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          3.1   Introduction 

 The spontaneous regenerative capacity of skin is dependent on the depth and area of 
cutaneous damage. This is the case as it dictates the extent of destruction of repara-
tive basal and stem cell populations. Minor epidermal injury, where basement mem-
brane and basal keratinocyte populations remain intact, results in rapid and complete 
cutaneous regeneration. However, partial-thickness (papillary dermal damage) and 
particularly full-thickness (papillary and reticular dermal damage) defects often 
heal through debilitating scar formation and contraction. Indeed, without surgical 
intervention the damage to physiological homeostasis resulting from large full-
thickness wounds can be so acute that death may result. The rapid closure of such 
wounds is essential to restore the barrier functions of the skin and reduce scar for-
mation (Cubison et al.  2006  ) . 

 The clinical gold standard for the treatment of full-thickness wounds is the appli-
cation of autologous split-thickness skin grafts, the well-known side effects of 
which include lack of donor site availability in severely injured patients and  resulting 
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donor site morbidity (MacNeil  2007 ; Groeber et al.  2011  ) . Clearly this solution, 
although it remains an important life-saving tool, is far from ideal. This fact has 
resulted in the development and increasing implementation of engineered arti fi cial 
skin substitutes. These substitutes exist in a diverse array of materials and designs 
ranging from inert synthetic polymer lattices (e.g. Biobrane™, Dow B. Hickam, 
Inc., USA) to biological matrices containing live cellular material (e.g. Orcel ®  
(Ortec International, USA)). These products, although often successful in achieving 
wound closure, fall short in terms of resulting wound functionality, mechanical 
strength, aesthetics and cellular complexity and organisation (Kemp  2006  ) . This is 
due in part to the top-down approach that arises when applying a model ‘mature’ 
tissue rather than constructing tissue de novo from progenitor cells, as in nature. 
Accordingly, recent research has focused on the local application, direction and 
manipulation of stem and progenitor cell populations to enhance the natural wound-
healing response and direct cutaneous regeneration. This, it has been proposed, can 
be achieved in a number of ways (Discher et al.  2009  ) . Acellular scaffolds could 
mobilise and attract resident adult stem cell populations through the release of 
growth factors/cytokines and presentation of cell attachment motifs in arti fi cial 
niche environments (Discher et al.  2009  ) . Once stem cells have been recruited to the 
wound site, cell fate decisions could be manipulated by presentation of  dermis-speci fi c 
cell attachment sites, further growth factor presentation and mechano- physical 
matrix properties (Discher et al.  2009  ) . Alternatively, stem cells could be directly 
delivered to the wound. It is hypothesised that stem cells can augment cutaneous 
healing via (1) the enhancement of endogenous cell regenerative capacity through 
paracrine signalling, (2) direct cellular contribution through transdifferentiation 
and/or (3) cell fusion (Prockop et al.  2003 ; Spees et al.  2003 ; Stoff et al.  2009  ) . 
Aside from safety concerns including tumour formation and disease transmission, 
the direct transplantation of stem cells is currently limited by the poor survival rates 
and low level of persistence of viable cells at transplant sites (Kolokol’chikova et al. 
 2001 ; Navsaria et al.  2004  ) . At present, less than 5 % of cells survive initial engraft-
ment (Discher et al.  2009  ) , which is almost certainly due to harsh necrotic environ-
ment of the cutaneous wound milieu and the destruction of suitable stem cell niches. 
It is clear for stem cell therapy to be effective; the mode of cell delivery must confer 
some level of protection to maintain viability whilst allowing direct contact with, 
and migration into, the wound environment.  

    3.2   Stem Cell Populations for Cutaneous Wound Healing 

 Stem cells are de fi ned by their ability to self-replicate and produce more specialised 
progeny (Scho fi eld  1978 ; Lajtha  1979  ) . Several populations of stem cells have been 
identi fi ed that hold potential for therapeutic use in cutaneous wound healing 
 including embryonic stem cells, adult stem cells (in particular bone marrow-derived 
mesenchymal stem cells (BM-MSCs), bone marrow-derived hematopoietic stem 
cells (BM-HSCs), adipose-derived stem cells (Ad-SCs) and epidermis and hair 
 follicle-derived stem cells (HF-SCs)) and induced pluripotent stem cells (iPSCs). 
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Each source has speci fi c characteristics, markers and advantages, although all must 
overcome similar obstacles to become therapeutically successful, including safety 
concerns such as tumour formation and disease transmission as well as technical 
issues such as controlling cell fate decisions (Table  3.1 ).   

    3.3   Embryonic Stem Cells 

 Human embryonic stem cells can be derived from the inner cell mass of blastocysts, 
5-day-old embryos or 4–8-day-old morula and are pluripotent (Thomson et al. 
 1998 a). Uniquely, embryonic stem cells are capable of inde fi nite undifferentiated 
in vitro propagation (Beddington and Robertson  1989  ) . Due to their source, the use 
of ESCs is surrounded by well-known public controversy and governed by strin-
gent, complex legislation and regulations. Additionally, teratoma formation when 
using this stem cell source remains a serious safety concern (Yao et al.  2006  ) . As 
such, stem cells alternatively sourced stem cell populations are favoured by research-
ers for regenerative medicine and wound-healing applications.  

    3.4   Adult Stem Cell Populations 

 Adult stem cells populations have been identi fi ed in almost all tissues in the human 
body, where their function is to maintain cell turnover and replace damaged cells 
(Hodgkinson et al.  2009  ) . Within these tissues, stem cells reside in the basal layers 
of tissue in protective microenvironments termed ‘stem cell niches’. The stem cell 
population within a tissue niche is maintained in a stable naïve state by cell–cell and 
cell–matrix binding, cell–matrix mechanical interaction and soluble factor gradi-
ents (Watt  2000  ) . It is the recreation of these niche environments, and the signals, 
which establish and maintain them, which currently is a main research focus of tis-
sue engineering and regenerative medicine (Fig.  3.1 ).   

    3.5   Bone Marrow-Derived Stem Cells 

 Bone marrow is a well-characterised reservoir of multipotent mesenchymal and 
haematopoietic stem cells (Crisan et al.  2008 ; Kränkel et al.  2011  ) . Under physio-
logical conditions, small numbers of stem cells migrate from the bone marrow, 
enter tissues and their niches maintaining a dynamic equilibrium (Kränkel et al. 
 2011  ) . Bone marrow collection is an invasive procedure and the collected cells con-
tain less than 0.05 % stem cells (Kita et al.  2010 ; Pittenger et al.  1999  ) . Haematopoietic 
stem cell therapy was the  fi rst available stem cell therapy (Wagner and Gluckman 
 2010  ) . The local and systemic delivery of BM-MSCs are potentially effective treat-
ments to heal acute and particularly chronic wounds (Fu et al.  2006 ; Badiavas and 
Falanga  2003 ; Falanga et al.  2007  ) . Proof of principle applications of BM-MSCs to 
cutaneous defects have demonstrated signi fi cant wound closure acceleration in 
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mice/rats (Falanga et al.  2007 ; Wu et al.  2007 ; Amann et al.  2009 ; Chen et al.  2008 ; 
McFarlin et al.  2006  )  and in humans (Badiavas and Falanga  2003 ; Falanga et al. 
 2007 ; Ichioka et al.  2005  )  increased epithelialisation and angiogenesis (Wu et al. 
 2007 ; Sasaki et al.  2008 ; Javazon et al.  2007  ) . Despite the lack of blinded studies in 
the literature, therapeutic potential is evident. Whilst others have identi fi ed limita-
tions, for example, in the treatment of severe burns where sulphadiazine toxicity 
(Gamelli et al.  1993  )  and sepsis (Gamelli et al.  1995  )  signi fi cantly suppress response 
to BM-MSCs.  

    3.6   Adipose-Derived Stem Cells 

 Adipose-derived stem cells that possess characteristics which are similar to MSCs 
represent the most abundant adult tissue population (Kim et al.  2007  ) . Liposuction 
surgery offers opportunity to obtain volumes of anywhere from 100 mL to >3 L 

a

b

c

d

  Fig, 3.1    Schematic mechanisms of stem cell niche maintenance. ( a ) Stem cells maintained in 
relative quiescence. ( b ) Asymmetric cell division can be controlled by cell–cell and cell–matrix 
binding, which can segregate cell fate factors in the cytoplasm. The orientation of the spindle 
results in only one of the progenitor cells remaining in contact with the niche cells, whilst the other 
daughter cell is differentiated and moves out of the niche. ( c ) When the niche is in need of repopu-
lation, both progenitor cells are able to maintain contact with the niche cells and are exposed to the 
same microenvironment. In this case both cells retain stemness and the stem cell pool is expanded. 
( d ) When the niche signalling environment is disrupted or when contact with niche cells is lost, 
symmetric cell division resulting in two differentiated cells can occur (Modi fi ed from Lutolf and 
Blau  2009  )        
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of adipose tissue in the form of lipoaspirate, which is normally discarded (Katz 
et al.  1999 ; Bunnell et al.  2008  ) . The stem cell yield from such a procedure is typi-
cally around 400,000 viable cells per ml extracted (Zuk et al.  2002 ; Guilak et al. 
 2006  ) . Importantly, it is thought that in vitro expansion of Ad-SCs can yield 
 100–1,000 times more progenitor cells than isolation from bone marrow (Utsunomiya 
et al.  2011  ) . Recently, Ad-SCs have been reported to promote human dermal 
 fi broblast proliferation through both direct cell–cell contact signalling and secretory 
paracrine activation, which in turn accelerated wound re-epithelialisation (Kim 
et al.  2007  ) . It is likely that physiologically Ad-SCs play a crucial role in the healing 
of full-thickness skin damage through direct migration from subcutaneous adipose 
tissue. Additionally, adipose tissue acts as an endocrine organ, secreting numerous 
hormones, growth factors and cytokines such as leptin; epidermal growth factor 
(EGF); tumour necrosis factor- a  (TNF- a ); basic  fi broblast growth factor (bFGF); 
keratinocyte growth factor (KGF); transforming growth factor  b 1 (TGF- b 1); vascu-
lar endothelial growth factor (VEGF); hepatocyte growth factor (HGF); interleukins 
(IL)-6, IL-7, IL-8, IL-11 and IL-12; macrophage-colony stimulation factor; and 
platelet-derived growth factor (PDGF) (Utsunomiya et al.  2011 ; Witkowska-Zimny 
and Walenko  2011  ) .  

    3.7   Hair Follicle-Derived Stem Cells 

 Due to their ease of access and demonstrated multi-(and even possibly pluri-)
potency, HF-SCs could be a promising population for application in cutaneous 
wound healing. Utilising HF-SCs, located mainly in the hair follicle bulge, has the 
added advantage of being naturally involved in healing both epidermal and dermal 
injuries (Ito et al.  2005 ; Jahoda and Reynolds  2001  ) . Following cutaneous injury 
HF-SCs are involved in the secretion of HGF, EGF and in particular heparin-bind-
ing (HB)-EGF, FGF-7 and FGF10, which activate the STAT3 and AP1 signalling 
pathways, promoting re-epithelialisation (Gurtner et al.  2008  ) .  

    3.8   Induced Pluripotent Stem Cells 

 The research interest in iPSCs since the original breakthrough by Takahashi and 
Yamanaka has been intensive (Takahashi and Yamanaka  2006  ) . Their initial repro-
gramming of mouse embryonic  fi broblasts through the enforced expression of four 
transcription factor genes ( OCT3/4, Sox2, Klf4, and c-Myc  (Takahashi and 
Yamanaka  2006 ; Müller et al.  2009  ) ) has since led to the generation of human 
iPSCs epigenetically and developmentally indistinguishable from ES cells 
(Maherali et al.  2007 ; Okita et al.  2007 ; Park et al.  2007 ; Wernig et al.  2007 ; Liu 
et al.  2008  ) . The generation method has been re fi ned by the dispensing of  c-Myc  
which has led to a reduction in malignant transformation of iPSC derivatives 
(Müller et al.  2009  ) . To address safety fears of retroviral gene transfer-induced 
mutagenesis, alternative viral-free methods for the induction of pluripotency have 
been developed. This has been achieved through the repeated addition of 
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 polyarginine protein transduction-tagged recombinant proteins (Zhou et al.  2009 ; 
Kim et al.  2009  )  and with highly basic HIV-TAT-derived basic peptide sequences 
(Kim et al.  2009  ) . Several serious safety concerns, such as tumour formation poten-
tial, remain to be addressed prior to clinical application of IPSCs. Despite this, it is 
likely that stem cells obtained through pluripotent induction in some form are likely 
to be therapeutically important in the future.  

    3.9   Biomaterial Transplantation-Induced Homing 
of Endogenous Stem Cell Populations 
for Cutaneous Repair 

 The implantation of an acellular biomaterial that possesses the ability to mobi-
lise, attract and manipulate endogenous stem cell populations offers signi fi cant 
 potential bene fi ts over in vivo delivery of viable stem cells. Such cell-homing 
devices would be less costly and complex to produce, have longer shelf life and 
increased safety whilst avoiding the need for allogeneic transplant or autologous 
tissue harvest (Fig.  3.2 ).   

Mobilization cue/distant
homing cue

Local homing
cue

Encapsulation

Nano/micro-
spheres

Nano/micro-
tubes

Matrix
tethering

Burst 
release

Controlled
release

Time dependent release

G-CSF, SDF-1,
MCP-3, GRO-1,
HGF, SCF,
IGF-1

Morphogens–
(e.g. Wnts/
Hedgehog 
proteins)
FGF,VEGF,
HGF,EGF,
IGF-1

Immediate and short-
lived response

Stem cell recruitment to wound, division and
factor secretion enhance wound healing

Stem cells mobilized
from niche

a b

c d

  Fig. 3.2    Flow chart showing series of events to recruit endogenous stem cells to wound. ( a ) 
Protective encapsulation allows controlled release through diffusion and/or enzymatic degradation 
( inset ) nanotube encapsulation. ( b ) Ionic binding and sequestering of factors, localising factors to 
the matrix. ( c ) Covalently tethered factors, released through enzymatic cleavage. ( d ) Cell adhesion 
sites and niche-speci fi c matrix molecules (e.g. laminin, heparan sulphate)       
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    3.10   Mobilisation and Navigation Cues 

 On implantation into the wound site, the scaffold must release a stimulatory mobili-
sation signal which when received by ASCs causes them to exit their niche, whether 
this is in the uninjured surrounding tissue or nonlocal niches, e.g. bone marrow. 
Physiologically, following wound healing, such stem cell mobilisation naturally 
occurs both locally and from bone marrow-derived stem cells, which then go on to 
contribute to the healing wound (Wu et al.  2007 ; Badiavas et al.  2003  ) . This relies 
on growth factor, cytokine release and cellular expression of the relevant receptors; 
however, the precise regulatory mechanisms that co-ordinate this response are 
incompletely understood (Yoshikawa et al.  2008 ; Wang et al.  2007 ; Sordi  2009  ) . In 
an effort to enhance this natural signal, a plethora of growth factors and cytokines 
have been trialled in preclinical and clinical studies. At present, granulocyte colony-
stimulating factor (G-CSF) is the most widely utilised stem cell mobilisation agent 
in the clinic (Chen et al.  2011  ) . This growth factor also serves as a good example of 
the cautionary approach that must accompany the administration of growth factors 
as it is also linked with in fl ammatory cell mobilisation and promotion of atheroscle-
rosis (Kränkel et al.  2011 ; Chen et al.  2011  ) . Aside from G-CSF, it appears that a 
degree of speci fi city in recruitment targets can be conferred by the choice of growth 
factors. Stromal-derived factor-1 (SDF-1) recruits cells expressing its receptor 
CXCR4 (cytokine receptor type 4) such as haematopoietic stem cells (HSCs), 
endothelial progenitor cells (EPCs), cardiac stem cells (CSCs) and MSCs (Askari 
et al.  2003 ; Tang et al.  2005 ; Schenk et al.  2007 ; Hohensinner et al.  2009 ; Haider 
et al.  2008 ; Unzek et al.  2007 ; Lapidot  2001  ) . Monocyte chemoattractant protein-3 
(MCP-3) mobilises MSCs (Schenk et al.  2007  ) , growth-related oncogene-1 (GRO-1) 
attracts bone marrow-derived EPCs (Kocher et al.  2006  ) , hepatocyte growth factor 
(HGF) targets myoblasts (O’Blenes et al.  2010  ) , and stem cell factor (SCF) and 
insulin growth factor-1 (IGF-1) activate cardiac stem cells (CSCs) (Kuang et al. 
 2008 ; Guo et al.  2009 ; Hohenstein et al.  2010  ) . SDF-1 a /CXCL12 appears to be 
pivotal in the mobilisation following injury in a number of tissues.  

    3.11   Local Navigation Cues and Cell Binding: 
Designing the Arti fi cial Stem Cell Niche 

 Locally to the wound site, further signalling molecules are required to direct the 
recruited stem cells through the implanted scaffold and within the wound. This 
could be created through localised cytokine/growth factor gradients, matrix-tethered 
factors or incorporation of speci fi c cell attachment motifs. The list of soluble local 
navigation candidate molecules is long and includes morphogens like Wnts and 
hedgehog proteins alongside growth factors like FGF (Lutolf and Blau  2009  ) . 
Importantly for biomaterial design, soluble growth factors in the physiological niche 
are electrostatically bound to heparan sulphate proteoglycans (e.g. heparin), 
 localising their action to the niche and serving as a protective reservoir, preventing 
proteolytic degradation (Lutolf and Blau  2009 ; Ramirez and Rifkin  2003  ) . 
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Mimicking such associations through incorporation of relevant proteoglycans and 
glycosaminoglycans (GAGs) into biomaterials may provide a simple and effective 
way of delivering tissue-speci fi c localised stem cell cues (Fig.  3.3 ).  

 Problematically, the required signalling factors have short half-lives in vivo and 
consequently they must be protected from degradation and released in a controlled 
way to sustain effect. To achieve this several strategies have been proposed. The 
majority of those involve the protective encapsulation of growth factors, which are 
then released either passively through diffusion or polymer breakdown or through 
active enzymatic degradation. Modes of encapsulation are mainly in the form of 
polymer spheres or polymer  fi bres on the micro-nano scale. By controlling the 
encapsulated ‘payload’ of bioactive factor and the degradation pro fi le/diffusion 
properties of the encapsulating polymer, the delivery of the factor can be controlled. 
Delivering a cocktail of growth factors/cytokines with differing release pro fi les and 
concentrations could make the effective local control of recruited cells possible. 

 In the case of micro-nano fi bre encapsulation, the bioactive soluble factors are con-
tained within the supporting matrix itself. One promising method of  fi bre  production 
on this scale is electrospinning. This process involves the application of a high-volt-
age electrical current to a droplet of polymer solution or melt. When the repulsive 
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  Fig. 3.3    Schematic representation of stem cell migration stimulated by biomaterial factor release. 
Stem cells recruited migrate through vascular system adjacent to implanted factor releasing bioma-
terial. Upon signal-receptor activation cell adhere and transmigrate into biomaterial along signal-
ling gradients. Cells adhere to matrix to niche-speci fi c matrix and to each other through adherens 
junctions. Cells secrete paracrine and autocrine factors, enzymatically release tethered matrix fac-
tors and directly contribute to wound healing through asymmetric cell division       
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charge generated inside the droplet is suf fi cient to overcome the surface tension of the 
 fl uid, a liquid jet is expelled from the tip of the droplet towards a grounded collector 
plate. In transit to the ground electrode, the  fl uid jet is stretched by inertial and elec-
trostatic forces and the solvent evaporates. A dry uniform  fi bre, typically in the nano-
micrometre range, can be collected (Ayres et al.  2010  ) . This scale corresponds to that 
of natural ECM  fi bres and has been reported to increase cell–cell and cell–matrix 
interactions (Li et al.  2002 ; He et al.  2007  ) . Bioactive molecules can be blended with 
spinning solutions prior to deposition, depending on spinning parameters and solvent 
systems used, and have been shown to maintain their action both in vitro and in vivo 
(Fu et al.  2008  ) . Alternatively, core–shell  fi bres can be obtained by the use of a con-
centric spinneret and two- fl uid spinning system (Jiang et al.  2005  )  allowing greater 
control of encapsulation and release of desired bioactive factors. 

 The electrospinning technique could be easily adapted for the creation of a 
sequentially layered scaffold (Ayres et al.  2010  ) , mimicking the layered structure of 
the skin. This could be achieved by the adjustment of spinning process parameters, 
the spinning solution used and directing  fi bre alignment. Interestingly, Yang and 
co-workers electrospun viable human dermal  fi broblasts and keratinocytes (Yang 
et al.  2009  ) , although further investigation is needed to con fi rm cells were unaltered 
by the process.  

    3.12   Cell Adhesion Sites and Mimicking the Spatial 
Complexity of Signalling in the Niche 

 Establishment of signalling gradient polarity in a complementary but spatially dis-
crete manner is essential for the maintenance of engineered niche environments. To 
date, attempts to engineer these structures have centred on 2D systems or simpli fi ed 
simulated 3D environments. Biomaterial technologies such as atomic force dip-pen 
lithography (Piner et al.  1999  ) , stencil lithography surface patterning (Kim et al. 
 2003  )  and inkjet and microcontact printers (Roth et al.  2004 ; Théry et al.  2007  )  hold 
promise for the precise spatial patterning of factors. Inkjet printing has successfully 
been used to create 2D arti fi cial niches by the patterning of immobilised BMP-2 
which inducted mesenchymal progenitors to differentiate osteogenically, where in 
off-pattern sections myogenic differentiation was observed (Phillippi et al.  2008  ) . 
In particular, inkjet systems have received particular attention but several limita-
tions in the current methodology exist. Importantly, the concentrations of ECM-
based ‘bioinks’ is limited by constraints on solution viscosities, surface tensions and 
densities required by printing set-ups (Mironov et al.  2006  ) . In turn, this restricts the 
mechanical properties of 3D printed materials where bioinks must provide support 
to the layers deposited above them. It has been suggested that to improve the struc-
tural support of 3D bioprinted scaffolds, a combined materials approach is required 
where bioink is deposited onto a bio-paper and sequentially layered (Nakamura 
et al.  2005 ; Mironov et al.  2009  ) . This bio-paper could, for example, be in the form 
of a nano fi brous electrospun polymer mat, which itself could be engineered to 
 provide important biological cues.  
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   Conclusions and Future Perspectives 

 The activation, homing and control of endogenous stem cells through novel bioma-
terial design have become signi fi cant goals of tissue engineering and regenerative 
medicine. Several material processing techniques now exist that allow the biomim-
icry of important biological structures. Electrospinning, most prominently amongst 
other  fi bre formation techniques, allows the creation of  fi bres on the same scale as 
natural ECM (50–500 nm). Micro-nanosphere factor encapsulation allows the con-
trolled and sustained release of soluble factors, which can be used for local and 
systemic recruitment and homing of stem cells. The identi fi cation of exactly which 
factors should be delivered and when remains to be seen and could be variable 
depending on the type of cutaneous wound that requires treatment, e.g. a chronic 
wound environment may be different from a burn. High-throughput techniques will 
allow the screening of the identi fi ed factors, and others, in different combinations to 
maximise their effect. The ability to engineer biomaterials with increasingly accu-
rate cell signalling capabilities will continue, with a feasible endpoint being the 
precise delivery of only the required factors only where they are needed, only when 
they needed.      
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