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Abstract Flexural vibrations of layered structures composed of moderately thick
elastic layers are studied. Alternative formulations of various higher-order the-
ories are introduced that offer complete analogies between the corresponding
initial-boundary value problems and those of homogenized single layer structures
of effective parameters. Also the effects of an elastic interlayer slip are considered
within appropriate equivalences. Moreover, the boundary value problem of a single
damping layer showing fractional viscoelastic behavior is treated, where even
closed-form solutions can be found for special load cases.

1 Introduction

Although the earlier theories for laminates were based on the Kirchhoff-Love
hypothesis, it was soon recognized that, due to the relative small transverse stiffness
of composites, thickness-shear deformations should be included to obtain realistic
predictions of flexural behavior. Furthermore, for a composite structure whose
material and geometric characteristics approach those of a sandwich element, a
uniform transverse-shear strain assumption made in most laminate theories becomes
unrealistic as it can be ascertained by comparison with a three-dimensional elasticity
analysis. Transverse discontinuous mechanical properties cause displacement fields
in the thickness direction, which can exhibit a rapid change in slopes corresponding
to each layer interface (zig-zag effect). The transverse stresses must fulfill inter-
laminar continuity at each layer interface.

In particular, a comparative study of different theories for the dynamic response
of laminates is given in [1] and [2]. In [3], Reddy presents a review of equivalent

R. Heuer (�)
Vienna University of Technology, Vienna A-1040/E2063, Austria
e-mail: rudolf.heuer@tuwien.ac.at

Alexander K. Belyaev et al. (eds.), Mechanics and Model-Based Control of Advanced
Engineering Systems, DOI 10.1007/978-3-7091-1571-8__17,
© Springer-Verlag Wien 2014

155

mailto:rudolf.heuer@tuwien.ac.at


156 R. Heuer

single layer and layerwise laminate theories and discusses their mechanical models
by means of the FEM and the mesh superposition technique.

If rigid bond between the laminates cannot be achieved, an interlayer slip occurs,
that significantly can affect both strength and deformation of the layered structure.
The mechanical behavior of layered beams and plates with flexible connection has
been mainly discussed for civil engineering structures, compare [4–6]. Thermal and
piezoelectric effects in two-layer beams are treated in [7] and [8], respectively.
Murakami [9] proposes a general formulation of the boundary value problem,
where any interlayer slip law can be adopted in the beam model. A correspondence
between the analyses of sandwich beams with or without interlayer slip has been
derived by the author in Refs. [10] and [11].

The present paper shows alternative formulations of various theories for layered
structures that offer complete analogies between the corresponding initial-boundary
value problems and those of homogenized single layer structures of effective
parameters. The structures treated are composed of three moderately thick layers
and even the effects of geometrically nonlinear large deflection and elastic interlayer
slip are considered within appropriate equivalences.

Regarding the modeling of damping layers the paper introduces the initial-
boundary value problem of the fractional viscoelastic Euler-Bernoulli beam, where,
as a first step, closed-form solutions are introduced for quasi-static loads.

2 First Order Shear Deformation Laminate Theory

2.1 Layered Beams

Considering a layered beam to bend cylindrically and including the effect of
transverse shear by means of Timoshenko’s kinematic hypothesis the displacement
field is expressed as
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where the origin of the Cartesian (x,z)-coordinate system is located in the global
elastic centroid of the composite cross-section. x represents the axial beam coordi-
nate and  .xI t/ denotes the cross-sectional rotation. Thus the non-vanishing total
strains at any point of the beam become
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The constitutive relations for a linear thermo-elastic beam can be formulated
according to the generalized Hooke’s law,
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where E D E.x; z/, G D G.x; z/ are time-independent Young’s modulus
and transverse shear modulus, respectively. � D �.x; z/ represents a change of
temperature with respect to a stress-free reference configuration, and ˛ stands for
the linear thermal expansion coefficient. Without loss of generality, we assume that
E.x; z/ D E.z/, G.x; z/ D G.z/, and ˛.x; z/ D ˛.z/ in all further derivations.
By means of spatial integration, the stress resultants become
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The effective shear rigidity, S , follows from the concept of equivalent strain energy.
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denote the cross-sectional means of thermal strain and curvature, respectively.
Applying the conservation of momentum and conservation of angular momen-

tum, expressing the stress resultants by means of Eq. (4) and subsequent elimination
of the cross-sectional rotation leads to a single fourth-order differential equation of
motion for the beam deflection,
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p.xI t/ is an external load distribution, and the inertia terms, containing the mass
density �.x/, are
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Equation (6) represents the equation of motion of a homogenized Timoshenko beam
with effective parameters according to Eqs. (4), (5), and (7).
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2.2 Symmetric Three-Layer Shallow Shells

For thermally loaded shallow shells composed of three isotropic layers with physical
properties symmetrically disposed about the middle surface the corresponding
equation of motion becomes, compare [12],
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where the influence of rotatory inertia has been neglected. The corresponding
effective parameters are
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In Eq. (8) the influence according to the Theory of Second Order is approximately
gathered in a mean hydrostatic tensile in-plane force,
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3 Sandwich Beams with or Without Interlayer Slip

Sandwich structures are commonly defined as three-layer type constructions con-
sisting of two thin face layers of high-strength material attached to a moderately
thick core layer of low strength and density. Effects of interlayer slip have been
discussed for elastic bonding by Hoischen [4] and Goodman and Popov [6], and for
more general interlayer slip laws by Murakami [9]. Heuer [10] presents complete
analogies between various models of viscoelastic sandwich structures, even with
or without interlayer slip, with homogenized single layer structures of effective
parameters.

Figure 1 shows the free-body diagram of a three-layer beam. The kinematic
assumptions according to the first order shear-deformation theory are applied to
each layer. For symmetrically three-layer beams with perfect bonds the following
assumptions are made:
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1. The thin faces of high strength material are rigid in shear
2. The individual bending stiffness of the faces are not neglected
3. The bending stiffness of the core is neglected

Alternatively, for sandwich beams with viscoelastic interlayer slip, see [7], the
classical assumption of all three layers to be rigid in shear is made, with the shear
traction in the physical interfaces of vanishing thickness being proportional to the
displacement jumps with a viscoelastic interface stiffness understood. In case of
elastic interface stiffness the corresponding equation of motion finally reads
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The shear coefficient in (12) is either proportional to the core’s shear modulusG2 in
the case of perfectly bonded interfaces, cf. [10],
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or, for the symmetric three-layer beam with elastic interlayer slip, it becomes
proportional to the elastic stiffness k when common to both physical interfaces
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4 Fractional Viscoelastic Single Layer

4.1 Governing Equations

Considering a single damping layer the following section introduces the initial-
boundary value problem of the fractional visco-elastic Euler-Bernoulli beam. Let
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E.t/ and D.t/ the relaxation and the creep function, respectively. E.t/ can be
interpreted as the stress history for a unit strain ".t/ D U.t/, and D.t/ represents
the strain history for a unit stress �.t/ D U.t/, (U.t/ being the unit step function).
At the beginning of the last century Nutting [13] observed that E.t/ is well suited
by a power law decay,
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where � .:/ is the Euler-Gamma function, cˇ=� .1 � ˇ/ and ˇ are characteristic
coefficients depending on the material at hand. OnceE.t/ is determined in the form
according to Eq. (15) the functionD.t/ is given as
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Due to Boltzmann superposition principle the stress and strain history may be de-
rived in the form of convolution integrals
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that are valid if the system starts at rest, t D 0, otherwise E.t/".0/ and D.t/�.0/
have to be added, respectively. Thus, combining Eqs. (15) and (16) with (17),
leads to
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From Eqs. (19) and (20) we may recognize that for ˇ D 0 and ˇ D 1 the purely
elastic and viscous fluid behavior is recovered, respectively.

Consider an isotropic homogeneous Bernoulli-Euler beam of length L that
exhibits spatially distributed fractional viscoelasticity, the corresponding equation
of motion reads, compare [14],
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where �.x/ is the mass per unit length and Iy.x/ is the moment of inertia of the cross
section with respect to the y-axis. The constitutive law for the bending moment is
of the form
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4.2 Example Problem

Let us suppose that the loading function varies in such a slow way that the inertial
forces may be neglected. In this case the first term at the left hand side of Eq. (21)
or Eq. (20) may be cancelled.

The example problem under consideration is a clamped-simply supported beam
with an external bending moment M.t/ D MBU.t/, at the hinged support x D
L. For simplicity’s sake we suppose that Iy.x/ D Iy D const . In this case the
boundary value problem simplifies to
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The closed-form solution for the quasi-static deflection becomes,
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and furthermore, the bending moment is determined as
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which coincides with the bending moment distribution evaluated in the purely
elastic case, while displacements may be simply obtained from the elastic ones.
That means that the first version of “correspondence principle” holds also for the
fractional constitutive law.
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