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Abstract In this paper, the hydroelastic stability of single elastic and coaxial
cylindrical shells of revolution subject to compressible fluid flows having axial and
tangential velocity components are analyzed numerically. The behavior of flowing
and rotating fluid is described in the framework of the potential theory. The behavior
of elastic shells is investigated based on the model of the classical shell theory.
The results of numerical experiments, which were carried out to analyze the shell
stability for various boundary conditions, geometrical dimensions and different
values of the width of the inter-shell space, have been discussed.

1 Introduction

Single and coaxial shells of revolution are the integral parts of many technological
applications and while in operation can interact with the axial and rotational fluid
flows occurring simultaneously. There are a lot of papers in the literature [1], in
which the authors based on the numerical and experimental investigations have
come to a conclusion that the axial flow of a fluid as well as its rotation exerts
a destabilizing effect. However, as far as we know there have been practically no
investigations dealing with their combined action on the stability boundary. In this
paper we discuss a numerical method of solving this problem. The numerical exper-
iments made for this study allow us to determine a relationship between the dynamic
behavior of cantilevered single and coaxial shells and their linear dimensions as well
as the width of the annular space between the inner and outer shells.
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2 Statement of the Problem and Constitutive Relations

Let us consider two elastic coaxial cylindrical shells of length L (Fig. 1). The inner
shell has radius a, and the outer shell has radius b. The shells are subject to two flows
of ideal compressible fluids: one occurring inside the inner shell and the other –
in the annular gap between the shells. A single shell in the problem formulation
considered in this paper can be treated as a particular case. The axial velocity of the
internal flow, its angular velocity, specific density and sound speed are denoted by
Ui , ˝i , %i

f and ci , respectively. The corresponding parameters of the annular flow
are denoted by the same symbols, in which the subscript i is replaced by o. It is
necessary to find such a combination of the axial and angular velocity components
of the fluid flow, at which the elastic body will lose stability.

The motion of an ideal compressible fluid in the case of potential flow is
described by the wave equation, which for the internal flow, occupying volume V i

j ,
can be written in the cylindrical coordinate .r; �; x/ as [2]
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where � is the perturbation velocity potential, Mi D Ui=ci is the Mach number. The
pressure exerted by the internal fluid flow pi on the interface between the inner shell
and the fluid Si

� is calculated by the linearized Bernoulli formula
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The equations for the annular flow are similar to, (1)–(2) with the only difference
that the subscript i is replaced by o. The interface between the inner shell and
internal flow Si

� must satisfy the impermeability condition
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The conditions imposed on the inner shell-annular flow interface Sio
� and the

outer shell-annular flow interface So
� are written as
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Fig. 1 Computational
scheme

Here wi and wo are the normal components of the displacement vector of the inner
and outer shells. The inlet and outlet perturbation velocity potentials are subject to
the following boundary conditions

x D 0W �i D �o D 0 ; x D LW @�i
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For numerical implementation of the problem based on the semi-analytical ver-
sion of the finite element method the equations for perturbation velocity potential (1)
together with the boundary conditions (3)–(6) should be transformed using the
Bubnov-Galerkin method [3].

The model equations of shells considered in this paper are derived by accepting
the Kirchhoff-Love hypothesis, according to which the components of the strain
vector of the middle surface and the curvature and torsion changes written in the
coordinate system .s; �; z/ are given as [4]
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Here ui and vi are the meridional and circumferential components of the displace-
ment vector of the inner shell.

The physical equations relating the vector of generalized forces and moments
Ti to the vector of the generalized strains "i D ˚
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represented in the matrix form
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oT D Di "i ; (8)

where the non-zero matrix elements Di for an isotropic material are conventionally
defined in terms of the elasticity modulus Ei and Poisson’s ratio �i .
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The mathematical description of the dynamic behavior of the shells is based on
the virtual displacement principle, which for the inner shell can be written in the
matrix form as

Z
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Here di and Pi D
n

0 0 pi jrDa � pojrDa

oT
are the vectors of the generalized

displacements and surface loads, �i
0 D R

hi

%i
sdz, %i

s is the specific density of the

material of the inner shell, hi is the thickness of the inner shell. An analogous
equation (where i is replaced by o) is written for the outer shell, for which Po D
f 0 0 pojrDb gT.

Applying the standard finite element procedures and representing the perturbed
motion of the shell and the fluid as

�
di ; �i ; do; �o

� D .qi ; fi ; qo; fo/ exp.i�t/, we
obtains the systems of equations, which can be combined into one expression
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Here Bi is the matrix relating the strain vector "i to the vector of nodal displace-
ments of the shell-type finite element; mi

f and mi
s is the number of finite elements

used to decompose the fluid domain V i
f and the inner shell domain V i

s ; Fi , Ni , NNi

are the shape functions for the perturbation velocity potential of the internal flow,
the shell-type element and the normal component of the inner shell displacement
vector; qi , fi , qo, fo are some functions of the coordinates; i2 D �1; � D �1 C i�2 is
the characteristic number. Missing matrices can be obtained by replacing the index i

by the index o.
Problem solving is reduced to the computation and analysis of the eigenvalues

of system (10). Complex eigenvalues are calculated by the algorithm based on the
Müller method [5]. To maximize the computational efficiency of the algorithm, the
degree of freedom of system (10) was renumbered using the reverse Cuthill-McKee
algorithm [6].

3 Results of Computations

The computations discussed below were made for different values of the width of
the annular gap between the outer and inner shells, which is defined by the following
relation: k D .b � a/=a. Here we present several examples of numerical simulation
for a cylindrical shell (E D 2 � 1011 N/m2, � D 0:29, %s D 7;812 kg=m3, R D 1 m,
h D 0:01 m) and a system of coaxial shells (Ei D Eo D 2 � 1011 N/m2, �i D �o D
0:3, %i

s D %o
s D 7;800 kg=m3, L D 1 m, b D 0:1 m, hi D ho D 5 � 10�4 m),

simply supported (v D w D 0) at both ends (x D 0; L) or supported as a cantilever.
The shells are subject to a compressible fluid %i

f D %o
f D 103 kg/m3, ci D co D

1;500 m=s. In all calculations we used 40 elements for each shell and 1,000 and
1,600 elements for the fluid in a single shell and coaxial shell, respectively. In the
latter case the number of elements was defined by the width of the space between
the shells.
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Fig. 2 The real and imaginary parts (a) and loci (b) of eigenvalues (Hz) versus axial velocity
component of the rotating flow U : (a) simply supported shell; (b) cantilevered shell
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Fig. 3 Stability diagram for simply supported (a) and cantilevered (b) shells having different
linear dimensions L=R

The numerical experiments have shown that under the combined action of
simultaneous axial and rotational fluid flows the shells lose stability. The type of
stability loss is determined by the boundary conditions. In particular, the dependence
of the eigenvalues �(Hz) on the axial velocity of the fluid U (m/s) was obtained for
single shells of revolution, in which the axial and rotational flows with the angular
velocity ˝ D 50 rad/s (Fig. 2) occur concurrently. In the figure, the dashed lines
denote eigenvalues, corresponding to the backward waves, and solid lines denote
eigenvalues, corresponding to the forward waves. The results of computation show
that for shells simply supported (Fig. 2a) or clamped at both ends, the loss of stability
occurs in the form of a coupled-mode flutter, since at the axial flow velocity UCF the
real parts of the forward and backward waves of the first mode (m D 1) coalesce.
For cantilevered shells (Fig. 2b) the loss of stability occurs in the form of a single-
mode flutter, at which the imaginary part of the third mode for the fluid velocity USF

becomes negative.
Figure 3 shows the stability diagrams obtained in the case of combined action

of both velocity components for single shells under different boundary conditions
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Fig. 4 Stability diagram for simply supported (a) and cantilevered (b) coaxial shells at different
values of the annular gap width k

and having different linear dimensions L=R (the number of the harmonic in the
circumferential direction is j D 4). From the results shown in Fig. 3b it can be
concluded that for cantilevered shells the axial velocity component has a stabilizing
effect, which strongly depends on the linear dimensions of the system – the smaller
dimensions the higher is the stability boundary. With increasing L=R the stabilizing
effect of the axial velocity vanishes.

Figure 4 shows the stability boundaries obtained for coaxial shells for different
variants of the boundary conditions and different values of the annular gap
width (j D 3). In this case, for cantilevered shells the axial fluid flow also exerts
a stabilizing effect, whereas for shells with other boundary conditions it has only a
destabilizing effect. The strength of the stabilizing effect depends on the width of
the annular gap – the smaller the width, the higher is the stability boundary.

4 Conclusion

In this paper, a mathematical statement of the loss-of-stability problem and a finite
element algorithm for its numerical simulation have been proposed to study the
dynamic behavior of single elastic and coaxial cylindrical shells of revolution
subject to compressible fluid flows having axial and tangential velocity components.
Numerical calculations have shown that for both examined configurations the
stability boundary, which has been determined by assigning a fixed value to one
of the velocities and exhaustive searching for the critical value of the other velocity,
depends on the type of the boundary conditions and linear dimensions. A combined
action of both velocity components essentially affects the character of the dynamic
behavior of elastic bodies. This effect is more pronounced in the case of cantilevered
shells. Moreover, the stabilizing action of the axial flow involves two other effects –
a jump-wise change in the critical value of one of the velocity components at a
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minimum value of the other velocity component and non-monotonic dependence of
one velocity component on the other. Such a behavior is caused either by different
responses of the cantilevered shell to the axial and tangential velocity components
acting separately or by the existence of hydrodynamic damping, which plays a
decisive role in the dynamic behavior of the system.
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