1
.abC aC b/.aC b C 1/ D

aC 1
abC aC b �

1

aC b C 1 D
@

@b
log

�
abC aC b
aC b C 1

�

enables integration over b. Hence we obtain

V 3 D
Z 1

0

G.a/ da

a2 C aC 1 (51)

with contributions to

G.a/ D log.1C a/C log.1C 1=a/ (52)

at b D 1 and b D 0. It is apparent from (51) that the sixth root of unity
� D .1 C i

p
3/=2 is implicated, since a2 C a C 1 D .a C �/.a C �/, where

� D .1 � i
p
3/=2 D 1 � � is the conjugate root. Working out the corresponding

dilogarithms we obtain

V 3 D 4p
3
=Li2.�/ D 3L�3.2/

in agreement with the well known result (49).

8.5 Four-Edge Banana and �.3/

To evaluate

V 4 D
Z 1

0

Z 1

0

Z 1

0

da db dc

.abcC abC bcC ca/.aC b C c C 1/
we take partial fractions with respect to c and then integrate over c, to obtain

V 4 D
Z 1

0

Z 1

0

L.a; b/ da db

.aC 1/.b C 1/.aC b/
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with

L.a; b/ D log

�
.abC aC b/.aC b C 1/

ab

�

:

Hence with

F.a/ D
Z 1

0

.a � 1/L.a; b/ db

.b C 1/.aC b/
we have

V 4 D
Z 1

0

F.a/ da

a2 � 1 D
Z 1

0

.F.a/ � F.1=a// da

a2 � 1 : (53)

I shall need only the derivative of F.a/. Let

K.a; b/ D b L.a; b/

aC b C log.abC aC b/� 2 log.aC b C 1/:

Then, by construction,

@

@b
K.a; b/ D a @

@a

�
.a � 1/L.a; b/
.b C 1/.aC b/

�

and hence

a
d

da
F.a/ D K.a;1/�K.a; 0/ D 2G.a/

where G.a/ was given in (52). We now integrate (53) by parts, to obtain

V 4 D
Z 1

0

da

a
log

�
1C a
1� a

�

.G.a/CG.1=a//

and use Nielsen’s evaluations

�
Z 1

0

da

a
log.1 � a/ log.1C a/ D 5

8
�.3/

�
Z 1

0

da

a
log.a/ log.1C a/ D 3

4
�.3/

Z 1

0

da

a
log2.1C a/ D 1

4
�.3/

Z 1

0

da

a
log.a/ log.1 � a/ D �.3/
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to obtain

V 4 D
�

4 
 5
8
C 2 
 3

4
C 4 
 1

4
C 2

�

�.3/ D 7�.3/

in agreement with the previously known result (50).

8.6 Unknown Banana

The next diagram has 5 edges and hence 4 loops. After an easy first integration, we
obtain

V 5 D
Z 1

0

Z 1

0

Z 1

0

M.a; b; c/ da db dc

.abC aC b/c2 C .abC aC b/.aC b/c C .aC b/ab

with

M.a; b; c/ D log.aC b C c C 1/C log

�

1C 1

a
C 1

b
C 1

c

�

:

But then integration over c will produce complicated dilogarithms with arguments
involving the square root of the discriminant

D.a; b/ D .abC aC b/.aC b/.ab.aC b/C .a � b/2/

of the quadratic in c. The result will have the form

V 5 D
Z 1

0

Z 1

0

L2.a; b/da db
p
D.a; b/

with undisclosed dilogs in L2.a; b/. Integration by parts, to reduce the dilogs to
logs, would require us to introduce an elliptic function, since D.a; b/ is a quartic
in b.

We know nothing about the number theory of V 5. Its value is known to 1,000
decimal places.

9 Cut Bananas: On-Shell Sunrise Diagrams

For N > 2 we may cut an edge in V N and set the two external half edges on the
unit mass shell, which is at p2 D �1. I call the result SN . It has N � 1 internal
edges and henceN �2 loops. Thus V 3 and S4 correspond to the two-loop diagrams
of Fig. 2, with the “sunrise” diagram S4 obtained by cutting an edge of V 4.
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V 3 S4

Fig. 2 Two-loop banana and
sunrise diagrams

9.1 Schwinger’s Cut Bananas

At N loops, the integral over Schwinger parameters is

SNC2 D
Z

˛i>0

d˛1 : : : d˛N
Det.AC B/Tr.A/C QUCU : (54)

where C is the adjoint of AC B , with

.AC B/C D Det.AC B/I

where I is the unit matrix with Ii;j D ıi;j . The denominator in (54) is the second
Symanzik polynomial.

9.2 Bessels’s Cut Bananas

In x-space, cutting an edge and putting it on the mass shell corresponds to replacing
one instance of the Bessel functionK0.t/ by I0.t/, to obtain

SNC2 D 2N
Z 1

0

I0.t/ŒK0.t/�
NC1t dt (55)

at N loops. Note that S2 is divergent, since

I0.t/ D
X

k�0

�
tk

2kkŠ

�2

grows exponentially, with

I0.t/ D exp.t/p
2�t

�

1C 1

8t
CO.1=t2/

�

as t !1, while
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K0.t/ D
r
�

2t
exp.�t/

�

1 � 1

8t
CO.1=t2/

�

is exponentially damped.

9.3 Known Cut Bananas

It is proven that [19]

S3 D 2L�3.1/ D 2�

3
p
3

(56)

S4 D Li2.1/� Li2.�1/ D �2

4
(57)

and it is conjectured that [19]

S5
‹D 1

30
p
5
�

�
1

15

�

�

�
2

15

�

�

�
4

15

�

�

�
8

15

�

(58)

which holds to at least 1,000 decimal places.

9.4 Cut Banana with Sixth Root of Unity

The Schwinger formula (54) at one loop gives

S3 D
Z 1

0

da

a2 C aC 1 D
log.�/� log.�/

� � � D 2 arctan.
p
3/p

3
D 2�

3
p
3

as claimed in (56).

9.5 Cut Banana with �2

At two loops, we have

S4 D
Z 1

0

Z 1

0

da db

.aC b/.aC 1/.b C 1/
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with a convenient factorization of the second Symanzik polynomial. Hence

S4 D
Z 1

0

log.a/ da

a2 � 1 D 2
Z 1

0

log.a/ da

a2 � 1
yields dilogs at square roots of unity, namely

S4 D Li2.1/� Li2.�1/ D �2

6
C �2

12
D �2

4

as claimed in (57).

9.6 Cut Banana at the 15th Singular Value

At three loops, we have

S5 D
Z 1

0

Z 1

0

Z 1

0

da db dc

P.a; b; c/

where

P.a; b; c/ D .abcC abC bcC ca/.aC b C c/C .abC bcC ca/

with the final term, .ab C bc C ca/, resulting from the adjoint matrix. Grouping
powers of c, we see that

P.a; b; c/ D .abC aC b/c2 C .abC aC b/.aC b C 1/c C .aC b C 1/ab

yields a discriminant

�.a; b/ D .abC aC b/.aC b C 1/..abC aC b/.aC b C 1/� 4ab/

and the integral over c gives

S5 D
Z 1

0

Z 1

0

da db
p
�.a; b/

log

�
1CX.a; b/
1 �X.a; b/

�

with

X.a; b/ D
s

1 � 4ab

.abC aC b/.aC b C 1/ :
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Conjecture (58) was stimulated by a proven result for

T 5 � 4
Z 1

0

ŒI0.t/�
2ŒK0.t/�

3t dt D
Z 1

0

Z 1

0

da db
p
�.a; b/

namely

T 5 D
p
3

120�
�

�
1

15

�

�

�
2

15

�

�

�
4

15

�

�

�
8

15

�

(59)

obtained at the 15th singular value, by diamond mining [19].
Numerical evaluation suggested that

S5

T 5

‹D 4�p
15

and this has been confirmed at 1,000-digit precision. Yet it remains to be proved that

Z 1

0

Z 1

0

da db
p
�.a; b/

�

log

�
1CX.a; b/
1 �X.a; b/

�

� 4�p
15

�

(60)

vanishes. It has been shown that its magnitude is smaller than 10�1;000.

10 Diagrams Evaluating as L-Series of Modular Forms

Finally, I indicate how sunrise diagrams lead to evaluations in terms of the Dirichlet
L-functions of modular forms, evaluated at integers inside their critical strips.

10.1 L-Series of a K3 Surface

For s > 2 let

L.s/ D
Y

p

1

1 � Ap
ps
C � p

15

�
p2

p2s

where
� �
15

�
is a Kronecker symbol and the product is over all primes p, with integers

A3 D �3;
A5 D 5;

Ap D 0; for
� p

15

�
D �1;
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Ap D 2x2 C 2xy � 7y2; for x2 C xy C 4y2 D p � 1; 4 .mod 15/; (61)

Ap D x2 C 8xyC y2; for 2x2 C xy C 2y2 D p � 2; 8 .mod15/; (62)

with pairs of integers .x; y/ defined, for x > 0, by the quadratic forms in (61)
and (62).

As shown by Peters, Top and van der Vlugt [20], the L-series

L.s/ D
X

n>0

An

ns

is generated by the weight-3 modular form

f3.q/ D �.q/�.q3/�.q5/�.q15/R.q/ D
X

n>0

Anq
n (63)

where

�.q/

q1=24
D
Y

j>0

.1 � qj / D
X

n2Z

.�1/nqn.3nC1/=2; (64)

R.q/ D
X

m;n2Z

qm
2CmnC4n2 : (65)

Note that A1 D 1, since 1C 3C 5C 15 D 24. If q D pr is a prime power, then

Apq D ApAq �
� p

15

�
p2Aq=p:

If n DQj qj , with prime powers qj D prjj , then An D Qj Aqj . Thus (61) and (62)
suffice to compute An and are easily programmed using the qfbsolve command
of Pari-GP.

I now describe how I was able to evaluate 20,000 good digits of the conditionally
convergent series L.2/ DPn>0 An=n

2. Let

�.s/ D � .s/

cs
L.s/; with c D 2�p

15
:

Then the functional equation �.s/ D �.3 � s/ may be used to extend the Mellin
transform

�.s/ D
X

n>0

An

Z 1

0

dx

x
xs exp.�cnx/ (66)
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throughout the complex s-plane, as follows

�.s/ D
X

n>0

An

�
� .s; cn�/

.cn/s
C � .3 � s; cn=�/

.cn/3�s

�

(67)

where

� .s; y/ D
Z 1

y

dx

x
xs exp.�x/

is the incomplete � function and � � 0 is an arbitrary real parameter. To
establish (67), I remark that it agrees with (66), at � D 0, and that its derivative
with respect to � vanishes by virtue of the inversion symmetry

M.�/ � �3=2
X

n>0

An exp.�cn�/ DM.1=�/:

Optimal convergence is achieved at � D 1, where

�.s/ D
X

n>0

An

Z 1

1

dx

x

�
xs C x3�s� exp

�

�2�nxp
15

�

(68)

makes the relation �.s/ D �.3 � s/ explicit. Zeros on the critical line <s D 3=2

occur when

�.3=2C is0/ D 2
X

n>0

An

Z 1

1

dx x1=2 cos.s0 log.x// exp

�

�2�nxp
15

�

vanishes. I have computed 100 good digits of the first zero, obtaining

s0 D 4:8419258142299625880455337112471754483999458406347

669395095360856334816804741135372158525188377525005 : : :

At s D 2, the integral in (68) is elementary and we have dramatically improved
convergence for

L.2/ �
X

n>0

An

n2
D
X

n>0

An

n2

�

1C 4�np
15

�

exp

�

� 2�np
15

�

(69)

from which I obtained more than 20,000 good digits in less than a minute, by
computing the first 30,000 terms, with the aid of (61) and (62). The result is
consistent with the conjecture
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3L.2/
‹D T 5 (70)

� 4

Z 1

0
ŒI0.t/�

2ŒK0.t/�
3t dt (71)

D
Z 1

0

Z 1

0

da db
p
.abC aC b/.aC b C 1/..abC aC b/.aC b C 1/ � 4ab/

(72)

D �2

8

�p
15 �p3

�
 

1C 2
X

n>0

exp
�
�p15�n2

�
!4

(73)

D
p
3

120�
�

�
1

15

�

�

�
2

15

�

�

�
4

15

�

�

�
8

15

�

(74)

‹D
p
15

4�
S5 (75)

where T 5 is defined in (71) as a Bessel moment, with a proven integral represen-
tation over Schwinger parameters in (72), a proven evaluation at the 15th singular
value in (73), a proven reduction to � values in (74) and a conjectural relation to S5
in (75).

Unfortunately, I did not succeed in relating V 5 to L.3/ and/or L.4/.

10.2 L-Series for 6 Bessel Functions

We are interested in relating Bessel moments of the form

V N D 2N�1
Z 1

0

ŒK0.t/�
N t dt; for N > 0; (76)

SN D 2N�2
Z 1

0

I0.t/ŒK0.t/�
N�1t dt; for N > 2; (77)

T N D 2N�3
Z 1

0

I 20 .t/ŒK0.t/�
N�2t dt; for N > 4; (78)

UN D 2N�4
Z 1

0

I 30 .t/ŒK0.t/�
N�3t dt; for N � 6; (79)

W N D 2N�5
Z 1

0

I 40 .t/ŒK0.t/�
N�4t dt; for N � 8; (80)

to L-series derived from modular forms. In [19] it was conjectured that
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S5
‹D 4�p

15
T 5 (81)

S6
‹D 4�2

3
U 6 (82)

T 8
‹D 18�2

7
W 8 (83)

with a notable appearance of 7 in the denominator on the right hand side of (83).
Francis Brown suggested that the weight-4 modular form

f4.q/ D
�
�.q/�.q2/�.q3/�.q6/

	2 D
X

n>0

A4;nq
n (84)

of Hulek, Spandaw, van Geemen, and van Straten [21] might yield an L-series

L4.s/ D
X

n>0

A4;n

ns
D 1

1C 21�s
1

1C 31�s
Y

p>3

1

1 � A4;p
ps
C p3

p2s

with values related to the problem with 6 Bessel functions. Note thatA4;1 D 1, since
2.1C 2C 3C 6/ D 24.

The Mellin transform

�4.s/ D � .s/

.2�=
p
6/s

L4.s/ D
X

n>0

A4;n

Z 1

0

dx

x
xs exp

�

�2�nxp
6

�

may be analytically continued to give

�4.s/ D
X

n>0

A4;n

Z 1

1

dx

x

�
xs C x4�s� exp

�

�2�nxp
6

�

by virtue of the inversion symmetry

M4.�/ � �2
X

n>0

A4;n exp

�

�2�n�p
6

�

DM4.1=�/

that gives the reflection symmetry�4.s/ D �4.4 � s/.
Then, at s D 2 and s D 3, we obtain the very convenient formulas

L4.2/ D
X

n>0

A4;n

n2

�

2C 4�np
6

�

exp

�

�2�np
6

�

(85)

L4.3/ D
X

n>0

A4;n

n3

�

1C 2�np
6
C 2�2n2

3

�

exp

�

�2�np
6

�

(86)
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without resort to incomplete � functions that entail exponential integrals. By this
means, I was able to compute 20,000 good digits of (85) and (86) in less than 100 s.
Then the conjectural evaluations

S6
‹D 48�.2/L4.2/ (87)

T 6
‹D 12L4.3/ (88)

U 6
‹D 6L4.2/ (89)

were discovered and checked at 1,000-digit precision.
I remark that Francis Brown had expected a result of form (88), for T 6, with an

unknown rational coefficient, which I here evaluate as 12. The existence of a relation
of the form (89), for U 6, had not been predicted, since I had been unable to provide
an expression for this Bessel moment as an integral over Schwinger parameters of
an algebraic or polylogarithmic function. However, it was quite natural to guess that
a reduction of T 6 to L4.3/ would be accompanied by a reduction of U 6 to L4.2/.
Then the reduction of S6 to �.2/L4.2/ follows from conjecture (82), which I had
already checked at 1,000-digit precision in [19].

10.3 L-Series for 8 Bessel Functions

Next, Francis Brown provided the first 100 Fourier coefficients of a weight-6
modular form f6.q/ DPn>0 A6;nq

n, whose L-series

L6.s/ D
X

n>0

A6;n

ns
D 1

1 � 22�s
1

1C 32�s
Y

p>3

1

1 � A6;p
ps
C p5

p2s

was expected to yield values related to the problem with 8 Bessel functions. His data
may be condensed down to the values
-66,176,-60,-658,-414,956,600,5574,-3592,-8458,

19194,13316,-19680,-31266,26340,-31090,-16804,6120,
-25558,74408,-6468,-32742,166082

of A6;p for the primes p D 5; 7; : : : ; 97.
From this I inferred that the explicit modular form is given by

f6.q/ D g.q/g.q2/ (90)

g.q/ D �
�.q/�.q3/

	2 X

m;n2Z

qm
2CmnCn2 (91)
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with f6.q/=f4.q/ given by the � function of the strongly 6-modular lattice [22]
indexed by QQF.4.g4 with expansion coefficients in entry A125510 of Neil
Sloane’s On-Line Encyclopedia of Integer Sequences.5

Proceeding along the lines of the previous section, I accelerated the conver-
gence of

�6.s/ D � .s/

.2�=
p
6/s

L6.s/ D
X

n>0

A6;n

Z 1

0

dx

x
xs exp

�

�2�nxp
6

�

by using the functional relation�6.s/ D �6.6� s/ to obtain

�6.s/ D
X

n>0

A6;n

Z 1

1

dx

x

�
xs C x6�s� exp

�

�2�nxp
6

�

and hence the convenient formulas

L6.3/ D
X

n>0

A6;n

n3

�

2C 4�np
6
C 2�2n2

3

�

exp

�

�2�np
6

�

; (92)

L6.4/ D
X

n>0

A6;n

n4

�

1C 2�np
6
C 4�2n2

9
C 4�3n3

9
p
6

�

exp

�

�2�np
6

�

; (93)

L6.5/ D
X

n>0

A6;n

n5

�

1C 2�np
6
C �2n2

3
C 2�3n3

9
p
6
C �4n4

27

�

exp

�

�2�np
6

�

:

(94)

The resulting fits

T 8
‹D 216L6.5/ (95)

U 8
‹D 36L6.4/ (96)

W 8
‹D 8L6.3/ (97)

are rather satisfying. They leave the conjectural relation

L6.5/
‹D 4

7
�.2/L6.3/ (98)

as a restatement of the notable conjecture (83) given in [19].

4http://www2.research.att.com/�njas/lattices/QQF.4.g.html
5http://oeis.org/A125510

http://www2.research.att.com/~njas/lattices/QQF.4.g.html
http://oeis.org/A125510
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Thanks to the explicit formula (90) for the weight-6 modular form, conjec-
ture (98) has now been checked to 20,000-digit precision.

11 Open Questions

This article has provided examples of single-scale Feynman diagrams that evaluate
to five types of number: multiple zeta values, alternating sums, polylogarithms of
the sixth root of unity, products of elliptic integrals, and L-functions of modular
forms. In each case, I indicate an open question concerning the physics and an open
puzzle concerning the mathematics.

Q1: At which loop-number do the counterterms of QFT cease to evaluate to
MZVs?
There remains a single subdivergence-free counterterm in �4 theory at seven
loops that has not been reduced to MZVs, but might be expected to evaluate to
polylogs. At eight loops there is a diagram for which there is good reason [23]
to suppose that no reduction to polylogs will be possible, yet there is no concrete
guess of the type of new number that might emerge.
On the mathematical side, the conjectural enumeration [8] of irreducible MZVs
by weight and depth, in (8), is still unproven. Might it be that the conjecture fails
at weights higher than those in the table of Sect. 2.4, notwithstanding the notable
agreement so far achieved?
Q2: At which loop-number do the diagrams for the magnetic moment of the
electron case to evaluate in terms of alternating sums?
One might guess that this will happen at four loops, since there one has diagrams
with five electrons in an intermediate state and the corresponding on-shell sunrise
diagram in two dimensions, with 6 Bessel functions, evaluates to the L function
of a modular form, as seen in Eq. (87).
On the mathematical side, one would like to understand why a depth-5 alternating
sum like �.3; 6; 3; 6; 3/ in (14) is an honorary MZV of depth 7.
Q3: Does a polylogarithm of the sixth root of unity appear in the seven-loop
beta-function of �4 theory?
It has been argued [24] that this may happen, for one special diagram. However,
comparable arguments suggested the appearance of alternating sums from a pair
of simpler seven-loop diagrams and these were found to evaluate to MZVs.
On the mathematical side, one would like to have an economical basis for
polylogs of the sixth root of unity up to weight 11, so as to tackle the seven-
loop problem in QFT. However, that seems to be a daunting task.
Q4: What type of number results from the four-loop banana diagram V 5, with
5 Bessel functions?
We have seen that the three-loop on-shell sunrise diagram S5 evaluates, empir-
ically, to the square of an elliptic integral at the 15th singular value. Yet the
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simplest result so far achieved for V 5 is the integral of the product of a
dilogarithm and a complete elliptic integral [19].
On the mathematical side, one would like to be able to prove the vanishing of the
remarkable integral (60).
Q5: Is there a modular form whose L-function gives an evaluation of the
on-shell five-loop sunrise diagram S7?
It is frustrating to have identified modular forms for problems with 5, 6 and 8
Bessel functions, yet to have failed to do so for any 7-Bessel problem.
On the mathematical side, one would like to understand the relation between
integrals of powers of Bessel functions and Kloosterman sums [25, 26] that
evaluate to rational numbers.
In conclusion, these open questions arose from fertile meetings of number theory,
algebraic geometry and quantum field theory, reported in part by this article.
While much remains to be understood, we may still rejoice that mathematicians
and physicists continue to learn how to share their understanding and their
puzzles at the work-face of perturbative quantum field theory.
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Computer-Assisted Proofs of Some Identities
for Bessel Functions of Fractional Order
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ties involving Bessel functions with half-integer orders and other special functions.
These identities appear in the famous Handbook of Mathematical Functions, as
well as in its successor, the DLMF, but their proofs were lost. We use generating
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The writing of DLMF Chapter BS1 by Leonard Maximon and myself is now largely
complete [: : :] However, a problem has arisen in connection with about a dozen formulas
from Chapter 10 of Abramowitz and Stegun for which we have not yet tracked down proofs,
and the author of this chapter, Henry Antosiewiecz, died about a year ago. Since it is the
editorial policy for the DLMF not to state formulas without indications of proofs, I am
hoping that you will be willing to step into the breach and supply verifications by computer
algebra methods [: : :] I will fax you the formulas later today.

In view of the upcoming trip to NIST, Paule was hoping to be able to provide at
least some help in this matter. But the arrival of Olver’s fax chilled the enthusiasm
quite a bit. Despite containing some identities with familiar pattern, the majority of
the entries involved Bessel functions of fractional order or with derivatives applied
with respect to the order.

Let us now display the bunch of formulas we are talking about. Here, J�.z/
and Y�.z/ denote the Bessel functions of the first and second kind, respectively,
I�.z/ and K�.z/ the modified Bessel functions, jn.z/ and yn.z/ the spherical
Bessel functions, Pn.z/ the Legendre polynomials, and Si.z/ and Ci.z/ the sine and
cosine integral, respectively. Unless otherwise specified, all parameters are arbitrary
complex numbers.

1

z
sin
p

z2 C 2zt D
1X

nD0

.�t/n
nŠ

yn�1.z/ .2jt j < jzj; j=.z/j � <.z//

(10.1.39)

1

z
cos

p
z2 � 2zt D

1X

nD0

tn

nŠ
jn�1.z/ z ¤ 0 (10.1.40)
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@�
j�.z/

�

�D0
D 1

z
.Ci.2z/ sin z� Si.2z/ cos z/ .z 2 � n ��1; 0�/

(10.1.41)


@

@�
j�.z/

�

�D�1
D 1

z
.Ci.2z/ cos zC Si.2z/ sin z/ .z 2 � n ��1; 0�/

(10.1.42)
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@�
y�.z/

�

�D0
D 1

z
.Ci.2z/ cos zC ŒSi.2z/ � �� sin z/ .z 2 � n ��1; 0�/

(10.1.43)


@

@�
y�.z/

�

�D�1
D �1

z
.Ci.2z/ sin z� ŒSi.2z/ � �� cos z/ .z 2 � n ��1; 0�/

(10.1.44)

J0.z sin �/ D
1X

nD0
.4nC 1/ .2n/Š

22nnŠ2
j2n.z/P2n.cos �/ (10.1.48)

1Finally Chap. 10 Bessel Functions.
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jn.2z/ D �nŠznC1
nX

kD0

2n� 2k C 1
kŠ.2n� k C 1/Šjn�k.z/yn�k.z/ .n D 0; 1; 2; : : : /

(10.1.49)

1X

nD0
j 2n .z/ D

Si.2z/

2z
(10.1.52)

1

z
sinh

p
z2 � 2izt D

1X

nD0

.�it/n

nŠ

q
1
2�=zI�nC 1

2
.z/ .2jt j < jzj; j=.z/j � <.z//

(10.2.30)
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z
cosh

p
z2 C 2izt D

1X

nD0

.it/n

nŠ

q
1
2�=zIn� 12 .z/ z ¤ 0 (10.2.31)
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@�
I�.z/

�

�D1=2
D � 1p

2�z
.Ei.2z/e�z C E1.2z/ez/ .z 2 � n ��1; 0�/

(10.2.32)
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@�
I�.z/

�

�D�1=2
D 1p

2�z
.Ei.2z/e�z � E1.2z/ez/ .z 2 � n ��1; 0�/

(10.2.33)


@

@�
K�.z/

�

�D˙1=2
D ˙

r
�

2z
E1.2z/ez .z 2 � n ��1; 0�/

(10.2.34)

The numbering follows that in Abramowitz and Stegun [2], and Olver remarked
on the fax: “Irene Stegun left a record (without proofs) that (10.1.41)–(10.1.44)
have errors: the factor 1

2
� should not be there, and (10.1.44) also has the wrong

sign. Equations (10.2.32)–(10.2.34) have similar errors. Their correct versions are
given by [: : :]”.

In view of these unfamiliar objects and of the approaching trip to NIST, Paule
asked his young collaborators for help. Within 2 weeks, all identities succumbed to
the members of the algorithmic combinatorics group of RISC. Moreover, in addition
to the typos in [2] mentioned by Olver, further typos in (10.1.39) and (10.2.30) were
found. Above we have listed the corrected versions of the formulas, and when we
use the numbering from [2], we refer to the corrected versions of the formulas here
and throughout the paper.

At this place we want to relate the numbering from [2] to the one used in [15]:
(10.1.39) and (10.1.40) are DLMF entries 10.56.2 and 10.56.1, respectively. With
the help of the rewriting rule DLMF 10.47.3, (10.1.41) and (10.1.42) are DLMF
entries 10.15.6 and 10.15.7, respectively; using the rule DLMF 10.47.4, (10.1.43)
and (10.1.44) are DLMF entries 10.15.8 and 10.15.9, respectively. Entry (10.1.48)
is DLMF 10.60.10, (10.1.49) is DLMF 10.60.4, and (10.1.52) is DLMF 10.60.11.
With the help of DLMF 10.47.8, entry (10.2.30) turns into DLMF 10.56.4; and
with the help of DLMF 10.46.7, entry (10.2.31) turns into DLMF 10.56.3. Formulas
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(10.2.32) and (10.2.33) are bundled in DLMF entry 10.38.6; formula (10.2.34) is
DLMF 10.38.7.

The goal of our exposition is to convince the reader that only a very limited
amount of techniques has to be mastered to be able to prove such special function
identities with computer algebra.

Our computer proofs are based on the algorithmic theory of holonomic functions
and sequences, and symbolic summation algorithms. In the following two sections,
we do purely algebraic manipulations; where necessary, analytical justifications
(convergence of series, etc.) are given in Sect. 4. In general, we rely on the following
computer algebra toolbox; underlying ideas are described in [9, 10].

Holonomic closure properties. The packages gfun [18] (for Maple) and
GeneratingFunctions [13] (for Mathematica) are useful for the manipulation
of functions f .x/ that satisfy linear ordinary differential equations (LODEs)
with polynomial coefficients, as well as for sequences fn satisfying linear
recurrence equations (LOREs) with polynomial coefficients. Such objects are
called holonomic. It can be shown that whenever f .x/ and g.x/ (resp. fn and gn)
are holonomic, then so are f .x/ � g.x/ and f .x/ C g.x/ (resp. fn � gn and
fn C gn). Furthermore, if f .x/ D P1

nD0 fnxn, then f .x/ is holonomic if and
only if fn is holonomic as a sequence. The packages gfun and GeneratingFunctions
provide procedures for “executing closure properties,” i.e., from given differential
equations for f .x/ and g.x/ they can compute differential equations for f .x/ �g.x/
and f .x/ C g.x/, and likewise for sequences. Also several further closure
properties can be executed in this sense, and there are procedures for obtaining
a recurrence equation for fn from a differential equation for its generating function
f .x/ DP1nD0 fnxn, and vice versa.

Symbolic summation tools. The package Zb [16] (for Mathematica) and the more
general and powerful packages Mgfun [4] (for Maple), HolonomicFunctions [11]
and Sigma [19, 20] (both for Mathematica) provide algorithms to compute for a
given definite sum S.n; z/ DPn

kD0 f .n; z; k/ recurrences (in n) and/or differential
equations (in z). Here the essential assumption is that the summand f .n; z; k/
satisfies certain types of recurrences or differential equations; see Sect. 3.

Subsequently, we restrict our exposition to the Mathematica packages Generat-
ingFunctions, Zb, HolonomicFunctions, and Sigma. In the Appendix, for the reader’s
convenience we list all formulas from Abramowitz and Stegun [2] that we apply in
our proofs.

As for applications of differentiating Bessel functions w.r.t. order, we mention
maximum likelihood estimation for the generalized hyperbolic distribution, and
calculating moments of the Hartman-Watson distribution. Both distributions have
applications in mathematical finance [6, 17]. Prause’s PhD thesis [17] in fact cites
formulas (9.6.42)–(9.6.46).
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2 Basic Manipulations of Power Series

Let us now show how to apply these computer algebra tools for proving identities.
The basic strategy is to determine algorithmically a differential equation (LODE) or
a recurrence (LORE) for both sides of an identity and check initial conditions.

First we load the package GeneratingFunctions in the computer algebra system
Mathematica.

In[1]:= << GeneratingFunctions:m
GeneratingFunctions Package by Christian Mallinger – c� RISC Linz

2.1 LODE and Initial Conditions for (10.1.39)

We show that both sides of the equation satisfy the same differential equation in t ,
and then check a suitable number of initial values.

First we compute a differential equation for the left hand side 1
z sin
p

z2 C 2zt .

We view this function as the composition of 1
z sin.t/ with

p
z2 C 2zt and compute

a differential equation for it from defining equations of the components, by using
the command AlgebraicCompose. (The last argument specifies the function under
consideration. This symbol is used both in input and output.)

In[2]:= AlgebraicComposeŒf 00Œt� DD �f Œt�; f Œt�2 DD z2 C 2zt; f Œt��

Out[2]= zf Œt �C f 0Œt �C .2t C z/f 00Œt �DD 0

In order to obtain a differential equation for the right hand side, we first compute
a recurrence equation for the coefficient sequence cn WD .�1/n=nŠ yn�1.z/ from
the recurrences of its factors (using (10.1.19)). (The coefficient-wise product of
power series is called Hadamard product, which explains the name of the command
REHadamard.)

In[3]:= REHadamardŒcŒn C 1� DD �cŒn�=.n C 1/; cŒn � 1� C cŒn C 1� DD
.2.n � 1/ C 1/=z cŒn�; cŒn��

CanRE::denom : Warning. The input equation will be multiplied by its denominator.

Out[3]= zcŒn�C .1C n/.1C 2n/cŒnC 1�C .1C n/.2C n/zcŒnC 2� DD 0

Then we convert the recurrence equation for cn into a differential equation for its
generating function

P1
nD0 cntn, which is the right hand side.

In[4]:= RE2DEŒ%; cŒn�; f Œt��

Out[4]= zf Œt �C f 0Œt �C .2t C z/f 00Œt �DD 0

This agrees with output 2. To complete the proof, we need to check two initial
values.
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In[5]:= SeriesŒ1=z SinŒ
p

z2 C 2zt�; ft; 0; 1g�

Out[5]=
SinŒ
p

z2�

z
C
p

z2CosŒ
p

z2�

z2
t COŒt �2

By (10.1.12) and (10.1.19), this agrees with the initial values of the right hand side
for z 2 ��0. The extension to complex z will be discussed in Sect. 4.

Alternatively, we could have derived a differential equation only for the right
hand side and then check with Mathematica that the left hand side satisfies this
equation:

In[6]:= OutŒ4� =: f ! .1=z SinŒ
p

z2 C 2z#�&/

Out[6]= True

The proofs for (10.1.40), (10.2.30), and (10.2.31) follow the same scheme as the
proof above. Both variants of the proof work in each case.

In summary, the most systematic way is to compute a differential equation for the
difference of left hand side and right hand side, and then check that an appropriate
number of initial values are zero.

2.2 Proof of (10.1.41)

This time we will not derive an LODE, but instead a recurrence relation for the
Taylor coefficients of the difference of the left and the right hand side. The term
log.z=2/ that occurs in the pertinent expansion (9.1.64) is not analytic at z D 0,
hence we first treat that one “by hand.” (Working with Taylor series at z D 1, say,
promises not much but additional complications.) This will leave us with a rather
complicated expression for a holonomic formal power series, for which we have to
prove that it is zero. At this point, we will employ the GeneratingFunctions package
for computing a recurrence equation for the coefficient sequence of that series. Upon
checking a suitable number of initial values, zero equivalence is then established.

One might think that we would not even have to compute the recurrences, since
it is known a priori that the sum of two sequences satisfying recurrences of order r1
and r2, respectively, satisfies a recurrence of order at most r1 C r2. The same holds
for products, with r1r2 instead of r1C r2. The catch is that the leading coefficient of
the combined recurrence might have roots in the positive integers. It is clear that in
order to give an inductive proof there must not be an integer root beyond the places
where we check initial values.

Proposition 1. Identity (10.1.41) holds for z 2 � n��0.
Proof. First we consider the left hand side. Using (10.1.1) and (9.1.64) from the
Appendix, we get
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@

@�
j�.z/ D j�.z/ log

z

2
� 1
2

p
�

1X

nD0
.�1/n  .� C nC

3
2
/

� .� C nC 3
2
/

. 1
4
z2/n

nŠ
;

where � .x/ and  .x/ D d
dx � .x/

� .x/
denote the Gamma and digamma function,

respectively. Hence, with (10.1.11),



@

@�
j�.z/

�

�D0
D sin z

z
log

z

2
� 1
2

p
�

1X

nD0
.�1/n  .nC

3
2
/

� .nC 3
2
/

. 1
4
z2/n

nŠ
:

For the right hand side, we need (5.2.14), (5.2.16), and the Taylor expansions of
sin z and cos z. We have to show that



@

@�
j�.z/

�

�D0
� �Ci.2z/ sin z� Si.2z/ cos z

�
=z

D sin z

z
log

z

2
� 1
2

p
�

1X

nD0

.�1/n .nC 3
2 /

� .nC 3
2 /

. 14 z2/n

nŠ
C Si.2z/ cos z

z

� sin z

z

�
� C log.2z/C

1X

nD1

.�1/n.2z/2n

2n.2n/Š

�

D � 1
2

p
�

1X

nD0

.�1=4/n .nC 3
2 /z

2n

� .nC 3
2 /nŠ

C 2
1X

nD0

.�4/nz2n

.2nC 1/.2nC 1/Š
1X

nD0

.�1/nz2n

.2n/Š

9
>>>>>=

>>>>>;

.�/
� �� C 2 log 2

� 1X

nD0

.�1/nz2n

.2nC 1/Š C 4z2
1X

nD0

.�4/nz2n

2.nC 1/.2.nC 1//Š
1X

nD0

.�1/nz2n

.2nC 1/Š

is identically zero, i.e., cn D 0 for all n � 0, where cn is defined as .�/ DP1
nD0 cnz2n.
To this end, we compute step by step a recurrence equation for cn from the

various coefficient sequences appearing in .�/. We suppress some of the output,
in order to save space. Recurrences for most of the inner coefficient sequences are
easy to obtain. For instance, for

In[7]:= f Œn � WD .�4/n

.2n C 1/.2n C 1/Š

we have
In[8]:= FullSimplifyŒf Œn C 1�=f Œn��

Out[8]=
�2.2nC 1/

.nC 1/.2nC 3/2

and hence the recurrence fnC1 D �2.2nC1/
.nC1/.2nC3/2 fn. Only the series involving

 .nC3=2/ requires a bit more work. Here, we use the package GeneratingFunctions
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to obtain a recurrence from the recurrence (6.3.5) for  .nC 3=2/ and the first order
recurrence of .�1=4/n=� .nC 3

2
/nŠ.

In[9]:= recSum D REHadamardŒf Œn C 1� DD f Œn� C 1

n C 3=2
;

f Œn C 1� DD �1

2.2n C 3/.n C 1/
f Œn�; f Œn��I

Next, we compute recurrence equations for the coefficient sequence of the two series
products in .�/.
In[10]:= recSiCos D RECauchyŒf Œn C 1� DD �2.2n C 1/

.n C 1/.2n C 3/2
f Œn�;

f Œn C 1� DD �1

2.2n C 1/.n C 1/
f Œn�; f Œn��I

In[11]:= recCiSin D RECauchyŒf Œn C 1� DD �2.n C 1/

.n C 2/2.2n C 3/
f Œn�;

f Œn C 1� DD �1

2.n C 1/.2n C 3/
f Œn�; f Œn��I

The latter recurrence has to be shifted by 1, owing to the factor z2.
In[12]:= recCiSin D recCiSin =: f Œn � ! f Œn C 1� =: n ! n � 1I
The recurrences collected so far can now be combined to a recurrence for cn.
In[13]:= rec1 D REPlusŒrecSiCos; recSum; f Œn��I
In[14]:= rec2 D REPlusŒrecCiSin; f Œn C 1� DD �1

2.n C 1/.2n C 3/
f Œn�; f Œn��I

In[15]:= rec D REPlusŒrec1; rec2; f Œn��

Out[15]= 5184.227C 60n/f Œn�C � � �
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

� � �C7600.4Cn/.5Cn/.6C n/2.9C2n/.11C2n/.13C 2n/2.167C60n/f ŒnC6� D 0

The precise shape of the recurrence is irrelevant, it only matters that it has
order 6 and that the coefficient of f Œn C 6� (i.e., of cnC6) does not have roots at
nonnegative integers. As this is the case, we can complete the proof by checking
that the coefficients of z0; : : : ; z10 in (�) vanish, which can of course be done with
Mathematica.

Alternatively, a similar proof can be obtained more conveniently using the
package
In[16]:= << HolonomicFunctions:m

HolonomicFunctions package by Christoph Koutschan, RISC-Linz, Version 1.6 (12.04.2012)

One of the main features of this package is the Annihilator command; it analyzes
the structure of a given expression and executes the necessary closure properties
automatically, in order to compute a system of differential equations and/or
recurrences for the expression. We apply it to .�/:
In[17]:= Annihilator

�
� SinŒz�

z

�
EulerGamma C 2 LogŒ2� C Sum

�
.�1/n .2z/2n

2n .2n/Š
; fn; 1; 1g

��

�
p

�

2
Sum

�
.�1=4/n z2n PolyGammaŒ0; n C 3=2�

nŠ GammaŒn C 3=2�
; fn; 0; 1g

�

C CosŒz�
z

SinIntegralŒ2z�; DerŒz�
�
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Out[17]=

˚
.48z5 C 95z3/D8

z C .864z4 C 1900z2/D7
z C .576z5 C 5436z3 C 10830z/D6

z C
.7968z4 C 23684z2 C 17100/D5

z C .1440z5 C 32442z3 C 77002z/D4
z C

.13344z4 C 59332z2 C 83448/D3
z C .1344z5 C 33596z3 C 82858z/D2

z C
.6240z4 C 31404z2 C 46892/Dz C .432z5 C 6495z3 C 15150z/

�

Since the HolonomicFunctions package uses operator notation, the second argument
indicates that a differential equation w.r.t. z is desired; instead of an equation
the corresponding operator is returned with Dz D d=dz. As before, the proof is
completed by checking a few initial values (see also Sect. 4). ut

3 Symbolic Summation Tools

It is not always the case that recurrences for the power series coefficients can be
obtained by the package GeneratingFunctions. Sometimes combinatorial identities
such as the following one are needed. Its proof gives occasion to introduce
the Mathematica package Zb, an implementation of Zeilberger’s algorithm for
hypergeometric summation [22].

Lemma 1. For k 2 Z�0 we have

kX

jD1

.�2/j
j

 
k

j

!

D
(

HnC1 � 2H2nC2 k D 2nC 1 is odd

Hn � 2H2n k D 2n is even,

where Hn WDPn
kD1 1k denotes the harmonic numbers.

It can be a chore to locate such identities in the literature. The closest match that
the authors found is the similar identity

Pk
jD1.�1/jC1j�1

�
k
j

� D Hk [7, p. 281].
Thus, an automatic identity checker like the one we describe now is helpful. We
note in passing that we can not only verify such identities, but even compute the
right hand side from the left hand side [19].

Proof (of Lemma 1). We denote the sum on the left hand side by ak . Using the
Mathematica package
In[18]:= << Zb:m

Fast Zeilberger Package by Peter Paule and Markus Schorn (enhanced by Axel Riese) – c� RISC Linz

we find
In[19]:= ZbŒ.�2/j =j BinomialŒ2n C 1; j �; fj; 1; 2n C 1g; n�

If ‘1C 2 n’ is a natural number, then:

Out[19]= f.nC 1/.2nC 3/SUMŒn�� .4n2 C 14nC 13/SUMŒnC 1�
C .nC 2/.2nC 5/SUMŒnC 2� DD �2g

In[20]:= ZbŒ.�2/j =j BinomialŒ2n; j �; fj; 1; 2ng; n�

If ‘2n’ is a natural number, then:
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Out[20]= f.nC 1/.2nC 1/SUMŒn�� .4n2 C 10nC 7/SUMŒnC 1�
C .nC 2/.2nC 3/SUMŒnC 2� DD �2g

hence the sequence ak satisfies the recurrences

.nC 1/.2nC 3/a2nC1 � .4n2 C 14nC 13/a2nC3 C .nC 2/.2nC 5/a2nC5 D �2

and

.nC 1/.2nC 1/a2n � .4n2 C 10nC 7/a2nC2 C .2nC 3/.nC 2/a2nC4 D �2:

The right hand side satisfies these recurrences, too:
In[21]:= OutŒ19� =: SUMŒn � ! HarmonicNumberŒn C 1� � 2HarmonicNumberŒ2n C 2�

== ReleaseHold == FullSimplify

Out[21]= fTrueg
In[22]:= OutŒ20�=: SUMŒn � ! HarmonicNumberŒn� � 2HarmonicNumberŒ2n�

== ReleaseHold == FullSimplify

Out[22]= fTrueg

Hence the desired result follows by checking the initial conditions k D 0; 1; 2; 3.
ut

Proposition 2. Identities (10.2.32) and (10.2.33) follow from Lemma 1. They hold
for z 2 � n��0.
Proof. We do Taylor series expansion on both sides of (10.2.32), and then compare
coefficients. Using the expansions (5.1.10) and (5.1.11) and computing Cauchy
products, we find that the right hand side of (10.2.32) equals

r
2

�z

 

.log zC log 2C �/ sinh zC
1X

nD0

a2nC1
.2nC 1/Š z

2nC1
!

; (1)

where ak is the sum from Lemma 1. The expansion of the left hand side of (10.2.32)
can be done with (9.6.10) and (9.6.42). Since

.z2=4/n

� .nC 3
2
/nŠ
D 2z2np

�.2nC 1/Š

and

 .nC 3
2
/ D �� � 2 log 2C 2H2nC2 � HnC1;
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the left hand side of (10.2.32) turns out to be

r
2

�z

 

.log zC log 2C �/ sinh zC
1X

nD0
.HnC1 � 2H2nC2/

z2nC1

.2nC 1/Š

!

: (2)

Lemma 1 completes the coefficient comparison.
Identity (10.2.33) can be proved analogously; replace sinh by cosh and 2nC1 by

2n in (1), and sinh by cosh and the summand by .Hn � 2H2n/z2n=.2n/Š in (2). ut
We proceed to prove the identities (10.1.48), (10.1.49), and (10.1.52) by the same

strategy as above: compute LODEs or LOREs for both sides, and check initial val-
ues. Since in these identities definite sums occur for which one cannot derive LOREs
or LODEs by using holonomic closure properties, symbolic summation algorithms
enter the game. For hypergeometric sums, like in Lemma 1, the package Zb is the
perfect choice. Since in the following identities the occurring sums do not have
hypergeometric summands, we use more general summation methods [19] and [11]
that are available in the packages Sigma and HolonomicFunctions, respectively.

In general, the sums under consideration are of the form

S.n; z/ D
1X

kD0
h.n; k/f .n; z; k/ (3)

with integer parameter n and complex parameter z where h and f have the following
properties: h.n; k/ is a hypergeometric term in n and k, i.e., h.n C 1; k/=h.n; k/
and h.n; k C 1/=h.n; k/ are rational functions in n and k. Furthermore, f .n; z; k/
satisfies a recurrence relation of the form

f .n; z; k C d/ D ˛0.n; z; k/f .n; z; k/
C ˛1.n; z; k/f .n; z; k C 1/C � � � C ˛d�1.n; z; k/f .n; z; k C d � 1/; (4)

and either a recurrence relation

f .nC 1; z; k/ D ˇ0.n; z; k/f .n; z; k/
C ˇ1.n; z; k/f .n; z; k C 1/C � � � C ˇd�1.n; z; k/f .n; z; k C d � 1/ (5)

or a differential equation

d

dz
f .n; z; k/ D ˇ0.n; z; k/f .n; z; k/

C ˇ1.n; z; k/f .n; z; k C 1/C � � � C ˇd�1.n; z; k/f .n; z; k C d � 1/; (6)
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where the ˛i ; ˇi are rational functions in k, n, and z. From recurrences of the
forms (4) and (5) we will derive a recurrence relation in n for S.n; z/. If, on the
other hand, we have (6) instead of (5), we will compute a differential equation for
S.n; z/ in z.

We note that the HolonomicFunctions package allows more flexible recur-
rence/differential systems as input specifying the shift/differential behavior of the
summand accordingly. However, the input description given above gives rise to
rather efficient algorithms implemented in the Sigma package to calculate LOREs
and LODEs for S.n; z/.

3.1 LORE and Initial Conditions for (10.1.49)

We compute a LORE for the right hand side

S.n/ WD
nX

kD0
�nŠznC1 2n� 2k C 1

kŠ.2n � k C 1/Šjn�k.z/yn�k.z/

D
nX

kD0

�nŠznC1.2k C 1/
.n � k/Š.nC k C 1/Šjk.z/yk.z/

using
In[23]:= << Sigma:m

Sigma - A summation package by Carsten Schneider c� RISC-Linz

First we insert the sum in the form (3) with recurrences of the type (4) and (5).

Note that h.n; k/ D �nŠznC1.2kC1/
.n�k/Š.nCkC1/Š is hypergeometric in n and k. Moreover, by

(10.1.19) the spherical Bessel functions of the first kind j.k/ WD jk.z/ (we suppress
the parameter z in our Mathematica session) fulfill the recurrence
In[24]:= recJ D zj Œk� � .2k C 3/j Œk C 1� C zj Œk C 2� DD 0I
Since the same recurrence holds for yk.z/, see (10.1.19), we obtain with
In[25]:= recJY D REHadamardŒrecJ; recJ; jŒk��=:fj ! fgI

Out[25]= .�2k � 5/z2fŒk�C .2k C 3/.4k2 C 16k � z2 C 15/f Œk C 1�
�.2k C 5/.4k2 C 16k � z2 C 15/f ŒkC 2�C .2k C 3/z2f Œk C 3� D 0

a recurrence in the form (4) for f .k/ WD jk.z/yk.z/. Since f .k/ is free of n, we
choose f Œn C 1; k� DD f Œk� for the required recurrence of the form (5). Given
these recurrences we are ready to compute a recurrence for our sum

In[26]:= mySum D
nX

kD0

�nŠznC1.2k C 1/

.n � k/Š.n C k C 1/Š
fŒk�I

by using the Sigma-function
In[27]:= GenerateREŒmySum; n; frecJY; f Œk�g; f Œn C 1; k� DD f Œk��

Out[27]= 2zSUMŒn�� .2nC 3/SUMŒnC 1�C 2zSUMŒnC 2� DD 0
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Note that S.n/ D Pn
kD0 h.n; k/f .k/.D mySum D SUMŒn�/. Since besides S.n/

also jn.2z/ fulfills the computed recurrence and since S.n/ D jn.2z/ for n D 0; 1,
we have S.n/ D jn.2z/ for all n � 0.
A correctness proof. Denote�kg.z; k/ WD g.z; k C 1/� g.z; k/. The correctness of
the produced recurrence follows from the computed proof certificate

�kg.n; k/ D c0h.n; k/f .k/C c1h.nC 1; k/f .k/C c2h.nC 2; k/f .k/ (7)

given by c0 D 2z, c1 D �.2nC 3/, c2 D 2z and

g.n; k/ D znC1nŠ
.2k C 3/.nC k C 2/Š.n � k C 2/Š

�
g0f.k/C g1f.k C 1/C g2f.k C 2/

	

with

g0 D8k5 � 8.n� 1/k4 � .z2 C 28nC 30/k3 C 2.2n2 C .2z2 � 9/nC 2z2 � 19/
k2 C ..z2 C 8/n2 C .8z2 C 15/nC 8z2 C 1/k C .n2 C 3nC 2/.2z2 C 3/

g1 D.2k C 3/.k � n � 2/.2k3 C .3 � 2n/k2 � .5nC 2/k C .nC 1/.z2 � 3//;
g2 D� .k C 1/.k � n � 2/.k � n � 1/z2:

Namely, one can show that (7) holds for all n � 0 and 0 � k � n as follows. Express
�kg.n; k/ in terms of f .k/ and f .k C 1/ by using the recurrence given in Out[25]
and rewrite any factorial in (7) in terms of .nCkC2/Š and .n�kC2/Š. Afterwards
verify (7) by polynomial arithmetic. The summation of (7) over k from 0 to n gives
the recurrence in Out[27]; here we needed the first evaluations of f .i/ D ji .z/yi .z/,
i D 0; 1; 2, from (10.1.11) and (10.1.12).
We remark that the underlying algorithms [19] unify the creative telescoping
paradigm [22] in the difference field setting [20] and holonomic setting [4].
This general point of view opens up interesting applications, e.g., in the field of
combinatorics [3] and particle physics [1].

3.2 LODE and Initial Conditions for (10.1.48)

For the proof of (10.1.48) we choose the package HolonomicFunctions. As we have
seen before, holonomic closure properties include algebraic substitution; but since
sin.�/ is not algebraic, we have to transform identity (10.1.48) slightly in order to
make it accessible to our software: just replace cos.�/ by c and sin.�/ by

p
1� c2.

Now it is an easy task to compute a LODE in z for the left hand side:

In[28]:= Annihilator
h
BesselJ

h
0; z

p
1 � c2

i
; DerŒz�

i

Out[28]=

˚
zD2

z CDz C .z� c2z/
�
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The sum on the right hand side requires some more work. Similar to identity
(10.1.49) above, the technique of creative telescoping [22] is applied and it fits
perfectly to the HolonomicFunctions package. The latter can deal with multivariate
holonomic functions and sequences, i.e., roughly speaking, mathematical objects
that satisfy (for each variable in question) either a LODE or a LORE of arbitrary
(but fixed) order. For example, the expression

f .n; z; c/ D .4nC 1/ .2n/Š
22nnŠ2

j2n.z/P2n.c/

satisfies a LORE in n of order 4 and LODEs w.r.t. z and c, both of order 2. To derive
a LODE in z for the sum we employ the following command (the shift operator Sn,
defined by Snf .n/ D f .nC 1/, is input as SŒn�, and the derivation Dz, defined by
Dzf .z/ D f 0.z/, is input as DerŒz�):
In[29]:= CreativeTelescopingŒ.4nC1/.2n/Š=.22nnŠ2/ SphericalBesselJŒ2n; z� LegendrePŒ2n; c�;

SŒn� � 1; DerŒz��

Out[29]=

�
˚
zD2

z CDzC .z� c2z/
�
;

�
4.nC 1/2
4nC 5 SnDz

C4.nC 1/
2.8n2 C 18n� z2 C 9/

.4nC 3/.4nC 5/z Sn C 4n2

4nC 1Dz

C�16c
2n2z2 � 16c2nz2 � 3c2z2 C 32n4 C 40n3 C 4n2z2 C 12n2 C 4nz2 C z2

.4nC 1/.4nC 3/z


The output consists of two operators, say P andQ, which are called telescoper and
certificate (note already that P equals Out[28]). They satisfy the relation

�
P C .Sn � 1/Q

�
f .n; z; c/ D 0; (8)

a fact that can be verified using the well-known LODEs and LOREs for spherical
Bessel functions and Legendre polynomials. Summing (8) w.r.t. n and telescoping
yields

P

1X

nD0
f .n; z; c/ � .Qf /.0; z; c/C lim

n!1.Qf /.n; z; c/ D 0

(P is free of n and Sn and therefore can be interchanged with the summation
quantifier). Using (9.3.1) and (10.1.1) it can be shown that the limit is 0, and also
the part .Qf /.0; z; c/ vanishes.

Consequently, we have established that both sides of (10.1.48) satisfy the same
second-order LODE. It suffices to compare the initial conditions at z D 0 (see
Sect. 4). For the left hand side we have J0.0/ D 1. From (10.1.25) it follows that
the Taylor expansion of j2n.z/ starts with z2n and hence for z D 0 all summands are
zero except the first one. With (10.1.11) we see that the initial conditions on both
sides agree.
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Before turning to the next identity, we want to point to [20] where a different
computer algebra proof of (10.1.48) has been given. More examples of proving
special function identities with the HolonomicFunctions package are collected in [12].

3.3 LODE and Initial Conditions for (10.1.52)

Again we compute a LODE with Sigma. In order to get a LODE of the left hand side
of (10.1.52) we compute a LODE of its truncated version

In[30]:= mySum D
aX

kD0

j Œk�2I

Note that the summand of our input-sum depends non-linearly on jk.z/. In order to
handle this type of summation input, Sigma needs in addition the package [5]
In[31]:= << OreSys:m

OreSys package by Stefan Gerhold c� RISC-Linz

for uncoupling systems of LODE-systems. Then using a new feature of Sigma we
can continue as “as usual”. Given the difference-differential equation of the form (6)
for j.k/ WD jk.z/ and j .0;1/.k; z/ WD d

dzjk.z/:

In[32]:= recZ D j .0;1/Œk; z� DD k

z
j Œk� C j Œk C 1�I

see (10.2.20), and the recurrence In[24] of the form (5), we compute a LODE for
mySum.D SUMŒn�/:

In[33]:= mySum D
aX

kD0

j Œk�2I

In[34]:= GenerateDEŒmySum; n; frecJ; j Œk�g; recZ�

Out[34]= zSUM0Œz�C SUMŒz�DD .zj Œa�j ŒaC 1�� .2aC 1/j Œa�2/� .zj Œ0�j Œ1�� j Œ0�2/

A correctness proof. The correctness of the LODE can be checked by the computed
proof certificate

�kg.z; k/ D c0j.k/2 C c1j .0;1/.k; z/2 (9)

with c0 D 1, c1 D z and g.z; k/ D zj.k/j.k C 1/ � .2k C 1/j.k/2. Namely,
one can easily show that (9) holds for all 0 � k as follows. Express (9) in terms
of j.k/ and j.k C 1/ by using the recurrence given in In[24] and the difference-
differential equation given in In[32]. Afterwards verify (9) by polynomial arithmetic.
Then summing (9) over k from 0 to a gives the recurrence in Out[34]; here we used
the initial values (10.1.11).
Next, we let a ! 1. Then ja.z/ tends to zero by (9.3.1). Therefore, the left hand
side of (10.1.52) satisfies the LODE

S.z/C z
dS.z/

dz
D sin.2z/

2z
: (10)



90 S. Gerhold et al.

It is readily checked that the right hand side satisfies it, too, and both sides equal 1
at z D 0. This establishes equality of both sides of (10.1.52).

Alternatively, we can derive the inhomogeneous differential equation for the left
hand side of (10.1.52) with HolonomicFunctions:
In[35]:= AnnihilatorŒSumŒSphericalBesselJŒn; z�2; fn; 0; 1g�; DerŒz�; Inhomogeneous !

True�

Out[35]= ffzDz C 1g; fHoldŒLimitŒ: : : ; n!1��C : : : gg

The output consists of a differential operator and an expression that gives the
inhomogeneous part (abbreviated above). Without help, Mathematica is not able
to simplify the latter (i.e., compute the limit), but using (9.3.1) it succeeds and we
get

�
zDz C 1

�
S.z/� sin.z/ cos.z/

z
D 0

which of course agrees with (10).

4 Series Solutions of LODEs and Analyticity

In some proofs we have determined a differential equation that is satisfied by both
sides of the identity in question, and then compared initial values. In contrast to the
case of recurrences, the validity of this approach needs some non-trivial justification.
This procedure can be justified by well-known uniqueness results for solutions of
LODEs, to be outlined in this section. In the proofs of (10.1.39), (10.1.40), (10.2.30),
and (10.2.31), the point t D 0, where we checked initial conditions, is an ordinary
point of the LODE (i.e., the leading coefficient of the LODE does not vanish at
t D 0). Then there is a unique analytic solution, if the number of prescribed initial
values equals the order of the equation. The identity then holds (at least) in the
domain (containing zero) where we can establish analyticity of both sides.

Proposition 3. Identity (10.1.40) holds for all complex t and all complex z ¤ 0.
The same is true for (10.2.31).

Proof. We consider (10.1.40) and omit the analogous considerations for (10.2.31).
For n 2 Z, the function jn�1.z/ is defined for z 2 ��. We fix such a z and consider
both sides of (10.1.40) as functions of t . By (9.3.1), the right hand side converges
uniformly for all complex t , therefore it is an entire function of t . The left hand
side is also entire, since cos

p
w DP

n�0.�1/nwn=.2n/Š is an entire function of w.
Initial values at t D 0 and an LODE satisfied by both sides were already presented
in Sect. 2, hence, by the above uniqueness property, identity (10.1.40) is proved. ut
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Proposition 4. Identity (10.1.39) holds for all complex z and t with j=.z/j � <.z/
and 2jt j < jzj. If j=.z/j � �<.z/, then the identity holds with switched sign for all
t with 2jt j < jzj. The same is true for (10.2.30).

Proof. We give the proof in the case of (10.1.39); (10.2.30) is treated analogously.
First we complete the check of initial values from Sect. 2. For t D 0, the right hand
side is y�1.z/ D .sin z/=z, and on the left hand side we have .sin

p
z2/=z. Thus, at

t D 0 both sides agree for j arg.z/j < �=2, which follows from j=.z/j � <.z/; for
�=2 < j arg.z/j < � , which follows from j=.z/j � �<.z/, the identity holds at t D
0 with switched sign, because the function w 7! pw2 changes sign when crossing
the branch cut i�. The first derivatives at t D 0 are .cos

p
z2/=
p

z2 D .cos z/=
p

z2

and �y0.z/ D .cos z/=z, respectively. The same consideration as for the first initial
value completes the check of the initial conditions.

Now we show that both sides of (10.1.39) are analytic functions of t for fixed
z ¤ 0 with j=.z/j � j<.z/j. Let us start by determining the radius of convergence
of the right hand side. It is an easy consequence of (9.3.1) that

yn.z/ 	 �
p
2

z

�
2n

ez

�n
; n!1; z ¤ 0:

Hence, by Stirling’s formula, the radius of convergence is jzj=2, and so the right
hand side is analytic for 2jt j < jzj.

The left hand side of (10.1.39) has a branch cut along a half-line starting at t D
�z=2, a point on the circle of convergence of the right hand side. If this half line has
no other intersection with this circle, then the left hand side is analytic in the disk
ft W 2jt j < jzjg. Otherwise, the branch cut separates the disk into two segments, and
the identity does not necessarily hold in a segment that does not contain t D 0. As
we will now show, our assumptions exclude the possibility of a second intersection.
Once again it is convenient to proceed by computer algebra. Note that the presence
of two intersections means that
�
9s ¤ t 2 �

��
2jsj D jzj ^ 2jt j D jzj ^ z2C 2zs 2 ��1; 0�^ z2C 2zt 2 ��1; 0�

�

holds. Upon rewriting this formula with real variables, it can be simplified by Math-
ematica’s Reduce command; the result – translated back into complex language – is
the equivalent formula j<.z/j < j=.z/j. Summing up, under our assumptions on z
the left hand side of (10.1.39) is analytic in the disk ft W 2jt j < jzjg. ut

Now consider the LODE (10), which we want to employ to prove (10.1.52). The
point z D 0 is not an ordinary point, so the question of uniqueness of the solution
is more subtle. The origin is a regular singular point of (10), since the degree of the
indicial polynomial

Œz0�ps.z/
�1zs��L z� D � C 1
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agrees with the order s D 1 of the LODE. Here, ps.z/ D z denotes the leading
coefficient, and L the differential operator

L WD 1C zDz:

The following classical result [8] describes the structure of a fundamental
system at a regular singular point. See also the concise exposition in Meunier and
Salvy [14].

Theorem 1. Let z D 0 be a regular singular point of a homogeneous LODE
of order s. Denote the roots of the indicial polynomial by �1; : : : ; �s , and let
m1; : : : ; ms be their multiplicities. Then the equation has a basis of s solutions

z�i
diX

jD0
logj .z/˚ij .z/; 1 � i � s; (11)

where di < s, and the ˚ij .z/ are convergent power series. Each of these solutions
is uniquely defined by the coefficients of the s “monomials”

s[

iD1

˚
z�i ; z�i log z; : : : ; z�i logmi�1 z

�

in the series (11).

Proposition 5. Identity (10.1.52) holds for all z 2 �.

Proof. We have shown in the preceding section that both sides satisfy the LODE
(10). As seen above, the indicial polynomial of the homogeneous equation L f D
f C zf 0 D 0 is � C 1. Hence, by Theorem 1, a solution of L f D 0 that has
the form (11) is uniquely defined by the coefficient of z�1. Hence the zero function
is the only analytic solution of the homogeneous initial value problem L f D 0,
f .0/ D 0. It is a trivial consequence that the inhomogeneous equation (10) cannot
have more than one analytic solution with f .0/ D 1. Therefore, (10.1.52) holds
in a neighbourhood of z D 0. The left hand side of (10.1.52) is entire since it is a
uniform limit of entire functions, and the right hand side is entire by (5.2.14). Thus,
the identity holds in the whole complex plane by analytic continuation. ut
Proposition 6. Identity (10.1.48) holds for all complex z and � .

Proof. By the Laplace-Heine formula [21, Theorem 8.21.1], P2n.cos �/ grows at
most exponentially as n ! 1. Together with (9.3.1) and n.2n/Š=.22nnŠ2/ D
O.
p
n/, this shows that the right hand side of (10.1.48) is an entire function of

z and � . In Sect. 3 we showed that both sides of (10.1.48) satisfy the differential
equation zf 00.z/C f 0.z/C z.1 � c2/f .z/ D 0 (whose indicial equation is �2 D 0)
and that the initial condition at z0 agrees. The result follows from Theorem 1 and
the fact that both sides are entire functions. ut



Computer-Assisted Proofs of Some Identities for Bessel Functions of Fractional Order 93

5 Non-computer Proofs

Some of our identities can be easily proved from some of the others, without using
any software machinery. The computer proofs that we have in hand suffice for
establishing the remaining identities (10.1.42)–(10.1.44), and (10.2.34) in this spirit.
The reader should by now be convinced that, if desired, all of them can also be
proved by the algorithmic methods we have presented.

Proposition 7. Identities (10.1.42)–(10.1.44) follow from (10.1.41). They hold for
z 2 � n��0.
Proof. Identities (10.1.42)–(10.1.44) can be done analogously to (10.1.41), but we
instead present (non-computer) deductions from (10.1.41). The derivative of Y�
w.r.t. � can be expressed in terms of J� , J�� , and Y� , see (9.1.65) in the appendix.
Note that cot .� C 1=2/� vanishes for � D 0; 1. Equation (9.1.65) thus yields



@

@�
y�.z/

�

�D0
D


@

@�
j�.z/

�

�D�1
� � sin z

z

and


@

@�
y�.z/

�

�D�1
D �



@

@�
j�.z/

�

�D0
� � cos z

z
:

Therefore, we have a relation between the left hand sides of (10.1.42) and (10.1.43),
and one between the left hand sides of (10.1.41) and (10.1.44). It is easy to verify
that the respective right hand sides satisfy the same relations. Hence the assertion
will be established once we show that (10.1.42) follows from (10.1.41). To this end,
it suffices to show that the left hand sides of these identities satisfy

@

@z

�

z



@

@�
j�.z/

�

�D0

�

� z



@

@�
j�.z/

�

�D�1
D � sin z

z
; (12)

since once again it is easy to see that the right hand sides of (10.1.41) and (10.1.42)
obey the same relation. By (9.1.64), the recurrence relations of � and  , and the
duplication formula of � , the left hand side of (12) equals

sin z

z
�p�

1X

kD0
.� 1

4
/k

 
 .k C 3

2
/

� .k C 3
2
/=.k C 1

2
/
�  .k C

1
2
/

� .k C 1
2
/

!
z2k

kŠ

D sin z

z
�p�

1X

kD0
.� 1

4
/k

1

� .k C 1
2
/.k C 1

2
/

z2k

kŠ

D sin z

z
�
1X

kD0
.� 1

4
/k

22kC1z2k

� .2k C 2/ D �
sin z

z
: ut
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Proposition 8. Identity (10.2.34) follows from (10.1.32) and (10.2.33). It holds for
z 2 � n��0.
Proof. Indeed, by (9.6.43) we have



@

@�
K�.z/

�

�D˙1=2
D �

2
csc.��/



@

@�
I��.z/� @

@�
I�.z/

�

�D˙1=2

D ��
2

csc.��/

 

@

@�
I�.z/

�

�D	1=2
C


@

@�
I�.z/

�

�D˙1=2

!

D ˙
r
�

2z
ezE1.2z/: ut

Finally, we note that (10.2.32), which was proved in Proposition 2, can be proved
by hand from (10.1.41). Indeed, replacing z with iz in (9.1.64) makes the k-sum in
(9.1.64) equal the k-sum in (9.6.42). Solving both relations for the k-sum allows
to express @

@�
I�.z/ by I�.z/, J�.iz/, and @

@�
J�.iz/. Plugging in � D 1

2
, rewriting

@
@�
J�.iz/ with (10.1.41), and using the relations (5.2.21) and (5.2.23) between the

exponential integral and the sine and cosine integrals gives (10.2.32). Analogously,
(10.2.33) follows from (10.1.42).
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Appendix: List of Relevant Table Entries

For the reader’s convenience, we collect here all identities from Abramowitz,
Stegun [2] that we have used.

Ei.x/ D � C ln x C
1X

nD1

xn

n nŠ
.x > 0/ (5.1.10)

E1.z/ D �� � ln z�
1X

nD1

.�1/nzn

n nŠ
.j arg zj < �/ (5.1.11)

Si.x/ D
1X

nD0

.�1/nx2nC1
.2nC 1/.2nC 1/Š (5.2.14)

Ci.x/ D � C logx C
1X

nD1

.�1/nx2n
2n.2n/Š

(5.2.16)
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Si.x/ D 1

2i
.E1.iz/� E1.�iz//C �

2
.j arg zj < �

2
/ (5.2.21)

Ci.x/ D �1
2
.E1.iz/C E1.�iz// .j arg zj < �

2
/ (5.2.23)

 .zC 1/ D  .z/C 1

z
(6.3.5)

@

@�
J�.z/ D J�.z/ log. 1

2
z/� . 1

2
z/�

1X

kD0
.�1/k  .� C k C 1/

� .� C k C 1/
. 1
4
z2/k

kŠ
(9.1.64)

@

@�
Y�.z/ D cot.��/

� @

@�
J�.z/� �Y�.z/

�
(9.1.65)

� csc.��/
@

@�
J��.z/ � �J�.z/ .� ¤ 0;˙1;˙2; : : : /

J�.z/ 	 1p
2��

� ez

2�

��
; Y�.z/ 	 �

r
2

��

� ez

2�

���
.� !1/ (9.3.1)

I�.z/ D . 12 z/�
1X

kD0

. 1
4
z2/k

kŠ� .� C k C 1/ (9.6.10)

@

@�
I�.z/ D I�.z/ ln. 1

2
z/� . 1

2
z/�

1X

kD0

 .� C k C 1/
� .� C k C 1/

. 1
4
z2/k

kŠ
(9.6.42)

jn.z/ D
q

1
2
�=zJnC 1

2
.z/; yn.z/ D

q
1
2
�=zYnC 1

2
.z/ (10.1.1)

j0.z/ D sin z

z
; j1.z/ D sin z

z2
� cos z

z
; (10.1.11)

j2.z/ D
� 3

z3
� 1

z

�
sin z � 3

z2
cos z

y0.z/ D �j�1.z/ D �cos z

z
; y1.z/ D j�2.z/ D �cos z

z2
; (10.1.12)

y2.z/ D �j�3.z/ D
�1

z
� 3

z2

�
cos z� 3

z2
sin z

jn�1.z/C jnC1.z/ D .2nC 1/z�1jn.z/ .n 2 �/ (10.1.19)

yn�1.z/C ynC1.z/ D .2nC 1/z�1yn.z/ .n 2 �/

jn.z/ D zn
�
�1

z

@

@z

�n sin z

z
(10.1.25)

nC 1
z

jn.z/C d

dz
jn.z/ D jn�1.z/ (10.2.20)
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Conformal Methods for Massless Feynman
Integrals and Large Nf Methods

John A. Gracey

Abstract We review the large N method of calculating high order information on
the renormalization group functions in a quantum field theory which is based on
conformal integration methods. As an example these techniques are applied to a
typical graph contributing to the ˇ-function of O.N/ �4 theory at O.1=N 2/. The
possible future directions for the large N methods are discussed in light of the
development of more recent techniques such as the Laporta algorithm.

1 Introduction

One of the main problems in renormalization theory is the construction of the
renormalization group functions. These govern how the parameters of a quantum
field theory, such as the coupling constant, depend on scale. In situations where
one has to compare with precision data, this ordinarily requires knowing the
renormalization group functions to very high orders in a perturbative expansion.
The quantum field theories we have in mind are not only the gauge theories of
particle physics but also the scalar and fermionic ones which arise in condensed
matter problems. These are central in understanding phase transitions. To attain such
precision in perturbative expansions means that large numbers of Feynman diagrams
have to be determined with the number of graphs increasing with the loop order.
Moreover, as the order increases the underlying integrals require more sophisticated
methods in order to deduce their value analytically. The widely established methods
of computing Feynman graphs will be reported elsewhere in this volume. Here we
review an alternative approach which complements explicit perturbative techniques.
It does so in such a way that for low loop orders there is overlap but at orders

J.A. Gracey (�)
Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool,
P.O. Box 147, Liverpool, L69 3BX, UK
e-mail: gracey@liv.ac.uk
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beyond that already known part of the perturbative series can be deduced at all
orders within a certain approximation. This is known as the large N or large Nf
method whereN is a parameter deriving from a symmetry of the theory such as a Lie
group or the number of massless quark flavours, Nf , in Quantum Chromodynamics
(QCD). In this method the Feynman graphs are related to those of perturbation
theory but because of the nature of the expansion parameter, the powers of the
propagators appearing in such graphs are not the canonical value of unity but instead
differ from unity by O.�/ where � corresponds to the regularizing parameter of
dimensional regularization. In addition beyond leading order in the 1=N expansion,
the propagator powers will include the anomalous dimensions in addition to the
leading or canonical dimension. Therefore, standard perturbative techniques such
as integration by parts requires care in its use since one may not be able to actually
reduce a graph to a simpler topology. Instead a different technique has had to be
refined and developed. It is based on a conformal property of Feynman integrals
and we review it here in the context of the large N methods. Though it has had
some applications in perturbative computations.

The article is organized as follows. We devote the next section to the nota-
tion and techniques of computing Feynman graphs using conformal methods in
d -dimensions. We focus on the general two loop self energy graph in the subsequent
section and review the work of [1, 2], upon which this review is mostly based,
and others in the methods of evaluating it. These techniques are then applied
to a problem in scalar quantum field theory in Sect. 4 where a graph with 10

internal integrations is evaluated exactly in d -dimensions. We conclude in Sect. 5
with thoughts on the direction in which the technique could be developed next
given recent advances in the computation of Feynman graphs using conventional
perturbative techniques.

2 Notation and Elementary Techniques

We begin by introducing the notation we will use which will be based on [1,2]. There
Feynman graphs were represented in coordinate or configuration space notation. By
this we mean that in writing a Feynman integral graphically the integration variables
are represented as the vertices. By contrast in momentum space representation the
integration variables correspond to the momenta circulating around a loop. So in
coordinate space representation propagators are denoted by lines between two fixed
points, as illustrated in Fig. 1. There the power of the propagator is denoted by a
number or symbol beside the line. One can map between coordinate and momentum
space representation by using a Fourier transform. In the notation of [1, 2] we have

1

.x2/˛
D a.˛/

22˛��

Z

k

ddk
eikx

.k2/��˛
(1)
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x y
≡ 1

((x−y)2)

Fig. 1 Coordinate space propagator

0 y x 0 x
≡

Fig. 2 Chain integration

where x is in coordinate space and k is the conjugate momentum. Also for shorthand
we set

d D 2� (2)

which is used throughout to avoid the appearance of d=2 in the Euler � -function.
This symbol should not be confused with the mass scale appearing in renormaliza-
tion group equations. Clearly

a.˛/ D � .�� ˛/
� .˛/

(3)

which is singular when ˛ D �C n where n is zero or a positive integer. Also a.˛/
vanishes at the negative integers. The elementary identity

a.˛/a.� � ˛/ D 1 (4)

follows trivially as does

a.˛/ D a.˛ � 1/
.˛ � 1/.�� ˛/ (5)

from the � -function identity � .zC 1/ D z� .z/. With this notation the elementary
one loop self energy graph in momentum space is replaced by chain integra-
tion in coordinate space representation. This is represented graphically in Fig. 2
where, [1, 2],

�.˛; ˇ; �/ D ��a.˛/a.ˇ/a.�/ : (6)

However, in practice Feynman graphs have more complicated integration points.
In other words in coordinate space representation one has more than two lines
intersecting at a point. Therefore, more involved integration techniques are required
to evaluate the Feynman integrals. One very useful technique is that of uniqueness
or conformal integration which was introduced in three dimensions in [3]. It has
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x y

0

x y

0Fig. 3 Conformal integration
when ˛C ˇC � D 2�

been developed in several ways subsequently and specifically to d -dimensions. For
example, see [4]. We follow [1, 2] and use the rule represented in Fig. 3, where z is
the integration variable, which follows when the sum of the exponents of the lines
intersecting at the 3-point vertex add to the spacetime dimension

˛ C ˇ C � D 2� : (7)

This is known as the uniqueness condition. By the same token if a graph contains a
triangle where the lines comprising the triangle sum to � such as

.� � ˛/ C .� � ˇ/ C .�� �/ D � (8)

as is the case in Fig. 3, then the unique triangle can be replaced by the vertex on the
left side. There are several methods to establish the uniqueness integration rule. If
one uses standard text book methods such as Feynman parameters then the integral
over z can be written as

��� .� � ˛/� .˛ C ˇ C � � �/
� .ˇ/� .�/� .�/



Z 1

0

db
bˇ�1.1 � b/��1

Œb.1 � b/.x � y/2�˛CˇC���


2F1
�

˛ C ˇ C � � �; ˛I�I � Œbx C .1 � b/y�
b.1� b/.x � y/2

�

(9)

prior to using, (7). When that condition is set then the hypergeometric function
collapses to the geometric series and allows the integration over the Feynman
parameter b to proceed which results in

��� .� � ˛/� .� � ˇ/� .�� �/
� .2�� ˇ � �/� .ˇ/� .�/.y2/˛Œ.x � y/2�ˇC���


2F1
�

˛;� � � I 2�� ˇ � � I 1 � x
2

y2

�

(10)

Applying the uniqueness condition a second time produces the right hand side of
Fig. 3 since the hypergeometric function again reduces to the geometric series. This
is in such a way that the canonical propagators emerge.
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x y

0

2 2

Fig. 4 Vertex of Fig. 3 after a
conformal transformation
with base at 0 where
N̨ D 2�� ˛ � ˇ � �

An alternative method is to apply a conformal transformation on the coordinates
of the integral, [2]. In this approach, which is applicable to any graph in general, one
external point is labelled as an origin and given 0 as a coordinate. The other points
are denoted by coordinates x, y and z. The conformal transformation changes the
integration coordinate as well as the external points through

x� ! x�

x2
: (11)

Thus for two coordinates y and z undergoing such a transformation we have the
lemma

.y � z/2 ! .y � z/2

y2z2
: (12)

An integration measure also produces contributions to the lines joining to the origin
since

dd z ! dd z

.z2/2�
: (13)

Therefore, for the vertex on the left side of Fig. 3 this transformation produces the
intermediate integral of Fig. 4.

To complete the integration requires setting the uniqueness condition (7) which
produces a chain integral since the line from 0 to z is absent from the graph.
To complete the derivation one undoes the original conformal transformations to
produce the right hand side of Fig. 3. If one compares the two derivations, the latter
is in fact of more practical use. This is because it avoids the use of writing the
original integral in terms of Feynman parameters which would become tedious for
higher order cases. Also it is simple to implement graphically.

Having recalled the derivation of the uniqueness rule it is straightforward to see
that there is a natural extension. In the first derivation there was not a unique way to
collapse the hypergeometric function to an elementary type of propagator. Instead
this will happen if the sum of the exponents is .2�Cn/ where n is a positive integer.
Although the collapse in this case will not be to the geometric series, it will reduce
to simple algebraic functions which are of the propagator type. So, for instance,
when n D 1 we have the result of Fig. 5, [5],

A similar rule has been constructed and used in [5]. We will use Fig. 5 later in
order to simplify various integrals.
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x y

z

0

≡ ν(α
α

α

α

α

−1,β−1,γ
γ γ

γ

γ

)
(α−1)(ββ

β

β

β

−1)

x y

0

¹ − + 1

¹ −¹ − + 1

+ ν(α−1,β,γ−1)
(α−1)(γ−1)

x y

0

¹ − + 1

¹ − + 1¹ −

+ ν(α,β−1,γ−1)
(β−1)(γ−1)

x y

0

¹ −

¹ − + 1¹ − + 1

Fig. 5 Conformal integration
when ˛C ˇC � D 2�C 1

3 Two Loop Self Energy Graph

We can illustrate some of the techniques of conformal integration by considering the
massless two loop self energy graph with arbitrary powers, ˛i on the propagators. It
is illustrated in Fig. 6 where we have used the coordinate space representation. Thus
the vertices are integrated over rather than the loop momenta. To clarify, the integral
of Fig. 6 is

I.˛1; ˛2; ˛3; ˛4; ˛5/ D
Z

yz

1

.y2/˛1..x � y/2/˛2 ..x � z/2/˛3.z2/˛4 ..y � z/2/˛5

(14)

where
R
y
D R

dd y

.2�/d
. The structure of this integral has been widely studied and we

briefly highlight several properties of relevance. The analysis of [6, 7] determined
that the symmetry group of the graph was Z2 
 S6 which has 1;440 elements.
Exploiting this the � expansion of the integral in d D 4�2� with propagator powers
of order � from unity was determined up toO.�6/, [6,7]. AtO.�5/ it was discovered
that the first multi-zeta value occurred, [7]. Specifically

I.1; 1; �� 1; 1; �� 1/ D 6�3 C 9�4� C 7�5�5

C 5

2

�
�6 � 2�23

	
�3 � 1

8
Œ91�7 C 120�3�4� �4

C 1

81;920
Œ653;440�5�3 � 7;059;417�8 C 576F53� �5

C O.�6/ (15)
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where �z is the Riemann zeta function and F53 D P
n>m>0

1
n5m3

in the original
notation of [8]. Subsequent to this it has been shown that the only numbers which
appear in the full series expansion in � are multiple zeta values, [9]. While the work
of [6,7] illustrated the power of group theory to evaluate master integrals explicitly,
using conformal integration allows one to relate two loop self energy integrals by
exploiting the masslessness of the original diagrams. This was originally developed
in [1, 2] and we summarize that here as there appears to be scope nowadays to take
this method to three and higher loop order graphs.

The transformations developed in [2] fall into several classes. The first is that
derived from the elementary use of the Fourier transform. Writing

I.˛1; ˛2; ˛3; ˛4; ˛5/ D �

.x2/D�2�
(16)

where D D P5
iD1 ˛i and � is independent of x and corresponds to the value of

the integral, then taking the Fourier transform produces an integral which is also
the two loop self energy. Though the propagator powers are different. In this sense
one can say that the graph is self-dual which is not a property all Feynman graphs
have. Thus, [2],

I.˛1; ˛2; ˛3; ˛4; ˛5/ D
Q5
iD1 a.˛i /

a.D � 2�/ I.�� ˛2; �� ˛3; �� ˛4; �� ˛1; �� ˛5/ :
(17)

This transformation is known as the momentum representation or MR. It can be
easily generalized to other topologies and there is a simple graphical rule for this.
Although not immediately apparent from the self energy because of the self-duality,
each 3-valent vertex of the original graph has an associated triangle in the dual
graph. For other topologies 4-valent vertices are mapped to squares and 5-valent
vertices to pentagons with a clear generalization pattern.

A set of less obvious transformations can be deduced from the uniqueness
condition. First, we define the shorthand notation, [2],

s1 D ˛1 C ˛2 C ˛5 ; s2 D ˛3 C ˛4 C ˛5
t1 D ˛1 C ˛4 C ˛5 ; t2 D ˛2 C ˛3 C ˛5 (18)

and illustrate the technique for one case. If one considers the central propagator it
can be replaced by a chain integral. Although there are an infinite number of ways
of doing this one can choose the exponents of the chain so that the top vertex is
unique. In other words

1

..y � z/2/˛5

D 1

�.2�� ˛1 � ˛2; s1 � �;� � ˛5/
Z

u

1

..y � u/2/2��˛1�˛2 ..u � z/2/s1��
(19)
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where u is the intermediate integration point. As the y vertex of Fig. 6 is now unique
the conformal integration rule can be used to rewrite the integral. This results in, [2],

I.˛1; ˛2; ˛3; ˛4; ˛5/ D a.˛1/a.˛2/a.˛5/

a.s1 � �/ I.��˛2; ��˛1; ˛3; ˛4; s1��/ : (20)

In the notation of [2] this transformation is known as ". It is elementary to see
that there are five other such transformations which are denoted by %, -, #,
& and.. The syntax is that when an arrow points in a general upwards direction
it is a transformation on the y vertex and by contrast in a downwards direction it
relates to the z vertex. The propagator which one replaces by a chain to make the
vertex unique is in correspondence with the direction of the arrow. While these
six transformations operate on the internal vertices there are two which act on
each of the external vertices. One can complete the uniqueness of one of these by
realizing that the integral itself is a propagator with power .D � 2�/ as indicated in
(16), [2]. For example, if the right external point is chosen as the base integration
vertex then the appending propagator has power .2�� ˛2 � ˛3/. This produces

I.˛1; ˛2; ˛3; ˛4; ˛5/ D a.˛2/a.˛3/

a.D � 2�/a.2�� t1/I.˛1; � � ˛3; � � ˛2; ˛4; t2 � �/
(21)

and this is denoted by  . The corresponding transformation on the left external
point is called!.

The final set of transformations are based on the conformal transformations (11)
and (12) together with the effect they have on the two vertex measures, [2]. One
can choose either of the external vertices as the origin of the transformation. Once
decided the result of the conformal transformation is that all propagators joining to
the origin have their powers changed to the difference of 2� and the sum of the
exponents at the point at the other end of that propagator. This means all points
including those not directly connected to the base point in the first place. For the
two loop self energy there are no such points but for higher loop graphs this will
be the case. We will give an example of this in Sect. 4. Thus the conformal left
transformation is, [2],

I.˛1; ˛2; ˛3; ˛4; ˛5/ D I.2�� s1; ˛2; ˛3; 2�� s2; ˛5/ (22)

where there is no � -function factor and this is denoted by CL in contrast to CR
which is the transformation based on the right external vertex as the origin of the
conformal transformation. The full set of transformations and the result of applying
each to the graph of Fig. 6 are summarized in a Table in [2]. However, as brief
examples of the transformations the integral of (15) is related as follows
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0 x

z

y

4

1

3

2

5

αα

α

αα

Fig. 6 Two loop self energy
graph in coordinate space
representation

I.1; 1; �� 1; 1; �� 1/ "D I.� � 1; � � 1; 1; �� 1; 1/
CRD I.� � 1; 1; 1; 1; �� 1/ : (23)

Though the latter follows from a simple rotation of the integral as well.
Aside from the transformations there are other techniques which allow one

to evaluate the two loop self energy and higher order graphs. Perhaps the most
exploited is that of integration by parts which was introduced for (16) in [10]. It
determined that the first term in the � expansion of I.1; 1; 1; 1; 1/ was 6�3 and
has also been used in other applications, [2]. Indeed more recently the technique
has been developed by Laporta in [11] to produce an algorithm which relates all
integrals in a Feynman graph to a base set of master integrals. These can then be
evaluated by direct methods to complete the overall computation. In the coordinate
space representation we use here the basic rule is given in Fig. 7 where the C or �
on a line indicates that the power of that propagator is increased or decreased by
unity. For example, with this, [10],

I.1; 1; 1; 1; 1/ D �.1; 1; 2�� 2/
.� � 2/ Œ�.1; 2; 2�� 3/� �.3 � �; 2; 3� � 5/� (24)

which can be expanded in powers of �. Clearly the series can only involve rationals
and �n. Indeed the rule can also be applied to more general cases. In [2] it was
shown that

I.˛; � � 1; � � 1; ˇ; � � 1/ D a.2� � 2/
� .� � 1/



a.˛/a.2 � ˛/

.1 � ˇ/.˛ C ˇ � 2/

C a.˛ C ˇ � 1/a.3 � ˛ � ˇ/
.˛ � 1/.ˇ � 1/

C a.ˇ/a.2 � ˇ/
.1� ˛/.˛ C ˇ � 2/

�

(25)

for arbitrary˛ and ˇ. However, not all graphs can be integrated by parts. An example
of such a case is I.1; ˛; ˇ; �; 1/ for non-unit ˛, ˇ and � . Another example is (15),
[7], whose expansion has a non-Riemann zeta value at some point in the expansion.
Indeed this is perhaps an indication of an obstruction to integrability.
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While integration by parts allows one to reduce the powers of various propagators
by unity within a Feynman diagram it is not the only method to achieve this.
A modification of the uniqueness method can be used to derive rules similar to
Fig. 7. Specifically if one chooses the exponents of the propagators to be .2�C 1/
then one finds the extension given in Fig. 5. Using this rule and repeating the analysis
of the transformations on the two loop self energy graph provides relations specific
to this topology, [5]. For instance, extending% to have the upper vertex exponents
summing to .2�C 1/ gives the relation in Fig. 8 where theC or � on the right side
indicates that the exponent of that line is increased or decreased by unity. In Fig. 8
provided ˛2 ¤ 1 and ˛5 ¤ 1 then the powers of the respective propagators can be
reduced by unity. However, this restriction is a drawback if one wishes to reduce
graphs which have unit exponents. Instead it is possible to extend the method which
produced the relation of Fig. 8. For instance, rather than begin with the general two
loop self energy and applying the generalized uniqueness rule, one can use one of
the transformations of [2] and then apply a rule like that of Fig. 8 before applying
the transformation inverse to the original one. In this way one can build up a suite
of relations.
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One such useful relation is illustrated in Fig. 9 which is derived in several stages.
The first is to construct a relation similar to that of Fig. 9 by first applying  to
the graph of Fig. 6 and then undoing it by applying the rule of Fig. 5 to the same
external vertex. This produces a relation where t2 increases by unity in each of the
three resulting graphs. The second stage is to apply this rule to the graph of Fig. 6
after a CR transformation has been enacted. To complete the derivation the final
step is to undo with another CR transformation. Thus the t2 value of each graph on
the right hand side of Fig. 9 is one less than that of the graph on the left side. This
reduction has coefficients on the right hand side which are non-singular for unit
propagators. Other rules can be derived by this method and a fuller set are recorded
in Appendix B of [12]. It is worth noting that similar rules based on the generalized
uniqueness where developed in [4].

4 QFT Application

Having discussed the general techniques for determining massless Feynman inte-
grals using conformal methods, we illustrate their usefulness in a practical problem
in a quantum field theory. Specifically we focus on the determination of the critical
exponents at a phase transition in various models in the large N expansion. The
background which we describe here is based on a series of articles, [1, 2, 13],
where exponents were determined in d -dimensions at O.1=N 2/ and O.1=N 3/.
The fact that d -dimensional results are computable means that information on the
renormalization group functions can be deduced in various spacetime dimensions.
This is due to a special feature of critical point field theories and that is that at
a non-trivial fixed point of the renormalization group flow the critical exponents
correspond to the associated renormalization group function at that fixed point.
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Thus information on the renormalization group functions is encoded in these
exponents. Moreover, at a fixed point several quantum field theories can lie in
the same universality class despite having different structures. This is invariably
as a consequence of a common interaction in the Lagrangian. Thus the same
exponents can be used to access the structure of the renormalization group functions
of two different theories. Further, as the spacetime dimension d is not used as a
regulator, information on the exponents can be deduced simultaneously in several
different dimensions such as three and four. For more background to the use of the
renormalization group equation at near criticality in quantum field theories see, for
example, [14].

For the application of the conformal methods we consider here we concentrate
on the O.N/ nonlinear � model which is critically equivalent in d -dimensions to
O.N/ �4 theory. For the latter theory the Lagrangian is

L D 1

2
.@��

i /2 C g

8
.�i�i /2 (26)

where g is the coupling constant and 1 � i � N . Introducing an auxiliary field �
equates this Lagrangian to

L D 1

2
.@��

i /2 C 1

2
�.�i�i / � �2

2g
: (27)

At criticality it is the interaction which drives the dynamics and thus it is straight-
forward to see that in this formulation the Lagrangian interaction is the same as
that of the O.N/ nonlinear � model when the fields are constrained to lie on an
.N�1/-dimensional sphere. The constraint would have a final term linear in � rather
than a quadratic one together with a different coupling constant. This essentially is
the origin of both field theories being in the same universality class. The linear or
quadratic terms in � at criticality serve effectively to define the structure of the
propagators. In coordinate space representation these are, [1, 2],

h�i.0/�j .x/i D ıij A

.x2/˛
; h�.0/�.x/i D B

.x2/ˇ
(28)

where A and B are x-independent amplitudes and ˛ and ˇ are the scaling
dimensions of the fields. The latter comprise two parts. The first is the canonical
dimension and the other is the anomalous dimension. Here

˛ D � � 1 C 1
2
� ; ˇ D 2 � � � � (29)

where � is the anomalous dimension of �i and � is the vertex anomalous dimension.
The former is related to the renormalization group function which is also termed the
anomalous dimension, �.g/, by

� D �.gc/ (30)
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where gc is the value of the coupling constant at the critical point,

�.g/ D �
d

d�
lnZ� (31)

and Z� is the wave function renormalization constant. (In (31) we have temporarily
used � to denote the standard renormalization group scale that underlies any
renormalization group equation.) To determine the values of the exponents to a
particular order in 1=N requires solving the skeleton Schwinger-Dyson equation
for the 2-point functions at the same order. We do not discuss that formalism
here, which can be found in [1, 2], as our focus is rather on the evaluation of the
Feynman graphs contributing to these equations. Though we should say that the
presence of the non-zero anomalous dimensions in the propagators means that in
2-point functions there are no self energy corrections on any internal propagator as
otherwise there would be double counting. So the number of graphs to consider is
smaller than the corresponding perturbative case.

The coupling constant at the critical point is denoted by gc and is defined as a
nontrivial zero of the ˇ-function, ˇ.gc/ D 0. As we are working in d -dimensions
such a non-trivial zero exists in our theories since away from the spacetime
dimension where the theory is renormalizable the coupling constant becomes
dimensionful. Hence the first term of the d -dimensional ˇ-function depends on d .
Moreover, gc will depend on the parameters of the theory which in our case here is
N . Thus gc D gc.d;N /. Similarly � D �.d;N / and � D �.d;N /. These can all
be expanded in powers of 1=N where N is large in such a way that the coefficients
of 1=N are d -dependent. Thence if one expresses these coefficients in powers of �
where d D 4 � 2� for �4 theory or d D 2C N� for the nonlinear � model, then one
can deduce the coefficients in the corresponding renormalization group equation to
all orders in perturbation theory at that order in 1=N . In this respect it is important
to note that in the large N expansion � or N� do not play the role of a regulator as
they would do in conventional perturbation theory.

Instead to see the origin of where a regulator is required one should consider the
simple two loop contribution to the � self energy graph given in Fig. 10 in coordinate
space representation. To use conformal methods one has to check the sum of the
exponents at a vertex in coordinate space representation. From (29) one can see that

2˛ C ˇ D 2� � � : (32)
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Fig. 11 Subtracted graphs
for computation of � two
loop self energy

However, from the structure of the renormalization group equation at criticality the
anomalous dimensions � and � begin as O.1=N/. More, specifically

� D
1X

iD1

�i

N i
: (33)

Thus at leading order in 1=N the basic vertex is unique, [2]. Hence at this order
one can integrate at either of the vertices and produce the first contribution to the
integral which is �.� � 1; � � 1; 2/. The second integration is a simple chain and
naively gives �.�;�; 0/. This is clearly ill-defined due to the zeroes and singularities
deriving from the � -function. However, this graph was chosen to illustrate the
fact that the graph and indeed the theory requires a regularization in this critical
point formulation. The method developed in [1,2] was to use analytic regularization
which is introduced by shifting the vertex anomalous dimension by an infinitesimal
amount,�, via

ˇ ! ˇ � � : (34)

In some respect one is in effect performing a perturbative expansion in the vertex
anomalous dimension, [1,2]. Consequently even at leading order the graph of Fig. 10
no longer has a unique vertex due to a non-zero �. Therefore, to determine the
graph to the finite part in � requires the addition and subtraction of the graphs of
Fig. 11, [2].

These two graphs have been chosen in such a way that their singularity structure
in � exactly matches that of Fig. 10, [2]. Clearly they represent simple chain
integrals which can be determined as 2�.˛; ˇ��; 2��˛�ˇC�/�.˛; ���;��
˛ C �/ where the singularity is clearly regularized. To complete the evaluation
introduces another technique, which we will use later, to extract a finite term of a
graph. This is a temporary regularization, [2]. If one subtracts the graphs of Fig. 11
from that of Fig. 10, the combination is finite with respect to � which is therefore
not required and can be set to zero. Thus one can complete the first integration
at the upper vertex of each graph. (Without a regularization the point where one
integrates in each graph has to be the same and thence the order of integration is
important.) This produces �.˛; ˛; ˇ/ for each graph. However, each of the three
subsequent chain integrals has a singular exponent, �. To circumvent this the lower
two propagators of all three graphs are temporarily regularized by ˛ ! ˛� ı where
ı is arbitrary. Thus the three graphs give
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Œ�.�� ı; � � ı; 2ı/� �.˛ � ı; �� ı; � � ˛ C 2ı/
��.�� ı; ˛ � ı; � � ˛ C 2ı/� �.˛; ˛; ˇ/ (35)

which is clearly finite as ı ! 0, [2]. Thus to O.�/ the graph of Fig. 10 evaluates
to, [2],

2�2�a2.˛/a.ˇ/

� .�/



1

�
C B.ˇ/ � B.˛/CO.�/

�

(36)

where B.z/ D  .z/ C  .� � z/ for z and .� � z/ not equal to zero or a negative
integer and  .z/ is derivative of the logarithm of the � -function.

A more involved example which uses many of the techniques of the previous
section occurs in the computation of the O.1=N 2/ correction to the ˇ-function in
O.N/ �4 theory. The relevant critical exponent is ! which is related through the
critical renormalization group equation to the ˇ-function slope at criticality. In this
case it has the form

! D 2 � � C
1X

nD1

!n

N n
(37)

and the explicit forms for !n are deduced from the part of the Schwinger-Dyson
equations corresponding to corrections to scaling. In other words the propagators of
(28) are extended to

h�i .0/�j .x/i D ıij A

.x2/˛

�
1 C A0.x2/!

	

h�.0/�.x/i D B

.x2/ˇ

�
1 C B 0.x2/!

	
: (38)

In principle other corrections can appear here corresponding to other exponents such
as that for the ˇ-function of the nonlinear � model but one tends to focus on one
calculation at a time. The effect of the corrections is that to deduce !n within the
Schwinger-Dyson formalism all Feynman diagrams with one correction insertion
on a propagator contribute at each particular order in 1=N . While the O.1=N 2/

expression for ! appeared in [15] the explicit evaluation of the contributing graphs
has not been detailed. Thus we discuss one such diagram here as the approach
can be readily adapted to the other graphs. It is given in Fig. 12. To see that it
is O.1=N 2/ each closed loop of �i fields contributes a factor of N and each �
propagator is O.1=N/. This is due to the fact that the amplitude B is O.1=N/,
[1, 2]. As there are four of the former and five of the latter then this gives O.1=N/
overall which is one factor of 1=N more than the previous order graph of Fig. 10.
Finally, another factor of 1=N derives from the actual Schwinger Dyson formalism
used to determine !2. The double line on one � propagator in Fig. 12 denotes the
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Fig. 12 Particular graph contributing to the �4 theory ˇ-function at O.1=N 2/

1

1¹ − 1

1¹ − 1

¹ − 21 ¹ − 3

Fig. 13 Reduced integral of Fig. 12

B 0 correction. The presence of such a correction means that the graph is �-finite.
Moreover, since we only want the value as a function of d rather than d and N
we can replace the exponents of the lines by their canonical values. If one was
computing !3 then the anomalous dimensions of each exponent would need to be
retained at O.1=N/. The benefit of this restriction here is that of the ten vertices
eight are unique. There are ten integrations to do over the vertices rather than
the six of the loops as we are in coordinate space representation. Given this high
degree of uniqueness the graph can be reduced rather quickly to one with fewer
integrations. To do this one can use a variety of the rules we had earlier aside
from uniqueness such as conformal transformation, unique triangle, insertion at an
internal or external vertex. Ultimately one produces the graph of Fig. 13.

This graph cannot be reduced any further since there are no unique vertices
or triangles. Though various vertices or triangles are one unit from uniqueness.
Moreover, integration by parts cannot be used since at some point one produces an
unregularized exponent, such as 0 or �, or a zero in a denominator factor. In some
sense this graph could be regarded as a master integral since it arises in several
of the other graphs contributing to the � Schwinger-Dyson equation. Moreover,
it is worth noting that in strictly four dimensions the propagators of the graph
would all have unit exponents. As an aside if an interested reader has been applying
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Fig. 15 First graph after
integration by parts

the conformal techniques to reduce the diagram and obtains similar exponents but
distributed differently around the diagram then it will be related to that of Fig. 13 by
applying the transformations discussed for the master 2-loop self energy. We note
here that if a conformal transformation is applied to the graph of Fig. 13 with the
left internal point as the CL base, then that would introduce a new line from the top
right internal vertex to the base. This illustrates comments made earlier.

To proceed further and reduce the graph to a known function of d requires an
integration by parts but this requires modifying the integral first. Though before this
can be achieved safely one has to introduce a temporary regularization to handle
hidden singularities at a later stage of the computation. This technique has been
applied by others, [4,16]. For our case we have chosen the regularization of Fig. 14.
How one chooses the temporary regularization is not unique. However, it is chosen
here so that after application of the integration by parts rule of Fig. 7 the resulting
four graphs have either unique vertices or triangles which are ı-dependent and
which regularize any singularity after subsequent integration. For the integration
by parts we use the top left internal vertex of Fig. 14 with the line joining the quartic
vertex as the reference line of the rule of Fig. 7. This produces the four graphs of
Figs. 15–18.

All but the third have at least one unique vertex while that has a unique triangle.
In our earlier notation the first two graphs of Figs. 15 and 16 are

�.2; 1 � ı; 2� � 3C ı/I.�� 1 � ı; � � 1C ı; � � 1C ı; � � 1� ı; 1/ (39)
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Fig. 17 Third graph after
integration by parts

and

�.2; �� 1 � ı; � � 1C ı/I.1C ı; 2�� 3; 1C ı; 2� � 3 � ı; 1/ : (40)

As both of these are ı-finite and have no ı-singular coefficients, one can set ı to
zero in each. The final evaluation is by a two loop reduction formula similar to
those of Figs. 8 and 9. For the remaining two graphs of Figs. 17 and 18 one has
to treat them together due to the singular propagator exponents as will be evident.
After integrating the respective unique triangle and vertex they combine to produce

a3.1/a.�� ı/a.2�� 3C ı/ ŒI.�� 1; �� 1; 1C ı; � � 1 � ı; � � 1
� I.�� 1; �� 1; 1C ı; � � 1 � 2ı; �� 1C ı/� :

(41)

As the external coefficient includes a factor of 1=ı then the quantity inside the
square brackets needs to be evaluated to O.ı/. This is not possible exactly for both
integrals. (It is for the first.) Instead since one only needs the O.ı/ part itself one
can achieve this by evaluating the integral

I.�� 1; �� 1; 1; �� 1 � ı; � � 1C ı/ : (42)
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Fig. 18 Fourth graph after
integration by parts

From the two 2-loop graphs we are interested in theO.ı/ term of this integral clearly
corresponds to the piece we require. Moreover, it can be evaluated exactly using #
as it then reduces to an integral to which one can apply a 2-loop recurrence relation
similar to that of Fig. 9. The final expression for the graph of Fig. 12 is

a.� � 1/a2.2� � 3/a.2�� 2/
2.�� 3/.�� 2/9




f2 � f 2
1 �

2f1

.� � 2/ C 6f3
�

(43)

where

f1 D  .3 � �/C  .2� � 3/�  .� � 1/�  .1/
f2 D  0.3 � �/ �  0.2� � 3/C  0.� � 1/�  0.1/
f3 D  0.� � 1/�  0.1/ : (44)

Setting � D 2 reproduces the established leading order value for the wheel of
three spokes, [17], which provides a useful check. Finally, all the other contributing
graphs are evaluated in a similar way and the full expression for !2, after using the
Schwinger Dyson formalism, is given in [15].

5 Future Directions

We close the article by discussing several directions in which this approach could
move. First, the extension of scalar field theories to non-abelian gauge theories has
been considered in [18–22] for various applications where information is needed on
the renormalization group functions of operators in deep inelastic scattering and the
ˇ-function. That approach is based on the observations of [23] using the number
of quark flavours, Nf , as the expansion parameter. Rather than use the full QCD
Lagrangian one exploits the critical point equivalence with the non-abelian Thirring
model, [23],

L D i N iD= i � 1
2
.Aa�/

2 (45)
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where D� is the covariant derivative, T a are the group generators and  i is the
quark field with 1 � i � Nf . The spin-1 auxiliary field Aa� plays the role of the
gluon in the higher dimensional theory. The triple and quartic gluon vertices of
QCD are generated by the 3-point and 4-point functions of (45) with Aa� external
legs respectively. Following the critical point analysis the propagators in a similar
notation, but in momentum space, are

h i.�p/ j .p/i D ıij Ap=

.p2/��˛

hAa�.�p/Ab�.p/i D �
ıabB

.p2/��ˇ




��� � � p�p�
p2

�

(46)

where � is the gauge parameter with the Landau gauge corresponding to � D 1.
From dimensional analysis the exponents are now, [18],

˛ D � C 1
2
� ; ˇ D 1 � � � � (47)

which means the basic vertex is one step from uniqueness. This complicates
computations in that to proceed one has to break all contributing graphs into scalar
integrals and treat them by transformations, subtractions or use integration by parts
to reduce them to computable cases. While it has been possible to do this in certain
instances, [19, 20, 22], it is not systematic.

Since the application of the method of [1, 2] to QCD an algorithm has been
developed which allows one to exploit integration by parts. Known as the Laporta
algorithm, [11], it creates all integration by parts relations between integrals of
a particular topology and then algebraically solves them in such a way that all
integrals are reduced to a basis set of master integrals. Once their values are known
by other methods then the problem is complete. In the large Nf context once one
moves to say O.1=N 2

f / computations then graphs such as that of Fig. 12 need
to be computed in QCD. Then the solid lines would represent quarks and the
springs would correspond to gluons. However, taking the traces over the closed
loops results in a huge number of irreducible numerator scalar products. While the
propagators do not have integer powers, as is the case in perturbative calculations,
there appears to be a similarity to the problem. In other words in principle a
generalization of the Laporta algorithm should be able to produce a reduction of
the irreducible graphs to a set of masters. The difficulty is that the presence of
non-integer propagator powers means that the present Laporta algorithm would need
to be modified in order to have a point, akin to a ground state, below which no more
reductions could be possible. Though it is not clear under what conditions such
a bottom point exists or whether for certain topologies or distribution of non-unit
exponents it can be proved to be impossible. Indeed the latter point could be related
to the issue of lack computability of a graph due to the presence of multiple-zeta
values similar to (15). However, it seems that for the practical problem of deducing
the QCD ˇ-function at O.1=N 2

f / such an extension to the Laporta algorithm is
possibly the only feasible tactic at present.
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Aside from this possible extension to the Laporta algorithm another interesting
possibility is to what extent the conformal integration methods can be built into that
algorithm to improve and speed reductions within a computer algebra programme
for massless Feynman graphs. This may be important for higher loop topologies.
For instance, earlier we derived recurrence relations for the two loop self energy
topology based on the transformation deduced from the generalized uniqueness
condition. While such relations are no doubt contained within integration by parts
relations of the Laporta construction, that of Fig. 9 is particularly useful in that
there is no increase in the power of any propagator. Therefore, it may be possible
to construct similar relations using conformal transformations but for higher loop
massless topologies. Indeed such transformations are not unrelated to the symmetry
group of the topology as has already been studied in depth for the two loop
self energy, [6, 7]. At the time of [6, 7] expanding a graph in terms of its group
invariants was a promising approach which was complemented by later methods
such as [8, 9]. However, it may be worth returning to a group theory analysis
for topologies such as that represented in Fig. 13. This is because the high order
expansion in terms of � of this and other three and four loop topologies will soon be
required for extending QCD to five and possibly higher loops. In this respect another
direction of exploration may be to study the structure of the graph polynomials of a
topology. The transformations of [2] have been derived from a graphical approach
to understanding the structure of the two loop self energy graph. Understanding the
effect such conformal transformations have on the graph polynomials of massless
integrals may also give insight into the as yet undetermined group theory properties
of higher order topologies.
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The Holonomic Toolkit

Manuel Kauers

Abstract This is an overview over standard techniques for holonomic functions,
written for readers who are new to the subject. We state the definition for holonomy
in a couple of different ways, including some concrete special cases as well as a
more abstract and more general version. We give a collection of standard examples
and state several fundamental properties of holonomic objects. Two techniques
which are most useful in applications are explained in some more detail: closure
properties, which can be used to prove identities among holonomic functions, and
guessing, which can be used to generate plausible conjectures for equations satisfied
by a given function.

1 What Is This All About?

This tutorial is an attempt to further advertize a concept which already is quite
popular in some communities, but still not as popular in others. It is about the
concept of holonomic functions and what computations can be done with them. The
part of symbolic computation which is concerned with algorithms for transcendental
functions faces a fundamental dilemma. On the one hand, problems arising from
applications seem to induce a demand for algorithms that can answer questions
about given analytic functions, or about given infinite sequences. On the other hand,
general algorithms that take an “arbitrary” analytic functions or infinite sequences
as input cannot exist, because the objects in question do in general not admit a
finite representation on which an algorithm could operate. The dilemma is resolved
by introducing classes of “nice” functions whose members admit a uniform finite
description which can serve as data structure for algorithms.
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A class being small means that strong assumptions are imposed on its elements.
This makes the design of algorithms easier. A typical example for a small class
is the set of all polynomial functions. They clearly admit a finite representation
(for instance, the finite list of coefficients), and many questions about the elements
of this class can be answered algorithmically. Implementations of these algorithms
form the heart of every computer algebra system. The disadvantage of a small class
is that quantities arising in applications are too often beyond the scope of the class.

Algorithms for bigger classes are more likely to be useful. An example for
an extremely big class is the set of all functions y which admit a power series
expansion y DP1nD0 anxn whose coefficients are algebraic numbers and for which
there exists an algorithm that computes for a given index n the corresponding
coefficient an. Elements of this class clearly admit a finite representation (for
instance, a piece of code implementing the algorithm for computing the nth
coefficient), but hardly any interesting questions can be answered algorithmically
for the functions in this class. It is for example impossible to decide algorithmically
whether two representations actually represent the same function. So although the
class contains virtually everything we may ever encounter in practical applications,
it is not very useful.

The class of holonomic functions has proven to be a good compromise between
these two extremes. On the one hand, it is small enough that algorithms could be
designed for efficiently answering many important questions for a given element of
the class. In particular, there are algorithms for proving identities among holonomic
functions, for computing asymptotic expansions of them, and for evaluating them
numerically to any desired accuracy. On the other hand, the class is big enough that
it contains a lot of quantities that arise in applications. In particular, many Feynman
integrals [7] and many generalized harmonic sums are holonomic. Every general-
ized polylogarithm and every hypergeometric term is holonomic. Every algebraic
function and every quasi-polynomial is holonomic. According to Salvy [31], more
than 60 % of the entries of Abramowitz/Stegun’s table of mathematical functions [1]
are holonomic, as well as some 25 % of the entries of Sloane’s online encyclopedia
of integer sequences (OEIS) [33].

The concept of holonomy was introduced in the 1970s by Bernstein [4] in the
theory of D-modules (see Björk’s book [5] for this part of the story). Its relevance
to symbolic computation and the theory of special functions was first recognized by
Zeilberger [42]. His 1990 article, which is still a good first reading for readers not
familiar with the theory, has initiated a great amount of work both in combinatorics
and in computer algebra. Stanley discusses the case of a single variable [34, 35]
(see also Chap. 7 of [25]). Salvy and Zimmermann [32] and Mallinger [29] provide
implementations for Maple and Mathematica, respectively. Algorithms for the case
of several variables [14, 15, 40, 42] were implemented by Chyzak [14] for Maple
and more recently by Koutschan [27, 28] for Mathematica. The applications in
combinatorics are meanwhile too numerous to list a reasonable selection.

In this tutorial, it is not our aim to explain (or advertize) any particular software
package. The goal is rather to give an overview over the various definitions of
holonomy, the key properties of holonomic functions, and the most important
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algorithms for working with them. The text should provide any reader new to
the topic with the necessary background for reading the manual of some software
package without wondering how to make use of the functionality it provides.

2 What Is a Holonomic Function?

2.1 Definitions and Basic Examples

We give several variants of the definition of holonomy, discussing the most
important special cases separately, before we describe the concept in more general
(and more abstract) terms.

Definition 1. An infinite sequence .an/1nD0 of numbers is called holonomic (or
P-finite or P-recursive or, rarely, D-finite) if there exists an integer r 2 �,
independent of n, and univariate polynomials p0; : : : ; pr , not all identically zero,
such that for all n 2 � we have p0.n/an C p1.n/anC1 C � � � C pr.n/anCr D 0.

Example 1. 1. The sequence an D 5n�3
3nC5 is holonomic, because it satisfies the

recurrence equation .3nC 5/.5nC 2/an � .5n� 3/.3nC 8/anC1 D 0.
2. The sequence an D nŠ is holonomic, because it satisfies the recurrence equation
anC1 � .nC 1/an D 0.

3. The sequence Hn D Pn
kD1 1k of harmonic numbers is holonomic, because it

satisfies the recurrence equation .nC1/Hn� .2nC3/HnC1C .nC2/HnC2 D 0.

4. The sequence an D P
k

�
n

k

�2�nCk
k

�2
arising in Apery’s proof [38] of the

irrationality of �.3/ is holonomic, because it satisfies the recurrence equation
.nC 1/3an � .2nC 3/.17n2 C 51nC 39/anC1 C .nC 2/3anC2 D 0.

5. The sequence an D
R 1
0

R 1
0

w�1�"=2.1�z/"=2z�"=2

.zCw�wz/1�"

�
1�wnC1�.1�w/nC1

�
dwd z coming

from some Feynman diagram [27, p. 94f] is holonomic (regarding " as a fixed
parameter) because it satisfies the 3rd order recurrence equation�."�n�3/."�
n � 2/."C 2nC 4/."C 2nC 6/anC3 C ." � n � 2/."C 2nC 4/."2 C 2"nC
5"� 6n2 � 28n� 34/anC2 � .nC 2/."3 � 3"2n� 6"2 � 8"n2 � 30"n� 28"C
12n3 C 64n2 C 116nC 72/anC1 � 2.nC 1/.nC 2/2." � 2n � 2/an D 0.

6. For n 2 �, define Hn.x/ as the (uniquely determined) polynomial of degree n
with the property

R1
�1Hn.x/Hk.x/e

�x2dx D p�2nnŠın;k for all n; k 2 �,
where ın;k is the Kronecker symbol. TheHn.x/ are called Hermite polynomials.
Regarding them as a sequence with respect to nwhere x is some fixed parameter,
the Hermite polynomials are holonomic, because they satisfy the recurrence
equationHnC2.x/ � 2xHnC1.x/C .2C 2n/Hn.x/ D 0.

7. The sequence .an/1nD0 defined recursively by a0 D 0, a1 D 1, a2 D 17, and
anC3 D .100C99nC97n2/anC2C.96C95nC94n2/anC1C.93C92nC91n2/an
has no particular significance, but it is nevertheless holonomic.
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8. The sequences an D p
n, bn D p.n/, cn D �.n/, dn D nn where

p.n/ is the nth prime number and � denotes the Riemann’s zeta function are
not holonomic, i.e., none of them satisfies a linear recurrence equation with
polynomial coefficients [19].

According to Definition 1, a sequence is holonomic if it can be viewed as a solution
of some linear recurrence equation with polynomial coefficients. The definition for
analytic functions is analogous:

Definition 2. An analytic function yWU ! � defined on some domain U  �
(or more generally, any object y for which multiplication by polynomials, addition,
and repeated differentiation is defined) is called holonomic (or D-finite or P-finite)
if there exists an integer r 2 � and univariate polynomials p0; : : : ; pr , not all
identically zero, such that p0.z/y.z/C p1.z/y0.z/C � � � C pr.z/y.r/.z/ D 0.

Example 2. 1. The function y.z/ D 5z�3
3zC5 is holonomic, because it satisfies the

differential equation .5z� 3/.3zC 5/y0.z/ � 34y.z/ D 0.
2. The functions exp.z/ and log.z/ are holonomic, because they satisfy the differ-

ential equations exp0.z/� exp.z/ D 0 and z log00.z/C log0.z/ D 0, respectively.
3. The function y.z/ D 1=.1 C p1 � z2/ is holonomic, because it satisfies the

differential equation .z3 � z/y00.z/C .4z2 � 3/y0.z/C 2zy.z/ D 0.
4. The function y.z/ D P1

nD0 anzn where an is the sequence from Example 1.4 is
holonomic because it satisfies the differential equation .z2 � 34zC 1/z2y000.z/C
3.2z2 � 51zC 1/zy00.z/C .7z2 � 112zC 1/y0.z/C .z� 5/y.z/ D 0.

5. The function yW Œ�1; 1� ! � uniquely determined by the conditions y.0/ D 0,
y0.0/ D 17, y00.z/ D .100C 99zC 98z2/y0.z/C .97C 96zC 95z2/y.z/ has no
particular significance, but is nevertheless holonomic.

6. The functions exp.exp.z//, 1=.1 C exp.z//, �.z/, � .z/, W.z/ (the Lambert W
function [17]) are not holonomic, i.e., neither of them satisfies a linear differen-
tial equation with polynomial coefficients.

Note that as introduced in the two definitions above, the word “holonomic” is
ambiguous. We need to distinguish between discrete variables and continuous
variables. If a function depends on a discrete variable (typically named n, m,
or k), then it is called holonomic if it satisfies a recurrence, and if it depends on
a continuous variable (typically named x, t , or z), then it is called holonomic if it
satisfies a differential equation. For example, the Gamma function is holonomic if
we regard its argument as a discrete variable, but it is not holonomic if we regard
its argument as a continuous variable. For a connection of the two notions, see
Theorem 1 below.

The definition for the differential case extends as follows to functions in several
variables.

Definition 3. An analytic function yWU ! �, defined on some domain U  �q

(q 2 � fixed) is called holonomic (or D-finite or P-finite) if for every variable zi
(i D 1; : : : ; q) there exists an integer r 2 � and polynomials p0; : : : ; pr , possibly
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depending on all q variables z1; : : : ; zq but not all identically zero, such that for all
z D .z1; : : : ; zq/ 2 U we have p0.z/y.z/C p1.z/ @@zi

y.z/C � � � C pr.z/ @r@zri
y.z/ D 0.

In other words, a multivariate analytic function is holonomic if it can be viewed as a
solution of a system of q linear differential equations with polynomial coefficients.
The polynomial coefficients may involve all the variables, but there is a restriction
on the derivatives: the i th equation (i D 1; : : : ; q) may only contain differentiations
with respect to the variable zi . Again, in addition to analytic functions the definition
extends more generally to any objects y for which multiplication by polynomials,
addition, and repeated partial differentiation is defined.

For sequences with several indices, and more generally for functions depending
on some discrete as well as some continuous variables, several different extensions
of Definition 1 are in use. We give here two of them. Assigning the words
“holonomic” and “D-finite” to these two properties seems to be in accordance with
most of the recent literature. However, it should be observed that other authors use
slightly different definitions.

Definition 4. Let U  �q be a domain, and let

y D y.n1; : : : ; np; z1; : : : ; zq/W�p 
 U ! �

be a function which is analytic in z1; : : : ; zq for every fixed choice of n1; : : : ;
np 2 �p .

1. y is called D-finite (or P-finite) if for every i (i D 1; : : : ; p) there exists a number
r 2 � and polynomials u0; : : : ; ur , possibly depending on n1; : : : ; np; z1; : : : ; zq
and not all identically zero, such that for all n D .n1; : : : ; np/ 2 �p and all
z D .z1; : : : ; zq/ 2 U we have

u0.n; z/y.n1; : : : ; ni�1; ni ; niC1; : : : ; np; z/

C u1.n; z/y.n1; : : : ; ni�1; ni C 1; niC1; : : : ; np; z/
C u2.n; z/y.n1; : : : ; ni�1; ni C 2; niC1; : : : ; np; z/

:::

C ur .n; z/y.n1; : : : ; ni�1; ni C r; niC1; : : : ; np; z/ D 0;

and for every j (j D 1; : : : ; q) there exists a number r 2 � and polynomials
u0; : : : ; ur , possibly depending on n1; : : : ; np; z1; : : : ; zq and not all identically
zero, such that for all n D .n1; : : : ; np/ 2 �p and all z D .z1; : : : ; zq/ 2 U we
have

u0.n; z/y.n; z/C u1.n; z/
@

@zi
y.n; z/C � � � C ur .n; z/

@r

@zri
y.n; z/ D 0:
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2. y is called holonomic if the (formal) power series

Qy.x1; : : : ; xp; z1; : : : ; zq/ WD
1X

n1D1

1X

n2D1
� � �
1X

npD1
y.n1; : : : ; np; z1; : : : ; zq/x

n1
1 x

n2
2 � � � x

np
p

is holonomic as function of x1; : : : ; xp; z1; : : : ; zq in the sense of Definition 3.

Example 3. 1. The bivariate function f .x; y/ D 1
1�y�xy is D-finite and holonomic

because it satisfies the differential equations .1 � y � xy/ @
@x
f .x; y/ � yf

.x; y/ D 0 and .1 � y � xy/ @
@y
f .x; y/ � .x C 1/f .x; y/ D 0.

2. The bivariate sequence an;k D
�
n
k

�
is D-finite, because it satisfies the recurrence

equations .n � k C 1/anC1;k � .n C 1/an;k D 0 and .n � k/an;kC1 � .k C 1/
an;k D 0, and it is holonomic because f .x; y/ D P1

nD0
P1

kD0
�
n
k

�
xkyn D

1
1�y�xy is holonomic.

3. Regarded as a function of one discrete variable n and a continuous variable x,
the Hermite polynomials Hn.x/ are D-finite because they satisfy the equations
HnC2.x/ � 2xHnC1.x/ C 2.n C 1/Hn.x/ D 0 and H 00n .x/ � 2xH 0n.x/ C
2nHn.x/ D 0. They are also holonomic because the formal power series
f .x; z/ WD P1

nD0 Hn.x/zn satisfies the differential equations z @3

@x3
f .x; z/ C

.1 � 4xz/ @
2

@x2
f .x; z/ C .4x2z � 4z � 2x/ @

@x
f .x; z/ C 4xzf .x; z/ D 0 and

2z3 @
3

@z3
f .x; z/C.14z2�2xzC1/ @2

@z2
f .x; z/C.20z�4x/ @

@zf .x; z/C4f .x; z/ D 0.

4. The integrand w�1�"=2.1�z/"=2z�"=2

.zCw�wz/1�"

�
1�wnC1�.1�w/nC1

�
of the Feynman integral

in Example 1.5 is D-finite when w and z are regarded as continuous and n and "
are regarded as discrete variables.

5. The Kronecker symbol ın;k , viewed as a bivariate sequence in n and m, is
holonomic but not D-finite. The bivariate sequence 1=.n2 C k2/ is D-finite but
not holonomic [40].

6. The bivariate sequence S1.n; k/ of Stirling numbers of the first kind is not D-
finite although it satisfies the recurrence equation S1.nC 1; kC 1/CnS1.n; kC
1/ � S1.n; k/ D 0. This recurrence equation does not suffice to establish D-
finiteness because it involves shifts in both variables. It can be shown that
S1.n; k/ does not satisfy any recurrence equations containing only shifts in n
or only shifts in k.

Although the two properties in Definition 4 are not equivalent, the difference does
not play a big role in practice: multivariate functions arising in applications typically
either have both properties or none of the two.

It is sometimes more transparent to work with operators acting on functions
rather than with functional equations. In order to rephrase the previous definition
using operators, consider the algebra

� WD �.n1; : : : ; np; z1; : : : ; zq/ŒS1; : : : ; Sp;D1; : : : ;Dq�
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consisting of all the multivariate polynomials in the variables S1; : : : ; Sp ,
D1; : : : ;Dq with coefficients that are rational functions (i.e., quotients of
polynomials) in the variables n1; : : : ; np; z1; : : : ; zq . We regard the elements of
� as operators and let them act in the natural way on functions y: application of Si
corresponds to a shift ni � ni C 1, application ofDi causes a partial derivation @

@zi
,

and application of some rational function u maps y to the function uy. We write
A � y for the result obtained by applying an operator A 2 � to the function y.

If A;B are operators and y is a function, then .ACB/ �y D A �yCB �y (theC
on the left hand side being the addition in�, and theC on the right hand side being
the pointwise addition of functions). For the product of two operators, we want to
have .AB/ � y D A � .B � y/, i.e., multiplication of operators should be compatible
with composition of application. This is not the case for the usual multiplication, but
it works if we use a noncommutative multiplication which is such that for a rational
function u.n1; : : : ; np; z1; : : : ; zq/ we have

Si u.n1; : : : ; np; z1; : : : ; zq/ D u.n1; : : : ; ni�1; ni C 1; niC1; : : : ; np; z1; : : : ; zq/ Si
for every i (i D 1; : : : ; p), and

Dj u.n1; : : : ; np; z1; : : : ; zq/ D u.n1; : : : ; np; z1; : : : ; zq/Dj

C @

@zi
u.n1; : : : ; np; z1; : : : ; zq/

for every j (j D 1; : : : ; q). These rules for example imply Sini D .ni C 1/Si and
Dj zj D zjDj C 1 for i D 1; : : : ; p and j D 1; : : : ; q. By furthermore requiring
that SiSj D SjSi and SiDj D DjSi and DiDj D DjDi for all i and j , the
multiplication is uniquely determined. With this multiplication, we have for example

D2 a.z/ D D.D a.z// D D.a.z/D C a0.z//
D D a.z/D CDa0.z/
D .a.z/D C a0.z//D C .a0.z/D C a00.z//
D a.z/D2 C 2a0.z/D C a00.z/:

In terms of operators, part 1 of Definition 4 can be stated as follows: Let y be a
function as in Definition 4, and let a  � be the set of all operators which map y to
the zero function. Then y is called D-finite if

• For all i D 1; : : : ; p we have a \�.n1; : : : ; np; z1; : : : ; zq/ŒSi � ¤ f0g, and
• For all j D 1; : : : ; q we have a \�.n1; : : : ; np; z1; : : : ; zq/ŒDj � ¤ f0g.
The set a is called the annihilator of y. It has the algebraic structure of an ideal of�,
i.e., it has the properties A;B 2 a) AC B 2 a and A 2 a; B 2 �) BA 2 a.
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Operator algebras can be used to abstract away the difference between shift and
derivation, and to allow other operations as well. We will not use this most general
form in the remainder of this tutorial, but only quote the definition of D-finiteness in
this language. Let R be a commutative ring (for example, the set �.x1; : : : ; xm/ of
all rational functions inm variables x1; : : : ; xm with coefficients in�), and consider
the algebra � D RŒ@1; : : : ; @n� of multivariate polynomials in the indeterminates
@1; : : : ; @n with coefficients in R. Let �1; : : : ; �nWR ! R be automorphisms (i.e.,
�i .a C b/ D �i .a/ C �i .b/ and �i .ab/ D �i .a/�i .b/ for all a; b 2 R) and for
each i , let ıi WR ! R be a so-called skew-derivation for �i . A skew-derivation is
a map which satisfies ıi .a C b/ D ıi .a/ C ıi .b/ and the generalized Leibniz law
ıi .ab/ D ıi .a/b C �i .a/ıi .b/. Then consider the (noncommutative) multiplication
on � defined through the properties ab D ba for all a; b 2 R, @i@j D @j @i for all
i; j D 1; : : : ; n and @ia D �i .a/@i C ıi .a/ for all a 2 R and all i D 1; : : : ; n. Such
an algebra� is called an Ore algebra. Details about arithmetic for such algebras are
explained in a nice tutorial by Bronstein and Petkovšek [10].

Observe that the generators @i of an Ore algebra can be used to represent shift
operators (by choosing �i such that �i .x/ D x C 1 for a variable x in R and ıi
the zero function) as well as derivations (by choosing �i the identity function and
ıi D @

@x
for a variable x in R). In addition, further operations can be encoded, for

example the q-shift (set �i .x/ WD qx where x is a variable and q some fixed element
of R).

We let the elements of an Ore algebra act (“operate”) on the elements of some
set F of “functions”. To make this action precise, we need to assume that F is
an R-module (i.e., there is an addition in F and a multiplication of elements in
R by elements in F which is compatible with the addition), and that there are
functions d1; : : : ; dnWF ! F (“partial pseudo-derivations”) which satisfy certain
compatibility conditions with the addition, the multiplication, and the �i and ıi so
as to ensure that the action of some A 2 � on some y 2 F , written A � y, has the
properties .A C B/ � y D .A � y/ C .B � y/ and .AB/ � y D A � .B � y/ for all
A;B 2 �, a � y D ay for all a 2 R  �, and @i � y D di .y/ for all i . As an
example, if � is a ring of differential operators, a natural choice for F would be
the set of all meromorphic functions, and if � is a ring of shift operators, a natural
choice for F may be some vector space of sequences.

Definition 5. Let � D RŒ@1; : : : ; @n� be an Ore algebra whose elements act on
some set F as described above, and let y 2 F . Let a WD fA 2 � W A � y D 0 g
be the set of all operators which map y to the zero element of F . Then y is called
@-finite if for all i D 1; : : : ; n we have a \RŒ@i � ¤ f0g.
Example 4. 1. Set R D �.n1; : : : ; np; z1; : : : ; zq/ and consider the Ore alge-

bra � D RŒ@1; : : : ; @p; @pC1; : : : ; @pCq� defined by the automorphisms
�1; : : : ; �pCq WR! R, and the skew-derivations ı1; : : : ; ıpCq WR! R satisfying
�i .c/ D c and ıi .c/ D 0 for i D 1; : : : ; p C q and all c 2 �, and

�i .ni / D ni C 1; �i .nj / D nj .i ¤ j /; �i .zj / D zj .j D 1; : : : ; q/
ıi .nj / D 0 .j D 1; : : : ; p/; ıi .zj / D 0 .j D 1; : : : ; q/
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for i D 1; : : : ; p, and

�i .nj / D nj .j D 1; : : : ; p/; �i .zj / D zj .j D 1; : : : ; q/
ıi .nj / D 0 .j D 1; : : : ; p/; ıi .zi�p/ D 1; ıi .zj�p/ D 0 .i ¤ j /

for i D pC 1; : : : ; pCq. Then @1; : : : ; @p act as shift operators for the variables
n1; : : : ; np , respectively, and @pC1; : : : ; @pCq act as derivations for the variables
z1; : : : ; zq , respectively.

For this choice of�, Definition 5 reduces to part 1 of Definition 4.
2. Let R D �.q;Q/ and define � WR ! R by �.c/ D c for all c 2 �.q/ and
�.Q/ D qQ, so that � acts on Q like the shift n� nC 1 acts on qn. Consider
the Ore algebra� D RŒ@� with ı D 0 and this � .

Let F denote the vector space of all sequences over �.q/ and let � act
on F by @ � .an/1nD0 WD .anC1/1nD0 and r.q;Q/ � .an/1nD0 WD .r.q; qn/an/

1
nD0

for r.q;Q/ 2 �.q;Q/ and .an/1nD0 2 F .

Consider the sequence an WD Qn
kD1

1�qk
1�q , which is known as q-analog of the

factorial in the literature [2, Chap. 10]. Because of

�
.1 � qQ/� .1 �Q/@� � an D .1� qnC1/an � .1 � qn/anC1 D 0

it is @-finite with respect to the algebra�.

Most of the algorithms and features explained below for the shift and/or differential
case generalize to objects that are D-finite with respect to arbitrary Ore algebras�.
Even more, it has recently been observed [16] that for some of the properties a
weaker assumption than D-finiteness is sufficient. However, the underlying ideas
can best be explained for the univariate case, and for reasons of simplicity we will
focus on this case.

2.2 Fundamental Properties

A key property of holonomic functions is that they can be described by a finite
amount of data, and hence faithfully represented in a computer. This is almost
obvious for univariate holonomic sequences: all the (infinitely many) terms of such
a sequence are uniquely determined by the linear recurrence and a suitable (finite)
number of initial values. If .an/1nD0 satisfies the recurrence

p0.n/an C p1.n/anC1 C � � � C pr�1.n/anCr�1 C pr.n/anCr D 0

for all n 2 �, where p0; : : : ; pr are certain polynomials, and pr is not the zero
polynomial, then the recurrence uniquely determines the value of anCr once we
know the values of an; : : : ; anCr�1, unless n is a root of the polynomial pr . In order
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to fix a particular solution of the recurrence, it is therefore enough to fix the values
a0; : : : ; ar�1 as well as the values anCr for every positive integer root n of pr . Note
that pr is a univariate polynomial, so it can have only finitely many roots.

The situation is not much different for holonomic functions in a continuous
variable. In order to fix a particular solution of a given differential equation

q0.z/y.z/C q1.z/y0.z/C � � � C qs�1.z/y.s�1/.z/C qs.z/y.s/.z/ D 0;

where q0; : : : ; qs are polynomials, it suffices to fix the initial conditions y.0/,
y0.0/,. . . , y.s�1/.0/, plus possibly some finitely many further values y.n/.0/. For
which indices n the value of y.n/.0/ does not follow from the earlier values by the
differential equation is not as obvious as in the case of a recurrence equation. One
possibility is to make use of the following theorem, which associates to a given
differential equation a recurrence equation from which the relevant indices n can
then be read off as described before.

Theorem 1. Let .an/1nD0 be a sequence and y.z/ DP1nD0 anzn the (formal) power
series whose coefficient sequence is .an/1nD0. Then .an/1nD0 is holonomic in the
sense of Definition 1 if and only if y.z/ is holonomic in the sense of Definition 2.
A differential equation satisfied by y.z/ can be computed from a known recurrence
equation for .an/1nD0 and vice versa.

The theorem is based on the observation that multiplying a series by z�1 corresponds
to a forward shift of the coefficient sequence, and a differentiation followed by a
multiplication with z corresponds to a multiplication by n. Here is an example for
obtaining a recurrence equation for .an/1nD0 from a given differential equation for
the power series y.z/ DP1nD0 anzn.

.z � 2/y00.z/C 5zy0.z/� y.z/ D 0

) .z � 2/
1X

nD0
ann.n� 1/zn�2 C 5z

1X

nD0
annzn�1 �

1X

nD0
anzn D 0

)
1X

nD0
ann.n� 1/zn�1 � 2

1X

nD0
ann.n� 1/zn�2 C 5

1X

nD0
annzn �

1X

nD0
anzn D 0

)
1X

nD0
anC1.nC 1/nzn � 2

1X

nD0
anC2.nC 2/.nC 1/zn C 5

1X

nD0
annzn �

1X

nD0
anzn D 0

)
1X

nD0

�
.nC 1/n anC1 � 2.nC 2/.nC 1/anC2 C 5n an � an

�
zn D 0

) � 2.nC 2/.nC 1/anC2 C .nC 1/n anC1 C .5n� 1/an D 0 .n � 0/:

See The Concrete Tetrahedron [25, Theorem 7.1] for the general case. The reverse
direction works similarly.
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Theorem 1 does not generalize to multivariate D-finite functions, it does however
hold (by definition) for holonomic functions in several variables. In fact, Theorem 1
is the motivation for defining multivariate holonomy as in Definition 4.

A second useful feature of holonomic functions is that their asymptotic behaviour
can be described easily. We say that two sequences .an/1nD0; .bn/1nD0 are asymp-
totically equivalent if an=bn converges to 1 for n ! 1. Similary, two functions
f .z/; g.z/ are called asymptotically equivalent at some point � if f .z/=g.z/
converges to 1 for z! �. The following theorem describes the possible asymptotic
behaviour of holonomic sequences and functions. Unlike Theorem 1, it is not
straightforward.

Theorem 2. [18, 24, 41]

1. If .an/1nD0 is a holonomic sequence, then there exist constants c1; : : : ; cm, polyno-
mials p1; : : : ; pm, natural numbers r1; : : : ; rm, constants �1; : : : ; �m, �1; : : : ; �m,
˛1; : : : ; ˛m and natural numbers ˇ1; : : : ; ˇm such that

an 	
mX

kD1
ck epk.n

1=rk /n�kn�nkn
˛k log.n/ˇk .n!1/:

2. If y.z/ is a holonomic analytic function with a singularity at � 2 �, then there
exist constants c1; : : : ; cm, polynomials p1; : : : ; pm, natural numbers r1; : : : ; rm,
constants ˛1; : : : ; ˛m, and natural numbers ˇ1; : : : ; ˇm such that

y.x/ 	
mX

kD1
ck epk..z��/�1=rk /.z � �/˛k log.z � �/ˇk .z! �/:

Typically, one of the terms in the sum dominates all the others, so we can take
m D 1. As an example, for the sequence .an/1nD0 from Example 1.4 we have an 	
c .12C 17p2/nn�3=2 where

c � 0:220043767112643037850689759810486656678158042907:

All the data in the asymptotic expression can be calculated exactly from a given
recurrence or differential equation, except for the multiplicative constants ck .
These can however calculated numerically to arbitrarily high precision. In typical
examples, it is easy to compute at least a few dozen decimal digits for them.

It is also possible to compute numerically the values of an analytic holonomic
function to arbitrary precision, as stated in part 2 of the following theorem. The
statement about sequences in part 1 is trivial (all terms of the sequence can be
computed using the recurrence), but part 2 is not because it also covers the case
where the evaluation point is outside of the disk of convergence of the series. This
is known as effective analytic continuation.
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Theorem 3. 1. If a holonomic sequence .an/1nD0 is given in terms of recurrence
equation and a suitable number of initial values a0; a1; : : : ; ak , then we can
efficiently compute the nth term an of the sequence for every given index n.

2. [13,30,36,37] If a holonomic analytic function y.z/ is given in terms of a differ-
ential equation and a suitable number of initial values y.0/; y0.0/; : : : ; y.k/.0/,
and if we are given some complex number � with rational real and imaginary
part and a polygonal path from 0 to � whose vertices have rational real and
imaginary path, and some positive rational number ", then we can efficiently
compute a number Qy such that for the value y.�/ of the analytic continuation
of y along the given path to � we have jy.�/� Qyj < ".

3 What Are Closure Properties?

If p and q are polynomials, then also their sum p C q, their product pq, the
composition p ıq, the derivative p0, and the indefinite integral

R
p are polynomials.

We say that the class of polynomials is closed under these operations. Also the class
of holonomic functions is closed under a number of operations.

Theorem 4. [25, 35, 42]

1. If .an/1nD0 and .bn/1nD0 are holonomic sequences, then so are .an C bn/1nD0 and
.anbn/

1
nD0 and

�Pn
kD0 akbn�k

�1
nD0.

2. If a.z/ and b.z/ are holonomic functions, then so are a.z/C b.z/ and a.z/b.z/.
3. If .an/1nD0 is a holonomic sequence and ˛; ˇ 2 � are nonnegative constants then
.ab˛nCˇc/1nD0 is a holonomic sequence.

4. If a.z/ is a holonomic function, then so are a0.z/ and
R
a.z/d z.

5. If a.z/ is a holonomic function and b.z/ is an algebraic function, i.e., there is a
nonzero bivariate polynomialp.z; y/ such that p.z; b.z// is identically zero, then
the composition a.b.z// is holonomic.

The theorem is most useful for recognizing a quantity given in terms of some
expression as holonomic. For example, using the theorem, it is easy to see that

y.z/ D exp
�
1 �

p
1 � z2

�C
Z

log.1 � z/2d z

is holonomic: the innermost functions exp.z/ and log.z/ are holonomic (Exam-
ple 2.2), by part 3 of the theorem exp.1�p1 � z2/ and log.1�z/ are holonomic (the
arguments are algebraic because they satisfy the equations .1 � y/2 � .1 � z2/ D 0
and y � .1� z/ D 0, respectively), then by part 2 also log.1� z/2 is holonomic, and
then by part 4 also

R
log.1 � z/2d z is holonomic. Finally, using once more part 2 it

follows that y.z/ is holonomic.
By a similar reasoning, it is clear by inspection that
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an D
nX

kD1

1C 2k
3C k2 kŠ � .2nC 5/ŠC

nX

kD1

kX

iD1

iX

jD1

1

j

i

k

is holonomic.
By just looking at an expression, the closure properties in Theorem 4 are

often sufficient to assert that some quantity is holonomic, which means that
there does exist some differential equation or recurrence which has the object in
question as solution. The equations can usually not be read off directly, but it is
possible to compute them with computer algebra. For the two examples above,
computer algebra packages for holonomic functions need virtually no time to find a
differential equation for y.z/ of order 5 with polynomial coefficients of degree 14
and a recurrence for an of order 7 with polynomial coefficients of order 37.

The idea behind these algorithms is as follows. Consider for example two
sequences .an/1nD0 and .bn/1nD0 satisfying recurrence equations

anC2 D u1.n/anC1 C u0.n/an; bnC2 D v1.n/bnC1 C v0.n/bn
for some known rational functions u0; v0; u1; v1. Let .cn/1nD0 be the sum of these two
sequences, i.e., cn D anC bn for all n 2 �. Our goal is to compute a recurrence for
.cn/

1
nD0. Let us make an ansatz for a recurrence of order 4,

p0.n/cn C p1.n/cnC1 C p2.n/cnC2 C p3.n/cnC3 C p4.n/cnC4 D 0;

with undetermined polynomialsp0; : : : ; p4. We will see in a moment that 4 is a good
choice. By definition of the cn, in order for the recurrence to hold, we must have

p0.n/
�
an C bn

�C p1.n/
�
anC1 C bnC1

�C p2.n/
�
anC2 C bnC2

�

C p3.n/
�
anC3 C bnC3

�C p4.n/
�
anC4 C bnC4

� D 0:

Using the known recurrences, we can reduce the higher order shifts to lower order
shifts:

anC2 D u1.n/anC1 C u0.n/an

anC3 D u1.nC 1/anC2 C u0.nC 1/anC1
D u1.nC 1/

�
u1.n/anC1 C u0.n/an

�C u0.nC 1/anC1
D �u1.nC 1/u1.n/C u0.nC 1/

�
anC1 C u1.nC 1/u0.n/an

anC4 D u1.nC 2/anC3 C u0.nC 2/anC2
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D u1.nC 2/
��

u1.nC 1/u1.n/C u0.nC 1/
�
anC1 C u1.nC 1/u0.n/an

�

C u0.nC 2/
�
u1.n/anC1 C u0.n/an

�

D �u0.nC 2/u1.n/C u0.nC 1/u1.nC 2/C u1.n/u1.nC 1/u1.nC 2/
�
anC1

C u0.n/
�
u0.nC 2/C u1.nC 1/u1.nC 2/

�
an;

and analogously for the shifted versions of bn. After applying these substitutions,
the ansatz for the recurrence for cn takes the form

p0.n/
�
an C bn

�C p1.n/
�
anC1 C bnC1

�

C p2.n/
�

anC1 C an C bnC1 C bn
�

C p3.n/
�

anC1 C an C bnC1 C bn
�

C p4.n/
�

anC1 C an C bnC1 C bn
� D 0;

where the symbol represents certain expressions involving the known rational
functions u0; u1; v0; v1 as indicated above. Reordering the equation leads to

�
p0.n/C p2.n/C p3.n/C p4.n/

�
an

C�p1.n/C p2.n/C p3.n/C p4.n/
�
anC1

C�p0.n/C p2.n/C p3.n/C p4.n/
�
bn

C�p1.n/C p2.n/C p3.n/C p4.n/
�
bnC1 D 0;

where we write again to denote certain expressions of the u0; u1; v0; v1 which
are a bit too messy to be spelled out here explicitly. This latter equation is certainly
valid if we choose polynomials p0; : : : ; p4 that turn the four expressions in front
of an; anC1; bn; bnC1 to zero. Such polynomials can be found by solving the linear
system

0

B
B
@

1 0

0 1

1 0

0 1

1

C
C
A

0

B
B
B
B
B
@

p0
p1
p2

p3
p4

1

C
C
C
C
C
A

D 0:

This is an underdetermined homogeneous linear system with four equations and
five variables, so it must have a nontrivial solution vector, and the coordinates of
this vector correspond do the coefficients of the recurrence we want to compute.
Note that the system involves the variable n as parameter, and it has to be solved
with this parameter kept symbolic.
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The order 4 in the ansatz for the recurrence of .cn/1nD0 was chosen such as to
ensure that the resulting linear system has more variables than equations. In general,
if .an/1nD0 satisfies a recurrence of order r and .bn/1nD0 satisfies a recurrence of
order s, the linear system obtained for constructing a recurrence for the sum will
have at most r C s equations, and therefore it must have a nontrivial solution
as soon as we have at least r C s C 1 variables p0; : : : ; prCs. Likewise, for the
product sequence .anbn/1nD0 a similar construction leads to a linear system with rs
equations, which hence has a nontrivial solution once we supply at least rs C 1

variables p0; : : : ; prs . The arguments for the other operations listed in Theorem 4
are similar.

Holonomic closure properties are not only interesting for finding appropriate
holonomic descriptions of objects that are given in some other form. They can also
be used for proving identities. If two holonomic objects A and B are given in some
form, it may not be obvious at first glance whether they are actually equal. Using
closure properties, we can compute a recurrence for A � B (or, if A and B depend
on a continuous variable, a recurrence for the Taylor coefficients ofA�B by way of
Theorem 1). Then if the identity is valid for a certain finite number of initial values,
it follows by induction that it is true.

Example 5. Consider the following identity for Hermite polynomials. We regard it
as a (formal) power series with respect to t , where x and y are viewed as constant
parameters. In the first term on the left the expressionHn.x/Hn.y/

1
nŠ

is regarded as
a sequence in the discrete variable n, with x and y as parameters. Apply the closure
properties algorithms as indicated by the braces to obtain a linear recurrence for the
coefficients in the series expansion of the whole left hand side.

„ ƒ‚ …
differential equation of order 5

� recurrence equation of order 4

„ ƒ‚ …
differential equation of order 5

1X

nD0

„ ƒ‚ …
rec. of order 4

„ƒ‚…
rec. of
ord. 2

Hn.x/

„ƒ‚…
rec. of
ord. 2

Hn.y/

„ƒ‚…
rec. of
ord. 1

1

nŠ
tn �

„ ƒ‚ …
differential equation of order 1

„ ƒ‚ …
diff.eq.

of ord. 1

„ ƒ‚ …
alg.eq.

of deg. 2

1p
1 � 4t2

„ ƒ‚ …
differential equation of order 1

„ƒ‚…
diff.eq.

of ord. 1

exp
�

„ ƒ‚ …
alg.eq. of degree 1

4t.xy � t.x2 C y2//
1 � 4t2

�
D 0

If cn denotes the coefficient of tn in the series expansion of the left hand side, we
obtain the recurrence

.nC4/cnC4�4xy cnC3�4.2n�2x2�2y2C5/cnC2�16xy cnC1C16.nC1/cn D 0

for all n � 0. Direct calculation confirms that c0 D c1 D c2 D c3 D 0, which
together with the recurrence implies inductively that cn D 0 for all n � 0. This
proves the identity.
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In general, once a recurrence of a holonomic sequence is known, it always suffices
to check a certain finite number of initial values for being zero in order to decide
whether the whole sequence is zero. The number of terms needed is the maximum
of the order of the recurrence and the largest integer root of the leading coefficient
(if there is any such root). Although integer roots in the leading coefficient are not
common, their possible existence must always be taken into account. It is in general
not sufficient to only estimate the order of a recurrence (which could be done very
quickly) without actually computing it.

The example above is a typical application of the holonomic toolkit, except that
it is usually not possible to prove an identity using only Theorems 1 and 4 and the
mere definitions of the objects involved. A more realistic scenario is that we want to
prove an identity, say of the formA D BC , which involves holonomic quantitiesA,
B , C for which we calculated defining equations using other techniques, and then
the algorithms behind Theorem 4 are only used to complete the proof by combining
the partial results into a defining equation for the whole equation.

Closure properties are also available in several variables. The class of D-finite
functions in several (discrete or continuous) variables is closed under addition and
multiplication, under linear translates n� b˛n C ˇc of discrete variables n (for
fixed positive rational numbers˛; ˇ), and under compositions z�y.z/ of continuous
variables z by some multivariate algebraic functionsy that must not be constant with
respect to z, may or may not depend on the other continuous variables, and must not
depend on any of the discrete variables. The underlying ideas of the algorithms is
the same as in the univariate case.

Also the class of holonomic functions in several variables enjoys these closure
properties, as well as some further ones which in general do not apply to D-finite
functions.

Theorem 5. [42] Let a D a.n1; : : : ; np; z1; : : : ; zq/ and b D b.n1; : : : ; np;

z1; : : : ; q/ be holonomic with respect to the discrete variables n1; : : : ; np and the
continuous variables z1; : : : ; zq . Then:

1. The sum aC b and the product ab are holonomic,
2. If b is algebraic, not constant with respect to z1, and independent of n1; : : : ; np ,

then a.n1; : : : ; np; b; z2; : : : ; zq/ is holonomic,
3. a.b˛n1Cˇc; n2; : : : ; np; z1; : : : ; zq/ is holonomic for any fixed positive constants
˛; ˇ 2 �.

4. a.0; n2; : : : ; np; z1; : : : ; zq/ and a.n1; : : : ; np; 0; z2; : : : ; zq/ are holonomic,

5.
n1P

kD0
a.k; n2; : : : ; np; z1; : : : ; zq/ and

R z1
0
a.n1; : : : ; np; t; z2; : : : ; zq/dt are holo-

nomic (provided the integral converges),

6.
1P

kD�1
a.k; n2; : : : ; np; z1; : : : ; zq/ and

R1
�1 a.n1; : : : ; np; t; z2; : : : ; zq/dt are

holonomic as functions in n2; : : : ; np; z1; : : : ; zp and n1; : : : ; np; z2; : : : ; zq ,
respectively (provided these quantities are meaningful),
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This theorem is considerably more deep than Theorem 4, and the algorithms behind
it are less straightforward than those sketched before for the univariate case. See
the chapter on symbolic summation and integration in this volume for further
information about these algorithms.

4 What Is Guessing?

We have seen that closure properties are useful for finding the holonomic repre-
sentation of holonomic objects which are given in terms of holonomic functions
for which defining equations are known (possibly recursively descending a nested
expression). But when no such relation to known functions is available (yet), we
cannot obtain defining equations in this way. We may in fact be faced with objects
of which we do not know whether they are holonomic or not.

How can we check an arbitrary object for being holonomic? Of course, this
question makes only sense relative to some choice of assumptions we are willing
to make about how the object is “given”, or more generally, what information about
it we want to consider known. A very weak assumption which is almost always
satisfied in practice is that we can calculate for every specific index n the nth term of
the sequence (or the nth term of the power series) of interest. For example, suppose
the first few terms of a sequence .an/1nD0 are known to be

5; 12; 21; 32; 45; 180; 797; 2;616; 6;837; 15;260; 30;405; 55;632; 95;261; 154;692:

How can we check whether this sequence is, say, a polynomial sequence? Strictly
speaking, we cannot tell this at all without taking into account all the terms of
the sequence. But from the available finite amount of data we can at least get
an idea. By means of interpolation [39], we can easily compute for any tuple of
nC 1 numbers x0; : : : ; xn the (unique) polynomial p of degree at most n such that
p.0/ D x0, p.1/ D x1, . . . , p.n/ D xn. For example, for the first two terms
we find p.n/ D 7n C 5, which however cannot be correct for all n � 0 because
already p.2/ D 19 ¤ 21. The interpolating polynomial for the first three points is
p.n/ D n2 C 6n C 5, which is correct (by construction) for n D 0; 1; 2, happens
to be correct also for n D 3 and n D 4, although these values had not been used
in the construction of p. However, also this polynomial cannot be correct for all
n � 0 because we have p.5/ D 60 ¤ 180. Interpolation of the first six terms gives
p.n/ D n5 � 10n4 C 35n3 � 49n2 C 30n C 5 which turns out to match all the
terms listed above. Of course, this does not prove that the polynomial is correct for
all greater indices as well, but the more terms match, the more tempting it becomes
to believe so. Interpolating polynomials based on a finite number of terms of some
infinite sequence can therefore be considered as a guess for a possible description
of the entire sequence, and the difference between the number of terms taken into
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account and the degree of the resulting interpolating polynomial can be considered
as measuring the confidence of the guess (e.g., 0: no evidence, 1: somewhat reliable,
10: reasonably trustworthy, 100: almost certain).

In a similar fashion, it is also possible to come up with reliable guesses for
recurrence equations possibly satisfied by some infinite sequence of which only
a finite number of terms are known, or for differential equations possibly satisfied
by a function of which the first few terms of the series expansion are known. To
illustrate the technique, suppose we are given a sequence .an/1nD0 starting like

1; 2; 14; 106; 838; 6;802; 56;190; 470;010; 3;967;310; 33;747;490:

Let us search for a recurrence of order r D 2 with polynomial coefficients of degree
d D 1, i.e., a recurrence of the form

.c0;0 C c0;1n/an C .c1;0 C c1;1n/anC1 C .c2;0 C c2;1n/anC2 D 0

for constants ci;j yet to be determined. Since the recurrence is supposed to hold for
n D 0; : : : ; 7 (at least), we obtain the following system of linear constraints:

nD0 W .c0;0 C c0;10/1C .c1;0 C c1;10/2C .c2;0 C c2;10/14 D 0
nD1 W .c0;0 C c0;11/2C .c1;0 C c1;11/14C .c2;0 C c2;11/106 D 0
nD2 W .c0;0 C c0;12/14C .c1;0 C c1;12/106C .c2;0 C c2;12/838 D 0

:::

nD7 W .c0;0 C c0;17/470;010C .c1;0 C c1;17/3;968;310C .c2;0 C c2;17/33;747;490 D 0:

In other words, any choice of the ci;j which corresponds to a recurrence that holds
for all n 2 �must in particular correspond to recurrence that holds for n D 0; : : : ; 7,
and the choices for ci;j that correspond to a recurrence valid for n D 0; : : : ; 7 are
precisely the solutions of the following homogeneous linear system:

0

B
B
B
B
B
B
B
B
B
@

1 0 2 0 14 0

2 2 14 14 106 106

14 28 106 212 838 1;676

106 318 838 2;514 6;802 20;406

838 3;352 6;802 27;208 56;190 224;760

6;802 34;010 56;190 280;950 470;010 2;350;050

56;190 337;140 470;010 2;820;060 3;968;310 23;809;860

470;010 3;290;070 3;968;310 27;778;170 33;747;490 236;232;430

1

C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
@

c0;0
c0;1
c1;0

c1;1
c2;0
c2;1

1

C
C
C
C
C
C
C
A

D 0

This system has the solution .0; 9;�14;�10; 2; 1/, which means that the infinite
sequence .an/1nD0 of which we were given the first 10 terms above satisfies the
recurrence
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9n an C .�14� 10n/anC1 C .2nC 1/anC2 D 0;

at least for n D 0; 1; : : : ; 7. Note that the linear system had more equations than
variables so that a priori we would not have expected that it has a nonzero solution
at all. This makes it reasonable to guess that the recurrence we found is not just
a match of the given data, but in fact a “true” recurrence, valid for all n 2 �.
The reliability of such a guess can be estimated by the difference between number
of variables and number of equations in the linear system (e.g. 0: already some
indication, 10: convincing evidence, 100: strong evidence).

Guessing is a very popular technique in experimental mathematics, it is certainly
a more widely used (and known?) part of the holonomic toolkit than the algorithms
for closure properties. Several software packages provide efficient implementations
of the algorithm sketched above, or of more sophisticated algorithms based on
Hermite-Pade approximation [3]. Maple users can use gfun [32], Mathematica
users can use the old package of Mallinger [29] or Kauers’s package [23], which
also supports multivariate guessing. For Axiom there is a package by Hebisch and
Rubey [20]. Recent versions of these packages have no trouble processing hundreds
or even thousands of terms.

Note the computational difference between the linear algebra problems for
guessing and closure properties: For guessing, we solve large overdetermined
systems with constant coefficients, whereas for closure properties we solve small
underdetermined systems with polynomial coefficients.

Note also that if no equation can be found by guessing, then there definitely
does not exist an equation of the specified order and degree. On the other hand, a
guessed equation may be incorrect, although this very rarely happens in practice.
The requirement that a dense overdetermined linear system should have a nontrivial
solution acts as a strong filter against false guesses. In case of doubt, there are
some other tests which can be applied to a guessing result to estimate how plausible
it is [8].

4.1 Trading Order for Degree

The first step in the guessing procedure is to make a choice for the order r and the
degree d of the equation to be searched. The possible choices are limited by the
number N of available terms, because we want to end up with an overdetermined
linear system. (An underdetermined system will always have nontrivial solutions,
but these have no reason to have any significance for the infinite object from which
the data sample originates.) An overdetermined system is obtained for r and d such
that .d C2/.rC1/ < N . The possible choices for r and d are thus the points .r; d /
under a hyperbola determined by the number of available terms.
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If for some point .r; d / below the hyperbola no equation is found, it may still be
that there is an equation for some other point .r 0; d 0/ (unless r 0 � r and d 0 � d ).
An exhaustive search needs to go through all the integer points right below the
hyperbola. These are only finitely many.

If an object is holonomic, it satisfies not only a single equation but infinitely
many of them. First of all we can pass from any given equation to a higher degree
one by simply multiplying it by n or z, respectively, and we can produce higher order
equations by shifting or differentiating, respectively. This means that if there is an
equation of order r and degree d , then there is also one of order r 0 and degree d 0
for every .r 0; d 0/ with r 0 � r and d 0 � d . In addition, in examples coming from
applications, there usually exist further equations. A typical shape for the region
of all points .r; d / for which there exists an equation of order r and degree d is
shown in Fig. 2. As indicated by the curves in this figure, the equations which can be
recovered with the smallest amount of data are those for which r=d � 1. In contrast,
the minimal order operator tends to require the maximal number of terms. This is
unfortunate because this operator is for many applications the most interesting one.
Modern guessing packages [23] use an algorithm which guesses several nonminimal
order recurrences (taking advantage of their small size) and construct from them a
guess for the minimal order operator (which is most interesting to the user) [6, 9].
Very recent results [11,12,21] offer further improvements by giving precise a priori
knowledge about the shape of the region where equations can be found.

Example 6. The technique explained above has been utilized for certain sequences
arising in particle physics [6]. A certain quantity arising in this context (named
C
.2/
2;q;C 3F

in Table 5 of [6]) satisfies a recurrence of order 35 and degree 938. This
is the minimal order recurrence for this sequence. In order to guess it directly, at
least 33,841 terms of the sequence are needed. However, by first guessing a smaller
recurrence with nonminimal order (in this case, order 51 and degree 92), it was
sufficient to know 5,114 terms of the sequence. See Fig. 1 for an illustration.

4.2 Modular Techniques

A common problem in computer algebra is the intermediate growth of expressions
during a calculation. In the context of holonomic functions, it is not unusual that
the output of a calculation is much longer than the input, and yet the intermediate
expressions can still be much longer than that, thereby causing severe time and
memory problems. A classical technique in computer algebra for dealing with this
problem is the use of homomorphic images (a.k.a. modular arithmetic) [22,39]. The
basic idea is that instead of solving a problem involving polynomials, one evaluates
the polynomials at several points, then solves the resulting small problems, which no
longer involve polynomials but only numbers, and afterwards combines the various
solutions by interpolation to a solution of the original problem. To the same effect,



The Holonomic Toolkit 139

0 50 100 150 200 250
r

200

400

600

800

1000
d

Fig. 1 For the sequence mentioned in Example 6, it turns out that there exists a recurrence of
order r and degree d whenever .r; d/ is above the solid curve. With 5,114 terms available, guessing
can find recurrence equations of order r and degree d whenever .r; d/ is below the dashed curve.
With 33,841 terms, guessing can find recurrences of order r and degree d for all .r; d/ below the
dotted curve. The two dots mark the position of the minimal order recurrence and the recurrences
which were actually guessed, and from which the minimal order recurrence was constructed

problems involving rational numbers are mapped to problems in finite fields, solved
in these fields, and afterwards the modular solutions are combined to a rational
solution using the Chinese remainder algorithm and rational reconstruction.

Implementations use this technique internally to speed up the computations and
to save memory. The user does not see this, and does not need to care. Modular
techniques are however also useful for the user, because in large problems the
hard part of the computation is usually not the guessing itself but the generation
of sufficiently many terms of the sequence or series. It is typically about one order
of magnitude faster to compute the terms only modulo some fixed prime. Therefore,
one should first compute the data only modulo some fixed prime p (for instance
p D 231 � 1 D 2; 147; 483; 647), and then apply the guesser modulo this prime.
If it does not find anything, then (with high probability) it would also not find any
equation for the actual data, and there is no point in computing it.

On the other hand, if a modular equation for the modular data is found, then one
can still go ahead and calculate the data modulo many other primes, reconstruct the
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non-modular data from the results, and apply the guesser to those in order to get
the non-modular equation. This is possible, but there is a better way: calculate the
data modulo several other primes, then for each prime guess an equation modulo the
prime, and in the end reconstruct the non-modular equation from the modular ones.
In practice, this strategy tends to require much fewer primes, and is therefore much
more efficient.

Example 7. Consider the sequence an D Pn
kD0.n C k/334k

�
n
k

�2
. It satisfies a

recurrence of order 2 and degree 4 which a guesser can recover from the first 20
terms of the sequence. The example is so small that both the computation of these
twenty terms via the sum and the guessing can be done in virtually no time. The
arithmetic effect described above can nevertheless be observed already here.

The term a20, which is the largest in the sample, has 42 decimal digits, so if we
work with primes of 11 decimal digits, we need four of them in order to reconstruct
the values of a0; : : : ; a20 from their images modulo the primes.

On the other hand, the largest coefficient in the recurrence has only 12 decimal
digits. (It is a fraction with a 7-digit numerator and a 5-digit denominator.) Therefore
we can already recover it if we know the coefficients of the recurrence modulo two
different primes. See Fig. 2 for an illustration.

Example 8. For the sequence from Example 6, the largest among the first 5,114
terms is a fraction with 13,388 decimal digits in the numerator and 13,381 digits in
the denominator. In contrast, the largest coefficient in the minimal order recurrence
is a fraction with 1,187 decimal digits in the numerator and 7 digits in the denomi-
nator. The resulting speed-up is a factor of .13; 388C13; 381/=(1,187C 7) � 22:4.

4.3 Boot Strapping

We have remarked that the generation of a sufficient amount of data is often more
expensive than guessing an equation from the data. Of course, once we have an
equation, it is very cheap to calculate as much data as we please—this is one of the
fundamental properties of holonomic objects. But if we already know an equation,
we don’t need to guess one. To some extent, the situation has the character of a
chicken/egg problem: in order to guess a recurrence most efficiently, the best thing
would be if we could already use it for generating data. Sometimes the conflict
can be resolved by guessing auxiliary equations: in a first step, use a naive way to
compute a small number of terms, then use them to guess some equation which can
be used to generate further terms, and iterate until you have enough terms to guess
the equation of interest. We conclude with two examples for this strategy.

Example 9. [26] Consider the lattice �4. We are interested in walks starting at
.0; 0; 0; 0/ and going to .i; j; k; l/ which may consist of any number of steps,
where a single step can be of the form .m; 0; 0; 0/ or .0;m; 0; 0/ or .0; 0;m; 0/
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Fig. 2 Two ways of using modular arithmetic in guessing, illustrated with the data of Example 7
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or .0; 0; 0;m/ for some positive integer m. If ai;j;k;l denotes the number of walks
ending at the lattice point .i; j; k; l/, we are interested in the sequence an;n;n;n
counting the walks that end on the diagonal. There is a simple way to compute
these numbers, but this algorithm is costly. It would be somewhat hard to generate
1,000 terms with it.

Therefore we proceed as follows: compute the terms an;n;k;k for 0 � n; k � 25,
say, and use bivariate guessing to guess recurrence equations for this sequence with
respect to n and k. Using these recurrences, it is much easier to calculate an;n;n;n for
n D 0; : : : ; 1;000. These terms can finally be used to guess the desired recurrence
for an;n;n;n.

Example 10. (Rechnitzer, A.: Personal communication (2012)) For a certain appli-
cation in combinatorial group theory, it was necessary to find a differential equation
for the power series Œq0�f .q; z/, where f .q; z/ is a certain power series with respect
to z whose coefficients are Laurent polynomials in q. The notation Œq0� is meant to
pick the constant term of each coefficient:

f .q; z/ D 1C .q�1 C q/zC .q�2 C 4C q2/z2 C � � �
Œq0�f .q; z/ D 1C 0zC 4z2 C � � � :

The power series f .q; z/ was given in terms of a defining equation p.q; z;
f .q; z// D 0, where p is a polynomial in three variables which is too large to be
printed here. Using Newton polygons [25, Chap. 6], it is possible to compute from p

the first terms in the expansion of f .q; z/ with respect to z. But it is hard to generate
enough terms to recover the differential equation for Œq0�f .z/.

Therefore we proceed as follows: compute the first 30 terms in the expansion of
f .q; z/ for symbolic q, and use these to guess a general recurrence of the coefficients
of f .q; z/ with symbolic q. Using this recurrence, generate many further terms of
f .q; z/ with symbolic q, pick the constant terms and apply guessing to the result.
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Orthogonal Polynomials

Tom H. Koornwinder

Abstract This chapter gives a short introduction to orthogonal polynomials, both
the general theory and some special classes. It ends with some remarks about the
usage of computer algebra for this theory.

1 Introduction

This chapter gives a short introduction to orthogonal polynomials, both the general
theory and some special classes. After the definition and first examples in Sect. 2,
important but mainly elementary aspects of the general theory associated with the
three-term recurrence relation are treated in Sect. 3. Sections 4, 6, and 7 discuss
special classes of orthogonal polynomials, interrupted by Sect. 5 about Gauss
quadrature. Section 8 collects some more advanced results in the general theory
of orthogonal polynomials. Finally Sect. 9 discusses the role of computer algebra in
the theory of (special) orthogonal polynomials.

Everything treated here is well-known from the literature. I mention a few books
which can be recommended for more detailed study. A great classical introduction
to orthogonal polynomials, both the general theory and the special polynomials,
is Szegő [24]. A very readable textbook, in particular for the general theory, is
Chihara [5]. As a textbook emphasizing the special theory I recommend Andrews,
Askey and Roy [2]. Very good is also Ismail [10], but more focusing on the q-case.
Two recent compendia of formulas for special orthogonal polynomials are Olver
et al. [18, Chap. 18] and Koekoek, Lesky and Swarttouw [12, Chaps. 9 and 14].
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2 Definition of Orthogonal Polynomials and First Examples

Let P be the real vector space of all polynomials in one variable with real
coefficients. Assume on P a (positive definite) inner product hf; gi (f; g 2 P).
Orthogonalize the sequence of monomials 1; x; x2; : : : with respect to the inner
product (Gram-Schmidt). This results into the sequence p0.x/; p1.x/; p2.x/; : : :
of polynomials in x. So p0.x/ D 1 and, if p0.x/; p1.x/; : : : ; pn�1.x/ are already
produced and mutually orthogonal, then

pn.x/ WD xn �
n�1X

kD0

hxn; pki
hpk; pki pk.x/:

Indeed, pn.x/ is a linear combination of 1; x; x2; : : : ; xn, and

hpn; pj i D hxn; pj i �
n�1X

kD0

hxn; pki
hpk; pki hpk; pj i

D hxn; pj i � hx
n; pj i
hpj ; pj i hpj ; pj i D 0 .j D 0; 1; : : : ; n � 1/:

Throughout we will use the constants hn and kn associated with the orthogonal
system:

hpn; pni D hn; pn.x/ D knxn C polynomial of lower degree: (1)

The pn are unique up to a nonzero constant real factor. We may take them, for
instance, orthonormal (hn D 1; this determines pn uniquely if also kn > 0) or
monic (kn D 1).

In general we want

hx f; gi D hf; x gi:
This is true, for instance, if

hf; gi WD
Z b

a

f .x/ g.x/w.x/ dx or hf; gi WD
1X

jD0
f .xj / g.xj /wj

for a weight function w.x/ � 0 or for weights wj > 0, respectively. These are
special cases of an inner product

hf; gi WD
Z

R

f .x/ g.x/ d�.x/; (2)

where � is a (positive) measure on R, namely the cases d�.x/ D w.x/ dx on an
interval I , and � DP1jD1 wj ıxj , respectively.
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A measure � on R can also be thought as a non-decreasing function Q� on R.
Then

Z

R

f .x/ d�.x/ D
Z

R

f .x/ d Q�.x/ D lim
M!1

Z M

�M
f .x/ d Q�.x/

can be considered as a Riemann-Stieltjes integral. The measure � has in x a mass
point of mass c > 0 if the non-decreasing function Q� has a jump c at x, i.e., if
limı#0

� Q�.x C ı/ � Q�.x � ı/� D c > 0. The number of mass points is countable.
More generally, the support of the measure � consists of all x 2 R such that Q�.xC
ı/� Q�.x � ı/ > 0 for all ı > 0. This set supp.�/ is always a closed subset of R.

In the most general case let � be a (positive) measure on R (of infinite support,

i.e., not � D PN
jD1 wj ıxj ) such that

Z

R

jxnj d�.x/ < 1 for all n D 0; 1; 2; : : : .

A system fp0; p1; p2; : : :g obtained by orthogonalization of f1; x; x2; : : :g with
respect to the inner product (2) is called a system of orthogonal polynomials with
respect to the orthogonality measure �.

Here follow some first examples of explicit orthogonal polynomials.

• Legendre polynomials Pn.x/, orthogonal on Œ�1; 1� with respect to the weight
function 1. Normalized by Pn.1/ D 1.

• Hermite polynomialsHn.x/, orthogonal on .�1;1/ with respect to the weight
function e�x2 . Normalized by kn D 2n.

• Charlier polynomials cn.x; a/, orthogonal on the points x D 0; 1; 2; : : : with
respect to the weights ax=xŠ (a > 0). Normalized by cn.0I a/ D 1.

The hn (see (1)) can be computed for these examples:

1
2

Z 1

�1
Pm.x/ Pn.x/ dx D 1

2nC 1 ım;n ;

��
1
2

Z 1

�1
Hm.x/Hn.x/ e

�x2 dx D 2nnŠ ım;n ;

e�a
1X

xD0
cm.x; a/ cn.x; a/

ax

xŠ
D a�nnŠ ım;n :

3 Three-Term Recurrence Relation and Some Consequences

3.1 Three-Term Recurrence Relation

The following theorem is fundamental for the general theory of orthogonal polyno-
mials.
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Theorem 1. Orthogonal polynomials pn satisfy

xpn.x/ D anpnC1.x/C bnpn.x/C cnpn�1.x/ .n > 0/;

xp0.x/ D a0p1.x/C b0p0.x/
(3)

with an; bn; cn real constants and ancnC1 > 0. Also an D kn

knC1
;

cnC1
hnC1

D an

hn
.

Moreover (Favard theorem), if polynomials pn of degree n .n D 0; 1; 2; : : :/

satisfy (3) with an; bn; cn real constants and ancnC1 > 0 then there exists a (positive)
measure � on R such that the polynomials pn are orthogonal with respect to �.

The proof of the first part is easy. Indeed, xpn.x/ D PnC1
kD0 ˛kpk.x/, and if

k � n � 2 then hxpn; pki D hpn; xpki D 0, hence ˛k D 0. Furthermore,

cnC1 D hxpnC1; pnihpn; pni D
hxpn; pnC1i

hn
D hxpn; pnC1ihpnC1; pnC1i

hnC1
hn
D an hnC1

hn
:

Hence ancnC1 D a2n hnC1=hn > 0. Hence cnC1=hnC1 D an=hn.
The proof of the second part is much deeper (see Cihara [5, Chap. 2]).

Remarks

1. For orthonormal polynomials the recurrence relation (3) becomes

xpn.x/ D anpnC1.x/C bnpn.x/C an�1pn�1.x/ .n > 0/;

xp0.x/ D a0p1.x/C b0p0.x/;
(4)

and for monic orthogonal polynomials

xpn.x/ D pnC1.x/C bnpn.x/C cnpn�1.x/ .n > 0/;

xp0.x/ D p1.x/C b0p0.x/;
(5)

with cn D hn=hn�1 > 0 in (5). If orthonormal polynomials pn satisfy (4) then
the corresponding monic polynomials k�1n pn satisfy (5) with cn D a2n�1 .

2. If the orthogonality measure is even (�.E/ D �.�E/) then pn.�x/ D
.�1/npn.x/, hence bn D 0, so xpn.x/ D anpnC1.x/ C cnpn�1.x/. Examples
of orthogonal polynomials with even orthogonality measure are the Legendre
and Hermite polynomials.

3. The recurrence relation (3) determines the polynomials pn uniquely (up to a
constant factor because of the choice of the constant p0).

4. The orthogonality measure � for a system of orthogonal polynomials may not be
unique (up to a constant positive factor). See Example 1.
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5. If � is unique then P is dense in L2.�/. See Shohat and Tamarkin [21,
Theorem 2.14].

6. If there is an orthogonality measure � with bounded support then � is unique.
See Chihara [5, Chap. 2, Theorem 5.6].

3.2 Moments

The moment functional M Wp 7! hp; 1iWP ! R associated with an orthogonality
measure� is already determined by the ruleM.pn/ D hpn; 1i D 0 for n > 0. Hence
M is determined (up to a constant factor) by the system of orthogonal polynomials
pn, independent of the choice of the orthogonality measure, and hence M is also
determined by (3). The same is true for the inner product hf; gi D hfg; 1i on P .

The moment functional M is also determined by the moments �n WD hxn; 1i
(n D 0; 1; 2; : : :). The condition ancnC1 > 0 is equivalent to positive definiteness of
the moments, stated as

�n WD det.�iCj /ni;jD0 > 0 .n D 0; 1; 2; : : :/:

For given moments �n and corresponding orthogonal polynomials pn a positive
measure � is an orthogonality measure for the pn iff � is a solution of the
(Hamburger) moment problem

Z

R

xn d�.x/ D �n .n D 0; 1; 2; : : :/: (6)

Uniqueness of the orthogonality measure is equivalent to uniqueness of the moment
problem.

Example 1 (non-unique orthogonality measure). The following goes back to
Stieltjes [23, �56]. In the easily verified formula

Z 1

�1
e�u2 .1C C sin.2�u// du D �1=2

make a transformation of integration variable u D logx � 1
2
.nC 1/ and take �1 <

C < 1. Then

�� 1
2 e� 14

Z 1

0

xn.1C C sin.2� logx// e� log2 x dx D e 14 n.nC2/: (7)

Thus a one-parameter family of measures yields moments which are independent
of C . The corresponding orthogonal polynomials pn are a special case of the
Stieltjes-Wigert polynomials [12, �14.27]: pn.x/ D Sn.q

1
2 xI q/ with q D e� 1

2 , see
Christiansen [6, p. 223].
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It is also elementary to show that

 1X

kD�1
e�

1
4 k

2

!�1 1X

kD�1
e�

1
2 kne�

1
4 .kC1/2 D e 14 n.nC2/; (8)

which means that the same moments, up to a constant factor, as in (7) are obtained
with the measure

P1
kD�1 e�

1
4 .kC1/2ıexp.� 12 k/.

3.3 Christoffel-Darboux Formula

Let Pn be the space of polynomials of degree � n. Let fpng be a system of
orthogonal polynomials with respect to the measure �. The Christoffel-Darboux
kernel is defined by

Kn.x; y/ WD
nX

jD0

pj .x/pj .y/

hj
: (9)

Then

.˘nf /.x/ WD
Z

R

Kn.x; y/ f .y/ d�.y/

defines an orthogonal projection˘nWP !Pn . Indeed, if f .y/ DP1kD0 ˛kpk.y/
(finite sum) then

.˘nf /.x/ D
nX

jD0
pj .x/

1X

kD0

˛k

hj

Z

R

pj .y/ pk.y/ d�.y/ D
nX

jD0
˛j pj .x/:

The Christoffel-Darboux formula for Kn.x; y/ given by (9) is as follows.

nX

jD0

pj .x/pj .y/

hj
D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

kn

hnknC1

pnC1.x/pn.y/� pn.x/pnC1.y/

x � y .x ¤ y/, (10)

kn

hnknC1

.p0
nC1.x/pn.x/� p0

n.x/pnC1.x// .x D y/. (11)

For the proof of (10) note that

xpj .x/ D aj pjC1.x/C bj pj .x/C cjpj�1.x/;
ypj .y/ D aj pjC1.y/C bjpj .y/C cj pj�1.y/:
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Hence

.x � y/pj .x/pj .y/=hj
D aj

hj
.pjC1.x/pj .y/�pj .x/pjC1.y//� cj

hj
.pj .x/pj�1.y/�pj�1.x/pj .y//:

Use that cj =hj D aj�1=hj�1. Sum from j D 0 to n. Use that an D kn=knC1. This
yields (10). For (11) let y ! x in (10).

3.4 Zeros of Orthogonal Polynomials

Theorem 2. Let pn be an orthogonal polynomial of degree n. Let � have support
within the closure of the interval .a; b/. Then pn has n distinct zeros on .a; b/.
Furthermore, the zeros of pn and pnC1 alternate.

Proof. For the proof of the first part suppose pn has precisely k < n sign
changes on .a; b/ at x1; x2; : : : ; xk . Hence, after possibly multiplying pn by
�1, we have pn.x/.x � x1/ : : : .x � xk/ � 0 on Œa; b�. Hence

R b
a pn.x/

.x � x1/ : : : .x � xk/ d�.x/ > 0. But by orthogonality we have
R b
a pn.x/

.x � x1/ : : : .x � xk/ d�.x/ D 0. Contradiction.
For the proof of the second part use (11): If kn; knC1 > 0 then

p0nC1.x/pn.x/ � p0n.x/pnC1.x/ D
hnknC1
kn

nX

jD0

pj .x/
2

hj
> 0:

Hence, if y; z are two successive zeros of pnC1 then

p0nC1.y/pn.y/ > 0; p0nC1.z/pn.z/ > 0:

Since p0nC1.y/ and p0nC1.z/ have opposite signs, pn.y/ and pn.z/ must have
opposite signs. Hence pn must have a zero in the interval .y; z/. ut

3.5 Kernel Polynomials

Recall the Christoffel-Darboux formula (10). Suppose the orthogonality measure �
has support within .�1; b� and fix y � b. Then

Z b

�1
Kn.x; y/ x

k .y � x/ d�.x/ D yk.y � y/ D 0 .k < n/:
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Hence x 7! qn.x/ WD Kn.x; y/ is an orthogonal polynomial of degree n on .�1; b�
with respect to the measure .y � x/ d�.x/. Hence

qn.x/ � qn�1.x/ D pn.y/

hn
pn.x/;

pn.y/pnC1.x/ � pnC1.y/pn.x/ D hnknC1
kn

.x � y/qn.x/:

The orthogonal polynomials qn are called kernel polynomials. Of course, they
depend on the choice of � and of y.

4 Very Classical Orthogonal Polynomials

These are the Jacobi, Laguerre and Hermite polynomials. They are usually called
classical orthogonal polynomials, but I prefer to call them very classical and to
consider all polynomials in the (q-)Askey scheme (see Sects. 6 and 7) as classical.

We will need hypergeometric series [2, Chap. 2]:

rFs

�
a1; : : : ; ar

bs; : : : ; bs
I z
�

WD
1X

kD0

.a1/k : : : .ar /k

.b1/k : : : .bs/k

zk

kŠ
; (12)

where .a/k WD a.a C 1/ : : : .a C k � 1/ for k D 1; 2; : : : and .a/0 WD 1 is the
shifted factorial. If one of the upper parameters in (12) equals a non-positive integer
�n then the series terminates after the term with k D n.

4.1 Jacobi Polynomials

Jacobi polynomials P .˛;ˇ/
n [12, �9.8] are orthogonal on .�1; 1/ with respect to

the weight function w.x/ WD .1 � x/˛.1 C x/ˇ (˛; ˇ > �1) and they are
normalized by P .˛;ˇ/

n .1/ D .˛ C 1/n=nŠ . They can be expressed as terminating
Gauss hypergeometric series:

P .˛;ˇ/
n .x/ D .˛ C 1/n

nŠ
2F1

��n; nC ˛ C ˇ C 1
˛ C 1 I 1

2
.1 � x/

�

D
nX

kD0

.nC ˛ C ˇ C 1/k .˛ C k C 1/n�k
kŠ .n � k/Š

.x � 1/k
2k

: (13)
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They satisfy (because of the orthogonality property) the symmetry P .˛;ˇ/
n .�x/ D

.�1/n P .ˇ;˛/
n .x/. Thus we conclude (much easier than by manipulation of the

hypergeometric series) that

2F1

��n; nC ˛ C ˇ C 1
˛ C 1 I z

�

D .�1/n.ˇ C 1/n
.˛ C 1/n 2F1

��n; nC ˛ C ˇ C 1
ˇ C 1 I 1� z

�

:

For pn.x/ WD P .˛;ˇ/
n .x/ there is the second order differential equation

.1�x2/p00n.x/C
�
ˇ�˛�.˛CˇC2/x�p0n.x/ D �n.nC˛CˇC1/ pn.x/: (14)

This can be split up by the shift operator relations

d

dx
P .˛;ˇ/
n .x/ D 1

2
.nC ˛ C ˇ C 1/P .˛C1;ˇC1/

n�1 .x/; (15)

.1 � x2/ d
dx
P
.˛C1;ˇC1/
n�1 .x/C �ˇ � ˛ � .˛ C ˇ C 2/x�P .˛C1;ˇC1/

n�1 .x/

D .1 � x/�˛.1C x/�ˇ d
dx

�
.1 � x/˛C1.1C x/ˇC1P .˛C1;ˇC1/

n�1 .x/
�

D �2nP .˛;ˇ/
n .x/: (16)

Note that the operator d=dx acting at the left-hand side of (15) raises the parameters
and lowers the degree of the Jacobi polynomial, while the operator acting at the
left-hand side of (16) lowers the parameters and raises the degree. Iteration of (16)
gives the Rodrigues formula

P .˛;ˇ/
n .x/ D .�1/n

2nnŠ
.1� x/�˛.1C x/�ˇ

�
d

dx

�n �
.1 � x/˛Cn.1C x/ˇCn� :

4.1.1 Special Cases

• Gegenbauer or ultraspherical polynomials (˛ D ˇ D � � 1
2
):

C�
n .x/ WD

.2�/n

.�C 1
2
/n
P
.�� 1

2 ;�� 12 /
n .x/:

• Legendre polynomials (˛ D ˇ D 0): Pn.x/ WD P .0;0/
n .x/.

• Chebyshev polynomials (˛ D ˇ D ˙ 1
2
):
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Tn.cos �/ WD cos.n �/ D nŠ

. 1
2
/n
P
.� 1

2 ;� 1
2 /

n .cos �/;

Un.cos �/ WD sin.nC 1/�
sin �

D .2/n

. 3
2
/n
P
. 12 ;

1
2 /

n .cos �/:

4.1.2 Quadratic Transformations

Since P .˛;˛/
2n .x/ is an even polynomial of degree 2n in x, it is also a polynomial

pn.2x
2 � 1/ of degree n in 2x2 � 1. For m ¤ n we have

0 D
Z 1

0

pm.2y
2 � 1/pn.2y2 � 1/ .1 � y2/˛ dy

D const:
Z 1

�1
pm.x/pn.x/ .1 � x/˛.1C x/� 1

2 dx:

Hence

P
.˛;˛/
2n .x/

P
.˛;˛/
2n .1/

D P
.˛;� 1

2 /
n .2x2 � 1/
P
.˛;� 1

2 /
n .1/

:

Similarly,

P
.˛;˛/
2nC1.x/
P
.˛;˛/
2nC1.1/

D xP
.˛; 12 /
n .2x2 � 1/
P
.˛; 12 /
n .1/

:

Theorem 3. [5, Chap. 1, �8] Let fpng be a system of orthogonal polynomials with
respect to an even weight function w on R. Then there are systems fqng and frng of
orthogonal polynomials on Œ0;1/ with respect to weight functions x 7! x� 1

2 w.x
1
2 /

and x 7! x
1
2 w.x

1
2 /, respectively, such that p2n.x/ D qn.x

2/ and p2nC1.x/ D
x rn.x

2/.

4.2 Electrostatic Interpretation of Zeros

Let pn.x/ WD const: P .2p�1;2q�1/
n .x/ D .x � x1/.x � x2/ : : : .x � xn/ be monic

Jacobi polynomials (p; q > 0). By (14) we have

.1 � x2/p00n.x/C 2.q � p � .p C q/x/p0n.x/ D �n.nC 2p C 2q � 1/pn.x/:
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Hence

0 D .1 � x2k/p00n.xk/C 2.q � p � .p C q/xk/p0n.xk/

D 1
2

p00n.xk/
p0n.xk/

C p

xk � 1 C
q

xk C 1 D
X

j; j¤k

1

xk � xj C
p

xk � 1 C
q

xk C 1 :

This can be reformulated as

.rV /.x1; : : : ; xn/ D 0;

where

V.y1; : : : ; yn/ WD �
X

i<j

log.yj � yi / � p
X

j

log.1 � yj /� q
X

j

log.1C yj /

is the logarithmic potential obtained from nC 2 charges q; 1; : : : ; 1; p at successive
points�1 < y1 < : : : < yn < 1. It achieves a minimum at the zeros ofP .2p�1;2q�1/

n .
This result goes back to Stieltjes [22].

4.3 Laguerre Polynomials

Laguerre polynomials L˛n [12, �9.12] are orthogonal on Œ0;1/ with respect to the
weight function w.x/ WD x˛e�x (˛ > �1). They are normalized by L˛n.0/ D
.˛ C 1/n=nŠ . They can be expressed in terms of terminating confluent hypergeo-
metric functions by

L˛n.x/ D
.˛ C 1/n
nŠ

1F1

� �n
˛ C 1 I x

�

D
nX

kD0

.˛ C k C 1/n�k
kŠ .n � k/Š .�x/k: (17)

For pn.x/ WD L˛n.x/ there is the second order differential equation

x p00n.x/C .˛ C 1 � x/ p0n.x/ D �npn.x/:

This can be split up by the shift operator relations

d

dx
L˛n.x/ D �L˛C1n�1 .x/;

and
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x
d

dx
L˛C1n�1 .x/C.˛C1�x/L˛C1n�1 .x/ D x�˛ex

d

dx

�
x˛C1e�xL˛C1n�1 .x/

� D nL˛n.x/:
(18)

Iteration of (18) gives the Rodrigues formula

L˛n.x/ D
x�˛ex

nŠ

�
d

dx

�n �
xnC˛e�x

�
:

4.4 Hermite Polynomials

Hermite polynomials Hn [12, �9.15] are orthogonal with respect to the weight
function w.x/ WD e�x2 on R and they are normalized by Hn D 2nxn C � � � . They
have the explicit expression

Hn.x/ D nŠ
Œn=2�X

jD0

.�1/j .2x/n�2j
j Š .n � 2j /Š : (19)

There is the second order differential equation

H 00n .x/ � 2xH 0n.x/ D �2nHn.x/:

This can be split up by the shift operator relations

H 0n.x/ D 2nHn�1.x/; H 0n�1.x/� 2xHn�1.x/ D ex
2 d

dx

�
e�x2Hn�1.x/

�
D �Hn.x/:

(20)

Iteration of the last equality in (20) gives the Rodrigues formula

Hn.x/ D .�1/n ex2
�
d

dx

�n �
e�x2

�
:

4.5 General Method to Derive the Standard Formulas

The previous formulas can be derived by the following general method. Let .a; b/
be an open interval and let w;w1 > 0 be strictly positive C1-functions on .a; b/. Let
fpng and fqng be systems of monic orthogonal polynomials on .a; b/ with respect
to the weight function w resp. w1. Then under suitable boundary assumptions for w
and w1 we have
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Z b

a

p0n.x/ qm�1.x/w1.x/ dx D �
Z b

a

pn.x/w.x/�1
d

dx

�
w1.x/ qm�1.x/

�
w.x/ dx:

Suppose that for certain an ¤ 0 :

w.x/�1
d

dx

�
w1.x/ x

n�1� D �an xn C polynomial of degree < n.

Then we easily derive a pair of first order differentiation formulas connecting
fpng and fqng, an eigenvalue equation for pn involving a second order differential
operator, and a formula connecting the quadratic norms for pn and qn�1 :

p0n.x/ D n qn�1.x/; w.x/�1
d

dx
.w1.x/ qn�1.x// D �an pn.x/;

w.x/�1
d

dx

�
w1.x/ p

0
n.x/

� D �nan pn.x/;

n

Z b

a

qn�1.x/2 w1.x/ dx D an
Z b

a

pn.x/
2 w.x/ dx:

In particular, if we work with monic Jacobi polynomials p.˛;ˇ/n , then .a; b/ D
.�1; 1/, w.x/ D .1 � x/˛.1 C x/ˇ , pn.x/ D p

.˛;ˇ/
n .x/, w1.x/ D .1 � x/˛C1

.1C x/ˇC1, qm.x/ D p.˛C1;ˇC1/m .x/. Then an D .nC ˛ C ˇ C 1/. Hence

d

dx
p.˛;ˇ/n .x/ D np.˛C1;ˇC1/n�1 .x/; (21)

�
.1 � x2/ d

dx
C �ˇ � ˛ � .˛ C ˇ C 2/x�

�
p
.˛C1;ˇC1/
n�1 .x/

D �.nC ˛ C ˇ C 1/ p.˛;ˇ/n .x/: (22)

For x D 1 (22) yields

p.˛;ˇ/n .1/ D 2.˛C 1/
nC ˛ C ˇ C 1 p

.˛C1;ˇC1/
n�1 .1/:

Iteration gives

p.˛;ˇ/n .1/ D 2n.˛ C 1/n
.nC ˛ C ˇ C 1/n : (23)

So for pn D const: p.˛;ˇ/n D knx
n C � � � we know pn.1/=kn, independent of the

normalization.
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The hypergeometric series representation of Jacobi polynomials is next obtained
from (21) by Taylor expansion:

p
.˛;ˇ/
n .x/

p
.˛;ˇ/
n .1/

D
nX

kD0

.x � 1/k
kŠ

�
d

dx

�k
p
.˛;ˇ/
n .x/

ˇ
ˇ
ˇ
xD1

D
nX

kD0

.x � 1/k
kŠ

nŠ

.n � k/Š
p
.˛Ck;ˇCk/
n�k .1/

p
.˛;ˇ/
n .1/

D 2F1

��n; nC ˛ C ˇ C 1
˛ C 1 I 12 .1 � x/

�

:

The quadratic norm hn can be obtained by iteration of

Z 1

�1
p.˛;ˇ/n .x/2 .1 � x/˛.1C x/ˇ dx

D n

nC ˛ C ˇ C 1
Z 1

�1
p
.˛C1;ˇC1/
n�1 .x/2 .1 � x/˛C1.1C x/ˇC1 dx:

So for pn D const: p.˛;ˇ/n D knx
n C � � � we know hn=k

2
n, independent of the

normalization.

4.6 Characterization Theorems

Up to a constant factors and up to transformations x ! ax C b of the argument
the very classical orthogonal polynomials (Jacobi, Laguerre and Hermite) are
uniquely determined as orthogonal polynomials pn satisfying any of the following
three criteria. (In fact there are more ways to characterize these polynomials, see
Al-Salam [1].)

• (Bochner theorem) The pn are eigenfunctions of a second order differential
operator.

• The polynomials p0nC1 are again orthogonal polynomials.
• The polynomials are orthogonal with respect to a positive C1 weight function

w on an open interval I and there is a polynomial X such that the Rodrigues
formula holds on I :

pn.x/ D const:w.x/�1
�
d

dx

�n �
X.x/nw.x/

�
:
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4.7 Limit Results

The very classical orthogonal polynomials are connected to each other by limit
relations. We give these limits below for the monic versions p.˛;ˇ/n ; `˛n; hn of these
polynomials, and on each line we give also the corresponding limit for the weight
functions:

˛n=2p.˛;˛/n .x=˛1=2/! hn.x/; .1 � x2=˛/˛ ! e�x2 ; ˛ !1; (24)

.�ˇ=2/n p.˛;ˇ/n .1 � 2x=ˇ/! `˛n.x/; x˛.1 � x=ˇ/ˇ ! x˛e�x; ˇ !1;
(25)

`˛n..2˛/
1=2x C ˛/

.2˛/n=2
! hn.x/; .1C .2=˛/1=2x/˛e�.2˛/1=2x ! e�x2 ; ˛ !1:

(26)

The limits of the orthogonal polynomials in (24) and (25) immediately follow from
(13), (17) and (19). For various ways to prove (26) see [17, �2].

5 Gauss Quadrature

Let be given n real points x1 < x2 < : : : < xn. Put pn.x/ WD .x � x1/ : : :
.x � xn/. For k D 1; : : : ; n let lk be the unique polynomial of degree < n such that
lk.xj / D ık;j (j D 1; : : : ; n). This polynomial, called the Lagrange interpolation
polynomial, equals

lk.x/ D
Q
j I j¤k.x � xj /

Q
j I j¤k.xk � xj /

D pn.x/

.x � xk/ p0n.xk/
:

For all polynomials r of degree < n we have

r.x/ D
nX

kD1
r.xk/ lk.x/:

Theorem 4 (Gauss quadrature). Let pn be an orthogonal polynomial with respect
to � and let the lk be the Lagrange interpolation polynomials associated with the
zeros x1; : : : ; xn of pn. Put

�k WD
Z

R

lk.x/ d�.x/:
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Then

�k D
Z

R

lk.x/
2 d�.x/ > 0

and for all polynomials of degree � 2n � 1 we have

Z

R

f .x/ d�.x/ D
nX

kD1
�k f .xk/: (27)

Proof. Let f be a polynomial of degree � 2n � 1. Then for certain polynomials q
and r of degree� n� 1 we have f .x/ D q.x/pn.x/C r.x/. Hence f .xk/ D r.xk/
and

Z

R

f .x/ d�.z/ D
Z

R

r.x/ d�.x/ D
nX

kD1
r.xk/

Z

R

lk.x/ d�.x/

D
nX

kD1
�kr.xk/ D

nX

kD1
�kf .xk/:

Also

�k D
nX

jD1
�j lk.xj /

2 D
Z

R

lk.x/
2 d�.x/ > 0:

From (27) we see in particular that, for i; j � n � 1,

hj ıi;j D
Z

R

pi .x/pj .x/ d�.x/ D
nX

kD1
�k pi .xk/ pj .xk/:

Thus the finite system p0; p1; : : : ; pn�1 forms a set of orthogonal polynomials on
the finite set fx1; : : : ; xng of the n zeros of pn with respect to the weights �k and
with quadratic norms hj . All information about this system is already contained in
the finite system of recurrence relations

xpj .x/ D aj pjC1.x/C bjpj .x/C cj pj�1.x/ .j D 0; 1; : : : ; n � 1/

with aj cjC1 > 0 (j D 0; 1; : : : ; n � 2). In particular, the �k are obtained up to a
constant factor by solving the system

nX

kD1
�kpj .xk/ D 0 .j D 1; : : : ; n � 1/:
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6 Askey Scheme

As an example of a finite system of orthogonal polynomials as described at the
end of the previous section, consider orthogonal polynomials p0; p1; : : : ; pN on the
zeros 0; 1; : : : ; N of the polynomial pNC1.x/ WD x.x � 1/ : : : .x �N/ with respect
to nice explicit weights wx (x D 0; 1; : : : ; N ) like:

• wx WD
�
n

x

�
px.1 � p/N�x (0 < p < 1). Then the pn are the Krawtchouk

polynomials

Kn.xIp;N / WD 2F1

��n;�x
�N I 1

p

�

D
nX

kD0

.�n/k.�x/k
.�N/k kŠ

1

pk
:

• wx WD .˛ C 1/x
xŠ

.ˇ C 1/N�x
.N � x/Š (˛; ˇ > �1). Then the pn are the Hahn

polynomials

Qn.xI˛; ˇ;N / WD 3F2

��n; nC ˛ C ˇ C 1;�x
˛ C 1;�N I 1

�

:

Hahn polynomials are discrete versions of Jacobi polynomials:

Qn.NxI˛; ˇ;N / D 3F2

��n; nC ˛ C ˇ C 1;�Nx

˛ C 1;�N I 1
�

!

2F1

��n; nC ˛ C ˇ C 1
˛ C 1 I x

�

D const: P .˛;ˇ/
n .1 � 2x/

and

N�1
X

x2f0; 1N ; 2N ;:::;1g
Qm.NxI˛; ˇ;N /Qn.NxI˛; ˇ;N /wNx !

const:
Z 1

0

P .˛;ˇ/
m .1 � 2x/P .˛;ˇ/

n .1 � 2x/ x˛.1 � x/ˇ dx:

Jacobi and Krawtchouk polynomials are different ways of looking at the matrix
elements of the irreducible representations of SU.2/, see [16]. The 3j coefficients
or Clebsch-Gordan coefficients for SU.2/ can be expressed as Hahn polynomials,
see for instance [15].

While we saw that the Jacobi, Laguerre and Hermite polynomials are eigenfunc-
tions of a second order differential operator,

A.x/p00n.x/C B.x/p0n.x/C C.x/pn.x/ D �npn.x/; (28)
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the Hahn and Krawtchouk polynomials are examples of orthogonal polynomials pn
on f0; 1; : : : ; N g which are eigenfunctions of a second order difference operator,

A.x/pn.x � 1/C B.x/pn.x/C C.x/pn.x C 1/ D �n pn.x/: (29)

If we also allow orthogonal polynomials on the infinite set f0; 1; 2; : : :g then
Meixner polynomialsMn.xIˇ; c/ and Charlier polynomials Cn.xI a/ appear. Here

Mn.xIˇ; c/ WD 2F1

��n;�x
ˇ
I 1 � 1

c

�

; wx WD .ˇx/

xŠ
cx;

Cn.xI a/ WD 2F0.�n;�xI I �a�1/; wx WD ax=xŠ :
If we also include orthogonal polynomials which are eigenfunctions of a second
order operator as follows,

A.x/pn.x C i/C B.x/pn.x/C C.x/pn.x � i/ D �npn.x/; (30)

then we have collected all families of orthogonal polynomials which belong to the
Hahn class.

Similarly, with an eigenvalue equation of the form

A.x/pn.q.x C 1//C B.x/pn.q.x//C C.x/pn.q.x � 1// D �npn.q.x//; (31)

where q is a fixed polynomial of second degree, we obtain the orthogonal poly-
nomials on a quadratic lattice. All orthogonal polynomials satisfying an equation
of the form (28)–(31) have been classified. There are only 13 families, depending
on at most four parameters, and all expressible as hypergeometric functions, 4F3 in
the most complicated case. They can be arranged hierarchically according to limit
transitions denoted by arrows. This is the famous Askey scheme, see for instance
[17, Fig. 1].

7 The q-Case

On top of the Askey-scheme is lying the q-Askey scheme [12, beginning of
Chap. 14], from which there are also arrows to the Askey scheme as q ! 1. We take
always 0 < q < 1 and let q " 1 for the limit to the classical case. Some typical
examples of q-analogues of classical concepts are (see Gasper and Rahman [9]):

• q-number: Œa�q WD 1 � qa
1 � q ! a

• q-shifted factorial: .aI q/n WD
n�1Y

kD0
.1 � aqk/ (also for n D 1),

.qaI q/k
.1 � q/a !

.a/k .
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• q-hypergeometric series:

sC1�s
�
a1; : : : ; asC1
b1; : : : ; bs

I q; z
�

WD
1X

kD0

.a1I q/k : : : .asC1I q/k
.b1I q/k : : : .bsI q/k

zk

.qI q/k ;

sC1�s
�
qa1 ; : : : ; qasC1

qb1 ; : : : ; qbs
I q; z

�

! sC1Fs
�
a1; : : : ; asC1
b1; : : : ; bs

I z
�

:

• q-derivative: .Dqf /.x/ WD f .x/ � f .qx/

.1� q/x ! f 0.x/.

• q-integral:
Z 1

0

f .x/ dqx WD .1 � q/
1X

kD0
f .qk/ qk !

Z 1

0

f .x/ dx.

The q-case allows more symmetry which may be broken when taking limits for
q to 1. In the elliptic case [9, Chap. 11] lying above the q-case there is even more
symmetry.

On the highest level in the q-Askey scheme are the Askey-Wilson polynomials
[3]. They are given by

pn.cos � I a; b; c; d j q/ WD .abI q/n.acI q/n.adI q/n
an


 4�3

�
q�n; qn�1abcd; aei� ; ae�i�

ab; ac; ad
I q; q

�

;

and they are symmetric in the parameters a; b; c; d . For suitable restrictions on
the parameters they are orthogonal with respect to an explicit weight function on
.�1; 1/. In the special case a D �c D ˇ 1

2 ; b D �d D .qˇ/ 12 we get the continuous
q-ultraspherical polynomials [12, �14.10.1]. They satisfy the orthogonality relation

Z �

0

Cm.cos � Iˇ j q/ Cn.cos � Iˇ j q/
ˇ
ˇ
ˇ
ˇ
.e2i� I q/1
.ˇe2i� I q/1

ˇ
ˇ
ˇ
ˇ

2

d� D 0 .m ¤ n/;

and they have the generating function

ˇ
ˇ
ˇ
ˇ
.ˇei� t I q/1
.ei� t I q/1

ˇ
ˇ
ˇ
ˇ

2

D
1X

nD0
Cn.xIˇ j q/tn:

For q " 1 they tend to ultraspherical (or Gegenbauer) polynomials:Cn.xI q� j q/!
C�
n .x/. The Gegenbauer polynomials have the generating function

.1 � 2xt C t2/�� D
1X

nD0
C �
n .x/t

n:
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8 Some Deeper Properties of General Orthogonal
Polynomials

8.1 True Interval of Orthogonality

Consider a system of orthogonal polynomials fpng. Let pn have zeros xn;1 < xn;2 <
: : : < xn;n . Then

xi;i > xiC1;i > : : : > xn;i # �i � �1;
xj;1 < xjC1;2 < : : : < xn;n�jC1 " �j � 1:

(32)

The closure I of the interval .�1; �1/ is called the true interval of orthogonality of
the system fpng. It has the following properties (see [21, p. 112]).

1. I is the smallest closed interval containing all zeros xn;i .
2. There is an orthogonality measure � for the pn.x/ such that I is the smallest

closed interval containing the support of �.
3. If � is any orthogonality measure for the pn.x/ and J is a closed interval

containing the support of � then I � J .

8.2 Criteria for Bounded Support of Orthogonality Measure

Recall the three-term recurrence relation (5) for a system of monic orthogonal
polynomials fpng. Let �1; �1 be as in (32). The following theorem gives criteria for
the support of an orthogonality measure in terms of the behaviour of the coefficients
bn; cn in (5) as n!1.

Theorem 5.

1. ([5, p. 109]) If fbng is bounded and fcng is unbounded then .�1; �1/ D .�1;1/.
2. ([5, Theorem 2.2]) If fbng and fcng are bounded then Œ�1; �1� is bounded.
3. ([5, Theorem 4.5 and p. 121]) If bn ! b and cn ! c (b; c finite) then supp.�/ is

bounded with at most countably many points outside Œb � 2pc; b C 2pc �, and
b ˙ 2pc are limit points of supp.�/.

Example 2. Monic Jacobi polynomials p.˛;ˇ/n .x/ :

bn D ˇ2 � ˛2
.2nC ˛ C ˇ/.2nC ˛ C ˇ C 2/ ! 0;

cn D 4n.nC ˛/.nC ˇ/.nC ˛ C ˇ/
.2nC ˛ C ˇ � 1/.2nC ˛ C ˇ/2.2nC ˛ C ˇ C 1/ !

1

4
:

Hence Œb � 2pc; b C 2pc � D Œ�1; 1�.
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8.3 Criteria for Uniqueness of Orthogonality Measure

Put

�.z/ WD
� 1X

nD0
jpn.z/j2

��1
.z 2 C/:

Then 0 � �.z/ < 1. Note that �.z/ D 0 iff
P1

nD0 jpn.z/j2 diverges and that
�.z/ > 0 iff

P1
nD0 jpn.z/j2 converges.

Theorem 6. ([21, pp. 49–51]) The orthogonality measure is not unique iff �.z/ > 0
for all z 2 C. Equivalently, the orthogonality measure is unique iff �.z/ D 0 for
some z 2 C.

In the case of a unique orthogonality measure �, we have �.z/ D 0 for z 2 CnR
and �.x/ D �.fxg/ (the mass at x) for x 2 R, which implies that �.x/ ¤ 0 iff x is
a mass point of �.

In case of non-uniqueness, for each x 2 R the largest possible mass of a measure
� at x is �.x/ and there is a measure realizing this mass at x.

Recall the moments �n WD hxn; 1i D R
R
xn d�.x/, which are uniquely

determined (up to a constant factor) by the system fpng, and also recall the three-
term recurrence relation (4) for a system of orthonormal polynomials fpng.
Theorem 7 (Carleman). ([21, Theorem 1.10 and pp. 47, 59]) There is a unique
orthogonality measure for the pn if one of the following two conditions is satisfied.

(i)
1X

nD1
�
�1=.2n/
2n D 1, (ii)

1X

nD1
a�1n D1.

Example 3 (Hermite).

�2n D
Z 1

�1
x2ne�x2 dx D � .nC 1

2
/ and

log� .nC 1
2
/ D n log.nC 1

2
/CO.n/ as n!1;

so ��1=.2n/2n 	 .n C 1
2
/� 12 . Hence

P1
nD1 �

�1=.2n/
2n D 1 , i.e., the orthogonality

measure for the Hermite polynomials is unique.

Example 4 (Laguerre). Monic Laguerre polynomials pn satisfy

xpn.x/ D pnC1.x/C .2nC ˛ C 1/pn.x/C n.nC ˛/pn�1.x/:

Since
1X

nD0

1

.n.nC ˛//1=2 D 1 , the orthogonality measure is unique. Also note that
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L˛n.0/
2

hn
D � .nC ˛ C 1/
� .nC 1/� .˛ C 1/ 	 n

˛:

Since
P1

nD1 n˛ D 1 (˛ > �1) we conclude once more that the orthogonality
measure is unique.

Example 5 (Stieltjes-Wigert). Consider the moments �n given by the right-hand
side of (7). Then

1X

nD1
�
�1=.2n/
2n D

1X

nD1
e�

1
2 .nC1/ <1:

Since the corresponding moment problem is undetermined, the above inequality
agrees with Theorem 7(i). Furthermore, from [12, (14.27.4)] with q D e� 12 we see
that the corresponding orthonormal polynomials pn.x/ D const: Sn.q

1
2 xI q/ with

q D e� 12 have a2n�1 D e2n.1� e�
1
2 n/, by which

P1
nD1 a�1n <1, in agreement with

Theorem 7(ii).

8.4 Orthogonal Polynomials and Continued Fractions

Let monic orthogonal polynomials pn be recursively defined by

p0.x/ D 1; p1.x/ D x � b0;
xpn.x/ D pnC1.x/C bnpn.x/C cnpn�1.x/.n � 1; cn > 0/:

Then define monic orthogonal polynomials p.1/n by

p
.1/
0 .x/ D 1; p.1/1 .x/ D x � b1;
xp.1/n .x/ D p.1/nC1.x/C bnC1p.1/n .x/C cnC1p.1/n�1.x/ .n � 1/:

They are called first associated orthogonal polynomials or numerator polynomials.
Define

F1.x/ WD 1

x � b0 ; F2.x/ WD 1

x � b0 � c1
x�b1

; F3.x/ WD 1

x � b0 � c1
x�b1� c2

x�b2

;

and recursively obtain FnC1.x/ from Fn.x/ by replacing bn�1 by bn�1 C cn

x � bn .

This is a continued fraction, which can be notated as
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Fn.z/ D 1

z � b0 � j
jc1

z � b1 � j � � �
jcn�2

z � bn�2 � j
jcn�1

z� bn�1 :

Theorem 8 (essentially due to Stieltjes). ([5, Chap. 3, �4])

Fn.z/ D p
.1/
n�1.z/
pn.z/

and p
.1/
n�1.y/ D

1

�0

Z

R

pn.y/ � pn.x/
y � x d�.x/:

Theorem 9 (Markov). ([5, Chap. 3, (4.8)]) Suppose that there is a (unique)
orthogonality measure � of bounded support for the pn. Let Œ�1; �1� be the true
interval of orthogonality. Then

lim
n!1Fn.z/ D

1

�0

Z �1

�1

d�.x/

z � x ;

uniformly on compact subsets of CnŒ�1; �1�.

8.5 Measures in Case of Non-uniqueness

Take pn and p.1/n orthonormal:

p0.x/ D 1; p1.x/ D .x � b0/=a0;
xpn.x/ D anpnC1.x/C bnpn.x/C an�1pn�1.x/ .n � 1/;
p
.1/
0 .x/ D 1; p

.1/
1 .x/ D .x � b1/=a1;

xp.1/n .x/ D anC1p.1/nC1.x/C bnC1p.1/n .x/C anp.1/n�1.x/ .n � 1/;

where an > 0. Let �0 D 1; �1; �2; : : : be the moments for the pn. Suppose that
the orthogonality measure for the pn is not unique. Then the possible orthogonality
measures are precisely the positive measures � solving the moment problem (6).
The set of these solutions is convex and weakly compact.

We will need the following entire analytic functions.

A.z/ WD z
1X

nD0
p.1/n .0/ p

.1/
n .z/; B.z/ WD �1C z

1X

nD1
p
.1/
n�1.0/ pn.z/;

C.z/ WD 1C z
1X

nD1
pn.0/ p

.1/
n�1.z/; D.z/ D z

1X

nD0
pn.0/ pn.z/:

By a Pick function we mean a holomorphic function � mapping the open upper half
plane into the closed upper half plane. Let P denote the set of all Pick functions.
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In the theorem below we will associate with a Pick function � a certain measure
�� . There �t for t 2 R will mean the measure �� with � the constant Pick function
z 7! t , and �1 will mean the measure �� with � the constant function z 7! 1
(not a Pick function).

Theorem 10 (Nevanlinna, M. Riesz). ([21, Theorem 2.12]) Suppose the moment
problem (6) is undetermined. The identity

Z

R

d��.t/

t � z
D � A.z/�.z/� C.z/

B.z/�.z/ �D.z/ .=z > 0/

gives a one-to-one correspondence � ! �� between P [ f1g and the set of
measures solving the moment problem (6).

Furthermore the measures �t .t 2 R[f1g/ are precisely the extremal elements
of the convex set, and also precisely the measures � solving (6) for which the
polynomials are dense in L2.�/. All measures �t are discrete. The mass points
of �t are the zeros of the entire function tB �D (or of B if t D1).

Example 6 (Stieltjes-Wigert). The measure which gives in (8) a solution for the
moment problem associated with special Stieltjes-Wigert polynomials, has a support
which is almost discrete, but not completely, since 0 is a limit point of the support.
Therefore (see the above theorem) this measure cannot be extremal. As observed
by Christiansen at the end of [6], finding explicit extremal measures for this case
seems to be completely out of reach. Since the measure in (8) is not extremal,
the polynomials will not be dense in the corresponding L2 space. Christiansen and
Koelink [7, Theorem 3.5] give an explicit orthogonal system in this L2 space which
complements the orthogonal system of Stieltjes-Wigert polynomials to a complete
orthogonal system.

9 Orthogonal Polynomials in Connection
with Computer Algebra

Undoubtedly, computer algebra is nowadays a powerful tool which many
mathematicians and physicists use in daily practice for their research, often using
wide spectrum computer algebra programs like Mathematica or Maple, to which
further specialized packages are possibly added. This is certainly also the case
for research in orthogonal polynomials, in particular when it concerns special
families. Jacobi, Laguerre and Hermite polynomials can be immediately called in
Mathematica and Maple, while other polynomials in the (q-)Askey scheme can be
defined by their (q-)hypergeometric series interpretation. Even more general special
orthogonal polynomials can be generated by their three-term recurrence relation.

Typical kinds of computations being done are:

1. Checking a symbolic computation on computer which was first done by hand.
2. Doing a symbolic computation first on computer and then find a hopefully

elegant derivation which can be written up.
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3. Doing a symbolic computation on computer and then write in the paper
something like: “By using Mathematica we found : : :”.

4. Checking general theorems, with (hopefully correct) proofs available, for special
examples by computer algebra.

5. Formulating general conjectures in interaction with output of symbolic compu-
tation for special examples.

6. Trying to find a simple evaluation of a parameter dependent expression by
extrapolating from outputs for special cases of the parameters.

7. Building large collections of formulas, to be made available on the internet,
which are fully derived by computer algebra, and which can be made adaptive
for the user.

8. Applying full force computer algebra, often using special purpose programs,
for obtaining massive output which is a priori hopeless to get by hand or to be
rewritten into an elegant expression.

While item 8 is common practice in high energy physics, I have little to say about
this from my own experience. Concerning item 3 there may be a danger that we
become lazy, and no longer look for an elegant analytic proof when the result was
already obtained by computer algebra. In particular, many formulas for terminating
hypergeometric series can be derived much quicker when we recognize them as
orthogonal polynomials and use some orthogonality argument.

As an example of item 1, part of the formulas in the NIST handbook [18] was
indeed checked by computer algebra. Concerning item 7, it is certainly a challenge
for computer algebraists how much of a formula database for special functions
can be produced purely by computer algebra. Current examples are CAOP [4]
(maintained by Wolfram Koepf, Kassel) and DDMF [8] (maintained by Frédéric
Chyzak et al. at INRIA).

The most spectacular success of computer algebra for special functions has been
the Zeilberger algorithm, now already more than 20 years old. It is treated in several
books: Petkovšek et al. [19], Koepf [13], and Kauers and Paule [11]. In particular,
[13] contains quite a lot of examples of application of this algorithm to special
orthogonal polynomials, including the discrete and the q-case.

Various applications of computer algebra to special orthogonal polynomials can
be found in other chapters of the present volume.

A very desirable application of computer algebra would be to recognize from a
given three-term recurrence relation with explicit, possibly still parameter dependent
coefficients, whether it comes from a system of orthogonal polynomials in the
(q-)Askey scheme, and if so, which system precisely. A very heuristic algorithm was
implemented in the procedure Rec2ortho [20] (started by Swarttouw and maintained
by the author). It is only up to the level of 2 parameters in the Askey scheme. On the
other hand Koepf and Schmersau [14] give an algorithm how to go back and forth
between an explicit eigenvalue equation (28) or (29) and a corresponding three-term
recurrence relation with explicit coefficients.
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Creative Telescoping for Holonomic Functions

Christoph Koutschan

Abstract The aim of this article is twofold: on the one hand it is intended to serve
as a gentle introduction to the topic of creative telescoping, from a practical point of
view; for this purpose its application to several problems is exemplified. On the other
hand, this chapter has the flavour of a survey article: the developments in this area
during the last two decades are sketched and a selection of references is compiled
in order to highlight the impact of creative telescoping in numerous contexts.

1 Introduction

The method of creative telescoping is a widely used paradigm in computer algebra,
in order to treat symbolic sums and integrals in an algorithmic way. Its modus
operandi is to derive, from an implicit description of the summand resp. integrand,
e.g., in terms of recurrences or differential equations, an implicit description for the
sum resp. integral. The latter can be used for proving an identity or for finding
a closed form for the expression in question. Algorithms that use this idea are
nowadays implemented in all major computer algebra systems. Meanwhile, they
have been successfully applied to many problems from various areas of mathematics
and physics, see Sect. 7 for a selection of such applications.

The key idea of creative telescoping is rather simple and works for summation
problems as well as for integrals. For example, consider the problem of evaluating a
sum of the formF.n/ DPb

kDa f .k; n/ for a; b 2 Z and some bivariate sequence f .
If one succeeds to find another bivariate sequence g and univariate sequences c0
and c1 such that the equation
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e-mail: christoph.koutschan@ricam.oeaw.ac.at
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c1.n/f .k; nC 1/C c0.n/f .k; n/ D g.k C 1; n/ � g.k; n/ (1)

holds, then a recurrence for the sum F is obtained by summing (1) with respect to k
from a to b, and then telescoping the right-hand side:

c1.n/F.nC 1/C c0.n/F.n/ D g.b C 1; n/� g.a; n/:

For this reasoning to be nontrivial, one stipulates that the sequence g is given as
a closed-form expression in terms of the input (this will be made precise later).
Note that on the left-hand side of (1) one can have a longer linear combination
of f .k; n/; : : : ; f .k; n C d/, giving rise to a higher-order recurrence for F . This
procedure works similarly for integrals, see Sect. 4 for a detailed exposition. In order
to guarantee that a creative telescoping equation, like (1), exists, one requires that
the summand f satisfies sufficiently many equations. This requirement leads to the
concepts of holonomic functions and @-finite functions; they will be introduced in
Sect. 3.

The class of holonomic functions is quite rich and thus the method of creative
telescoping applies to a wide variety of summation and integration problems. Just
to give the reader an impression of this diversity, we list a random selection
of identities that can be proven by the methods described in this article (where
P
.a;b/
n .x/ denotes the Jacobi polynomials, Lan.x/ the Laguerre polynomials, Jn.x/

the Bessel function of the first kind, Hn.x/ the Hermite polynomials, C .�/
n .x/ the

Gegenbauer polynomials,� .n/ the Gamma function, and yn.x/ the spherical Bessel
function of the second kind):
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Further examples are discussed in Sect. 6 where we also demonstrate the usage of
our Mathematica package HolonomicFunctions:

In[1]:= << HolonomicFunctions:m

HolonomicFunctions package by Christoph Koutschan, RISC-Linz,
Version 1.6 (12.04.2012)

For further reading, we recommend the following textbooks: the classic source
for hypergeometric summation is the wonderful book [80], although Zeilberger’s
algorithm made it already into the second edition of Concrete Mathematics [45],
as well as into its recent “algorithmic supplement” [52]. A book that is completely
dedicated to hypergeometric summation is [57]. We also would like to point the
reader to the excellent survey articles [24, 33, 59, 77, 100] and to the theses [32, 61]
for more detailed introductions to the topic of creative telescoping in the context of
holonomic functions.

2 History and Developments

The notion creative telescoping was first coined by van der Poorten in his essay [92]
on Apéry’s proof of the irrationality of �.3/. But certainly, the underlying principle
was known and used long before as an ad hoc trick to tackle sums and integrals.
The most famous example is the practice of differentiating under the integral
sign, that was made popular by Feynman in his enjoyable book “Surely You’re
Joking, Mr. Feynman!” [40], see also [4]. It was Zeilberger who equipped creative
telescoping with a concrete well-defined meaning and connected it to an algorithmic
method [99].

The seminal paper that initiated all the developments presented here is Zeil-
berger’s 1990 holonomic systems approach paper [98]. It sketches an algorithmic
proof theory for identities among a large class of elementary and special functions,
involving summation quantifiers and integrals. The main theorems are based on
the theory of D-modules [13, 38], as well as the creative telescoping algorithm
which uses a general, but inefficient, elimination procedure. Therefore, it was
not really suited to be applied to real problems, except from some toy examples,
and was later called “the slow algorithm” by Zeilberger, see Sect. 5.1. But very
quickly, one realized the big potential that lied in these ideas. Takayama designed
a method that is still based on elimination, but in a more sophisticated way using
modules [90], see Sect. 5.2. In the same year—we’re still in 1990—more efficient
creative telescoping algorithms for special cases were formulated: Zeilberger’s
celebrated “fast algorithm” for hypergeometric single sums [97] and its differential
analogue, the Almkvist-Zeilberger algorithm for the integration of hyperexponential
functions [4]. The theory on which these two algorithms are built was developed by
Wilf and Zeilberger [94] and was named WZ theory after its inventors, who were
awarded the Leroy P. Steele Prize in 1998 for this seminal work.
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In the following years the main focus of research in this field concentrated
on hypergeometric summation. Certain extensions [55] and optimizations [84] of
Zeilberger’s algorithm and its q-analogue [75] were published. The problem of
dealing with multiple sums was studied in more detail [10, 29, 93], also for q-
hypergeometric terms [85]. Based on estimates on the order of the output recurrence
and the largest integer root of its leading coefficient, Yen derived an a priori bound
for the number of instances one has to check in order to get a rigorous proof of a (q-)
hypergeometric summation identity [95,96]; although these bounds are too large for
real applications, this in principle allows to prove such identities by just verifying
them on a finite set of special cases, without executing Zeilberger’s algorithm
explicitly. This bound was later improved drastically in [47]. Sharp bounds for
the order of the telescoper that is computed by Zeilberger’s algorithm and its q-
analogue were derived in [72]. Abramov considered the question for which inputs
the algorithm succeeds [2, 3].

In the late 1990s a return to the original ideas of Zeilberger started, namely
to consider general holonomic functions instead of only (q-) hypergeomet-
ric/hyperexponential expressions. This development was initiated by Chyzak and
Salvy [32, 35] and culminated in a generalization of Zeilberger’s algorithm to
holonomic functions [34] that is now known as Chyzak’s algorithm, see Sect. 5.3.
This work was picked up in [61] where several nontrivial applications of creative
telescoping were presented. A fast but heuristic approach to the computation of
creative telescoping relations for general holonomic functions was then given
in [63], see Sect. 5.4.

During the last few years, a new interest in creative telescoping algorithms
arose. The main motivation was to understand the complexity of such algorithms, a
question that had been neglected during the two preceding decades. This research
finally also led to new algorithmic ideas. A first attempt to study the complexity
of creative telescoping was made in [18], but this investigation was restricted to
bivariate rational functions as inputs. The problem of predicting the order and
the degree of the coefficients of the output was largely solved in [27] for the
hyperexponential case and in [26] for the hypergeometric case. Both articles also
discuss the trading of order for degree, i.e., the option of computing an equation
with lower coefficient degree at the cost of a larger order and vice versa; this
trade-off can be used to reduce the complexity of the algorithms. The question
of existence criteria for creative telescoping relations for mixed hypergeometric
terms was answered in [30]. Concerning new creative telescoping algorithms, the
use of residues for the computation of telescopers has been investigated in [28] for
rational functions and in [31] for algebraic functions. Further innovations include
an algorithm for hyperexponential functions based on Hermite reduction [21] and a
new algorithm for rational functions [22] using the Griffiths-Dwork method.

Since our focus is on creative telescoping for holonomic functions, we mention
only briefly some other settings in which this method can be realized. The first
algorithm for a class of non-holonomic sequences was given in [71], where Abel-
type sums were considered. An algorithm for summation of expressions involving
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Stirling numbers and similar non-holonomic bivariate sequences was invented
in [50]. Closure properties and creative telescoping for general non-holonomic
functions were presented in [36]. In the setting of difference fields, Schneider
developed a sophisticated symbolic summation theory [86] whose core again is
creative telescoping. For more information on this topic we refer to the chapter [87]
in this volume. Similarly, see [82] for creative telescoping in differential fields.

We have already mentioned that algorithms based on creative telescoping are
part of many computer algebra systems. For example, Zeilberger’s fast algo-
rithm [97] for hypergeometric summation has been implemented in Maple [59,
80], shortly after its invention. In current Maple versions it is available by
the command SumTools[Hypergeometric][Zeilberger]. Other implementations of
Zeilberger’s algorithm are in Mathematica [76], in Reduce [56], and in Mac-
syma [25]. Its differential analogue, the Almkvist-Zeilberger algorithm [4], can be
called by DEtools[Zeilberger] in Maple. For the q-analogue, Zeilberger’s algorithm
for q-hypergeometric summation, there exist implementations in Mathematica [75,
83] and in Maple [16], see also the command QDifferenceEquations[Zeilberger]
there. Packages for multiple sums have been written in Mathematica, namely
MultiSum [93] for hypergeometric summands and its q-version qMultiSum [85]
for q-hypergeometric multi-sums. Multiple integrals can be treated with the Maple
package MultInt [91]. Finally, there are two software packages for creative tele-
scoping of general holonomic functions, which are not restricted to (q-) hyperge-
ometric/hyperexponential inputs, i.e., expressions satisfying first-order equations:
Mgfun [32] for Maple and HolonomicFunctions [64] for Mathematica.

3 Holonomic and @-Finite Functions

In order to state, in an algebraic language, the concepts that are introduced in this
section, and for writing mixed difference-differential equations in a concise way,
the following operator notation is employed: let Dx denote the partial derivative
operator with respect to x (x is then called a continuous variable) and Sn the forward
shift operator with respect to n (n is then called a discrete variable); they act on a
function f by

Dxf D @f

@x
and Snf D f

ˇ
ˇ
n!nC1:

They allow us to write linear homogeneous difference-differential equations in
terms of operators, e.g.,

@

@x
f .k; nC 1; x; y/C n @

@y
f .k; n; x; y/C xf .k C 1; n; x; y/� f .k; n; x; y/ D 0
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turns into

�
DxSn C nDy C xSk � 1

�
f .k; n; x; y/ D 0;

in other words, such equations are represented by polynomials in the operator
symbols Dx , Sn, etc., with coefficients in some field � which we assume to be
of characteristic 0. Note that the polynomial ring �hDx; Sn; : : : i is not necessarily
commutative, a fact that is indicated by the angle brackets. Its multiplication is
subject to the rules

Dx � a.x/ D a.x/ �Dx C a0.x/ and Sn � a.n/ D a.nC 1/ � Sn:

Typically,� is a rational function field in the variables x, n, etc. overQ or over some
other field K. Such non-commutative rings of operators were introduced in [73]
and are called Ore algebras. We use the symbol @ to denote an arbitrary operator
symbol from an Ore algebra, so that @w may stand for Sw orDw, for example. Thus,
a generic Ore algebra can be written as � D �h@wi with, e.g., � D Q.w/, where
w D w1; : : : ;w` and @w D @w1 ; : : : ; @w` . We define the annihilator (w.r.t. some Ore
algebra�) of a function f :

Ann�.f / WD fP 2 � j P.f / D 0g:

It can easily be seen that Ann�.f / is a left ideal in �. Every left ideal I 
Ann�.f / is called an annihilating ideal for f . In the holonomic systems approach,
functions are represented by annihilating ideals (plus initial values) as a data
structure. When working with left ideals, we use left Gröbner bases [23, 49] which
are an important tool for executing certain operations algorithmically (e.g., for
deciding the ideal membership problem).

Definition 1. Let � D �h@wi be an Ore algebra. A function f is called @-finite
or D-finite w.r.t. � if �=Ann�.f / is a finite-dimensional �-vector space. Its
dimension is called the rank of f w.r.t.�.

Example 1. Consider the family of Laguerre polynomials Lan.x/ as an example
of a @-finite function w.r.t. � D Q.n; a; x/hSn; Sa;Dxi. The left ideal I D
Ann�.Lan.x// is generated by the following three operators that can be easily
obtained with the HolonomicFunctions package:

In[2]:= AnnihilatorŒLaguerreLŒn; a; x�; fSŒn�; SŒa�; DerŒx�g�
Out[2]= fSaCDx�1; .nC1/Sn�xDxC.�a�nCx�1/; xD2

xC.a�xC1/DxCng
These operators represent well-known identities for Laguerre polynomials. More-
over, they are a left Gröbner basis of I with respect to the degree-lexicographic
order. Thus, from the leading monomials Sa, Sn, and D2

x , one can easily read off
that the dimension of the Q.n; a; x/-vector space�=I is two, in other words:Lan.x/
is @-finite w.r.t.� of rank 2.
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Without proof we state the following theorem about closure properties of @-finite
functions; its proof can be found in [61, Chap. 2.3]. We remark that all of them are
algorithmically executable, and the algorithms work with the above mentioned data
structure.

Theorem 1. Let� be an Ore algebra and let f and g be @-finite w.r.t.� of rank r
and s, respectively. Then

(a) f C g is @-finite of rank � r C s.
(b) f � g is @-finite of rank � r � s.
(c) Pf is @-finite of rank � r for any P 2 �.
(d) f jx!A.x;y;::: / is @-finite of rank � r �d if x; y; : : : are continuous variables and

if A satisfies a polynomial equation of degree d .
(e) f jn!A.m;n;::: / is @-finite of rank � r if A is an integer-linear expression in the

discrete variablesm; n; : : : .

If we want to consider integration and summation problems, then the function in
question needs to be holonomic, a concept that is closely related to @-finiteness. The
precise definition is a bit technical and therefore skipped here; the interested reader
can find it, e.g., in [38, 61, 98]. The closure properties for @-finite functions are also
valid for holonomic functions. Additionally, the following theorem establishes the
closure of holonomic functions with respect to sums and integrals; for its proof, we
once again refer to [61, 98].

Theorem 2. Let the function f be holonomic w.r.t. Dx (resp. Sn). Then also
R b
a f dx (resp.

Pb
nDa f ) is holonomic.

All holonomic functions that appear in this chapter are also @-finite and vice
versa; therefore we will not continue to care about this subtle distinction, but only
talk about holonomic functions from now on. A more elaborate introduction to
holonomic and @-finite functions is given in the chapter [51] of this book.

4 Creative Telescoping for Holonomic Functions

In order to treat a sum of the form F.w/ DPb
kDa f .k;w/with creative telescoping,

one has to find an operator P which annihilates f , i.e., Pf D 0, and which is of
the form

P D T .w; @w/C .Sk � 1/ � C.k;w; Sk; @w/ (2)

where @w stands for some operators that act on the variables w D w1; : : : ;w`. The
operator T is called the telescoper, and we will refer to C as the certificate or delta
part. Written as an equation, (2) turns into �Tf .k;w/ D g.k C 1;w/ � g.k;w/
with g.k;w/ D Cf .k;w/, compare also with (1). With such an operator P we can
immediately derive a relation for F.w/:
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0 D
bX

kDa
P.k;w; Sk; @w/f .k;w/

D
bX

kDa
T .w; @w/f .k;w/ C

bX

kDa

�
.Sk � 1/C.k;w; Sk; @w/

�
f .k;w/

D T .w; @w/

bX

kDa
f .k;w/

„ ƒ‚ …
F.w/

C
h
C.k;w; Sk; @w/f .k;w/

ikDbC1
kDa„ ƒ‚ …

inhomogeneous part

: (3)

If the inhomogeneous part evaluates to zero then T is an annihilating operator for
the sum, otherwise we get an inhomogeneous relation. In the latter case, one can
homogenize it by multiplying an annihilating operator for the inhomogeneous part
to T from the left. Note that in general, the summation bounds a and b may depend
on w in which case some correction terms need to be added which are created when
the operator T is pulled in front of the sum.

In terms of closure properties for holonomic functions, see Theorem 2, this
reads as follows: the summand f .k;w/ is given by an annihilating ideal and the
operator P must be a member of this ideal. The goal is to compute an annihilating
ideal for the function F.w/ that is sufficiently large (to testify its holonomicity).
We have seen that every operator P with the above properties yields an annihilating
operator for F , so one continues to compute such creative telescoping operators
until the left ideal generated by them is large enough.

Multiple sums can be done by iteratively applying the above procedure. Alterna-
tively, one can use creative telescoping operators of the form

T .w; @w/C .Sk1 � 1/ � C1.k;w;S k; @w/C � � � C .Skj � 1/ � Cj .k;w;S k; @w/ (4)

where k D k1; : : : ; kj are the summation variables.
Similarly one derives annihilating operators for an integral I.w/ D

R b
a
f .x;w/ dx. In this case we look for creative telescoping operators that

annihilate f and that are of the form

P D T .w; @w/CDx � C.x;w;Dx; @w/: (5)

Again, it is straightforward to deduce a relation for the integral

0 D
Z b

a

P.x;w;Dx; @w/f .x;w/ dx

D
Z b

a

T .w; @w/f .x;w/ dx C
Z b

a

�
DxC.x;w;Dx; @w/

�
f .x;w/ dx

D T .w; @w/

Z b

a

f .x;w/ dx
„ ƒ‚ …

I.w/

C
h
C.x;w;Dx; @w/f .x;w/

ixDb
xDa„ ƒ‚ …

inhomogeneous part

(6)
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which may be homogeneous or inhomogeneous, as before. Analogously to the sum-
mation case, multiple integrals can be treated iteratively or by creative telescoping
operators of the form

T .w; @w/CDx1 � C1.x;w;Dx; @w/C � � � CDxj � Cj .x;w;Dx; @w/: (7)

where now x D x1; : : : ; xj are the integration variables.
In practice it happens very often that the inhomogeneous part vanishes. The

reason for that is because many sums and integrals run over natural boundaries.
This concept is often used, e.g., in Takayama’s algorithm, to argue a priori that there
will be no inhomogeneous parts after telescoping. For that purpose, we define that
Pb

kDa f resp.
R b
a
f dx has natural boundaries if for any arbitrary operator P 2 �

for a suitable Ore algebra � the expression
�
Pf

	kDbC1
kDa resp.

�
Pf

	xDb
xDa evaluates

to zero. Typical examples for natural boundaries are sums with finite support, or
integrals over the whole real line that involve something like exp.�x2/. Likewise
contour integrals along a closed path do have natural boundaries.

5 Algorithms for Computing Creative Telescoping Relations

In this section some algorithms for computing creative telescoping relations are
described briefly; for a detailed exposition see [61]. We focus on algorithms
that are applicable to general holonomic functions and omit those which are
designed for special cases of holonomic functions—like rational, hypergeometric,
or hyperexponential functions—and refer to Sect. 2 and the references given there.
In the following, the summation and integration variables are denoted by v D
v1; : : : ; vj whereas w D w1; : : : ;w` are the surviving parameters. So the most
general case to consider is a holonomic function f .v;w/ which has to be summed
and integrated several times, thus some of the v may be discrete variables and the
others continuous ones. The task is to find operators in the (given) annihilating ideal
of f which can be written in the form

T .w; @w/C�v1 � C1.v;w; @v; @w/C � � � C�vj � Cj .v;w; @v; @w/ (8)

where �v D Sv � 1 if v is a discrete variable and �v D Dv if v is a continuous
variable; compare also with (4) and (7).

5.1 Zeilberger’s Slow Algorithm

In [98] Zeilberger suggested to approach holonomic sums or integrals by finding
operators whose coefficients are completely free of the summation and integration
variables v. Once such an operator is found, it is immediate to rewrite it into the
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form (8) using division with remainder, since the corresponding operators @v now
commute with all remaining variables w and with all other operators @w. The theory
of holonomicD-modules answers the question whether this elimination is possible
at all in an affirmative way. The same argument justifies the termination of all other
algorithms described in this section. Operators that are free of some variables can
be found, e.g., by a Gröbner basis computation in K.w/Œv�h@v; @wi or by ansatz and
coefficient comparison. In any case, this algorithm searches for creative telescoping
operators that are not as general as possible—also the certificates are free of v in
contrast to what is indicated in (8)—and therefore is very slow in practice and often
does not find the minimal telescoper.

5.2 Takayama’s Algorithm

In order to avoid the overhead that results in a complete elimination of the v,
Takayama came up with an algorithm that he termed an “infinite dimensional analog
of Gröbner basis” [90]. He formulated it only in the differential setting and in
a quite theoretical fashion. Chyzak and Salvy [35] later presented optimizations
that are relevant in practice and extended it to the more general setting of Ore
operators. Compared to Zeilberger’s slow algorithm, Takayama’s algorithm is faster
and delivers better results, i.e., larger annihilating ideals.

The idea in a nutshell is the following: while in Zeilberger’s slow algorithm
first the v were eliminated and then the certificates were divided out, the order
is now reversed. In Takayama’s algorithm one first reduces modulo the right
ideals @v1�; : : : ; @vj� and then performs the elimination of the v. The consequence
is that the certificates C1; : : : ; Cj are not computed at all because everything that
would contribute to them is thrown away in the first step. Hence one has to assume
a priori that the inhomogeneous parts vanish, e.g., in the case of natural boundaries.

There is one technical complication in this approach: one starts with a left ideal
and then divides out some right ideals. After that there is no ideal structure any
more and therefore, one is not allowed to multiply by either of the variables v from
the left. In order to solve this problem one enlarges, at the very beginning, the set
of generators of the input annihilating ideal by some of their left multiples by v-
powers and, at the end, computes a Gröbner basis w.r.t. to POT ordering (position
over term) in the module that is generated by the power products of v.

5.3 Chyzak’s Algorithm

Chyzak presented his algorithm [34] as an extension of Zeilberger’s algorithm to
general holonomic functions. Like the latter, Chyzak’s algorithm can only find
creative telescoping operators for single sums or single integrals. Hence the goal
is to find operators of the form
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T .w; @w/C�v � C.v;w; @v; @w/ (9)

in the annihilating ideal I  K.v;w/h@v; @wi of the summand or integrand f .v;w/.
The idea of the algorithm is to make an ansatz with undetermined coefficients for
T and C . Since we may assume that C is in normal form w.r.t. I , its ansatz is as
follows:

C.v;w; @v; @w/ D c1.v;w/U1 C � � � C cr .v;w/Ur (10)

where U1; : : : ; Ur are the monomials which cannot be reduced by I . Given a
Gröbner basis for I , these are exactly the monomials under its staircase and r is
the rank of f . The ansatz for T is of the form

T .w; @w/ D t1.w/@˛1
w C � � � C ts.w/@˛s

w (11)

where ˛i 2 N
` for 1 � i � s. The ansatz T C �v � C is reduced with the

Gröbner basis of I which leads to a system of equations for the unknown rational
functions c1; : : : ; cr ; t1; : : : ; ts . In the summation (resp. integration) case, this is a
parametrized linear first-order system of difference (resp. differential) equations in
the unknown functions c1 : : : ; cr and with parameters t1; : : : ; ts . One has to find
rational function solutions of this system and for the parameters, a problem for
which several algorithms exist. Finally, Chyzak’s algorithm proceeds by increasing
the support of T in (11) until the ansatz yields a solution; doing this in a certain
systematic way guarantees that the computed telescopers form a Gröbner basis in
K.w/h@wi.

5.4 A Heuristic Approach

In [63] a variant of Chyzak’s algorithm was developed that is based on a refined
ansatz for the unknown rational functions c1; : : : ; cr . The motivation comes from
the fact that the bottleneck in Chyzak’s algorithm is to solve the coupled first-order
system. The key observation is that good candidates for the denominators of the ci
can be obtained from the leading coefficients of the input Gröbner basis. Thus the
ansatz (10) is refined in the following way:

ci .v;w/ D ci;0.w/C ci;1.w/v C � � � C ci;ei .w/vei
di .v;w/

; 1 � i � r;

where the di are explicit polynomials and the ei are degree bounds for the
numerator; both quantities are determined heuristically. In many examples this
approach is faster than Chyzak’s algorithm, but due to its heuristics it may not
always succeed. Note also that this approach can be generalized to multiple sums
and integrals, see Sect. 6.5.
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6 Demonstration of the HolonomicFunctions Package

6.1 Differential Equations for Bivariate Hypergeometric
Functions

The most studied concept in the area of special functions are hypergeometric
functions, whose most prominent representative is the Gauss hypergeometric
function 2F1. We consider here the Appell hypergeometric function F1 defined by

F1.˛; ˇ; ˇ
0; � I x; y/ D

1X

mD0

1X

nD0

xmyn.ˇ/m.ˇ
0/n.˛/mCn

mŠnŠ.�/mCn
(12)

for jxj < 1 and jyj < 1. Classical mathematical tables like [44] list systems of
differential equations for such functions, e.g., entry 9.181 for the Appell functions.
The nature of this example is that no closed form is desired, but a system of partial
differential equations. These equations are now derived completely automatically
from (12) using Takayama’s algorithm.

The input for Takayama’s algorithm is an annihilating ideal for the summand
which is obtained by the command Annihilator. We need to introduce the shift
operators Sm and Sn for the summation variables and the partial derivatives Dx

and Dy since we are interested in PDEs w.r.t. x and y. The computation of the
annihilating ideal is direct since the summand is hypergeometric in all discrete
variables and hyperexponential in all continuous variables:

In[3]:= ann D Annihilator
�
PochhammerŒ˛; m C n� � PochhammerŒˇ; m� �

PochhammerŒb; n� = .PochhammerŒ�; m C n� � mŠ � nŠ/ � Om � yOn;

fSŒm�; SŒn�; DerŒx�; DerŒy�g�

Out[3]=
˚
yDy � n; xDx �m;
.mnCmCn2Cn�CnC�/Sn�.bmyCbnyCby˛CmnyCn2yCny˛/;
.m2CmnCm�CmCnC�/Sm�.m2xCmnxCmx˛CmxˇCnxˇCx˛ˇ/�

Next the double summation is performed and a Gröbner basis for the left ideal
containing partial differential equations satisfied by the series F1 is computed:

In[4]:= pde D TakayamaŒann; fm; ng�
Out[4]=

˚
.xy2� xy � y3Cy2/D2

y C .bx2� bx/DxC .bxy � by2Cxy˛� xyˇC
xy C xˇ � x� � y2˛ � y2 C y�/Dy C .bx˛ � by˛/;

.x � y/DxDy � bDx C ˇDy;

.x3�x2y�x2Cxy/D2
x C .bxy � byCx2˛Cx2ˇCx2 �xy˛�xyˇ�

xy � x� C y�/Dx C .yˇ � y2ˇ/Dy C .x˛ˇ � y˛ˇ/
�
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Observe that the two equations given in [44, 9.181] do not appear in the above result.
To verify that they are nevertheless correct, one has to show that they are members of
the derived annihilating ideal. This is achieved by reducing them with the Gröbner
basis and check whether the remainder is zero:

In[5]:= OreReduceŒ.x.y � 1//��.DerŒx�DerŒy�/ C .y.y � 1//��DerŒy�2 C
.bx/��DerŒx� C .y.˛ C b C 1/ � �/��DerŒy� C ˛b; pde�

Out[5]= 0

On the other hand, the desired equations can be produced automatically by
observing that the first is free of ˇ0 and the second does not involve ˇ. The
command FindRelation finds operators in a given annihilating ideal that satisfy
certain properties, to be specified by options:

In[6]:= FindRelationŒpde; Eliminate ! ˇ�

Out[6]= f.xy � x/DxDy C .y2 � y/D2
y C bxDx C .by C y˛ C y � �/Dy C b˛g

This is precisely the form in which the first partial differential equation appears
in [44] and an analogous computation yields the second one.

6.2 An Integral Involving Chebyshev Polynomials

It has been pointed out that creative telescoping does not deliver closed-form
solutions. The next example demonstrates how it can be used to prove an identity,
in this case the evaluation of a definite integral which appears in [44, 7.349]:

Z 1

�1
�
1 � x2��1=2 Tn

�
1 � x2y� dx D �

2

�
Pn�1.1 � y/C Pn.1 � y/

�
: (13)

Here Tn.x/ denotes the Chebyshev polynomials of the first kind defined by

Tn.x/ D cos.n arccosx/

and the evaluation is given in terms of Legendre polynomials Pn.x/ defined by

Pn.x/ D 1

2nnŠ

dn

dxn
�
x2 � 1�n :

This relatively simple example is chosen not only to demonstrate Chyzak’s algo-
rithm but also to enlighten the concept of closure properties.

The starting point is the computation of an annihilating ideal for the integrand
f .n; x; y/ D .1 � x2/�1=2 Tn.1 � x2y/ in (13) which, in this instance, we will
discuss in some more detail. For this purpose, recall the three-term recurrence

TnC2.z/ � 2zTnC1.z/C Tn.z/ D 0 (14)
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and the second-order differential equation

.z2 � 1/T 00n .z/C zT 0n.z/ � n2Tn.z/ D 0 (15)

for the Chebyshev polynomials which are both classic and well-known. The
HolonomicFunctions package has these relations stored in a kind of database.
Clearly, the integrand f also satisfies the recurrence (14) if z is replaced by 1�x2y.
The same substitution is performed in (15) and consideringTn.1�x2y/ as a function
in y yields

.1 � x2y/2 � 1
x4

@2

@y2
Tn.1� x2y/C 1 � x2y

�x2
@

@y
Tn.1� x2y/� n2Tn.1� x2y/ D 0:

Multiplying with x2 produces another annihilating operator

.x2y2 � 2y/D2
y C .x2y � 1/Dy � n2x2

for the integrand f . Note that the square root term can be ignored since it is free
of y. Finally, observe that

df

dx
D �2xyp

1 � x2 T
0
n.1 � x2y/C

x

.1 � x2/3=2 Tn.1 � x
2y/

df

dy
D �x2p

1 � x2 T
0
n.1 � x2y/

giving rise to the operator

xDx � 2yDy � x2

1 � x2

which also annihilates f . The above ad hoc derivation of annihilating operators
for a compound expression can be turned into an algorithmic method, and this is
implemented in the Annihilator command:

In[7]:= Annihilator
�
ChebyshevTŒn; 1 � x2y�=SqrtŒ1 � x2�; fSŒn�; DerŒx�;

DerŒy�g�

Out[7]=
˚
.x3 � x/Dx C .2y � 2x2y/Dy C x2;
nSn C .x2y2 � 2y/Dy C .nx2y � n/;
.x2y2 � 2y/D2

y C .x2y � 1/Dy � n2x2
�

The above operators form a left Gröbner basis, and therefore differ slightly from
the ones that were derived by hand; but the latter can be obtained as simple linear
combinations of the previous ones.
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Now we are ready to perform creative telescoping: we apply Chyzak’s algorithm
to find operators of the formTiCDxCi in the annihilating ideal. Our implementation
returns two such operators, with the property that fT1; T2g is a Gröbner basis:

In[8]:= ffT1; T2g; fC1; C2gg D CreativeTelescopingŒ%; DerŒx��

Out[8]=

�
˚
.2n2C 2n/SnC .2ny2� 4nyCy2� 2y/DyC .2n2y� 2n2Cny � 2n/;

.y2 � 2y/D2
y C .y � 2/Dy � n2

�
;

�
y
�
x4y � x2y � 2x2 C 2�

x
Dy C y

�
nx3 � nx� ; x

2 � 1
x

Dy



With the help of Mathematica, it is easily verified that the inhomogeneous part,
see (6), vanishes:

In[9]:= Limit
�
ApplyOreOperator

�
C1; ChebyshevTŒn; 1 � x2y�=SqrtŒ1 � x2�

�
;

x ! 1
�

Out[9]= 0

(Similar checks have to be done for the lower bound and for C2.) It follows that T1
and T2 generate an annihilating ideal for the integral. For the convenience of the
user, all the previous steps can be performed at once by typing a single command:

In[10]:= Annihilator
�
IntegrateŒChebyshevTŒn; 1�x2y�=SqrtŒ1�x2�; fx; �1; 1g�;

fSŒn�; DerŒy�g�

Out[10]=
˚
.2n2 C 2n/SnC .2ny2 � 4ny C y2 � 2y/Dy C .2n2y � 2n2 C ny � 2n/;
.y2 � 2y/D2

y C .y � 2/Dy � n2
�

The next step is to compute an annihilating ideal for the right-hand side of (13).
Instead of applying the Annihilator command to the expression itself which would
produce an annihilating ideal of rank 4 by assertion (a) of Theorem 1, the fact that
the sum of the two Legendre polynomials can be written as Q.Pn�1.1 � y// with
Q D SnC1 is employed. This observation produces an annihilating ideal of rank 2,
see part (c) of Theorem 1:

In[11]:= rhsDAnnihilator
�
ApplyOreOperatorŒSŒn�C1; LegendrePŒn�1; 1�y��;

fSŒn�; DerŒy�g�

Out[11]=
˚
.2n2 C 2n/SnC .2ny2 � 4ny C y2 � 2y/Dy C .2n2y � 2n2 C ny � 2n/;
.y2 � 2y/D2

y C .y � 2/Dy � n2
�

Finally, one realizes that the annihilating ideals for both sides of the identity
coincide. The proof is completed by comparing two initial values, e.g., for n D 0

and n D 1. This has to be done by hand (of course, with the help of the computer
algebra system), but is not part of the functionality of the HolonomicFunctions
package.
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6.3 A q-Holonomic Summation Problem from Knot Theory

The colored Jones function is a powerful knot invariant; it is a q-holonomic
sequence of Laurent polynomials [42]. Its recurrence equation is of interest since
it seems to be closely related with the A-polynomial of a knot. The recurrence for
the colored Jones function J74;n.q/ of the knot 74 was derived in [41] using creative
telescoping, starting from the sum representation

J74;n.q/ D
n�1X

kD0
.�1/k�ck.q/

�2
q�kn�

k.kC3/
2 .qn�1I q�1/k.qnC1I q/k (16)

where .xI q/n denotes the q-Pochhammer symbol defined as
Qn�1
jD0.1 � xqj / and

where the sequence ck.q/ satisfies a second-order recurrence:

ckC2.q/C.qkC3CqkC4�q2kC5Cq3kC7/ckC1.q/C.q2kC6�q3kC7/ck.q/ D 0: (17)

Note that the summand in (16) is not q-hypergeometric and therefore the q-version
of Zeilberger’s algorithm cannot be applied.

Again, we start by constructing an annihilating ideal for the summand. The one
for the sequence ck.q/ is given by its definition (17), we just have to add the trivial
relation w.r.t. n and convert everything to operator form (note the usage of q-shift
operators):

In[12]:= annc D ToOrePolynomial
�˚

QSŒqn; qn� � 1; QSŒqk; qk�2 C�
qkC3.1 C q � qkC2 C q2kC4/

	��QSŒqk; qk� C q2kC6.1 � qkC1/

�

Out[12]=
˚
Sqn;q � 1; S2qk;qC

�
q7qk3� q5qk2Cq4qkCq3qk

�
Sqk;qC

�
q6qk2� q7qk3

��

Next, the closure property “multiplication”, see Theorem 1 (b), is applied (the result
is about 2 pages long and therefore not displayed here):

In[13]:= annSmnd D DFiniteTimesŒannc; annc;

AnnihilatorŒ.�1/k qO.�kn�k.kC3/=2/QPochhammerŒqn�1; 1=q; k�

QPochhammerŒqnC1; q; k�; fQSŒqk; qk�; QSŒqn; qn�g��I
The stage is now prepared for calling Chyzak’s algorithm which delivers a pair

.T; C / consisting of the telescoper and certificate:

In[14]:= fT; C g D CreativeTelescopingŒannSmnd; QSŒqk; qk� � 1�

This computation takes about 2 min and the result is again too large to be printed
here. We remark that the inhomogeneous part does not vanish so that we obtain
an inhomogeneous recurrence for the function J74;n.q/. The result is in accordance
with the AJ conjecture and the previously known A-polynomial of the knot 74.
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6.4 A Double Integral Related to Feynman Diagrams

We study the double integral

Z 1

0

Z 1

0

w�1�"=2.1 � z/"=2z�"=2

.zC w� wz/1�"
�
1 � wnC1 � .1� w/nC1

�
dw dz (18)

than can be found in [54, (J.17)]. The task is to compute a recurrence in n where "
is just a parameter. We are aware of the fact that (18) is not a hard challenge for
physicists, and we use it only as a proof of concept here. We are going to apply
Chyzak’s algorithm iteratively.

For computing an annihilating ideal for the inner integral, we simply use the
command Annihilator that takes care of the inhomogeneous part automatically:

In[15]:= f D wO.�1 � "=2/ .1 � z/O."=2/ zO.�"=2/=.w C z � w z/O.1 � "/

.1 � wO.n C 1/ � .1 � w/O.n C 1//I
In[16]:= ann D Annihilator

�
IntegrateŒf; fw; 0; 1g�; fSŒn�; DerŒz�g�I

This result is quite large so that we do not want to display it here. But it can be used
again as input to Chyzak’s algorithm, in order to treat the outer integral.

In[17]:= ffT g; fC gg D CreativeTelescopingŒann; DerŒz�; SŒn��I
It is a little bit tricky to handle the inhomogeneous part of the outer integral since it
involves an integral itself:




C

Z 1

0

f dw

�zD1

zD0
D
Z 1

0

�
Cf

	zD1
zD0 dw: (19)

It turns out that the right-hand side of (19) is preferable to show that the inho-
mogeneous part evaluates to zero. Therefore the operator T annihilates the double
integral, and this is the desired recurrence in n (which is of order 3):

In[18]:= FactorŒT �

Out[18]= �." � n � 3/."� n � 2/."C 2nC 4/."C 2nC 6/S3n C ." � n � 2/
."C 2nC 4/."2 C 2"nC 5"� 6n2 � 28n� 34/S2n � .nC 2/."3� 3"2n
� 6"2� 8"n2� 30"n� 28"C 12n3 C 64n2 C 116nC 72/Sn
� 2.nC 1/.nC 2/2." � 2n � 2/

6.5 A Hypergeometric Double Sum

We finally turn to a binomial double sum which was investigated in [8]:

X

i

X

j

 
i C j
i

!2 
4n � 2i � 2j
2n� 2i

!

D .2nC 1/
 
2n

n

!2

: (20)
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We apply the heuristic approach from Sect. 5.4 to it. The corresponding command
in the HolonomicFunctions package is FindCreativeTelescoping:

In[19]:= FindCreativeTelescopingŒBinomialŒi C j; i �O2 � BinomialŒ4n � 2i �
2j; 2n � 2i �; fSŒi � � 1; SŒj � � 1g; SŒn��

Out[19]=

�

f1g;
�� �2i2j C i 2n � i 2 � 2ij 2 C 3ijn� 2ij C 3in

.j C 1/.i C j � 2n/ ;

�2i2j � 2ij 2 C 3ijn� 2ij C j 2n � j 2 C 3jn
.i C 1/.i C j � 2n/



The output consists of the telescoper and the two certificates. At first glance it
may seem contradictory that the telescoper is 1, but there are contributions from
the certificates that make the recurrence for the double sum inhomogeneous. So we
don’t claim that the operator 1 annihilates the double sum, which would imply that
it is zero.

7 Selected Applications of Creative Telescoping

In this section we want to give an extensive, but certainly not complete, collection
of examples which show the beneficial use of creative telescoping in diverse areas
of mathematics and physics.

Zeilberger’s algorithm for hypergeometric sums is a meanwhile so classic tool
that it is impossible to list all papers where it has been used to prove some binomial
sum identity. We therefore restrict ourselves to publications where this algorithm
plays a more or less central role. In [39] it was used to prove Ramanujan’s famous
formula for � , and in [46] for some formulas of similar type. The whole paper [89]
is dedicated to binomial identities that arise in combinatorics and how to prove them
algorithmically. Two proofs of the notorious binomial double sum identity (20) are
given in [8] where, due to the lack of multi-summation software packages at that
time, the problem was reduced in a tricky way to a single sum identity. A “triumph of
computer algebra” is celebrated in [81] where the computation of factorial moments
and probability generating functions for heap ordered trees is based on Zeilberger’s
algorithm. In [5] it is used to derive formulas for hypergeometric series acceleration,
among them a pretty formula for �.3/ that allowed to evaluate this constant to a
large number of digits. In the article [60], Zeilberger’s algorithm is combined with
asymptotic estimates in order to give automated proofs of non-terminating series
identities of Saalschütz type. Applications in the context of orthogonal polynomials
are given in [58]. A fast way of computing Catalan’s constant is derived in [103]
by means of creative telescoping. While the recurrence that plays a crucial role
in Apéry’s proof of the irrationality of �.3/ is nowadays a popular example for
demonstrating these techniques, they were not available to Apéry when he came up
with his proof. A new, elementary proof, still using Zeilberger’s algorithm, is given
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in [104]. We conclude this paragraph by mentioning [6] where a binomial identity
that arose in the study of a certain integral is investigated.

We turn to applications of creative telescoping that go beyond Zeilberger’s
algorithm. As an application of its q-analogue we cite [74] where computer proofs
for the Rogers-Ramanujan identities are constructed. Multi-summation techniques
for q-hypergeometric terms were used in [12] to prove a partition theorem of
Göllnitz. Computer proofs for summation identities involving Stirling numbers
are given in [53]. In [17] creative telescoping was used to obtain bounds on the
order and degree of differential equations satisfied by algebraic functions. Chyzak’s
algorithm was applied to the generating function of 3-dimensional rook paths [19]
in order to derive an explicit formula. Creative telescoping proofs for a selection of
special function identities, mostly involving integrals, are presented in [66]. Another
application to the evaluation of integrals is [7].

In [101] Zeilberger proposed an approach how to evaluate determinants of
matrices with holonomic entries with the method of creative telescoping. This
approach applies to determinants of the form det1�i;j�n.ai;j / whose entries are
bivariate holonomic sequences, not depending on the dimension n. The so-called
“holonomic ansatz” celebrated its greatest success so far when it was employed to
prove the qTSPP conjecture [68], a long-standing prominent problem in enumer-
ative combinatorics, which previously had been reduced to a certain determinant
evaluation of the above type. This conjecture is the q-analogue of what is known as
Stembridge’s theorem about the enumeration of totally symmetric plane partitions.
Based on creative telescoping, this theorem was re-proved twice, both times using
the formulation as a determinant evaluation: the first time by applying symbolic
summation techniques to a decomposition of the matrix [9], the second time
following the holonomic ansatz [62]. Some extensions of the holonomic ansatz were
presented in [67] and were applied to solve several conjectures about determinants.
An analogous method for the evaluation of Pfaffians was developed in [48].

In the field of quantum topology and knot theory, a prominent object of interest
is the so-called colored Jones function of a knot. This function is actually an infinite
sequence of Laurent polynomials and in [42] it has been shown that this sequence
is always q-holonomic, by establishing an explicit multisum representation with
proper q-hypergeometric summand. The corresponding minimal-order recurrence is
called the non-commutative A-polynomial of the knot. Creative telescoping was used
to compute it for a family of twist knots [43] and for a few double twist knots [41].

We are turning to applications in the area of numerical analysis. A widely used
method for computer simulations of real-world phenomena described by partial
differential equations is the finite element method (FEM). A short motivation of
using symbolic summation techniques in this area is given in [79], and a concrete
application where hypergeometric summation algorithms deliver certain recurrence
equations which allow for a fast evaluation of the basis functions, is described
in [11]. Further examples, where creative telescoping is used for verifying identities
arising in the context of FEM or for finding identities that help to speed up the
numerical simulations, can be found in [14, 15, 69].
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Last but not least we want to point out that creative telescoping has extensively
supported computations in physics. We will not detail on the very fruitful interaction
of summation methods in difference fields with the computation of Feynman
integrals in particle physics [1], but refer to the survey [87], also contained in this
volume, and the references therein. The estimation of the entropy of a certain pro-
cess [70] was supported by computer algebra. In the study of generalized two-Qubit
Hilbert-Schmidt separability probabilities [88] creative telescoping was employed to
simplify a complicated expression involving generalized hypergeometric functions.
The authors of [20] underline the particular importance that creative telescoping
may play in the evaluation of the n-fold integrals �.n/ of the magnetic susceptibility
of the Ising model. Also relativistic Coulomb integrals have been treated with the
holonomic systems approach [78]. Likewise it was used in the proof of a third-
order integrability criterion for homogeneous potentials of degree �1 [37]. One
branch of statistical physics deals with random walks on lattices; some results in
this area [65, 102] were obtained by creative telescoping.
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79. Paule, P., Pillwein, V., Schneider, C., Schöberl, J.: Hypergeometric summation techniques for
high order finite elements. In: PAMM, Weinheim, vol. 6, pp. 689–690. Wiley InterScience
(2006)
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Renormalization and Mellin Transforms

Dirk Kreimer and Erik Panzer

Abstract We study renormalization in a kinetic scheme (realized by subtraction at
fixed external parameters as implemented in the BPHZ and MOM schemes) using
the Hopf algebraic framework, first summarizing and recovering known results in
this setting. Then we give a direct combinatorial description of renormalized ampli-
tudes in terms of Mellin transform coefficients, featuring the universal property of
rooted trees HR. In particular, a special class of automorphisms of HR emerges
from the action of changing Mellin transforms on the Hochschild cohomology of
perturbation series.

Furthermore, we show how the Hopf algebra of polynomials carries a refined
renormalization group property, implying its coarser form on the level of correlation
functions. Application to scalar quantum field theory reveals the scaling behaviour
of individual Feynman graphs.

1 Introduction

As was shown in [6, 16, 24], we may decompose Feynman integrals into functions
of a single scale parameter s only (further forking into logarithmic divergent parts
multiplied by suitable powers of s) and scale-independent functions of the other
kinematic variables, called angles. Furthermore, the Hopf algebra HR of rooted
trees suffices to encode the full structure of subdivergences in quantum field theory
by [8, 9, 16].

We can therefore study such generic Feynman rules in a purely algebraic
framework as pioneered in [9, 18]. Renormalizing short-distance singularities by
subtraction at a reference scale � (which we refer to as kinetic scheme) leads to
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amplitudes of a distinguished algebraic kind: Theorem 4 proves them to implement
the universal property of HR, delivering an explicit combinatorial evaluation in
terms of Mellin transform coefficients.

Further investigating the role of Hochschild cohomology, in Sect. 6 we define
a class of automorphisms of HR which transform the perturbation series in a way
equivalent to changing the Feynman rules. This clarifies how exact one-cocycles
describe variations.

In Sects. 4 and 5 we advertise to think about the renormalization group property
as a Hopf algebra morphism to polynomials, determining higher logarithms in
(28). We show how it implies the renormalization group on correlation functions
and extend the propagator-coupling-duality of [5] which yields the functional
equation (34).

After analysing the differences to the minimal subtraction scheme in Sect. 7, we
show explicitly how our general results manifest themselves in scalar field theory.

2 Connected Hopf Algebras

The fundamental mathematical structure behind perturbative renormalization is the
Hopf algebra as discovered in [16]. We briefly summarize the results on Hopf
algebras we need and recommend [21, 22] for detailed introductions with a focus
on renormalization.

All vector spaces live over a field K of zero characteristic (in examples K D R),
Hom.�; �/ denotes K-linear maps and linM the linear span. Every algebra .A ; m; u/
shall be unital, associative and commutative, any bialgebras .H;m; u; �; "/ in
addition also counital and coassociative. They split into the scalars and the
augmentation ideal ker " asH D K�	˚ker " D im u˚ker ", inducing the projection
P WD id� u ı " W H � ker ". We use Sweedler’s notation�.x/ DPx x1˝x2 and
Q�.x/ DPx x

0˝x00 to abbreviate the reduced coproduct Q� WD ��	˝ id� id˝	:
We assume a connected gradingH DLn�0 Hn (H0 D K �	) and write jxj WD n

for homogeneous 0 ¤ x 2 Hn, defining the grading operator Y 2 End.H/ by
Yx D jxj � x. Exponentiation yields a one-parameter group K 3 t 7! �t of Hopf
algebra automorphisms

�t WD exp.tY / D
X

n2N0

.tY /n

nŠ
; 8n 2 N0 W Hn 3 x 7! �t .x/ D et jxjx D entx:

(1)

An algebra .A ; mA ; uA / induces the associative convolution product on
Hom.H;A / by

Hom.H;A / 3 �; 7! � ?  WD mA ı .� ˝  / ı� 2 Hom.H;A /;
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with unit given by e WD uA ı ". As outcome of the connectedness ofH we stress

1. The characters GH
A WD f� 2 Hom.H;A / W � ı u D uA and � ım D mA ı

.� ˝ �/g (morphisms of unital algebras) form a group under ?.
2. Hence id 2 GH

H has a unique inverse S WD id?�1, called antipode, turning H
into a Hopf algebra. For all � 2 GH

A we have �?�1 D � ı S .
3. The bijection exp? W gHA ! GH

A with inverse log? W GH
A ! gHA betweenGH

A and
the infinitesimal characters gHA WD f� 2 Hom.H;A / W � ımD� ˝ eC e ˝ �g
is given by the pointwise finite series

exp?.�/ WD
X

n2N0

�?n

nŠ
and log?.�/ WD

X

n2N

.�1/nC1
n

.� � e/?n: (2)

2.1 Hochschild Cohomology

The Hochschild cochain complex [1,8,22] we associate toH contains the function-
alsH 0 D Hom.H;K/ as zero-cochains. One-cocyclesL 2 HZ1".H/ � End.H/ are
linear maps such that � ı L D .id˝L/ ı�CL˝ 	 and the differential

ı W H 0 ! HZ1".H/; ˛ 7! ı˛ WD .id˝˛/ ı� � u ı ˛ 2 HB1".H/ WD ı
�
H 0
�

(3)

determines the first cohomology group by HH1
".H/ WD HZ1".H/=HB1".H/.

Lemma 1. Cocycles L 2 HZ1".H/ fulfil imL  ker " and L.	/ 2 Prim.H/ WD
ker Q� is primitive. The map HH1

".H/ ! Prim.H/, ŒL� 7! L.	/ is well-defined
since ı˛.	/ D 0 for all ˛ 2 H 0.

2.2 Rooted Trees

The Hopf algebra HR of rooted trees serves as the domain of Feynman rules. As
an algebra,HR D S.lin T / D KŒT � is free commutative1 generated by the rooted
trees T and spanned by their disjoint unions (products) called rooted forests F :

Every w 2 F is just the monomial w D Q
t2�0.w/ t of its multiset of tree

components �0.w/, while 	 denotes the empty forest. The number jwj WD jV.w/j of
nodes V.w/ induces the gradingHR;n D lin Fn where Fn WD fw 2 F W jwj D ng.

1We consider unordered trees and forests sometimes called non-planar.
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Definition 1. The (linear) grafting operator BC 2 End.HR/ attaches all trees of a
forest to a new root, so for example .

Clearly, BC is homogenous of degree one with respect to the grading and restricts
to a bijection BC W F ! T . The coproduct� is defined to make BC a cocycle by
requiring

� ı BC D BC ˝ 	C .id˝BC/ ı�: (4)

Lemma 2. In cohomology, 0 ¤ ŒBC� 2 HH1
".HR/ is non-trivial by BC.	/

D ¤ 0.

It characterizes HR through the well-known (Theorem 2 of [8]) universal prop-
erty of

Theorem 1. To an algebra A and L 2 End.A / there exists a unique morphism
L� W HR ! A of unital algebras such that

L� ı BC D L ı L�; equivalently

HR

L�
��

BC

��

A

L

��
HR

L�

�� A

commutes. (5)

In case of a bialgebra A and a cocycle L 2 HZ1".A /, L� is a morphism of
bialgebras and even of Hopf algebras when A is Hopf.

This morphism L� simply replaces BC, mHR and 	 by L, mA and 	A as in

L� D L�
n
BC

�
ŒBC.	/�2

�
� 3BC.	/

o
D L

�
ŒL.	A /�

2
�
� 3L.	A /:

Example 1. The cocycle
R
0
2 HZ1".KŒx�/ of Sect. 4 induces the character

' WD
R
0� 2 GHR

KŒx� fulfilling '.w/ D xjwj

wŠ
for any forest w 2 F ; using

(6)

Definition 2. The tree factorial .�/Š 2 G
HR
K

is equivalently determined by
requesting

ŒBC.w/�Š D wŠ � jBC.w/j or wŠ D
2

Y

v2V.w/
jwvj for all w 2 F : (7)

2By wv we denote the subtree of w rooted at the node v 2 V .w/.
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3 The Generic Model

As explained in the introduction we consider Feynman rules as characters � 2 GHR
A ,

mapping a rooted tree to a function of the parameter s (by Proposition 1 it lies in the
algebra A D KŒz�1; z��Œs�z�). Since BC mimics the insertion of a subdivergence
into a fixed graph � (restricting to a single insertion place by a result from [24]),
applying � yields a subintegral and therefore

Definition 3. The generic Feynman rules z� are given through Theorem 1 by

z�s ı BC D
Z 1

0

f .
�

s
/��z

s
z�� d� D

Z 1

0

f .�/.s�/�z
z�s� d�: (8)

The integration kernel f is specified by � after Wick rotation to Euclidean space,
with the asymptotic behaviour f .�/ 	 ��1 for � !1 generating the (logarithmic)
divergences of these integrals (we do not address infrared problems and exclude
any poles in f ). The regulator ��z ensures convergence when 0 < <.z/ < 1,
with results depending analytically on z. We can perform all the integrals using
this Mellin transform

F.z/ WD
Z 1

0

f .�/��z d� D
1X

nD�1
cnzn; by (9)

Proposition 1. For any forest w 2 F we have (called BPHZ model in [4])

z�s.w/ D s�zjwj Y

v2V.w/
F .z jwvj/ : (10)

Proof. As both sides of (10) are clearly multiplicative, it is enough to prove the
claim inductively for trees. Let it be valid for some forest w 2 F , then for t D
BC.w/ observe

z�s ı BC.w/ D
Z 1

0

.s�/�zf .�/ z�s�.w/ d� D
Z 1

0

.s�/�zf .�/.s�/�zjwj
Y

v2V.w/

F .z jwvj/ d�

D s�zjBC.w/j
2

4
Y

v2V.w/

F .z jwvj/
3

5F
�
z jBC.w/j

� D s�zjtj
Y

v2V.t/

F .z jtvj/ :

Example 2. Using (10), we can directly write down the Feynman rules like

z�s D s�zF.z/; z�s D s�2zF.z/F.2z/ and z�s D s�3zŒF .z/�2F.3z/:

Many examples (choices of F ) are discussed in [4], the particular case of the one-
loop propagator graph � of Yukawa theory is in [5] and for scalar Yukawa theory in
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six dimensions one has F.z/ D 1
z.1�z/.2�z/.3�z/ as in [22]. Already noted in [17], the

highest order pole of z�s.w/ is independent of s and just the tree factorial

z�s.w/ 2 s�zjwj Y

v2V.w/

n
c�1

zjwv j CKŒŒz��
o
D
(7)

1

wŠ

� c�1
z

�jwj C z1�jwjKŒln s�ŒŒz��: (11)

3.1 Renormalization

Algebraically, renormalization of a character � 2 GH
A equals a Birkhoff decom-

position [9, 21, 22] into the renormalized character �R WD �C 2 GH
A and the

counterterms Z WD �� 2 GH
A defined by the conditions

� D �?�1� ? �C and �˙ .ker "/  A˙; (12)

with respect to a splitting A D AC˚A� determined by the renormalization scheme
(the projection R W A � A�). Turning to minimal subtraction in Sect. 7 we now
focus on

Definition 4. On the target algebra A of regularized Feynman rules depending on
a single external variable s, define the kinetic scheme by evaluation at s D �:

End.A / 3 R� WD ev� D
�
A 3 f 7! f jsD�

�
: (13)

This scheme exploits that subtraction improves the decay at infinity: Let f .�/ 	 1
�
,

meaning f .�/ D 1
�
C Qf .�/ for some Qf .�/ 2 O

�
��1�"

�
with " > 0. Then z�s is

logarithmically divergent (would it not be for the regulator ��z), but subtraction

z�s � z�� D
Z 1

0

"
f .

�

s
/

s
�
f .

�

�
/

�

#

��z D
Z 1

0

" Qf . �
s
/

s
�
Qf . �
�
/

�

#

��z (14)

yields a convergent integral even for z D 0. As R� is a character of A , the Birkhoff
recursion simplifies to Z D R� ı z� ı S D z�� ı S and z�R D z�

?�1
� ? z�s .

Example 3. We find z�R;s D .s�z � ��z/ F.z/ and S D � C results in

z�R;s D �s�2z � ��2z
�
F.z/F.2z/ � .s�z � ��z/��zF 2.z/: (15)

The goal of renormalization is to assure the finiteness of the physical limit

0�R WD lim
z!0 z�R; (16)
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and indeed we find the finite 0�R;s D �c�1 ln s
�

. In the case of (15) check

0�R;s D lim
z!0

n
�
h
�z ln s

�
C z2

2

�
ln2 s C 2 ln s ln�� 3 ln2 �

�i �
h
c2�1
z2
C 2 c�1c0z

i

C
h
�2z ln s

�
C 2z2

�
ln2 s � ln2 �

�i �
h
c2�1
2z2
C 3c0c�1

2z

io
D c2�1

2
ln2 s

�
� c�1c0 ln s

�
;

(17)

where all poles in z perfectly cancel. Note that 0�R;s maps a forest w to a polynomial
in KŒln s

�
� of degree�jwj without constant term (except for 0�.	/ D 1), due to the

subtraction at s D �. We now prove these properties in general, extending work in
[18].

3.2 Subdivergences

Inductively, the Birkhoff decomposition is constructed as �C.x/ D .id�R�/ N�.x/
where the Bogoliubov character N�.x/ ( NR-operation) serves to renormalize the
subdivergences. It is defined by

N�.x/ WD �.x/C
X

x

��.x0/�.x00/ D �.x/CŒ��?�������.x/ D �C.x/���.x/:

Theorem 2. For an endomorphismL 2 End.A / consider the Feynman rules � WD
L� induced by (5). Given a renormalization scheme R 2 End.A / such that

L ımA ı .�� ˝ id/ D mA ı .�� ˝ L/; (18)

that is to say, L is linear over the counterterms, we have

N� ı BC D L ı �C: (19)

Proof. This is a straightforward consequence of the cocycle property of BC:

N� ı BC D .�� ? � � ��/ ı BC
D mA ı .�� ˝ �/ ı Œ.id˝BC/ ı�CBC ˝ 	� � �� ı BC
D �� ? .� ı BC/ D �� ? .L ı �/ D

(18)
L ı .�� ? �/ D L ı �C:

As the counterterms Z of our model are independent of s, they can be moved
out of the integrals in (8) and (18) is fulfilled indeed. This is a general feature
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of quantum field theories: The counterterms to not depend on any external
variables.3

The significance of (19) lies in the expression of the renormalized �R;0.t/ for a
tree t D BC.w/ only in terms of the renormalized value z�R.w/. This allows for
inductive proofs of properties of z�R and also 0�R, without having to consider the
unrenormalized Feynman rules or their counterterms at all.

3.3 Finiteness

Proposition 2. The physical limit 0�R;s exists and maps HR into polynomials
KŒln s

�
�.

Proof. We proceed inductively from 0�R;s.	/ D 1 and, as 0�R is a character, only
need to consider trees t D BC.w/ in the induction step. Hence for this w 2 F we
already know that 0�R;� .w/ 2 O

�
lnN �

�
for some N 2 N0 such that dominated

convergence yields

0�R;s.t / D
(19)

lim
z!0

.id�R�/



s 7!
Z 1

0

f .�=s/

s
��z

z�R;�.w/ d�

�

D lim
z!0

Z 1

0

h
f .�=s/

s
� f .�=�/

�

i
��z

z�R;�.w/ d� D
Z 1

0

h
f .�=s/

s
� f .�=�/

�

i

0�R;� .w/ d�;

recalling the term in square brackets to be from O
�
��1�"

�
as in (14). This proves

the cancellation of all z-poles in z�R;s.t/ and we identify 0�R;s.t/ with the / z0

term, which is a polynomial in ln s and ln� of degree jt j by inspection of (10):
Each such logarithm comes with a factor z (expanding s�z) which needs to cancel
with a pole c�1

zjtv j from some F.z jtvj/ in order to contribute to the / z0 term. Finally
the substitution � 7! �� gives

0�R;s.t/ D
Z 1

0

"
f .�

�

s
/

s
�

� f .�/
#

0�R;��.w/ d�; (20)

hence by induction 0�R;�� only depends on � and 0�R;s is a function of s
�

only.

Using (20), the physical limit of the renormalized Feynman rules can be obtained
inductively by convergent integrations after performing the subtraction at s D �

on the integrand, in particular without the need of any regulator. Therefore 0�R
is independent of the choice of regularization prescription, so employing a cutoff

3Even if the divergence of a Feynman graph does depend on external momenta as happens for
higher degrees of divergence, the Hopf algebra is defined such that the counterterms are evaluations
on certain external structures, given by distributions in [9]. So in any case, �� maps to scalars.
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regulator or dimensional regularization yields the same renormalized result in the
physical limit.

4 The Hopf Algebra of Polynomials

We summarize relevant properties of the polynomials, focusing on their Hochschild
cohomology (the relevance of

R
0

was already mentioned in [8]). First observe

Lemma 3. Requiring �.x/ D x ˝ 	 C 	 ˝ x induces a unique Hopf algebra
structure on the polynomials KŒx�. It is graded by degree, connected, commutative
and cocommutative with �.xn/ D Pn

iD0
�
n
i

�
xi ˝ xn�i and the primitive elements

are Prim .KŒx�/ D K � x.

The integration operator
R
0
W xn 7! 1

nC1x
nC1 furnishes a cocycle

R
0
2 HZ1".KŒx�/ as

�

Z

0

�
xn

nŠ

�

D �

�
xnC1

.nC 1/Š
�

D
nC1X

kD0

xk

kŠ
˝ xnC1�k

.nC 1� k/Š

D xnC1

.nC 1/Š ˝ �C
nX

kD0

xk

kŠ
˝
Z

0

�
xn�k

.n� k/Š
�

D

Z

0

˝�C
�

id˝
Z

0

�

ı�
��
xn

nŠ

�

;

and is not a coboundary since
R
0
1 D x ¤ 0. In fact it generates the cohomology by

Theorem 3. HH1
".KŒx�/ D K�ŒR

0
� is one-dimensional as the 1-cocycles of KŒx� are

HZ1".KŒx�/ D K �
Z

0

˚ ı �KŒx�0� D K �
Z

0

˚ HB1".KŒx�/: (21)

Proof. For an arbitrary cocycle L 2 HZ1".KŒx�/, Lemma 1 ensures L.1/ D xa�1
where a�1 WD @0L.1/. Hence QL WD L � a�1

R
0
2 HZ1" fulfils QL.1/ D 0, so L0 WD

QL ı R0 2 HZ1" by

� ı L0D .id˝ QL/ ı� ı
Z

0

C. QL˝ 1/ ı
Z

0

D .id˝L0/ ı�C L0 ˝ 1C QL.1/ �
Z

0

:

Repeating the argument inductively yields an WD @0Ln.1/ D @0 ı L ı
R nC1
0

.1/ 2 K

and LnC1 WD .Ln � an
R
0
/ ı R

0
2 HZ1" , so for any n 2 N0 we may read off from

L ı
Z n

0

.1/ D a�1
Z nC1

0

.1/C : : :C an�2
Z 2

0

.1/C Ln�1.1/

D a�1
Z

0

�Z n

0

1

�

C
n�1X

jD0
aj

Z n�j

0

.1/

that indeed L D a�1
R
0
Cı˛ for the functional ˛ WD @0 ı L ı

R
0

with ˛.x
n

nŠ
/ D an.
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Lemma 4. Up to subtraction P D ı" D id�ev0 W KŒx� � ker " D xKŒx� of the
constant part, direct computation exhibits ı˛ for any ˛ 2 KŒx�0 as the differential
operator

ı˛ D P ı
X

n2N0
˛
�
xn

nŠ

�
@n 2 End.KŒx�/: (22)

Lemma 5. As characters � 2 GKŒx�
K

of KŒx� are fixed by � WD �.x/, they form the

group GKŒx�

K
D fev� W � 2 Kg of evaluations (the counit " D ev0 equals the neutral

element)

KŒx� 3 p.x/ 7! ev�.p/ WD p.�/ with the product eva ? evb D evaCb: (23)

Proof. Note Œeva ? evb� .xn/ D Œeva.1/ � evb.x/C eva.x/ � evb.1/�
n D .b C a/n.

Lemma 6. The isomorphism .K;C/ 3 a 7! eva 2 GKŒx�

K
of groups is generated

by the functional @0 D ev0 ı @ 2 g
KŒx�
K

, meaning log? eva D a@0 and eva
D exp?.a@0/.

Proof. Expanding the exponential series reveals exp?.a@0/.x
n/ D an as a direct

consequence of @?k0 D " ı @?k D " ı @k :

@?k0

�
xn

nŠ

�

D
X

i1C:::CikDn

�
@0

xi1

i1Š

�
� � �
�
@0

xik

ik Š

�
D
X

i1C:::CikDn
ı1;i1 � � � ı1;ik D ık;n D @k

ˇ
ˇ
0

�
xn

nŠ

�

:

4.1 Feynman Rules Induced by Cocycles

Let 0� W HR ! KŒx� denote the polynomials that evaluate to the renormalized
Feynman rules 0�R;s D ev` ı 0� at ` D ln s

�
. We state

Theorem 4. The renormalized Feynman rules 0� D L� arise out of the universal
property of Theorem 1, where the coefficients cn of (9) determine the cocycle

L WD �c�1
Z

0

Cı� 2 HZ1".KŒx�/ with � .xn/ WD nŠ .�1/ncn for any n 2 N0:

(24)

Proof. We may set � D 1 and produce logarithms of subdivergences by differenti-
ation, exploiting analyticity of zF.z/ and s�z�1

z at z D 0 we obtain
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lim
z!0

.id�R1/



s 7!
Z 1

0

f .�/.s�/
�z lnn .s�/ d�

�

D
�

� @
@z

�n

zD0

.id�R1/
Z 1

0

f .�/.s�/
�z d�

D
�

� @
@z

�n

zD0



s�z � 1

z
� zF.z/

�

D .�1/n
nX

kD0

 
n

k

!

kŠ
.� ln s/kC1

.k C 1/Š .n� k/Š cn�k�1

D evln s

"

�c�1

xnC1

nC 1 C
nX

iD1

 
n

i

!

xi .�1/n�i cn�i .n� i /Š
#

D evln s ı L .xn/ : (�)

By linearity we can replace lnn.s�/ in the integrand by any polynomial to prove
Theorem 4 inductively: As 0� and L� are algebra morphisms, it suffices to consider
a tree t D BC.w/ for a forest w 2 F already fulfilling 0�.w/ D L�.w/ in the
induction step

0�R;s.t/ D
(20)

lim
z!0.id�R1/




s 7!
Z 1

0

f .�/.s�/�z evln s� ı 0�.w/ d�

�

D
(�)

ev` ı L
�
0�.w/

	 D ev` ı L ı L�.w/ D
1

ev` ı L� ı BC.w/ D ev` ı L�.t/;

where the convergence of (20) allows to reintroduce ��z into the integrand.

Corollary 1. As L is a cocycle, by Theorem 1 the physical limit 0� W HR ! KŒx�

of the renormalized Feynman rules (8) is a morphism of Hopf algebras.

This key property naturally yields the renormalization group as we shall see in the
sequel. For now observe the simple and explicit combinatorial recursion Example 4,
expressing 0� in terms of the Mellin transform coefficients without any need for
series expansions in z, as shown in

Example 4. Using (24) we rederive 0� D L� ı BC.	/ D L.1/ D �c�1 x and
also

0� D L� ıBC DL ı L� D



� c�1
Z

0

Cı�
�
��c�1x

� D c2�1
x2

2
� c�1c0 x;

0� D L� ıBC D L ı L� D



�c�1
Z

0

Cı�
� n��c�1 x

�2
o

D �c3�1
x3

3
C c2�1

�
�.1/ x2 C 2�.x/ x	 D �c3�1

x3

3
C c2�1c0 x2 � 2c2�1c1 x:

Defining QF .z/ WD F.z/� c�1
z D

P
n2N0 cnz

n, (22) uncovers ı� D P ı QF .�@x/ and
under the convention @�1x WD

R
0

we may thus write L D P ı F.�@x/.
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Corollary 2. As in � only �c�1
R
0 increases the degree in x, the highest order

(called leading log) of 0� is the tree factorial (note the analogy to (11)): For any
forest w 2 F ,

0�.w/ 2 Œ�c�1
R
0��.w/C O

�
xjwj�1

�
D
(6)

��c�1x
�jwj

wŠ
CKŒx�<jwj: (25)

4.2 Feynman Rules as Hopf Algebra Morphisms

As 0� W HR ! KŒx� is a morphism of Hopf algebras, the induced map GKŒx�

K
!

G
HR
K

given by eva 7! 0�a WD eva ı 0� becomes a morphism of groups. In particular
note

Corollary 3. Using (23) we obtain the renormalization group equation (as in [17])

0�a ? 0�b D 0�aCb; for any a; b 2 K: (26)

Before we obtain the generator of this one-parameter group in Corollary 4, note how
this result gives non-trivial relations between individual trees (graphs) like

0�a ? 0�b D 0�a C 0�a 0�b C 0�b

D
(17)
c2�1

a2 C b2
2

� c�1c0 .aC b/C c2�1ab D
(17)

0�aCb :

Proposition 3. Let H be any connected bialgebra and � W H ! KŒx� a morphism
of bialgebras.4 Then log? � is given by the linear term in x through

log? � D x � @0 ı �: (27)

Proof. Letting � W C ! H and  W H ! A denote morphisms of coalge-
bras and algebras, exploiting . ı � � uA ı "C /?n D  ı .� � uH ı "H/?n D
. � uA ı "H /?n ı � in (2) proves .log?  / ı � D log?. ı �/ D  ı log? �.
Now set  D eva and use Lemma 6.

Example 5. In the leading-log case (6) we read off @0 ı ' D Z 2 gHR
K

where
Z .w/ WD ıw; . Comparing ' D exp?.xZ / with (6) shows jwjŠ D wŠ � Z?jwj.w/,
hence5

4This already implies � to be a morphism of Hopf algebras.
5This combinatorial relation among tree factorials, noted in [17], thus drops out of �' D .' ˝
'/ ı�.
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jwj
wŠ
D 1

.jwj � 1/Š
X

w

Z .w1/Z
?jwj�1.w2/ D

X

wW w1D

1

jw2jŠZ
?jw2j.w2/ D

X

wW w1D

1

w2Š
:

Corollary 4. The character 0� is fully determined by the anomalous dimension

H 0R � gHR
K
3 � WD �@0 ı 0� such that 0� D exp?.�x � �/ D

X

n2N0

�?n

nŠ
.�x/n:

(28)

An analogous phenomenon happens with the counterterms in the minimal sub-
traction scheme: The first order poles / z�1 alone already determine the full
counterterm via the scattering formula proved in [10]. However, (28) is much
simpler as illustrated in

Example 6. Reading off � D c�1, � D c�1c0 and � D 2c2�1c1 from the
Example 4 above, Corollary 4 determines the higher powers of x through

0� D
(2)

h
e � x� C x2 � ? �

2

i
D 0 � x� C x2 �

2

2
D �c�1c0 x C c2�1

x2

2
;

0� D 0 � x� C x2 � ˝ �
2

�
2 ˝ C ˝ � � x3 � ˝ � ˝ �

6
.2 ˝ ˝ /

D ��3 x3

3
C x2� � � 2c2�1c1 x D �c3�1

x3

3
C c2�1c0 x2 � 2c2�1c1 x:

Note how the fragment ˝ of � does not contribute to the quadratic terms
x2

2
� ?� , as � vanishes on products. We will exploit this in (33) of Sect. 5.1 and close

with a method of calculating � emerging from

Lemma 7. From � ıBC D �@0 ıLı 0� D ev0 ı ŒzF.z/��@x ıexp?.�x�/ we obtain
the inductive formula � ı BC DPn2N0 cn�1�

?n:

Example 7. We can recursively calculate � D c�1".	/ D c�1, similarly also

� D c�1" C c0� D c�1c0;

� D c�1" C c0� C c1� ? � D c�1c20 C c1
�
�

	2 D c�1c20 C c2�1c1;

� D c�1" C c0� C c1� ? � D 2c1
�
�

	2 D 2c2�1c1 and so on.
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5 Dyson-Schwinger Equations and Correlation Functions

We now study the implications for the correlation functions (31) as formal power
series in the coupling constant g. For simplicity we restrict to a single equation
and refer to [24] for systems. With detailed treatments in [1, 11], for our purposes
suffices

Definition 5. To a parameter � 2 K and a family of cocycles B� W N ! HZ1".HR/

we associate the combinatorial Dyson-Schwinger equation6

X.g/ D 	C
X

n2N
gnBn

�
X1Cn�.g/

�
: (29)

Lemma 8. As perturbation series X.g/ D P
n2N0 xng

n 2 HRŒŒg��, Eq. (29) has a
unique solution. It begins with x0 D 	 while xnC1 is determined recursively from
x0; : : : ; xn. These coefficients generate a Hopf subalgebra, explicitly we find7

�X.g/ D
X

n2N0
ŒX.g/�1Cn� ˝ gnxn 2 .HR ˝HR/ŒŒg��: (30)

Example 8. In [5,22],X.g/ D 	�gBC
�

1
X.g/

�
features � D �2, summing all trees

with a combinatorial factor.8 Physically these correspond to (Yukawa) propagators

;

arising from insertions of the one-loop graph into itself.

6As x0 D �, for arbitrary p the series ŒX.g/�p WD P
n2N0

�
p
n

�
ŒX.g/� ��n 2 HRŒŒg�� is well

defined.
7A proof of (30) may be found in [11] and [12, 13] study systems of Dyson-Schwinger equations.
8Counting the number of corresponding ordered trees.
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Definition 6. The correlation function G.g/ evaluates the renormalized Feynman
rules 0� W HR ! KŒ`� on the perturbation series X.g/, yielding the formal power
series

G.g/ WD 0� ıX.g/ D
X

n2N0
0�.xn/g

n 2 .KŒ`�/ ŒŒg��: (31)

We call Q�.g/ WD � ı X.g/ D �@`j0G.g/ 2 KŒŒg�� the physical anomalous
dimension.

Example 9. The Feynman rules ' from (6) result in the convergent series G.g/ Dp
1 � 2g` and Q�.g/ D

5
�Z ı X.g/ D g for the propagator of Example 8.

Perturbatively,

:

5.1 Propagator Coupling Duality

The Hopf subalgebra of the perturbation series allows to calculate convolutions in

Lemma 9. Let  2 gHRA denote an infinitesimal character, � 2 GHR
A a character

and � 2 Hom.HR;A / a linear map. Then (in suggestive notation)

.� ? �/ ıX.g/ D Œ� ıX.g/� � � ıX .g Œ� ıX.g/��/ (32)

WD Œ� ıX.g/� �
X

n2N0
�.xn/ � .g Œ� ıX.g/��/n 2 A ŒŒg��

. ? �/ ıX.g/ D Œ ıX.g/� � �idC�g@g
�
Œ� ıX.g/� 2 A ŒŒg��: (33)

Proof. These are immediate consequences of Lemma 8, for (33) consider

 
�
ŒX.g/�1Cn�

�
�gn D

X

i2N0

 
1C n�
i

!

 
�
ŒX.g/ � ��i �gn D  .X.g/ � �/�.1Cn�/gn:

Example 10. Continuing 8 we deduce .X.g// D �g.1 � 2g@g/.�g/ D �g2
and

.X.g// D
(33)
�gnC1.2n � 1/.2n� 3/ � � � .1/ D �gnC1 .2n/Š

2nnŠ
;
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proving '.xnC1/ D �2�nCn`nC1 with the Catalan numbers Cn already noted in
[20]. From Example 9 we find their generating function 2g

P
n2N0 g

nCn D 1 �p
1 � 4g.

Corollary 5. As 0� is a morphism of Hopf algebras, for any a; b 2 K we can factor

GaCb.g/ D .0�a ? 0�b/ ıX.g/ D
(32)
Ga.g/ �Gb

�
gG�

a .g/
	 D Gb.g/ �Ga

�
gG�

b .g/
	
:

(34)

These functional equations of formal power series make sense for the non-perturba-
tive correlation functions as well. Relating the scale- with the coupling-dependence,
this integrated form of the renormalization group equation becomes infinite-
simally

Corollary 6. From � d
dx 0� D � ? 0� D 0� ? � or differentiating (34) by b at zero

note

G`.g/ � Q�
�
gG�

` .g/
	 D

(32)
�@`G`.g/ D

(33)
Q�.g/ � �1C �g@g

�
G`.g/: (35)

The first of these equations generalizes the propagator coupling duality in [5, 20].
For any fixed coupling g, it expresses the correlation function as the solution of the
o.d.e.

� d

d`
lnG`.g/ D Q�

�
ge� lnG`.g/

	
with lnG0.g/ D 0; (36)

determiningG`.g/ completely from Q�.g/ in a non-perturbative manner as in (39).

Example 11. The leading-log expansion takes only the highest power of ` in each
g-order. Equally, Q�.g/ D cgn for constants c 2 K, n 2 N and (36) integrates to

Gleading�log.g/ D
h
1C cn�`gn

i� 1
n�
: (37)

As a special case we recover Example 9 for n D c D 1 and � D �2.

Example 12. In the linear case � D 0, (34) states GaCb.g/ D Ga.g/ � Gb.g/
in accordance with the scaling solution G`.g/ D e�`Q�.g/ of (36), well-known
from [19].

Example 13. For vertex insertions as in [2] we have � D 1, so GaCb.g/ D Gb.g/ �
Ga
� QGb.g/

	
expresses the running of the coupling constant QG WD g �G: A change in

scale by b is (up to a multiplicative constant) equivalent to replacing the coupling g
by QGb.g/.
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5.2 The Physicist’s Renormalization Group

To cast (34) and (35) into the common forms of (7.3.15) and (7.3.21) in [7], we
introduce the ˇ-function ˇ.g/ WD ��g Q�.g/ and the running coupling g.�/ as the
solution of

�
d

d�
g.�/ D ˇ�g.�/�; hence �

d

d�
G
�
g.�/; ln s

�

�
D
(35)
Q��g.�/�G

�
g.�/; ln s

�

�
:

(38)

Integration relates the correlation functions for different renormalization points� in

G
�
g.�2/; ln s

�2

�
D G

�
g.�1/; ln s

�1

�
� exp


Z �2

�1

Q��g.�/� d�
�

�

D
(38)
G
�
g.�1/; ln s

�1

�
�


g.�2/

g.�1/

�� 1
�

:

Setting �1 D s we may thus write G`.g/ explicitly in terms of Q�.g/ as

G`.g/ D


g

g.s/

�� 1
�

; with g.s/ subject to ` D ln
s

�
D
Z g.s/

g

dg0

ˇ.g0/
: (39)

5.3 Relation to Mellin Transforms

We finally exploit the analytic input from Theorem 4 to the perturbation series in

G`.g/ D
(29)
1CX

n2N

gn0� ı Bn
�
X.g/1Cn�

� D
4
1CX

n2N

gn



�c.n/�1

Z

0

CP ı eFn.@�`/

�

G`.g/
1Cn�;

with Mellin transforms Fn.z/ D 1
z c
.n/
�1 C QFn.z/ corresponding to the insertions9 Bn.

Corollary 7. The power series G`.g/ 2 KŒ`�ŒŒg�� is fully determined by

G`.0/ D 1 and @�`G` .g/ D
(9)

X

n2N
gn ŒzFn.z/�zD�@`

�
G`.g/

1Cn�� : (40)

Restricting to a single cocycle Fk.z/ D F.z/ık;n, choosing F.z/ D c�1
z reproduces

(37) from @�`G`.g/ D gnc�1G`.g/1Cn�: More generally, for any rational F.z/ D
p.z/
q.z/ 2 K.z/ with q.0/ D 0, (40) collapses to a finite order ode q.�@`/G`.g/ D

9For this generality we need decorated rooted trees as commented on in Sect. 6.1
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gnp.�@`/G`.g/1Cn� that makes perfect sense non-perturbatively (extending the
algebraic @` 2 End.KŒ`�/ to the analytic differential operator).

Example 14. For F.z/ D 1
z.1�z/ , the propagator (� D �2 as in Example 8) fulfils

g

G`.g/
D @�` .1 � @�`/ G`.g/ D

(35)
Q�.g/ �1 � 2g@g

� �
1 � Q�.g/ �1 � 2g@g

�	
G`.g/:

At ` D 0 this evaluates to Q�.g/ � Q�.g/.1 � 2g@g/ Q�.g/ D g, which is studied in
[5, 24].

6 Automorphisms of HR

Applying the universal property to HR itself, adding coboundaries to BC leads to

Definition 7. For any ˛ 2 H 0R, Theorem 1 defines the Hopf algebra morphism

˛� WD BCCı˛� W HR ! HR such that ˛� ı BC D ŒBC C ı˛� ı ˛�: (41)

Example 15. The action on the simplest trees yields

˛� D ˛� ı BC.�/ D BC.�/C .ı˛/.�/ D BC.�/ D ;

˛� D ˛� ı BC D �
BC C ı˛� ˛� D C ı˛ D C ˛.�/ ;

˛� D C 2˛.�/ C
n
Œ˛.�/�

2 C ˛
o

and ˛� D C 2˛ C ˛.�/ :

These morphisms capture the change of L� under a variation of L by a coboundary:

Theorem 5. Let H denote a bialgebra, L 2 HZ1
" .H/ a 1-cocycle and further

˛ 2 H 0 a functional. Then for L�; LCı˛� W HR ! H given through Theorem 1 and
˛ıL�� W HR ! HR from Definition 7, we have

LCı˛� D L� ı Œ˛ ı L���; equivalently

HR

LCı˛�
��

˛ıL��

��

H

HR

L�

		��������

commutes. (42)

Proof. As both sides of (42) are algebra morphisms, it suffices to prove it induc-
tively for trees: Let it be true for a forest w 2 F , then it holds as well for the tree
BC.w/ by
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L� ı Œ˛ıL��� ı BC.w/ D
(5)

L� ı �BC C ı �˛ ı L��	 ı Œ˛ıL���.w/

D
n
L ı L�C .ı˛/ ı L�

o
ı Œ˛ıL���.w/ D fLC ı˛g ı L� ı Œ˛ıL���.w/

„ ƒ‚ …
LCı˛�.w/

D
(5)

LCı˛� ı BC.w/:

We used .ı˛/ ı L� D L� ı ı �˛ ı L��, following from L� being a morphism of bialgebras.

Hence the action of a coboundary ı˛ on the universal morphisms induced by L
is given by ˛ıL��. This turns out to be an automorphism of HR as shown in

Theorem 6. The map �� W H 0R ! EndHopf.HR/, taking values in the space of Hopf
algebra endomorphisms of HR, fulfils the following properties:

1. For any w 2 F and ˛ 2 H 0R, ˛�.w/ differs from w only by lower order forests:

˛�.w/ 2 wCH jwj�1R D wC
jwj�1M

nD0
HR;n: (43)

2. �� maps H 0R into the Hopf algebra automorphisms AutHopf.HR/. Its image is
closed under composition, as for any ˛; ˇ 2 H 0R we have ˛� ı ˇ� D �� taking

� D ˛ C ˇ ı ˛��1: (44)

3. The maps ı W H 0R ! HZ1
" .HR/ and �� W H 0R ! AutHopf.HR/ are injective, thus

the subgroup im �� D ˚˛� W ˛ 2 H 0R
� � AutHopf.HR/ induces a group structure

on H 0R with neutral element 0 and group law F given by

˛ F ˇ WD ���1 �˛� ı ˇ�� D
(44)
˛ C ˇ ı ˛��1 and ˛F�1 D �˛ ı ˛�: (45)

Proof. Statement (43) is an immediate consequence of ı˛.Hn
R/  Hn

R: Starting
from ˛� D , suppose inductively (43) to hold for forests w;w0 2 F . Then it
obviously also holds for w � w0 as well and even so for BC.w/ through

˛� ı BC.w/ D ŒBC C ı˛� ı ˛�.w/  ŒBC C ı˛�
�

wCH jwj�1R

�
 BC.w/CH jwjR :

This already implies bijectivity of ˛�, but applying (42) to L D BC C ı˛ and Q̨�
for Q̨ WD �˛ ı ˛� shows id D ˛� ı Q̨� directly. We deduce bijectivity of all ˛� and
thus ˛� 2 AutHopf.HR/ with the inverse ˛��1 D Q̨�. Now (44) follows from

Œ˛Cˇ ı ˛��1�� D ŒBCCı˛�Cı.ˇ ı ˛��1/� D
(42)

ŒBCCı˛�� ı
�
ˇ ı ˛��1 ı .BCCı˛/�

	

� D ˛�ı ˇ�:

Finally consider ˛; ˇ 2 H 0R with ˛� D ˇ�, then 0 D .˛��ˇ�/ıBC D ıı.˛�ˇ/ı˛�
reduces the injectivity of �� to that of ı. But if ı˛ D 0, for all n 2 N0
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0 D ı˛ D
nX

iD0

 
nC 1
i

!

˛ implies ˛ D 0:

Given an arbitrary forest w 2 F and n 2 N, the expression

simplifies upon projection ontoK to . Iterating

this formula exhibits ˛.w/ as a scalar multiple of ˛ D 0 and proves ˛ D 0.

6.1 Decorated Rooted Trees

Our observations generalize straight forwardly to the Hopf algebraHR.D/ of rooted
trees with decorations drawn from a set D . In this case, the universal property
assigns to each D-indexed family L� W D ! End.A / the unique algebra morphism

L�� W HR.D/! A such that L�� ı BdC D Ld ı L�� for any d 2 D :

For cocycles imL�  HZ1
" .A / this is a morphism of bialgebras and even of Hopf

algebras (should A be Hopf). For a family ˛�W D ! H 0R.D/ of functionals, setting
L
˛�
d
WD BdCC ı˛d yields an automorphism ˛�� WD L˛�

� � of the Hopf algebraHR.D/.
Theorems 5 and 6 generalize in the obvious way.

In view of the Feynman rules, decorations d denote different graphs into which
BdC inserts a subdivergence. Hence we gain a family of Mellin transforms F� and
Theorem 4 generalizes straightforwardly as 0� ı BdC D P ı Fd .�@`/ ı 0� .

6.2 Subleading Corrections Under Variations of Mellin
Transforms

As an application of (42) consider a change of the Mellin transform F to a different
F 0 that keeps c�1 fixed but alters the other coefficients cn. With ˛ WD �0 � �,

0�
0 D L0

� D LCı˛� D L� ı Œ˛ ıL��� D 0� ı Œ˛ ı 0� ��

translates the new renormalized Feynman rules 0�
0 into the original 0� .
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Fixing c�1 D �1, this in particular relates 0� to ' D
R
0� using Example 15

together with � ı '.w/ D .�1/jwj jwjŠwŠ cjwj as

0� D x D ' D ' ı �ı'� ;

0� D x2

2
C c0x D '

˚ C �.1/ � D ' ı �ı'� ;

0� D x3

6
Cx2c0Cx.c20 � c1/D '

(

C 2c0 C
�
c20 � c1

	
)

D ' ı �ı'�

and

0� D x3

3
C c0 � x2 � 2c1 � x D '

n
C c0 � 2c1

o
D ' ı �ı'� :

Corollary 8. The new correlation function 0� ı X D ' ı QX equals the original
' applied to a modified perturbation series QX.g/, fulfilling a Dyson-Schwinger
equation differing by coboundaries. By (43) the leading logs coincide and explicitly

QX.g/ WD �ı'� ıX.g/ D 	C
X

n2N
gn .Bn C ı�n/

� QX.g/1Cn�� :

7 Locality, Finiteness and Minimal Subtraction

Consider the regularized but unrenormalized Feynman rules z�. Now setting A WD
KŒz�1; z�� and � WD z�1 2 GHR

A , (10) fixes the scale dependence z�s D � ı �� ln sz.

Proposition 4. For any character � 2 GHR
A , the following are equivalent:

1. �?�1 ? .� ı Y / D � ı .S ? Y / maps into 1
zKŒŒz��, so lim

z!0 �
?�1 ? .z� ı Y / exists.

2. For every n 2 N0, �?�1 ? .� ı Y n/ D � ı .S ? Y n/ maps into z�nKŒŒz��.
3. For any ` 2 K, �?�1 ? .� ı �`z/ D � ı .S ? �`z/ maps into KŒŒz��.

Proof. We refer to the accounts in [5, 10, 21], however only 1: ) 2: is non-
trivial and

� ı �S ? Y nC1� D � ı .S ? Y n/ ı Y C Œ� ı .S ? Y /� ? Œ� ı .S ? Y n/�

yields an inductive proof. It exploits .S ı Y / ? id D �S ? Y in the formula
(˛ arbitrary)

S ?.˛ıY /�.S ?˛/ıY D �.S ıY /?˛ D � Œ.S ı Y / ? id�?S ?˛ D S ?Y ?S ?˛:
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Note that condition 3. is equivalent to the finiteness Proposition 2 of the physical
limit 0� as

z�R;s D z�
?�1
� ? z�s D � ı

�
.S ı ��z ln�/ ? ��z ln s

	 D � ı .S ? ��z ln s
�
/ ı ��z ln�:

Corollary 9. The anomalous dimension can be obtained from the 1
z -pole coeffi-

cients

� D �@0 ı 0� D �@0 ı lim
z!0 � ı .S ? ��zx/ D Res Œ� ı .S ? Y /� : (46)

The minimal subtraction scheme RMS projects onto the pole parts such that A D
A� ˚AC where A� WD z�1KŒz�1� and AC WD KŒŒz��. Though it renders finiteness
trivial, its counterterms might depend on the scale s and violate locality. So from
[10] we need

Definition 8. A Feynman rule � 2 G
HR
A is called local iff in the minimal

subtraction scheme, the counterterm .� ı �`z/� is independent of ` 2 K.

Proposition 5. Locality of � 2 G
HR
A is equivalent to the conditions of

Proposition 4.

Proof. In case of Proposition 4, � ı �`z D .��/?�1 ?
˚
�C ? Œ�?�1 ? .� ı �`z/�

�
is a

Birkhoff decomposition by condition 3. such that .� ı �`z/� D �� from uniqueness.
Conversely, for local �,

0 D RMS ı .� ı �`z/C D RMS ı Œ.� ı �`z/� ? .� ı �`z/� D RMS ı Œ�� ? .� ı �`z/�
implies KŒŒz�� D kerRMS � im�� ? .� ı �`z/ and convolution with �?�1C D �?�1 ?
�?�1� WHR ! KŒŒz�� yields condition 3. of Proposition 4.

So we showed algebraically that the problems of finiteness in the kinetic scheme and
locality in minimal subtraction are precisely the same. These schemes are related by

Lemma 10. If z�MS;s denotes the RMS-renormalized Feynman rule, then its scale
dependence is given by 0� through z�MS

D �
R� ı z�MS

�
? z�R (as already exploited

in [4]).

Proof. Locality of the minimal subtraction counterterms �� impliesR� ı�� D ��,
hence

�
R� ı z�MS

�
?z�R D

�
R� ı .�� ? z�/

	
?
�
R� ı z�

�?�1
?z� D

�
R� ı ��

�
?z� D z�MS:

The physical limit evln s ı 0�MS D lim
z!0 z�MS;s yields polynomials 0�MS and Lemma 10

becomes

Corollary 10. The characters 0�MS; 0� W HR ! KŒx� fulfil the relations

0�MS D
�
" ı 0�MS

�
? 0�; equivalently � ı 0�MS D

�
0�MS ˝ 0�

� ı�: (47)



Renormalization and Mellin Transforms 217

In particular, the constant parts " ı 0�MS D ev0 ı 0�MS 2 G
HR
K

determine 0�MS

completely as the scale dependence is governed by 0� . Using 0� D exp?.�x�/, the
ˇ-functional 0�MS D exp? .xˇ/ ?

�
" ı 0�MS

�
from [10] relates to � by conjugation:

ˇ ?
�
" ı 0�MS

� D � �" ı 0�MS

�
? �:

Corollary 11. Applying (32) to (47) expresses the correlation function of the RMS-
scheme to the kinetic scheme by a redefinition of the coupling constant:

GMS;`.g/ D GMS;0.g/ �G`
�
g � ŒGMS;0.g/�

�
�
:

8 Feynman Graphs and Logarithmic Divergences

In a typical renormalizable scalar quantum field theory, the vertex function is log-
arithmically divergent and may be renormalized by a simple subtraction as studied
above. Referring to [6] for quadratic divergences, we now restrict to logarithmically
divergent graphs with only logarithmic subdivergences, in D dimensions of space-
time.

Following the notation established in [3], the renormalized amplitude of a graph
� in the Hopf algebraH of Feynman graphs is given by the forest formula10

˚C.� / D
Z

˝�

X

F2F .� /

.�1/jF j
 
D=2
F

ln

'

 �=F
C P

�¤�2F

Q'
 �=F

Q'
 �=F

C P

�¤�2F

Q'
 �=F

: (48)

The forests F .� / account for subdivergences, the first and second Symanzik
polynomials  � ; '� depend on the edge variables ˛e (Schwinger parameters) and
we integrate over RPjE.� /j�1>0 in projective space with canonical volume form˝� .

Apart from a scale s, '� depends on dimensionless angle variables D
n
m2

s

o
[

˚pi �pj
s

�
built from the mass m and external momenta pi . We abbreviate '

 �
WD '�

 �

and denote evaluation at the renormalization point .Qs; Q/ of the kinetic scheme by a
tilde or �jR WD �j.s;/ 7!.Qs; Q/.
Definition 9. Holding the angles fixed, the period functional P 2 H 0 is given by

P.� / WD � @

@ ln s
˚C.� /

ˇ
ˇ
ˇ
ˇ
R

for any � 2 H: (49)

10We prefer to work in the parametric representation as introduced in [14, Sect. 6-2-3].
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Corollary 12. For any graph � 2 H , the value P.� / is a period in the sense of
[15] (provided that Qs and all � 2 Q are rational) by the formula

P.� / D
(48)

Z

˝�

X

F2F .� /

.�1/1CjF j
 
D=2
F

Q'
 �=F

Q'
 �=F

C P

�¤�2F

Q'
 �=F

: (50)

For primitive (subdivergence free) graphs, [23] gives equivalent definitions of
this period in momentum and position space. The product rule, (49) and ˚CjR D "
show

Corollary 13. The period is an infinitesimal character P 2 gH
K

(it vanishes on any
graph that is not connected).

8.1 Renormalization Group

Proposition 6. Holding the angles fixed, differentiation by the scale results in11

� @

@ ln s
˚C DP ? ˚C: (51)

Proof. Adding 0 DP.� /�P.� / and collecting the contributions of Q'
 �=F

in .�/
we find

� @

@ ln s
˚C.� /

D
(48)

Z

˝�

8
<̂

:̂

1

 
D=2
�

C X

f� g¤F2F.� /

.�1/1CjF j

 
D=2
F

'

 �=F

'

 �=F
C P

�¤ı2F

Q'
 ı=F

9
>=

>;

D
(50)

P.� /C
Z

˝�

X

f� g¤F2F.� /

.�1/1CjF j

 
D=2
F

�
'

 �=F
� Q'

 �=F

� P

�¤�2F

Q'
 �=F

h
'

 �=F
C P

�¤ı2F

Q'
 ı=F

i
�
h Q'
 �=F

C P

�¤ı2F

Q'
 ı=F

i

D
.�/

P.� /C
Z

˝�

X

���

j�0.�/jD1

X

�2F2F.� /

.�1/1CjF j

 
D=2
F

�
'

 �=F
� Q'

 �=F

� Q'
 �=F

h
'

 �=F
C P

�¤ı2F

Q'
 ı=F

i
�P
ı2F

Q'
 ı=F

:

11This simple form circumvents the decomposition into one-scale graphs utilized in [6] and
therefore holds in the original renormalization Hopf algebra H .
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With � � � denoting a subdivergence � ¤ � , the forests F 2 F .� / containing �
correspond bijectively to the forests of � and � =� by

F� .� / WD fF 2F .� / W � 2F g 3F 7! �
F j� ; F=�

�2F .�/ 
F .� =�/; using

F j� WD fı 2 F W ı � �g and F=� WD fı=� W ı 2 F and ı � �g :
This is an immediate consequence of the definition of a forest, as for F 2 F� .� /,
each ı 2 F is either disjoint to � or strictly containing � (in both cases it
is mapped to ı=� 2 F=� ) or itself a subdivergence of � . Thus integrating
R1
0

A� QA
.ACtB/. QACtB/dt D B�1 ln A

QA in

DP.� /C
Z X

���

j�0.�/jD1

˝� ^˝�=�

X

F�2F.�/

F2F.� =�/

.�1/1CjF� jCjF j

 
D=2
F�
�  D=2

F



1Z

0

dt�
t�

�
'

 �=F
� Q'

 �=F

�
� t� � Q' �=F�h

'

 �=F
C P

�¤ı2F

Q'
 ı=F
C t� � P

ı2F�

Q'
 ı=F�

i
�
hP

ı2F

Q'
 ı=F
C t� � P

ı2F�

Q'
 ı=F�

i

DP.� /C
Z X

���

j�0.�/jD1

˝� ^˝�=�

X

F�2F.�/

F2F.� =�/

.�1/1CjF� jCjF j

 
D=2
F�
�  D=2

F

�
Q'
 �=F�

P

ı2F�

Q'
 ı=F�

� ln
'

 .� =�/=F
C P

ı2Fnf�=�g

Q'
 ı=F

P

ı2F

Q'
 ı=F

reduces to the projective
R
˝� in the edge variables of the subgraph � , making use of

jF j D ˇˇF j�
ˇ
ˇC jF=� j ; '

 ı=F

D
8
<

:

'

 .ı=�/=.F=�/
; if � � ı 2 F

'

 ı=F j�
; if � � ı 2 F

and

 F D  F j� �  F=� :

The apparent factorization into P.�/ and ˚C.� =�/ shows that we obtain conver-
gent integrals for each � � � individually and may therefore separate into

DP.� /C
X

���
j�0.�/jD1

Z

˝�

X

F�2F .�/

.�1/1CjF� j
 
D=2
F�

�
Q'
 �=F�
P

ı2F�

Q'
 ı=F�



Z

˝�=�

X

F2F .� =�/

.�1/jF j
 
D=2
F

� ln
'

 .�=�/=F
C P

ı2Fnf�=�g
Q'
 ı=F

P

ı2F

Q'
 ı=F

DP ? ˚C.� /:
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Note that the terms � ˝ � =� of �.� / with j�0.�/j > 1 do not contribute here by
Corollary 13.

Together with Corollary 13 and the connected graduation of H , this shows

˚C D
X

n2N0

.�`/n
nŠ


�

� @

@ ln s

�n
˚C

�

sDQs
D
(51)

X

n2N0

.�` �P/?n

nŠ
? ˚CjsDQs;

where we set ` WD ln s
Qs and the series is pointwise finite. Hence note

Corollary 14. The renormalized Feynman rules ˚C D ˚CjD Q ? ˚CjsDQs factor-
ize ([6] gives a different decomposition) into the angle-dependent part ˚CjsDQs and
the scale-dependence ˚CjD Q given as the Hopf algebra morphism

˚CjD Q D exp? .�`P/ W H ! KŒ`�: (52)

Example 16. For primitive � 2 Prim.H/, ˚C.� / D �` �P.� / C ˚CjsDQs.� /
disentangles the scale- and angle-dependence. Subdivergences evoke higher
powers of ` with angle-dependent factors. Dunce’s cap of �4-theory gives

D 1 such that

:

8.2 Dimensional Regularization

The dimensional regularization of [7] assigns a Laurent series z˚.� / in z 2 C

to each Feynman graph � 2 H , which for large <z is given by the convergent
parametric integral

z˚.� / D
2

4
Y

e2E.� /

1Z

0

˛e

3

5 e
� '
 �

 
D=2�z
�

: (53)

As '

 �
is linear in the scale s and homogeneous of degree one in the edge variables,

simultaneously rescaling of all ˛e yields (for logarithmically divergent graphs)

Corollary 15. The scale dependence z˚ D z˚ jsDQs ı ��z` of (53) is induced from
the grading Y of H given by the loop number.
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Thus the finiteness of the physical limit ˚CjD Q D limz!0 z˚ jRı.S ?��z`/ results
by Proposition 4 in the local character z˚ jR 2 GH

A , evaluated at the renormalization
point .Qs; Q/.
Corollary 16. In dimensional regularization, the period (50) is the 1

z -pole coeffi-
cient

P D
(46)

Res ı z˚ jR ı .S ? Y /: (54)

8.3 Dilatations

For � > 0, consider the dilatation operator �� scaling masses m 7! � � m and
momenta pi 7! � � pi . It fixes all angles , multiplies the scale s with �2 and
therefore acts as

˚C ı�� D exp?
�
�P ln

s

Qs
�
? ˚CjsDQs ı .s 7! s � �2/ D exp? .�2P ln�/ ? ˚C:

In other words, the dilatations R>0 3 � 7! �� 7! exp? .�2P ln�/ ? � are repre-
sented on the group GH

A of characters by a left convolution. As the unrenormalized
logarithmically divergent graphs are dimensionless and naively invariant under��,
P precisely measures how renormalization breaks this symmetry, giving rise to
anomalous dimensions.

9 Conclusion

We stress that the physical limit of the renormalized Feynman rules results in a
morphism 0� W HR ! KŒx� of Hopf algebras in case of the kinetic scheme. This
compatibility with the coproduct allows to obtain 0� from the linear terms � only. As
we just exemplified, these relations are statements about individual Feynman graphs
unraveling scale- and angle-dependence in a simple way. Again we recommend [6]
for further reading.

Secondly we revealed how Hochschild cohomology governs not only the pertur-
bation series through Dyson-Schwinger equations, but also determines the Feynman
rules. Addition of exact one-cocycles captures variations of Feynman rules and the
anomalous dimension � can efficiently be calculated in terms of Mellin transform
coefficients.

Note how this feature is lost upon substitution of the kinetic scheme by minimal
subtraction: We do not obtain a Hopf algebra morphism anymore due to the constant
terms, which are also more difficult to obtain in terms of the Mellin transforms F .
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Finally we want to emphasize the remarks in Sect. 5 towards a non-perturbative
framework. Though this relation between F.z/ and the anomalous dimension Q�.g/
is still under investigation and so far only fully understood in special cases, these
already give interesting results [5, 24].
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1 Introduction

This work has been initiated by the following email regarding Doron Zeilberger’s
Z60 conference:

http://www.math.rutgers.edu/events/Z60/

Email to Peter Paule from Sergei Suslov [27 Feb 2010]
Subject: Uranium 91C ion
"...I understand that you are coming to Doron’s conference in May
and write to you with an unusual suggestion...
I am attaching two of my recent papers inspired by recent success
in checking Quantum Electrodynamics in strong fields [see Refs. [35] and
[37] in this chapter].
It is a very complicated problem theoretically, and fantastically,
enormously complicated (at the level of science fiction!)
experimentally, which has been solved - after 20 years of hard
work by theorists from Russia (Shabaev C 20 coauthors/students)
and experimentalists from Germany.
Experimentally they took a uranium 92 atom, got rid of all but one
electrons, and measured the energy shifts due to the quantization
of the electromagnetic radiation field!
Mathematically, among other things, the precise structure of the
energy levels of the U 91 C ion requires the evaluation of
certain relativistic Coulomb integrals, done, in a final form, in
my attached papers ...
Here is the problem:
These integrals have numerous recurrence relations found by
physicists on the basis of virial theorems. They are also sums of
3 (linearly dependent) 3F2 series.
Now you can imagine what a mess it is if one tries to derive those
relations at the level of hypergeometric series (3 times 3 = 9
functions usually!).
It looks as a perfect job for the G-Z algorithm in a realistic
(important) classical problem of relativistic quantum mechanics.
It looks as a good birthday present to Doron, if one could have
done that. I feel we can do that together.

Looking forward to your answer on my crazy suggestion, BW, Sergei"

The first named author’s computer algebra response reported at the Z60 conference
is presented in this joint paper.

2 Relativistic Coulomb Integrals

Recent experimental and theoretical progress has renewed interest in quantum
electrodynamics of atomic hydrogenlike systems (see, for example, [3,10,11,13,14,
17, 31, 33, 34] and the references therein). In the last decade, the two-time Green’s
function method of deriving formal expressions for the energy shift of a bound-state
level of high-Z few-electron systems was developed [31] and numerical calculations

http://www.math.rutgers.edu/events/Z60/
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of QED effects in heavy ions were performed with an excellent agreement to
current experimental data [10, 11, 33]. These advances motivate a detailed study
of the expectation values of the Dirac matrix operators multiplied by the powers
of the radius between the bound-state relativistic Coulomb wave functions. Special
cases appear in calculations of the magnetic dipole hyperfine splitting, the electric
quadrupole hyperfine splitting, the anomalous Zeeman effect, and the relativistic
recoil corrections in hydrogenlike ions (see, for example, [1, 30, 32, 35] and the
references therein). These expectation values can be used in calculations with
hydrogenlike wave functions when a high precision is required. For applications
of the off-diagonal matrix elements, see [22–24, 28, 29], and [32].

Two different forms of the radial wave functions F and G are available (see,
for example, [18] and [38]). Given a set of parameters a; ˛1; ˛2; ˇ; ˇ1; ˇ2, and � ,
depending on physical constants "; �; �, and �, consider

�
F.r/

G.r/

�

D a2ˇ3=2
s

nŠ

� � .nC 2�/.2aˇr/
��1e�aˇr

�
˛1 ˛2

ˇ1 ˇ2

��
L2�n�1.2aˇr/
L2�n .2aˇr/

�

(1)

where, using the notation from [20], L�n.x/ stands for the corresponding Laguerre
polynomial of order n. Throughout this paper,

� D ˙ .j C 1=2/ ; � D
p
�2 � �2;

� D ˛Z D Ze2=„c; a D
p
1 � "2; (2)

" D E=mc2; ˇ D mc=„;

and � D �.� � �/."� � �/, with the total angular momentum j D 1=2; 3=2; 5=2,
etc. (see [4, 5, 8, 25, 35], and [38] regarding the relativistic Coulomb problem). The
following identities

"� D a .� C n/ ; "�C a� D a .nC 2�/ ; "� � a� D an; (3)

"2�2 � �2 D a2n .nC 2�/ D �2 � a2�2

are useful in the calculation of the matrix elements.
The relativistic Coulomb integrals of the radial functions,

Ap D
Z 1

0

rpC2
�
F 2 .r/CG2 .r/

�
dr; (4)

Bp D
Z 1

0

rpC2
�
F 2 .r/ �G2 .r/

�
dr; (5)

Cp D
Z 1

0

rpC2F .r/G .r/ dr; (6)
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have been evaluated in Refs. [35] and [37] for all admissible integer powers p;
in terms of linear combinations of special generalized hypergeometric 3F2 series
related to the Chebyshev polynomials of a discrete variable [18, 19].

Note. We concentrate on the radial integrals since, for problems involving spherical
symmetry, one can reduce all expectation values to radial integrals by use of the
properties of angular momentum.

Throughout the paper we use the following abbreviated form of the standard
notation of the generalized hypergeometric series 3F2; see, e.g., [20]:

3F2

�
a1; a2; a3

b1; b2

�

WD 3F2

�
a1; a2; a3

b1; b2
I 1
�

D
1X

kD0

.a1/k.a2/k.a3/k

.b1/k.b2/kkŠ
; (7)

where .a/k WD a.aC 1/ : : : .aC k � 1/ denotes the Pochhammer symbol.
Analogs of the traditional hypergeometric representations for the integrals are as

follows [35]:

2� .2aˇ/p
� .2� C 1/

� .2� C p C 1/ Ap D 2p"an 3F2
 
1 � n; �p; p C 1
2� C 1; 2

!

(8)

C .�C a�/ 3F2
 
1 � n; �p; p C 1
2� C 1; 1

!

C .� � a�/ 3F2
 
�n; �p; p C 1
2� C 1; 1

!

;

2� .2aˇ/p
� .2� C 1/

� .2� C p C 1/ Bp D 2pan 3F2
 
1 � n; �p; p C 1
2� C 1; 2

!

(9)

C" .�C a�/ 3F2
 
1 � n; �p; p C 1
2� C 1; 1

!

C " .� � a�/ 3F2
 
�n; �p; p C 1
2� C 1; 1

!

;

4� .2aˇ/p
� .2� C 1/

� .2� C p C 1/ Cp (10)

D a .�C a�/ 3F2
 
1 � n; �p; p C 1
2� C 1; 1

!

� a .� � a�/ 3F2
 
�n; �p; p C 1
2� C 1; 1

!

:

The averages of rp for the relativistic hydrogen atom, namely the integralsAp;were
evaluated in the late 1930s by Davis [6] as a sum of certain three 3F2 functions.1 But
it has been realized only recently that these series are, in fact, linearly dependent and
related to the Chebyshev polynomials of a discrete variable [35]. The most compact
forms in terms of only two linearly independent generalized hypergeometric series
are given in Ref. [37].

1He finishes his article by saying: “In conclusion I wish to thank Professors H. Bateman,
P. S. Epstein, W. V. Houston, and J. R. Openheimer for their helpful suggestions.”
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In addition, the integrals themselves are linearly dependent:

.2� C " .p C 1//Ap � .2"� C p C 1/Bp D 4�CpI (11)

see, for example, [1, 28, 29], and [35]. Thus, eliminating, say Cp; one can deal with
Ap and Bp only.

The integrals (4)–(6) satisfy numerous recurrence relations in p; which provide
an effective way of their evaluation for small p: A set of useful recurrence relations
between the relativistic matrix elements was derived by Shabaev [29] (see also
[1, 7, 28, 32, 35], and [39]) on the basis of a hypervirial theorem:

2�Ap � .p C 1/Bp D 4�Cp C 4ˇ"CpC1; (12)

2�Bp � .p C 1/Ap D 4ˇCpC1; (13)

�Bp � .p C 1/Cp D ˇ
�
ApC1 � "BpC1

�
: (14)

From these relations one can derive (see [1, 29], and [32]) the linear relation (11)
and the following computationally convenient recurrence formulas (15)–(18), stated
in our notation as

ApC1 D � .p C 1/ 4�
2"C 2� .p C 2/C " .p C 1/ .2�"C p C 2/

4 .1 � "2/ .p C 2/ ˇ� Ap (15)

C4�
2 .p C 2/C .p C 1/ .2�"C p C 1/ .2�"C p C 2/

4 .1 � "2/ .p C 2/ ˇ� Bp;

BpC1 D � .p C 1/ 4�
2 C 2�" .2p C 3/C "2 .p C 1/ .p C 2/

4 .1 � "2/ .p C 2/ ˇ� Ap (16)

C4�
2" .p C 2/C .p C 1/ .2�"C p C 1/ .2� C " .p C 2//

4 .1 � "2/ .p C 2/ ˇ� Bp

and

Ap�1 D ˇ4�
2" .p C 1/C p .2�"C p/ .2� C " .p C 1//

� .4�2 � p2/ p Ap (17)

�ˇ4�
2 .p C 1/C p .2�"C p/ .2�"C p C 1/

� .4�2 � p2/p Bp;

Bp�1 D ˇ4�
2 C 2�" .2p C 1/C "2p .p C 1/

� .4�2 � p2/ Ap (18)

�ˇ4�
2"C 2� .p C 1/C "p .2�"C p C 1/

� .4�2 � p2/ Bp;

respectively.
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Note. (i) These recurrences are complemented by the symmetries of the integrals
Ap; Bp; and Cp under the reflections p ! �p � 1 and p ! �p � 3 found in [35];
see also [2]. (ii) These relations were also derived in [36] by a different method using
relativistic versions of the Kramers–Pasternack three-term recurrence relations.

3 Computer Algebra and Software

The general algorithmic background of the computer algebra applications in this
paper is Zeilberger’s path-breaking holonomic systems paper [40]. The examples
given in the following sections restrict to applications: (i) of Zeilberger’s extension
[42] of Gosper’s algorithm [9], also called Zeilberger’s “fast algorithm” [21,41], and
(ii) of a variant of it which has been described in the unpublished manuscript (Paule,
2001, Contiguous relations and creative telescoping, unpublished manuscript, 33p).
Both of these algorithms have been implemented in the Fast Zeilberger package
zb.m which is written in Mathematica and whose functionality is illustrated below.
A very general framework of Zeilberger’s creative telescoping (i), and also of its
variant (ii), is provided by Schneider’s extension of Karr’s summation in difference
fields [12]; see, for instance, [26, 27] and the references therein.

The Fast Zeilberger Package can be obtained freely from the site

http://www.risc.jku.at/research/combinat/software/

after sending a password request to the first named author. Put the package zb.m
in some directory, e.g., /home/mydirectory, open a Mathematica session, and
read in the package by

In[1]:= SetDirectory["/home/ppaule/RISC Comb Software Sep05.dir/fastZeil"];

In[2]:= <<zb.m

Fast Zeilberger Package by Peter Paule and Markus Schorn

(enhanced by Axel Riese) - c� RISC Linz - V 3.53 (02/22/05)

A Mathematica notebook containing a full account of the Mathematica sessions
described below, together with some additional material, is available at:

http://hahn.la.asu.edu/�suslov/curres/index.htm

4 Unmixed Three-Term Recurrence Relations

The following relations purely in the Ap andBp , respectively, have been established
in [37]:

ApC1 D �P .p/

a2ˇ
�
4�2 .p C 1/C p .2"� C p/ .2"� C p C 1/� .p C 2/ Ap (19)

�
�
4�2 � p2� �4�2 .p C 2/C .p C 1/ .2"� C p C 1/ .2"� C p C 2/�p
.2aˇ/2

�
4�2 .p C 1/C p .2"� C p/ .2"� C p C 1/� .p C 2/ Ap�1;

http://www.risc.jku.at/research/combinat/software/
http://hahn.la.asu.edu/~suslov/curres/index.htm
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BpC1 D "�Q .p/

a2ˇ
�
4�2 C 2"� .2p C 1/C "2p .p C 1/� .p C 2/ Bp (20)

�
�
4�2 � p2� �4�2 C 2"� .2p C 3/C "2 .p C 1/ .p C 2/� .p C 1/

.2aˇ/2
�
4�2 C 2"� .2p C 1/C "2p .p C 1/� .p C 2/ Bp�1;

where

P .p/ D 2"p .p C 2/ .2"� C p/ .2"� C p C 1/ (21)

C" �4 �"2�2 � �2� � p �4"2�2 C p .p C 1/�	

C .2p C 1/ �4"2� C 2 .p C 2/ �2"�2 � ��	 ;
Q .p/ D .2p C 3/ �4�2 C 2"� .2p C 1/C p .p C 1/	 (22)

�a2 .2p C 1/ .p C 1/ .p C 2/ :

In comparison with other papers (e.g., [1, 2, 28, 29, 35, 36], and the references
therein), this approach provides an alternative way of the recursive evaluation of
the special values Ap and Bp; when one deals separately with one of these integrals
only. The corresponding initial data A0 D 1 and B�1 D a2ˇ=� can be found
in [35].

Note. The derivation in [37] resembles the reduction (uncoupling) of the first order
system of differential equations for relativistic radial Coulomb wave functions
F and G to the second order differential equations; see, for example, [18] and [38].

With Zeilberger’s definite extension [41, 42] of Gosper’s algorithm [9] for
indefinite hypergeometric summation, the derivation of such recurrences is fully
automatic if the input is given as a terminating hypergeometric series (and provided
that the input is of computationally feasible size). We illustrate this by a mechanical
derivation of the following simple three-term recurrence relation for the integralCp ,
not found in [37]:

CpC1 D � .2p C 1/ 2� C "
�
p .p C 1/� 4�2	

a2ˇ .p2 � 4�2/ .p C 1/ Cp (23)

C p
�
p2 � 4�2�

h
.p C 1/2 � 4�2

i

.2aˇ/2 .p2 � 4�2/ .p C 1/ Cp�1:

As input for Cp we take the hypergeometric sum representation from (10). We start
our Mathematica session by reading in the RISC “Fast Zeilberger” package:

In[1]:= <<zb.m

In[2]:= .a /k := Pochhammer[a,k];

F1[k ]:=
.1� n/k .�p/k .pC 1/k

.2 �C1/k .1/k kŠ
; F2[k ]:=

.�n/k .�p/k .pC 1/k
.2 �C1/k .1/k kŠ

;
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In[3]:= FullSimplify[ fF1[k]/F1[k], F2[k]/F1[k] g]
Out[3]= f1, � n

k� n g

In[4]:= f[k ]:=

�

4 � .2 a ˇ/p
GammaŒ2 �C1�

GammaŒ2 �CpC 1�

��1

F1Œk�
�
a .�Ca �/�a .��a �/ � n

n� k
�
I

In[5]:= SuslovRec=Zb[f[k] , k, 0, Infinity, p, 2] // Simplify

Out[5]= f4 a ˇ
��.3C 2 p/ .�.2C 3 pC p2/ �2 .nC�/�2 a n � � .nC 2 �/C

a2 �2 .nC�/ �
2C 4 n2C3 pC p2C8 n �

��
SUMŒ1C p�C

a .2C p/ ˇ
��.1C p/2 �2Ca2 �2 .4 n2 C .1C p/2C8 n �/

�
SUMŒpC 2� DD

.1Cp/
�
1C2 pCp2�4 �2� ��.2Cp/2 �2Ca2 �2 .4 n2C .2Cp/2C8 n �/

�
SUMŒp� g

Here Cp D SUM[p]. Utilizing two of the identities (2)–(3) brings Out[5] into the
form (23). In order to prove the correctness of Out[5], just type

In[6]:= Prove[]

and the program generates automatically a pretty print version of a proof in a
separate window or file, respectively.
The computerized derivations and proofs of (19)–(20) are analogous; one finds the
details in the corresponding Mathematica notebooks on the article’s website.2

5 Related Transformations of Generalized Hypergeometric
Series

Several relations between two pairs of the generalized hypergeometric series under
consideration are given in [35] and [37]:

3F2

�
1 � n; �p; p C 1
2� C 1; 1

�

(24)

D .2� C n/ .2� C p C 1/ .2� C p C 2/ .2nC p C 1/
4� .2� C 1/ .� C n/ .p C 1/


3F2
�
1 � n; p C 2; �p � 1

2� C 2; 1

�

�n .4� C 2nC p C 1/
2 .� C n/ .p C 1/ 3F2

��n; p C 2; �p � 1
2�; 1

�

and

3F2

��n; �p; p C 1
2� C 1; 1

�

(25)

D n .4� C 2n � p � 1/ .2� C p C 1/ .2� C p C 2/
4� .2� C 1/ .� C n/ .p C 1/

2See RelativisticCoulombIntegralsISupplementaryI.nb

RelativisticCoulombIntegralsISupplementaryI.nb
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3F2
�
1 � n; p C 2; �p � 1

2� C 2; 1

�

� .2� C n/ .2n � p � 1/
2 .� C n/ .p C 1/ 3F2

��n; p C 2; �p � 1
2�; 1

�

:

In addition,

p .p C 1/
2� C n 3F2

�
1 � n; p C 1; �p
2� C 1; 2

�

(26)

D .p � 2�/ .2� C p C 1/
2 .2� C 1/ .� C n/ 3F2

�
1 � n; p C 1; �p
2� C 2; 1

�

C �

� C n 3F2

��n; p C 1; �p
2�; 1

�

;

and

p .p C 1/
nC 2� 3F2

�
1 � n; �p; p C 1
2� C 1; 2

�

D 3F2

��n; �p; p C 1
2� C 1; 1

�

� 3F2

�
1 � n; �p; p C 1
2� C 1; 1

�

: (27)

These relations are “responsible” for the transformation between two different
hypergeometric forms of the relativistic Coulomb integrals [35, 37]. The second
named author was able to give only the proof of the last relation from the advanced
theory of generalized hypergeometric functions.

With the zb.m package, one can not only prove but also find such relations, in
the literature called also contiguous relations, automatically. We illustrate this by a
computer derivation of (24).

In[1]:= <<zb.m

In[2]:= .a /k := Pochhammer[a,k]; F0[k ] :=
.1� n/k .�p/k .pC 1/k
.2 �C 1/k .1/k kŠ

;

F1[k ] :=
.1� n/k .�p� 1/k .pC 2/k

.2 � C 2/k .1/k kŠ
; F2[k ] :=

.�n/k .�p� 1/k .pC 2/k
.2 �/k .1/k kŠ

;

Our goal is to compute rational function coefficients c0; c1; c2, free of the summation

variable k, such that

1X

kD0
.c0F 0Œk�C c1F1Œk�C c2F 2Œk�/ D 0:
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With a parameterized version of Gosper’s algorithm, similar to Zeilberger’s
extension of Gosper’s algorithm, we compute such ci together with a hypergeometric
expression g such that for non-negative integer N :

NX

kD0

�

F0Œk�

�

c0 C c1 F1Œk�
F 0Œk�

C c2 F 2Œk�
F 0Œk�

��

D gŒN �:

This is accomplished using the option Parameterized; finally we send N to
infinity:

In[3]:= FullSimplify[ f1, F1[k]/F0[k], F2[k]/F0[k] g]
Out[3]= f1, � .1C kC p/ .1C 2 �/

.�1C k� p/ .1C kC 2 �/
,

n .1C kC p/ .kC 2 �/

2 .k� n/ .�1C k� p/ � g

In[4]:= Gosper[F0[k], fk, 0, N g,
Parameterized -> f1, � .1C kC p/ .1C 2 �/

.�1C k� p/ .1C kC 2 �/
,

n .1C kC p/ .kC 2 �/

2 .k� p/ .�1C k� p/ � g]
If ‘N’ is a natural number, then:

Out[4]= f
NP

kD0
4 .1C p/ � .nC�/ .1C 2 �/ F0Œk�� .1C 2 nC p/ .nC 2 �/ .1C pC 2 �/

.2C pC 2 �/ F1Œk�C 2 n � .1C 2 �/ .1C 2 nC pC 4 �/ F2Œk� DD
� ..1CNCp/ .1C2 �/ .2 nC 4 n2Cn NC2 n2 NC 3 n pC2 n2 pCn N pC
n p2 C 4 �C 8 n �C 8 n2 �C 2 N � C 6 p � C 8 n p � C 2 N p �C
2 p2 � C 8 �2 C 8 n �2 C 8 p �2/

Pochhammer[1 - n, N] Pochhammer[-p, N] Pochhammer[1 + p, N])/

..1C NC 2 �/ NŠ PochhammerŒ1; N� PochhammerŒ1C 2 �; N�/ g

For N ! 1 this gives the desired relation because the right hand side is 0 when
N > p.

The computerized proofs of (25)–(27) are similar and the corresponding Mathe-
matica notebooks are available on the article’s website.3

6 Virial Recurrence Relations

A general procedure of verification of the linear relations between the relativistic
integrals can be formulated as follows. Start from the hypergeometric series
representations for the integrals involved into the identity/relation in question, and
find all linear dependencies between the corresponding hypergeometric series using
the package zb.m. Substitute the integrals into the desired identity, eliminate the
linear dependent sums/vectors from this equation, and then simplify the coefficients
in front of the rest of the series to zero with the help of the standard identities among
the quantum numbers of the relativistic Coulomb problem.

3See RelativisticCoulombIntegralsISupplementaryII.nb

RelativisticCoulombIntegralsISupplementaryII.nb
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One can easily see that the linear relation (11) is equivalent to (27), and that (12)
follows from (11) and (13). To illustrate our strategy, we derive (13) directly from
the hypergeometric representations for the relativistic Coulomb integrals (8)–(10).
To this end, we input the hypergeometric summands involved in the relations
(8)–(10) and (13):

In[1]:= <<zb.m

In[2]:= .a /k := Pochhammer[a,k]; F0[k ] :=
.1� n/k .�p/k .pC 1/k
.2 �C 1/k .2/k kŠ

;

F1[k ] :=
.1� n/k .�p/k .pC 1/k
.2 � C 1/k .1/k kŠ

; F2[k ] :=
.�n/k .�p/k .pC 1/k
.2 �C 1/k .1/k kŠ

;

F3[k ] :=
.1� n/k .�p� 1/k .pC 2/k

.2 � C 1/k .1/k kŠ
; F4[k ] :=

.�n/k .�p� 1/k .pC 2/k
.2 � C 1/k .1/k kŠ

;

In[3]:= FullSimplify[ f1, F1[k]/F0[k], F2[k]/F0[k], F3[k]/F0[k], F4[k]/F0[k] g]
Out[3]= f1, 1C k, � .1C k/ n

k� n ; 1C kC 2 k .1C k/

1� kC p
;
.1C k/ n .1C kC p/

.k� n/ .�1C k� p/ g

In[4]:= Gosper[F0[k], fk, 0, N g,
Parameterized -> f1, 1Ck, � .1Ck/ n

k�n ; 1C kC 2 k .1C k/

1� kC p
,

.1Ck/ n .1CkCp/
.k� n/ .�1C k� p/ g]

If ‘N’ is a natural number, then:

Out[4]= f
NP

kD0
�n F1Œk�C .1C nC p/ F2Œk�� n F3Œk�C .�1C n� p/ F4Œk� DD 0;

NP

kD0
2 n p F0Œk�C .1C 2 nC pC 2 �/ F2Œk�C .�1� p� 2 �/ F4Œk� DD

2 n .1C NC p/ PochhammerŒ1� n; N� PochhammerŒ�p; N� PochhammerŒ1C p; N�

NŠ PochhammerŒ2; N� PochhammerŒ1C 2 �; N�
;

NP

kD0
�2 n .nC 2 �/ F1Œk�C .1C 2 nC 2 n2 C 2 pC 2 n pC p2 C 2 �C

4 n � C 2 p �/ F2Œk�� .1C p/ .1C pC 2 �/ F4Œk� DD
2 n .1CN/ .1CNCp/PochhammerŒ1�n; N�PochhammerŒ�p; N�PochhammerŒ1Cp; N�

NŠ PochhammerŒ2; N� PochhammerŒ1C2 �; N�
g

Notice that for N !1 all the right hand sides vanish because they are 0 when
N > p.

Summarizing, the package has found the following three linear relations:

n .X C U /� .1C nC p/ Y C .1 � nC p/ V D 0; (28)

2np Z C .1C 2nC p C 2�/ Y � .1C p C 2�/ V D 0; (29)

2n .nC 2�/X C .1C p/.1C p C 2�/V (30)

D �.nC 1/2 C 2p C .nC p/2 C 2.2nC p C 1/�	Y

for the following five linear dependent vectors
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X WD 3F2

�
1 � n; �p; p C 1
2� C 1; 1

�

; Y WD 3F2

��n; �p; p C 1
2� C 1; 1

�

;

Z WD 3F2

�
1 � n; �p; p C 1
2� C 1; 2

�

; U WD 3F2

�
1 � n; �p � 1; p C 2

2� C 1; 1

�

;

V WD 3F2

��n; �p � 1; p C 2
2� C 1; 1

�

:

We choose to present everything in terms of Y and V :

In[5]:= Lin1 = n*(X + U) - (1 + n + p)*Y + (1 - n + p)*V ;

Lin2 = (2 n p)*Z + (1 + 2 n + p + 2 �)*Y - (1 + p + 2 �)*V ;

Lin3 = -2 n (n + 2 �)*X +

(1 + 2 n + 2 n2 + 2 p + 2 n p + p2 + 2 � + 4 n � + 2 p �)*Y -

(1 + p) (1 + p + 2 �)*V ;

Solve[Lin1==0 && Lin2==0 && Lin3==0, fX, U, Zg];
FullSimplify[%]

Out[5]= f fX! �.1Cp/ V .1CpC2 �/CY .2 n2C2 n .1CpC2 �/C .1Cp/ .1CpC2 �//

2 n .nC2 �/
;

U! V .2 n2 �2 n .1Cp�2 �/C .1Cp/ .1Cp� 2 �//� .1C p/ Y .1C p� 2 �/

2 n .nC 2 �/
;

Z! V .1C pC 2 �/� Y .1C 2 nC pC 2 �/

2 n p
g g

Introducing the Coulomb integrals,

In[6]:= Ap[X, Y, Z] :=

(2 � (2 a ˇ)ˆ(p) (Gamma[2 � + 1])/(Gamma[2 � + p + 1]))ˆ(-1)*

((� + a �)*X + (� - a �)*Y + 2 p " a n*Z) ;

Bp[X, Y, Z] :=

(2 � (2 a ˇ)ˆ(p) (Gamma[2 � + 1])/(Gamma[2 � + p + 1]))ˆ(-1)*

(" (� + a �)*X + " (� - a �)*Y + 2 p a n*Z) ;

Cplus1[U, V] := (4 � (2 a ˇ)ˆ(p + 1) (Gamma[2 � + 1])/

(Gamma[2 � + p + 2]))ˆ(-1)*(a (� + a �)*U + a (� - a �)*V) ;

we express the desired relation in terms of X; : : : ; V :

In[7]:= (2 �)*Bp[X, Y, Z] - (p + 1)*Ap[X, Y, Z] - (4 ˇ)*Cplus1[U, V];

% /. Gamma[2 + p + 2 �] -> (1 + p + 2 �)*Gamma[1 + p + 2 �];

FullSimplify[%]
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Out[7]= � 1

� GammaŒ1C 2 ��
2�1�p .a ˇ/�p

(� ((X + Y) (1 + p - 2 " �) + U (1 + p + 2 �) - V (1 + p + 2 �)) +

a (2 n p Z (" + p " - 2 �) + � ((X - Y) (1 + p - 2 " �) +

U (1 + p + 2 �) + V (1 + p + 2 �)))) Gamma[1 + p + 2 �]

Next we rewrite the relevant part into a linear combination of X; : : : ; V :

In[8]:= ZERO = (� ((X+Y) (1+ p - 2" �) + U (1 + p + 2�) - V (1 + p + 2�)) +

a (2 n p Z (" + p " - 2 �) +

� ((X-Y) (1 + p - 2"�) + U (1 + p + 2�) + V (1 + p + 2 �)))) ;

Collect[ZERO, fX, Y, Z, U, V g] ;

FullSimplify[%]

Out[8]= 2 a n p Z (" + p " - 2 �) + Y (1 + p - 2 " �) (-a � + �) +

X(1 + p - 2" �)(a� + �) + V(a� - �)(1 + p + 2�) + U(a� + �)(1 + p + 2�)

Eliminating X; U and Z;

In[9]:= % /. fX! �.1Cp/V .1CpC2 �/CY .2n2C2 n .1CpC2 �/C .1Cp/ .1CpC2 �//

2 n .nC 2 �/
;

U! V .2 n2 � 2 n .1C p� 2 �/C .1C p/ .1C p� 2 �//� .1C p/ Y .1C p� 2 �/

2 n .nC 2 �/
;

Z! V .1C pC 2 �/� Y .1C 2 nC pC 2 �/

2 n p
g ;

FullSimplify[%] ;

Collect[%, fY, V g] ;

FullSimplify[%]

Out[9]=
.1C p/ V .1C pC 2 �/ .�� .n� " � C �/C a .n2 "� n � C " �2 C 2 n " � � � �//

n .nC 2 �/
C

Y

�

.1C p� 2 " �/ .�a � C �/� .1C p/ .a � C �/ .1C p� 2 �/ .1C pC 2 �/

2 n .nC 2 �/
�

a ."C p "� 2 �/.1C 2 nC pC 2 �/C
.1C p� 2 " �/ .a � C �/ .2 n2 C 2 n .1C pC 2 �/C .1C p/ .1C pC 2 �//

2 n .nC 2 �/

�

Finally, we simplify the coefficients of V and Y :

In[10]:= ZeroV = - � (n - " � + �) + a (n2 " - n � + " �2 + 2 n " � - � �) ;

ZeroY = 2 n (1 + p - 2" �) (-a� + �) (n + 2�) -

(1 + p) (a� + �) (1 + p - 2�) (1 + p + 2�) -

2 a n (" + p" -2�) (n + 2�) (1 + 2 n + p + 2�) +

(1+p-2" �) (a� +�) (2n2 + 2n(1 + p + 2�) + (1 + p)(1 + p + 2�)) ;

fZeroV, ZeroY g ;
FullSimplify[%] ;

% /. n - > (" � - a �)/a ;

FullSimplify[%] ;
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% /. "ˆ2 - > 1 - aˆ2 ;

FullSimplify[%] ;

% /. �ˆ2 - > �ˆ2 + �ˆ2

Out[10]= f0, 0 g

which is the name of the game.
Computerized proofs of (14) and some of its extensions work the same; they are
available on the article’s website.4

In a similar fashion, seeking for a more general linear combination of the
corresponding integrals, with the zb.m package one can derive the following
two-parameter relation:

ŒD.p C 1/� C .2� C ".p C 1//� Ap
� Œ2D � � C .2"� C p C 1/� Bp C 4�C Cp C 4ˇD CpC1 D 0; (31)

where C and D are two arbitrary constants. The virial relations (11)–(13) are its
special cases.
We would like to point out the following relation:

.p C 1/ �2�Cp � �Ap
� D ˇ.p C 2/ �"ApC1 � BpC1

�
; (32)

as another simple example.

Note. This relation is a linear combination of (12)–(14); see [1].

7 Conclusion

The relativistic Coulomb integrals (4)–(6) were recently evaluated in a hyper-
geometric form [35]. The corresponding system of the first order difference
equations (15)–(16) has been solved in [37] in terms of linear combinations of the
dual Hahn polynomials thus providing an independent proof. Here, with the help of
the Fast Zeilberger package zb.m we give a direct derivation of these results.

One of the goals of this article is to demonstrate the power of symbolic
computation for the study of relativistic Coulomb integrals. Namely, computer
algebra methods related to Zeilberger’s holonomic systems approach allow not only
to verify some already known complicated relations, but also to derive new ones
without making enormously time-consuming calculations by hands or with ad hoc
usage of computer algebra procedures.

4See RelativisticCoulombIntegralsISupplementaryIII.nb

RelativisticCoulombIntegralsISupplementaryIII.nb
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In a sequel to this article5 we are planning to investigate the computer-assisted
derivation of recurrences, e.g. the “birthday recurrences” from Sect. 4, by taking as
a starting point the original definition of the Coulomb integrals (4)–(6). To this end,
we will use Koutschan’s package HolonomicFunctions [16]. This package,
written in Mathematica, implements further ideas related to Zeilberger’s holonomic
systems paradigm [40]; for instance, it includes implementations of (variations
of) Z’s “slow algorithm”, and algorithms by F. Chyzak (and B. Salvy), and
N. Takayama. In this context we will have to exploit closure properties of classes
of special (resp. holonomic) sequences and functions; an introduction to computer
algebra methods for the univariate case can be found in [15].

Moreover, the zb.m package strongly suggests that there are, in fact, four
linearly independent virial recurrence relations, see more details on the article’s
website, but only three of them (e.g., (12)–(14)) are available in the literature.
Another next challenge is to study the off-diagonal matrix elements that are
important in applications [22–24, 28, 29], and [32].
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Hypergeometric Functions in Mathematica R�

Oleksandr Pavlyk

Abstract This paper is a short introduction to the generalized hypergeometric
functions, with some theory, examples and notes on the implementation in the
computer algebra system Mathematica R�. (Mathematica is a registered trademark
of Wolfram Research, Inc.)

1 Hypergeometric Series

A power series
Pn

kD0 cn is called hypergeometric if the ratio of successive cn is
rational in n, represented in its factored form:

cnC1
cn
D R .n/ D .nC a1/.nC a2/ � � � .nC ap/

.nC 1/.nC b1/ � � � .nC bq/ z: (1)

Examples of such series include geometric series with cn D zn, exponential series
with cn D zn

nŠ
and logarithmic series with cn D .�z/n

.nC1/ . The general solution to the
recurrence equation (1) is

cn D c0
n�1Y

mD0

.mC a1/.mC a2/ � � � .mC ap/
.mC 1/.mC b1/ � � � .mC bq/ z D c0 zn

nŠ

.a1/n.a2/n � � � .ap/n
.b1/n � � � .bq/n ; (2)

where .a/n D a.a C 1/ � � � .a C n � 1/ is the Pochhammer symbol, also known as
raising factorial. The hypergeometric series need not be infinite. When the ratio (1)
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vanishes for some value of n, the hypergeometric series degenerates to a polynomial.
Newton’s generalized binomial theorem serves as an example:

.1� z/�˛ D
1X

nD0

.˛/n

nŠ
zn:

Convergence of the hypergeometric series can be easily established by the
ratio test:

cnC1
cn
D z

nqC1�p

0

@1� 1
n

0

@1C
qX

jD1
bj �

pX

iD1
ai

1

AC �
�
1

n

�
1

A : (3)

When q C 1 > p the hypergeometric series converges for all z 2 C and defines
an entire function pFq.z/. When p D q C 1 the series converges for jzj < 1 and

for jzj D 1 if <
�Pq

jD1 bj �
Pp

iD1 ai
�
> 0. The hypergeometric series converges

conditionally for jzj D 1; z 6D 1 if <
�Pq

jD1 bj �
Pp

iD1 ai
�
D 0. For p > q C 1

the hypergeometric series diverges, unless it is a polynomial. An example of such a
hypergeometric polynomial is provided by the Charlier polynomials [7]:

Cn.�I z/ D 2F0

� �n; �z
�

ˇ
ˇ
ˇ
ˇ�

1

�

�

Analytic continuation, whenever necessary, of the hypergeometric series defines
a generalized hypergeometric function , denoted as

pFq

�
a1; a2; : : : ; ap
b1; b2; : : : ; bq

ˇ
ˇ
ˇ
ˇ z

�

: (4)

It is represented in Mathematica as

• HypergeometricPFQ[fa1,: : :, apg, fb1,: : :,bqg,z]

with special cases of p and q implemented as

• Hypergeometric0F1[b, z]
• Hypergeometric1F1[a, b, z]
• Hypergeometric2F1[a1, a2, b, z]

for convenience. The family of the generalized hypergeometric functions encom-
passes many elementary and special functions and sequences. A compendium of
such special cases can be found in [3, 5].

The hypergeometric function pFq.z/ is an analytic function of its parameters with
poles at bj D �m, m 2 Z>0. A regularized hypergeometric function, p QFq.z/, is a
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multiple of hypergeometric functions with the property that it is an entire function
of its parameters:

p
QFq.z/ D

qY

jD1
� .bj / � pFq.z/ D

1X

mD0

.a1/m � � � .ap/m
� .b1 Cm/ � � �� .bq Cm/

zm

mŠ
: (5)

The regularization effect is the consequence of the reciprocal of the � -function
vanishing at non-positive integers.

2 Parameter Shift Operators and Hypergeometric
Differential Equation

Making use of the recurrence relation

˛ � .˛ C 1/n D .˛/nC1 D .˛/n � .˛ C n/ (6)

for the Pochhammer symbol for ˛ D a1, it is easily established that the differential
operator OAa1 D z d

dz C a1 increases the parameter a1 of the hypergeometric function
by 1:

OAa1 ı pFq
�
a1; : : : ; ap

b1 : : : ; bq

ˇ
ˇ
ˇ
ˇ z

�

D
1X

nD0

OAa1 ı zn

nŠ

.a1/n � � � .ap/n

.b1/n � � � .bq/n (7)

D
1X

nD0
.nC a1/ zn

nŠ

.a1/n � � � .ap/n

.b1/n � � � .bq/n

D
1X

nD0
a1

zn

nŠ

.a1 C 1/n � � � .ap/n
.b1/n � � � .bq/n

D a1 � pFq
�
a1 C 1; : : : ; ap
b1; : : : ; bq

ˇ
ˇ
ˇ
ˇ z

�

:

Clearly the choice of the parameter a1 was arbitrary, �ap will likewise raise the
parameter ap by 1. Using the recurrence equation (6) with ˛ D b1 � 1, and
introducing OBb1 D z d

dz C b1 � 1:

OBb1 ı pFq
�
a1; : : : ; ap
b1 : : : ; bq

ˇ
ˇ
ˇ
ˇ z

�

D
1X

nD0

OBb1 ı zn

nŠ

.a1/n � � � .ap/n

.b1/n � � � .bq/n (8)

D
1X

nD0
.nC b1 � 1/ zn

nŠ

.a1/n � � � .ap/n

.b1/n � � � .bq/n
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D
1X

nD0
.b1 � 1/ zn

nŠ

.a1/n � � � .ap/n
.b1 � 1/n � � � .bq/n

D .b1 � 1/ � pFq
�

a1; : : : ; ap
b1 � 1; : : : ; bq

ˇ
ˇ
ˇ
ˇ z

�

:

The derivative of the hypergeometric function is also easy to find:

d

dz
ı pFq

�
a1; : : : ; ap

b1 : : : ; bq

ˇ
ˇ
ˇ
ˇ z

�

D
1X

nD0

nzn�1

nŠ

.a1/n � � � .ap/n

.b1/n � � � .bq/n (9)

D
1X

nD1

zn

.n � 1/Š
.a1/n � � � .ap/n
.b1/n � � � .bq/n

D
1X

nD0

zn

nŠ

.a1/nC1 � � � .ap/nC1

.b1/nC1 � � � .bq/nC1

D a1 � � �ap
b1 � � �bq � pFq

�
a1 C 1; : : : ; ap C 1
b1 C 1; : : : ; bq C 1

ˇ
ˇ
ˇ
ˇ z

�

;

where the first equality of (6) was used for each parameter of the hypergeometric
function.

We are now in the position to derive the ordinary differential equation (ODE),
satisfied by the hypergeometric function. To this end, note that

OAa1 ı � � � ı OAap ı pFq
�

a
b

ˇ
ˇ
ˇ
ˇ z

�

D a1 � � �ap � pFq
�

aC 1
b

ˇ
ˇ
ˇ
ˇ z

�

(10)

OBb1 ı � � � ı OBbq ı pFq
�

a
b

ˇ
ˇ
ˇ
ˇ z

�

D .b1 � 1/ � � �
�
bq � 1

� � pFq
�

a
b � 1

ˇ
ˇ
ˇ
ˇ z

�

; (11)

where aC 1 denotes the vector with each element incremented by one. Differentiat-
ing (11), using (9) and comparing to (10) we arrive at the hypergeometric differential
equation:

�
z � OAa1 ı � � � ı OAap � OB1 ı OBb1 ı � � � ı OBbq

�
ı pFq

�
a
b

ˇ
ˇ
ˇ
ˇ z

�

D 0: (12)

A few remarks are in order.
The hypergeometric differentiation equation is a linear ordinary differential

equation with polynomial coefficients, and therefore the generalized hypergeometric
function is a holonomic function [8].

Any solution of the hypergeometric differential equation is referred to as a
hypergeometric function. Therefore, for example, the Tricomi’s solution U.aI bI z/
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of the 1F1-differential equation (a.k.a. Kummer’s ODE) zy00.z/ C .b � z/y0.z/ �
ay.z/ D 0 is also said to be a hypergeometric function.

In the differential equation parameters p and q can be arbitrary non-negative
integers. The order of the differential equation equals r D max.p; q C 1/. When
p 6D q C 1, the leading term of the ODE is zry.r/, meaning that z D 0 and z D 1
are the only singular points of the hypergeometric differential equation. In the case
of p D qC1, the leading term of the ODE is .1�z/zr�1y.r/.z/, so that the ODE has
three singular points z D 0, z D 1 and z D1. One can show that z D 1 is always a
regular singular point.

Let f .z/ be a solution of the hypergeometric ODE (12), and define g.z/ D
z˛f .�zm/. Then g.z/ satisfies:

0

@�zm
pY

iD1

�
z

m

d

dz
C ai � ˛

m

�

�
qY

jD0

�
z

m

d

dz
C bj � 1 � ˛

m

�
1

A ı g.z/ D 0: (13)

The equation obtained is similar in the structure to Eq. (12). Solutions of (13) are
also said to be hypergeometric functions. Therefore the familiar Bessel’s function
of the first kind

J� .z/ D .z=2/�

� .�/
� 0F1

� �
� C 1

ˇ
ˇ
ˇ
ˇ

z2

4

�

can now be welcomed to the hypergeometric family, as well as the Bessel’s function
of the second kind Y�.z/ which is another solution of the Bessel’s differential
equation, so that J�.z/ and Y�.z/ form a non-degenerate basis on the solutions of
the Bessel’s differential equation for all regular points of the ODE.

3 Mellin Transform

The (direct) Mellin transform of a function f .x/ is defined, for a < <.s/ < b, as
the following integral transform

M Œf �.s/ D
Z 1

0

xs�1f .x/dx (14)

The image of the Mellin transform is an analytic function of s in its definition
domain. Therefore the region fs 2 CW a < <.s/ < bg is called the strip of
analyticity. The inverse Mellin transform is defined as follows:

M�1Œ'�.x/ D 1

2�i

Z �Ci1

��i1
'.s/x�sds (15)
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for arbitrary a < � < b, and a and b define the strip of analyticity of '.s/.
The Mellin inversion theorem specifies when the inverse Mellin transform is
defined, and when it recovers the original function.

The importance of the Mellin transform for the study of the hypergeometric
differential equation lies in the following property:

M




x
d

dx
f .x/

�

.s/ D
Z 1

0

xs�1 � x d

dx
f .x/dx

D xsf .x/jx"C1
x#0 � s

Z 1

0

xs�1f .x/dx

D �sM Œf �.s/:

Moreover,

M Œxmf .x/�.s/ D
Z 1

0

xsCm�1f .x/dx DM Œf �.s Cm/:

We now consider a suitable solution of the hypergeometric ODE (13), and apply
these two facts about the Mellin transform to infer the constraints the ODE imposes
on the Mellin image of its solution. We readily find

�

pY

iD1

�

ai � 1 � s C ˛
m

�

M Œg�.s Cm/ D
qY

jD0

�

bj � 1 � s C ˛
m

�

M Œg�.s/; (16)

where we take b0 D 1. The relation (16) is the rank 1 recurrence equation in smD s
m

.
Therefore the Mellin transform image of a solution of the hypergeometric differen-
tial equation (13) is an analytic solution of the rank 1 recurrence equation (16).

In order to simplify further analysis, we temporarily set m D 1.
Solutions of the recurrence relation (16) are easily constructed with the help of

Euler’s � -functions. Let s be the operator of taking the ratio of the unit shift of a
function of s to the function itself:

sh.s/ D h.s C 1/
h.s/

:

Every factor of the rational function sM Œg�.s/ in (16) can be reproduced in 1 of
2 ways:

s� .a � ˛ � s/ D 1

a � 1 � ˛ � s D s
.�1/s

� .1� aC ˛ C s/ (17)

and

s
1

� .b � ˛ � s/ D b � 1 � ˛ � s D s.�1/
s� .1 � b C ˛ C s/ : (18)
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A solution of (16) therefore involves combinations of these possibilities. Partition
the set of parameters fai gpiD1 into two non-overlapping subsets, depending on
whether the direct or the reciprocal� -function in (17) is used in the solution of (16).
Denote these subsets Ad and Ar . Partition the set of parameters fbj gqjD0 similarly
into Br and Bd . Then the solution of (16) reads

M Œg�.s/ D
Q
a2Ad � .a � ˛ � s/Q

a02Ar � .1 � a0 C ˛ C s/
�

Q
b02Bd � .1 � b0 C ˛ C s/Q

b2Br � .b � ˛ � s/
� .�1/s.jAr jCjBd j/��s : (19)

As an example, consider the solution for which Ar D ; and Bd D fb0g, i.e.

g.z/ D 1

2�i

Z �Ci1

��i1

Qp
iD1 � .ai � ˛ � s/Qq
jD1 � .bj � ˛ � s/

� .˛ C s/.�z/�sds;

where � and the parameters ai are such that 0 < � C ˛ < min16i6p <.ai /. It can
be shown, that the integration contour can be closed to the left, encompassing all
the poles of � .s C ˛/. As these poles are all simple, finding residues at them is
particularly simple:

RessD�˛�m
Qp
iD1 � .ai � ˛ � s/Qq
jD1 � .bj � ˛ � s/

� .˛ C s/.�z/�s D

.�z/mC˛
Qp
iD1 � .ai Cm/Qq
jD1 � .bj Cm/

RessD�m � .s/ D

.�z/mC˛
Qp
iD1 � .ai Cm/Qq
jD1 � .bj Cm/

.�1/m
� .mC 1/ ; (20)

and hence

g.z/ D .�z/˛
1X

mD0

Qp
iD1 � .ai Cm/Qq
jD1 � .bj Cm/

zm

mŠ

D .�z/˛
Qp
iD1 � .ai /Qq
jD1 � .bj /

� pFq
�
a1 : : : ap

b1 : : : bq

ˇ
ˇ
ˇ
ˇ z

�

(21)

D .�z/˛
pY

iD1
� .ai / � p QFq

�
a1 : : : ap
b1 : : : bq

ˇ
ˇ
ˇ
ˇ z

�

(22)

which in the case of ˛ D 0 precisely corresponds to the generalized hypergeometric
function we started with.
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Fig. 1 The integration
contour Li1 in the definition
of the Meijer’s G-function. It
separates “left” poles (labeled
as s D �b � k) ofQm
jD1 � .bj C s/ from the

“right” poles (labeled as
s D �aC kC 1) ofQn
iD1 � .1� ai � s/

4 Meijer’s G-Function

The Dutch mathematician Cornelis Meijer introduced [4] his famous G-function to
be defined as follows:

Gmn
pq

�
a1; : : : ; an; anC1; : : : ; ap
b1; : : : ; bm; bmC1; : : : ; bq

ˇ
ˇ
ˇ
ˇ z

�

D

1

2�i

Z

L

Qn
iD1 � .1 � ai � s/Qq

jDmC1 � .1 � bj � s/
�
Qm
jD1 � .bj C s/

Qp
jDnC1 � .aj C s/

� z�sds; (23)

where the integration contour L starts with jsj ! 1, separates “left” poles ofQm
jD1 � .bj C s/ from the “right” poles of

Qn
iD1 � .1 � ai � s/, and goes back to

jsj ! 1. The Mellin-Barnes integration contour Li1 (see Fig. 1) starts from �i1
and continues to Ci1, for example.

As discussed in the previous section, the G-function is the general hypergeomet-
ric function. It is implemented in Mathematica as

MeijerG[ ff a1; : : : ; ang; fanC1; : : : ; apgg; ffb1; : : : ; bmg; fbmC1; : : : ; bqgg; z] :

The G-function satisfies an ordinary differential equation of hypergeometric type:

.�1/nCm�pz
pY

iD1

�

z
d

dz
C 1� ai

�

ı f .z/ D
qY

jD1

�

z
d

dz
� bj

�

ı f .z/: (24)

By virtue of (23) several useful properties of the G-function follow easily:

z˛ �Gmn
pq

�
a1; : : : ; ap
b1; : : : ; bq

ˇ
ˇ
ˇ
ˇ z

�
s!
C˛D Gmn

pq

�
a1 C ˛; : : : ; ap C ˛
b1 C ˛; : : : ; bq C ˛

ˇ
ˇ
ˇ
ˇ z

�

(25)
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Gmn
pq

�
a1; : : : ; ap
b1; : : : ; bq

ˇ
ˇ
ˇ
ˇ z

�
s!�
D Gnm

qp

�
1 � b1; : : : ; 1 � bq
1 � a1; : : : ; 1 � ap

ˇ
ˇ
ˇ
ˇ
1

z

�

: (26)

Next we use Stirling’s formula log� .s C a/ D �
aC s � 1

2

�
log.s/ � s C

1
2

log.2�/CO.jsj�1/ to study the convergence properties of the integral (23). Using
j� .aC s/j D exp .< log� .s C a// and taking care to carefully combine terms we
get the asymptotic behavior of the integrand in (23) for large jsj:

log

�ˇ
ˇ
ˇ
ˇz
�s
Qn
iD1 � .1 � ai � s/Qq�m
iD1 � .1 � di � s/

�
Qm
iD1 � .s C ci /Qp�n
iD1 � .s C bi /

ˇ
ˇ
ˇ
ˇ

�

D

=.s/ .arg.s/ .p �m � n/ � arg.�s/ .q �m � n/C arg.z//�
�<.s/ ..p � q/ .log jsj � 1/C log jzj/ �<. / log jsj C O.1/

(27)

where

 D
nX

iD1

�

ai � 1
2

�

C
p�nX

iD1

�

bi � 1
2

�

�
mX

iD1

�

ci � 1
2

�

�
p�mX

iD1

�

di � 1
2

�

:

The above result allows to establish the convergence of the integral (23). For
integration along Li1, <.s/ is bounded and arg.s/ approaches ˙�

2
. Convergence

for s !Ci1 and for s ! �i1 takes place for

jarg.z/j < �0 or .jarg.z/j D �0 and ..p � q/<.s/C<. // > 1/ ; (28)

where �0 D �
�
mC n � pCq

2

�
. G-functions defined by the integration over the

contour Li1 of Mellin-Barnes type admit a Mellin transform.
Since the integrand of (23) is meromorphic, the integration contour can be bent

at our convenience so long as no poles are crossed in the process. We thus consider
contours where s ! jsje˙i� for some 0 < � < � .

We denote contours with 0 < � < �
2

as LC1 as<.s/ is increasing toC1 along
the contour and contours with �

2
< � < � as L�1.

The integral (23) with the contour Li1 replaced with LC1 converges when

.p > q/ or .p D q and jzj > 1/ or .p D q and jzj D 1 and <. / > 1/: (29)

The integral (23) with the contour Li1 replaced with L�1 converges when

.p < q/ or .p D q and jzj < 1/ or .p D q and jzj D 1 and <. / > 1/: (30)

Example 1. Consider an example of f .z/ D G10
01

�
0

�
ˇ
ˇ
ˇ
ˇ z

�

with q D m D 1 and

p D n D 0. f .z/ satisfies zf 0.z/ C zf .z/ D 0. The integral (23) over the contour
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Li1 is convergent for ��
2
< arg.z/ < �

2
. Since p < q, the contour can be bent

to the left. The integral (23) over the contour L�1 is convergent for all z 2 C. Of
course, when <.z/ > 0, these integrals define the same function. By the principle
of analytic continuation the integral over L�1 gives the analytic continuation of
the function, defined by the integral over Li1. It can be evaluated by the Cauchy
integral theorem, as the sum of residues at the infinite sequence of poles of the � .s/:

G10
01

�
0

�
ˇ
ˇ
ˇ
ˇ z

�

D 1

2�i

Z

L�1

� .s/z�sds D
1X

nD0
RessD�n � .s/z�s

D
1X

nD0

.�1/n
nŠ

zn D e�z:

(31)

Note that the condition of integrability along Li1 coincides with the condition of
absolute convergence of the Mellin transform in t for f .tz/.

Example 2. Consider f .z/ D G11
22

�
0 3=2

0 1=2

ˇ
ˇ
ˇ
ˇ z

�

, which satisfies

2z.1 � z/f 00.z/C .1 � 3z/f 0.z/C f .z/ D 0:

The integral over the contour Li1 is divergent. Since p D q D 2, the integral over
L�1 converges for jzj < 1, and the integral over LC1 converges for jzj > 1. It is
therefore understood that function f .z/ is piecewise analytic, with the discontinuity
at jzj D 1. For jzj < 1, f .z/ is defined as the sum of residues at left poles:

f<.z/ D
1X

nD0
RessD�n

� .1� s/� .s/
�
�
1
2
� s�� � 3

2
C s� z�s

D
1X

nD0
RessD�n

2z�s cot.�s/

2s C 1 D � 2
�

1X

nD0

zn

2n� 1

D 2

�

�
1 �pz arctanh

�p
z
��
:

(32)

For jzj > 1, f .z/ is defined as the negative of the sum of residues at right poles:

f>.z/ D �
1X

nD1
RessDn

� .1 � s/� .s/
�
�
1
2
� s�� � 3

2
C s� z�s

D �
1X

nD1
RessDn

2z�s cot.�s/

2s C 1 D � 2
�

1X

nD1

zn

2nC 1

D 2

�

�

1 �pz arctanh

�
1p

z

��

:

(33)
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Fig. 2 Plots of f<
�
ei�
� D limt"1 f<

�
tei�

�
and f>

�
ei�
� D limt#1 f>

�
tei�

�

The discontinuity of f .z/ at the unit circle can be seen on the plot (see Fig. 2) of
the real and imaginary parts of f<.z/ and f>.z/ as z approaches the unit circle from
inside and from the outside respectively.

The G-functions such that the integral (23) over Li1 is divergent generically are
not continuous at the unit circle. An example of exception to such a rule is

G11
22

�
0 1=2

0 1=2

ˇ
ˇ
ˇ
ˇ z

�

D 1

�

1

1� z
: (34)

Example 3. Consider f .z/ D G1;p
p;qC1

�
1 � a1; : : : ; 1 � ap

0; 1 � b1; : : : ; 1 � bq

ˇ
ˇ
ˇ
ˇ z

�

. The integral (23)

along Li1 converges for jarg.z/j < �
2
.1C p � q/. It converges along L�1 for

p < q C 1 or p D q C 1 and jzj < 1, and under these conditions can be evaluated
as a sum of residues at poles of � .s/ (compare to (22) for ˛ D 0):

f .z/ D
1X

nD0
RefsD�n

Qp
iD1 � .ai � s/Qq
jD1 � .bj � s/

� .s/z�s

D
1X

nD0

Qp
iD1 � .ai C n/Qq
jD1 � .bj C n/

.�z/n

nŠ

D
pY

iD1
� .ai /

1X

nD0

Qp
iD1.ai /nQq

jD1 � .bj C n/
.�z/n

nŠ

D
pY

iD1
� .ai / � p QFq

�
a1; : : : ; ap
b1; : : : ; bq

ˇ
ˇ
ˇ
ˇ � z

�

(35)

where p QFq denotes the regularized hypergeometric function.
The integral (23) converges along the LC1 contour for p > q C 1 or p D q C 1
and jzj > 1. Under these conditions f .z/ is evaluated as the negative of the sum
of residues at “right” poles of � .˛i � s/. In the cases when these sequence poles
s D ˛i C n are all distinct, viz. none of coefficients a are integer apart from one
another, we get
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f .z/ D �
pX

iD1
z�ai

1X

nD0

Qp

jD1;j 6Di � .aj � ai � n/
Qq

kD1 � .bk � ai � n/
� .ai C n/.�1=z/n

nŠ

D �
pX

iD1
z�ai

�p�1� .ai /
Qp

jD1;j 6Di sin
�
�
�
aj � ai

�� �Qq

kD1 � .bk � ai /
�

p
QFq
�
ai ; f1C ai � bkgqkD1
f1C ai � aj gj 6Di

ˇ
ˇ
ˇ
ˇ
.�1/p�q

z

�

:

(36)

For p D q C 1, integration along Li1 is convergent for j arg.z/j < � , and
under this condition the formula (36) provides an analytic continuation of the
hypergeometric function outside the region of convergence of the hypergeometric
series. This motivates our next and last example, of a G-function with coincident
poles.

Example 4. Consider f .z/ D G
1;1
2;2 . j z/. This is an instance of a G-function

considered in the previous example, with a1 D a2 D 1 and b1 D 2. Using (35)
we have, for jzj < 1:

f .z/ D 2
QF1 .1; 1I 2I �z/ D 2F1 .1; 1I 2I �z/ D

1X

nD0

.1/2n

.2/n

.�z/n

nŠ
D

D
1X

nD0

nŠ2

.nC 1/Š
.�z/n

nŠ
D
1X

nD0

.�z/n

.nC 1/ D
log.1C z/

z
:

(37)

For jzj > 1 the function is defined as a negative of the sum of residues over “right”
poles, situated at positive integers:

f .z/ D �
1X

nD1
RessDn

� .1 � s/2
� .2 � s/ � .s/z

�s : (38)

Only the pole at s D 1 is of order 2:

RessD1
�z�s

.s � 1/ sin.�s/
D 1

z
RessD1

1

.s � 1/2
��.s � 1/

sin.�.s � 1// z�.s�1/ D

D 1

z
lim
s!1

d

ds

� ��.s � 1/
sin.�.s � 1// z�.s�1/

�

D log.z/

z
:

The poles at s D n; n > 2 are all simple poles, due to cancelation by zeros of
� .2 � s/ in the denominator. Using � .2 � s/ D .1 � s/� .1 � s/ we get:
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f .z/ D �
1X

nD1
RessDn

� .1 � s/
.1 � s/ � .s/z

�s

D �
1X

nD1
RessDn

�z�s

.1 � s/ sin.�s/
D

D RessD1
�z�s

.s � 1/ sin.�s/
C
1X

nD2

�z�s

.s � 1/ sin.�s/
D

D log.z/

z
C
1X

nD2

.�1/nz�n
n � 1 D log.z/

z
C 1

z
log

�

1C 1

z

�

:

(39)

We thus established an equality of (37) and (39) for �� < arg.z/ < � .

5 Asymptotic Expansion of Meijer G-Functions at Infinity

As per (29), z D 1 is a regular singular point of the differential equation (24) for
p > q and is an irregular singular point for p < q. Similarly, per (30), z D 0 is a
regular singular point of (24) for p < q, and an irregular singular point for p > q.
By virtue of (26) it suffices to consider the case of p < q. The sum of residues at
left poles has infinite radius of convergence, and the sum of residues at right poles
(if any) diverges. We now apply the technique from [1].

We start with (23) over L�1 and displace it to the right by an integer r , making
sure to subtract the residue at every “right” pole that we crossed in the process:

Gmn
pq .� j z/ D

1

2�i

Z

L�1Cr
'.s/z�sds �

r�1X

kD0

nX

jD1
RessD1�ajCk '.s/z�s: (40)

The idea is to choose q large enough to warrant use of Stirling’s formula for � -
functions. We write:

'.s/ D
Qn
iD1 � .1 � ai � s/Qq

jDmC1 � .1 � bj � s/

Qm
jD1 � .bj C s/

Qp
iDnC1 � .ai C s/

D
Qp
iD1 � .1 � ai � s/Qq
jD1 � .1 � bj � s/

�
Qp
iDnC1 sin.�.ai C s//
Qm
jD1 sin.�.bj C s// �

mCn�p

D '0.s/ � '1.s/

(41)

where '0.s/ denotes the ratio of products of � -functions and '1.s/ denotes the ratio
of products of sines. By using Stirling’s formula one obtains the following simple
asymptotic expansion [1, 6]:
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'0.s/ D ���s

� .1 �  � �s/
�� 

.2�/��1





�

1C A1

1 �  � �s C � � � C
A`

.1 �  � �s/` C � � �
�

; (42)

where � D q � p > 0 and  D Pp
iD1

�
ai � 1

2

� � Pq
jD1

�
bj � 1

2

�
, and the

coefficients A` are polynomials in fai g and fbj g and can be shown to satisfy a
rank q C 1 holonomic recurrence equation. See [6] for examples of computing A`

for small values of p and q. For the sake of convenience we set A0 D 1.
Substituting (42) into (40) one obtains

Gmn
pq .� j z/ D�

r�1X

kD0

nX

jD1
RessD1�ajCk '.s/z�s

C
mX

jD1

1X

uD0
RessD�bjCr�u Q'0.s/'1.s/z�s ;

(43)

where Q'0.s/ denotes the asymptotic expansion (42) of '0.s/. Assuming that all left
poles are simple it follows that

RessD�b1Cr�u
���s� 

.2�/��1� .1C ` �  � �s/'1.s/z
�s D

C �
�
.�1/mCn�p�u�r

.��z/b1Cu�r

� .�uC 1C ` �  C �.b1 � r// ;
(44)

where

C D �� 

.2�/��1

Qp
iDnC1 sin.�.ai � b1//
Qm
jD2 sin.�.bj � b1// �

mCn�p�1: (45)

Summation over u gives rise to the Mittag-Leffler function [2]:

1X

uD0
RessD�b1Cr�u Q'0.s/'1.s/z�s D

C .�1/r.mCn�p/ .��z/b1�r
`maxX

`D0
A`E�;ˇC`

�
.�1/mCn�p��z

�
(46)

where ˇ D 1� C �.b1 � r/. The Mittag-Leffler function E�;ˇ.z/ is implemented
in Mathematica since version 9 as

MittagLefflerE[�; ˇ; z]:
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Example 5. Consider f .z/ D G12
23

�
1=2; 1=2

0; 1; 1

ˇ
ˇ
ˇ
ˇ � z

�

D � � 2F2
�
1
2
; 1
2
I 1; 1I z�.

The corresponding values for '0 and '1.s/ are

'0.s/ D
�
�
1
2
� s�2

� .1 � s/3 '1.s/ D �

sin.�s/
: (47)

Applying Stirling’s formula we get

Q'0.s/ D
`maxX

`D0

A`

� .2C ` � s/ C o
�

1

� .2C `max � s/
�

(48)

where A0 D 1, A1 D 3
4

and the coefficients A` satisfy the following order 2 linear
recurrence equation:

4.`C 1/3A` � .8`2 C 24`C 19/A`C1 C 4.`C 2/A`C2 D 0: (49)

The right poles of '.s/ are located at sk D 1
2
C k for k 2 Z>0 with the residue

equal to

hk.�z/ D RessDsk '.s/z�s D�
�
�
k C 1

2

�

zkC1=2

 
�
�
k C 1

2

�

�kŠ

!2



�

log.z/� 3 
�

k C 1

2

�

C 2 .k C 1/
�

;

(50)

where  .z/ denotes the digamma function. Thus

f .z/ D �
r�1X

kD0
hk.z/C

`maxX

`D0
A`E1;2C`�r .z/ : (51)

A verification with Mathematica is obtained as follows. We first define the sequence
of expansion coefficients A`:

A[ell_] := DifferenceRoot[ Function[{y, n},
{4 (n + 1)ˆ3 y[n] + (-19 - 24 n - 8 nˆ2) y[n + 1] +

(8 + 4 n) y[2 + n]==0, y[0]==1, y[1]==3/4}]][ell]

We then define the function encoding the asymptotic expansion:

Asymp2F2[r_Integer, ellmax_Integer, z_] :=
Sum[((-z)ˆ(-1/2-n) Gamma[1/2 + n]ˆ3 (Log[-z] -

3 PolyGamma[0, 1/2 + n] + 2 PolyGamma[0, 1 + n]))/
((n!)ˆ2 Piˆ2), {n, 0, r - 1}] +

Sum[A[ell] MittagLefflerE[1, 2 + ell - r, z],
{ell, 0, ellmax}]/zˆr
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Numerical evaluation at some large argument gives a very good agreement:

In[534]:=
With[{z = 2456‘ Exp[I Pi 1/3]}, {

Pi HypergeometricPFQ[{1/2, 1/2}, {1, 1}, z],
Asymp2F2[4, 3, z] }]

Out[534]= {
-4.89536461331929*10ˆ529 + 6.80663165332857*10ˆ529 I,
-4.89536461331808*10ˆ529 + 6.80663165333123*10ˆ529 I}
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Solving Linear Recurrence Equations
with Polynomial Coefficients

Marko Petkovšek and Helena Zakrajšek

Abstract Summation is closely related to solving linear recurrence equations,
since an indefinite sum satisfies a first-order linear recurrence with constant
coefficients, and a definite proper-hypergeometric sum satisfies a linear recurrence
with polynomial coefficients. Conversely, d’Alembertian solutions of linear recur-
rences can be expressed as nested indefinite sums with hypergeometric summands.
We sketch the simplest algorithms for finding polynomial, rational, hypergeometric,
d’Alembertian, and Liouvillian solutions of linear recurrences with polynomial
coefficients, and refer to the relevant literature for state-of-the-art algorithms for
these tasks. We outline an algorithm for finding the minimal annihilator of a
given P-recursive sequence, prove the salient closure properties of d’Alembertian
sequences, and present an alternative proof of a recent result of Reutenauer’s that
Liouvillian sequences are precisely the interlacings of d’Alembertian ones.

1 Introduction

Summation is related to solving linear recurrence equations in several ways.
An indefinite sum

s.n/ D
n�1X

kD0
t.k/
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satisfies the nonhomogeneous first-order recurrence equation

s.nC 1/� s.n/ D t.n/I s.0/ D 0;

and also the homogeneous second-order recurrence equation

t .n/s.nC 2/� .t.n/C t .nC 1//s.nC 1/C t .nC 1/s.n/D 0I s.0/D 0; s.1/D t .0/:

A definite sum

s.n/ D
nX

kD0
F.n; k/

where the summand F.n; k/ is a proper hypergeometric term:

F.n; k/ D P.n; k/

QA
jD1.˛j /aj nCQaj k

QB
jD1.ˇj /bj nCQbj k

zk

with P.n; k/ a polynomial in n and k, .z/k the Pochhammer symbol, aj ; bj 2 N,
Qaj ; Qbj 2 Z, and ˛j ; ˇj ; z constants such that .ˇj /bj nCQbj k ¤ 0 for all k 2 f0; : : : ; ng,
satisfies a linear recurrence equation with polynomial coefficients in n which can be
computed with Zeilberger’s algorithm (cf. [11, 29, 44, 45]). So the sum of interest
may sometimes be found by solving a suitable recurrence equation.

The unknown object in a recurrence equation is a sequence, by which we mean
a function mapping the nonnegative integers N to some algebraically closed field
K of characteristic zero. Sequences can be represented in several different ways,
among the most common of which are the following:

• explicit where a sequence a W N! K is represented by an expression e.x/ such
that a.n/ D e.n/ for all n � 0,

• recursive where a sequence a W N ! K is represented by a function F and by
some initial values a.0/; a.1/; : : : ; a.d � 1/ such that

a.n/ D F.n; a.n � 1/; a.n � 2/; : : : ; a.0// (1)

for all n � d ,
• by Generating function where a sequence a W N ! K is represented by the

(formal) power series

Ga.z/ D
1X

nD0
a.n/zn:
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Each of these representations has several variants and special cases. In particular,
if a.n/ D F.n; a.n � 1/; a.n � 2/; : : : ; a.n � d// for all n � d , the recursive
representation (1) is said to be of order at most d .

Example 1 (Fibonacci numbers).

• Explicit representation: a.n/ D 1p
5

��
1Cp5
2

�nC1 �
�
1�p5
2

�nC1�

• Recursive representation: a.n/ D a.n�1/Ca.n�2/ .n � 2/, a.0/ D a.1/ D 1
• Generating function: Ga.z/ D 1

1 � z � z2

From the viewpoint of representation of sequences, solving recurrence equations
can be seen as the process of converting one (namely recursive) representation to
another (explicit) representation.

In this paper we survey the properties of several important classes of sequences
which satisfy linear recurrence equations with polynomial coefficients, and sketch
algorithms for finding such solutions when they exist. In Sects. 2 and 3 we review
the main results about C-recursive and P-recursive sequences, then we describe
algorithms for finding polynomial, rational and hypergeometric solutions in Sects. 4
and 5. Difference rings and the Ore algebra of linear difference operators with
rational coefficients, together with the outline of a factorization algorithm, are
introduced in Sects. 6 and 7. In Sect. 8 we define d’Alembertian sequences and prove
their closure properties. Finally, in Sect. 9, we give an alternative proof of the recent
result of Reutenauer [30] that Liouvillian sequences are precisely the interlacings of
d’Alembertian sequences by showing that the latter enjoy all the closure properties
of the former.

2 C-Recursive Sequences

C-recursive sequences satisfy homogeneous linear recurrences with constant coef-
ficients. Typical examples are geometric sequences of the form a.n/ D c qn with
c; q 2 K�, polynomial sequences, their products, and their linear combinations
(such as the Fibonacci numbers of Example 1).

Definition 1. A sequence a 2 KN is C-recursive or C-finite1 if there are d 2 N and
constants c1; c2; : : : ; cd 2 K , cd ¤ 0, such that

1C-recursive sequences are also called linear recurrent (or: recurrence) sequences. This neglects
sequences satisfying linear recurrences with non-constant coefficients, and may lead to confusion.
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a.n/ D c1 a.n � 1/C c2 a.n � 2/C � � � C cd a.n � d/

for all n � d .

The following theorem describes the explicit and generating-function represen-
tations of C-recursive sequences. For a proof, see, e.g., [38].

Theorem 1. Let a 2 KN and Ga.z/ D P1
nD0 a.n/zn. The following are equiva-

lent:

1. a is C-recursive,

2. a.n/ D
rX

iD1
Pi .n/ ˛

n
i for all n 2 N where Pi 2 KŒx� and ˛i 2 K ,

3. Ga.z/ D P.z/

Q.z/
where P;Q 2 KŒx�, degP < degQ andQ.0/ ¤ 0.

The next two theorems are easy corollaries of Theorem 1.

Theorem 2. The set of C-recursive sequences is closed under the following binary
operations .a; b/ 7! c:

1. Addition: c.n/ D a.n/C b.n/
2. (Hadamard or termwise) multiplication: c.n/ D a.n/b.n/
3. Convolution (Cauchy multiplication): c.n/ DPn

iD0 a.i/b.n� i/
4. Interlacing: hc.0/; c.1/; c.2/; c.3/; : : :i D ha.0/; b.0/; a.1/; b.1/; : : :i
Remark 1. These operations extend naturally to any nonzero number of operands.

Theorem 3. The set of C-recursive sequences is closed under the following unary
operations a 7! c:

1. Scalar multiplication: c.n/ D �a.n/ .� 2 K/
2. (Left) shift: c.n/ D a.nC 1/
3. Indefinite summation: c.n/ DPn

kD0 a.k/
4. Multisection: c.n/ D a.mnC r/ .m; r 2 N; 0 � r < m/

That (nonzero) C-recursive sequences are not closed under taking reciprocals
is demonstrated, e.g., by a.n/ D n C 1 which is C-recursive while its reciprocal
b.n/ D 1=.nC1/ is not, since its generating functionGb.x/ D � ln.1�x/=x is not
a rational function. Of course, there are C-recursive sequences whose reciprocals
are C-recursive as well, such as all the geometric sequences.

Question 1. When are a and 1=a both C-recursive?

Theorem 4. The sequences a and 1=a are both C-recursive iff a is the interlacing
of one or more geometric sequences.

For a proof, see [26].
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3 P-Recursive Sequences

P-recursive sequences satisfy homogeneous linear recurrences with polynomial
coefficients. While most of them lack a simple explicit representation, there
exist several important subclasses of P-recursive sequences such as polynomial,
rational, hypergeometric (Sect. 4), d’Alembertian (Sect. 8), and Liouvillian (Sect. 9)
sequences which do have nice explicit representations. Figure 1 shows a hierarchy
of these subclasses together with some examples. In the rest of the paper, we
investigate their properties and sketch algorithms for finding such special solutions
of linear recurrence equations with polynomial coefficients, whenever they exist.

Definition 2. A sequence a 2 KN is P-recursive if there are d 2 N and
polynomials p0; p1; : : : ; pd 2 KŒx�, p0pd ¤ 0, such that

pd .n/a.nC d/C pd�1.n/a.nC d � 1/C � � � C p0.n/a.n/ D 0 (2)

for all n � 0.

Definition 3. A formal power series f .z/ D P1
nD0 a.n/zn 2 KŒŒz�� is D-finite if

there exist d 2 N and polynomials q0; q1; : : : ; qd 2 KŒx�, qd ¤ 0, such that

qd .z/f
.d/.z/C qd�1.z/f .d�1/.z/C � � � C q0.z/f .z/ D 0:

Theorem 5. Let a 2 KN and Ga.z/ D P1
nD0 a.n/zn. The following are equiva-

lent:

1. a is P-recursive,
2. Ga.z/ is D-finite.

For a proof, see [37] or [39].

Theorem 6. P-recursive sequences are closed under the following operations:

1. addition,
2. multiplication,
3. convolution,
4. interlacing,
5. scalar multiplication,
6. shift,
7. indefinite summation,
8. multisection.

For a proof, see [39].

Question 2. When are a and 1=a are both P-recursive?
The answer is given in Theorem 7.

Example 2. The sequences a.n/ D nŠ and b.n/ D 1=nŠ are both P-recursive since
a.nC 1/� .nC 1/a.n/ D 0 and .nC 1/b.nC 1/� b.n/ D 0.
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polynomial: n+ 2:cirtemoeg1 n

rational: 1
n+1 C-recursive: n2n +1

hypergeometric: n :lanoitarisauq! 2n

n+1 +1

d’Alembertian: n!
n∑

k=0

(−1)k

k!

Liouvillian: n!!

P-recursive:
n∑

k=0

n
k

)2 n+k
k

)2

Fig. 1 A hierarchy of P-recursive sequences (with examples)

Example 3. The sequence a.n/ D 2n C 1 is P-recursive (even C-recursive) while
its reciprocal b.n/ D 1=.2n C 1/ is not P-recursive.

Proof. We use the fact that a D-finite function can have at most finitely many
singularities in the complex plane (see, e.g., [39]). The generating function

Gb.z/ D
1X

nD0
b.n/zn D

1X

nD0

zn

2n C 1

obviously has radius of convergence equal to two. We can rewrite

Gb.2z/ D
1X

nD0

2n

2n C 1zn D
1X

nD0

�

1 � 1

2n C 1
�

zn

D 1

1 � z
�Gb.z/: (3)

At z D 1 the function 1=.1 � z/ is singular, Gb is regular, so Gb is singular
at z D 2. At z D 2 the function 1=.1 � z/ is regular, Gb is singular, so Gb is
singular at z D 4. At z D 4 the function 1=.1� z/ is regular,Gb is singular, so Gb is
singular at z D 8, and so on. By induction on k it follows that Gb.z/ is singular at
z D 2k for all k 2 N, k � 1, hence Gb is not D-finite, and b is not P-recursive. ut
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4 Hypergeometric Sequences

Hypergeometric sequences are P-recursive sequences which satisfy homogeneous
linear recurrence equations with polynomial coefficients of order one. They can be
represented explicitly as products of rational functions, Pochhammer symbols, and
geometric sequences. The algorithm for finding hypergeometric solutions of linear
recurrence equations with polynomial coefficients plays an important role in other,
more involved computational tasks such as finding d’Alembertian or Liouvillian
solutions, and factoring linear recurrence operators.

Definition 4. A sequence a 2 KN is hypergeometric2 if there is an N 2 N such
that a.n/ ¤ 0 for all n � N , and there are polynomials p; q 2 KŒn� n f0g such that

p.n/ a.nC 1/ D q.n/ a.n/ (4)

for all n � 0. We denote by H .K/ the set of all hypergeometric sequences in KN.

Clearly, each hypergeometric sequence is P-recursive.

Proposition 1. The set H .K/ is closed under the following operations:

1. multiplication,
2. reciprocation,
3. nonzero scalar multiplication,
4. shift,
5. multisection.

Proof. For 1–4, see [29]. For multisection, let a 2H .K/ satisfy (4) and let b.n/ D
a.mn C r/ where m 2 N, m � 2, and 0 � r < m. For i D 0; 1; : : : ; m � 1,
substituting mnC r C i for n in (4) yields

p.mnC r C i/ a.mnC r C i C 1/ D q.mnC r C i/ a.mnC r C i/: (5)

Multiply (5) by
Qi�1
jD0 p.mnCrCj /Qm�1

jDiC1 q.mnCrCj / on both sides to obtain
lhsi D rhsi for i D 0; 1; : : : ; m � 1, where

lhsi D
iY

jD0
p.mnC r C j /

m�1Y

jDiC1
q.mnC r C j / a.mnC r C i C 1/;

rhsi D
i�1Y

jD0
p.mnC r C j /

m�1Y

jDi
q.mnC r C j / a.mnC r C i/:

2A hypergeometric sequence is also called a hypergeometric term, because the nth term of a
hypergeometric series, considered as a function of n, is a hypergeometric sequence in our sense.
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Note that lhsi D rhsiC1 for i D 0; 1; : : : ; m � 2, hence, by induction on i ,

rhs0 D lhsi for i D 0; 1; : : : ; m � 1:

In particular, lhsm�1 D rhs0, so

m�1Y

jD0
p.mnC r C j /b.nC 1/ D

m�1Y

jD0
q.mnC r C j /b.n/;

hence b 2H .K/. ut
Theorem 7. The sequences a and 1=a are both P-recursive iff a is the interlacing
of one or more hypergeometric sequences.

For a proof, see [40].

5 Closed-Form Solutions

In this section, we sketch algorithms for finding polynomial, rational, and hyperge-
ometric solutions of linear recurrence equations with polynomial coefficients.

5.1 Recurrence Operators

Let E W KN ! KN be the (left) shift operator acting on sequences by .Ea/.n/ D
a.n C 1/, so that .Eka/.n/ D a.n C k/ for k 2 N. For a given d 2 N and
polynomials p0; p1; : : : ; pd 2 KŒn� such that pd ¤ 0, the operator L W KN ! KN

defined by

L D
dX

kD0
pk.n/E

k

is a linear recurrence operator of order d with polynomial coefficients, acting on a
sequence a by .La/.n/ D Pd

kD0 pk.n/ a.nCk/. We denote byKŒn�hEi the alge-
bra of linear recurrence operators with polynomial coefficients. The commutation
rule E � p.n/ D p.nC 1/E induces the rule for composition of operators:

dX

kD0
pk.n/E

k �
eX

jD0
qj .n/E

j D
dX

kD0

eX

jD0
pk.n/qj .nC k/EjCk:
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5.2 Polynomial Solutions

Given: L 2 KŒn�hEi, L ¤ 0
Find: a basis of the space fy 2 KŒn�I Ly D 0g
Outline of algorithm

1. Find an upper bound for degy.
2. Use the method of undetermined coefficients.

For more details, see [3, 9, 29].

5.3 Rational Solutions

Given: L 2 KŒn�hEi, L ¤ 0
Find: a basis of the space fy 2 K.n/I Ly D 0g
Outline of algorithm

1. Find a universal denominator for y.
2. Find a basis of the space of polynomial solutions of the equation satisfied by the

numerator of y.

For more details, see [4, 6, 7, 41].

5.4 Hypergeometric Solutions

Given: L DPd
kD0 pk Ek 2 KŒn�hEi, L ¤ 0

Find: a generating set for the linear hull of fy 2H .K/I Ly D 0g
Outline of algorithm

1. Construct the “Riccati equation” for r D Ey
y
2 K.n/:

dX

kD0
pk

k�1Y

jD0
Ej r D 0 (6)

2. Use the ansatz

r D z
a

b

Ec

c

with z 2 K�, a; b; c 2 KŒn�monic, a; c coprime, b;Ec coprime, a;Ekb coprime
for all k 2 N to obtain
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dX

kD0
zkpk

0

@
k�1Y

jD0
Ej a

1

A

0

@
d�1Y

jDk
Ej b

1

AEkc D 0: (7)

3. Construct a finite set of candidates for .a; b; z/ using the following consequences
of (7):

• a jp0,
• b jE1�dpd ,
•

X

0�k�d
degPkDm

lc.Pk/zk D 0

where Pk D pk
�Qk�1

jD0 Ej a
� �Qd�1

jDk Ej b
�

, m D max0�k�d degPk .

4. For each candidate triple .a; b; z/, find all polynomial solutions c of the equation

dX

kD0
zkPk E

kc D 0:

For more details, see [28] or [29]. A much more efficient algorithm (although
still exponential in degp0 C degpd in the worst case) is given in [42] and [18].

Example 4 (Amer. Math. Monthly problem no. 10375). Solve

y.nC 2/� 2.2nC 3/2y.nC 1/C 4.nC 1/2.2nC 1/.2nC 3/y.n/ D 0: (8)

Denote p2.n/ D 1; p1.n/ D �2.2nC3/2, and p0.n/ D 4.nC1/2.2nC1/.2nC3/.
In search of hypergeometric solutions we follow the four steps described above:

1. Riccati equation:

p2.n/ r.nC 1/r.n/ C p1.n/ r.n/ C p0.n/ D 0

2. Plug in the ansatz:

z2 p2.n/ a.nC 1/ a.n/ c.nC 2/
C z p1.n/ a.n/ b.nC 1/ c.nC 1/
C p0.n/ b.nC 1/ b.n/ c.n/ D 0

3. Candidates for .a; b; z/:

• a.n/ j 4.nC 1/2.2nC 1/.2nC 3/
• b.n/ j 1
Take, e.g., a.n/ D .nC 1/.nC 1

2
/, b.n/ D 1, Then z2� 8zC 16 D .z� 4/2 D 0,

so z D 4.
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4. Equation for c:

.nC 2/c.nC 2/� .2nC 3/c.nC 1/C .nC 1/c.n/ D 0

Polynomial solution: c.n/ D 1
We have found

y.nC 1/
y.n/

D r.n/ D z
a.n/

b.n/

c.nC 1/
c.n/

D .2nC 1/.2nC 2/;

therefore y.n/ D .2n/Š is a hypergeometric solution of equation (8).

6 Difference Rings

Definition 5. A difference ring is a pair .K; �/ whereK is a commutative ring with
multiplicative identity and � W K ! K is a ring automorphism. If, in addition, K
is a field, then .K; �/ is a difference field.

Example 5. • .KŒx�; �/ with �x D x C 1, � jK D idK is a difference ring.
• .K.x/; �/ with �x D x C 1; � jK D idK is a difference field.
• .KN; E/ is not a difference ring since the shift operatorE is not injective onKN.

For a; b 2 KN define a 	 b if there is an N 2 N such that a.n/ D b.n/

for all n � N . The ring S .K/ D KN= 	 of equivalence classes is the ring
of germs of sequences. Let ' W KN ! S .K/ be the canonical projection, and
� W S .K/ ! S .K/ the unique automorphism of S .K/ s.t. � ı ' D ' ı E .
Then .S .K/; �/ is a difference ring.

Henceforth we work in .S .K/; �/ rather than .KN; E/ (but still call the elements
of S .K/ just “sequences” for short). One important advantage of this setting is that
the dimension of the solution space of Eq. (2) (with a.nC i/ replaced by �ia.n/) is
precisely equal to its order, d (this follows from [19, p. 272, Theorem XII]). Another
advantage is that sequences with, possibly, finitely many undefined terms (such as
the values of a rational function at nonnegative integers) also have their germs in
S .K/ (e.g., if a.n/ is defined for all n � N , its germ can be represented by the
sequence h0; 0; : : : ; 0; a.N /; a.N C 1/; : : :i). ThusKŒn�, K.n/, and H .K/ can all
be naturally embedded into S .K/.

7 An Ore Algebra of Operators

Instead of linear recurrence operators with polynomial coefficients from KŒn�hEi,
we will henceforth use linear difference operators with rational coefficients from
the algebra K.n/h�i. The rule for composition of these operators follows from the
commutation rule � � r.n/ D r.nC 1/ � for all r 2 K.n/.
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The identity

r.n/ �k D
�

r.n/

s.nC k � j /�
k�j

�

� s.n/ �j

describes how to perform right division of r.n/ �k by s.n/ �j . Hence there is an
algorithm for right division in K.n/h�i:
Theorem 8. For L1;L2 2 K.n/h�i, L2 ¤ 0, there are Q;R 2 K.n/h�i such
that

• L1 D QL2 CR,
• ordR < ordL2.

As a consequence, the right extended Euclidean algorithm (REEA) can be used to
compute a greatest common right divisor (gcrd) and a least common left multiple
(lclm) of operators in K.n/h�i, which is therefore a left Ore algebra. In particular,
given L1;L2 2 K.n/h�i, REEA yields S; T; U; V 2 K.n/h�i such that

• SL1 C TL2 D gcrd.L1; L2/,
• UL1 D VL2 D lclm.L1; L2/.

Definition 6. Let a be P-recursive. The unique monic operatorMa 2 K.n/h�inf0g
of least order such that Maa D 0 is the minimal operator of a.

Example 6. Let h 2H .K/ where �h=h D r 2 K.n/�. ThenMh D � � r .

Question 3. How to computeMa for a given P-recursive a?
The outline of an algorithm for solving this problem is given on page 271.

Proposition 2. Let a be P-recursive, and L 2 K.n/h�i such that La D 0. Then L
is right-divisible by Ma.

Proof. Divide L by Ma. Then:

L D QMaCR H) La D QMaaCRa H) 0 D Ra H) R D 0
ut

Corollary 1. Let L 2 K.n/h�i and h 2 H .K/ be such that Lh D 0. Then there
is Q 2 K.n/h�i such that L D Q.� � r/ where r D �h=h 2 K.n/�.
Hence there is a one-to-one correspondence between hypergeometric solutions of
Ly D 0 and first-order right factors of L having the form � � r with r ¤ 0.

Example 7 (Amer. Math. Monthly problem no. 10375 – continued from Example 4).

L D �2 � 2.2nC 3/2� C 4.nC 1/2.2nC 1/.2nC 3/
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We saw in Example 4 that Ly D 0 is satisfied by y.n/ D .2n/Š, hence L D QL1
where

L1 D � � .2nC 1/.2nC 2/;
Q D � � .2nC 2/.2nC 3/:

The operator factorization problem

Given: L 2 K.n/h�i and r 2 N

Find: all L1 2 K.n/h�i s.t.

• ord L1 D r ,
• L D QL1 for some Q 2 K.n/h�i
Suppose suchL1 exists, and let y.1/; y.2/; : : : ; y.r/ be linearly independent solutions
of L1y D 0 in S .K/. Define the Casoratian of y.1/; y.2/; : : : ; y.r/ by

Cas.y.1/; y.2/; : : : ; y.r// D det

2

6
6
6
4

y.1/ y.2/ � � � y.r/

�y.1/ �y.2/ � � � �y.r/

:::
:::

:::

�r�1y.1/ �r�1y.2/ � � � �r�1y.r/

3

7
7
7
5

as usual. Then (see [14] or [15]):

1. Cas.y.1/; y.2/; : : : ; y.r// 2H .K/.
2. From L and r one can construct a linear recurrence with polynomial coefficients

satisfied by Cas.y.1/; y.2/; : : : ; y.r//.
3. From L and r one can construct linear recurrences with polynomial coefficients

satisfied by the coefficients of L1, multiplied by Cas.y.1/; y.2/; : : : ; y.r//.

Outline of an algorithm to solve the operator factorization problem:

1. Construct a recurrence satisfied by Cas.y.1/; y.2/; : : : ; y.r//.
2. Find all hypergeometric solutions of this recurrence.
3. Construct recurrences satisfied by the coefficients of L1.
4. Find all rational solutions of these recurrences.
5. Select candidates for L1 which right-divide L.

Outline of an algorithm to find the minimal operator of a P-recursive sequence:

Given: L 2 K.n/h�i and a 2 S .K/ s.t. La D 0
Find: minimal operatorMa of a

for r D 1; 2; : : : ; ord L do:
find all monic L1 2 K.n/h�i of order r s.t. 9Q 2 K.n/h�iW L D QL1
for every such L1 do:

if .L1 a/.n/ D 0 for ordQ consecutive values of n then return L1.

In the last line, the ordQ consecutive values of n must be greater than any integer
root of the leading coefficient of Q.
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8 D’Alembertian Solutions

Write � D � � 1 for the forward difference operator as usual. If y D a satisfies
Ly D 0, then substituting y  az where z is a new unknown sequence yields

L0�z D 0

where ordL0 D ordL � 1. This is known as reduction of order or d’Alembert sub-
stitution [5]. By finding hypergeometric solutions and using d’Alembert substitution
repeatedly we obtain a set of solutions which can be written as nested indefinite
sums with hypergeometric summands. These so-called d’Alembertian sequences
include harmonic numbers and their generalizations, and play an important role in
the theory of Padé approximations (cf. [20, 21]), in combinatorics (cf. [27, 33]) and
in particle physics (cf. [1, 2, 12]).

8.1 Definition and Representation

Definition 7. A sequence a 2 S .K/ is d’Alembertian if there are first-order
operatorsL1, L2, : : : , Ld 2 K.n/h�i such that

Ld � � �L2L1 a D 0: (9)

We denote by A .K/ the set of all d’Alembertian elements of S .K/, and write
nd.a/ for the least d 2 N for which (9) holds (the nesting depth of a). For a set
S  A .K/ we write nd.S/ for maxa2S nd.a/.

Remark 2. Let a 2 A .K/. Then:

1. nd.a/ D 0 if and only if a D 0,
2. nd.a/ D 1 if and only if a 2H .K/.

Example 8.

• Harmonic numbersH.n/ DPn
kD1 1k are d’Alembertian because

�

� � nC 1
nC 2

�

.� � 1/H.n/ D
�

� � nC 1
nC 2

�
1

nC 1 D 0:

• Derangement numbers d.n/ D nŠPn
kD0

.�1/k
kŠ

are d’Alembertian because

.�C1/.��.nC1// d.n/ D .�C1/.nC1/Š .�1/
nC1

.nC 1/Š D .�C1/.�1/nC1 D 0:

Notation: For a 2 S .K/ and A;B  S .K/ we write
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˙a D fb 2 S .K/I �b D ag D
n�1X

kD0
a.k/CK;

˙A D fb 2 S .K/I �b 2 Ag;
aC B D faC bI b 2 Bg; aB D fabI b 2 Bg;
AC B D faC bI a 2 A; b 2 Bg

and identify a 2 S .K/ with fag  S .K/ if suitable.

Remark 3.

1: �C 1 D �; 3: �˙ D ˙ C 1;
2: �˙ D 1; 4: ˙0 D K:

Proposition 3. Let r 2 K.n/, �h D rh, and f 2 S .K/. Then

fy 2 S .K/I .� � r/y D f g D h˙
f

�h
:

Proof. Assume that .� � r/y D f and write y D h z. Then

f D .� � r/y D .� � r/h z D �h �z � r h z D �h�z;

hence�z D f

�h
, so z 2 ˙ f

�h
and y D h z 2 h˙ f

�h
. – Conversely,

.� � r/h˙ f

�h
D �h �˙ f

�h
� rh˙ f

�h
D �h�˙ f

�h
D f: ut

Corollary 2.

Ker .� � rd / � � � .� � r2/.� � r1/ D h1 ˙
h2

�h1
˙
h3

�h2
� � �˙ hd

�hd�1
˙0 (10)

where Ker L D fy 2 S .K/I Ly D 0g and �hi D rihi for i D 1; 2; : : : ; d .

It turns out that for any L 2 K.n/h�i, the space of all d’Alembertian solutions
of Ly D 0 is of the form

h1 ˙h2 ˙h3 � � �˙hd ˙0 (11)

for some d � ordL and h1; h2; : : : ; hd 2H .K/.

Example 9 (Amer. Math. Monthly problem no. 10375 – continued from Example 7).
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L D �2 � 2.2nC 3/2� C 4.nC 1/2.2nC 1/.2nC 3/;
L D L2L1;
L1 D � � .2nC 1/.2nC 2/;
L2 D � � .2nC 2/.2nC 3/:

Since L1.2n/Š D 0 and L2.2nC 1/Š D 0, it follows from (10) that

KerL D .2n/Š˙ .2nC 1/Š
.2nC 2/Š˙ 0 D .2n/Š˙

K

nC 1

D .2n/Š
 

K

n�1X

kD0

1

k C 1 CK
!

D K .2n/ŠH.n/CK .2n/Š:

8.2 Closure Properties of A .K/

Definition 8. For operators L;R 2 K.n/h�i, denote by L=R the right quotient of
lclm.L;R/ by R.

Remark 4. Clearly, .L=R/R D lclm.L;R/ D .R=L/L.

Example 10. Let L1 D � � r1 and L2 D � � r2 be first-order operators. If r1 D r2
then L1=L2 D L2=L1 D 1. If r1 ¤ r2 it is straightforward to check that

�

� � �r1 � �r2
r1 � r2 r1

�

.� � r2/ D
�

� � �r1 � �r2
r1 � r2 r2

�

.� � r1/ ;

hence

L1=L2 D � � �r1 � �r2
r1 � r2 r1; L2=L1 D � � �r1 � �r2

r1 � r2 r2:

Lemma 1. Let L1;L2; : : : ; Lk;R 2 K.n/h�i be monic first-order operators.
Then there are monic operators N1;N2; : : : ; Nk;M 2 K.n/h�i n f0g of order � 1
such that

MLkLk�1 � � �L1 D NkNk�1 � � �N1R:

Proof. By induction on k.
k D 1: Take N1 D L1=R, M D R=L1. Then ML1 D .R=L1/L1 D

.L1=R/R D N1R.
k > 1: By the induction hypothesis, there are monic operatorsN1;N2; : : : ; Nk�1;QM 2 K.n/h�i n f0g of order � 1 such that
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QMLk�1Lk�2 � � �L1 D Nk�1Nk�2 � � �N1R: (12)

Take Nk D Lk= QM , M D QM=Lk . Then, using (12) in the last equality, we obtain

MLkLk�1 � � �L1 D . QM=Lk/LkLk�1Lk�2 � � �L1 D .Lk= QM/ QMLk�1Lk�2 � � �L1
D Nk QMLk�1Lk�2 � � �L1 D NkNk�1Nk�2 � � �N1R: ut

Lemma 2. Let L1;L2; : : : ; Lk;R1;R2; : : : ; Rm 2 K.n/h�i be monic first-order
operators. Then there are monic operators M1;M2; : : : ;Mm;N1;N2; : : : ; Nk 2
K.n/h�i n f0g of order � 1 such that

MmMm�1 � � �M1LkLk�1 � � �L1 D NkNk�1 � � �N1RmRm�1 � � �R1:

Proof. By induction on m.
m D 1: By Lemma 1 applied to L1;L2; : : : ; Lk;R1, there are N1;N2; : : : ; Nk

andM1 such that M1LkLk�1 � � �L1 D NkNk�1 � � �N1R1.
m > 1: By the induction hypothesis applied to R1;R2; : : : ; Rm�1, there are

monic operatorsM1;M2; : : : ;Mm�1; QN1; QN2; : : : ; QNk 2 K.n/h�i n f0g of order� 1
such that

Mm�1Mm�2 � � �M1LkLk�1 � � �L1 D QNk QNk�1 � � � QN1Rm�1Rm�2 � � �R1: (13)

By Lemma 1 applied to QN1; QN2; : : : ; QNk;Rm, there areN1;N2; : : : ; Nk andMm such
that

Mm
QNk QNk�1 � � � QN1 D NkNk�1 � � �N1Rm;

hence, by multiplying (13) with Mm from the left, we obtain

MmMm�1 � � �M1LkLk�1 � � �L1 D Mm
QNk QNk�1 � � � QN1Rm�1Rm�2 � � �R1

D NkNk�1 � � �N1RmRm�1 � � �R1: ut

Proposition 4. A .K/ is closed under addition.

Proof. Let a; b 2 A .K/. Then there are monic first-order operatorsL1;L2; : : : ; Lk ,
R1;R2; : : : ; Rm 2 K.n/h�i such that

LkLk�1 � � �L1a D RmRm�1 � � �R1b D 0:

By Lemma 2, there are monic operatorsM1; : : : ;Mm;N1; : : : ; Nk 2 K.n/h�i n f0g
of order � 1 such that

L WD MmMm�1 � � �M1LkLk�1 � � �L1 D NkNk�1 � � �N1RmRm�1 � � �R1:

Then La D Lb D 0, so L.aC b/ D 0 and aC b 2 A .K/. ut
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Proposition 5. A .K/ is closed under multiplication.

Proof. Let a; b 2 A .K/. We show that ab 2 A .K/ by induction on the sum of
their nesting depths nd.a/C nd.b/.

(a) nd.a/ D 0 or nd.b/ D 0: In this case one of a; b is 0, hence ab D 0 2 A .K/.
(b) nd.a/; nd.b/ � 1: By (11) we can write a 2 h1 ˙h2 ˙h3 � � �˙hd ˙0 and

b 2 g1 ˙g2 ˙g3 � � �˙ge ˙0 where hi ; gj 2 H .K/, d D nd.a/, and e D
nd.b/. Let a1 D h2 ˙h3 � � �˙hd ˙0 and b1 D g2 ˙g3 � � �˙ge ˙0, so that a 2
h1 ˙a1 and b 2 g1 ˙b1 with a1; b1  A .K/, nd.a1/ < nd.a/ and nd.b1/ <
nd.b/. Clearly ha 2 A .K/ whenever h 2 H .K/ and a 2 A .K/, hence
it suffices to show that .

P
a1/g1

P
b1  A .K/. Using the product rule of

difference calculus

�uv D u�v C�u �v

and Remark 3 repeatedly, we obtain

�..
P
a1/g1

P
b1/ D .

P
a1/g1�

P
b1 C�..P a1/g1/�

P
b1

D .
P
a1/g1b1 C ..

P
a1/�g1 C a1�g1/.

P
b1 C b1/

D �g1.
P
a1/

P
b1C .g1C�g1/b1

P
a1C a1�g1.

P
b1C b1/

D �g1.
P
a1/

P
b1 C �g1.a1P b1 C b1Pa1 C a1b1/:

Assume first that g1 D 1. Then �..
P
a1/

P
b1/ D a1

P
b1 C b1Pa1 C a1b1.

By the induction hypothesis and from Proposition 4 it follows that a1
P
b1 C

b1
P
a1Ca1b1  A .K/. Therefore there are first-order operatorsL1;L2; : : : ; Lk 2

K.n/h�i such that

LkLk�1 � � �L1� ..P a1/
P
b1/ D 0;

hence .
P
a1/

P
b1  A .K/. In the general case, �g1; �g1 2 H .K/ [ f0g now

implies �..
P
a1/g1

P
b1/  A .K/. Again we conclude that .

P
a1/g1

P
b1 

A .K/. ut
Proposition 6. A .K/ is closed under � and ��1.

Proof. Let a 2 A .K/. Then there are monic first-order operatorsL1;L2; : : : ; Lk 2
K.n/h�i such that LkLk�1 � � �L1a D 0.

By Lemma 1 with R D � , there are monic operators N1;N2; : : : ; Nk;M 2
K.n/h�i n f0g of order � 1 such that MLkLk�1 � � �L1 D NkNk�1 � � �N1� . Hence

NkNk�1 � � �N1�a D MLkLk�1 � � �L1a D 0;

so �a 2 A .K/.
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From LkLk�1 � � �L1a D 0 it follows that LkLk�1 � � �L1�.��1a/ D 0, hence
��1a 2 A .K/ as well. ut
Theorem 9. A .K/ is a difference ring.

Proof. This follows from Propositions 4, 5 and 6. ut
Corollary 3. A .K/ is the least subring of S .K/ which contains H .K/ and is
closed under � , ��1, and˙ .

Proof. Denote by HS.K/ the least subring of S .K/ which contains H .K/ and is
closed under � , ��1, and ˙ .

By Corollary 2, every a 2 A .K/ is obtained from 0 by using ˙ and
multiplication with elements from H .K/. Hence A .K/  HS.K/.

Conversely, A .K/ is closed under � and ��1 by Proposition 6, and under ˙ by
Corollary 2. Since A .K/ is a subring of S .K/ containing H .K/, it follows that
HS.K/  A .K/. ut
Proposition 7. A .K/ is closed under multisection.

Proof. Let a 2 A .K/. We show that any multisection of a belongs to A .K/ by
induction on the nesting depth nd.a/ of a.

(a) nd.a/ D 0: In this case a D 0, so the assertion holds.
(b) nd.a/ � 1: By (11) we can write a 2 h1 ˙h2 ˙h3 � � �˙hd ˙0 where d D

nd.a/ and h1; h2; : : : ; hd 2 H .K/. Let h D h1 and b D h2 ˙h3 � � �˙hd ˙0,
so that a 2 h˙b where b  A .K/ and nd.b/ < nd.a/.

Let c 2 S .K/, defined by c.n/ D a.mnC r/ for all n 2 N, where m; r 2 N,
m � 2, 0 � r < m, be a multisection of a. Then for all n 2 N

c.n/ D a.mnC r/ D h.mnC r/
mnCr�1X

kD0
b.k/

D h.mnC r/
0

@
m�1X

iD0

n�1X

jD0
b.mj C i/C

r�1X

iD0
b.mnC i/

1

A

D hm;r .n/
0

@
m�1X

iD0

n�1X

jD0
bm;i .j /C

r�1X

iD0
bm;i .n/

1

A

where hm;r .n/ D h.mnC r/ and bm;i .n/ D b.mnC i/ for 0 � i < m. Hence

c D hm;r

 
m�1X

iD0
˙bm;i C

r�1X

iD0
bm;i

!



278 M. Petkovšek and H. Zakrajšek

where hm;r 2H .K/  A .K/ by Proposition 1, and bm;i 2 A .K/ by the induction
hypothesis as a multisection of b. Since A .K/ is closed under ˙ , addition and
multiplication, it follows that c 2 A .K/. ut

8.3 Finding d’Alembertian Solutions

The following theorem provides a way to find all d’Alembertian solutions of Ly D 0.

Theorem 10. Ly D 0 has a nonzero d’Alembertian solution if and only if Ly D 0

has a hypergeometric solution.

For a proof, see [10].

Outline of an algorithm for finding the space of all d’Alembertian solutions:

1. Find a hypergeometric solution h1 of Ly D 0.
If none exists then return 0 and stop.

2. Let L1 D � � �h1
h1

. Right-divide L by L1 to obtain L D QL1.
3. Recursively use the algorithm on Qy D 0. Let the output be a.
4. Return h1 ˙ a

�h1
and stop.

A much more general algorithm which finds solutions in ˘˙�-difference
extension fields of .K.n/; �/ is presented in [31]. For the relevant theory,
see [32, 34–36].

9 Liouvillian Solutions

Definition 9. L .K/ is the least subring of S .K/ containing H .K/, closed
under

• � , ��1,
• ˙ ,
• interlacing of an arbitrary number of sequences.

A sequence a 2 S .K/ is Liouvillian iff a 2 L .K/.

Example 11. The sequence

nŠŠ D
(
2kkŠ; n D 2k;
.2kC1/Š
2kkŠ

; n D 2k C 1

is Liouvillian (as an interlacing of two hypergeometric sequences ).

The following theorem provides a way to find Liouvillian solutions of Ly D 0.
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Theorem 11. Ly D 0 has a nonzero Liouvillian solution if and only if Ly D 0 has
a solution which is an interlacing of at most ordL hypergeometric sequences.

For a proof, see [24]. For algorithms to find Liouvillian solutions, see [8, 13, 16,
17, 22, 23, 25, 43].

Theorem 12. A sequence in S .K/ is Liouvillian if and only if it is an interlacing
of d’Alembertian sequences.

This is proved in [30] as a corollary of the results of [24] obtained by means of
Galois theory of difference equations. Here we give a self-contained proof based on
closure properties of interlacings of d’Alembertian sequences.

Let �.a0; a1; : : : ; ak�1/, or �k�1
jD0aj , denote the interlacing of a0; a1; : : : ; ak�1.

By definition of interlacing we have

�
�k�1
jD0aj

�
.n/ D �.a0; a1; : : : ; ak�1/.n/ D an mod k.n div k/

for all n 2 N, where

n div k D
jn

k

k
; n mod k D n �

jn

k

k
k:

Denote temporarily the set of all interlacings of (one or more) d’Alembertian
sequences by AL.K/. The goal is to prove that AL.K/ D L .K/.

Proposition 8. AL.K/  L .K/.

Proof. Since H .K/  L .K/ and L .K/ is a ring closed under ˙ , we have
A .K/  L .K/. Since L .K/ is closed under interlacing, AL.K/  L .K/. ut
Lemma 3. AL.K/ is closed under addition and multiplication.

Proof. Let ˇ denote either addition or multiplication in K and S .K/. We claim
that, for k;m 2 N and a0; a1; : : : ; ak�1; b0; b1; : : : ; bm�1 2 A .K/, we have

�
�k�1
jD0aj

�
ˇ
�
�m�1
jD0bj

�
D �km�1

`D0 .a`;k;m ˇ b`;k;m/ (14)

where for all n 2 N,

a`;k;m.n/ D a` mod k.mnC ` div k/;

b`;k;m.n/ D b` mod m.knC ` div m/:

Indeed,

�
�km�1
`D0 .a`;k;m ˇ b`;k;m/

�
.n/

D an mod km;k;m.n div km/ˇ bn mod km;k;m.n div km/ D uˇ v
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where

u D a.n mod km/ mod k.m.n div km/C .n mod km/ div k/;

v D b.n mod km/ mod m.k.n div km/C .n mod km/ div m/:

From

.n mod km/ mod k D
�
n �

j n

km

k
km
�

mod k D n mod k;

.n mod km/ mod m D
�
n �

j n

km

k
km
�

mod m D n mod m;

m.n div km/C .n mod km/ div k D m
j n

km

k
C
$
n� � n

km

˘
km

k

%

D
jn

k

k
D n div k;

k.n div km/C .n mod km/ div m D k
j n

km

k
C
$
n� � n

km

˘
km

m

%

D
j n

m

k
D n div m

it follows that

uˇ v D an mod k.n div k/ˇ bn mod m.n div m/

D
�
�k�1
jD0aj

�
.n/ˇ

�
�m�1
jD0bj

�
.n/ D

��
�k�1
jD0aj

�
ˇ
�
�m�1
jD0bj

��
.n/;

proving (14). By Proposition 7, the sequences a`;k;m and b`;k;m belong to A .K/.
Since A .K/ is a ring, the right-hand side of (14) is an interlacing of d’Alembertian
sequences, and hence so is the left-hand side. ut
Lemma 4. AL.K/ is closed under � and ��1.

Proof. Let a0; a1; : : : ; ak�1 be d’Alembertian sequences. Then:
�
�
�
�k�1
jD0aj

��
.n/ D

�
�k�1
jD0aj

�
.nC 1/

D a.nC1/ mod k..nC 1/ div k/

D
�
an mod kC1.n div k/; n mod k ¤ k � 1;
a0.n div k C 1/; n mod k D k � 1

D
�
an mod kC1.n div k/; n mod k ¤ k � 1;
.�a0/.n div k/; n mod k D k � 1

D
�
�k�1
jD0bj

�
.n/

where

bj D
�
ajC1; j ¤ k � 1;
�a0; j D k � 1:
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By Proposition 6, b0; b1; : : : ; bk�1 are d’Alembertian. So �
�
�k�1
jD0aj

�
D �k�1

jD0bj
is an interlacing of d’Alembertian sequences.

Similarly,

�
��1

�
�k�1
jD0aj

��
.n/ D

�
�k�1
jD0aj

�
.n � 1/

D a.n�1/ mod k..n � 1/ div k/

D
�
an mod k�1.n div k/; n mod k ¤ 0;
ak�1.n div k � 1/; n mod k D 0

D
�
an mod k�1.n div k/; n mod k ¤ 0;
.��1ak�1/.n div k/; n mod k D 0

D
�
�k�1
jD0cj

�
.n/

where

cj D
�
aj�1; j ¤ 0;
��1ak�1; j D 0:

By Proposition 6, c0; c1; : : : ; ck�1 are d’Alembertian. So ��1
�
�k�1
jD0aj

�
D �k�1

jD0cj
is an interlacing of d’Alembertian sequences. ut
Lemma 5. AL.K/ is closed under˙ .

Proof. Let a0; a1; : : : ; ak�1 be d’Alembertian sequences. We claim that

˙
�
�k�1
jD0aj

�
D �k�1

jD0

0

@
j�1X

iD0
�˙ai C

k�1X

iDj
˙ai

1

A : (15)

Indeed, for all n 2 N,

�
˙
�
�k�1
jD0aj

��
.n/

D
n�1X

`D0

�
�k�1
jD0aj

�
.`/ D

n�1X

`D0
a` mod k.` div k/

D
.n�1/ mod kX

iD0

b n�1
k cX

jD0
ai .j / C

k�1X

iD.n�1/ mod kC1

b n�1
k c�1X

jD0
ai .j / (16)
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D
n mod k�1X

iD0

b nk cX
jD0

ai .j / C
k�1X

iDn mod k

b nk c�1X

jD0
ai .j / (17)

D
n mod k�1X

iD0
.�˙ai / .n div k/ C

k�1X

iDn mod k

.˙ai / .n div k/

D
0

@�k�1
jD0

0

@
j�1X

iD0
�˙ai C

k�1X

iDj
˙ai

1

A

1

A .n/;

proving (15). Here equality in (16) follows by mapping each ` 2 f0; 1; : : : ; n�1g to
the pair .i; j / D .` mod k; ` div k/ and summing over all the resulting pairs, and
equality in (17) follows by noting that when n mod k ¤ 0, we have

.n� 1/ mod k D n mod k � 1;
.n � 1/ div k D n div k;

while for n mod k D 0, both (16) and (17) are equal to
Pk�1

iD0
P n

k�1
jD0 ai .j /.

Since A .K/ is closed under˙ , � and addition, the right-hand side of (15) is an
interlacing of d’Alembertian sequences, and hence so is the left-hand side. ut
Lemma 6. AL.K/ is closed under interlacing.

Proof. An arbitrary interlacing can be obtained by using addition, shifts, and
interlacing of zero sequences with a single non-zero sequence by the formula

�.a0; a1; : : : ; ak�1/ D
k�1X

iD0
�i�.0; 0; : : : ; 0; ak�1�i /:

Hence, by Propositions 3 and 4, it suffices to show that AL.K/ is closed under
interlacing of zero sequences with a single non-zero sequence from AL.K/. But this
is immediate: Let a0; a1; : : : ; ak�1 be d’Alembertian sequences. Then the interlacing
of m zero sequences with �.a0; a1; : : : ; ak�1/

�.0; 0; : : : ; 0;�.a0; a1; : : : ; ak�1//

D �.0; 0; : : : ; 0; a0; 0; 0; : : : ; 0; a1; : : : ; 0; 0; : : : ; 0; ak�1/

is an interlacing of mk C k d’Alembertian sequences. ut
Proof of Theorem 12. By Proposition 8, it suffices to show that L .K/  AL.K/.
This is true since by Lemmas 3–6, AL.K/ is a subring of S .K/ containing H .K/

and closed under � , ��1, ˙ , and interlacing, while L .K/ is the least such subring.
ut
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14. Bronstein, M., Petkovšek, M.: Ore rings, linear operators and factorization. Progr. Comput.
Softw. 20, 14–26 (1994)
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Generalization of Risch’s Algorithm to Special
Functions

Clemens G. Raab

Abstract Symbolic integration deals with the evaluation of integrals in closed
form. We present an overview of Risch’s algorithm including recent developments.
The algorithms discussed are suited for both indefinite and definite integration. They
can also be used to compute linear relations among integrals and to find identities
for special functions given by parameter integrals. The aim of this presentation is
twofold: to introduce the reader to some basic ideas of differential algebra in the
context of integration and to raise awareness in the physics community of computer
algebra algorithms for indefinite and definite integration.

1 Introduction

In earlier times large tables of integrals were compiled by hand [19, 20, 30, 36].
Nowadays, computer algebra tools play an important role in the evaluation of
definite integrals and we will mention some approaches below. Tables of integrals
are even used in modern software as well. Algorithms for symbolic integration in
general proceed in three steps. First, in computer algebra the functions typically are
modeled by algebraic structures. Then, the computations are done in the algebraic
framework and, finally, the result needs to be interpreted in terms of functions
again. Some considerations concerning the first step, i.e., algebraic representation
of functions, will be part of Sect. 2. A brief overview of some approaches and
corresponding algorithms will be given below. We will focus entirely on the
approach using differential fields. Other introductory texts on this subject include
[12, 32]. Manuel Bronstein’s book on symbolic integration [13] is a standard
reference. The interested reader is referred to one of these for more information.
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A recent version of Risch’s algorithm will be presented in Sect. 3. The subtle issues
of the last step, i.e., translating the algebraic result to a valid statement in the world
of functions, will not be dealt with here.

1.1 Parametric Integration

Integration of functions can be done in two variants: indefinite and definite
integration, which are closely related via the fundamental theorem of calculus. On
the one hand, an indefinite integrals still is a function in the variable of integration
and is nothing else than the antiderivative of a given function f .x/. On the other
hand, a definite integral is the value

Z b

a

f .x/ dx

resulting from integrating the function f .x/ over the given interval .a; b/. Another
difference between the two is that in general it is easy to verify an indefinite integral
just by differentiating it, whereas in general it is hard to verify the result of a definite
integral without recomputing it.

For the evaluation of definite integrals many tools may be applied to transform
them to simpler integrals which are known or can be evaluated easily: change of
variable, series expansion of the integrand, integral transforms, etc. As mentioned
above by the fundamental theorem of calculus it is obvious that we can use indefinite
integrals for the evaluation of definite integrals. It is well known that for a function
g.x/ with g0.x/ D f .x/ we have

Z b

a

f .x/ dx D g.b/� g.a/:

This fact has also been exploited in order to evaluate definite integrals for which a
corresponding indefinite integral is not available in nice form. We give an overview
of this method, which will be the main focus for computing definite integrals in
the present paper. If the integral depends on a parameter, we can differentiate the
parameter integral with respect to this parameter and obtain an integral that might
be evaluated more easily. Under suitable assumptions on the integrand we have

d

dy

Z b

a

f .x; y/ dx D
Z b

a

df

dy
.x; y/ dx;

which is called differentiating under the integral sign. A related paradigm, known
as creative telescoping, is used in symbolic summation to compute recurrences for
parameter dependent sums, see [48] for instance. Based on these two principles
Almkvist and Zeilberger [6] were the first to propose a completely systematic
way for treating parameter integrals by differentiating under the integral sign by
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giving an algorithm to compute differential equations for parameter integrals with
holonomic integrands. They gave a fast variant of it for hyperexponential integrands,
which may also be used for computing recurrences for such parameter integrals.
From a very general point of view the underlying principle might be understood as
combination of the fundamental theorem of calculus and the linearity of the integral
in the following way. If for integrable functions f0.x/; : : : ; fm.x/ and constants
c0; : : : ; cm the function g.x/ is an antiderivative such that

c0f0.x/C � � � C cmfm.x/ D g0.x/;

then we can deduce the relation

c0

Z b

a

f0.x/ dxC � � � C cm
Z b

a

fm.x/ dx D g.b/� g.a/

among the definite integrals
R b
a
fi .x/ dx provided they exist. Both the functions

fi .x/ and the constants ci may depend on additional parameters, which are not
shown here. In order that this works the important point is that the ci do not depend
on the variable of integration. In practice, the functions fi .x/ are chosen to be
derivatives or shifts in the parameter(s) of the integrand f .x/ if we are interested in
differential equations or recurrences for the definite integral.

The main task for finding such relations of definite integrals of given functions
fi .x/ consists in finding suitable choices for the constants ci which allow a closed
form of the antiderivative g.x/ to be computed. We will call this parametric
integration as it can be viewed as making suitable choices for the parameters ci
occurring in the combined integrand c0f0.x/C � � � C cmfm.x/.

The approach above also addresses the issue of verifiability. When given such a
linear relation of integrals

c0

Z b

a

f0.x/ dxC � � � C cm
Z b

a

fm.x/ dx D r

the function g.x/ may act as a proof certificate of it as we just need to verify

c0f0.x/C � � � C cmfm.x/ D g0.x/ and r D g.b/� g.a/;

where the left hand sides are directly read off from the integral relation we want to
verify.

1.2 Symbolic Integration

Algorithms to compute indefinite integrals of rational integrands are known for a
long time already and many other integrals were computed analytically by hand as
mentioned above. Especially in the last century algorithms have been developed
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capable of dealing with more general classes of integrands in a completely
systematic way. In the following we want to give an overview of three different
approaches that were taken. We also mention some relevant cornerstones but we
do not include a fully comprehensive survey of the corresponding literature, many
other contributions were made. Note that all of those approaches extend to definite
integration in one way or the other.

The differential algebra approach represents functions as elements of differential
fields and differential rings. These are algebraic structures not only capturing the
arithmetic properties of functions but also their differential properties by including
derivation as an additional unary operation. In general terms, starting with a
prescribed differential field one is interested in indefinite integrals in the same
field or in extensions of that field constructed in a certain way. Based on a book
by Joseph F. Ritt [42] using differential fields Robert H. Risch gave a decision
procedure [10, 41] for computing elementary integrals of elementary functions
by closely investigating the structure of the derivatives of such functions. Since
then this result has been extended in various directions. A parametric version was
discussed in [29]. Michael F. Singer et al. generalized this to a parametric algorithm
computing elementary integrals over regular Liouvillian fields in the appendix
of [45] and Manuel Bronstein gave partial results for more general differential
fields constructed by monomials [9, 13]. The author’s thesis [37] can be seen as
a continuation of this line of research. In [33] Arthur C. Norman published a
variant of Risch’s algorithm avoiding its recursive structure, which therefore is
sometimes also called the parallel Risch algorithm. The Risch-Norman algorithm
can be used in even more general differential fields and has proven to be a rather
powerful heuristic in practice, see [8, 13, 14] and references therein. Most results
mentioned so far restrict to the case where the generators of the differential fields are
algebraically independent. The presence of algebraic relations causes new situations
and requires more involved algebraic tools, see [8,10,12,23] and references therein.
Another type of generalization is to search also for certain types of non-elementary
integrals over certain differential fields. Some results for this problem have been
achieved in [45], see also [7] and the references to the work of Cherry and Knowles
in [13].

Indefinite integrals of products of special functions that satisfy homogeneous
second-order differential equations were considered by Jean C. Piquette. His
ansatz for the integral in terms of linear combinations of such products led to a
differential system, which after uncoupling he solved by heuristic methods, see
[34, 35] and references therein. The holonomic systems approach was initiated
by Doron Zeilberger in [47] and puts this on more general and more algorithmic
grounds. Functions are represented by the differential and difference operators
that annihilate them. The notion of D-finite functions is closely related and refers
to functions satisfying homogeneous linear differential equations with rational
functions as coefficients. Hence, the derivatives of a D-finite function generate a
finite-dimensional vector space over the rational functions. Frédéric Chyzak [16]
presented an efficient algorithm for computing indefinite integrals of such functions
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in the same vector space. The algorithm handles also parametric integration and
summation and utilizes Ore algebras to represent the operators corresponding to
functions. For extensions and improvements see [17, 24].

The rule-based approach operates on the syntactic presentation of the integral
by a table of transformation rules. This comes close to what is done when
integrating by hand based on integral tables such as [19,20,36]. Also most computer
algebra systems make at least partial use of transformations and table look-up.
These tables may contain rules for virtually any special function, which makes
such algorithms easily extensible in principle. This approach is recently being
investigated systematically by Albert D. Rich and David J. Jeffrey [40], who point
out several subtle issues related to efficiency.

1.3 Risch’s Algorithm

When computing elementary integrals the paradigm followed by Risch’s algorithm
and many of its generalizations is that the computation proceeds recursively,
focusing one by one on a particular function, which is involved in the integrands,
at a time. For each of these functions the computation is organized in several main
steps, where each step computes a part of the integral and subtracts its derivative
from the integrand to obtain the remaining integrand to proceed with. The part of
the integral that is computed in each step is chosen in such a way that the remaining
integrand is simpler than the previous one in some suitable sense.

Before we discuss the computation for rather general types of integrands in a bit
more detail, it will be instructive to consider the simplest case first, namely rational
functions. The main steps of the full algorithm will be used to work out a closed
form of the following integral of a rational function.

Z
x4 C 2x3 � x2 C 3
x3 C 5x2 C 8x C 4 dx

For rational functions three steps are relevant. First, we will apply Hermite reduction
to reduce the task to an integrand that does not have poles of order greater than one.
Then, we will compute the residues at the simple poles of the remaining integrand
to obtain the logarithmic part of the integral. Finally, the remaining integrand will
be a polynomial, which is easily integrated.

Let us start by outlining the main idea of Hermite reduction [21], which repeats
as needed what can be summarized as a suitably chosen additive splitting of the
integrand followed by integration by parts of one of the two summands. Each
time the order of some poles of the integrand is reduced. We will see later
how such splittings are determined, for now we just emphasize that no partial
fraction decomposition is required. In our example the denominator factors as



290 C.G. Raab

.x C 1/.x C 2/2. This means that we have to reduce the order of the pole at x D �2,
which is achieved by the following splitting.

Z
x4 C 2x3 � x2 C 3
.x C 1/.x C 2/2 dx D

Z
1

.x C 2/2 dxC
Z

x3 � x C 1
.x C 1/.x C 2/ dx

D � 1

x C 2 C
Z

x3 � x C 1
.x C 1/.x C 2/ dx:

The remaining integrand has only simple poles, so we proceed by computing
the residues at its poles, from which we obtain the logarithmic part of the integral.
For an integrand a.x/

b.x/
, where a.x/ and b.x/ are polynomials and b.x/ is squarefree,

the residue at a root x0 of b.x/ is given by z0 WD a.x0/

b0.x0/
and we get a contribution

z0 log.x � x0/ to the integral. Instead of determining the residue in dependence of
the location of the pole, there are algorithms which first compute the set of values
occurring as residues and then determine the appropriate logands for each residue.
One such algorithm relying on resultants has its roots in the work of Rothstein and
Trager, see [25,31,43,46], and another algorithm using Gröbner bases was proposed
by Czichowski, see [18]. The main idea to compute the residues directly, without
computing the roots of b.x/, is to characterize them as those values z0 such that
the equations a.x/ � z0�b0.x/ D 0 and b.x/ D 0 are satisfied for some x at the
same time. So the Rothstein-Trager resultant r.z/ D resx.a.x/ � z�b0.x/; b.x// is
a polynomial in the new variable z having the residues of the integrand as its roots.
For each root z0 of r.z/ we need to compute gcd.a.x/ � z0�b0.x/; b.x//, which is
the corresponding logand. A modern variant, the Lazard-Rioboo-Trager algorithm,
computes the subresultant polynomial remainder sequence of a.x/ � z�b0.x/ and
b.x/, from which both r.z/ and the logands can be read off. Similarly, Czichowski’s
algorithm computes a Gröbner basis of fa.x/ � z�b0.x/; b.x/g w.r.t. z <lex x, from
which both the squarefree part of r.z/ and the logands can be read off. In our present
example we determine the polynomials

r.z/ D .z � 1/.z� 5/ and s.z; x/ D x C 1

4
zC 1

4
;

where the roots of r.z/ are the residues and s.z; x/ gives the corresponding logands,
which give rise to the following logarithmic part of the integral:

X

r.z/D0
z� log.s.z; x// D log.x C 1/C 5 log.x C 2/:

Therefore, subtracting its derivative from the integrand we obtain the polynomial

x3 � x C 1
.x C 1/.x C 2/ �

X

r.z/D0
z
d
dx s.z; x/

s.z; x/
D x � 3
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as remaining integrand or, in other words,

Z
x3 � x C 1

.x C 1/.x C 2/ dx D log.x C 1/C 5 log.x C 2/C
Z

x � 3 dx:

The integral of a polynomial is determined via an appropriate ansatz, based on
the fact that the derivative of a non-constant polynomial is a polynomial with degree
exactly one less. The coefficients in the integral are then determined by equating the
coefficients in the derivative of the ansatz to those in the integrand. In our case the
ansatz for the integral is a2x2 C a1x and comparing coefficients of the powers of
x in

d

dx

�
a2x

2 C a1x
� D x � 3

yields 2a2 D 1 and a1 D �3. Plugging the solution of these equations into the
ansatz we obtain the integral

Z

x � 3 dx D 1

2
x2 � 3x:

Altogether, we obtained the following closed form of the integral.

Z
x4 C 2x3 � x2 C 3
.x C 1/.x C 2/2 dx D � 1

x C 2 C ln.x C 1/C 5 ln.x C 2/C 1

2
x2 � 3x

2 Algebraic Representation of Functions

In differential algebra functions are represented as elements of differential fields and
differential rings. These are algebraic structures not only capturing the arithmetic
relations of functions but also their differential properties by including derivation as
an additional operation. For more information on differential algebra, see [22] for
example.

Definition 1. Let F be a field and letD W F ! F be a unary operation on it, which
is additive and satisfies the product rule, i.e.,

D.f C g/ D Df C Dg and D. fg/ D f DgC .Df /g:

Then D is called a derivation on F and .F;D/ is called a differential field. The set
of constants is denoted by constD.F / WD ff 2 F j Df D 0g.

It follows from the definition that the set constD.F / is closed under the basic
arithmetic operations and hence is a field. Note that while for f; g 2 F sums
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f C g, products fg, and derivatives Df by definition are in F again, powers f g ,
compositions f ı g and antiderivatives

R
f need not be in F in general. The same

statements apply for differential rings where every occurrence of the word field is
to be replaced by the word ring.

The basic example for a differential field is the field of rational functions
.F;D/ D .C.x/; ddx /, where Dx D 1 and constD.F / D C . Note that C ,
the field of constants, may not only consist of numbers, but it may also con-
tain elements depending on variables other than x. For example, .F;D/ D
.R.n; x; xn; ln.x//; ddx /, where the notation is meant to imply Dn D 0, Dx D 1,
Dxn D n

x
xn, and D ln.x/ D 1

x
, is a differential field with constD.F / D R.n/. In

principle the definition of a differential field does not require the existence of an
element x 2 F with Dx D 1. For example, .Q.ex/; ddx / is a differential field since
the derivative of any rational expression in ex is again a rational expression in ex . In
practice, however, such cases are not very important.

In general, we will consider finitely generated differential fields of the form
.F;D/ D .C.t1; : : : ; tn/;D/, where C D constD.F / and t1; : : : ; tn represent
some functions. Algebraically, an element f 2 F is a rational expression in
t1; : : : ; tn with coefficients in C and, resembling the chain rule, the derivative can be
expressed as

Df D @f

@t1
�Dt1 C � � � C @f

@tn
�Dtn:

When given some differential field .K;D/, by adjoining additional elements
t1; : : : ; tn under the condition that we can extendD to a derivation on K.t1; : : : ; tn/
we obtain a differential field extension .K.t1; : : : ; tn/;D/, i.e., a differential field
containing .K;D/ as a differential subfield. The following theorem makes the
choice explicit which we have when extending the derivation from .K;D/ to a
differential field extension of the form .K.t/;D/.

Theorem 1 ([13, Theorems 3.2.2, 3.2.3]). Let .K;D/ be a differential field and
let K.t/ be the field generated by a new element t .

1. If t is algebraic over K , then D can be uniquely extended to a derivation on
K.t/.

2. If t is transcendental overK , then, for any w 2 K.t/,D can be uniquely extended
to a derivation on K.t/ such that Dt D w.

In our presentation we will focus on transcendental extensions, in which case the
notion of a (differential) monomial, introduced by Bronstein [9], is very important
for practical algorithms.

Definition 2. Let .F;D/ be a differential field, .K;D/ a differential subfield, and
t 2 F . Then t is called a monomial over .K;D/ if

1. t is transcendental overK and
2. Dt 2 KŒt�.
If degt .Dt/ � 2, we call t nonlinear.
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There are many similarities between rational functions .C.x/; ddx / and monomial
extensions .K.t/;D/, but there are, of course, some important differences as well.
The derivative of polynomials p 2 C Œx� is a polynomial again, likewise any
polynomial p 2 KŒt� has its derivative Dp in KŒt�. However, unlike the degree
of the derivative of p 2 C Œx�, the degree need not drop when applying D to a
p 2 KŒt�, it may stay the same or even increase depending on the degree in t ofDt .
An irreducible polynomial p 2 C Œx� never divides its derivative, this need not be
true for polynomials p 2 KŒt�. More generally, a squarefree polynomial p 2 KŒt�
need not be coprime with Dp, while it always is if p 2 C Œx�.
Definition 3. Let .K;D/ be a differential field and let t be a monomial over
.K;D/. We call a polynomialp 2 KŒt� normal, if p andDp are coprime, or special,
if p dividesDp.

A squarefree polynomial p 2 KŒt� is normal if and only if it does not contain a
factor of degree at least 1 which is special.

These properties of the derivation on KŒt� deserve to be exemplified, for
which we consider .K;D/ D .C.x/; ddx /. The transcendental functions ln.x/,
exp.x/, and tan.x/ satisfy d

dx ln.x/ D 1
x

, d
dx exp.x/ D exp.x/, and d

dx tan.x/ D
tan.x/2C1, respectively. Hence they can be represented by monomials over .K;D/.
Representing the logarithm by a monomial t with Dt D 1

x
2 K it can be proven

that the degree of a polynomial p 2 KŒt� is always at least as large as that of its
derivative Dp. The degrees are unequal if and only if the leading coefficient of p
is in C , which is true for p D t2 C xt with Dp D xC2

x
t C 1, for example, but

not for p D xt2 � 2x2�x
xC1 t with Dp D t2 C 3

.xC1/2 t � 2x�1
xC1 . In addition, every

squarefree polynomial is indeed coprime with its derivative. For a monomial t with
Dt D t we always have that p 2 KŒt� and Dp have the same degree if p is not
constant. There are polynomials which divide their derivative, and all of them are of
the form p D atn where a 2 K and n 2 N. Finally, a monomial with Dt D t2 C 1
has the property that the degree of Dp is strictly greater than that of p 2 KŒt� as
long as the degree of p is at least one, e.g., p D t.t2 C 1/ has derivative Dp D
.3t2C 1/.t2C 1/, and a squarefree polynomial is normal if and only if it is coprime
with t2 C 1.

Furthermore, in monomial extensions .K.t/;D/ we will rely on the canonical
representation

f D p C as

bs
C an

bn

of elements f 2 K.t/, where p; as; an; bs; bn 2 KŒt� with degt .as/ < degt .bs/ and
degt .an/ < degt .bn/ are such that bs is special and every irreducible factor of bn is
normal, cf. [13, p. 103]
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2.1 Relevant Classes of Functions

Apart from rational functions .C.x/; ddx / and algebraic functions .C.x/; ddx /, ele-
mentary functions are a very basic class of functions as well and were among the
first to be considered algorithmically. The elementary functions are those which
can be constructed from rational functions by the following operations in addition
to the basic arithmetic operations: taking the logarithm, applying the exponential
function, and solving algebraic equations with elementary functions as coefficients.
Elementary functions include rational and algebraic functions, logarithms, cx and
xc , trigonometric functions and their inverses, as well as hyperbolic functions and
their inverses. Recall that trigonometric and hyperbolic functions can be expressed
in terms of exponentials and their inverses can be expressed in terms of logarithms
of algebraic functions. Note that compositions f .g.x// and powers f .x/g.x/ of
elementary functions are elementary functions again. When representing elementary
functions in differential fields we make use of the following relations:

d

dx
ln.a.x// D a0.x/

a.x/
(1)

d

dx
exp.a.x// D a0.x/ exp.a.x//: (2)

Definition 4. Let .K;D/ be a differential field and let t be a monomial over
.K;D/. Then we call t an elementary monomial over .K;D/ if it is either

1. a logarithm over .K;D/, i.e., there exists a 2 K such that Dt D Da
a

, or
2. an exponential over .K;D/, i.e., there exists a 2 K such that Dt

t
D Da.

Let .F;D/ D .K.t1; : : : ; tn/;D/ be a differential field extension of .K;D/. Then
.F;D/ is called elementary extension of .K;D/, if each ti is either algebraic or an
elementary monomial over .K.t1; : : : ; ti�1/;D/.

An elementary function is a function representable as an element of some
elementary extension of .C.x/; ddx /. Note that an elementary extension of some
differential field .K;D/ does not only contain elementary functions unless K
does.

The notion of elementary functions is generalized naturally to give Liouvillian
functions by considering differential equations of the form

d

dx
y.x/ D a.x/ (3)

d

dx
y.x/ D a.x/y.x/ (4)

instead of their special cases for logarithms and exponentials above. In other
words, Liouvillian functions are the functions obtained from rational functions by
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the basic arithmetic operations, by taking primitive functions
R
a.x/ dx, by taking

hyperexponential functions e
R
a.x/ dx, and by solving algebraic equations with Liou-

villian functions as coefficients. Again, the composition of Liouvillian functions as
well as powers f .x/g.x/ of Liouvillian functions are Liouvillian. Several special
functions can be found in the class of Liouvillian functions, e.g., logarithmic and
exponential integrals, error functions, Fresnel integrals, incomplete Beta and �
functions, polylogarithms, harmonic polylogarithms [39], and hyperlogarithms [15].

Definition 5. Let .K;D/ be a differential field and let t be a monomial over
.K;D/. Then we call t a Liouvillian monomial over .K;D/ if it is either

1. primitive over .K;D/, i.e., there exists a 2 K such that Dt D a, or
2. hyperexponential over .K;D/, i.e., there exists a 2 K such that Dt

t
D a.

Let .F;D/ D .K.t1; : : : ; tn/;D/ be a differential field extension of .K;D/. Then
.F;D/ is called Liouvillian extension of .K;D/, if each ti is either algebraic or a
Liouvillian monomial over .K.t1; : : : ; ti�1/;D/.

A Liouvillian function is a function representable as an element of some
Liouvillian extension of .C.x/; ddx /. Note that there are a few equivalent definitions
of the class of Liouvillian functions. For instance, we need not start the construction
from the rational functions but it suffices to start from the set of constants because
the rational functions are obtained by the basic arithmetic operations from constants
and the identity function, which in turn is a primitive function of the constant 1.
Similarly, we may also choose to keep the operation of applying the exponential
function instead of replacing it by taking hyperexponential functions as the latter
operation can obviously be decomposed into applying the exponential function to
a primitive function. Alternatively, we may also summarize taking primitive and
hyperexponential functions into taking solutions of linear first-order differential
equations. More precisely, the class of Liouvillian functions may also be constructed
from the set of constants by the basic arithmetic operations and taking particular
solutions of

y0.x/ D a.x/y.x/C b.x/ (5)

and of algebraic equations with Liouvillian coefficients each. Note that the solutions
of (5) may be expressed in terms of primitives and (hyper)exponentials by y.x/ D
e
R
a.x/ dx

R b.x/

e
R
a.x/ dx dx.

For the sake of completeness we also give the definition of hyperexponential
and d’Alembertian functions [4, 5], although they are not so relevant in our con-
siderations. They are continuous analogues of hypergeometric and d’Alembertian
sequences, respectively. An algorithm for integration of hyperexponential functions
is given in [6].

Definition 6. Let .F;D/ be a differential field, .K;D/ a differential subfield, and
t 2 F . Then t is called
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1. hyperexponential over .K;D/ if Dt
t
2 K , or

2. d’Alembertian over .K;D/ if there exist n 2 N and r1; : : : ; rn 2 K such that t
is a solution of the homogeneous linear differential equation obtained from the
composition of differential operatorsD � ri , i.e., .D � rn/ : : : .D � r1/t D 0.

The hyperexponential functions are functions h.x/ being hyperexponential over
.C.x/; ddx /, i.e., their logarithmic derivative h0.x/

h.x/
is a rational function. Typical

examples of hyperexponential functions are cf .x/ and f .x/c , where f .x/ is a
rational function. Note that the product and the quotient of hyperexponential
functions are hyperexponential again, but the sum of hyperexponential functions
is not hyperexponential in general. So, in contrast to the classes of elementary and
Liouvillian functions, the class of hyperexponential functions is not closed under
the basic arithmetic operations.

Similarly, d’Alembertian functions are the functions that are d’Alembertian
over .C.x/; ddx /. The class of d’Alembertian functions is not closed under the
basic arithmetic operations either, as the sum and the product of d’Alembertian
functions are d’Alembertian again, but the quotient of d’Alembertian functions
is not d’Alembertian in general. Most of the special functions listed above as
being Liouvillian functions are in fact even d’Alembertian functions: exponential
integrals, error functions, Fresnel integrals, incomplete Beta and � functions,
polylogarithms, harmonic polylogarithms, and hyperlogarithms. Note that hyper-
exponential functions are d’Alembertian as well, and d’Alembertian functions are
Liouvillian. An equivalent characterization of d’Alembertian functions is that they
can be written as iterated integrals over hyperexponential functions

h1.x/

Z

h2.x/

Z

: : :

Z

hn.x/ dx : : : dx:

The relation to the previous definition is that the producth1.x/ : : : hi .x/ is a solution
of y0.x/ � ri .x/y.x/ D 0.

2.2 Liouville’s Theorem

Liouville [26–28] was the first to prove an observation on the structure of elementary
integrals. In the language of differential fields it can be stated as follows.

Theorem 2 (Liouville’s Theorem [13, Theorem 5.5.3]). Let .F;D/ be a differen-
tial field and C WD const.F /. If f 2 F has an elementary integral over .F;D/,
then there are v 2 F , c1; : : : ; cn 2 C , and u1; : : : ; un 2 F.c1; : : : ; cn/� such that

f D Dv C
nX

iD1
ci
Dui
ui
: (6)
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In view of this theorem we always can express an elementary integral
R
f as

the sum of two parts: a v 2 F , which then is called the rational part, and a sum
of logarithms

P
ci log.ui /, which is called the logarithmic part of the integral.

This theorem and its refinements [13, 37] which consider a special structure of the
integrand are the main theoretical foundation for algorithms computing elementary
integrals. There are even generalizations of Liouville’s theorem dealing also with
non-elementary integrals, e.g. [7, 45].

3 Risch’s Algorithm in Monomial Extensions

As already explained earlier, we are interested in parametric integration. In terms of
differential fields this problem can be formulated as follows.

Problem 1 (parametric elementary integration). Given: a differential field
.F;D/ and f0; : : : ; fm 2 F .

Find: a C -vector space basis c1; : : : ; cn 2 CmC1, where C WD const.F /, of all
coefficient vectors .c0; : : : ; cm/ 2 CmC1 such that c0f0 C � � � C cmfm 2 F has an
elementary integral over .F;D/ and compute corresponding integrals g1; : : : ; gn
from some elementary extensions of .F;D/.

We consider this problem over towers of monomial extensions, i.e., .F;D/ D
.C.t1; : : : ; tn/;D/ where each ti is a monomial over .C.t1; : : : ; ti�1/;D/ subject
to some technical conditions. For details see [13, 37]. A big part of the common
special functions can be represented in such differential fields. In addition to
Liouvillian functions, most importantly functions satisfying (possibly inhomoge-
neous) linear second-order differential equations can be fit into this framework.
Concrete examples include orthogonal polynomials, associated Legendre functions,
Bessel functions, Airy functions, complete elliptic integrals, Whittaker functions,
Mathieu functions, hypergeometric functions, Heun functions, Struve functions,
Anger functions, Weber functions, Lommel functions, Scorer functions, etc. How
this can be done is explained in [37].

As mentioned above Risch’s algorithm proceeds recursively, thereby exploiting
the structure of the underlying differential field that is used to model the functions
occurring. The focus of the computation always is on the topmost generator of
the differential field and everything else is regarded as part of the coefficients.
In essence, the steps dealing with expressions from C.x/ outlined above are
generalized to work with expressions from K.t/ where some monomial t , cf.
Definition 2, takes the role of x and coefficients appearing in rational or polynomial
expressions in t do not necessarily have zero derivative. Moreover, we do not
consider the poles of the integrand by interpreting it as a function of x, we will
work on a syntactic level instead by considering the factors of the denominator in
the representation of the integrand in terms of t . The algorithms outlined above
carry over as long as they are applied to the normal part of the denominator only.
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If present, the special part of the denominator needs to be treated differently, which
is done similarly to integrating the polynomial part.

Along with the main ideas of the algorithm in monomial extensions we present
a specific example to illustrate how the integrand is processed. For the explicit
computation we consider the integral

Z
x2e5x � 2xe4x C .2x3 C 5x C 1/e3x � .6x3 C x C 1/ex C 4x3

x2e2x.ex � 1/2 dx:

The integrand can be represented in the differential field .C.x; t/;D/ with Dx D 1
and Dt D t as

x2t5 � 2xt4 C .2x3 C 5x C 1/t3 � .6x3 C x C 1/t C 4x3
x2t2.t � 1/2 :

In the general setting Hermite reduction requires some preprocessing, since
it only deals with terms for which all irreducible factors of the denominator
are normal. To this end, we compute the canonical representation mentioned
earlier. We ignore any terms with special polynomials in the denominator for the
moment.

In our example we have that the polynomial t is special and the polynomial t � 1
is normal. So the canonical representation is given by

t C 2x � 2
x
C

2x3�x�1
x2

t C 4x
t2

C
3x2C2xC2

x2
t � 2x2C2

x2

.t � 1/2 ;

where the last fraction is the one we will focus on now.
Hermite reduction repeatedly splits the integrand and applies integration by parts

to one of the two summands each time. More precisely, if the integrand is of the
form a

uvm , where a; u; v 2 KŒt� are pairwise relatively prime polynomials with v
being normal and m 2 f2; 3; : : : g, then there are unique polynomials r; s 2 KŒt�
such that degt .r/ < degt .v/ and

a D .1�m/ruDvC sv:

Such polynomials can be readily computed by the extended euclidean algorithm, for
instance. With this splitting of the numerator we have

Z
.1 �m/ruDvC sv

uvm
D r

vm�1
C
Z
s � uDr

uvm�1
; (7)

where the power of v in the denominator of the remaining integrand has dropped
by (at least) one. Note that the polynomial v is merely required to be normal, so all
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normal irreducible factors in the denominator of the integrand occurring with power
m can be treated at once.

Hermite reduction repeats the above step until an integrand with a normal
denominator is obtained. Starting from an integrand a

b
with a; b 2 KŒt� and every

irreducible factor of b being normal, we first compute a squarefree factorization of
the denominator b D b1b22 : : : bnn and then after at most n � 1 reduction steps going
from m D n down to m D 2, reducing the highest-order poles in each step, we
arrive at an integrand with a normal denominator.

There is also a variant of the Hermite reduction where at each reduction step the
order of all poles of order greater than one is reduced, instead of the highest-order
poles only. This has the additional advantage that no squarefree factorization needs
to be computed at the beginning.

In our example the denominator .t � 1/2 is already given in factored form. This
means that we have m D 2, u D 1, and v D t � 1. With these values we need to
find the polynomials r; s 2 C.x/Œt � satisfying

3x2 C 2x C 2
x2

t � 2x
2 C 2
x2

D r � .�t/C s � .t � 1/

and degt .r/ < 1. We compute r.x/ D � xC2
x

and s D 2x2C2
x2

, so by (7) we obtain

Z 3x2C2xC2
x2

t � 2x2C2
x2

.t � 1/2 D � x C 2
x.t � 1/ C

Z
2

t � 1:

The remaining integrand has a normal denominator and we still focus on the part
of the integrand which has normal irreducible factors in its denominator only, which
just occur with multiplicity one now. For such integrands the notion of a residue can
be defined appropriately in monomial extensions, which we do not detail here. We
proceed by computing the logarithmic part of the integral, which will be of the form

X

i

X

ri .z/D0
z� log.si .z; t//

with ri 2 C Œz� squarefree and si 2 KŒz; t �. This means that the residues are the
roots of the polynomials ri and the polynomials si give the corresponding logands.
In general it may happen that the residue is not a constant, i.e., potentially we
have ri 2 KŒz� only. If this happens, it can be shown that the integral is not
elementary over .K.t/;D/. This gives a necessary condition on the coefficients of
the linear combination of several integrands in the parametric integration problem.
An algorithm to ensure that we will consider only linear combinations which
actually have ri 2 C Œz� can be found in [37], a different algorithm was already
used in [45]. Once this is done we compute the corresponding polynomials ri and si
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via generalizations of the algorithms mentioned earlier that originally were designed
for rational functions, see [13, 38]. Note that subtracting the derivative

X

i

X

ri .z/D0
z�D.si .z; t//

si .z; t/

of the logarithmic part of the integral from the integrand may also change the
polynomial part of the integrand in the general case, in particular this happens if
t is nonlinear.

In our case we simply have one polynomial r1 D z � 2 and s1 D t � 1 each,
which give rise to the logarithmic part

2 log.t � 1/

Subtracting its derivativeD.2 log.t � 1// D 2C 2
t�1 from the integrand we obtain

t C 2x � 2
x
C

2x3�x�1
x2

t C 4x
t2

C 2

t � 1 �
�

2C 2

t � 1
�

D t � 2
x
C

2x3�x�1
x2

t C 4x
t2

:

At this point the remaining integrands are such that their denominator is special.
Depending on the specific properties of t this condition admits only a very restricted
form of the denominator and in many cases even implies that the denominator is in
K . The aim is to reduce the integrands to lie inK . In short, the idea how to proceed
is to make an appropriate ansatz for part of the integral based on the partial fraction
decomposition of the integrands. Comparing coefficients then leads to differential
equations with coefficients in K , for which solutions have to be found in K . While
setting up the ansatz and solving for the coefficients was the easiest part in the
integration of rational functions, it is the most difficult part in the general setting and
algorithms exist only for certain types of monomials t and underlying differential
fields .K;D/. Under certain technical assumptions on t the following ansatz for the
part of the integrands having special denominators can be justified. The integrand
on the left hand side has only irreducible polynomials pj 2 KŒt� in its denominator
which are special and it is given by its partial fraction decomposition, i.e.,

nX

jD1

ljX

kD1

fj;k

pkj
D D

0

@
nX

jD1

ljX

kD1

gj;k

pkj

1

A :

After rewriting the right hand side in its partial fraction decomposition we can
compare coefficients in order to obtain differential equations for gj;k 2 KŒt�. Note
that the derivative

D
gj;k

pkj
D

Dgj;k � k Dpjpj gj;k
pkj
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again has the same power pkj in the denominator since Dpj
pj
2 KŒt� for special

polynomials. Roughly speaking, upon comparing coefficients of p�kj we obtain
differential equations relating each gj;k to fj;k . This leads to the problem of finding
solutions of certain type to differential equations, which may or may not exist. If
no solution of the correct type exists, then it can be shown that the integral is not
elementary over .K.t/;D/. This again restricts the possible linear combinations in
the parametric integration problem. There is a lot more to this, but we do not go into
detail here. Instead we refer to [13] where relevant results are given. Not all cases
can be dealt with algorithmically so far, this depends on the structure of .K;D/ as
well as on t . The main difficulty lies in the algorithmic solution of the differential
equations arising, for which we also refer to [3, 11, 44] for example. This can be
skipped if t is such that KŒt� does not contain any special irreducible polynomial.
In practice this is often the case, the most notable exception are hyperexponential
monomials t .

The above ansatz deals with the remaining denominators in the integrands.
Similarly, for the remaining polynomial parts we can set up an ansatz of the form

nX

jD1
fj t

j D D
0

@
nC1�dX

jD1
gj t

j

1

A

where d WD degt .Dt/ and gj 2 K . After expanding the right hand side in powers
of t , we compare coefficients of tmax.d;1/; : : : ; tnCmax.1�d;0/. The degree d of Dt
determines the main features of the action of the derivation on polynomials from
KŒt�. If t is nonlinear, i.e., d � 2, then we can directly solve for gj one by
one. Otherwise, this leads to differential equations for gj , which again impose
restrictions on the possible linear combinations of integrands. As above, depending
on the structure of .K;D/ as well as on t the algorithms for computing solutions
to these differential equations given in [3, 11, 13, 44] apply. There are large classes
relevant in practice, which can be solved completely algorithmically. Remaining
integrands are polynomials in KŒt� of degree less than max.d; 1/, which can be
reduced further to integrands in K under certain assumptions on t .

Our running example is such that complete algorithms exist. The fractional part
has partial fraction decomposition

2x3�x�1
x2

t C 4x
t2

D 2x3 � x � 1
x2t

C 4x

t2

with respect to t . The ansatz g1
t
C g2

t2
has the derivative Dg1�g1

t
C Dg2�2g2

t2
and hence

leads to the differential equations

Dg1 � g1 D
2x3 � x � 1

x2

Dg2 � 2g2 D 4x
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with solutions g1 D � 2x2C2x�1x
2 C.x/ and g2 D �2x�1 2 C.x/. The polynomial

part is just t , for which the ansatz g1t for the integral trivially leads to g1 D 1.
Altogether, we have the remaining integrand

t � 2
x
C

2x3�x�1
x2

t C 4x
t2

�D
�

t � 2x
2 C 2x � 1

xt
� 2x C 1

t2

�

D � 2
x
2 C.x/:

Now we reduced to integrands in K , still we want to find integrals which are
elementary over .K.t/;D/. If t is elementary over .K;D/, then this obviously
is equivalent to finding integrals elementary over .K;D/. In order to apply our
algorithm recursively we have to reduce this to a problem of finding elementary
integrals over .K;D/ also in the case where t is non-elementary over .K;D/.
Various refinements of Liouville’s theorem are needed to solve this issue. For
details we refer to [37], we just mention that this may lead to an increase in
the number of integrands we have to consider in the recursive application of the
algorithm.

In case of our example t is elementary over .K;D/ D .C.x/; ddx /, so we just
need to apply the algorithm recursively to the remaining integrand � 2

x
. This yields

�2 log.x/ as elementary integral over .C.x/; ddx /. Now, collecting all the parts of
the integral we computed, we obtain the following closed form

�2 log.x/C t � 2x
2 C 2x � 1

xt
� 2x C 1

t2
C 2 log.t � 1/� x C 2

x.t � 1/ :

In other words we computed

Z
x2e5x � 2xe4x C .2x3 C 5x C 1/e3x � .6x3 C x C 1/ex C 4x3

x2e2x.ex � 1/2 dx D

2 ln

�
ex � 1
x

�

C xe4x � xe3x � .2x2 C 3x C 1/e2x C .x � 1/ex C 2x2 C x
xe2x.ex � 1/ :

3.1 Non-monomial Extensions

To a certain extent the algorithm can also be applied even in situations where the
differential field does not meet all the requirements. Depending on which properties
are violated the computation still may make sense, for instance if some algebraic
relations among the generators of the differential field exist. Then it is just not
guaranteed to find all possible solutions. Recently this heuristic has proven to be
quite effective in the computation of massive Feynman diagrams at three-loops [1]
where new iterated integrals involving square-root terms emerged [2].
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Multiple Hypergeometric Series: Appell Series
and Beyond

Michael J. Schlosser

Abstract This survey article provides a small collection of basic material on
multiple hypergeometric series of Appell-type and of more general series of related
type.

1 Introduction

Hypergeometric series and its various generalizations, in particular such involving
multiple series, appear in various branches of mathematics and its applications.
This survey article features a small collection of selected material on multiple
hypergeometric series of Appell-type and of more general series of closely related
type.

These types of series appear very naturally in quantum field theory, in particular
in the computation of analytic expressions for Feynman integrals (for which we
kindly refer to other relevant chapters in this volume). Such integrals can be obtained
and computed in different ways – which may lead to identities for Appell series
(see e.g. M.A. Shpot [30]). On the other hand, the application of known relations
for Appell series may lead to simplifications, help to solve problems or lead to
more insight in quantum field theory. Therefore it is of importance that people
working in this area have a basic understanding of the existing theory for such
series.1 This survey is meant to provide a very digestible, easy introduction to

1Researchers working with Feynman integrals who are in demand of effective manipulation of
Appell-type series including differential reductions and �-expansions may find HYPERDIRE
(located at https://sites.google.com/site/loopcalculations/) useful, which is a set of Wolfram
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Appell-type series. Besides of recalling some known results, some of the standard
mathematical techniques which are used to prove and derive these identities are
illustrated. We highlight some of the most fundamental properties and relations for
Appell hypergeometric series and further give hints of similar relations for the series
which are (slightly) beyond the hierarchy of Appell series. All the series we consider
admit very explicit series and integral representations.

To warn the reader: There exist various different types of multivariate hypergeo-
metric series which are not covered in this survey. In particular, here we do not treat
multiple hypergeometric series associated with root systems (cf. [16, 20, 25, 29]),
hypergeometric series of matrix argument [15], and other types of multivariate
hypergeometric series such as those which appear in the study of orthogonal
polynomials of several variables (often also associated with root systems) [11, 22].

A very important extension of Appell-type series which is just beyond the
scope of this basic survey article are the multivariate hypergeometric functions
considered by I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky [14], developed
in the late 1980s. These A-hypergeometric functions (or GKZ-hypergeometric
functions) are fundamental objects in the theory of integrable systems as they are the
holonomic solutions of a (certain) A-hypergeometric system of partial differential
equations. Natural questions regarding algebraic solutions and monodromy for
A-hypergeometric functions have been recently addressed by F. Beukers [4, 5].

For basic (or q-series) analogues of Appell functions, see [13, Chap. 10].

2 Appell Series

Appell series are a natural two-variable extension of hypergeometric series. They are
treated with detail in Érdelyi et al. [12], the classical reference for special functions.

In the following, we follow to great extent the expositions from the classical texts
of W.N. Bailey [3], and L.J. Slater [31] (both contain a great amount of material on
hypergeometric series).

For convenience, we use the Pochhammer symbol notation for the shifted
factorial,

.a/n WD
(
a.aC 1/ : : : .aC n � 1/ if n D 1; 2; : : : ,
1 if n D 0.

(1a)

Accordingly, we have

.a/n D � .aC n/
� .a/

(1b)

Mathematica based programs for differential reduction of Horn-type hypergeometric functions,
see V. Bytev et al. [9].
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which is used as a definition for the shifted factorial in case n is not necessarily a
nonnegative integer.

The goal is to generalize the Gauß hypergeometric function

2F1

�
a; b

c
I x
�

D
X

n�0

.a/n .b/n

nŠ .c/n
xn

to a double series depending on two variables.
The easiest is to consider the simple product

2F1

�
a; b

c
I x
�

2F1

�
a0; b0

c0
Iy
�

D
X

m�0

X

n�0

.a/m .a
0/n .b/m .b0/n

mŠ nŠ .c/m .c0/n
xmyn;

where on the right-hand side the indicesm; n appear uncoupled.
To consider a genuine double series instead (which does not factor into a simple

product of two series), we now deliberately choose to replace one or more of the
three products .a/m .a0/n, .b/m .b0/n, .c/m .c0/n by products of coupled type .a/mCn
(other choices such as .a/m�n or .a/2m�n, etc., instead, may be sensible as well; they
lead to Horn-type series, see Sect. 3.1).

There are five different possibilities, one of which by application of the binomial
theorem gives the series

X

m�0

X

n�0

.a/mCn .b/mCm
mŠ nŠ .c/mCn

xmyn D 2F1

�
a; b

c
I x C y

�

;

i.e., an ordinary hypergeometric series.
The other four remaining possibilities are classified as F1-, F2-, F3-, and F4-

series (cf. P. Appell [1] and P. Appell and M.-J. Kampé de Fériet [2]):

F1
�
aI b; b0I cI x; y� WD

X

m�0

X

n�0

.a/mCn .b/m .b0/n
mŠ nŠ .c/mCn

xmyn; jxj; jyj < 1:

(2a)

F2
�
aI b; b0I c; c0I x; y� WD

X

m�0

X

n�0

.a/mCn .b/m .b0/n
mŠ nŠ .c/m .c0/n

xmyn; jxj C jyj < 1:

(2b)

F3
�
a; a0I b; b0I cI x; y� WD

X

m�0

X

n�0

.a/m .a
0/n .b/m .b0/n

mŠ nŠ .c/mCn
xmyn; jxj; jyj < 1:

(2c)

F4
�
aI bI c; c0I x; y� WD

X

m�0

X

n�0

.a/mCn .b/mCn
mŠ nŠ .c/m .c0/n

xmyn; jxj 12 C jyj 12 < 1:

(2d)
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One immediately observes the following simple identities:

F1
�
aI b; b0I cI x; y� D

X

m�0

.a/m .b/m

mŠ .c/m
xm 2F1

�
aCm; b0
c Cm Iy

�

: (3)

F1
�
aI b; b0I cI x; 0� D F2

�
aI b; b0I c; c0I x; 0� D F3

�
a; a0I b; b0I cI x; 0� (4a)

D F4
�
aI bI c; c0I x; 0� D 2F1

�
a; b

c
I x
�

: (4b)

F1
�
aI b; 0I cI x; y� D F2

�
aI b; 0I c; c0I x; y� D F3

�
a; a0I b; 0I cI x; y� (5a)

D 2F1

�
a; b

c
I x
�

: (5b)

Using ideas of N.Ja. Vilenkin [32], W. Miller, Jr. [23] has given a Lie theoretic
interpretation of the Appell functions F1. In particular, he showed that sl.5;C/ is
the dynamical symmetry algebra for the F1.

2.1 Contiguous Relations and Recursions

All contiguous relations for the F1 function can be derived from these four relations:

.a � b � b0/ F1
�
aI b; b0I cI x; y� � a F1

�
aC 1I b; b0I cI x; y�

Cb F1
�
aI b C 1; b0I cI x; y�C b0 F1

�
aI b; b0 C 1I cI x; y� D 0; (6a)

c F1
�
aI b; b0I cI x; y� � .c � a/ F1

�
aI b; b0I c C 1I x; y�

�a F1
�
aC 1I b; b0I c C 1I x; y� D 0; (6b)

c F1
�
aI b; b0I cI x; y�C c.x � 1/ F1

�
aI b C 1; b0I cI x; y�

�.c � a/x F1
�
aI b C 1; b0I c C 1I x; y� D 0; (6c)

c F1
�
aI b; b0I cI x; y�C c.y � 1/ F1

�
aI b; b0 C 1I cI x; y�

�.c � a/y F1
�
aI b; b0 C 1I c C 1I x; y� D 0: (6d)

Similar sets of relations exist for the other Appell functions, see R.G. Buschman [8].
Recently, X. Wang [35] has used contiguous relations and induction to derive

various recursion formulae for all the Appell functions F1; F2; F3; F4. (Some
of the recursions for F2 were previously given by S.B. Opps, N. Saad and
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H.M. Srivastava [26].) For n D 1 these recursions reduce to equivalent forms of
the known contiguous relations.

In particular, for F1 we have

F1
�
aC nI b; b0I cI x; y� D F1

�
aI b; b0I cI x; y�C bx

c

nX

kD1
F1
�
aC kI b C 1; b0I c C 1I x; y�

C b0y
c

nX

kD1
F1
�
aC kI b; b0 C 1I c C 1Ix; y�; (7a)

F1
�
a � nI b; b0I cI x; y� D F1

�
aI b; b0I cI x; y�� bx

c

n�1X

kD1
F1
�
a � kI b C 1; b0I c C 1I x; y�

� b
0y
c

n�1X

kD1
F1
�
a � kI b; b0 C 1I c C 1I x; y�; (7b)

F1
�
aI b C n; b0I cI x; y� D F1

�
aI b; b0I cI x; y�C ax

c

nX

kD1
F1
�
aC 1I b C k; b0I c C 1Ix; y�;

(7c)

F1
�
aI b � n; b0I cI x; y� D F1

�
aI b; b0I cI x; y�� ax

c

n�1X

kD1
F1
�
a C 1I b � k; b0I c C 1I x; y�;

(7d)

F1
�
aI b; b0I c � nIx; y� D F1

�
aI b; b0I cI x; y�

C abx
nX

kD1

F1
�
aC 1I b C 1; b0I c � k C 2I x; y�

.c � k/.c � k C 1/

C ab0y
nX

kD1

F1
�
aC 1I b; b0 C 1I c � k C 2I x; y�

.c � k/.c � k C 1/ : (7e)

For F2 we have

F2
�
aC nI b; b0I c; c0I x; y� D F2

�
aI b; b0I c; c0I x; y�

C bx

c

nX

kD1
F2
�
aC kI b C 1; b0I c C 1; c0I x; y�

C b0y
c0

nX

kD1
F2
�
aC kI b; b0 C 1I c; c0 C 1I x; y�;

(8a)
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F2
�
a � nI b; b0I c; c0I x; y� D F2

�
aI b; b0I c; c0I x; y�

� bx

c

n�1X

kD1
F2
�
a � kI b C 1; b0I c C 1; c0I x; y�

� b
0y
c0

n�1X

kD1
F2
�
aC kI b; b0 C 1I c; c0 C 1I x; y�;

(8b)

F2
�
aI b C n; b0I c; c0I x; y� D F2

�
aI b; b0I c; c0I x; y�

C ax

c

nX

kD1
F2
�
aC 1I b C k; b0I c C 1; c0I x; y�;

(8c)

F2
�
aI b � n; b0I c; c0I x; y� D F2

�
aI b; b0I c; c0I x; y�

� ax

c

n�1X

kD1
F2
�
aC 1I b � k; b0I c C 1; c0I x; y�;

(8d)

F2
�
aI b; b0I c � n; c0I x; y� D F2

�
aI b; b0I c; c0I x; y�

C abx
nX

kD1

F2
�
aC 1I b C 1; b0I c � k C 2; c0I x; y�

.c � k/.c � k C 1/ :

(8e)

For F3 we have

F3
�
aC n; a0I b; b0I cI x; y� D F3

�
a; a0I b; b0I cI x; y�

C bx

c

nX

kD1
F3
�
a C k; a0I b C 1; b0I c C 1I x; y�; (9a)

F3
�
a � n; a0I b; b0I cI x; y� D F3

�
a; a0I b; b0I cI x; y�

� bx

c

n�1X

kD1
F3
�
a � k; a0I b C 1; b0I c C 1Ix; y�; (9b)

F3
�
a; a0I b; b0I c � nIx; y� D F3

�
a; a0I b; b0I cI x; y�

C abx
nX

kD1

F3
�
aC 1; a0I b C 1; b0I c � k C 2I x; y�

.c � k/.c � k C 1/

C a0b0y
nX

kD1

F3
�
a; a0 C 1I b; b0 C 1I c � k C 2I x; y�

.c � k/.c � k C 1/ :

(9c)
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Finally, for F4 we have

F4
�
aC nI bI c; c0I x; y� D F4

�
aI bI c; c0I x; y�

C bx

c

nX

kD1
F4
�
aC kI b C 1I c C 1; c0I x; y�

C by

c0
nX

kD1
F4
�
aC kI b C 1I c; c0 C 1I x; y�; (10a)

F4
�
a � nI bI c; c0I x; y� D F4

�
aI bI c; c0I x; y�

� bx

c

n�1X

kD1
F4
�
a � kI b C 1I c C 1; c0I x; y�

� by

c0
n�1X

kD1
F4
�
a � kI b C 1I c; c0 C 1I x; y�; (10b)

F4
�
aI bI c � n; c0I x; y� D F4

�
aI bI c; c0I x; y�

C abx
n�1X

kD1

F4
�
aC 1I b C 1I c � k C 1; c0I x; y�

.c � k/.c � k � 1/ :

(10c)

Most of these recursions can be extended to elegant recursions involving more
terms. For instance,

F1
�
aC nI b; b0I cI x; y� D

nX

iD0

n�iX

kD0

 
n

i

! 
n � i
k

!
.b/i .b

0/k
.c/kCi


 xiyj F1
�
aC i C kI b C i; b0C kI c C i C kI x; y�;

(11a)

F1
�
a � nI b; b0I cI x; y� D

nX

iD0

n�iX

kD0

 
n

i

! 
n � i
k

!
.b/i .b

0/k
.c/kCi


 .�x/i .�y/j F1
�
aI b C i; b0 C kI c C i C kI x; y�;

(11b)

F1
�
aI b C n; b0I cI x; y� D

nX

kD0

 
n

k

!
.a/k

.c/k
xkF1

�
aC kI b C k; b0I c C kI x; y�;

(11c)
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F1
�
aI b � n; b0I cI x; y� D

nX

kD0

 
n

k

!
.a/k

.c/k
.�x/kF1

�
aC kI b; b0I c C kI x; y�;

(11d)

or

F4
�
aI bI c�n; c0I x; y� D

nX

kD0

 
n

k

!
.a/k.b/k

.c/k.c � n/k x
kF4

�
aCkI bCkI cCk; c0 I x; y�:

(12)

2.2 Partial Differential Equations

Let

z D F1
�
aI b; b0I cI x; y� D

X

m�0

X

n�0
Am;nx

myn:

Then

AmC1;n D .aCmC n/.b Cm/
.1Cm/.c CmC n/ Am;n;

and

Am;nC1 D .aCmC n/.b0 C n/
.1C n/.c CmC n/ Am;n:

Denoting the partial differential operators by

� D x @
@x

and � D y @
@y
;

we readily see that z D F1 satisfies the partial differential equations

�
.� C � C a/.� C b/� 1

x
�.� C � C c � 1/	z D 0; (13a)

�
.� C � C a/.� C b0/� 1

x
�.� C � C c � 1/	z D 0: (13b)

Now let

p D @z

@x
; q D @z

@y
; r D @z

@x

@z

@y
; s D @z2

@x2
; t D @z2

@y2
:
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Then z D F1 satisfies the partial differential equations

x.1 � x/r C y.1 � x/s C Œc � .aC b C 1/x�p � byq� abz D 0; (14a)

y.1 � y/t C x.1 � y/s C Œc � .aC b0 C 1/y�q � b0xp � ab0z D 0: (14b)

Similarly, z D F2 satisfies the partial differential equations

x.1 � x/r � xysC Œc � .aC b C 1/x�p � byq � abz D 0; (15a)

y.1 � y/t � xysC Œc0 � .aC b0 C 1/y�q � b0xp � ab0z D 0: (15b)

Similarly, z D F3 satisfies the partial differential equations

x.1 � x/r C ysC Œc � .aC b C 1/x�p � abz D 0; (16a)

y.1 � y/t C xsC Œc � .a0 C b0 C 1/y�q � a0b0z D 0: (16b)

Finally, z D F4 satisfies the partial differential equations

x.1 � x/r � y2t � 2xysC cp � .aC b C 1/.xpC yq/� abz D 0; (17a)

y.1 � y/t � x2r � 2xysC c0q � .aC b C 1/.xpC yq/� abz D 0: (17b)

2.3 Integral Representations

Integral representations for Appell series are very useful. Substitution of variables
in theses integrals lead to equivalent integrals. This provides an effective and easy
method to derive transformation formulae for Appell series, see Sect. 2.4.

Consider the integral

I D
ZZ

ub�1vb0�1.1 � u � v/c�b�b0�1.1 � ux � vy/�a du dv;

taken over the triangular region u � 0, v � 0, u C v � 1. (We implicitly assume
suitable conditions of the parameters a; b; b0; c such that the integral is well-defined
and converges.)

Now, provided jvy=.1� ux/j < 1, we have, by binomial expansion,

.1 � ux � vy/�a D .1 � ux/�a
X

m�0

.a/m

mŠ

� vy

1 � ux

�m
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D
X

m�0

.a/m

mŠ
vmym.1 � ux/�a�m

D
X

m�0

.a/m

mŠ
vmym

X

n�0

.aCm/n
nŠ

unxn:

Thus,

I D
X

m�0

X

n�0

.a/mCn
mŠnŠ

xnym
ZZ

ub�1Cnvb0�1Cm.1 � u � v/c�b�b0�1 du dv

D
X

m�0

X

n�0

.a/mCn
mŠnŠ

xnym �



b C n; b0 Cm; c � b � b0

c CmC n
�

;

which yields

I D �


b; b0; c � b � b0

c

�

F1
�
aI b; b0I cI x; y�: (18)

While I is a double integral, a single integral for F1 even exists, see (22).
Similarly,

Z 1

0

Z 1

0

ub�1vb0�1.1 � u/c�b0�1.1 � v/c0�b0�1.1 � ux � vy/�a du dv

D �


b; b0; c � b; c0 � b0

c; c0
�

F2
�
aI b; b0I c; c0I x; y�; (19)

and
ZZ

ub�1vb0�1.1 � u� v/c�b�b0�1.1 � ux/�a.1 � vy/�a0
du dv

D �


b; b0; c � b � b0

c0
�

F3
�
a; a0I b; b0I c0I x; y�; (20)

the last integral taken over the triangular region u � 0, v � 0, uC v � 1.
The double integral for F4 is more complicated:

Z 1

0

Z 1

0

ua�1vb�1.1 � u/c�a�1.1 � v/c0�b�1.1� ux/�b.1 � vy/�a



�

1 � uvxy

.1 � ux/.1 � vy/

�cCc0�a�b�1
du dv

D �


a; b; c � a; c0 � b

c; c0
�

F4
�
aI bI c; c0I x.1 � y/; y.1 � x/�: (21)
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In 1881, É. Picard [27] discovered a single integral for F1. Let

I 0 D
Z 1

0

ua�1.1 � u/c�a�1.1� ux/�b.1 � uy/�b0
du;

where <c > <a > 0. Then

I 0 D
X

m�0

X

n�0

Z 1

0

ua�1.1� u/c�a�1
.b/m

mŠ
umxm

.b0/n
nŠ

unyn du

D
X

m�0

X

n�0

.b/m.b
0/n

mŠnŠ
xmyn

Z 1

0

uaCmCn�1.1 � u/c�a�1 du

D
X

m�0

X

n�0

.b/m.b
0/n

mŠnŠ
xmyn �



aCmC n; c � a
c CmC n

�

;

hence

I 0 D �


a; c � a
c

�

F1
�
aI b; b0I cI x; y�: (22)

2.3.1 Incomplete Elliptic Integrals

As immediate consequences of (22), it follows that the incomplete elliptic integrals
F andE and the complete elliptic integral˘ can all be expressed in terms of special
cases of the Appell F1 function:

F.�; k/ W D
Z �

0

d�
p
1 � k2 sin2 �

D sin� F1

�
1

2
I 1
2
;
1

2
I 3
2
I sin2 �; k2 sin2 �

�

; j<�j < �

2
; (23a)

E.�; k/ W D
Z �

0

p
1 � k2 sin2 � d�

D sin� F1

�
1

2
I 1
2
;�1
2
I 3
2
I sin2 �; k2 sin2 �

�

; j<�j < �

2
; (23b)

˘.n; k/ W D
Z �=2

0

d�

.1 � n sin2 �/
p
1 � k2 sin2 �

D �

2
F1

�
1

2
I 1; 1

2
I 1In; k2

�

:

(23c)
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2.4 Transformations

In the single integral for the F1 series,

F1
�
aI b; b0I cI x; y� D �



c

a; c � a
� Z 1

0

ua�1.1� u/c�a�1.1� ux/�b.1� uy/�b0
du;

one may use the substitution of variables u D 1 � v to prove

F1
�
aI b; b0I cI x; y� D .1 � x/�b.1 � y/�b0

F1

�

c � aI b; b0I cI x

x � 1;
y

y � 1
�

:

(24)

For b0 D 0 this reduces to the well-known Pfaff–Kummer transformation for
the 2F1:

2F1

�
a; b

c
I x
�

D .1 � x/�b 2F1
�
c � a; b

c
I x

x � 1
�

:

Similarly, the substitution of variables u D v
1�xCvx can be used to prove

F1
�
aI b; b0I cI x; y� D .1�x/�aF1

�
aI �b � b0 C c; b0I cI x

x � 1;
y � x
1 � x

�
: (25)

For b0 D 0 this reduces again to the Pfaff–Kummer transformation for the 2F1
series.

On the other hand, if c D b C b0, then

F1
�
aI b; b0I b C b0I x; y� D .1 � x/�a 2F1

�
a; b0

b C b0 I
y � x
1 � x

�

(26a)

D .1 � y/�a 2F1
�
a; b

b C b0 I
x � y
1 � y

�

: (26b)

Similarly,

F1
�
aI b; b0I cI x; y� D .1 � y/�aF1

�

aI b; c � b � b0I cI x � y
1 � y ;

y

y � 1
�

; (27)

F1
�
aI b; b0I cI x; y� D .1� x/c� a� b.1� y/�b0

F1

�

c � aI c � b � b0; b0I cI x; x�y
1�y

�

;

(28)

F1
�
aI b; b0I cI x; y� D .1� x/�b.1� y/c�a�b0

F1

�
c � aI b; c � b � b0I cI y � x

1� x ; y
�
:

(29)
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Further,

F2
�
aI b; b0I c; c0I x; y� D .1 � x/�aF2

�
aI c � b; b0I c; c0I x

x � 1 ;
y

1 � x
�
; (30)

F2
�
aI b; b0I c; c0I x; y� D .1�y/�aF2

�

aI b; c0 � b0I c; c0I x

1 � y ;
y

y � 1
�

; (31)

F2
�
aI b; b0I c; c0I x; y� D .1 � x � y/�aF2

�
aI c � a; c0 � b0I c; c0I x

xCy�1
;

y

xCy�1

�
:

(32)

Also quadratic transformations are known for Appell functions, see
B.C. Carlson [10].

2.5 Reduction Formulae

The transformations of Sect. 2.4 readily imply the following reduction formulae
(typically a double series being reduced to a single series):

• y D x in F1:

F1
�
aI b; b0I cI x; x� D .1 � x/c�a�b�b0

2F1

�
c � a; c � b � b0

c
I x
�

: (33a)

By Euler’s transformation this is

F1
�
aI b; b0I cI x; x� D 2F1

�
a; b C b0

c
I x
�

: (33b)

• c D b C b0 in F1:

F1
�
aI b; b0I b C b0I x; y� D .1 � y/�a 2F1

�
a; b

b C b0 I
x � y
1 � y

�

: (34)

• c D b in F2:

F2
�
aI b; b0I b; c0I x; y� D .1 � x/�a 2F1

�
a; b0

c0
I y

1 � x
�

: (35)

• y D 1 in F1:
Since

F1
�
aI b; b0I cI x; y� D

X

m�0

.a/m .b/m

mŠ .c/m
xm 2F1

�
aCm; b0
c Cm Iy

�
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and

2F1

�
a; b

c
I 1
�

D �


c; c � a � b
c � a; c � b

�

; <.c � a � b/ > 0;

we have

F1
�
aI b; b0I cI x; 1� D �



c; c � a � b0
c � a; c � b0

�

2F1

�
a; b

c � b0 I x
�

; (36)

for <.c � a � b0/ > 0.
• An F1 $ F3 transformation:

Since

F1
�
aI b; b0I cI x; y� D

X

m�0

.a/m .b/m

mŠ .c/m
xm 2F1

�
aCm; b0
c Cm Iy

�

and

2F1

�
a; b

c
Iy
�

D .1 � y/�b 2F1
�
c � a; b

c
I y

y � 1
�

;

we have

F1
�
aI b; b0I cI x; y� D .1 � y/�b0 X

m�0

.a/m .b/m

mŠ .c/m
xm 2F1

�
c � a; b0
c Cm I

y

y � 1
�

D .1 � y/�b0
F3

�

a; c � aI b; b0I cI x; y

y � 1
�

: (37)

Hence, anyF1 function can be expressed in terms of an F3 function. The converse
is only true when c D aC a0.

• a0 D c � a and b0 D c � b in F3:
Since by Eq. (34) the F1 function reduces to an ordinary 2F1 function when

c D b C b0, we have

F3

�

a; c � aI b; c � bI cI x; y

y � 1
�

D .1� x/�a.1� y/c�b
2F1

�
a; c � b

c
I y � x
1 � x

�

:

(38)

• c0 D a in F2:

F2
�
aI b; b0I c; aI x; y� D .1 � y/�b0

F1

�

bI a � b0; b0I cI x; x

1 � y
�

: (39)



Multiple Hypergeometric Series: Appell Series and Beyond 319

Conversely, any F1 function can be expressed in terms of an F2 function where
c0 D a.

If further c D a, then

F2
�
aI b; b0I a; aI x; y� D .1 � x/�b.1 � y/�b0

2F1

�
b; b0

a
I xy

.1 � x/.1 � y/
�

:

(40)

2.6 An Expansion of an F4 Series

In 1940 and 1941, J.L. Burchnall and T.W. Chaundy [6, 7] gave the following
expansion of an F4 series in terms of products of two hypergeometric 2F1 series:

F4
�
aI bI c; c0I x.1 � y/; y.1 � x/�

D
X

m�0

.a/m .b/m .1C aC b � c � c0/m
mŠ .c/m .c0/m

xmym


 2F1

�
aCm; b Cm

c Cm I x
�

2F1

�
aCm; b Cm

c0 Cm Iy
�

: (41)

This expansion has applications to classical orthogonal polynomials. It can also be
used to deduce the double integral representation for F4. Various special cases are
interesting enough to state separately:

• c0 D 1C aC b � c in F4:
We have the product formula

F4
�
aI bI c; 1CaC b� cI x.1�y/; y.1�x/� D 2F1

�
a; b

c
I x
�

2F1

�
a; b

c0
Iy
�

:

(42)

• c0 D b in F4:
Here we have the reduction formula

F4
�
aI bI c; bI x.1 � y/; y.1 � x/�

D .1 � x/�a.1 � y/�a F1
�

aI 1C a � c; c � bI cI xy

.1 � x/.1 � y/ ;
x

x � 1
�

:

(43)

• c0 D b and c D a in F4:
Further specialization of (43) gives the quite attractive summation formula

F4
�
aI bI a; bI x.1�y/; y.1�x/� D .1�x/1�b.1�y/1�a.1�x�y/�1: (44a)
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Written out in explicit terms, this is

X

m�0

X

n�0

.a/mCn .b/mCn
mŠ nŠ .a/m .b/n

xm.1 � y/myn.1 � x/n D .1 � x/1�b.1 � y/1�a
.1 � x � y/ :

(44b)

For y D 0 this reduces to I. Newton’s binomial expansion formula

1F0

�
b

�I x
�

D .1 � x/�b :

3 Related Series and Extensions of Appell Series

3.1 Horn Functions

In 1931, Jacob Horn [17] studied convergent bivariate hypergeometric functionsP
m;n fm;nx

myn with certain (degree and other) restrictions on the two ratios of
consecutive terms

fmC1;n
fm;n

;
fm;nC1
fm;n

:

He arrived at a complete set of 34 different functions among which are the Appell
functions F1; F2; F3; F4.

They include series such as

G1.a; b; b
0I x; y/ WD

X

m�0

X

n�0

.a/mCn.b/n�m.b0/m�n
mŠnŠ

xmyn; (45)

H3.a; b; cI x; y/ WD
X

m�0

X

n�0

.a/2mCn.b/n

.c/mCn mŠnŠ
xmyn; (46)

and

H7.a; b; b
0; cI x; y/ WD

X

m�0

X

n�0

.a/2m�n.b/n.b0/n
.c/m mŠnŠ

xmyn: (47)
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3.2 Kampé de Fériet Series

In 1937, J. Kampé de Fériet [18] introduced the following bivariate extension of the
generalized hypergeometric series:

F
pWq
r Ws

 
a1; : : : ; ap W b1; b01I : : : I bq; b0qI
c1; : : : ; cr W d1; d 01I : : : I ds; d 0s I

x; y

!

D
X

m�0

X

n�0

.a1/mCn : : : .ap/mCn
.c1/mCn : : : .cr /mCn

.b1/m.b
0
1/n : : : .bq/m.b

0
q/n

.d1/m.d
0
1/n : : : .ds/m.d

0
s/n

xmyn

mŠnŠ
: (48)

Numerous identities exist for special instances of such series. For illustration, we
list three summation formulae.

• P.W. Karlsson [19], 1994:

F 0W3
1W1
�� W a; d � aI b; d � bI c;�cI
d W e; d C e � a � b � cI 1; 1

�

D �


e; e C d � a � b � c
e � c; e C d � a � b

�

;

(49)

where <.e/ > 0 and <.d C e � a � b � c/ > 0.
• S.N. Pitre and J. Van der Jeugt [28], 1996:

F 0W31W1

 
� W a; d � aI b; d � bI c; d � cI
d W e; d C e � a � b � cI 1; 1

!

D �
"
e; e C d � a � b � c; e � d

e � a; e � b; e � c

#

;

(50)

where <.e � d/ > 0 and <.d C e � a � b � c/ > 0. Further

F 0W3
1W1
�� W a; d � aI b; d � bI c; e � c � 1I

d W e; d C e � a � b � cI 1; 1

�

D �


1 � a; 1 � b; e; e � d; d C e � a � b � c
1 � d; e � a; e � b; e � c; 1C d � a � b

�

; (51)

where <.d C e � a � b � c/ > 0, and d � a or d � b is a negative integer.

3.3 Lauricella Series

In 1893, G. Lauricella [21] investigated properties of the following four series F .n/
A ,

F
.n/
B , F .n/

C , F .n/
D , of n variables:
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F
.n/
A

�
aI b1; : : : ; bnI c1; : : : ; cnI x1; : : : ; xn

�

D
X

m1�0
� � �

X

mn�0

.a/m1C���Cmn .b1/m1 : : : .bn/mn
.c1/m1 : : : .cn/mn m1Š : : : mnŠ

x
m1
1 : : : xmnn ; (52)

where jx1j C � � � C jxnj < 1.

F
.n/
B

�
a1; : : : ; anI b1; : : : ; bnI cI x1; : : : ; xn

�

D
X

m1�0
� � �

X

mn�0

.a1/m1 : : : .an/mn .b1/m1 : : : .bn/mn
.c/m1C���Cmn m1Š : : : mnŠ

x
m1
1 : : : xmnn ; (53)

where jx1j; : : : ; jxnj < 1.

F
.n/
C

�
aI bI c1; : : : ; cnI x1; : : : ; xn

�

D
X

m1�0
� � �

X

mn�0

.a/m1C���Cmn .b/m1C���Cmn
.c1/m1 : : : .cn/mn m1Š : : : mnŠ

x
m1
1 : : : xmnn ; (54)

where jx1j 12 C � � � C jxnj 12 < 1.

F
.n/
D

�
aI b1; : : : ; bnI cI x1; : : : ; xn

�

D
X

m1�0
� � �

X

mn�0

.a/m1C���Cmn .b1/m1 : : : .bn/mn
.c/m1C���Cmn m1Š : : : mnŠ

x
m1
1 : : : xmnn ; (55)

where jx1j; : : : ; jxnj < 1.
Certainly, we have

F
.2/
A D F2; F

.2/
B D F3; F

.2/
C D F4; F

.2/
D D F1:

Many properties for Lauricella functions, such as integral representations and
partial differential equations, are given by Appell and Kampé de Fériet [2]. From
the vast amount of material, we single out the following integral representation of
the Lauricella F .n/

D series as a specific example.

3.3.1 Integral Representation of F
.n/

D

The formula

F
.n/
D

�
aI b1; : : : ; bnI cI x1; : : : ; xn

�

D �



c

a; c � a
� Z 1

0

ua�1.1 � u/c�a�1.1 � ux1/
�b1 : : : .1 � uxn/

�bn du;

(56)
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where <c > <a > 0, is very useful for deriving relations for FD series. It can
be easily verified by Taylor expansion of the integrand, followed by termwise
integration.

3.3.2 Group Theoretic Interpretations

A group theoretic interpretation of the Lauricella F .n/
A functions corresponding

to the most degenerate principal series representations of SL.n;R/ was given by
N.Ja. Vilenkin [33] (see also [34, Sect. 16.3.4]). Similarly, W. Miller, Jr. [24] has
shown that the LauricellaF .n/

D functions transform as basis vectors corresponding to
irreducible representations of the Lie algebra sl.nC 3;C/ (by which he generalized
his previous observation in [23] for the n D 2 case, corresponding to the Appell
functions F1).
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theoretic interpretations of Lauricella series. This work was partially supported by FWF Austrian
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series F 0W3

1W1 .1; 1/. J. Math. Anal. Appl. 202(1), 121–132 (1996)
29. Rosengren, H.: Elliptic hypergeometric series on root systems. Adv. Math. 181, 417–447

(2004)
30. Shpot, M.A.: A massive Feynman integral and some reduction relations for Appell functions.

J. Math. Phys. 48(12), 123512, 13 (2007)
31. Slater, L.J.: Generalized Hypergeometric Functions. Cambridge University Press, Cambridge

(1966)
32. Vilenkin, N.Ja.: Special Functions and the Theory of Group Representations. American Math-

ematical Society Translations of Mathematical Monographs, vol. 22. American Mathematical
Society, Providence (1968)

33. Vilenkin, N.Ja.: Hypergeometric functions of several variables, and degenerate representations
of the group SL.n; R/. Izv. Vyssh. Uchebn. Zaved. Mat. 4(95), 50–55 (1970)

34. Vilenkin, N.Ja., Klimyk A.U.: Representation of Lie Groups and Special Functions, Vol. 3.
Classical and Quantum Groups and Special Functions (Translated from the Russian by
V.A. Groza and A.A. Groza). Mathematics and Its Applications (Soviet Series), vol. 75.
Kluwer, Dordrecht (1992)

35. Wang, X.: Recursion formulas for Appell functions. Integral Transforms Spec. Funct. 23(6),
421–433 (2012)



Simplifying Multiple Sums in Difference Fields

Carsten Schneider

Abstract In this survey article we present difference field algorithms for symbolic
summation. Special emphasize is put on new aspects in how the summation
problems are rephrased in terms of difference fields, how the problems are solved
there, and how the derived results in the given difference field can be reinterpreted as
solutions of the input problem. The algorithms are illustrated with the Mathematica
package Sigma by discovering and proving new harmonic number identities
extending those from Paule and Schneider, 2003. In addition, the newly developed
package EvaluateMultiSums is introduced that combines the presented tools.
In this way, large scale summation problems for the evaluation of Feynman diagrams
in QCD (Quantum ChromoDynamics) can be solved completely automatically.

1 Introduction

We will elaborate a symbolic summation toolbox based on up–to-date algorithms
in the setting of difference fields. It contains hypergeometric and q–hypergeometric
summation, see, e.g., [28, 34, 37, 38, 52, 55, 57, 59, 82] and [16, 43, 53] respectively,
and it can deal with multiple sums covering big parts of (q–)hypergeometric multi-
summation [15, 60, 79, 80] and (q–)holonomic sequences [30, 44, 68, 81].

This difference field approach started with Karr’s theory of ˘˙�-fields and his
indefinite summation algorithm [39, 40]; for the continuous analogue of indefinite
integration see [61]. In principle, the algorithm solves the telescoping problem in
a given field generated by indefinite nested sums and products. In this article we
restrict this input class to nested hypergeometric sum expressions (see Definition 4),
i.e., expressions where the arising products represent hypergeometric sequences,
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and the sums and products occur only as polynomial expressions in the numerators;
evaluating such expressions produces d’Alembertian sequences [12] and [58, this
book], a subclass of Liouvillian sequences [36]. We point out that exactly this
restriction covers all the summation problems that have been relevant in practical
problem solving so far. There we solve the following fundamental problem: given a
nested hypergeometric sum expression, calculate an alternative expression such that
the occurring sums are algebraically independent [76]; for related work see [9,18,35,
42, 69]. In addition, the found representation should be given in terms of sums and
products that are as simple as possible; for a general framework we refer to [49].
This is possible by representing the sums and products in ˘˙�-fields reflecting
certain optimality properties: We will exploit simplifications taking into account,
e.g., the minimal nesting depth [65, 67, 74, 75, 77] or minimal degrees [13, 69, 72].

Besides indefinite summation, we aim at the transformation of a definite multiple
sum to nested hypergeometric sums. As for the special case of hypergeometric
summation [59, 82] one looks for a recurrence of such a sum [62]. If one succeeds,
one computes all solutions of the found recurrence that are expressible in terms
of nested hypergeometric sum expressions; for solvers of recurrences in terms of
polynomials and ˘˙�-fields see [12, 36, 57] and [14, 26, 62, 70], respectively.
Finally, one tries to combine the solutions to an expression that equals the
input sum.

All these algorithms (also for the q-hypergeometric and mixed case) are available
in the summation package Sigma [73] and have been used to discover and prove
demanding identities from combinatorics or related fields, like, e.g., in [32, 51, 56,
71]. A typical example is the sum

A˛.a/ D
aX

kD0

�
1C ˛.n � 2k/S1.k/

�
 
n

k

!˛

with S1.k/ D
kX

iD1

1

i

which is connected to supercongruences of the Apéry numbers. For the treatment
of the cases ˛ 2 f1; 2; : : : ; 5g and ˛ > 5 we refer to [54] and [45], respectively. As
running example we will discover and prove the following identities1

A�1.n/ D.nC 1/S1.n/C 1; (1)

A�2.n/ D .nC 1/
2

.nC 2/2 C
�
nC 2 �n2 C 3nC 2�S1.n/C 3

�
.nC 1/

.nC 2/2 ; (2)

A�3.n/ D.�1/n.5S�3.n/.nC 1/3 � 6S�2;1.n/.nC 1/3/C 6S1.n/.nC 1/C 1;
(3)

1For identities (1) and (2) we point also to [29]; for their indefinite versions see (10) and (11)
below.
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A�4.n/ D .�1/
n
�
2n
n

��1
.nC 1/5

.4n.nC 2/C 3/

 
7

2

nX

iD1

.�1/i�2i
i

�

i 3
� 5

nX

iD1

.�1/i�2i
i

�
S1.i/

i2

!

C

C .10.nC 1/S1.n/C 3/.nC 1/
2nC 3 (4)

where the harmonic sums [20, 78] are defined by

Sm1;:::;mk .n/ D
nX

i1D1

sign.m1/
i1

i
jm1j
1

� � �
ik�1X

ikD1

sign.mk/
ik

i
jmk j
k

; mi 2 Z n f0g: (5)

We emphasize that exactly this type of nested hypergeometric sums is related to
summation problems coming from QCD like., e.g., in [21, 48] or in [4, 7, 17, 25].
More precisely, two- and three-loop Feynman integrals with at most one mass and
with operator insertion can be transformed to multiple sums [24] depending on a
discrete Mellin parameter n. Then these sums must be simplified in terms of special
functions [2, this book], such as harmonic sums (5), their infinite versions of multi-
ple zeta values [22] and generalizations likeS -sums [9,47] and cyclotomic harmonic
sums [5]. In recent calculations [6] also binomial sums as in (4) arose. For certain
sum classes we point to efficient tools like [47, 78]. For harder sums such as [7]

n�3X

jD0

jX

kD0

kX

lD0

�jCn�3X

qD0

�lCn�q�3X

sD1



�lCn�q�s�3X

rD0

.jC1
kC1/.

k
l /.

n�1
jC2/.

�jCn�3
q /.�lCn�q�3

s /.�lCn�q�s�3
r /rŠ.�lCn�q�r�s�3/Š.s�1/Š

.�lCn�q�2/Š.�jCn�1/.n�q�r�s�2/.qCsC1/

.�1/�jCk�lCn�q�3
h
4S1.�j C n� 1/� 4S1.�j C n� 2/� 2S1.k/� .S1.�l C n� q � 2/

(6)

C S1.�l C n� q � r � s � 3/� 2S1.r C s//C 2S1.s � 1/� 2S1.r C s/
i

the summation techniques under consideration work successfully and are applied
automatically in the newly developed package EvaluateMultiSums [23].
In this way, millions of multiple sums [4, 25] could be treated. In addition, the
presented packages and algorithms are used by an enhanced version [6, 7] of the
method of hyperlogarithms [27] and by new algorithms for the calculation of
"-expansions [8,24] utilizing multi-summation and integration methods [15,68,79].

The outline of this article is as follows. In Sect. 2 we present the basic mechanism
how expressions in terms of indefinite nested sums and products can be rephrased
in a difference field. For interested readers details are given in Sect. 3. Readers, that
are primarily interested in the summation tools and how they can be applied with
the summation package Sigma, can jump directly to Sect. 4. Finally, in Sect. 5 the
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new package EvaluateMuliSums is introduced that combines all the presented
summation methods. It enables one to simplify definite nested sums to indefinite
nested hypergeometric sums completely automatically.

2 Indefinite Summation: The Basic Mechanism

We will work out the basic principles how indefinite summation can be carried out
in the setting of difference fields. This will be illustrated by the task to simplify

A�1.a/ D
aX

kD0
F.k/ D

aX

kD0

�
1� .n � 2k/S1.k/

�
 
n

k

!�1
; (7)

to be more precise, by the task to solve the following problem.

Problem T: Telescoping. Given a summand F.k/. Find an expression G.k/
such that

G.k C 1/ D G.k/C F.k C 1/ (8)

and such that G.k/ is not “more complicated” than F.k/.

For our given F.k/ in (7) we will compute for k � 0 the solution

G.k/ D ..k C 1/S1.k/C 1/
�
n
k

��1 C c; c 2 Q.n/: (9)

Since A�1.a/ and G.a/ satisfy both the recurrenceA.aC 1/ D A.a/C F.aC 1/,
they are equal for a � 0 if they agree at a D 0; this is the case with c D 0. Hence
we get for A�1.a/, and with the same technique for A�2.a/, the simplifications

A�1.a/ D ..aC 1/S1.a/C 1/
 
n

a

!�1
; (10)

A�2.a/ D .nC 1/2
.nC 2/2 C

.aC 1/.�aC 2nC 2.aC 1/.nC 2/S1.a/C 3/
.nC 2/2

 
n

a

!�2
:

(11)

Note that for the special case a D n this simplifies to (1) and (2), respectively.
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Subsequently, we give more details how this solutionG.k/ for (8) can be derived
automatically. First observe that the occurring sums can be written in terms of
indefinite sums and products: for all k 2 N,

S1.k/ D
kX

iD1

1

i
and

�
n
k

� D
kY

iD1

n � i C 1
k

I

here n is considered as a variable. Now let Sk be the shift operator w.r.t. k. Then
using the shift behavior of the summand objects, namely

Skn D n; Skk D k C 1; Sk

�
n
k

� D n�k
kC1

�
n
k

�
; SkS1.k/ D S1.k/C 1

kC1 ;
(12)

we can write, e.g., F.k C 1/ again in terms of n, k,
�
n
k

�
and S1.k/:

F.k C 1/ D SkF.k/ D
�
1 � .n � 2.k C 1//�S1.k/C 1

kC1
��
n�k
kC1

�
n
k

��1
: (13)

We will utilize this property, but instead of working with the summand objects k,�
n
k

�
and S1.k/ we will represent the objects by the variables x, b, h, respectively;

n is also considered as a variable. Here we start with the rational numbers and
construct the rational function field2

F WD Q.n/.x/.b/.h/, i.e., the field of quotients
of polynomials in the variables n; x; b; h. In this way, (13) is represented by

f D �1 � .n � 2.x C 1//.hC 1

x C 1/
�n � x
x C 1b

�1 2 F: (14)

Finally, we model the shift operator Sk by a field automorphism � W F! F.

Definition 1. Let F be a field (resp. ring). A bijective map � W F! F is called field
(resp. ring) automorphism if �.a ı b/ D �.a/ ı �.b/ for all a; b 2 F and ı 2 fC; �g.
Remark. If F is a ring, it follows that �.0/ D 0, �.1/ D 1 and �.�a/ D ��.a/
for all a 2 F. In addition, if F is a field, this implies that �.1=a/ D 1=�.a/ for all
a 2 F

�.

Namely, looking at the shift behavior of the summand objects (12) the automor-
phism is constructed as follows. We start with the rational function field Q.n/ and
define � W Q.n/! Q.n/ with �.c/ D c for all c 2 Q.n/. Next, we extend � to
Q.n/.x/ such that �.x/ D x C 1. We note that this construction is unique:

Lemma 1. Let F.t/ be a rational function field, � W F! F be a field automor-
phism, and a; b 2 F with a ¤ 0. Then there is exactly one way how the field
automorphism is extended to F.t/ subject to the relation �.t/ D a t C b. Namely,

2
Z are the integers, N D f0; 1; 2; : : : g are the non-negative integers, and all fields (resp. rings)

contain the rational numbers Q as a subfield (resp. subring). For a set A we define A� WD A n f0g.
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for f DPn
iD0 fi t i 2 FŒt �, �.f / DPn

iD0 �.fi /.a tCb/i . And for p; q 2 FŒt � with
q ¤ 0, �.p

q
/ D �.p/

�.q/
.

As a consequence, by iterative application we extend � uniquely from Q.n/ to
Q.n/.x/.b/.h/ subject to the shift relations (compare (12))

�.x/ D x C 1; �.b/ D n � x
x C 1b; �.h/ D hC 1

x C 1 : (15)

In summary, we represent the summandF.kC1/ given in (13) by (14) in the rational
function field F WD Q.n/.x/.b/.h/ together with its field automorphism � W F! F

subject to the shift relations (15). Exactly this construction is called difference field;
for a general theory see [31, 46].

Definition 2. A difference field (resp. difference ring) .F; �/ is a field (resp. ring) F
together with a field automorphism (resp. ring automorphism) � W F! F. Here we
define the set of constants by const�F WD fc 2 Fj�.c/ D cg:
Remark. For a difference field .F; �/ the set const�F forms a subfield F which is
also called constant field of .F; �/. Since Q is always kept invariant under � (this is
a consequence of �.1/ D 1), Q is always contained in const�F as a subfield.

We continue with our concrete example. Given the difference field .F; �/ in which
F.k C 1/ is represented by (14), we search for a rational function g 2 F such that

�.g/ D g C f: (16)

Namely, we activate the algorithm from Sect. 3.2 below and calculate the solution

g D ..x C 1/hC 1/b�1 C c; c 2 Q.n/ (17)

which rephrased in terms of the summation objects gives the solution (9) for (8).
In a nutshell, the proposed simplification tactic consists of the following steps.

1. Construct a difference field in which the summand objects can be rephrased.
2. Find a solution g of (16) in this difference field (or a suitable extension).
3. Reformulate g to a solution G.k/ of (8) in terms of product-sum expressions.

The algorithms in the next section deliver tools to attack this problem for the class
of indefinite nested product-sum expression; for a more formal framework see [75].

Definition 3. Let K be a field and the variable k be algebraically independent over
K. An expression is called indefinite nested product-sum expression w.r.t. k iff it can
be built by k, a finite number of constants from K, the four operations (C;�; �; =),
and sums and products of the type

Pk
iDl f .i/ or

Qk
iDl f .i/ where l 2 N and

where f .i/ is an indefinite nested product-sum expression w.r.t. i which is free
of k. In particular, we require that there is a � 2 N such that for any integer n � �
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the expression evaluates for k D n (to an element form K) without entering in any
pole.

In this recursive definition the sums and products can be arbitrarily composed and
can arise also as polynomial expressions in the denominators. Here we restrict
ourselves to those expressions that occurred in practical problem solving so far.

Definition 4. A sequence hhuiu�0 2 K
N is called hypergeometric if there are

˛.x/ 2 K.x/ and l 2 N such that huC1=hu D ˛.u/ for all u � l . I.e.,
hu D c

Qu
iDlC1 ˛.i � 1/ for all u � l for some c 2 K

�. Such a symbolic product
(u replaced by a variable k) is called hypergeometric product w.r.t. k. An expression
is called nested hypergeometric sum expression w.r.t. k if it is an indefinite nested
product-sum expression w.r.t. k (see Definition 3) such that the arising products
are hypergeometric and the arising sums and products occur only as polynomial
expressions in the numerators. The arising sums (with upper bound k) are called
nested hypergeometric sums (w.r.t. k).

E.g., the harmonic sums (5) and their generalizations [5, 47] fall into this class. In
particular, the right hand sides of (1)–(4) are covered. These expressions evaluate
exactly to the d’Alembertian sequences [12] and [58, this book].

Remark 1. In the difference field approach also the q-hypergeometric and mixed
case [16] can be handled. All what will follow generalizes to this extended setting.

Subsequently, we will derive a full algorithm that treats the three steps from
above automatically for the class of nested hypergeometric sum expressions.

3 Details of the Difference Field Machinery

We will work out how the Steps 1–3 from above (covering also the more general
paradigms of creative telescoping and recurrence solving) can be carried out
automatically. As an important consequence we will obtain tools to compactify
nested hypergeometric sum expressions, i.e., the occurring sums in the derived
expression are algebraically independent (see also Sect. 4.1).

3.1 Step 1: From Indefinite Nested Sums and Products
to ˘˙ �-Fields

In the previous section the construction of a difference field for a given summand
in terms of indefinite nested product-sums was as follows. We start with a constant
difference field .K; �/, i.e., �.c/ D c for all c 2 K or equivalently const�K D K.
Then we adjoin step by step new variables, say t1; : : : ; te to K which gives the
rational function field F WD K.t1/.t2/ : : : .te/ and extend the field automorphism
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from K to F subject to the shift relations �.ti / D ai ti or �.ti / D ti C ai for some
ai 2 F.t1/ : : : .ti�1/�. Subsequently, we restrict this construction to ˘˙�-fields;
for a slightly more general but rather technical definition of Karr’s ˘˙-fields
see [39, 40].

Definition 5. .F; �/ as given above is called ˘˙�-field over K if const�F D K.
The adjoined elements .t1; : : : ; te/ are also called generators of the ˘˙�-field.

E.g., our difference field .Q.n/.x/.b/.h/; �/ with (15) is a ˘˙�-field over Q.n/.
To see that the constants are just Q.n/, the following result is crucial [39, 62].

Theorem 1. [Karr’s theorem] Let .F; �/ be a difference field, take a rational
function field F.t/, and extend the automorphism � from F to F.t/ subject to the
relation �.t/ D a t C f for some a 2 F

� and f 2 F. Then the following holds.

1. Case a D 1: const�F.t/ D const�F iff there is no g 2 F with �.g/ D g C f .
2. Case f D 0: const�F.t/ D const�F iff there is no g 2 F

�, r > 0 with �.g/ D
ar g.

Example 1. Using Theorem 1 we represent the sum (7) in a ˘˙�-field parsing the

occurring objects in the following order:
1:! n

2:! k
3:! �

n
k

� 4:! S1.k/
5:! A�1.a/.

1. We start with .Q.n/; �/ setting �.c/ D c for all c 2 Q.n/.
2. Then we construct the difference field .Q.n/.x/; �/ subject to the shift relation
�.x/ D xC 1. Since there is no g 2 Q.n/ such that �.g/ D gC 1, it follows by
Karr’s Theorem that const�Q.n/.x/ D Q.n/, i.e., .Q.n/.x/; �/ is a ˘˙�-field
over Q.n/.

3. One can check by an algorithm of Karr [39] that there is no r > 0 and
g 2 Q.n/.x/� such that �.g/ D �

n�x
xC1

�r
g. Thus for our difference field

.Q.n/.x/.b/; �/ with �.b/ D n�x
xC1b we have that const�Q.n/.x/.b/ D

const�Q.n/.x/ D Q.n/ by Theorem 1, i.e., .Q.n/.x/.b/; �/ is a ˘˙�-field
over Q.n/.

4. Next, we extend the ˘˙�-field .Q.n/.x/.b/; �/ to .Q.n/.x/.b/.h/; �/ subject
to the shift relation �.h/ D h C 1

xC1 . There is no g 2 Q.n/.x/.b/ with
�.g/ D g C 1

xC1 ; this can be checked by the algorithm given in Sect. 3.2 below.
Thus the constants remain unchanged by Theorem 1, and .Q.n/.x/.b/.h/; �/ is
a ˘˙�-field over Q.n/.

5. Given f in (14), that represents F.k C 1/ in (7), we find (17) such that �.g/ D
g C f . In other words, g reflects the shift behavior of A�1.k/ D Pk

iD1 F.i/
with SkA�1.k/ D A�1.k/C F.k C 1/. Reformulating g in terms of sums and
products yields (9) and choosing c D 0 delivers the identity (10). In other words,
g (for c D 0) can be identified with the sum A�1.k/. This construction will be
done more precise in Sect. 3.4; in particular, we refer to Remark 4.

In general, Theorem 1 yields the following telescoping tactic to represent a given
indefinite nested product-sum expression (see Definition 3) in terms of a˘˙�-field.
One starts with the constant field .K; �/ with �.c/ D c for all c 2 K. Then one
parses all the summation objects. Suppose one treats in the next step a sum of the
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form
Pk

iD1 F.i/ where one can express F.k/ in the so far constructed ˘˙�-field
.F; �/, say F.k C 1/ can be rephrased by f 2 F. Then there are two cases: one
finds a g 2 F such �.g/ D g C f and one can model the sum

Pk
iD1 F.i/ with its

shift behavior

Sk

kX

iD1
F.i/ D

kX

iD1
F.i/C F.k C 1/ (18)

by g C c (for some properly chosen c 2 K). If this fails, one can adjoin a new
variable, say t , to F and extends the automorphism to � W F.t/! F.t/ subject to
the shift relation �.t/ D t C f . By Theorem 1 the constants remain unchanged,
i.e., .F.t/; �/ is a ˘˙�-field over K, and t 2 F.t/ models accordingly the shift
behavior (18) of our sum. The product case can be treated similarly; see also
Problem RP on page 336.

3.2 Step 2: Solving the Telescoping Problem in a Given
˘˙ �-Field

Karr’s algorithm [39] solves the telescoping problem within a fixed ˘˙�-field
exploiting its recursive nature: it tries to solve the problem for the top most generator
and reduces the problem to the subfield (i.e., without the top generator). This
reduction is possible by solving the following more general problem.

Problem FPLDE: First-order Parameterized Linear Difference
Equations.
Given a ˘˙�-field .F; �/ over K, ˛0; ˛1 2 F

� and f0; : : : ; fd 2 F.
Find alla c0; : : : ; cd 2 K and g 2 F such that ˛1�.g/ C ˛0g D
c0f0 C � � � C cdfd .

aThe solution set V D f.c0; : : : ; cd ; g/ 2 K
dC1 
 Fj˛1�.g/C ˛0g DPd

iD0 cifi g forms
a K-vector space of dimension � d C 2 and the task is to get an explicit basis of V .

Remark. Problem FPLDE contains not only the summation paradigm of tele-
scoping, but also of creative (resp. parameterized) telescoping (40) for a fixed
˘˙�-field.

Subsequently, we sketch a simplified version of Karr’s algorithm applied to our
concrete problem: Given the ˘˙�-field .F; �/ with F D Q.n/.x/.b/.h/ and the
shift relations (15) and given the summand (14), calculate (if possible) g 2 F such
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that �.g/�g D f holds. The algorithm is recursive: it treats the top most variable h
and needs to solve FPLDEs in the smaller˘˙�-field .H; �/with H D Q.n/.x/.b/.

Denominator bounding: Calculate a polynomial q 2 HŒh�� such that for any g 2
H.h/ with (16) we have that g q 2 HŒh�, i.e., q contains the denominators of all the
solutions as a factor. For a general ˘˙�-field and f such a universal denominator
q can be calculated; see [26, 39, 63]. Then given such a q, it suffices to search for a
polynomial p 2 HŒh� such that the first order difference equation

1

�.q/
�.p/ � 1

q
p D f (19)

holds (which is covered by Problem FPLDE). In our concrete example the algorithm
outputs that we can choose q D 1, i.e., we have to search for a p 2 HŒh� such that
�.p/ � p D f holds.

Degree bounding: Calculate b such that for any p 2 HŒh� with (19) we have that
deg.p/ � b. For a general˘˙�-field and f such a b can be calculated; see [39,66].
In our concrete example we get b D 2. Hence, any solution p 2 HŒh� of �.p/�p D
f is of the form p D p2h2C p1hC p0 and it remains to determine p2; p1; p0 2 H.

Degree reduction: By coefficient comparison of h2 in

�.p2h
2 C p1h1 C p0/� .p2h2 C p1h1 C p0/ D f (20)

we obtain the constraint �.p2/ � p2 D 0 on p2. Since .H; �/ is a ˘˙�-field,
p2 2 Q.n/. Hence we can choose p2 D d where d 2 Q.n/ is (at this point) free to
choose. Now we move p2h2 D d h2 in (20) to the other side and get the equation

�.p1h
1 C p0/� .p1h1 C p0/ D f � d 2h.xC1/C1

.xC1/2 : (21)

Note that we accomplished a simplification: the degree of h in the difference
equation is reduced (with the price to introduce the constant d ). Now we repeat
this degree reduction process. By coefficient comparison of h1 in (21) we get the
constraint �.p1/ � p1 D .xC1/.2x�nC2/

b.n�x/ C d �2
xC1 on p1. Again we succeeded in a

reduction: we have to solve Problem FPLDE in H. Applying the sketched method
recursively, gives the generic solution d D 0 and p1 D xC1

b
C e with e 2 Q.n/.

Plugging this solution into (21) and bringing �.p1 h/ � p1 h to the right hand side
reduce the problem to �.p0/ � p0 D �2xCn�1

b.x�n/ C e �1
xC1 I note that we decreased

the degree of h from 1 to 0, i.e., we have to solve again Problem FPLDE in H.
Recursive application of the algorithm calculates the generic solution e D 0 and
p0 D b�1 C c with c 2 Q.n/. Putting everything together gives the solution (17).

The technical details of the sketched algorithm for Problem FPLDE can be found
in [26, 65]. More generally, this algorithm can be extended to a method from the
first-order case to the mth-order case (m 2 N) as described in [70]. Furthermore,
taking results from [14] we obtain a full algorithm that solves the following
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Key problem PLDE: Parameterized Linear Difference Equations.
Given a ˘˙�-field .F; �/ over K, ˛0; : : : ; ˛m 2 F (not all zero) and
f0; : : : ; fd 2 F.
Find alla c0; : : : ; cd 2 K and g 2 F such that

˛m�
m.g/C � � � C ˛0g D c0f0 C � � � C cdfd : (22)

aThe solution set V D f.c0; : : : ; cd ; g/ 2 K
dC1 
 F j (22) holdsg forms a K-vector space

of dimension � mC d C 1 and the task is to get an explicit basis of V .

Remark. Problem PLDE covers telescoping (see (16)), creative telescoping
(see (40)) and recurrence solving (see (46)) for a given ˘˙�-field. In particular,
it is a crucial building block for the enhanced summation paradigms given below.
Furthermore, it allows to deal with holonomic sequences in the setting of difference
fields [68, 73].

3.3 Restriction to Polynomial ˘˙ �-Fields

We described how the summation objects can be rephrased in a ˘˙�-field (Step 1)
and how the telescoping problem, and more generally Problems FPLDE and PLDE
can be solved there (Step 2). Subsequently, we restrict to polynomial ˘˙�-fields.
This will allow us to reformulate the found result completely automatically in terms
of the given summation objects (Step 3) in Sect. 3.4.

Definition 6. A ˘˙�-field .F; �/ over K with F D K.x/.p1/ : : : .pr/.s1/ : : : .se/

is called polynomial if �.x/ D x C 1,

• �.pi / D ai pi with ai 2 K.x/� for all 1 � i � r , and
• �.si / D si C fi ; with3 fi 2 K.x/Œp1; p

�1
1 ; : : : ; pr ; p

�1
r �Œs1; : : : ; si�1� for all

1 � i � e.

Related to Remark 1 we note that in [76] a more general definition is used that covers
also the q-hypergeometric and mixed case [16]. All what will follow generalizes to
this general setting. Let .F; �/ be a polynomial˘˙�-field over K as in Definition 6
and define the ring

R D K.x/Œp1; p
�1
1 ; : : : ; pr ; p

�1
r �Œs1; : : : ; se�: (23)

3
K.x/Œp1; p

�1
1 ; : : : ; pr ; p

�1
r � stands for the polynomial Laurent ring in the variables p1; : : : ; pr ,

i.e., an element is of the form
P

.i1;:::;ir /2S f.i1;:::;ir /p
i1
1 : : : p

ir
r where f.i1;:::;ir / 2 K.x/ and S  �

r

is finite.
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Note that for all g 2 R and k 2 Z we have that �k.g/ 2 R. Thus restricting � to R
gives a ring automorphism (see Definition 1). Therefore .R; �/ is a difference ring
and the set of constants is the field K.

Example 2 (See Example 1). .Q.n/.x/.b/.h/; �/ is a polynomial ˘˙�-field over
Q.n/. In particular, we get the difference ring .R; �/ with constant field Q.n/ for
the polynomial (Laurent) ring

R D Q.n/.x/Œb; b�1�Œh�: (24)

We highlight that polynomial ˘˙�-fields cover (up to the alternating sign) all
nested hypergeometric sums (see Definition 4). This can be seen as follows.

• Hypergeometric sequences. Consider, e.g., the hypergeometric products

H1.k/ D
kY

iDl1
˛1.i � 1/; : : : ;Hv.k/ D

kY

iDlv
˛v.i � 1/ with ˛j .x/ 2 K.x/;

(25)

(Hj .k/ ¤ 0 for all k � 0) where K D Q or K D Q.n1; : : : ; nu/ is a rational
function field. Then there is an algorithm [69, Theorem 6.10] based on Theorem 1
that solves

Problem RP: Represent Products. Given a ˘˙�-field .K.x/; �/ over K
with �.x/ D x C 1; ˛1; : : : ; ˛v 2 K.x/�.
Find a ˘˙�-field .F; �/ over K with F D K.x/.p1/ : : : .pr / and
�.pi /=pi 2 K.x/ for 1 � i � r together with gj 2
K.x/Œp1; p

�1
1 ; : : : ; pr ; p

�1
r �
� and bj 2 f�1; 1g for 1 � j � v such that

�.gj / D bj ˛j gj :

Namely, given ˛1; : : : ; ˛v 2 K.x/, let .F; �/ with R WD K.x/Œp1; p
�1
1 ; : : : ; pr ;

p�1r � together with gj 2 R and bj 2 f�1; 1g for 1 � j � v be the output of
Problem RP.
If bj D 1 for all 1 � j � v, the products Hj .k/ in (25) can be expressed with
cj gj for appropriate cj 2 K

� in the polynomial˘˙�-field .F; �/.
Otherwise, construct the difference ring .FŒm�; �/ with �.m/ D �m, m2 D 1

and const�FŒm� D K; see [62]. Heremmodels .�1/k with Sk.�1/k D �.�1/k .
Then the Hj .k/ in (25) are rephrased with cj m

.1�bj /=2 gj for appropriate
cj 2 K

�.
• Indefinite nested sums. Take an expression in terms of nested hypergeometric

sums, i.e., the sums do not occur in a denominator. Moreover, suppose that all the
arising hypergeometric products can be expressed in a polynomial ˘˙�-field.
Thus it remains to deal only with summation signs and to extend the given
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polynomial˘˙�-field using Theorem 1.1. Suppose that during this construction
it was so far possible to obtain a polynomial ˘˙�-field, say it is of the form
.F; �/ as given in Definition 6 with the difference ring .R; �/ with R as in (23),
and let f 2 R be the summand of the next sum under consideration. Then there
are two cases. If we fail to find a g 2 F such that �.g/ D g C f then we can
construct the˘˙�-field .F.t/; �/ with �.t/ D tCf by Theorem 1. In particular,
this ˘˙�-field is again polynomial. Otherwise, if we find such a g 2 F with
�.g/ � g D f 2 R, we can apply the following result; the proof is a slight
extension of the one given in [76, Theorem 2.7].

Theorem 2. Let .F; �/ be a polynomial ˘˙�-field over K and consider the
difference ring .R; �/ as above. Let g 2 F. If �.g/ � g 2 R then g 2 R.

Example 3 (Cont. Example 2). For f 2 R with (14) it follows that any solution
g 2 F with �.g/ D g C f is in R. Indeed, we calculated (17).

Thus we always have g 2 R. As a consequence we can express the sum over f
with g C c for some properly chosen c 2 K (see Remark 4). Hence by iterative
application of the above construction we never enter in the case that sums occur in
the denominators. Consequently, a nested hypergeometric sum expression can be
rephrased in a polynomial˘˙�-field up to the following technical aspect.

Remark 2. If the hypergeometric products (25) cannot be expressed in a˘˙�-field
solving Problem RP, one needs in addition the alternating sign .�1/k in the setting
of difference rings; note that here we cannot work anymore with fields, since zero
divisors pop up: .1C .�1/k/.1 � .�1/k/ D 0. For simplicity, we restrict ourselves
to polynomial ˘˙�-fields; the described techniques and algorithms in this article
can be extended for the more technical case allowing also .�1/k ; see [33, 62].

3.4 Step 3: Evaluating Elements from a ˘˙ �-Field
to Sequences

Let .F; �/ be a polynomial ˘˙�-field over K as in Definition 6 and define R
by (23). In this section we make the step precise how elements from R can be
reformulated as a nested hypergeometric sum expression. I.e., how such an element
f 2 R can be mapped via an evaluation function ev W R 
 N! K to a sequence
hev.f; i/ii�0 by using an explicitly given nested hypergeometric sum expression
w.r.t. a variable k.

Before we start with a concrete example, we emphasize that this map ev should
respect the ring structure R and the ring automorphism � as follows.

Definition 7. A map ev W R 
 N! K for a difference ring .R; �/ with constant
field K is called evaluation function if the following evaluation properties hold: For
all c 2 K and all i � 0 we have that ev.c; i/ D c, for all f; g 2 R there is a ı � 0
with
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8i � ı W ev.f g; i/ D ev.f; i/ ev.g; i/; (26)

8i � ı W ev.f C g; i/ D ev.f; i/C ev.g; i/I (27)

and for all f 2 R and j 2 Z there is a ı � 0 with

8i � ı W ev.�j .f /; i/ D ev.f; i C j /: (28)

Example 4 (See Example 1). Take the polynomial ˘˙�-field .Q.n/.x/.b/.h/; �/
with (15) and consider .R; �/ with (24) and constant field Q.n/. We construct an
evaluation map ev W R 
 N! Q.n/ as follows. For f 2 R and k 2 N, ev.f; k/ is
calculated by evaluating an explicitly given nested hypergeometric sum expression.
The construction is performed iteratively following the tower of extensions in R.

1. We define ev W Q.n/.x/ 
 N! Q.n/ as follows. For p

q
2 Q.n/.x/ with p; q 2

Q.n/Œx� and gcd.p; q/ D 1,

ev.p
q
; k/ D

(
p.k/

q.k/
if q.k/ ¤ 0

0 if q.k/ D 0 (pole case)I
(29)

here p.k/; q.k/ with k 2 N denotes the evaluation of the polynomials at x D k.
Note that the properties in Definition 7 are satisfied for ı chosen sufficiently
large: that is the case when one does not enter in the pole case in (29) for elements
f; g 2 R as given in Definition 7; see also Example 5.

2. Next, we extend ev from Q.n/.x/ to Q.n/.x/Œb; b�1�. We set

ev.b; k/ D c1
kY

iDl1

nC 1 � i
i

; l1 2 �; c1 2 Q.n/� (30)

and prolong the ring structure as follows: for f D Pd
jDu fj b

j 2
Q.n/.x/Œb; b�1� with fj 2 Q.n/.x/ and u; d 2 � we define ev.f; k/ D
Pd

jDu ev.fj ; k/ev.b; k/j I this implies that (26) and (27) hold for some ı 2 N

sufficiently large; see Example 5. Note that for any choice of l1 2 � and
c 2 Q.n/� also (28) is valid. Since we want to model

�
n
k

� D Qk
iD1 nC1�ii

, a
natural choice is l1 D 1, c1 D 1.

3. Finally, we set

ev.h; k/ D
kX

iD�1

1

i
C d1; �1 2 N; d1 2 Q.n/: (31)

Again properties (26) and (27) hold for some ı 2 N (see Example 5) if we
extend ev as follows: for f D Pd

jD0 fj hj 2 R with fj 2 Q.n/.x/Œb; b�1� we
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set ev.f; k/ DPd
jD0 ev.fj ; k/ev.h; k/j : In addition, property (28) holds for any

choice of �1 2 N and d1 2 Q.n/. Since we want to model S1.k/, we take, e.g.,
�1 D 1 and d1 D 0.
For instance, for f 2 R as in (14) the evaluation is given by the nested
hypergeometric sum expression (cf. (13))

ev.f; k/ D
�
1 � .n � 2.k C 1//

�
S1.k/C 1

k C 1
��n � k
k C 1

 
n

k

!�1
I (32)

the usage of S1.k/,
�
n
k

�
is just pretty printing and stands for (30) and (31),

respectively.

Besides the function ev we aim at the calculation of the bounds ı in Definition 7.

Example 5. For the evaluation function ev W R 
 N! Q.n/ from Example 4 the
bounds can be extracted by the computable map ˇ W R! N defined as follows.
For f 2 R let d 2 N be minimal such that for all k � d the calculation of
ev.f; k/ does not enter in the pole case in (29). More precisely, write f in the form
f D P

i2Z;j2N fi;j bihj with finitely many fi;j 2 Q.n/.x/ being non-zero, and
choose d 2 N such that for all i; j and all k � d the denominator of fi;j has no
pole at x D k. This d can be calculated explicitly for any f 2 R and defines the
function ˇ with ˇ.f / WD d . Now let f; g 2 R. Then for ı WD max.ˇ.f /; ˇ.g// we
have that (26) and (27). In addition, for all j 2 Z choose ı WD ˇ.f /Cmax.0;�j /
and we get (28).

This example motivates the following definition [76].

Definition 8. Let .R; �/ be a difference ring with constant field K and consider an
evaluation function ev W R 
 N! K. ˇ W R! N is called bounding function of ev
if for all f; g 2 R we can take ı WD max.ˇ.f /; ˇ.g// such that (26) and (27) holds,
and for all f 2 R and j 2 � we can take ı WD ˇ.f /C max.0;�j / such that (28)
holds.

The concrete construction above carries over to the general case. Let .F; �/ be a
polynomial ˘˙�-field over K as given in Definition 6 and define R by (23). Then
one obtains an evaluation map ev W R 
 N! K in terms of explicitly given nested
hypergeometric sum expressions as follows. We start with ev W K.x/ 
N! K

defined by (29) for p

q
2 K.x/ with p; q 2 KŒx� and gcd.p; q/ D 1. Next we

define how the map acts on the pi :

ev.pi ; k/ D ci
kY

jDli
ai .j � 1/; .1 � i � r/I (33)

here we are free to choose ci 2 K
�, and li is chosen such that the numerator and

denominator of ai evaluated at j is non-zero for all j � li . Then this map is
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extended to ev W NR0 
N! K with NR0 WD K.x/Œp1; p
�1
1 ; : : : ; pr ; p

�1
r � as follows.

For f DP.i1;:::;ir /2Zr f.i1;:::;ir /p
i1
1 : : : p

ir
r 2 NR0 with f.i1;:::;ir / 2 K.x/ we set

ev.f; k/ D
X

.i1;:::;ir /2Zr
ev.f.i1;:::;ir /; k/ev.p1; k/

i1 : : : ev.pr ; k/
ir :

Finally, we extend iteratively this map from NR0 to R WD NRe . Suppose that we are
given already the map for NRi D NRŒsi ; : : : ; si�1� with 1 � i < e. Then we define

ev.si ; k/ D
kX

jD�i
ev.fi ; j � 1/C di (34)

where di 2 K can be arbitrarily chosen, and �i 2 N is sufficiently large in the
following sense: it is larger than the lower bounds of the arising sums and products
of the explicitly given nested hypergeometric sum expression for ev.fi ; j � 1/
and such that during the evaluation one never enters in the pole case in (29). In
a nutshell, the underlying expression for ev.si ; k/ (for symbolic k) can be written
as an indefinite nested sum without entering poles that are captured via (29).
Finally, we extend this construction to NRi�1Œsi �: for f D Pv

jD0 fj s
j
i 2 NRi�1Œsi �

with fj 2 NRi�1 we define ev.f; k/ D Pv
jD0 ev.fj ; k/ev.si ; k/j : To this end,

by iteration on i (1 � i � e) we obtain ev W R 
 N! K with R WD NRe that
satisfies the properties in Definition 7 and which is explicitly given in terms of nested
hypergeometric sum expressions.

Remark. Note that the products in (33) and sums in (34) are just nested hypergeo-
metric sum expressions w.r.t. k; see Definition 4.

Moreover, we can define explicitly a bounding function ˇ W R! N that produces
the required bounds ı in Definition 7 following the construction in Example 5.
In short, consider f 2 R as a polynomial in the variables pi ; si and take all its
coefficients from K.x/. Then ˇ.f / is the minimal value d 2 N such that the
evaluation of the coefficients does not enter in the pole case of (29); note that
the positive integer roots of the denominators can be detected if K is computable
(in particular, if one can factorize polynomials over K). We can summarize this
construction as follows; cf. [76].

Lemma 2. Let .F; �/ be a polynomial ˘˙�-field over K with R as in (23). Then
ev W R 
 N! K defined above in terms of nested hypergeometric sum expressions
is an evaluation function, and ˇ W R! N given above is a corresponding bounding
function of ev. If K is computable, such functions can be calculated explicitly.

Remark 3. Solving Problem PLDE. Take a polynomial ˘˙�-field .F; �/ as in
Definition 6 and define R by (23). Let ev W R 
N! K be an evaluation function
with a bounding function ˇ W R! N as constructed above by means of hypergeo-
metric sum expressions. Let ˛i ; fi 2 R and take g 2 R such that Eq. (22) holds.
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Now calculate ı WD max.ˇ.˛0/; : : : ; ˇ.˛m/; ˇ.f0/; : : : ; ˇ.fd /; ˇ.g//. Then for any
k � ı,

ev.˛m; k/ev.g; k Cm/C � � � C ev.˛0; k/ev.g; k/ D c0ev.f0; k/C � � � C cd ev.fd ; k/:
(35)

Hence a solution g 2 R of (22) produces a solution of (35) in terms of nested
hypergeometric sum expressions. In particular, a lower bound ı for its validity can
be computed (if K is computable). We emphasize that this property is crucial for the
automatic execution of the summation paradigms given in Sect. 4 below.

Remark 4. Simultaneous construction of a ˘˙�-field and its evaluation function.
In order to model the summation problem accordingly (see, e.g., Problem EAR on
page 344) the construction of the ˘˙�-field (Step 1) and the evaluation function
with its bounding function should be performed simultaneously. Here the choice of
the lower bounds and constants in (33) and (34) are adjusted such that the evaluation
of the introduced products and sums agrees with the objects of the input expression;
for a typical execution see Example 4. In particular the evaluation function is crucial
if a sum can be represented in the already given˘˙�-field by telescoping. This is,
e.g., the case in (5) of Example 1. We succeeded in representing the summand F.k/
in (13) by the element f 2 R as in (14). Namely, using the evaluation function
from Example 4 we have (32) for all k � 0. Then we calculate the solution (17) of
�.g/ D gCf . In particular, we obtain ev.g; k/ D ..kC1/S1.k/C1/

�
n
k

��1Cc with
c 2 Q.n/ such that for all k � 0we have that ev.g; kC1/ D ev.g; k/Cev.f; kC1/;
see Remark 3. Now we follow the same arguments as in the beginning of Sect. 2:
A�1.a/ and ev.g; a/ satisfy the same recurrence A.a C 1/ D A.a/C ev.f; a C 1/
for all a � 0 and thus ev.g; a/ D A�1.a/ when choosing c D 0. In this way, we
representA�1.a/ precisely with g (c D 0) in the given˘˙�-field and its evaluation
function.

3.5 Crucial Property: Algebraic Independence of Sequences

Take the elements from a polynomial˘˙�-field, rephrase them as nested hyperge-
ometric sum expressions, and evaluate the derived objects to sequences. The main
result of this subsection is that the sequences of the generators of the˘˙�-field are
algebraically independent over each other. To see this, let .F; �/ be a polynomial
˘˙�-field over K with F D K.x/.p1/ : : : .pr /.s1/ : : : .se/ and define R by (23).
Moreover, take an evaluation function ev W R 
 N! K following the construction
of the previous subsection. Then we can define the map 
 W R! K

N with


.f / D hev.f; k/ik�0 D hev.f; 0/; ev.f; 1/; ev.f; 2/; : : : i: (36)

Now we explore the connection between the difference ring .R; �/ and the set of
sequences 
.R/ D f
.f /jf 2 Rg. First, we introduce the following notions.
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Definition 9. Let .R1; �1/ and .R2; �2/ be difference rings.

• IfR1 is a subring ofR2 and �1.f / D �2.f / for all f 2 R1 then .R1; �/ is called
sub-difference ring of .R2; �/.

• A map 
 W R1 ! R2 is called ring homomorphism if 
.f g/ D 
.f /
.g/ and

.f C g/ D 
.f / C 
.g/ for all f; g 2 R1. If 
 is in addition injective (resp.
bijective), 
 is called ring embedding (resp. ring isomorphism). Note: if 
 is an
isomorphism, the rings R1 and R2 are the same up to renaming of the elements
with 
 .

• A map 
 W R1 ! R2 is called difference ring homomorphism (resp. embed-
ding/isomorphism) if it is a ring homomorphism (resp. embedding/isomorphism)
and for all n 2 Z, f 2 R1 we have 
.�n1 .f // D �n2 .
.f //. Note: if 

is an isomorphism, .R1; �/ and .R2; �/ are the same up to renaming of the
elements by 
 .

With component-wise addition and multiplication of the elements from K
N we

obtain a commutative ring where the multiplicative unit is 1 D h1; 1; 1; : : : i; the
field K can be naturally embedded by mapping k 2 K to k D hk; k; k; : : : i.
Example 6. Let K.x/ be a rational function field, take the evaluation function
ev W K.x/ 
 N! K.x/ defined by (29), and define 
 W K.x/! K

N as in (36). Now
define the set

F WD 
.K.x// D fhev.f; k/ik�0jf 2 K.x/g:

Observe that F is a subring of KN. However, it is not a field. E.g., if we multiply
ev.x; k/ik�0 with ev.1=x; k/ik�0, we obtain h0; 1; 1; 1; : : : i which is not the unit 1.
But, we can turn it to a field by identifying two sequences if they agree from a certain
point on. Then the inverse of ev.x; k/ik�0 is ev.1=x; k/ik�0. More generally, for
f 2 K.x/� we get ev.f; k/ik�0 ev.1=f; k/ik�0 D 1.

To be more precise, we follow the construction from [59, Sect. 8.2]: We define an
equivalence relation 	 on K

N by hanin�0 	 hbnin�0 if there exists a ı � 0 such
that an D bn for all n � ı. The equivalence classes form a ring which is denoted
by S.K/; the elements of S.K/ (also called germs) will be denoted, as above, by
sequence notation. Finally, define the shift operator S W S.K/! S.K/ with

S .ha0; a1; a2; : : : i/ D ha1; a2; a3; : : : i:

In this ring the shift is invertible with S �1.ha1; a2; : : : i/ D h0; a1; a2; a3; : : : i D
ha0; a1; a2; : : : i: It is immediate that S is a ring automorphism and thus .S.K/;S /

is a difference ring. In short, we call this difference ring also ring of sequences.

Example 7 (Cont. Example 6). Consider our subring F of S.K/. Restricting S to
F gives a bijective map and thus it is again a ring automorphism. Even more, since
F is a field, it is a field automorphism, and .F;S / is a difference field. In particular,
.F;S / is a sub-difference ring of .S.K/;S /.
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More generally, consider the map 
 W R! S.K/ as in (36). Since ev W R 
N! K

has the properties as in Definition 7, it follows that for all f; g 2 R we have

.f g/ D 
.f / 
.g/ and 
.f C g/ D 
.f / C 
.g/. Hence 
 is a ring
homomorphism. Moreover, for all f 2 R and all n 2 Z,

S n.hev.f; k/ik�0i/ D hev.f; k C n/ik�0i D hev.�n.f /; k/ik�0i:

Thus 
 is a difference ring homomorphism between .R; �/ and .S.K/;S /. Since

.R/ is a subring of S.K/ and S restricted to 
.R/ is a ring automorphism,
.
.R/;S / is a difference ring, and it is a sub-difference ring of .S.K/;S /.

Example 8. Take the polynomial ˘˙�-field .Q.n/.x/.b/.h/; �/ over Q.n/

with (15) and (24), and let ev W R 
 N! Q.n/ be the evaluation function from
Example 4; define 
 W R! S.Q.n// with (36). Then 
 is a difference ring
homomorphism. In particular, .
.R/;S / is a difference ring and a sub-difference
ring of .S.Q.n//;S /.

Now we can state the crucial property proven in [76]: our map (36) is injective.

Theorem 3. Let .F; �/ be a polynomial ˘˙�-field over K, define R by (23),
and take an evaluation function ev W R 
 N! K as given in Lemma 2. Then

 W R! S.K/ with (36) is a difference ring embedding.

Example 9. .Q.n/.x/; �/ and .
.Q.n/.x//; �/ are isomorphic. In addition, the
rings .R; �/ and .
.R/; �/ with R WD Q.n/.x/Œb; b�1�Œh� are isomorphic. Thus

.R/ D 
.Q.n/.x//Œ
.b/; 
.b�1/�Œ
.h/� is a polynomial ring and there are no
algebraic relations among the sequences 
.b/, 
.b�1/, 
.h/ with coefficients from

.Q.n/.x//.

In general, the difference rings .R; �/ and .
.R/;S / are isomorphic: they are the
same up to renaming of the elements by 
 . In particular, we get the polynomial ring


.R/ D 
.K.x//Œ
.p1/; 
.p�11 /; : : : ; 
.pr /; 
.p�1r /�Œ
.s1/; : : : ; 
.se/� (37)

with coefficients form the field 
.K.x//. I.e., there are no algebraic relations among
the sequences 
.pi /, 
.p�1i / and 
.si / with coefficients from 
.K.x//.

4 The Symbolic Summation Toolbox of Sigma

In the following we will give an overview of the symbolic summation toolbox that
is available in the Mathematica package Sigma [73]. Here we focus on nested
hypergeometric sum expressions (w.r.t. k) as given in Definition 4: the products are
hypergeometric expressions (for more general classes see Remark 1) and the sums
and products do not arise in the denominators.
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Concerning indefinite summation it is shown how a nested hypergeometric sum
expression can be compactified such that the arising sums are algebraically inde-
pendent and such that the sums are simplified concerning certain optimality criteria.
Concerning definite summation the package Sigma provides the following toolkit.
In Sect. 4.2 it is worked out how a recurrence can be computed with creative
telescoping for a definite sum over a nested hypergeometric sum expression. More-
over, in Sect. 4.3 it is elaborated how such a recurrence can be solved in terms of
nested hypergeometric sum expressions which evaluate to d’Alembertian sequences.
Usually the derived solutions are highly nested, and thus indefinite summation is
heavily needed. Finally, given sufficiently many solutions their combination gives
an alternative representation of the definite input sum. Summarizing, the following
“summation spiral” is applied [64]:

Remark. We give details how these summation paradigms are solved in the setting
of polynomial ˘˙�-fields introduced in Sect. 3. These technical parts marked
with * can be ignored if one is mostly interested in applying the summation tools.

4.1 Simplification of Nested Hypergeometric Sum Expressions

All of the simplification strategies of Sigma solve the following basic problem.

Problem EAR: Elimination of algebraic relations.
Given a nested hypergeometric sum expression F.k/.
Find a nested hypergeometric sum expression NF .k/ and � 2 N such that
F.k/ D NF .k/ for all k � � and such that the occurring sums are algebraically
independent.
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The following solution relies on Sect. 3 utilizing ideas from [39, 70, 76].

Solution�. Compute a polynomial ˘˙�-field4 .F; �/ over K as in Definition 23
with R defined as in (6) together with an evaluation function ev W R 
 N! K in
which one obtains an explicit f 2 R with � 2 N such that ev.f; k/ D F.k/ for
all k � �. Output the nested hypergeometric sum expression NF .k/ that encodes
the evaluation ev.f; k/. Concerning the algebraic independence note that the sub-
difference ring (37) of the ring of sequences .S.K/;S / forms a polynomial ring;
here the difference ring embedding 
 is defined by (36). The sequences given by the
objects occurring in NF .k/ are just the the generators of the polynomial ring (37).

Remark. K is the smallest field that contains the values of F.r/ for all r 2 N with
r � �. Here extra parameters are treated as variables. However, in most examples
these parameters are assumed to be integer valued within a certain range. In such
cases it might be necessary to adjust the summation bounds accordingly.

A typical instance of Problem EAR is the simplification of the sum (7): Using
the above technologies, see Examples 1 and 4 for further details, we can reduce
the sum A�1.a/ in terms of

�
n
a

�
and S1.a/ and obtain the simplification (10). After

loading in

In[1]:= << Sigma:m

Sigma� A summation package by Carsten Schneider c� RISC

this task can be accomplished with the function call

In[2]:= SigmaReduceŒ

aX

kD0

�
1 � .n � 2k/SŒ1; k�

	�n
k

	
�1

; a�

Out[2]= ..aC 1/SŒ1;a�C 1/

 
n

a

!�1

Note that SŒm1; : : : ; mk; n� stands for the harmonic sums (5). More generally, one
gets reduced representations for nested hypergeometric sum expressions such as

In[3]:= SigmaReduceŒ

aX

kD1

k4�2k
k

	2 C 249
20

aX

kD1

k3 �2k
k

	2 C 259
20

aX

kD1

k2�2 k
k

	2 C
aX

kD1

�2k
k

	2 C 2
aX

kD1

k
�2 k

k

	2
; a�

Out[3]=

aX

i1D1

�
2i1
i1

�
2 �

aX

i1D1

�
2 i1
i1

�
2i1 C 1

15
a.2aC 1/2.4aC 45/

�
2 a
a

�2

4.1.1 Simplification with Improved Difference Field Theory

The solution of Problem EAR is obtained by calculating a set of algebraic indepen-
dent sums (the generators of the ˘˙�-field) in which the occurring sums of the

4As observed in Remark 2 one might need in addition the alternating sign to represent all
hypergeometric products. The underlying solution works analogously by adapted algorithms.
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input expression can be rephrased. In order to guarantee that the output expression
consists of sums and products that are simpler (or at least not more complicated)
than the input expression, the generators of the˘˙�-field must be constructed such
that certain optimality criteria are fulfilled. In short, we refine Problem EAR using
improved˘˙�-difference field theory and enhanced algorithms for Problem T. The
most useful features of SigmaReduce can be summarized as follows.

• Atomic representation. By default all sums are split into atomic parts (using
partial fraction decomposition) and an algebraic independent representation of
the arising sums and products is calculated. In addition, Sigma outputs sums
such that the denominators have minimal degrees w.r.t. the summation index
(i.e., if possible, the denominator w.r.t. the summation index is linear). A typical
example is

In[4]:= SigmaReduceŒ

aX

kD1

� �2 C k
10.1 C k2/

C .1 � 4k � 2k2/SŒ1; k�

10.1 C k2/.2 C 2k C k2/
C .1 � 4k � 2k2/SŒ3; k�

5.1 C k2/.2 C 2k C k2/

�
; a�

Out[4]=
a2 C 4aC 5

10.a2 C 2aC 2/
SŒ1;a�� .a� 1/.aC 1/

5.a2 C 2aC 2/
SŒ3;a�3.a/� 2

5

aX

kD1

1

k2

This feature relies on algorithms refining those given in [72]; for the special
case of rational sums see, e.g., [11, 52]. By default this refinement is activated;
it can be switched off by using the option SimpleSumRepresentation->
False.

• By default the following fundamental problem is solved:

Problem DOS: Depth Optimal Summation. Given a nested hyperge-
ometric sum expression. Find an alternative representation of a nested
hypergeometric sum expression whose nesting depth is minimal. More-
over, each derived sum cannot be expressed by a nested hypergeometric
sum expression with lower depth.

The solution to this problem is possible by the enhanced difference field theory
of depth-optimal˘˙�-fields and the underlying telescoping algorithms; see [74,
75]. E.g., we can flatten the harmonic sum S3;2;1.a/ of depth 3 to sums of depth�
2:

In[5]:= SigmaReduceŒ

aX

iD1

1
i3

iX

jD1

1
j2

jX

kD1

1
k

; a�

Out[5]=

aX

i1D1

1

i51

i1X

i2D1

1

i2
C
� aX

i1D1

1

i31

�� aX

i1D1

1

i21

i1X

i2D1

1

i2

�
�

aX

i1D1

1

i21

�
i1X

i2D1

1

i32

��
i1X

i2D1

1

i2

�

This depth-optimal ˘˙�-field theory yields various structural theorems [77],
i.e., gives a priori certain properties how the telescoping solution looks like.
In particular, this leads to very efficient algorithms (for telescoping but also
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for creative telescoping and recurrence solving given below) where we could
work with more than 500 sums in a depth-optimal ˘˙�-field. The naive
(and usually less efficient) ˘˙�-field approach is used with the option
SimplifyByExt!None.

Example 10. For the 2,186 harmonic sums (5) with weight
Pk

iD1 jmi j � 7 all
algebraic relations are determined [10]. More precisely, using their quasi-shuffle
algebra the sums could be reduced by the HarmonicSums package [1] to 507
basis sums. Then using the algorithms above we showed that they are algebraic
independent.

• Reducing the number of objects and the degrees in the summand. The depth-
optimal representation can be refined further as follows.

Given a nested hypergeometric sum expression, find an alternative sum represen-
tation such that for the outermost summands the number of occurring objects is
as small as possible (more precisely, concerning a given tower of a ˘˙�-field
the smallest subfield is searched in which the summand can be represented);
see [65].

E.g., in the following example we can eliminate S1.k/ from the summand:

In[6]:= SigmaReduceŒ

aX

kD0

.�1/kS1.k/2
�

n
k

�
; a; SimplifyByExt ! DepthNumber�

Out[6]= �.a� n/�n2S1.a/2 C 2nS1.a/C 2
� .�1/a�na

�

n3
� 2

n2
� 1

n

aX

i1D1

.�1/i1
i1

 
n

i1

!

Furthermore, one can calculate representations such that the degrees (w.r.t. the top
extension of a ˘˙�-field) in the numerators and denominators of the summands
are minimal [72]. For algorithms dealing with the product case we point to [13,69].

4.2 Finding Recurrence Relations for Definite Sums

Given a sum, say5 A.n/ D PL.m1;:::;mu;n/

kD0 Fn.k/ where Fn.k/ is a nested hyper-
geometric sum expression depending on a discrete parameter n, find polynomials
c0.n/; : : : ; cd .n/ (not all zero) and an expression h.n/ in terms of sums that are
simpler (see below) than the sum A.n/ such that the following linear recurrence
holds:

c0.n/A.n/C � � � C cd .n/A.nC d/ D h.n/: (38)

We treat this problem by the following variation of creative telescoping [82].

5L.m1; : : : ; mu; n/, u � 0, stands for a linear combination of themi and nwith integer coefficients.
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Problem CT: Creative telescoping (general paradigm). Given d 2 N and
Fn.k/ such that FnCi .k/ with i 2 N (0 � i � d ) can be written as nested
hypergeometric sum expression. Find � 2 N, c0; : : : ; cd 2 K.n/, not all zero,
and G.k/ such that for all k � � we have

c0Fn.k/C c1FnC1.k/C � � � C cdFnCd .k/ D SkG.k/ �G.k/ (39)

and such that the summands of the occurring sums in G.k/ are simpler
(depending on the chosen strategy, see below) than FnCi .k/; if this is not
possible, return ?.

The following solution relies on [39, 70, 76].

Solution�. We consider the parameter n as variable. Compute an “appropriate”
polynomial ˘˙�-field .F; �/ over the constant field K.n/ as in Definition 23 with
R defined as in (6) together with an evaluation function ev W R 
 N! K in which
one obtains explicitly f0; : : : ; fd 2 R with �0 2 N such that ev.fi ; k/ D FnCi .k/
for all k � �0; again we point to Footnote 4. Compute, if possible, a solution
c0; : : : ; cd 2 K.n/ (not all zero) and g 2 R (or an extension of .R; �/ with an
extended evaluation function ev) such that

c0f0 C � � � C cdfd D �.g/ � g (40)

holds; in addition we require that in g the summands of the occurring sum
extensions are simpler (depending on the chosen strategy, see below) than each of
the given fi . If there is not such a solution, return ?. Otherwise extract a nested
hypergeometric sum expression G.k/ such that G.k/ D ev.g; k/ and compute � 2
N such that (39) holds for all k � �; see Remark 3 with m D 1, ˛1 D 1; ˛0 D �1.
Then return .c0; : : : ; cd ; G.k// and �.

Application. Usually, one loops over d D 0; 1; : : : until a solution for (39) is found;
for termination issues see Remark 1 on page 355. Then summing (39) over a valid
range, e.g., from � to a, gives

c0.n/

aX

kD�
Fn.k/C � � � C cd .n/

aX

kD�
FnCd .k/ D G.aC 1/�G.�/ (41)

where by construction the summands of the arising sums in Nh.a/ WD G.a C 1/ �
G.�/ are simpler than FnCi .k/. This implies that also the arising sums Nh.a/ are
simpler than

Pa
kD� FnCi .k/. Note that so far n is considered as an indeterminate.

We remark that in many applications n itself is an integer valued parameter and
extra caution is necessary to avoid poles when summing up (39). Finally, when
setting a D L.m1; : : : ; mu; n/ in (41) (if a D 1, a limit has to be performed) and
taking care of missing summands yields (38) for A.n/; see Example 11 for details.
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Proof certificate. The correctness of (38) for a given sum A.n/ is usually hard
to prove. However, given the proof certificate .c0; : : : ; cd ; G.k// it can be easily
verified that (39) holds within the required summation range. Then summing this
equation over this range yields the verified result (38).

With Sigma one can calculate for A�3.n/ D SUM[n] a recurrence6 as follows:

In[7]:= mySum D
nX

kD0

.1 � 3.n � 2k/S1.k//

�
n
k

�
�3

I

In[8]:= rec D GenerateRecurrenceŒmySum; n�ŒŒ1��

Out[8]= .nC 2/4.nC 3/2SUMŒn�C .nC 1/3.nC 3/2.2nC 5/SUMŒnC 1�C .nC 1/3.nC 2/3SUMŒnC 2�

DD �
20n3 C 138n2 C 311nC 229

�
.nC 1/2 C 6.nC 2/2.nC 3/.2nC 5/.nC 1/3S1.n/

The essential calculation steps are given in the following example.

Example 11. � Take A�3.n/ D Pn
kD0 Fn.k/ with Fn.k/ D .1 � 3.n �

2k/S1.k//
�
n
k

��3
. We calculate a recurrence for A�3.n/ in n by the techniques

described above. First, we search for a solution of (39) with d D 0 (which amounts
to telescoping). I.e., we construct the polynomial ˘˙�-field .Q.n/.x/.b/.h/; �/
and evaluation function ev W R 
 N! Q.n/ with R WD Q.n/.x/Œb; b�1�Œh� as
in Example 4. There we take f0 D .1 � 3.2n � x/h/b�3 2 R such that
ev.f0/ D Fn.k/ for all k � 0. Unfortunately, our telescoping algorithm fails
to find a g 2 R such that �.g/ � g D f0 holds. So we try to find a solution
of (39) with d D 1. Since

�
nC1
k

� D nC1
n�kC1

�
n
k

�
, we can rephrase FnC1.k/ by

f1 D .1 � 3.2n � x/h/ .n�xC1/3
.nC1/3 b

�3, i.e., ev.f1; k/ D FnC1.k/ for all k � 0. Then
we activate the algorithm for Problem FPLDE and search for c0; c1 2 Q.n/ (not
both zero) and g 2 R such that (40) holds with d D 1. Again there is no solution.

We continue our search and take f2 D .1 � 3.2n � x/h/ .n�xC1/3.n�xC2/3
.nC1/3.nC2/3 b�3 with

ev.f2; k/ D FnC2.k/ and look for c0; c1; c2 2 Q.n/ (not all zero) and g 2 R such
that (40) holds with d D 2. This time our algorithm for Problem FPLDE outputs
c0 D .n C 2/4.n C 3/2, c1 D .n C 1/3.n C 3/2.2nC 5/, c2 D .n C 1/3.nC 2/3
and g D .p1.n; x/C p2.n; x/h/b�3 for polynomials p1.n; x/; p2.n; x/ 2 QŒn; x�.
Hence we get (39) with G.k/ D ev.g; k/ D .p.n; k/ C p2.n; k/S1.k//

�
n
k

��3
.

We emphasize that the correctness of (39) for the given solution for all k with
0 � k � n can be verified easily. Finally, summing (39) over k from 0 to n
one gets

c0.n/A3.n/C c1.n/.A3.nC 1/� FnC1.nC 1//
C c2.n/.A3.nC 2/� FnC2.nC 1/� FnC2.nC 2// D G.nC 1/�G.n/I

moving the FnCi .nC j / terms to the right hand side gives the recurrence Out[8].

6For a rigorous verification the proof certificate .c0; : : : ; cd ; G.k// of (41) with d D 2 is returned
with the function call CreativeTelescoping[mySum,n].
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Note that creative telescoping is only a slight extension of telescoping, in partic-
ular, all the enhanced telescoping algorithms from Sect. 4.1 carry over to creative
telescoping. In all variations, a polynomial ˘˙�-field .F; �/ (more precisely a
depth-optimal ˘˙�-field [67] for efficiency reasons) is constructed in which the
summands FnCi .k/ (0 � i � d ) can be expressed. Starting from there, the
following tactics are most useful to search for a solution of (40). They are activated
by using the option SimplifyByExt->Mode where Mode is chosen as follows.

• None: The solution G.k/ is searched in .F; �/, i.e., only objects occurring in
FnCi .k/ are used. Here a special instance of FPLDE is solved; see Example 11.

• MinDepth: The solution G.k/ is searched in terms of sum extensions which
are not more nested than the objects in FnCi .k/ and which have minimal depth
among all the possible choices [74]. This is the default option.

• DepthNumber: The solution is given in terms of sum extensions which are not
more nested than

Pn
kD0 FnCi .k/, however, if the nesting depth is the same, the

number of the objects in the summands must be smaller than in FnCi .k/. If such a
recurrence exists, the machinery from [62] computes it. Using this refined version
for our example, one finds a recurrence of order 1 (instead of 2)

.nC 1/3A�3.nC 1/C .nC 2/3A�3.n/

D 6.nC 2/.nC 1/3S1.n/C .7nC 13/.nC 1/2C 3.nC 2/2
nX

iD0
.n� 2i/

 
n

i

!�3

(42)

where the sum E.n/ DPn
iD0.n � 2i/

�
n
i

��3
does not contain S1.i/; it turns out that

E.n/ D 0 (using again our tools) and the recurrence simplifies further to

.nC1/3A�3.nC1/C.nC2/3A�3.n/ D 6.nC2/.nC1/3S1.n/C.7nC13/.nC1/2:
(43)

4.3 Solving Recurrence Relations

Next, we turn to recurrence solving in terms of nested hypergeometric sum
expressions, i.e., expressions that evaluate to d’Alembertian sequence solutions.

Example 12. Given the recurrence rec in Out[8] of A�3.n/ D SUM[n], all nested
hypergeometric sum solutions are calculated with the following Sigma command:

In[9]:= recSol D SolveRecurrenceŒrec; SUMŒn��

Out[9]= ff0;�.�1/n.nC 1/3g; f0; .�1/n�� S1.n/.nC 1/3 � .nC 1/2
�g;

f1;6.nC 1/S1.n/C .�1/n
�
5.nC 1/3S�3.n/� 6.nC 1/3S�2;1.n/

�C 1gg

The output means that we calculated two linearly independent solutions H1.n/ D
�.�1/n.n C 1/3 and H2.n/ D .�1/n� � S1.n/.n C 1/3 � .n C 1/2

�
(for n � 0)
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of the homogeneous version of the recurrence and a particular solution P.n/ D
6.n C 1/S1.n/ C .�1/n

�
5.n C 1/3S�3.n/ � 6.n C 1/3S�2;1.n/

� C 1 (for n � 0)
of the recurrence itself; since the solutions are indefinite nested, the verification
of the correctness can be verified easily by rational function arithmetic. Note that
fc1H1.n/ C c2H2.n/ C P.n/jc1; c2 2 Qg produces all sequence solutions whose
entries are from Q. Since also A�3.n/ is a solution of the recurrence, there is an
element in L that evaluates to A�3.n/ for all n � 0. Using, e.g., the first two
initial values A�3.0/ D 1 and A�3.1/ D 5 the c1; c2 are uniquely determined: c1 D
c2 D 0. Thus we arrive at A�3.n/ D P.n/, i.e., we discovered and proved the iden-
tity (3) for n � 0 (recall that we verified that both sides satisfy the same recurrence
and that both sides agree with the first two initial values). This last step is executed
by taking recSol and mySum D A�3.n/ (to get two initial values) as follows.

In[10]:= FindLinearCombinationŒrecSol; mySum; n; 2�

Out[10]= 6.nC 1/S1.n/C .�1/n
�
5.nC 1/3S�3.n/� 6.nC 1/3S�2;1.n/

�C 1

In general, Sigma can solve the following problem [12, 50, 62].

Problem RS: Recurrence solving. Given polynomials a0.n/; : : : ; am.n/ 2
K.n/ and a nested hypergeometric sum expression f .n/. Find the full solution
set of the mth-order linear recurrence

a0.n/G.n/C � � � C am.n/G.nCm/ D f .n/ (44)

in terms of nested hypergeometric sum expressions. I.e., return ? if there is
no particular solution. Otherwise, find � 2 N and nested hypergeometric sum
expressions ..1; P.n//; .0;H1.n//; : : : ; .0;Hl .n/// where P.n/ is a particu-
lar solution and H1.n/; : : : Hl .n/ are solutions of the homogeneous version
of (44) for n � �; the sequences (in S.K/) produced by H1.n/; : : : Hl .n/

are linearly independent. In addition, all sequences .G.n//n�0 2 K
N, that are

solutions of (44) for all n � � and that can be given by nested hypergeometric
sum expressions, can be also produced by

L D fP.n/C c1H1.n/C : : : clHl .n/jci 2 Kg (45)

starting from n � �.

The following solution relies on [39, 57, 62, 70, 76].

Solution�. Construct a polynomial ˘˙�-field .F; �/ as in Definition 23 with R
defined as in (6) together with an evaluation function ev W R 
 N! K in which
one obtains explicitly a ˚ 2 R with �0 2 N such that ev.˚; n/ D f .n/ for all
n � �0; again Footnote 4 applies. In other words, with ˛i WD ai .x/ 2 K.x/ we can
reformulate (44) with
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˛0g C ˛1�.g/C � � � C ˛m�m.g/ D ˚: (46)

Factorize the homogeneous recurrence (written as linear operator) as much as
possible in linear right factors using Hyper [57]. Each linear factor describes a
hypergeometric solution which is adjoined to our ˘˙�-field (see Problem RP);
for simplicity we exclude the possible case that .�1/n is needed for this task.
Applying Algorithm [62, Algorithm 4.5.3] to this recurrence returns the output
..1; p/; .0; h1/; : : : ; .0; hl // in a polynomial ˘˙�-field .
; �/ that contains .F; �/
with the following property:p is a particular solution of (46) and the hi are l linearly
independent solutions of the homogeneous version of (46). We omit details here
and remark only that it is crucial to solve (22) as subproblem. Then extend the
evaluation function from F to
 (we are free to choose appropriate lower bounds and
constants of the sums/products), and let Hi.n/ (1 � i � l) and P.n/ be the nested
hypergeometric sum expressions that define the evaluations ev.hi ; n/ and ev.p; n/,
respectively. Compute � such that the Hi.n/ are solutions of the homogeneous
version and P.n/ is a particular solution of (44) for all n � �; see Remark 3 with
d D 0, f0 WD ˚ .

Remark. 1. If one computesm D l linearly independent solutions plus a particular
solution, the set (45) gives all solutions. If this is not the case, the completeness
of the method, i.e., that no solution in terms of nested hypergeometric sum
expressions is missed, needs further justification: it can be deduced from [62,
Corollary 4.5.2] and Remark 3; for deep insight and alternative proofs see [36]
and [58, this book].

2. The derived solutions are highly nested: For each additional solution one needs
one extra indefinite sum on top. In most examples the simplification of these
solutions (see Sect. 4.1) is the most challenging task; see, e.g., Example 14.

3. Since the solutions are indefinite nested, the shifted versions can be expressed
by the non-shifted versions. Using this property and considering the sums
and products as variables, the correctness can be verified by rational function
arithmetic.

4. Also the ai .n/ in (46) can be from a ˘˙�-field and one can factorize the
difference operator in linear factors; this is based on work by [14, 26, 70].

Example 13. � We construct the polynomial˘˙�-field .Q.x/.h/; �/ with �.x/ D
x C 1 and �.h/ D h C 1

xC1 over Q and interpret the elements with the evaluation
function ev W Q.x/Œh� 
N! Q.x/Œh� canonically defined by (29) and ev.h; n/ D
S1.n/. In this way, we can reformulate the recurrence Out[8] with

.xC 2/4.xC 3/2 gC .xC 1/3.xC 3/2.2xC 5/�.g/C .xC 1/3.xC 2/3�2.g/ D
�
20x3 C 138x2C 311xC 229�.xC 1/2 C 6.xC 2/2.xC 3/.2xC 5/.xC 1/3h:

(47)
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Then we execute the recurrence solver in this ˘˙�-field and get as output the
difference ring .Q.x/Œm�Œh�Œs�ŒH�; �/ with �.m/ D �m where m2 D 1, �.s/ D
s C �m

.xC1/3 and �.H/ D H C �m.hC
1

xC1 /

.xC1/2 such that const�Q.x/Œm�Œh�ŒH� D Q.

There it returns the linearly independent solutions h1 D m.x C 1/3 and h2 D
m
�
h.x C 1/3 C .x C 1/2/ of the homogeneous version of (47) and the particular

solution p D 6.x C 1/h C m
�
5.x C 1/3s � 6.x C 1/3H

� C 1 of (47) itself.
Note that the solutions (coming from the factorization of the recurrence) have been
simplified already using the technologies presented in Sect. 4.1. Finally, we extend
the evaluation function from Q.x/Œh� to Q.x/Œm�Œh�ŒH� by ev.m; n/ D .�1/n,
ev.s; n/ D S�3.n/ and ev.H; n/ D S�2;1.n/. This choice yieldsH1.n/ D ev.h1; n/,
H2.n/ D ev.h2; n/ and P.n/ D ev.p; n/ as given in Out[9].

Example 14. In [21] (see also [41, this book]) recurrences are guessed with minimal
order that contain as solutions the massless Wilson coefficients to three-loop order
for individual color coefficients [48]. Afterwards the recurrences have been solved.
The largest recurrence of order 35 could be factorized completely into linear factors
in about 1 day. This yields 35 linearly independent solutions in terms of sums up to
nesting depth 34. Then their simplifications in terms of harmonic sums took 5 days.

5 Simplification of Multiple Sums
with EvaluateMultiSums

In Sect. 4 we transformed the definite sum A�3.n/ to a nested hypergeometric sum
expression given in (3) by calculating a recurrence and solving it. Applying this
tactic iteratively leads to a successful method to transform certain classes of definite
multiple sums to nested hypergeometric sum expressions. Consider, e.g.,

F.n/ WD
n�2X

jD0
.�j C n � 2/Š

DWF1.n;j /
‚ …„ ƒ
jC1X

rD0

.�1/r�jC1
r

�
rŠ

.�j C nC r/Š
�jCnCr�2X

sD0

.�1/s��jCnCr�2
s

�

.n � s/.s C 1/
„ ƒ‚ …

DWF0.n;j;r/
(48)

which arose in QCD calculations needed in [4]; see also [3]. We zoom into
the sum F0.n; j; r/, a definite sum over a hypergeometric sequence. Calculating
a recurrence, solving the recurrence, and combining the solutions leads to the
simplification

F0.n; j; r/ D 1

.nC 1/.�j C nC r � 1/ C
.�1/n.j C 1/Š.�j C n � 1/r

.n � 1/n.nC 1/.�j � 1/r.2 � n/j :
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This closed form could be also derived by hypergeometric summation [59]: the
double sum F1.n; j / turns out to be a single sum. Next, finding a recurrence for
this sum and solving the recurrence lead to a nested hypergeometric sum expression
w.r.t. j :

F1.n; j / D .�1/j .j C 1/Š
h 1

nŠ

� .�1/n.j C 2/
.nC 1/2.�j C n � 1/ C

n2 C 1
.n � 1/n.nC 1/2

�

C 1

nC 1
jX

iD1

.�1/i
�
n � i�Š�i C 1�Š�n � i � 1�

i
:

In other words,F.n/ can be written as a definite sum where the summand is a nested
hypergeometric sum expression. Therefore we are again in the position to apply our
technologies from Sect. 4. Computing a recurrence and solving it yields

F.n/ D �n
2 � n � 1

n2.nC 1/3 C
.�1/n�n2 C nC 1�

n2.nC 1/3 C S1.n/

.nC 1/2 �
S2.n/

nC 1 �
2S�2.n/
nC 1 :

Summarizing, we transformed a definite nested sum from inside to outside to a
nested hypergeometric sum expression. More generally, we deal with the following

Problem EMS: EvaluateMultiSum. Given a definite multiple sum

F.m; n/ D
L0.m;n/X

kDl

f .m;n;k/
‚ …„ ƒ
L1.m;n;k/X

k1Dl1
: : :

Lv.m;n;k;k1;:::;kv�1/X

kvDlv
f .m; n; k; k1; : : : ; kv/ (49)

with a nested hypergeometric sum expression f w.r.t. kv , integer parameters
n and m D .m1 : : : ; mr/, and Li.: : : / being integer linear (see Footnote 5) or
1. Find � 2 N and a nested hypergeometric sum expression NF .m; n/ such
that F.m; n/ D NF .m; n/ for n � �.

Method. Apply the techniques of Sect. 4 recursively as follows [23].

1. Transform the outermost summand f .m; n; k/ to a nested hypergeometric sum
expression w.r.t. k by applying the proposed method recursively to all the arising
definite sums (i.e., the parameter vector m is replaced by .m; n/ and the role of n
is k). Note that the sums in f are simpler than F.m; n/ (one definite sum less).
If the summand f is free of sums, nothing has to be done.

2. Solve Problem CT: Compute a recurrence (38) for the sum A.n/ D F.m; n/; if
this fails, ABORT. If successful (say it is of order o), the right hand side might
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be again an expression in terms of definite sums, but their summands are simpler
than f (see, e.g., the recurrence (42)). Apply the method recursively to these
sums such that the right hand side is transformed to a nested hypergeometric
sum expression w.r.t. n (see, e.g., recurrence (43)).

3. Solve Problem RS: Compute all nested hypergeometric sum solutions of the
recurrence (38) and simplify the solutions using the techniques from Sect. 4.1.

4. Compute o initial values, i.e., specialize the parameter n to appropriate values
from�, say n D l; l C 1; : : : ; l C o� 1, and apply the method recursively to the
arising sums wherem1 takes over the role of n and the remaining parameters are
.m2; : : : ; mr/. If no parameter is left, the expression is a constant. It is usually
from Q (if no sum is left) or it simplifies, e.g., to [22] or infinite versions of
S–sums [9] and cyclotomic sums [5].

5. Try to combine the solutions to find a nested hypergeometric sum expression
w.r.t. n of F.m; n/. If this fails, ABORT. Otherwise return the solution.

Remark. 1. The existence of a recurrence in Step 2 is guaranteed in many cases (in
particular for sums coming from Feynman integrals [24]) by using arguments,
e.g., form [15, 59, 79, 80]. Here often computation issues are a bottleneck.
Usually, we succeed in finding recurrences when f consists of up to 100 nested
hypergeometric sums. If f is more complicated (or if it seems appropriate), the
sum is split into several parts and the method is applied to each sum separately.

2. Termination: The method is applied recursively to sums which are always
simpler than the original sum (less summation quantifiers, less parameters,
or less objects in the summand). Hence eventually one arrives at the base
case.

3. Success: If the method does not abort in one of the executions of step 2 or step 5,
it terminates and outputs a nested hypergeometric sum expression w.r.t. n. Note
that finding not sufficiently many solutions of a given recurrence in step 5 is the
main reason why the method might fail. For general multiple sums this failure
would happen all over. However, e.g., in the context of Feynman integrals, the
recurrence is usually completely solvable (i.e., we find m linearly independent
solutions of the homogeneous version of (38) and one particular solution of the
recurrence itself).

We emphasize that three-loop Feynman integrals with at most 1 mass [24] can
be transformed to multiple sums and that the simplification of these sums is covered
exactly by Problem EMS. The described method is implemented in the following
new package which uses the summation algorithms in Sigma:

In[11]:= << EvaluateMultiSums:m

EvaluateMultiSums by Carsten Schneider�� c� RISC

In addition it uses (some of the many) functions from J. Ablinger’s package
HarmonicSums [1,5,9,19,20,78] to transform – if possible – the arising indefinite
sums to harmonic sums, S -sums, cyclotomic sums or their infinite versions, to find
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algebraic relations among these sums, and to calculate asymptotic expansions of
these sums for limit computations (this is needed if upper bounds in (49) are1).

In[12]:= << HarmonicSums:m

HarmonicSums by Jakob Ablinger�� c� RISC

Then inserting the summand with the summation ranges of (48) and the information
that there is the extra integer parameter n with 2 � n � 1 we can activate
the simplification of the sum (48) to a nested hypergeometric sum expression as
follows.

In[13]:= EvaluateMultiSumŒ
.�jCn�2/Š.�1/rCs.jC1

r /rŠ

.�jCnCr/Š

.�jCnCr�2
s /

.n�s/.sC1/
;

ffs; 0; �j C n C r � 2g; fr; 0; j C 1g; fj; 0; n � 2gg; fng; f2g; f1g�

Out[13]=
�n2 � n� 1
n2.nC 1/3

C .�1/n�n2 C nC 1
�

n2.nC 1/3
C S1.n/

.nC 1/2
� S2.n/

nC 1
� 2S�2.n/

nC 1

Similarly, we can calculate the simplification given in identity (4):

In[14]:= EvaluateMultiSumŒ
�
1 � 4.n � 2k/S1.k/

	�
n
k

�
�4

; ffk; 0; ngg; fng; f0g; f1g�

Out[14]=
.10.nC 1/S1.n/C 3/.nC 1/

2nC 3
C .�1/

n
�
2n
n

��1
.nC 1/5

.4n.nC 2/C 3/

 
7

2

nX

iD1

.�1/i�2ii
�

i3
� 5

nX

iD1

.�1/i�2ii
�
S1.i/

i2

!

:

As mentioned already above, the multiple sums coming from many two-
loop and three-loop Feynman integrals fit into the input class of the package
EvaluateMultiSums. Here two extremes occurred: In [4, 25] about a million
multiple sums (mostly triple and quadruple sums) were simplified. Using the
package SumProduction [23] we merged the sums to several 100 basis sums
where each of the summands required up to 20 MB memory. The other extreme
are sums whose summands are in compact size, but the number of summations is
large; one of the most complicated input sums from [25] is, e.g., (6). In both setups
the transformed summands during the EvaluateMultiSum method became
rather large containing complicated nested hypergeometric sums. Only in the last
step these nasty sums vanished and the expected nice result popped up; note that
already for the transformation of the sum (48) this effect is visible. Summarizing,
the summation algorithms based on enhanced difference field theory, presented in
this article, were indispensable to master the challenging calculations as given, e.g.,
in [4, 7, 17, 25].
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21. Blümlein, J., Kauers, M., Klein, S., Schneider, C.: Determining the closed forms of the O.a3s /
anomalous dimensions and Wilson coefficients from Mellin moments by means of computer
algebra. Comput. Phys. Commun. 180, 2143–2165 (2009)
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33. Eröcal, B.: Algebraic extensions for summation in finite terms. Ph.D. thesis, RISC, Johannes

Kepler University, Linz (2011)
34. Gosper, R.: Decision procedures for indefinite hypergeometric summation. Proc. Natl. Acad.

Sci. U.S.A. 75, 40–42 (1978)
35. Hardouin, C., Singer, M.: Differential Galois theory of linear difference equations. Math. Ann.

342(2), 333–377 (2008)
36. Hendriks, P., Singer, M.: Solving difference equations in finite terms. J. Symb. Comput. 27(3),

239–259 (1999)
37. Hoeij, M.: Finite singularities and hypergeometric solutions of linear recurrence equations.

J. Pure Appl. Algebra 139(1–3), 109–131 (1999)
38. Horn, P., Koepf, W., Sprenger, T.: m-fold hypergeometric solutions of linear recurrence

equations revisited. Math. Comput. Sci. 6(1), 61–77 (2012)
39. Karr, M.: Summation in finite terms. J. ACM 28, 305–350 (1981)
40. Karr, M.: Theory of summation in finite terms. J. Symb. Comput. 1, 303–315 (1985)
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71. Schneider, C.: Apéry’s double sum is plain sailing indeed. Electron. J. Comb. 14 (2007)
72. Schneider, C.: Simplifying sums in ˘˙-extensions. J. Algebra Appl. 6(3), 415–441 (2007)
73. Schneider, C.: Symbolic summation assists combinatorics. Sém. Lothar. Combin. 56, 1–36

(2007). Article B56b
74. Schneider, C.: A refined difference field theory for symbolic summation. J. Symb. Comput.

43(9), 611–644 (2008). arXiv:0808.2543v1
75. Schneider, C.: A symbolic summation approach to find optimal nested sum representations. In:

Carey, A., Ellwood, D., Paycha, S., Rosenberg, S. (eds.) Motives, Quantum Field Theory, and
Pseudodifferential Operators. Clay Mathematics Proceedings, vol. 12, pp. 285–308. American
Mathematical Society (2010). ArXiv:0808.2543

76. Schneider, C.: Parameterized telescoping proves algebraic independence of sums. Ann. Comb.
14(4), 533–552 (2010). arXiv:0808.2596

77. Schneider, C.: Structural theorems for symbolic summation. Appl. Algebra Eng. Commun.
Comput. 21(1), 1–32 (2010)

78. Vermaseren, J.: Harmonic sums, Mellin transforms and integrals. Int. J. Mod. Phys. A14,
2037–2976 (1999)



360 C. Schneider

79. Wegschaider, K.: Computer generated proofs of binomial multi-sum identities. Master’s thesis,
RISC, J. Kepler University (1997)

80. Wilf, H., Zeilberger, D.: An algorithmic proof theory for hypergeometric (ordinary and “q”)
multisum/integral identities. Invent. Math. 108, 575–633 (1992)

81. Zeilberger, D.: A holonomic systems approach to special functions identities. J. Comput. Appl.
Math. 32, 321–368 (1990)

82. Zeilberger, D.: The method of creative telescoping. J. Symb. Comput. 11, 195–204 (1991)



Potential of FORM 4.0

Jos A.M. Vermaseren

Abstract I describe the main new features of FORM version 4.0. They include
factorization, polynomial arithmetic, new special functions, systems independent.
sav files, a complete ParForm, open source code and a forum for user communica-
tion. I also mention a completely new feature for code simplification.

1 Pre-introduction: Why FORM?

One may wonder why FORM is so important when there are programs like Mathe-
matica and Maple. We were faced recently with a request for help in programming
a gravity problem occurring in Type IIb superstrings [1]. The calculation to be done
was in a 10-dimensional theory. It needed the evaluation of the Weyl tensor (W)
and a tensor (T) with six indexes. Then 20 quartic invariants of the types WWWW,
WWWT, WWTT, WTTT and TTTT had to be evaluated. People had been trying
this with the RGTENSOR package in Mathematica. Especially the last category of
invariants was very hard on Mathematica. There are 12 indexes in 10 dimensions
that needed to be contracted (summed over) as in Fig. 1.

Most of the TTTT invariants took 2–3 days each but the last one was never
completed. The program had to be halted after a week. The whole effort with
Mathematica took the better part of a year. We took 3 days programming this from
scratch in FORM after which the whole project ran in 1 h on my laptop. With a few
extra optimizations and a few error corrections(!) it now runs in 40 min on the same
laptop.
The above shows a combination of the strengths and weaknesses of FORM.
Its strength is that it can be very flexible and very fast. Its weakness is that there
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Fig. 1 Tensor structure of objects to be contracted. Each vertex represents a tensor and each line
represents an index that should be summed over

are few packages and people like to use packages so that they do not have to think
much. With FORM you do have to think. You have to build up expertise, which takes
a while, but after that you can do calculations that are otherwise impossible.

2 Introduction

Over the past 12 years FORM was available as version 3.0–3.3 [2, 3]. This ver-
sion was significantly more powerful than version 2, but also version 3 needed
extensions. During the past few years there were a few opportunities to hire extra
people for special contributions and development picked up speed. A number of
much needed but very labour intensive projects were undertaken and completed.
This marked a good point to clean up the whole program, make it open source and
bring it out as a new version.

On March 29 version 4.0 was released. It took much more time than anticipated
to prepare this release, because there are quite a few new features and the debugging
was a slow procedure. In addition making the source code available and easy
installable took much work.

Most work for version 4.0 has been put in by Jan Kuipers, Takahiro Ueda, Jens
Vollinga and me. Other people (and also Jens) who worked on FORM in the past
have left the field and the current team consists of Takahiro Ueda, Jan Kuipers and
me. Jan will be leaving in the autumn of 2012. This means that the speed of advances
will be slowed down until there are new opportunities to hire good people.

Jens Vollinga has added a number of very nice features to FORM, including
systems independent .sav files, checkpoints (points from which a program can be
restarted if it crashes), much documentation and the forum. He also designed much
of the open source infrastructure.

Jan Kuipers has made the factorization, polynomial libraries and more recently a
completely new method for output simplification [4,5] which will be part of a future
release.

Takahiro Ueda has been hired by Karlsruhe on DFG money with the task
to improve the parallelization of FORM. The project is to combine TFORM and
ParPARFORM to make use of clusters of multicore computers. This project is still in
its infancy, because his first task was to make ParPARFORM complete. This has
been finished now. He has also taken over the task to manage the open source
infrastructure.
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This talk will take us through a number of new features and in the end give a few
hints about what the future might bring.

The first thing the user will notice is the new header.

FORM 4.0 (Mar 29 2012) 64-bits
Run: Wed Apr 4 14:23:50 2012

The mentioning of the 64/32-bits version is for version 4, because we are in a
period that many people still use 32-bits computers or operating systems. Other
headers are

TFORM 4.0 (Mar 29 2012) 64-bits 8 workers
Run: Wed Apr 4 14:24:22 2012

or

ParFORM 4.0 (Mar 29 2012) 64-bits 8 workers
Run: Wed Apr 4 14:32:45 2012

In all the examples in the following sections we will omit this header.

3 Factorization

The first feature we are going to look at is one that many people have asked for in
the past.

It should be realized that factorization is a subject that many mathematicians have
paid attention to. In addition big commercial programs have spent much effort on
making good packages for this. Hence one should not expect to outperform other
packages. The best model would be to look whether there are packages under the
GNU license that have been created and are maintained by good mathematicians.
Unfortunately we could not find any that deal with more than a single variable.
The better packages are all closed source and part of a commercial system.
This means we had to make our own. But then we could optimize it for what WE
anticipate that the use will be (which is not artificial benchmarking).

Symbols x,y,z;
CFunction f;
Off Statistics;
Format nospaces;
Local F = f((x+y)*(x*y+4*zˆ2+3*y*zˆ4-7*xˆ2*y)*(x+z));
Print;
.sort

F=
f(4*y*zˆ3+3*yˆ2*zˆ5+4*x*zˆ3+4*x*y*zˆ2+3*x*y*zˆ5+x*yˆ2*z+
3*x*yˆ2*zˆ4+4*xˆ2*zˆ2+xˆ2*y*z+3*xˆ2*y*zˆ4+xˆ2*yˆ2-7*xˆ2*
yˆ2*z+xˆ3*y-7*xˆ3*y*z-7*xˆ3*yˆ2-7*xˆ4*y);

FactArg,f;
Print;
.end
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F=
f(y+x,z+x,4*zˆ2+3*y*zˆ4+x*y-7*xˆ2*y);

The first example shows the factorization of function arguments. This is probably
the most important use in complicated calculations. The FactArg statement is
natural for this.

Factorization of expressions is a bit more complicated. How to (re)present the
results?

#define MAX "5"
#define TERMS "6"
#define POW "3"
Symbols a1,...,a‘MAX’,j;
Off Statistics;
Format NoSpaces;
#do i = 1,‘MAX’
Local F‘i’ = sum_(j,1,‘TERMS’,random_(‘TERMS’)*

<a1ˆrandom_(‘POW’)/a1>*...*
<a‘MAX’ˆrandom_(‘POW’)/a‘MAX’>);

#enddo
Print;
.sort

F1=
5*a2*a4+3*a2*a3ˆ2*a4ˆ2*a5+6*a1*a2*a5ˆ2+5*a1*a2*a3ˆ2*a4ˆ2+
6*a1*a2ˆ2*a3*a4ˆ2+a1ˆ2*a4ˆ2*a5;

F2=
2*a3ˆ2*a4ˆ2*a5+2*a1*a5+2*a1ˆ2*a3ˆ2*a4ˆ2+2*a1ˆ2*a2ˆ2*a5ˆ2+
4*a1ˆ2*a2ˆ2*a3*a4ˆ2*a5ˆ2+a1ˆ2*a2ˆ2*a3ˆ2*a4*a5ˆ2;

F3=
6*a3ˆ2*a4*a5ˆ2+5*a2*a3*a4ˆ2+a1*a2*a3ˆ2*a5+a1ˆ2*a3ˆ2*a4ˆ2*
a5+4*a1ˆ2*a2*a3*a4ˆ2+a1ˆ2*a2ˆ2*a3ˆ2*a4ˆ2;

F4=
6*a2ˆ2*a4ˆ2*a5+4*a2ˆ2*a3ˆ2*a4*a5ˆ2+4*a1*a2*a3ˆ2*a4ˆ2+a1ˆ2

*a2*a3+6*a1ˆ2*a2*a3ˆ2*a5ˆ2+a1ˆ2*a2ˆ2*a5ˆ2;

F5=
5*a2*a3ˆ2*a4ˆ2*a5+3*a1*a3ˆ2*a4ˆ2+2*a1*a2*a3*a4ˆ2*a5+a1ˆ2*
a3+5*a1ˆ2*a2ˆ2*a3ˆ2*a4*a5+a1ˆ2*a2ˆ2*a3ˆ2*a4*a5ˆ2;

On Statistics;
Drop;
Local F = F1*...*F‘MAX’;
.sort

Time = 0.02 sec Generated terms = 7776
F Terms in output = 5540

Bytes used = 158532
Factorize;
Print;
.end



Potential of FORM 4.0 365

Time = 0.02 sec Generated terms = 5540
F Terms in output = 5540

Bytes used = 158532

Time = 1.65 sec Generated terms = 33
F Terms in output = 33
factorize Bytes used = 1684

F=
(a3)

*(a3)

*(6*a3*a4*a5ˆ2+5*a2*a4ˆ2+a1*a2*a3*a5+a1ˆ2*a3*a4ˆ2*a5+4*
a1ˆ2*a2*a4ˆ2+a1ˆ2*a2ˆ2*a3*a4ˆ2)

*(2*a3ˆ2*a4ˆ2*a5+2*a1*a5+2*a1ˆ2*a3ˆ2*a4ˆ2+2*a1ˆ2*a2ˆ2*
a5ˆ2+4*a1ˆ2*a2ˆ2*a3*a4ˆ2*a5ˆ2+a1ˆ2*a2ˆ2*a3ˆ2*a4*a5ˆ2)

*(a2)

*(5*a2*a4+3*a2*a3ˆ2*a4ˆ2*a5+6*a1*a2*a5ˆ2+5*a1*a2*a3ˆ2*
a4ˆ2+6*a1*a2ˆ2*a3*a4ˆ2+a1ˆ2*a4ˆ2*a5)

*(6*a2*a4ˆ2*a5+4*a2*a3ˆ2*a4*a5ˆ2+4*a1*a3ˆ2*a4ˆ2+a1ˆ2*a3+
6*a1ˆ2*a3ˆ2*a5ˆ2+a1ˆ2*a2*a5ˆ2)

*(5*a2*a3*a4ˆ2*a5+3*a1*a3*a4ˆ2+2*a1*a2*a4ˆ2*a5+a1ˆ2+5*
a1ˆ2*a2ˆ2*a3*a4*a5+a1ˆ2*a2ˆ2*a3*a4*a5ˆ2);

Factorization is considered a ‘state’ in which the expression exists. It is either
factorized or unfactorized. Conversion takes place at the end of the module after
the expression has been processed and sorted. Hence we have two output statistics.
The second one refers to the factorization procedure. To store the factorized
expression we use the FORM bracket system with the built in symbol factor .
This allows also a way to refer to the brackets.

The execution time depends critically on how complicated the expression is.
If we raise the powers of the variables we can see the effect:

#define MAX "5"
#define TERMS "6"
#define POW "4"
Symbols a1,...,a‘MAX’,j;
Off Statistics;
Format NoSpaces;
#do i = 1,‘MAX’
Local F‘i’ = sum_(j,1,‘TERMS’,random_(‘TERMS’)*

<a1ˆrandom_(‘POW’)/a1>*...*
<a‘MAX’ˆrandom_(‘POW’)/a‘MAX’>);

#enddo
Print;
.sort

F1=
6*a1ˆ2*a2*a3ˆ2*a5+6*a1ˆ2*a2*a3ˆ3*a4ˆ2*a5+3*a1ˆ2*a2ˆ2*a3ˆ3

*a5ˆ2+a1ˆ2*a2ˆ3*a3*a4ˆ3*a5ˆ3+5*a1ˆ3*a2ˆ3*a3*a4ˆ3*a5+5*
a1ˆ3*a2ˆ3*a3ˆ2*a4*a5ˆ2;

F2=
a4ˆ2*a5+2*a1*a2ˆ3*a3ˆ3*a5+4*a1ˆ2*a2*a3*a5ˆ2+2*a1ˆ2*a2*
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a3ˆ3*a4ˆ3*a5ˆ3+2*a1ˆ2*a2ˆ2*a4*a5+2*a1ˆ3*a2ˆ2*a3*a4ˆ3*a5;

F3=
5*a2+6*a2ˆ3*a4*a5ˆ3+4*a1*a3*a4ˆ3*a5+a1*a2ˆ2*a4*a5+a1*a2ˆ3

*a3ˆ3*a4ˆ3*a5+a1ˆ3*a3ˆ3*a4ˆ3;

F4=
6*a2*a3ˆ2*a4ˆ2*a5ˆ2+a2ˆ3*a3ˆ3*a4ˆ3*a5+4*a1*a2*a3ˆ3*a4ˆ2*
a5ˆ2+4*a1*a2ˆ2*a3ˆ3*a4ˆ3*a5+a1ˆ2*a2ˆ2*a3*a5ˆ2+6*a1ˆ3*a2ˆ2

*a3*a5;

F5=
3*a1*a2ˆ3*a3ˆ3*a4ˆ2+a1ˆ2*a3*a4ˆ2*a5ˆ3+2*a1ˆ2*a2*a4+a1ˆ2*
a2*a3*a4*a5ˆ2+5*a1ˆ2*a2ˆ2*a4ˆ2+5*a1ˆ3*a3ˆ2*a4ˆ3;

On Statistics;
Drop;
Local F = F1*...*F‘MAX’;
.sort

Time = 0.01 sec Generated terms = 7776
F Terms in output = 7125

Bytes used = 213980
Factorize;
Print;
.end

Time = 0.01 sec Generated terms = 7125
F Terms in output = 7125

Bytes used = 213980

Time = 77.67 sec Generated terms = 41
F Terms in output = 41
factorize Bytes used = 2116

F=
(a5)

*(a5)

*(a5)

*(a4)

*(a4ˆ2+2*a1*a2ˆ3*a3ˆ3+4*a1ˆ2*a2*a3*a5+2*a1ˆ2*a2*a3ˆ3*a4ˆ3

*a5ˆ2+2*a1ˆ2*a2ˆ2*a4+2*a1ˆ3*a2ˆ2*a3*a4ˆ3)

*(a3)

*(a3)

*(6*a3+6*a3ˆ2*a4ˆ2+3*a2*a3ˆ2*a5+a2ˆ2*a4ˆ3*a5ˆ2+5*a1*a2ˆ2*
a4ˆ3+5*a1*a2ˆ2*a3*a4*a5)

*(6*a3*a4ˆ2*a5+a2ˆ2*a3ˆ2*a4ˆ3+4*a1*a3ˆ2*a4ˆ2*a5+4*a1*a2*
a3ˆ2*a4ˆ3+a1ˆ2*a2*a5+6*a1ˆ3*a2)

*(a2)

*(a2)

*(5*a2+6*a2ˆ3*a4*a5ˆ3+4*a1*a3*a4ˆ3*a5+a1*a2ˆ2*a4*a5+a1*
a2ˆ3*a3ˆ3*a4ˆ3*a5+a1ˆ3*a3ˆ3*a4ˆ3)

*(3*a2ˆ3*a3ˆ3*a4+a1*a3*a4*a5ˆ3+2*a1*a2+a1*a2*a3*a5ˆ2+5*a1

*a2ˆ2*a4+5*a1ˆ2*a3ˆ2*a4ˆ2)

*(a1)
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*(a1)

*(a1);

It is also possible to put expressions in the input in factorized form:

Symbols x,y,z;
LocalFactor F = (x+1)*(x+y)*(z+2)ˆ2*((x+2)*(y+2));
Print;
.sort

Time = 0.00 sec Generated terms = 12
F Terms in output = 12

Bytes used = 448

F =
( 1 + x )

* ( y + x )

* ( 2 + z )

* ( 2 + z )

* ( 4 + 2*y + 2*x + x*y );

id x = -y;
Print;
.sort

Time = 0.00 sec Generated terms = 12
F Terms in output = 8

Bytes used = 300

F =
( 1 - y )

* ( 0 )

* ( 2 + z )

* ( 2 + z )

* ( 4 - yˆ2 );

UnFactorize F;
Print;
.end

Time = 0.00 sec Generated terms = 8
F Terms in output = 8

Bytes used = 300

Time = 0.00 sec Generated terms = 2
F Terms in output = 2

unfactorize Bytes used = 84

Time = 0.00 sec Generated terms = 0
F Terms in output = 0

unfactorize Bytes used = 4

F = 0;
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This example shows also that if during further processing a factor becomes
zero, we still keep the expression and the other factors. If, on the other hand, we
unfactorize the expression, we end up with zero of course.

Factorization of $-expressions is yet another case. Here we do not have the
bracket system. Neither do we have the possibility to store the factors as arguments.
On the other hand, we are not limited by the maximum size of terms.

#define MAX "5"
#define TERMS "6"
#define POW "3"
Symbols a1,...,a‘MAX’,j;
Off Statistics;
Format NoSpaces;
#do i = 1,‘MAX’
#$v‘i’ = sum_(j,1,‘TERMS’,random_(‘TERMS’)*\

<a1ˆrandom_(‘POW’)/a1>*...*\
<a‘MAX’ˆrandom_(‘POW’)/a‘MAX’>);

#enddo
#$V = <$v1>*...*<$v‘MAX’>;
.sort
#factdollar $V
#write <> "Factors in $V: ‘$V[0]’";

Factors in $V: 8
#do i = 1,‘$V[0]’
#write <> " Factor ‘i’: %$",$V[‘i’];

Factor 1: a3
#enddo

Factor 2: a3
Factor 3: 6*a3*a4*a5ˆ2+5*a2*a4ˆ2+a1*a2*a3*a5+a1ˆ2*a3*a4ˆ2*a5+

4*a1ˆ2*a2*a4ˆ2+a1ˆ2*a2ˆ2*a3*a4ˆ2
Factor 4: 2*a3ˆ2*a4ˆ2*a5+2*a1*a5+2*a1ˆ2*a3ˆ2*a4ˆ2+2*a1ˆ2*a2ˆ

2*a5ˆ2+4*a1ˆ2*a2ˆ2*a3*a4ˆ2*a5ˆ2+a1ˆ2*a2ˆ2*a3ˆ2*a4*a5ˆ2
Factor 5: a2
Factor 6: 5*a2*a4+3*a2*a3ˆ2*a4ˆ2*a5+6*a1*a2*a5ˆ2+5*a1*a2*a3ˆ

2*a4ˆ2+6*a1*a2ˆ2*a3*a4ˆ2+a1ˆ2*a4ˆ2*a5
Factor 7: 6*a2*a4ˆ2*a5+4*a2*a3ˆ2*a4*a5ˆ2+4*a1*a3ˆ2*a4ˆ2+a1ˆ2*

a3+6*a1ˆ2*a3ˆ2*a5ˆ2+a1ˆ2*a2*a5ˆ2
Factor 8: 5*a2*a3*a4ˆ2*a5+3*a1*a3*a4ˆ2+2*a1*a2*a4ˆ2*a5+a1ˆ2+

5*a1ˆ2*a2ˆ2*a3*a4*a5+a1ˆ2*a2ˆ2*a3*a4*a5ˆ2
.end

3.25 sec out of 3.25 sec

We refer to the factors as if they are array elements. The zero element tells the
number of factors.

Of course $-variables can be used in two ways: during compilation as shown
above, and during execution:

Symbols x,y,z;
CFunction f;
Off Statistics;
Format nospaces;
Local F = f((x+y)*(x*y+4*zˆ2+3*y*zˆ4-7*xˆ2*y)*(x+z));
Print;
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.sort

F=
f(4*y*zˆ3+3*yˆ2*zˆ5+4*x*zˆ3+4*x*y*zˆ2+3*x*y*zˆ5+x*yˆ2*z
+3*x*yˆ2*zˆ4+4*xˆ2*zˆ2+xˆ2*y*z+3*xˆ2*y*zˆ4+xˆ2*yˆ2-7*xˆ2*
yˆ2*z+xˆ3*y-7*xˆ3*y*z-7*xˆ3*yˆ2-7*xˆ4*y);

id f(x?$v) = 1;
FactDollar,$v;
do $i = 1,$v[0];

Print " Factor %$ in $v = %$",$i,$v[$i];
$t = nterms_($v[$i]);
Print " There are %$ terms in factor %$",$t,$i;

enddo;
.end

Factor 1 in $v = z+x
There are 2 terms in factor 1

Factor 2 in $v = 4*zˆ2+3*y*zˆ4+x*y-7*xˆ2*y
There are 4 terms in factor 2

Factor 3 in $v = y+x
There are 2 terms in factor 3

Here we need an extra supporting facility: the do loop during execution. Its
variable is a $-variable.

Internally the factorization algorithms work only with symbols and numbers.
Yet we may use other objects as well. FORM will replace them temporarily by an
internal set of symbols, called the “extra symbols”. Then, after factorization these
are replaced back. Hence the following example works properly.

Symbols x,y,z;
CFunction f,g;
Off Statistics;
Format nospaces;
Local F = f((x+y)*(x+g(z))*(x*y+4*zˆ2+3*g(y)*zˆ4-7*xˆ2*y));
Print;
.sort

F=
f(4*x*y*zˆ2+4*xˆ2*zˆ2+xˆ2*yˆ2+xˆ3*y-7*xˆ3*yˆ2-7*xˆ4*y+
3*g(y)*x*y*zˆ4+3*g(y)*xˆ2*zˆ4+3*g(y)*g(z)*y*zˆ4+3*g(y)*
g(z)*x*zˆ4+4*g(z)*y*zˆ2+4*g(z)*x*zˆ2+g(z)*x*yˆ2+g(z)*xˆ2

*y-7*g(z)*xˆ2*yˆ2-7*g(z)*xˆ3*y);

id f(x?$v) = 1;
FactDollar,$v;
do $i = 1,$v[0];

Print " Factor %$ in $v = %$",$i,$v[$i];
$t = nterms_($v[$i]);
Print " There are %$ terms in factor %$",$t,$i;

enddo;
.end

Factor 1 in $v = 4*zˆ2+x*y-7*xˆ2*y+3*g(y)*zˆ4
There are 4 terms in factor 1

Factor 2 in $v = y+x
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There are 2 terms in factor 2
Factor 3 in $v = x+g(z)

There are 2 terms in factor 3

There are more things that can be said about the factorization, but the talks is
supposed to be finite in time.

4 Rational Polynomials

Another important thing that was missing, was the capability to deal with rational
polynomials. This has even led to the introduction of the external channels to use
other programs like FERMAT [6] for this purpose. It would have been nice to
have FERMAT in the form of a library, like zlib (compression) or the GMP [7]
(for multiprecision calculations), but that was not to be. Now we have our own
capabilities.

Symbols x,y,z,a,b;
CFunction rat;
Format Nospaces;
Local F = a*rat(x+1,y+1)+a*rat(x+z,y+z)+a*rat(y+z,y-z);
Print;
.sort

Time = 0.00 sec Generated terms = 3
F Terms in output = 3

Bytes used = 476
F=

rat(1+x,1+y)*a+rat(z+y,-z+y)*a+rat(z+x,z+y)*a;
PolyRatFun rat;
Print;
.end

Time = 0.00 sec Generated terms = 3
F Terms in output = 1

Bytes used = 584
F=

a*rat(2*x*yˆ2-x*y*z+x*y-x*zˆ2-x*z+yˆ3+3*yˆ2*z+2*yˆ2+3*y*z
-zˆ2,yˆ3+yˆ2-y*zˆ2-zˆ2);

Like many things in FORM this is of course limited to the maximum size of the
terms. If this turns out to be a limitation, there are usually other ways to attack the
problem. In that case the numerators and denominators are very big expressions and
it is better to store them in separate expressions or $-variables. These then can be
used in the new functions gcd , div , rem to obtain results.

The first application of the rational polynomials was to make a new version of
the Mincer [8] library. This version works exact. This means that it does not use
expansions in �. All � dependence is put inside the rational polynomial. The example
shown is as in Fig. 2.
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Fig. 2 A typical diagram of type BE

Fig. 3 The diagrams corresponding to the various master integrals

#include- minceex.h
Off Statistics;
Format nospaces;
.global
L F = Q.Qˆ2/p1.p1/p2.p2/p3.p3/p4.p4/p5.p5/p6.p6/p7.p7

/p8.p8;
#call integral(be,0)
Print +f +s;
.sort

F=
+GschemeConstants(0,0)*BasicT1Integral*

rat(6*epˆ3-3*epˆ2,2*ep+1)
+GschemeConstants(0,0)ˆ2*GschemeConstants(1,0)*

rat(18*epˆ2-15*ep+3,2*epˆ2+ep)
+GschemeConstants(0,0)ˆ2*GschemeConstants(2,0)*

rat(-128*epˆ2+96*ep-16,6*epˆ2+3*ep)
+GschemeConstants(0,0)*GschemeConstants(1,0)*

GschemeConstants(2,0)*
rat(84*epˆ2-49*ep+7,6*epˆ2+3*ep)

;

#call subvalues
˜˜˜Answer in the Gscheme

#call expansion(1)
˜˜˜Answer in the Gscheme

Print +f;
.end

F=
-2*epˆ-1*z3-3*z4+12*z3+46*ep*z5+18*ep*z4-32*ep*z3;

As is shown above, there are some constants, which are basic one loop integrals
with zero, one or two insertions and there is a two loop integral of type T1 with
one insertion as shown in Fig. 3. There is one more constant which is the basic
non-planar integral in three loops.
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The first three integrals are known in terms of � -functions and can be expanded
as far as wanted/needed.

The T1 integral can be expanded to any precision but that takes more and more
time and runs eventually into the limitation that there are relations between the
Multiple Zeta Values and these are known only to a certain weight [9]. Enough
precision is built in for any practical calculations.

The fifth(NO) integral is more of a problem, but is known to sufficient precision
for even four loop calculations.

The above program shows that this exact treatment is quite good because we do
not have to worry about cancellations of powers of �.

L F1 = GschemeConstants(0,0)ˆ2*GschemeConstants(1,0)*
rat(18*epˆ2-15*ep+3,2*epˆ2+ep);

L F2 = GschemeConstants(0,0)ˆ2*GschemeConstants(2,0)*
rat(-128*epˆ2+96*ep-16,6*epˆ2+3*ep);

L F3 = GschemeConstants(0,0)*GschemeConstants(1,0)*
GschemeConstants(2,0)*
rat(84*epˆ2-49*ep+7,6*epˆ2+3*ep);

L F4 = GschemeConstants(0,0)*BasicT1Integral*
rat(6*epˆ3-3*epˆ2,2*ep+1);

#call subvalues
˜˜˜Answer in the Gscheme

#call expansion(1)
˜˜˜Answer in the Gscheme

Print +f;
.end

F=
-2*epˆ-1*z3-3*z4+12*z3+46*ep*z5+18*ep*z4-32*ep*z3;

F1=
192+3*epˆ-4-18*epˆ-3+48*epˆ-2-96*epˆ-1-18*epˆ-1*z3-27*z4+
108*z3-384*ep-126*ep*z5+162*ep*z4-288*ep*z3;

F2=
-1024/3-16/3*epˆ-4+32*epˆ-3-256/3*epˆ-2+512/3*epˆ-1+256/3

*epˆ-1*z3+128*z4-512*z3+2048/3*ep+1024*ep*z5-768*ep*z4+
4096/3*ep*z3;

F3=
448/3+7/3*epˆ-4-14*epˆ-3+112/3*epˆ-2-224/3*epˆ-1-154/3*
epˆ-1*z3-77*z4+308*z3-896/3*ep-546*ep*z5+462*ep*z4-2464/3

*ep*z3;

F4=
-18*epˆ-1*z3-27*z4+108*z3-306*ep*z5+162*ep*z4-288*ep*z3;

As one can see, there are quite a few terms cancelling between the terms with
only one loop constants.
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#include- minceex.h
Off Statistics;
Format nospaces;
.global
L F = Q.Qˆ3*Q.p2ˆ2/p1.p1ˆ2/p2.p2ˆ2/p3.p3ˆ2/p4.p4/p5.p5/

p6.p6/p7.p7/p8.p8;
#call integral(be,0)
Print +f +s;
.sort

F=
+GschemeConstants(0,0)*BasicT1Integral*rat(162*epˆ8+729*
epˆ7+1008*epˆ6+405*epˆ5-60*epˆ4-72*epˆ3-12*epˆ2,8*epˆ4+44

*epˆ3+88*epˆ2+76*ep+24)
+GschemeConstants(0,0)ˆ2*GschemeConstants(1,0)*rat(144*
epˆ9+960*epˆ8+2418*epˆ7+3051*epˆ6+1620*epˆ5-450*epˆ4-690*
epˆ3-99*epˆ2+54*ep+12,4*epˆ7+34*epˆ6+118*epˆ5+214*epˆ4+
214*epˆ3+112*epˆ2+24*ep)
+GschemeConstants(0,0)ˆ2*GschemeConstants(2,0)*rat(-288*
epˆ9-2640*epˆ8-7486*epˆ7-9899*epˆ6-5723*epˆ5+821*epˆ4+
2179*epˆ3+500*epˆ2-112*ep-32,6*epˆ7+51*epˆ6+177*epˆ5+321*
epˆ4+321*epˆ3+168*epˆ2+36*ep)
+GschemeConstants(0,0)*GschemeConstants(1,0)*
GschemeConstants(2,0)*rat(-1296*epˆ10+16308*epˆ9+47592*
epˆ8+43275*epˆ7+2601*epˆ6-20189*epˆ5-9321*epˆ4+2300*epˆ3+
1490*epˆ2-84*ep-56,96*epˆ8+720*epˆ7+2088*epˆ6+2844*epˆ5+
1584*epˆ4-180*epˆ3-528*epˆ2-144*ep)
;

#call subvalues
˜˜˜Answer in the Gscheme

#call expansion(1)
˜˜˜Answer in the Gscheme

Print +f;
.end

F=
-2903/1296-1/18*epˆ-2+125/216*epˆ-1-1/3*epˆ-1*z3-1/2*z4
-5/18*z3+28541/7776*ep+23/3*ep*z5-5/12*ep*z4+467/108*ep*z3;

0.41 sec out of 0.44 sec

The “Mincer Exact” package has been added to the FORM distribution.

5 New Functions

FORM has obtained many new functions. We name them here. Some names are
selfevident:

Random RanPerm Div Rem

Gcd Inverse FirstTerm Prime

ExtEuclidean MakeRational NumFactors Content

ExtraSymbol
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A number of these functions are designed for use in future packages, like a
package for Gröbner bases. Such bases can often be calculated faster when calculus
is over a prime number and in the end the results over several prime number
calculations are combined into a result modulus the product of these numbers.

Making a decent Gröbner basis package is a major undertaking. Again the better
packages are not available for inclusion as a library and are part of a commercial
product. There is much heuristics involved to take shortcuts and all of that is kept
secret. This means that one has to develop ones own heuristics. For this reason we
have only been experimenting a little bit with Gröbner bases.

#-
#include- groebner.h
Off Statistics;
ON HighFirst;
.global
Local Poly1 = x1ˆ2 + x2*x3 - 2;
Local Poly2 = x1ˆ2*x3 + x2ˆ3 - 3;
Local Poly3 = x1*x2 + x3ˆ2 - 5;
#$n = 3;
#write <> "The input polynomials are:"
Print +f;
.sort
#call groebner(Poly,n)
#write <> "The Groebner basis is:"
Print +f;
.end

The above shows what this should look like from the users perspective. The
output of this program is:

#-
The input polynomials are:

Poly1 =
x1ˆ2 + x2*x3 - 2;

Poly2 =
x1ˆ2*x3 + x2ˆ3 - 3;

Poly3 =
x1*x2 + x3ˆ2 - 5;

The Groebner basis is:

Poly1 =
4093136817253*x1 - 999056107380*x3ˆ9 + 3162784725684*x3ˆ8 +
15617604960159*x3ˆ7 - 52374677099676*x3ˆ6 - 78004955176188*
x3ˆ5 + 303405612909504*x3ˆ4 + 117232980911431*x3ˆ3 -
685255923260685*x3ˆ2 - 3397254300818*x3 + 498469518662424;

Poly2 =
30*x3ˆ10 - 9*x3ˆ9 - 570*x3ˆ8 + 222*x3ˆ7 + 4173*x3ˆ6
- 1782*x3ˆ5 - 14569*x3ˆ4 + 5523*x3ˆ3 + 24357*x3ˆ2
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- 5721*x3 - 15553;

Poly3 =
372103347023*x2 + 159558175470*x3ˆ9 - 307637902881*x3ˆ8
- 2539999354128*x3ˆ7 + 5261771049639*x3ˆ6 + 13722480161265*
x3ˆ5 - 31064912209032*x3ˆ4 - 27045529790992*x3ˆ3 +
69969321110925*x3ˆ2 + 14416898137155*x3 - 48858412479378;

0.10 sec out of 0.11 sec

One can see here that this can run out of hand rather quickly. Of course the secret
is in what is in the library groebner.h. It uses a large number of the new functions.

This is for example a routine that defines an S-polynomial:

#procedure Spoly(A,B,S);

*
* Procedure defines the S-polynomial of the two polynomials

* A and B. We work with $’s for the intermediate variables

* because that is faster and that way we have to compute the

* gcd only once and do the divisions only once.

*
#$firstA = firstterm_(‘A’);
#$firstB = firstterm_(‘B’);
#$gcdfirst = gcd_($firstA, $firstB);
#if ( isnumerical($gcdfirst) )

Local ‘S’ = 0;
#else

#$nfirstA = $firstA/$gcdfirst;
#$nfirstB = $firstB/$gcdfirst;
Skip;
Local ‘S’ = ‘A’*$nfirstB - ‘B’*$nfirstA;

#endif
.sort

#endprocedure

Note the use of the functions firstterm and gcd . Also the new option
isnumerical in the preprocessor ‘if statement’ is being used. Another routine:

#procedure MakeInteger(IN,OUT)

*
* Defines the polynomial ‘OUT’ as a multiple of ‘IN’ so that

* all its coefficients are integer.

*
#$MkI = content_(‘IN’);
#inside $MkI

$cMkI = coeff_;
#endinside
Skip;
Drop ‘IN’;
Local ‘OUT’ = ‘IN’/(‘$cMkI’);
.sort

*
#endprocedure
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Here we use the function content to eventually obtain the GCD of the
numerators and the LCM of the denominators.

Now we hope for volunteers to make a good package.

6 Miscellaneous

The parallel versions TFORM and ParPARFORM are both fully functional now. Till
about a year ago ParPARFORM was still missing much of the functionality and was
also not very portable. This has all been rectified. It is part of the open source
distribution. It does however need a proper MPI installation.

One of the complaints in the past was that .sav files of different executables of
FORM were incompatible. This meant that a .sav file generated on one computer
might not be usable on another. Also new versions would often need extra variables
in the .sav file and hence the old files would be useless. Starting with version 4.0
we have made an attempt to solve these problems. The files should now be uniform,
even between 32- and 64-bits versions. In addition we have left much spare space in
the headers to allow for future extensions that would otherwise invalidate old files.

Of course, some files cannot be carried from a 64-bits computer to a 32-bits
computer. If we use x123456, the power is more than the maximum power allowed
for symbols on 32-bits systems (which is 10000). Similarly one can exceed the total
number of different objects used in all expressions together. But those are rather
natural limitations and they would be encountered very rarely.

Checkpoints are selected points in a FORM program from which the program can
be restarted. One can define many such checkpoints but the program will remember
only the last one it has encountered. This facility allows the user to restart the
program when external causes have halted execution, like a power outage. The user
has to define these checkpoints. It is not done automatically.

There is now a forum for FORM users to communicate with each other. To post
on the forum one needs to register. This involves answering an easy question and
then waiting till one of the moderators approves of the registration. This procedure
is needed because of SPAM attacks and organizations having automatic programs
for trying to register on forums like this.

The forum is the proper way to report bugs, to ask questions about installation
and versions, or to ask help with certain features or techniques.

For all features in FORM , TFORM and ParPARFORM holds that we have tried
our best to make them running flawlessly on systems that are available to us. Yet it
is not excluded that on other systems strange things happen. This may be due to
errors in the other systems, unanticipated behaviour, or just insufficiently careful
programming on our side. Whenever such a thing occurs we ask the user to report
the problems by means of the forum.
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7 What Brings the Future?

The one line answer to this question: “Hopefully something spectacular.”
At the moment I have an ERC grantrequest1 for a project in which I want

to use game theoretical concepts to solve the systems of recursion relations that
are encountered in multi-loop calculations of all Mellin moments in either DIS or
Drell Yan processes. The idea is to use something called Monte Carlo Tree Search
(MCTS) to work ones way through the enormous number of possibilities to combine
equations in order to find either an acceptable solution, or to find the best among a
large number of solutions.

Indications are that the chance of success for this method is quite good.
The automatic derivation of the formulas would eliminate the most time consum-

ing part of this kind of calculations, even if the derivation by means of MCTS costs
a significant amount of CPU time.

If one can derive solutions automatically and if there is more than one solution
and if the derivation is reasonably fast, one can envision to make solutions that are
optimal for a given diagram. This would make the application of the solution much
faster.

Currently we (mainly Jan) are trying to make a system for rewriting outputs
for numerical programs in a way that takes as few operations as possible. This is
called simplification. At the highest level of optimization this system uses MCTS
to determine a good ordering of the variables in a multivariate Horner scheme. At
the moment we are obtaining exciting results [4,5] that are considerably better than
with existing systems [10–12]. Applied to the GRACE system for automatic one
loop calculations [13, 14] it gives expressions that are much shorter than what was
available in previous versions. The code will become available in version 4.1 of
FORM, but here is already a small example:

Symbols x,y,z;
Off Statistics;
Local F = 6*y*zˆ2+3*yˆ3-3*x*zˆ2+6*x*y*z-3*xˆ2*z+6*xˆ2*y;
Format O1,stats=on;
Print;
.end
Z1_=y*z;
Z2_= - z + 2*y;
Z2_=x*Z2_;
Z3_=zˆ2;
Z1_=Z2_ - Z3_ + 2*Z1_;
Z1_=x*Z1_;
Z2_=yˆ2;
Z2_=2*Z3_ + Z2_;
Z2_=y*Z2_;
Z1_=Z2_ + Z1_;

1By now (publication of these proceedings) this request has been approved and the project will
start in July 2013.
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F=3*Z1_;

*** STATS: original 1P 16M 5A : 23

*** STATS: optimized 0P 10M 5A : 15

The statistics show that we started with 23 operations (one power which counted
double because it was a third power, 16 multiplications and 5 additions) and that we
are left with 15 operations. Note that squares are counted like a single multiplication.
If we run this program with the option O2 we obtain

Z1_=zˆ2;
Z2_=2*y;
Z3_=z*Z2_;
Z2_= - z + Z2_;
Z2_=x*Z2_;
Z2_=Z2_ - Z1_ + Z3_;
Z2_=x*Z2_;
Z3_=yˆ2;
Z1_=2*Z1_ + Z3_;
Z1_=y*Z1_;
Z1_=Z1_ + Z2_;
F=3*Z1_;

*** STATS: original 1P 16M 5A : 23

*** STATS: optimized 0P 9M 5A : 14

and with O3 (MCTS) we have

Z1_=x + z;
Z2_=2*y;
Z3_=Z2_ - x;
Z1_=z*Z3_*Z1_;
Z3_=yˆ3;
Z2_=xˆ2*Z2_;
Z1_=Z1_ + Z3_ + Z2_;
F=3*Z1_;

*** STATS: original 1P 16M 5A : 23

*** STATS: optimized 1P 6M 4A : 12

It is possible to obtain an even better decomposition, but this requires simplifi-
cations of the type x2 C xzC z2 ! .x C z/2 � xz which is not within the scope of
the simplifications we apply. Similarly x2C 2xzC z2 would not be seen as a square.
Such simplifications require entirely different algorithms which should be executed
before the FORM algorithms are applied.

References

1. Banerjee, N., Dutta, S., Lodato, I.: The fate of flat directions in higher derivative gravity. 36p
(2013). e-Print: arXiv:1301.6773 [hep-th]

2. Vermaseren, J.A.M.: New features of FORM. arXiv math-ph/0010025
3. Tentyukov, M., Vermaseren, J.A.M.: The multithreaded version of FORM. Comput. Phys.

Commun. 181, 1419 (2010). arXiv hep-ph/0702279
4. Kuipers, J., Vermaseren, J.A.M., Plaat, A., van den Herik, H.J.: Improving multi-variate Horner

schemes with Monte Carlo tree search. arXiv 1207.7079

http://www.arXiv math-ph/0010025
http://www.arXiv hep-ph/0702279
http://www.arXiv 1207.7079


Potential of FORM 4.0 379

5. Kuipers, J., Vermaseren, J.A.M.: Code simplification in FORM (In preparation)
6. Lewis, R.H.: Fermat. http://www.bway.net/�lewis/
7. GNU Multiple Precision Arithmetic Library. http://gmplib.org/
8. Mincer is a program for the evaluation of massless three loop propagator diagrams. The original

paper is: Gorishnii, S.G., Larin, S.A., Surguladze, L.R., Tkachev, F.V.: Mincer: program for
multiloop calculations in quantum field theory for the schoonschip system. Comput. Phys.
Commun. 55, 381–408 (1989). A much improved FORM version is included in the FORM

distribution
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Feynman Graphs

Stefan Weinzierl

Abstract In these lectures I discuss Feynman graphs and the associated Feynman
integrals. Of particular interest are the classes functions, which appear in the
evaluation of Feynman integrals. The most prominent class of functions is given
by multiple polylogarithms. The algebraic properties of multiple polylogarithms are
reviewed in the second part of these lectures. The final part of these lectures is
devoted to Feynman integrals, which cannot be expressed in terms of multiple poly-
logarithms. Methods from algebraic geometry provide tools to tackle these integrals.

1 Feynman Graph Polynomials

The first part of these lectures is centred around two graph polynomials. We will
give four different definitions of these two polynomials, each definition will shed a
different light on the nature of these polynomials. The presentation in this section
follows [8].

1.1 Graphs

Let us start with a few basic definitions: A graph consists of edges and vertices. We
will mainly consider connected graphs. The valency of a vertex is the number of
edges attached to it. Vertices of valency 0, 1 and 2 are special. A vertex of valency 0
is necessarily disconnected from the rest of graph and therefore not relevant for
connected graphs. A vertex of valency 1 has exactly one edge attached to it. This
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edge is called an external edge. All other edges are called internal edges. In the
physics community it is common practice not to draw a vertex of valency 1, but just
the external edge. A vertex of valency 2 is called a mass insertion and is usually
not considered. Therefore in physics it is usually implied that a genuine vertex has
a valency of three or greater.

An edge in a Feynman graph represents a propagating particle. The edges are
drawn in a way as to represent the different types of particles. For example, one uses
lines with an arrow for fermions, wavy lines for photons or curly lines for gluons.
A simple line without decorations is used for scalar particles. To each (orientated)
edge we associate a D-dimensional vector q and a number m, describing the
momentum and the mass of the particle.D is the dimensions of space-time.

Vertices of valency n� 3 represent interactions of n particles. At each vertex
we have momentum conservation: The sum of all momenta flowing into the vertex
equals the sum of all momenta flowing out of the vertex.

To each Feynman graph we can associate a new graph, obtained by replacing
each propagator of the original graph by a scalar propagator. This new graph is
called the underlying topology. This new graph does no longer carry the information
on the type of the particles propagating along the edges. We will later associate to
each Feynman graph an integral, called the Feynman integral of this graph. It turns
out, that the Feynman integral corresponding to an arbitrary Feynman graph can
always be expressed as a linear combination of Feynman integrals corresponding
to Feynman graphs with scalar propagators. Therefore it is sufficient to restrict
ourselves to the underlying topology and to restrict our study to Feynman graphs
with scalar propagators.

Let us now consider a graph G with n edges and r vertices. Assume that the
graph has k connected components. The loop number l is defined by

l D n � r C k: (1)

If the graph is connected we have l D n � r C 1. The loop number l is also called
the first Betti number of the graph or the cyclomatic number. In the physics context
it has the following interpretation: If we fix all momenta of the external lines and if
we impose momentum conservation at each vertex, then the loop number is equal
to the number of independent momentum vectors not constrained by momentum
conservation.

A connected graph of loop number 0 is called a tree. A graph of loop number 0,
connected or not, is called a forest. If the forest hast k connected components, it is
called a k-forest. A tree is a 1-forest.

1.2 Spanning Forests

Given an arbitrary connected graph G, a spanning tree of G is a subgraph, which
contains all the vertices ofG and which is a tree. In a similar way, given an arbitrary
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x1 x2

x4 x3

x5

Fig. 1 An example of a Feynman graph and the associated set of spanning trees

connected graph G, a spanning k-forest of G is a subgraph, which contains all the
vertices of G and which is a k-forest.

We have already associated to each edge a momentum vector and a mass. In
addition we associate now to each internal edge ej a real (or complex) variable xj .
The variables xj are called Feynman parameters. For each graph we can define two
polynomials U and F in the variables xj as follows: Let G be a connected graph
and T1 the set of its spanning trees. The first graph polynomial is defined by

U D
X

T2T1

Y

ej…T
xj : (2)

This is best illustrated with an example. Figure 1 shows a Feynman graph decorated
with the Feynman parameters x1 to x5, as well as the associated set T1 of spanning
trees. For each spanning tree we take the Feynman parameters associated to the
edges not belonging to this spanning tree. Summing over all spanning trees we
obtain for this example

U D x1x2 C x3x4 C x1x3 C x2x4 C x2x5 C x1x5 C x4x5 C x3x5: (3)

U is also called the first Symanzik polynomial of the graph G. In mathematics, the
Kirchhoff polynomial of a graph is better known. It is defined by

K D
X

T2T1

Y

ej2T
xj : (4)

The difference between the two definitions is given by the fact that in the case of
K we consider all edges belonging to the spanning tree T , while in the case of U
we consider all edges not belonging to T . There is a simple relation between the
Kirchhoff polynomial K and the first Symanzik polynomial U :

U .x1; : : : ; xn/ D x1 : : : xnK
�
1

x1
; : : : ;

1

xn

�

: (5)
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x1

x2

x3

x4

p1

p2

p4

p3

Fig. 2 An example of a Feynman graph and the associated set of spanning 2-forests

We now turn to the definition of F . LetG be a connected graph and T2 the set of its
spanning 2-forests. An element of T2 is denoted as .T1; T2/. Let us further denote
by PTi the set of external momenta ofG attached to Ti . We first define a polynomial
F0 by

F0 D
X

.T1;T2/2T2

0

@
Y

ei….T1;T2/
xi

1

A

0

@
X

pj2PT1

X

pk2PT2

pj � pk
�2

1

A : (6)

Here, pj � pk is the Minkowski scalar product of two momenta vectors. � is an
arbitrary scale introduced to make the expression dimensionless. F is defined by

F D F0 CU
nX

iD1
xi
m2
i

�2
: (7)

mi denotes the mass of the i -th internal line. If all internal masses are zero, we have
F D F0. F is called the second Symanzik polynomial. Again, let us illustrate
the definition of F with an example. Figure 2 shows a Feynman graph and the
associated set T2 of 2-forests. For simplicity we assume that all internal masses are
zero, therefore we have F D F0. In Fig. 2 we have labelled the internal edges
with the Feynman parameters x1 to x4. The external edges have been labelled with
the external momenta p1 to p4. We orientate these edges such that p1 to p4 are all
flowing outwards. With this choice momentum conservation reads

p1 C p2 C p3 C p4 D 0: (8)

The Mandelstam variables s and t are defined by

s D .p1 C p2/2 ; t D .p2 C p3/2 : (9)
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From the definition in Eq. (6) we find for the polynomial F for this example

F D x2x4 .�s/
�2
C x1x3 .�t/

�2
C x1x4 .�p

2
1/

�2
C x1x2 .�p

2
2/

�2
C x2x3 .�p

2
3/

�2

Cx3x4 .�p
2
4/

�2
:

A few remarks on the two Symanzik polynomials are in order: Both polynomials
are homogeneous in the Feynman parameters, U is of degree l , F is of degree
lC1. The polynomial U is linear in each Feynman parameter. If all internal masses
are zero, then also F is linear in each Feynman parameter. In expanded form each
monomial of U has coefficientC1.

1.3 Feynman Integrals

Feynman graphs have been invented as a pictorial notation for mathematical
expressions arising in the context of perturbative quantum field theory. Each part
in a Feynman graph corresponds to a specific expression and the full Feynman
graph corresponds to the product of these expressions. For scalar theories the
correspondence is as follows: An internal edge corresponds to a propagator

i

q2 �m2
; (10)

an external edge to the factor 1. A vertex corresponds in scalar theories also to
the factor 1. In addition, there is for each internal momentum not constrained by
momentum conservation an integration

Z
dDk

.2�/D
: (11)

Let us now consider a Feynman graph G with m external edges, n internal edges
and l loops. To each internal edge we associate apart from its momentum and its
mass a positive integer number �, giving the power to which the propagator occurs.
(We can think of � as the relict of neglecting vertices of valency 2. A number � > 1
corresponds to � � 1 mass insertions on this edge). The momenta flowing through
the internal lines can be expressed through the independent loop momenta k1, : : :,
kl and the external momenta p1, : : :, pm as

qi D
lX

jD1
�ijkj C

mX

jD1
�ijpj ; �ij; �ij 2 f�1; 0; 1g: (12)
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We define the Feynman integral by

IG D

nQ

jD1
� .�j /

� .� � lD=2/
�
�2
���lD=2

Z lY

rD1

dDkr

i�
D
2

nY

jD1

1

.�q2j Cm2
j /
�j
; (13)

with � D �1C: : :C�n. The prefactor in front of the integral is the convention used in
this article. This choice is motivated by the fact that after Feynman parametrisation
we obtain a simple formula. Feynman parametrisation makes use of the identity

nY

jD1

1

P
�j
j

D � .�/
nQ

iD1
�
�
�j
�

Z

�

!

 
nY

iD1
x
�i�1
i

!0

@
nX

jD1
xj Pj

1

A

��

; (14)

where ! is a differential .n � 1/-form given by

! D
nX

jD1
.�1/j�1 xj dx1 ^ : : : ^bdxj ^ : : : ^ dxn: (15)

The hat indicates that the corresponding term is omitted. The integration is over

� D ˚
Œx1 W x2 W : : : W xn� 2 P

n�1jxi � 0; 1 � i � n
�
: (16)

We use Eq. (14) with Pj D �q2j Cm2
j . We can write

nX

jD1
xj .�q2j Cm2

j / D �
lX

rD1

lX

sD1
krMrsks C

lX

rD1
2kr �Qr � J; (17)

whereM is a l 
 l matrix with scalar entries andQ is a l-vector with D-vectors as
entries. After Feynman parametrisation the integrals over the loop momenta k1, : : :,
kl can be done and we obtain

IG D
Z

�

!

0

@
nY

jD1
x
�j�1
j

1

A U ��.lC1/D=2

F ��lD=2 : (18)

The functions U and F are given by

U D det.M/; F D det.M/
��J CQM�1Q� =�2: (19)

It can be shown that Eq. (19) agrees with the definition of U and F given in
Sect. 1.2 in terms of spanning trees and spanning forests. Thus, Eq. (19) provides a
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second definition of the two graph polynomials. Equation (18) defines the Feynman
integral of a graph G in terms of the two graph polynomials U and F . A few
remarks are in order: The integral over the Feynman parameters is a .n � 1/-
dimensional integral in projective space P

n�1, where n is the number of internal
edges of the graph. Singularities may arise if the zero sets of U and F intersect the
region of integration. The dimension D of space-time enters only in the exponents
of the integrand and the exponents act as a regularisation.

1.4 The Laplacian of a Graph

For a graph G with n edges and r vertices define the Laplacian L [38, 42] as a
r 
 r-matrix with

Lij D
( P

xk if i D j and edge ek is attached to vi and is not a self-loop,

�Pxk if i ¤ j and edge ek connects vi and vj .

We speak of a self-loop (or tadpole) if an edge starts and ends at the same vertex.
In the sequel we will need minors of the matrix L and it is convenient to introduce
the following notation: For a r 
 r matrix A we denote by AŒi1; : : : ; ik I j1; : : : ; jk�
the .r � k/ 
 .r � k/ matrix, which is obtained from A by deleting the rows
i1, . . . , ik and the columns j1, . . . , jk . For AŒi1; : : : ; ikI i1; : : : ; ik� we will simply
write AŒi1; : : : ; ik�. The matrix-tree theorem relates the Laplacian of a graph to its
Kirchhoff polynomial:

K D detLŒi�: (20)

A generalisation by the all-minor matrix tree theorem [13, 14, 31] leads to the
following expressions for the graph polynomials U and F0: Starting from a graph
G with n internal edges, r internal vertices .v1; : : : ; vr / andm external legs, we first
attach m additional vertices .vrC1; : : : ; vrCm/ to the ends of the external legs and
then associate the parameters z1, . . . , zm with the external edges. This defines a new
graph QG. We now consider the Laplacian QL of QG and the polynomial

W .x1; : : : ; xn; z1; : : : ; zm/ D det QLŒr C 1; : : : ; r Cm�: (21)

We then expand W in polynomials homogeneous in the variables zj :

W D W .0/ CW .1/ CW .2/ C : : :CW .m/;

W .k/ D
X

1�j1<:::<jk�m
W

.k/

.j1;:::;jk/
.x1; : : : ; xn/ zj1 : : : zjk : (22)
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self-loop bridge

Fig. 3 Examples of graphs
containing a self-loop (left) or
a bridge (right)

We then have

0 D W .0/;

U D x1 : : : xn W .1/

.j /

�
1

x1
; : : : ;

1

xn

�

for any j ;

F0 D x1 : : : xn
X

.j;k/

�
pj � pk
�2

�

�W .2/

.j;k/

�
1

x1
; : : : ;

1

xn

�

: (23)

This provides a third definition of the Feynman graph polynomials U and F . This
formulation is particularly well suited for computer algebra.

1.5 Deletion and Contraction Properties

Let us now consider a recursive definition of the two graph polynomials based on
deletion and contraction properties. We first define a regular edge to be an edge,
which is neither a self-loop nor a bridge. In graph theory an edge is called a bridge,
if the deletion of the edge increases the number of connected components. Examples
for graphs containing either a self-loop or a bridge are shown in Fig. 3. For a graph
G and a regular edge e we define

G=e to be the graph obtained from G by contracting the regular edge e,

G � e to be the graph obtained from G by deleting the regular edge e. (24)

The operations of deletion and contraction are illustrated in Fig. 4. For any regular
edge ek we have

U .G/ D U .G=ek/C xkU .G � ek/;
F0.G/ D F0.G=ek/C xkF0.G � ek/: (25)

The recursion terminates when all edges are either bridges or self-loops. These
graphs are called terminal forms. If a terminal form has r vertices and l (self-) loops,
then there are .r � 1/ “tree-like” propagators, where the momenta flowing through
these propagators are linear combinations of the external momenta pi alone and
independent of the independent loop momenta kj . The momenta of the remaining l
propagators are on the other hand independent of the external momenta and can be
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e

G G−e G=e

Fig. 4 A graph G, together with the graph G�e, where the edge e has been deleted and the graph
G=e, where the edge e has been contracted

taken as the independent loop momenta kj , j D 1; : : : ; l . Let us agree that we label
the .r � 1/ “tree-like” edges from 1 to r � 1, and the remaining l edges by r , . . . ,
n with n D r C l � 1. We further denote the momentum squared flowing through
edge j by q2j . For a terminal form we have

U D xr : : : xn; F0 D xr : : : xn
r�1X

jD1
xj

 �q2j
�2

!

: (26)

Equation (25) together with Eq. (26) provides a fourth definition of the graph
polynomials U and F .

Let ea and eb be two regular edges, which share a common vertex. We have the
following factorisation theorems:

U .G=ea � eb/U .G=eb � ea/ �U .G � ea � eb/U .G=ea=eb/ D
�
�1

xaxb

�2
;

U .G=ea � eb/F0 .G=eb � ea/�U .G � ea � eb/F0 .G=ea=eb/

CF0 .G=ea � eb/U .G=eb � ea/ �F0 .G � ea � eb/U .G=ea=eb/ D

2

�
�1

xaxb

��
�2

xaxb

�

: (27)

�1 and �2 are polynomials in the Feynman parameters and can be expressed as
sums over 2-forests and sums over 3-forests, respectively [8]. If for all external
momenta one has

.pi1 � pi2/ � .pi3 � pi4/ D .pi1 � pi3/ � .pi2 � pi4/ ; (28)

then

F0 .G=ea � eb/F0 .G=eb � ea/�F0 .G � ea � eb/F0 .G=ea=eb/ D
�
�2

xaxb

�2
:

The factorisation theorems follow from Dodgson’s identity [15, 48], which states
that for any n 
 n matrix A one has

det .A/ det .AŒi; j �/ D det .AŒi �/ det .AŒj �/ � det .AŒi I j �/ det .AŒj I i �/ : (29)



390 S. Weinzierl

We recall that

AŒi� is obtained from A by deleting the i -th row and column,

AŒi I j � is obtained from A by deleting the i -th row and the j -th column,

AŒi; j � is obtained from A by deleting the rows and columns i and j .

The first formula of Eq. (27) is at the heart of the reduction algorithm of [11, 12].

2 Multiple Polylogarithms

Let us come back to the Feynman integrals defined in Eq. (18). A Feynman integral
has an expansion as a Laurent series in the parameter " D .4�D/=2 of dimensional
regularisation:

IG D
1X

jD�2l
cj "

j : (30)

The Laurent series of an l-loop integral can have poles in " up to the order .2l/.
The poles in " correspond to ultraviolet or infrared divergences. The coefficients cj
are functions of the scalar products pj � pk , the masses mi and (in a trivial way)
of the arbitrary scale �. An interesting question is, which functions do occur in the
coefficients cj .

2.1 One-Loop Integrals

The question, which functions occur in the coefficients cj has a satisfactory answer
for one-loop integrals. If we restrict our attention to the coefficients cj with j �
0 (i.e. to c�2, c�1 and c0), then these coefficients can be expressed as a sum of
algebraic functions of the scalar products and the masses times two transcendental
functions, whose arguments are again algebraic functions of the scalar products and
the masses.

The two transcendental functions are the logarithm and the dilogarithm:

Li1.x/ D
1X

nD1

xn

n
D � ln.1 � x/;

Li2.x/ D
1X

nD1

xn

n2
: (31)
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2.2 The Sum Representation of Multiple Polylogarithms

Beyond one-loop an answer to the above question is not yet known. We know
however that the following generalisations occur: From Eq. (31) it is not too hard
to imagine that the generalisation includes the classical polylogarithms defined by

Lim.x/ D
1X

nD1

xn

nm
: (32)

However, explicit calculations at two-loops and beyond show that a wider generali-
sation towards functions of several variables is needed and one arrives at the multiple
polylogarithms defined by Goncharov [22, 23] and Borwein et al. [9]

Lim1;:::;mk .x1; : : : ; xk/ D
1X

n1>n2>:::>nk>0

x
n1
1

n1m1
: : :

x
nk
k

nkmk
: (33)

Methods for the numerical evaluation of multiple polylogarithms can be found in
[44]. The values of the multiple polylogarithms at x1 D : : : xk D 1 are called
multiple �-values [6, 9]:

�m1;:::;mk D Lim1;m2;:::;mk .1; 1; : : : ; 1/ D
1X

n1>n2>:::>nk>0

1

n
m1
1

� : : : � 1
n
mk
k

: (34)

Important specialisations of multiple polylogarithms are the harmonic polyloga-
rithms [21, 36]

Hm1;:::;mk .x/ D Lim1;:::;mk .x; 1; : : : ; 1„ ƒ‚ …
k�1

/; (35)

Further specialisations leads to Nielsen’s generalised polylogarithms [34]

Sn;p.x/ D LinC1;1;:::;1.x; 1; : : : ; 1„ ƒ‚ …
p�1

/: (36)

2.3 The Integral Representation of Multiple Polylogarithms

In Eq. (33) we have defined multiple polylogarithms through the sum representation.
In addition, multiple polylogarithms have an integral representation. To discuss
the integral representation it is convenient to introduce for zk ¤ 0 the following
functions
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G.z1; : : : ; zk Iy/ D
yZ

0

dt1

t1 � z1

t1Z

0

dt2

t2 � z2
: : :

tk�1Z

0

dtk

tk � zk
: (37)

In this definition one variable is redundant due to the following scaling relation:

G.z1; : : : ; zk Iy/ D G.xz1; : : : ; xzk I xy/ (38)

If one further defines g.zIy/ D 1=.y � z/, then one has

d

dy
G.z1; : : : ; zk Iy/ D g.z1Iy/G.z2; : : : ; zk Iy/ (39)

and

G.z1; z2; : : : ; zk Iy/ D
yZ

0

dt g.z1I t/G.z2; : : : ; zk I t/: (40)

One can slightly enlarge the set and define G.0; : : : ; 0Iy/ with k zeros for z1 to
zk to be

G.0; : : : ; 0Iy/ D 1

kŠ
.lny/k : (41)

This permits us to allow trailing zeros in the sequence .z1; : : : ; zk/ by defining
the function G with trailing zeros via Eqs. (40) and (41). To relate the multiple
polylogarithms to the functions G it is convenient to introduce the following short-
hand notation:

Gm1;:::;mk .z1; : : : ; zk Iy/ D G.0; : : : ; 0„ ƒ‚ …
m1�1

; z1; : : : ; zk�1; 0 : : : ; 0„ ƒ‚ …
mk�1

; zk Iy/ (42)

Here, all zj for j D 1; : : : ; k are assumed to be non-zero. One then finds

Lim1;:::;mk .x1; : : : ; xk/ D .�1/kGm1;:::;mk
�
1

x1
;
1

x1x2
; : : : ;

1

x1 : : : xk
I 1
�

: (43)

The inverse formula reads

Gm1;:::;mk .z1; : : : ; zk Iy/ D .�1/k Lim1;:::;mk

�
y

z1
;

z1
z2
; : : : ;

zk�1
zk

�

: (44)

Equation (43) together with Eqs. (42) and (37) defines an integral representation for
the multiple polylogarithms. As an example, we obtain from Eqs. (43) and (38) the
integral representation of harmonic polylogarithms:
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Hm1;:::;mk .x/ D .�1/k Gm1;:::;mk .1; : : : ; 1I x/ : (45)

The functionGm1;:::;mk .1; : : : ; 1I x/ is an iterated integral in which only the two one-
forms

!0 D dt

t
; !1 D dt

t � 1 (46)

corresponding to z D 0 and z D 1 appear. If one restricts the possible values of z
to zero and the n-th roots of unity one arrives at the class of cyclomatic harmonic
polylogarithms [1].

2.4 Shuffle and Quasi-shuffle Algebras

Multiple polylogarithms have a rich algebraic structure. The representations as
iterated integrals and nested sums induce a shuffle algebra and a quasi-shuffle
algebra, respectively. Shuffle and quasi-shuffle algebras are Hopf algebras. Note
that the shuffle algebra of multiple polylogarithms is distinct from the quasi-shuffle
algebra of multiple polylogarithms.

Consider a set of letters A. The set A is called the alphabet. A word is an ordered
sequence of letters:

w D l1l2 : : : lk: (47)

The word of length zero is denoted by e. Let K be a field and consider the vector
space of words over K . A shuffle algebra A on the vector space of words is
defined by

.l1l2 : : : lk/ � .lkC1 : : : lr / D
X

shuffles �

l�.1/l�.2/ : : : l�.r/; (48)

where the sum runs over all permutations � , which preserve the relative order of
1; 2; : : : ; k and of kC1; : : : ; r . The name “shuffle algebra” is related to the analogy
of shuffling cards: If a deck of cards is split into two parts and then shuffled, the
relative order within the two individual parts is conserved. A shuffle algebra is also
known under the name “mould symmetral” [16]. The empty word e is the unit in
this algebra:

e � w D w � e D w: (49)

A recursive definition of the shuffle product is given by

.l1l2 : : : lk/ � .lkC1 : : : lr / D l1 Œ.l2 : : : lk/ � .lkC1 : : : lr /�
ClkC1 Œ.l1l2 : : : lk/ � .lkC2 : : : lr /� : (50)



394 S. Weinzierl

It is a well known fact that the shuffle algebra is actually a (non-cocommutative)
Hopf algebra [37]. In a Hopf algebra we have in addition to the multiplication and
the unit a counit, a comultiplication and a antipode. The unit in an algebra can
be viewed as a map from K to A and multiplication in an algebra can be viewed
as a map from the tensor product A ˝ A to A (e.g. one takes two elements from
A, multiplies them and gets one element out). The counit is a map from A to K ,
whereas comultiplication is a map from A to A ˝ A. We will always assume that
the comultiplication is coassociative. The general form of the coproduct is

�.a/ D
X

i

a
.1/
i ˝ a.2/i ; (51)

where a.1/i denotes an element of A appearing in the first slot of A ˝ A and a.2/i
correspondingly denotes an element of A appearing in the second slot. Sweedler’s
notation [39] consists in dropping the dummy index i and the summation symbol:

�.a/ D a.1/ ˝ a.2/ (52)

The sum is implicitly understood. This is similar to Einstein’s summation conven-
tion, except that the dummy summation index i is also dropped. The superscripts .1/

and .2/ indicate that a sum is involved. Using Sweedler’s notation, the compatibility
between the multiplication and comultiplication is expressed as

�.a � b/ D �
a.1/ � b.1/�˝ �a.2/ � b.2/� : (53)

The antipode S is map from A to A, which fulfils

a.1/ � S �a.2/� D S �a.1/� � a.2/ D e � Ne.a/: (54)

With this background at hand we can now state the coproduct, the counit and the
antipode for the shuffle algebra: The counit Ne is given by:

Ne .e/ D 1; Ne .l1l2 : : : ln/ D 0: (55)

The coproduct� is given by:

�.l1l2 : : : lk/ D
kX

jD0

�
ljC1 : : : lk

�˝ �l1 : : : lj
�
: (56)

The antipode S is given by:

S .l1l2 : : : lk/ D .�1/k lklk�1 : : : l2l1: (57)

The shuffle algebra is generated by the Lyndon words. If one introduces a
lexicographic ordering on the letters of the alphabet A, a Lyndon word is defined
by the property w < v for any sub-words u and v such that w D uv.
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t1

t2

=

t1

t2

+

t1

t2

Fig. 5 A shuffle algebra follows from replacing the integral over the square by an integral over
the lower triangle and an integral over the upper triangle

An important example for a shuffle algebra are iterated integrals. Let Œa; b� be a
segment of the real line and f1, f2,. . . functions on this interval. Let us define the
following iterated integrals:

I.f1; f2; : : : ; fk I a; b/ D
bZ

a

dt1f1.t1/

t1Z

a

dt2f2.t2/ : : :

tk�1Z

a

dtkfk.tk/ (58)

For fixed a and b we have a shuffle algebra:

I.f1; f2; : : : ; fk I a; b/ � I.fkC1; : : : ; fr I a; b/ D
X

shuffles �

I.f�.1/; f�.2/; : : : ; f�.r/I a; b/;

(59)

where the sum runs over all permutations � , which preserve the relative order of
1; 2; : : : ; k and of k C 1; : : : ; r . The proof is sketched in Fig. 5. The two outermost
integrations are recursively replaced by integrations over the upper and lower
triangle. The definition of multiple polylogarithms in Eq. (37) is of the form of
iterated integrals as in Eq. (58). Therefore it follows that multiple polylogarithms
obey a shuffle algebra. An example for the multiplication is given by

G.z1Iy/G.z2Iy/ D G.z1; z2Iy/CG.z2; z1Iy/: (60)

Let us now turn to quasi-shuffle algebras. Assume that for the set of letters we have
an additional operation

.:; :/ W A˝ A! A;

l1 ˝ l2 ! .l1; l2/; (61)

which is commutative and associative. Then we can define a new product of words
recursively through

.l1l2 : : : lk/ � .lkC1 : : : lr /
D l1 Œ.l2 : : : lk/ � .lkC1 : : : lr /�C lkC1 Œ.l1l2 : : : lk/ � .lkC2 : : : lr /�
C.l1; lkC1/ Œ.l2 : : : lk/ � .lkC2 : : : lr /� : (62)
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This product is a generalisation of the shuffle product and differs from the recursive
definition of the shuffle product in Eq. (50) through the extra term in the last line.
This modified product is known under the names quasi-shuffle product [25], mixable
shuffle product [24], stuffle product [9] or mould symmetrel [16]. Quasi-shuffle
algebras are Hopf algebras. Comultiplication and counit are defined as for the shuffle
algebras. The counit Ne is given by:

Ne .e/ D 1; Ne .l1l2 : : : ln/ D 0: (63)

The coproduct� is given by:

�.l1l2 : : : lk/ D
kX

jD0

�
ljC1 : : : lk

�˝ �l1 : : : lj
�
: (64)

The antipode S is recursively defined through

S .l1l2 : : : lk/ D �l1l2 : : : lk �
k�1X

jD1
S
�
ljC1 : : : lk

� � �l1 : : : lj
�
; S.e/ D e: (65)

An example for a quasi-shuffle algebra are nested sums. Let na and nb be integers
with na < nb and let f1, f2,. . . be functions defined on the integers. We consider the
following nested sums:

S.f1; f2; : : : ; fk Ina; nb/ D
nbX

i1Dna
f1.i1/

i1�1X

i2Dna
f2.i2/ : : :

ik�1�1X

ikDna
fk.ik/: (66)

(The letter S denotes here a function, and not the antipode.) For fixed na and nb we
have a quasi-shuffle algebra:

S.f1; f2; : : : ; fk Ina; nb/ � S.fkC1; : : : ; fr Ina; nb/ D
nbX

i1Dna
f1.i1/ S.f2; : : : ; fk Ina; i1 � 1/ � S.fkC1; : : : ; fr Ina; i1 � 1/

C
nbX

j1Dna
fk.j1/ S.f1; f2; : : : ; fk Ina; j1 � 1/ � S.fkC2; : : : ; fr Ina; j1 � 1/

C
nbX

iDna
f1.i/fk.i/ S.f2; : : : ; fk Ina; i � 1/ � S.fkC2; : : : ; fr Ina; i � 1/

(67)
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i1

i2

=

i1

i2

+

i1

i2

+

i1

i2

Fig. 6 A quasi-shuffle algebra follows from replacing the sum over the square by a sum over the
lower triangle, a sum over the upper triangle and a sum over the diagonal

Note that the product of two letters corresponds to the point-wise product of the two
functions:

.fi ; fj / .n/ D fi .n/fj .n/: (68)

The proof that nested sums obey the quasi-shuffle algebra is sketched in Fig. 6. The
outermost sums of the nested sums on the l.h.s of (67) are split into the three regions
indicated in Fig. 6. The definition of multiple polylogarithms in Eq. (33) is of the
form of nested sums as in Eq. (66). Therefore it follows that multiple polylogarithms
obey also a quasi-shuffle algebra. An example for the quasi-shuffle multiplication is
given by

Lim1.x1/Lim2.x2/ D Lim1;m2.x1; x2/C Lim2;m1.x2; x1/C Lim1Cm2.x1x2/: (69)

2.5 Mellin-Barnes Transformation

In Sect. 1.3 we saw that the Feynman parameter integrals depend on two graph poly-
nomials U and F , which are homogeneous functions of the Feynman parameters.
In this section we will continue the discussion how these integrals can be performed
and exchanged against a (multiple) sum over residues. The case, where the two
polynomials are absent is particular simple:

Z

�

!

0

@
nY

jD1
x
�j�1
j

1

A D

nQ

jD1
� .�j /

� .�1 C : : :C �n/ : (70)

With the help of the Mellin-Barnes transformation we now reduce the general case
to Eq. (70). The Mellin-Barnes transformation reads

.A1 C A2 C : : :C An/�c D 1

� .c/

1

.2�i/n�1

i1Z

�i1
d�1 : : :

i1Z

�i1
d�n�1


� .��1/ : : : � .��n�1/� .�1 C : : :C �n�1 C c/ A�11 : : : A�n�1
n�1 A

��1�:::��n�1�c
n :

(71)
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Each contour is such that the poles of � .��/ are to the right and the poles of � .�C
c/ are to the left. This transformation can be used to convert the sum of monomials of
the polynomials U and F into a product, such that all Feynman parameter integrals
are of the form of Eq. (70). As this transformation converts sums into products it is
the “inverse” of Feynman parametrisation. With the help of Eq. (70) we may perform
the integration over the Feynman parameters. A single contour integral is then of the
form

I D 1

2�i

Ci1Z

�i1
d�

� .� C a1/ : : : � .� C am/
� .� C c2/ : : : � .� C cp/

� .�� C b1/ : : : � .�� C bn/
� .�� C d1/ : : : � .�� C dq/ x

�� :

(72)

The contour is such that the poles of � .� C a1/, . . . , � .� C am/ are to the right of
the contour, whereas the poles of � .��Cb1/, . . . , � .��Cbn/ are to the left of the
contour. We define

˛ D mC n � p � q; ˇ D m � n � p C q;

� D Re

0

@
mX

jD1
aj C

nX

jD1
bj �

pX

jD1
cj �

qX

jD1
dj

1

A � 1
2
.mC n � p � q/ : (73)

Then the integral Eq. (72) converges absolutely for ˛ > 0 [17] and defines an
analytic function in

jarg xj < min
�
�; ˛

�

2

�
: (74)

The integral Eq. (72) is most conveniently evaluated with the help of the residuum
theorem by closing the contour to the left or to the right. Therefore we need to know
under which conditions the semi-circle at infinity used to close the contour gives a
vanishing contribution. This is obviously the case for jxj < 1 if we close the contour
to the left, and for jxj > 1, if we close the contour to the right. The case jxj D 1

deserves some special attention. One can show that in the case ˇ D 0 the semi-circle
gives a vanishing contribution, provided � < �1. To sum up all residues which lie
inside the contour it is useful to know the residues of the Gamma function:

res .� .� C a/; � D �a � n/ D .�1/n
nŠ

; res .� .�� C a/; � D aC n/ D � .�1/
n

nŠ
:

In the general case, the multiple integrals in Eq. (71) lead to multiple sums over
residues.
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2.6 Z-Sums

The multiple sums over the residues can be expanded as a Laurent series in the
dimensional regularisation parameter ". For particular integrals the coefficients of
the Laurent series can be expressed in terms of multiple polylogarithms. To see this,
we first introduce a special form of nested sums, called Z-sums [29, 30, 45, 46]:

Z.nIm1; : : : ; mk I x1; : : : ; xk/ D
nX

i1>i2>:::>ik>0

x
i1
1

i1
m1
: : :

x
ik
k

ik
mk
: (75)

k is called the depth of the Z-sum and w D m1 C : : :Cmk is called the weight. If
the sums go to infinity (n D 1) the Z-sums are multiple polylogarithms:

Z.1Im1; : : : ; mk I x1; : : : ; xk/ D Lim1;:::;mk .x1; : : : ; xk/: (76)

For x1D : : : Dxk D 1 the definition reduces to the Euler-Zagier sums [5, 7, 18, 43,
47]:

Z.nIm1; : : : ; mk I 1; : : : ; 1/ D Zm1;:::;mk .n/: (77)

For n D 1 and x1 D : : : D xk D 1 the sum is a multiple �-value:

Z.1Im1; : : : ; mk I 1; : : : ; 1/ D �m1;:::;mk : (78)

TheZ-sums are of the form as in Eq. (66) and form therefore a quasi-shuffle algebra.
The usefulness of the Z-sums lies in the fact, that they interpolate between multiple
polylogarithms and Euler-Zagier sums. Euler-Zagier sums appear in the expansion
of the Gamma-function:

� .nC "/ D � .1C "/� .n/

�1C "Z1.n� 1/C "2Z11.n� 1/C "3Z111.n� 1/C : : : C "n� 1Z11:::1.n� 1/

	
:

(79)

The quasi-shuffle product can be used to reduce any product

Z.nIm1; : : : I x1; : : :/ �Z.nIm01; : : : I x01; : : :/ (80)

of Z-sums with the same upper summation index n to a linear combination of
single Z-sums. The Hopf algebra of Z-sums has additional structures if we allow
expressions of the form [30]

xn0
nm0

Z.nIm1; : : : ; mk I x1; : : : ; xk/; (81)
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e.g. Z-sums multiplied by a letter. Then the following convolution product

n�1X

iD1

xi

im
Z.i � 1I : : :/ yn�i

.n � i/m0 Z.n � i � 1I : : :/ (82)

can again be expressed in terms of expressions of the form (81). In addition there is
a conjugation, e.g. sums of the form

�
nX

iD1

�
n

i

�

.�1/i x
i

im
Z.i I : : :/ (83)

can also be reduced to terms of the form (81). The name conjugation stems from
the following fact: To any function f .n/ of an integer variable n one can define a
conjugated function C ı f .n/ as the following sum

C ı f .n/ D
nX

iD1

�
n

i

�

.�1/if .i/: (84)

Then conjugation satisfies the following two properties:

C ı 1 D 1;
C ı C ı f .n/ D f .n/: (85)

Finally there is the combination of conjugation and convolution, e.g. sums of the
form

�
n�1X

iD1

�
n

i

�

.�1/i x
i

im
Z.i I : : :/ yn�i

.n � i/m0 Z.n � i I : : :/ (86)

can also be reduced to terms of the form (81).
With the help of these algorithms it is possible to prove that the Laurent series in

" of specific Feynman integrals contains only multiple polylogarithms [3].

3 Beyond Multiple Polylogarithms

Although multiple polylogarithms form an important class of functions, which
appear in the evaluation of Feynman integrals, it is known from explicit calculations
that starting from two-loop integrals with massive particles one encounters functions
beyond the class of multiple polylogarithms. The simplest example is given by
the two-loop sunset diagram with non-zero masses, where elliptic integrals make
their appearance [28]. Differential equations provide a tool to get a handle on these
integrals [2, 19–21, 26, 27, 33, 35].
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3.1 The Two-Loop Sunset Integral with Non-zero Masses

In this subsection we review how ideas of algebraic geometry can be used to
obtain a differential equation for the Feynman integral [32]. We first focus on the
example of the two-loop sunrise integral. The two-loop sunrise integral is given in
D-dimensional Minkowski space by

S
�
D;p2

� D
�
�2
�3�D

� .3�D/
Z
dDk1

i�
D
2

dDk2

i�
D
2

1
��k21 Cm2

1

� ��k22 Cm2
2

� ��k23 Cm2
3

� ;

(87)

with k3 D p � k1 � k2. Here we suppressed on the l.h.s. the dependence on the
internal masses m1, m2 and m3 and on the arbitrary scale �. It is convenient to
denote the momentum squared by t D p2. In terms of Feynman parameters the
integral reads

S .D; t/ D
Z

�

!
U 3� 32D

F 3�D ; (88)

where the two Feynman graph polynomials are given by

F D ��x1x2x3t C
�
x1m

2
1 C x2m2

2 C x3m2
3

�
U
	
��2; U D x1x2 C x2x3 C x3x1:

It is simpler to consider this integral first in D D 2 dimensions and to obtain
the result in D D 4 � 2" dimensions with the help of dimensional recurrence
relations [40, 41]. In two dimensions this integral is finite, depends only on the
second Symanzik polynomial F and is given by

S .2; t/ D
Z

�

!

F
: (89)

From the point of view of algebraic geometry there are two objects of interest in
Eq. (89): On the one hand the domain of integration � and on the other hand the
algebraic variety X defined by the zero set of F D 0. The two objects X and �
intersect at the three points Œ1 W 0 W 0�, Œ0 W 1 W 0� and Œ0 W 0 W 1� of the projective
space P

2. This is shown in Fig. 7 on the left. We blow-up P
2 in these three points

and we denote the blow-up by P . We further denote the strict transform of X by
Y and the total transform of the set fx1x2x3 D 0g by B . With these notations we
can now consider the mixed Hodge structure (or the motive) given by the relative
cohomology group [4]

H2 .PnY;BnB \ Y / : (90)
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x1

x2

x3

X

x

yFig. 7 The intersection of
the domain of integration �
with the zero set X of the
second Symanzik polynomial
(left) and the elliptic curve
y2 D x3 � x C 1 (right)

In the case of the two-loop sunrise integral considered here essential information on
H2.PnY;BnB\Y / is already given byH1.X/. We recall that the algebraic variety
X is defined by the second Symanzik polynomial:

�x1x2x3t C
�
x1m

2
1 C x2m2

2 C x3m2
3

�
.x1x2 C x2x3 C x3x1/ D 0: (91)

This defines for generic values of the parameters t , m1, m2 and m3 an elliptic
curve. The elliptic curve varies smoothly with the parameters t , m1, m2 and m3.
By a birational change of coordinates this equation can brought into the Weierstrass
normal form

y2z � x3 � a2.t/xz2 � a3.t/z3 D 0: (92)

The dependence of a2 and a3 on the masses is not written explicitly. In the chart
z D 1 this reduces to

y2 � x3 � a2.t/x � a3.t/ D 0: (93)

The curve varies with the parameter t . An example of an elliptic curve is shown
in Fig. 7 on the right. It is well-known that in the coordinates of Eq. (93) the
cohomology groupH1.X/ is generated by

� D dx

y
and P� D d

dt
�: (94)

Since H1.X/ is two-dimensional it follows that R� D d2

dt2
� must be a linear

combination of � and P�. In other words we must have a relation of the form

p0.t/ R�C p1.t/ P�C p2.t/� D 0: (95)

The coefficients p0.t/, p1.t/ and p2.t/ define the Picard-Fuchs operator

L.2/ D p0.t/
d 2

dt2
C p1.t/ d

dt
C p2.t/: (96)
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Applying the Picard-Fuchs operator to our integrand gives an exact form:

L.2/
� !

F

�
D dˇ: (97)

The integration over� yields

L.2/S.2; t/ D
Z

�

dˇ D
Z

@�

ˇ (98)

The integration of ˇ over @� is elementary and we arrive at




p0.t/
d 2

dt2
C p1.t/ d

dt
C p2.t/

�

S .2; t/ D p3.t/: (99)

This is the sought-after second-order differential equation. The coefficients are given
in the equal mass case by Laporta and Remiddi [28] and Broadhurst et al. [10]

p0.t/ D t
�
t �m2

� �
t � 9m2

�
; p2.t/ D t � 3m2;

p1.t/ D 3t2 � 20tm2 C 9m4; p3.t/ D �6�2: (100)

The coefficients for the unequal mass case can be found in [32].

3.2 Differential Equations

The ideas of the previous subsection can be generalised to arbitrary Feynman
integrals. For a given Feynman integral let us pick one variable t from the set of
the Lorentz invariant quantities .pj Cpk/2 and the internal masses squaredm2

i . Let
us write

!t D !
0

@
nY

jD1
x
�j�1
j

1

A U ��.lC1/D=2

F ��lD=2 : (101)

The subscript t indicates that !t depends on t through F . The Feynman integral is
then simply

IG D
Z

�

!t (102)
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We seek an ordinary linear differential equation with respect to the variable t for the
Feynman integral IG . We start to look for a differential equation of the form

L.r/!t D dˇ; (103)

where

L.r/ D
rX

jD0
pj

�

�2
d

dt

�j
(104)

is a Picard-Fuchs operator of order r . Suppose an equation of the form as in
Eq. (103) exists. Following the same steps as in Sect. 3.1 we arrive at

L.r/IG D
Z

@�

ˇ: (105)

The right-hand side corresponds to simpler Feynman integrals, where one propa-
gator has been contracted. The coefficients of the Picard-Fuchs operator and the
coefficients of the form ˇ can be found by solving a linear system of equations [33].
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Gröbner bases, 176, 180–185, 374
Guessing, 135–142

Hadamard multiplication, 262
Hahn polynomials, 161
Hamburger moment problem, 149
Harmonic numbers, 121, 272, 325
Harmonic polylogarithm

two-dimensional, 16
Harmonic sums, 1, 3, 5, 7, 9, 11, 13, 15, 17,

19, 21, 23, 25, 27, 29, 31, 327, 331,
345, 347, 355

cyclotomic, 19, 327, 355
generalized, 15, 120, 327, 355
generalized cyclotomic, 19

HarmonicSums package, 3, 8, 10, 23, 355
Hermite polynomials, 121, 124, 133, 147, 156,

165, 172
Hermite-Pade approximation, 137



Index 409

Holonomic, 119–144, 171–190
ansatz, 189
function(s), 172–175, 177–180, 246
recurrence, 256

HolonomicFunctions package, 82, 173, 175,
176, 182–188

Homomorphic images, 138
Hopf algebra, 16
Horn functions, 320
Hyperexponential, 2, 173–175, 179, 182

functions, 296
Hypergeometric, 120, 173, 174, 179, 182, 188

generalized functions, 16, 51, 85, 100, 152,
182, 190, 225, 233, 243–247

generalized series, 152, 228, 232, 243–247
product, 331
sequence, 85, 120, 265, 331, 336
solution, 267
term, 21, 85, 120, 174, 265, 331, 336

Ideal, 125, 176, 178, 180, 182, 183, 185–187
Incomplete elliptic integrals, 315
Indefinite summation, 262
Inhomogeneous part, 178–180, 185–187
Initial values, 127, 176, 185
Integral representations, 313
Integration

elementary functions, 294
holonomic, 173–175
hyperexponential functions, 173, 296
Liouvillian functions, 295
parametric elementary, 297
square-root terms, 302

Interlacing, 262
Interpolating polynomial, 135
Iterated integrals, 1

Chen, 17
Poincaré, 2
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at repeated arguments, 14
Multisection, 262

Natural boundaries, 179, 180
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Nice functions, 119
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One-loop integrals, 390
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Orthogonal polynomials

associated, 166
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and computer algebra, 168, 188
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kernel polynomials, 152
Laguerre, 172, 176
Legendre, 76, 88, 183, 185
numerator polynomials, 166
three-term recurrence relation, 147, 169,
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Partial differential equations, 312
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q-Pochhammer symbol, 186
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Rational polynomials, 370
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Rational solution, 267
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Recurrence equations, 78, 257
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Recursive representation, 260, 261
Reduce, 175
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Riemann’s zeta function, 5, 122, 173, 188
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germs of, 269, 342
hypergeometric, 331
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Series expansion, 390, 399
Shift, 262
Shift operator, 175, 182, 266, 329, 342
Shuffle algebra, 1, 39, 393
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Simplification, 377
Singularity, 2
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Software package
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FERMAT, 370
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S-sums, 15
Stieltjes-Wigert polynomials, 149, 166, 168
Stirling numbers, 124, 175, 189
Structural relations, 1, 8
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Sum theorem, 13
Summation
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327, 353
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Symbolic summation, 2, 78, 83, 171, 175, 177,

189, 325, 391, 399
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Tensor, 361
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Ultraspherical polynomials, 153, 172

Witt formula, 7
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