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Abstract The paper presents an overall design approach for smart light-weight
structures made of metal sheets or fiber reinforced plastics, equipped with thin
piezoelectric wafers as actuators and sensors to control vibration and noise. The
design process is based on an overall finite element model, which includes the
passive structure, the piezoelectric wafers attached to the structure or embedded
between the layers of a composite and the controller as well. In active noise control
the vibrating structure interacts with the surrounding fluid, which is also included
into the overall model. In order to evaluate the quality of the approach, test simula-
tions are carried out and the results are compared with experimental data. As a test
case, a smart car engine with surface-mounted piezoelectric actuators and sensors
for active noise reduction is considered. A comparison between the measured values
and those predicted by the coupled finite element model shows a good agreement.

1 Introduction

In the past years, significant progress has been made in the field of vibration and
noise control in automotive engineering. The control of noise and vibration is
essential in the design process of an automobile, since it contributes to comfort,
efficiency and safety. There are two different approaches to achieve noise and
vibration attenuation. In the widely used first approach the vibration and the sound
emission of structures are reduced passively by modifying the structural geometry
or by applying additional damping materials. These methods are best suited to
a frequency range above 1,000 Hz. The second approach is the application of
active control techniques to reduce unwanted structural vibration and noise. These
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techniques are usually employed in a frequency range between 50 and 1,000 Hz.
In active noise reduction usually smart materials are attached to structures as
actuators and sensors connected by a control unit which enables the system to
reduce structural vibrations with the objective to reduce simultaneously also the
sound radiation caused by structural vibrations.

Considering passenger cars, the power train represents one of the main noise
sources, especially during idling, slow driving speeds and full load acceleration.
One major contributor to the overall power train noise emission is the engine oil pan.
Therefore, the paper aims to design a smart car engine with piezoelectric actuators
and sensors attached on the surface of the oil pan for active noise reduction.

Over the past years, some researchers have already studied active noise reduction
approaches at car oil pans [16] and a truck oil pans [5] using distributed piezoelectric
actuators. However in these studies, the oil pan was treated separately and no attempt
was made to consider the interactions between the crankcase and the oil pan. Naake
et al. [13] employed piezoceramic patch actuators to minimize the vibrations of a
car windshield. The goal of this control approach was to achieve a reduced acoustic
pressure level inside the cabin. For the same reasons a similar approach was adopted
by Weyer and Monner [20] and Nestorović et al. [14].

The development and industrial application of smart systems for active noise
and vibration control require efficient and reliable simulation tools. Virtual models
are of particular interest in the design process, since they enable the testing of
several control strategies and they are required to determine optimal sensor and
actuator locations. There are several numerical approaches [6,7,10,11,21] available
for predicting the behavior of active systems, which include the modeling of the
mechanical structure, the piezoelectric actuators and sensors, the surrounding fluids
as well as the applied control algorithm.

In the present paper an overall finite element approach is proposed. For modeling
thin walled structures shell elements are used, the piezoelectric patches are modelled
with special electromechanical coupled shell elements, and the acoustic fluid is
modelled with 3D fluid elements, which include the coupling conditions with the
structural shell elements. The far field is described with infinite elements developed
on the basis of the doubly asymptotic approximation [4]. This approach results
in a symmetric form of the coupled electro-mechanical-acoustic system of the
equations of motion, including the electric potential, the displacements and the
velocity potential as nodal degrees of freedom.

For controller design purposes a reduced model is derived based on selected
structural and acoustic eigenmodes.

In order to check the validity of the approach, numerical and experimental studies
are carried out using a car engine with surface-mounted piezoelectric actuators. The
simulated and the measured data are in a good agreement showing that the developed
overall simulation approach can be used for industrial design purposes.

Finally, the quality of the designed active oil pan is checked by experimental
testing on a fired engine using a dSPACE controller board which determines the
necessary control outputs for the actuators. In the experiment, engine run ups are
measured on an engine test bench for the uncontrolled and controlled case.
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2 Finite Element Modeling

2.1 Finite Element Model of Piezoelectric Shell Structures

In this section, a simple piezoelectric composite Mindlin-type shell element for
analyzing laminated plates with integrated piezoelectric actuators and sensors is
briefly discussed. More details regarding the development and the implementation
of this finite element can be found in [17] and [3].

In the shell element, it is assumed that the thickness of the layers is the same
at each node and the deformations are small. Additionally, it is presumed that the
modeled composite laminate plate consists of perfectly bonded layers and the bonds
are infinitesimally thin as well as nonshear-deformable. The shell element has six
degrees of freedom u1; u2; u3; �x2; �x1; �x3 at each node for describing the elastic
behavior and additionally one electric potential degree of freedom per layer to model
the piezoelectric effect. The strain displacement relations for the used plane shell
element are based on the Mindlin first order shear deformation theory.

The poling direction of the piezoelectric layers is assumed to be coincident with
the thickness direction, which means that the electric field acts only perpendicular
to the layers. Moreover, the difference in the electric potential ' is supposed to be
constant in each layer of the shell element. The electric field, which varies linearly
through the thickness of a piezoelectric layer, causes an in-plane expansion or
contraction. Thus, for modeling the electric field only one electric degree of freedom
per layer has to be specified within the element. In Marinković et al. [12] it is shown,
that these assumptions are accurate enough in thin structure applications.

The coupled electromechanical behavior of piezoelectric materials in a low volt-
age regime can be modeled with sufficient accuracy by means of the linearized
constitutive equations. In matrix form, the constitutive relations for a piezoelectric
layer are defined as [15]

� D Q" � eE ; D D eT " C �E: (1)

Here � denotes the stress vector, D is the dielectric displacement in thickness
direction, Q and e are the plane-stress reduced elastic stiffness and the piezoelectric
matrices, respectively. The coefficient � represents the plane-stress reduced dielec-
tric permittivity of the piezoelectric layer and E is the electric field of the shell
element. The piezoelectric constitutive relations given above are used within the
weak form of the mechanical equilibrium equations [19] to derive the electrome-
chanical FE equations of a piezoelectric layer by applying a standard Galerkin
procedure. After adding the local equations of all layers and elements to a global
model, the resulting system of coupled algebraic equations can be expressed as
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where u is the vector with the nodal structural displacements, and ' is the vector
with the nodal values of the electric potentials. The matrices Mu, Ku and K' are
the structural mass, the structural stiffness and the dielectric matrix, respectively.
The piezoelectric coupling arises in the piezoelectric coupling matrix Ku' . For
convenience, a Rayleigh damping is introduced into the system of Eqs. (2), assuming
that the matrix Cu is a linear combination of the matrices Mu and Ku. The external
loads are stored in the mechanical load vector fu and in the electric load vector f' . In
the following, it is assumed that the vector u contains the entire nodal displacements
of the mechanical structure as well as the piezoelectric actuators and sensors.

2.2 Finite Element Modeling of the Acoustic Fluid

In this section, a FE formulation is presented to model the finite fluid domains
around the smart shell structure. The homogeneous and inviscid acoustic fluid is
modeled by using the linear acoustic wave equation [8]

1

c2
R̊ � �˚ D 0: (3)

In the present study, a hexahedron element is chosen to discretize the fluid domains.
The velocity potential is considered as the nodal degree of freedom in the finite
element instead of the acoustic pressure p, since Everstine [2] has recommended
introducing the velocity potential ˚ as a new degree of freedom in order to get
symmetric matrices. In Eq. (3) � is the Laplacian operator and c is the speed of
sound.

To take into account an infinite outer fluid region, the doubly asymptotic ap-
proximation [4] is used. The behavior of the outer fluid is considered only in the
low and the high frequency range. At low frequencies the fluid of the outer region
is assumed to be incompressible, and in the high frequency range plane waves are
considered.

Following the standard finite element procedure, the matrix equation of the
discretized fluid domain becomes

Ma
R̊ C .Ca C C0/ P̊ C .Ka C K0/ ˚ D fa; (4)

with the acoustic mass matrix Ma, the acoustic damping matrix Ca, the acoustic
stiffness matrix Ka, the acoustic load vector fa, and the matrices C0 and K0,
which are additional matrices taking into account the coupling with special infinite
or semi-infinite fluid elements for describing the fare field. For more details see
Lefèvre [9]. Similar coupling terms also occur if the fare field is described with
boundary elements, which can also be coupled with 3D fluid finite elements applied
for approximating the near field [17].
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2.3 The Vibro-Acoustic Coupling

The dynamic behavior of thin lightweight structures with fluid loading is strongly
affected by the interaction between the subsystems. The purpose of the following
section is to present a overall FE approach to model the coupling that occurs in
smart systems with a fluid-structure interface.

The acoustic pressure represents an additional surface distributed load acting nor-
mal to the surface of the piezoelectric structure, such resulting in an additional load
vector fuc, which appears on the right hand side of Eq. (3). This additional load
vector acting at the fluid-structure interface can be expressed as

fuc D Cuc P̊ ; (5)

where Cuc is the coupling matrix at the fluid-structure interface. In an analogous
manner, the vibrating structure interacts with the fluid. This influence is described
by an additional load vector fac, which appears on the right hand side of Eq. (4). This
new acoustic load vector can be expressed by an expression similar to Eq. (5) as

fac D � 1

�0

Cuc Pu; (6)

with Cuc as the coupling matrix regarding structural vibrations. The variable �0

stands for the density of the acoustic medium.
Equations (2) and (4) are coupled by introducing the Eqs. (5) and (6), which

results in symmetric matrices by multiplying all lines related to the fluid degrees of
freedom with .��0/. If the element matrices are assembled into the global system
matrices, the semi discrete form of the equation of motion of the coupled electro-
mechanical-acoustic field problem can be written as
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3 Controller Design

The numerical simulation of smart structures within the finite element frame re-
quires an overall finite element model including the passive structure with the
surrounding fluid, the active sensor and actuator elements, as well as an appropriate
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model of the controller. For the controller design numerous techniques are at
disposal, and the application of an appropriate control law is closely related to the
requirements of the specific problem. For a model based controller design the large
finite element models have to be reduced. One of the standard techniques is the
modal reduction based on preselected eigenmodes of the system. To apply this tech-
nique, the coupled system of motion (7) is rewritten in the following compact form

QMRr C QCPr C QKr D Qf; (8)

Introducing the state space vector

z D
h
r Pr

iT D
h
u ' ˚ Pu P' P̊

iT

; (9)

from Eq. (9) it follows

" QC QM
QM 0

#
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" QK 0
0 � QM

#
z D QBPz C QAz D

"Qf
0

#
: (10)

From Eq. (10) the linear eigenvalue problem can be derived as

� QA � �j
QB
�

Ozj D 0: (11)

The solution of Eq. (11) results in the modal matrix Q with 2k pairs of conjugate
complex eigenvectors

Q D
h
Oz1 Oz2 : : : Oz2k

i
: (12)

If the modal matrix Q is ortho-normalized with QT QBQ D I D diag.1/ and
QT QAQ D � D diag.�/, and new coordinates z D Qq are introduced in Eq. (12),
the reduced state space form is obtained as

Pq C �q D QT

"Qf
0

#
: (13)

If the right hand side of Eq. (13) is subdivided into the control forces and the external
forces and the measurement equation (15) is added, the following set of equations,
which can be used to design an appropriate controller, is obtained as

Pq D ��q C QT

" NB
0

#
u.t/ C QT

" NE
0

#
f.t/ D Aq C Bu.t/ C Ef.t/; (14)

y.t/ D Cq C Du.t/ C Ff.t/: (15)
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For controller design purposes the state matrices A; B; E; C; D and F are transferred
from the finite element approach to Matlab/Simulink via an internal data interface.
Based on the model matrices different controller, such as the velocity feedback
control, the optimal LQ control and the modal reference adaptive control (MRAC)
have been developed and successfully tested.

4 Smart Car Engine for Active Noise Reduction

The purpose of this section is to demonstrate the applicability of the proposed
modeling approach. For this reason, a smart car engine that consists of a crankcase
an oil pan with surface-mounted piezoelectric actuators and sensors for active noise
reduction is designed.

4.1 Dominant Mode Shapes

In order to design a smart stripped car engine for active noise and vibration control,
it is essential to identify the most dominant mode shapes. This step is carried out by
means of harmonic FE simulations using a Fourier transformed version of Eq. (2).

A point force excitation at the oil pan flange is chosen to excite all eigenmodes in
a frequency range up to 1,200 Hz. Figure 1 shows the resulting frequency response
function (FRF) between the structural displacement at the center of the oil pan
bottom and the excitation force at the flange. In addition, the mode shapes that are
associated with the respective resonance frequencies are illustrated. In Fig. 1, it can
be seen that the first and the third eigenmode are pure bending modes of the oil pan
bottom. The second and the fourth mode are global bending modes of the whole
stripped car engine. Under real operating conditions these bottom modes are the
main contributor to the overall sound emission. Due to this fact, the present approach
aims to control only these modes.

4.2 Definition of the Actuator Positions and Modeling

An often used method for the actuator placement is based on the assumption that
an actuator is placed well when it is able to influence significantly the shape of
the structural modes. This means that an in-plane actuator should be placed at
positions on the surface of the structure, where the strains and the corresponding
electric potentials are the highest [1, 18]. In case of the stripped car engine, the first
and the third eigenmode are considered. The modal strains of these modes can be
derived from the structural part Ouj of the complex eigenvectors Ozj with j D 1 and 3.
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Fig. 2 Contour plot of the superposed field and FE mesh with selected actuator and sensor position

The structural displacements Ouj are associated with the modal strains O"j by the
relationship

O"j D Bu Ouj ; (16)

where B is the matrix that calculates the strains of a finite element surface area using
nodal displacements. The modal strains O"j are related with the electric potentials O'j

by the constitutive equations of piezoelectricity [17]. By means of a multiplicative
superposition of the electric potentials O'j one obtains the super-posed field

O'max D
Y

j D1;3

O'j : (17)

In contrast to an additive superposition, the multiplicative superposition makes sure
that the actuators are not placed on node lines. A contour plot of the super-posed
field O'max allows the definition of optimal actuator positions. Two actuator positions
have been selected according to the contour plot visible in Fig. 2 (picture at the
left hand side), where the orange areas mark the preferred regions for placing
actuators. The orange rectangular areas of the FE mesh (picture in the center of
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Fig. 3 Uncontrolled (left) and controlled (right) FRFs of the stripped car engine

Fig. 2) mark the two selected actuator positions. Additionally, two sensors are placed
on the opposite side of the oil pan. The collocated design of the piezoelectric
actuator/sensor pairs guarantees control stability. It should be noted that more than
two collocated actuator/sensor pairs are possible.

4.3 Numerical and Experimental Studies

In the following section numerical simulations are carried out and the results are
compared with experimental data to test the performance of the system designed.
In the analysis the piezoceramic actuators and sensors are modeled using multilayer
shell elements. A velocity feedback control is chosen to compute input signals for
the actuators that are bonded on the outer surface of the oil pan. Standard tetrahedral
elements are used to model the irregular-shaped geometry of the crankcase and the
oil pan. The surrounding fluid volume is approximated with a mixture of tetrahedral
and hexahedral elements. These elements are coupled by the above presented fluid-
structure coupling matrices with the structural finite elements used for modeling
the engine. For the far field approximation the above mentioned infinite elements
are applied. In all these elements, quadratic shape functions are employed. Figure 2
illustrates the structural FE mesh of the stripped car engine.

For comparison purposes uncontrolled and controlled FRFs are considered.
Similar to the computations in Sect. 4.1 a harmonic point force excitation at the
oil pan flange has been used to excite the system, and the response is regarded in
terms of the structural displacement at the center of the oil pan bottom. In Fig. 3,
it can be observed that the measured data and the numerical predictions agree
very well. Additionally, the results in Fig. 3 show that a significant damping at
the dominating resonance frequencies is achieved, due to the implementation of
the velocity feedback control. The amplitudes are reduced by more than 14 dB at
595 Hz and by about 10 dB at 975 Hz.

Figure 4 shows the deformed shape of the car engine for the uncontrolled and
the controlled case at the first resonance frequency (595 Hz). It can be seen that
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the displacements are reduced by approximately 16 dB. In order to analyze the
near-field airborne noise from the outer surface of the oil pan, the corresponding
pressure fields are computed. On the left-hand side of Fig. 5 the computed sound
pressure distribution of the uncontrolled and controlled stripped engine are plotted.
For visualization a plane approximately 50 mm apart from the bottom surface was
chosen. To verify the simulated data, measurements have been carried out in a free-
field room with the help of a uniformly distributed microphone-array. The acoustic
field of the structure was scanned at 32 microphone positions with 50 mm measuring
grid spacing between. The corresponding measurements are shown on the right-
hand side of Fig. 5. From Fig. 5 can be seen that the simulation results correlate
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Fig. 6 Four-cylinder diesel engine in an anechoic room
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Fig. 7 Campbell diagrams of the uncontrolled (left) and controlled (right) diesel engine

well with the experimental results. Furthermore it can be noticed that due to the
controller influence the sound pressure level is reduced by approximately 16 dB,
which indicates the noise reduction potential of the designed system.

4.4 Engine Measurements on a Test Bench

In order to evaluate the quality of the smart system designed, several experimental
tests on an acoustic engine test bench have been carried out under real operating
conditions. In Fig. 6 the altered four-cylinder common rail diesel engine is shown.

In order to get an overview of the uncontrolled and controlled behavior at
higher engine speeds, engine run-ups (900–3,000 rpm) were made and evaluated
by means of appropriate Campbell diagrams. A displacement patch sensor was
used to generate the diagrams, since this sensor represents the entire vibration
characteristics of the oil pan. The measurements, shown in Fig. 7, reveal that due
to the controller influence the displacement level amplitudes in the resonance
frequency regions are reduced by approximately 4 dB, which indicates the noise
reduction potential of the designed system.
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5 Conclusions

In this paper, a coupled FE formulation has been presented to simulate a fluid-
loaded smart lightweight structure with surface-mounted piezoelectric actuators
and sensors. Besides the passive structure, the finite element model includes active
piezoelectric elements, the acoustic fluid, the vibro-acoustic coupling and the con-
troller influence as well. Piezoelectric layered shell type finite elements have been
extended to include the vibro-acoustic coupling with 3D acoustic finite elements and
infinite elements for the far field. Because of the large number of degrees of freedom
of the FE model a modal truncation technique based on a complex eigenvalue
analysis is performed. The reduced model is transformed into the state space form.
The developed approach is applied to design the smart car engine. For the design
process structural FE simulations of the car engine were carried out to identify the
most dominant mode shapes within a frequency range of 0–1,200 Hz. Based on
these results optimal actuator positions were calculated. Additionally, the exterior
noise radiation of a stripped car engine was numerically analyzed by applying
a mixture of finite and infinite elements. A velocity feedback control algorithm
in a real collocated design was used to obtain a high active damping effect. To
demonstrate the applicability and validity of the developments, test simulations are
carried out, which were compared with measurements performed on a laboratory
set-up. This comparison between the experimental and numerical results shows
a good agreement. In order to demonstrate that the designed system works also
under real operating conditions tests on a fired engine have been carried out. With
a velocity feedback control, attenuations up to 4 dB in the vibration level were
achieved at the resonance frequency regions of the most dominant modes.

References

1. Bin, L., Yugang, L., Xuegang, Y., Shanglian, H.: Maximal modal force rule for optimal place-
ment of point piezoelectric actuators for plates. J. Intell. Mater. Syst. Struct. 11(7), 512–515
(2000)

2. Everstine, G.C.: Finite element formulations of structural acoustics problems. Comput. Struct.
65(3), 307–321 (1997)

3. Gabbert, U., Berger, H., Köppe, H., Cao, X.: On modelling and analysis of piezoelectric smart
structures by the finite element method. Appl. Mech. Eng. 5(1), 127–142 (2000)

4. Geers, T.L.: Doubly asymptotic approximations for transient motions of submerged structures.
J. Acoust. Soc. Am. 64(5), 1500–1508 (1978)

5. Heintze, O., Misol, M., Algermissen, S., Hartung, C.F.: Active structural acoustic control for
a serial production truck oil pan: experimental realization. In: Proceedings of the Adaptronic
Congress, Berlin, pp. 147–153 (2008)
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