Fractional Derivatives Appearing in Some
Dynamic Problems

Alexander K. Belyaev

Abstract Three types of suspension of a semi-infinite Bernoulli-Euler beam and a
fluid-conveying pipe are considered. It is shown that the environment in the form of
a semi-infinite Bernoulli-Euler beam or a fluid-conveying pipe is taken into account
by adding a fractional derivative into the suspension equation. The eigenvector
expansion method based upon transformation of the derived equation into a set of
four semi-differential equations is utilised for solving the equations with fractional
derivatives. A simple expression for the critical velocity of the fluid in the pipe is
obtained. If this value is exceeded, both the pipe and its suspension become unstable.

1 Introduction

The intent of the paper is to show that the governing equation for simple mechanical
systems may contain fractional derivatives. We consider three types of oscillator
to which a semi-infinite Bernoulli-Euler beam is attached. It is shown that if
the consideration is limited only to the oscillator, then the environment (i.e. the
semi-infinite Bernoulli-Euler beam) adds a fractional derivative into the oscillator
equation. Another system governed by a differential equation with fractional
derivative is the suspension of the fluid-conveying-pipe. The eigenvector expansion
method based upon transformation of the equation into a set of four semi-differential
equations is utilised for solving the obtained differential equation with fractional
derivatives.
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Fig. 1 Schematics of the first model

2 Three Mechanical Systems

Consider a Single-Degree-Of-Freedom system and a semi-infinite Bernoulli-Euler
beam x > 0, which is attached to mass m at x = 0, cf. Fig. 1.

The mass m is allowed to perform only vertical displacements and governed by
the equation

d2
m—s =—ov+ 0| +/0). M
! 0

x=

where y is the absolute displacement of the mass m, f(¢) is an external driving
force, ¢ is time and Q |X:0 is the shear force in the beam acting on the mass m.
The equation of the beam bending is as follows

4 82

a*w w
EIW—FpAW:O, O<X<OO, (2)

where w(x, ) is the absolute displacement, EI is the bending stiffness of the beam,
p is the mass density and A is the cross-sectional area. The condition of coupling of
mass /1 and the beam is given by

y(@) =w(0,1) . 3

The zero initial conditions are assumed, then the Laplace transformation gives

mp’§(p) +ci(p) = 0(p)|  + f(p), “)

x=0

EIS% 4 pAp’w =0, 0<x<oo. )

The solution of Eq. (5) bounded at infinity is as follows

w(x, p) = Az exp(A2x) + Agexp(Agx) . (6)
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where the wave numbers are

A=-1+DBSp. ra=-(1-DBJp. B=pA/4EI
for ./p > 0. The bending moment in the beam vanishes at x = 0

_ e -
M| =—EI=Z| = 2EIiBp(Ay— A = 0.
dx2

x=0 x=0

Hence, A» = A4 and the shear force O ‘x=0 to be substituted into Eq. (4) is

dw
- EI—~
dx3

0 — _El [A;Az + AZ;A4] = —4EIBp P Ar. ()

x=0 x=0

As follows from Eq.(6) w(0, p) = y(p) = 2A,, that allows one to establish
the following relationship between the shear force QO |X:0 and the beam displace-
ment w(0, p)

= —2EIf’p /P ¥ (p) . (8)

x=0

Inserting the latter equation into Eq. (4) yields

mp*5(p) + 2EIB* p /P 3(p) +c¥(p) = f(p) . 9)

Since the trivial initial conditions were assumed, Eq.(9) corresponds to the
following ordinary differential equation for displacement y (¢)

d?y 5d7%y
mm + ZEIIB d[3/2

+cy= f(1). (10)

As seen from Eq.(10), the dynamics of mass m is governed by a single
differential equation with a fractional derivative of the order 3/2.

Another mechanical system governed by the differential equation with a frac-
tional derivative is obtained from the above system provided that the semi-infinite
Bernoulli-Euler beam is clamped to a rigid mass m rather than it is simply supported.
In this case the governing equation is as follows (the derivation is omitted as it is
fully analogous to the previous one)

d?y ;d7y
mm+4EI,B PR +cy=f(t). (11

The third mechanical system consists of a disk attached to an angular spring and
a semi-infinite Bernoulli-Euler beam, Fig. 2.
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Fig. 2 Schematics of the third model

The beam is supposed to be clamped to the disc in such a way that the angle of
rotation of the disk and that of the beam at x = 0 coincide. The differential equation
of the disk is given as

d?e d"¢

o+ 2BEl o ko =m(). (12)

J
where J is the moment of the mass inertia, k is the angular stiffness of the spring
and m(t) is the external driving moment. We omit the derivation however one can
easily perform it by analogy with the above one. Again, a differential equation with
a fractional derivative is obtained however, in contrast to Eqgs. (10) and (11), the
governing equation contains the fractional derivative of the order 1/2.

3 Mechanical System with a Pipeline Conveying Fluid

We consider now a pipeline conveying a heavy fluid. The pipe is assumed to perform
bending vibration in the plane xz. The suspension of the pipe is assumed to be
modeled by a spring of stiffness ¢ and a dashpot ». The mass of the suspension is m
and the velocity of the fluid is denoted by v, see Fig. 3.

The governing equation for the pipe bending vibration is as follows

o*w 3w

Here the subscripts p and f refer to the pipe and fluid respectively and a, denotes
the fluid acceleration in direction z . Using the rule of determining the material
derivative we obtain
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Fig. 3 Schematics of the suspended pipe conveying fluid

Pw g L v (14)
a,. = v .
o2 dx 0t dx2
Substituting Eq. (14) into Eq. (13) yields
d*w 9w ’w , 0w
El— A 2 =0, 15
axt (p)(az+”axa i 32) ()

where the inertia term of the pipe is dropped under the assumption (pA), < (pA) y
which implies that the distributed mass of the pipe is much smaller than that of the
conveyed fluid.

Assuming zero initial conditions for the beam and applying the Laplace transfor-
mation we obtain the following ordinary differential equation in the Laplace domain

Elw" + (pA),v*w ' 4+ 20(pA) s pw ! + (pA); p*w =0, (16)

The eigenvalues A,,, n = 1,2, 3, 4 are now the solutions of the equation

p*v? 4 (pA)y
4 p= EI

/\4+/32(2kﬁ+ﬁp)2=0, n= >0. (17)

Repeating the derivation of the second part of the paper we arrive at the following
equation for the Laplace transform of the displacement y

mp*§(p) + 4EIB* p*w(0, p) + p [b = (pA)sv]W(0, p) + c¥(p) = f(p) (18)

which corresponds to the following ordinary differential equation with a fractional
derivative of order 3/2

2 /2

w3 S
m—5 AL +[

d
T =] T+ ey = £ (19)

This equation governs the motion of the pipe suspension.
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4 Eigenvector Expansion Method for Solving Differential
Equation with Fractional Derivative

Equations (10)—(12), (19) are ordinary differential equations of second order with
the derivatives of the order !/2 or 3/2. We take Eq. (19) in the case f(¢#) = 0 and solve
it by means of the eigenvector expansion method suggested in [1] for differential
equations with fractional derivatives. To this end, we introduce a non-dimensional
timet = kt, k = \/‘/_m and two non-dimensional system parameters

_EF b (pA)y

Then we can set Eq. (19) in the following form

d
D’y + 48Dy +eDy+y =0, D= 1)

This equation can be represented in the normal form of four semi-differential
equations by means of the substitution

2 =DPy(t), n=Dy@t), z=D"yt), u=yt) (22
which allow us to rewrite the latter equation in the matrix form
{A} D"z} = {B}{z}

where {z} denotes the column composed of z,, n = 1,2,3,4 in Eq.(22).
Applying the standard methods of linear algebra yields the eigenvectors {¥} and
eigenvalues A ;

{AHYS; = AjBHYS, (23)
where the eigenvectors are orthonormalized, i.e.
WHBHYY =6, {AHWY = 4;8;. (24)

Let us notice at this place that the eigenvalues A ; of the matrix equation (23) have
nothing in common with the eigenvalues of the differential equation (21). Namely
the eigenvalues A ; are solutions of equation A* + aA + b = 0 and are given by

M=A=p+4ig, As=—p=is (25)
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where

/ 1) 8
=K, g= K+m, § = K‘m7
1/3 1/3
23 16 16
=7 <+ 27) +( 27)

By means of the substitution {z} = {h}{¥} where matrix {¥} is built from
the eigenvectors columns {¥'}; we arrive at the system of four uncoupled semi-
differential equations

Dh; —Xhi(t)y=0, j=1,2,34 27

Solving these equations with the help of Laplace transformation, applying the
inverse Laplace transformation and satisfying the initial conditions, we obtain the
sought-for result. We refer the reader to [1] for detail.

Obtaining a closed form solution assumes the well-known property of the
Laplace transformation, namely the Laplace transform L. ..] of a fractional deriva-
tive of order « of function ¢(t) is as follows

L[D*p(t)] = p*L[e)] - C (28)
It follows from the formal definition of a fractional derivative of order o which

is given by

e 4]
D00} = 3 gy | (- w0 dv 29)
0

see [2]. Here C is the constant determined by the following condition

C =D*o@) (30)

=

It is worth mentioning that the value of C is not necessarily equal to zero even for the
zero initial conditions for the system. There exists a seeming discrepancy between
the number of initial conditions in the system (two initial conditions in the initial-
value problem) and the number of the integration constants in the system (27) of four
uncoupled semi-differential equations (four integration constants). This discrepancy
is easily removed since the general expressions for the displacement and velocity
contains some the functions which are unbounded at # — 0. The requirement that
these functions must vanish provide us with two additional conditions, see [1] for
detail.
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5 Ciritical Velocity of the Fluid in the Pipe

We now proceed to analysis of stability of the suspension. Numerical analysis of
free vibration of the pipe, i.e. under the assumption f(¢) = 0, shows that the
stability border is described by the condition ¢ = §. Since parameter & depends
on the velocity of fluid from this condition one obtains the critical velocity of the
flow

b ! 1El c 31)
Verit = — P
' pA 8pAm

If this value is exceeded, i.e. v > v, then the suspension and hence the pipe
are unstable.

6 Conclusion

It is shown that some mechanical systems are governed by differential equations
with fractional derivatives. The eigenvector expansion method is used for solving the
obtained equations with fractional derivatives and deriving closed-form solutions.
For example, this closed form solution is appropriate for obtaining simple formula
for the critical velocity for systems conveying fluids.
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