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Abstract State-of-the-art and some applications of the Speed-Gradient method to
control of complex systems is presented. A universal speed-gradient method and
speed-gradient method for control problems with phase constraints is proposed.
Some analytical results are obtained. The application of proposed methods is
illustrated by two examples: the selective energy control problem of two pendulums
and the average energy control problem of quantum diatomic molecule. Computer
simulation results confirm fast convergence rate of algorithms.

1 Problem Formulation

Consider a nonlinear time-varying system

Px D f .x; u; t/; x 2 Rn; u 2 Rm; t 2 R; x.0/ D x0; (1)

with control goal

J
�
u.�/� D lim sup

t!C1
Q
�
x.t; u.�/; x0/; t

�
; J

�
u.�/� ! min; (2)

and constraints

8t > 0 W Bk
�
x.t; u.�/; x0/; t

�
> 0; k D 1; : : : ; �; (3)
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here x—state, u—control, t—time, x0—initial condition, Q.�/, Bk.�/ W Rn � R !
R—some functions, x.t; u.�/; x0/—solutions of the system (1) with control u.�/ and
initial condition x0.

2 Speed-Gradient Method

In order to design control algorithm the scalar function w.x; u; t/ is calculated that
is the speed of changingQ.x; t/ along trajectories x.t/ of (1)

w.x; u; t/ D @Q.x; t/

@t
C @Q

@x
f .x; u; t/: (4)

Then it is needed to evaluate the gradient of w.x; u; t/ with respect to input
variables

ruw.x; u; t/ D ru
@Q

@x
f .x; u; t/: (5)

Finally the algorithm of changing u.t/ is determinated according to the differen-
tial equation (differential form)

Pu D �� ruw.x; u; t/; u.0/ D u0 (6)

or to the algebraic equation (finite form)

u D u0 � � ruw.x; u; t/; (7)

where � D � T > 0 is the positive definite gain matrix, u0 is some initial value of
control algorithm. It can be also introduced a speed-pseudogradient algorithm

u D u0 � �  .x; u; t/; (8)

where  .x; u; t/ satisfies the pseudogradient condition

 .x; u; t/T ruw.x; u; t/ > 0: (9)

The algorithm (6) is called speed-gradient algorithm [1], since it suggests to
change u.t/ proportionally to the gradient of the speed of changingQ

�
x.t/; t

�
.

2.1 Universal Speed-Gradient Method

Consider the Taylor approximation for w.t/ D w
�
x.t/; u.t/; t

�
, where

�
x.t/; u.t/

�

is a trajectory of the system (1)
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w.t C �/ D w
�
x.t/; u.t/; t

�C

C
�
@w

@t

�
x.t/; u.t/; t

�C @w

@x
f
�
x.t/; u.t/; t

�C @w

@u
Pu
�
� C o.�/:

(10)

If w.x; u; t/ is non-positive, then (with some additional assumptions) according
to a La-Salle principle the control goal (2) is fulfilled.

Consider

Pu D ��.x; u; t/ .x; u; t/; (11)

where  W Rn �Rm � R ! Rm, � W Rn �Rm � R ! R and

�.x; u; t/
@w

@u
 .x; u; t/ >

@w.x; u; t/

@t
C @w

@x
f .x; u; t/: (12)

For example it can be used  .�/ D ruw.�/ and

�.x; u; t/ D �.x; u; t/C �
p
�.x; u; t/2 C �.x; u; t/2

�.x; u; t/
; � > 0; (13)

with

�.x; u; t/ D @w.x; u; t/

@t
C @w

@x
f .x; u; t/ ; �.x; u; t/ D @w

@u
 .x; u; t/: (14)

For affine systems the same algorithm was proposed by Sontag in 1989 [2].
The control algorithm (11) with the inequality (12) we named the “Universal

speed-gradient method”.

Theorem 1. Let the following assumptions be valid:

1. w
�
x�.t/; u�.t/; t

�
is a twice continuously differentiable function along the

trajectories
�
x�.t/; u�.t/

�
of system (1), (11);

2. The functionQ.x; t/ is nonnegative, uniformly continuous in any set of the form
f.x; t/ W jjxjj < ˇ; t > 0g and radially unbounded;

3. For initial condition the inequality w
�
x.0/; u.0/; 0

�
6 0 is true;

4. Inequality (12) is true for all .x; u; t/ W w.x; u; t/ D 0, Q.x; t/ ¤ 0;
5. Control (11) is a continuous in .x; u/ function;

then any solution
�
x.t/; u.t/

�
of (1), (11) is bounded and lim

t!C1
d
dtQ

�
x�.t/; t

� D 0:

Proof. The Taylor approximation (10) is true according to assumption 1. According
to assumptions 3, 4 inequality PQ �

x.t/; t
�
< 0 is true for all .x; u; t/ W Q.x; t/ ¤

0. Consequently, from assumption 2 follows that any solution
�
x.t/; u.t/

�
of (1)

and (11) is bounded and lim
t!C1

d
dtQ

�
x�.t/; t

� D 0: ut
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2.2 Universal Speed-Gradient Method with Constraints

Consider the derivative of constraints (3) along the trajectories of the system (1)

@Bk

@t
.x; u; t/C @Bk

@x
f .x; u; t/C @Bk

@u
Pu > 0 ; k D 1; : : : ; �: (15)

According to (11) consider the following inequalities

�.x; u; t/
@Bk

@u
 .x; u; t/ > �@Bk

@t
.x; u; t/ � @Bk

@x
f .x; u; t/; k D 1; : : : ; �:

(16)

The control algorithm (11) with the inequalities (12) and (16) we named the
“Universal speed-gradient method with constraints”.

Theorem 2. Let the following assumptions be valid:

1. w
�
x�.t/; u�.t/; t

�
is a twice continuously differentiable function along the

trajectories
�
x�.t/; u�.t/

�
of system (1), (11);

2. The functionQ.x; t/ is nonnegative, uniformly continuous in any set of the form
f.x; t/ W jjxjj < ˇ; t > 0g and radially unbounded;

3. For initial condition inequalities w
�
x.0/; u.0/; 0

�
6 0 and g

�
x.0/; u.0/; 0

�
> 0

are true;
4. Inequalities (12), (16) are true for all .x; u; t/ W w.x; u; t/ D 0, Q.x; t/ ¤ 0;
5. Control (11) is a continuous in .x; u/ function;

then any solution
�
x.t/; u.t/

�
of (1), (11) is bounded, the constraint (3) fulfilled and

lim
t!C1

d
dtQ

�
x�.t/; t

� D 0:

Proof. The Taylor approximation (10) is true according to assumption 1. According
to assumptions 3, 4 inequality PQ �

x.t/; t
�
< 0 is true for all .x; u; t/ W Q.x; t/ ¤

0. Consequently, from assumption 2 follows that any solution
�
x.t/; u.t/

�
of (1)

and (11) is bounded and lim
t!C1

d
dtQ

�
x�.t/; t

� D 0: From the assumptions 3, 4

follows that constraints are fulfilled for any solution
�
x.t/; u.t/

�
of (1) and (11).

ut

3 Two Pendulums Example

Consider the system of two pendulums (Fig. 1) with a single control input

8
<

:
Pqk D 1

ml2
pk ;

Ppk D �mgl sin qk C ul cos qk ; k D 1; 2;
(17)
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Fig. 1 Two pendulums with
a single control input u

the Hamiltonians of pendulums are the following

Hk
0 .pk; qk/ D 1

ml2
p2k C mgl.1 � cos qk/; k D 1; 2: (18)

Consider the control goal

lim
t!C1H1

0

�
p1.t/; q1.t/

� D E1: (19)

with phase constraints

H2
0

�
p2.t/; q2.t/

�
< E2 ; t > 0: (20)

According to the Speed-gradient approach we obtained the following control
function

u.p; q/ D ��
0

@p1 cos q1
ml

�
H1
0 .p1; q1/� E1

�
C ˛

p2 cos q2

ml
�
H2
0 .p2; q2/� E2

�2

1

A :

(21)

To demonstrate the ability of the controller to achieve the control goal and to
fulfill the phase constraints we carried out computer simulation. The following value
of system parameters and initial conditions were chosen: m D 1, l D 1, g D 10,
q1.0/ D 0, q2.0/ D 0:05, p1.0/ D 0, p2.0/ D 0. Energy goal value for the first
pendulum was taken E1 D 8, energy constraint for the second one was taken E2 D
5. Algorithm parameters were: � D 0:015, ˛ D 10. Time for simulating was 80 s.
Simulations shows that proposed algorithm solve the control problem: energy of
the first pendulum converged to the goal value E1 and the energy of the second
was constrained by E2. The simulating results are presented in (Figs. 2 and 3). The
complete analysis of this control system was presented in [3].
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Fig. 2 Energy of pendulums.
Solid line corresponds to the
energy of the first pendulum
H1
0

�
q1.t/; p1.t/

�
, dash

line—to the energy of the
second one H2

0

�
q2.t/; p2.t/

�

Fig. 3 Control function:
u.t /D u

�
q1.t/; q2.t/; p1.t/; p2.t/

�

4 Molecular Example

Consider a quantum model for diatomic molecule, described by the Schrodinger
equation with control [4–6]

i„@	.r; t/
@t

D H0	.r; t/C f .u/H1	.r; t/; (22)

where

H0 D � „2
2M

@2

@r2
C V.r/ ; H1 D A�.r/; (23)

and Morse potential

V.r/ D D

 

exp

�
�˛ r � r0

r0

�
� 1

!2
�D; (24)
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here i D p�1, „ D 1—Planck constant, 	.t; r/—wave function, r—distance
between nuclei of the molecule,M—reduce mass of the molecule, ˛—parameter of
a nonlinearity, �.r/—molecular dipole momentum, D—dissociation energy, r0—
distance of equilibrium, u—control function of electromagnetic field, f .�/—some
function. All parameters are in the atomic Hartree unit system.

The problem is to design the control function u.t/ to stabilize the average energy
on the goal value:

lim
t!C1
.t/�H0
.t/ D E� : (25)

All the following calculations are made for a finite-level approximation obtained
by a Bubnov-Galerkin method.

According to a speed-gradient method the following goal function is introduced

Q.
/ D .
�H0
 � E�/2 (26)

and w.
; u; t/ is calculated

w.
; u; t/ D PQ.
/ D 2
i

„ .

�H0
 �E�/
�ŒH1;H0�
f .u/ : (27)

A Tailor approximation for w.t/ D w
�

.t/; u.t/; t

�
is the following

w.t C �/ D g0.
; u/C �
g1.
; u/C g2.
; u/Pu

�
� C o.�/ ; (28)

where

g0.
; u/ D i

„ .

�H0
 �E�/
�ŒH1;H0�
f .u/ ; (29)

g1.
; u/ D i

„f .u/
d

dt

�
.
�H0
 �E�/
�ŒH1;H0�


�
; (30)

g2.
; u/ D i

„ .

�H0
 �E�/
�ŒH1;H0�


d

du
f .u/ : (31)

According to a universal speed-gradient method the following algorithm was
obtained

Pu D sat

 
�g2.
; u/2 � g1.
; u/

g2.
; u/

!

; u.0/ D 0: (32)

For computer simulation we used the parameters of iodine molecule J 127J 127:
M D 114;842, ˛ D 4:954, D D 0:0572, r0 D 5:0366, with control function in the
following form f .u/ D 0:02 sin.u/. Computer simulations shows that the energy
converged to the goal value. The simulation results presented in Figs. 4 and 5.
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Fig. 4 Average energy:

.t/�H0
.t/, duration: 50 fs
(10�15 s), goal energy value
is E� D 0:043

Fig. 5 Control function
f
�
u.t /

� D A sin
�
u.t /

�
,

duration: 50 fs (10�15 s)

5 Conclusion

A new version of speed-gradient method is proposed that generates “universal”
control algorithms both for differential and for finite form. Efficiency of this
“universal” method is illustrated by computer simulation for energy control of
quantum diatomic molecule. A speed-gradient method for control problems with
phase constraints is also proposed and its efficiency is illustrated by computer
simulation for selective energy control of two pendulums.
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