Chapter 7
Canonical Forms Applied to Structural
Mechanics

7.1 Introduction

The main objective of this chapter is to illustrate different applications of the
canonical forms in structural mechanics with particular emphasis on calculating
the buckling load and eigenfrequencies of the symmetric structures.

In the first part, the problem of finding eigenvalues and eigenvectors of symmet-
ric mass—spring vibrating systems is transferred into calculating those of their
modified subsystems. This decreases the size of the eigenvalue problems and
correspondingly increases the accuracy of their solutions and reduces the computa-
tional time [1].

In the second part, a methodology is presented for efficient calculation of
buckling loads for symmetric frame structures. This is achieved by decomposing
a symmetric model into two submodels followed by their healing to obtain the
factors of the model. The buckling load of the entire structure is then obtained by
calculating the buckling loads of its factors [2].

In the third part, the graph models of planar frame structures with different
symmetries are decomposed, and appropriate processes are designed for their
healing in order to form the corresponding factors. The eigenvalues and eigenvectors
of the entire structure are then obtained by evaluating those of its factors. The
methods developed in this part simplify the calculation of the natural frequencies
and natural modes of the planar frames with different types of symmetry [3].

In the fourth part, methods are presented for calculating the eigenfrequencies of
structures. The first approach is graph theoretical and uses graph symmetry. The
graph models are decomposed into submodels, and healing processes are employed
such that the union of the eigenvalues of the healed submodels contains the
eigenvalues of the entire model. The second method has an algebraic nature and
uses special canonical forms [4].

In the fifth part, general forms are introduced for efficient eigensolution of
special tri-diagonal and five-diagonal matrices. Applications of these forms are
illustrated using problems from mechanics of structures [5].
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In the sixth part, the decomposability conditions of matrices are studied. Matri-
ces that can be written as the sum of three Kronecker products are studied; examples
are included to show the efficiency of this decomposition approach [6].

In the seventh part, canonical forms are used to decompose the symmetric line
elements (truss and beam elements) into sub-elements of less the number of degrees
of freedom (DOFs). Then the matrices associated with each sub-element are
formed, and finally the matrices associated with each subsystem are combined to
form the matrices of the prime element [7].

In the final part, an efficient eigensolution is presented for calculating the
buckling load and free vibration of rotationally cyclic structures [8]. This solution
uses a canonical form linear algebra that often occurs in matrices associated with
graph models. A substructuring method is proposed to avoid the generation of entire
matrices. Utilising the aforementioned method, the geometric stiffness matrix is
generated in an efficient time-saving manner. Then solution for the eigenproblem is
presented for geometric nonlinearity via the canonical form based on block
diagonalisation method.

7.2 Vibrating Cores for a Mass—Spring Vibrating System

Consider a symmetric system shown in Fig. 7.1a. This system is symmetric, and its
properties can be studied using its substructures.

These properties consist of the mass m; and the stiffness k;. The masses,
stiffnesses and their connectivity are considered to be symmetric with respect to
the axis shown in Fig. 7.1a.

This system can be considered as two identical subsystems connected to each
other with a spring, knows as a link spring, as shown in Fig. 7.1b.

This system has two degrees of freedom v, and v,. The natural frequencies and
natural modes for the following eigenproblem

{[K] - *[m]}{} = {0} (7.1)

can be found as
| K] — @*[m] | =0. (7.2)

where [K] is the stiffness matrix and [m] is the mass matrix of the system. The
eigenvalues and eigenvectors are denoted by w; and ¢;, respectively.

Since [K] and [m] are both symmetric, therefore the matrix [[K] — w*[m]] has
Form II as the following:

ki +k, — w2m1 —ky

—ks ki +k, — a)2m1 ’ (7.3
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Fig. 7.1 A symmetric a
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subsystems with link spring
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Using @>m; = A, one can write

(kl + kz) -1 —ko
=0. 7.4
‘ —k2 (ki +ko) — 2 7.4
Since the stiffness matrix has Form II, thus one can find its eigenvalues by
calculating those of its condensed submatrices

C = [k; + ky — ko] = [ki]

(7.5)
D= [kl + ky Jrkz} = [kl + 2k2].

The matrices C and D partially contain the eigenvalues of S. Since these
submatrices have a nature similar to that of the overall stiffness matrix, thus the
condensed matrices C and D define the stiffness matrices of the subsystems as
shown in Fig. 7.1.

The structure corresponding to the condensed submatrices are referred to as
vibrating cores. These vibrating cores contain part of the properties of the vibrating
system. Therefore, the eigenvalues and eigenvectors of the overall structure can be
found using those of C and D subsystems, Fig. 7.2.

For the system S having N degrees of freedom, m and K are N x N matrices, and
if the structure is symmetric, the corresponding submatrices will be % X %

For investigating the vibrating modes of S and vibrating cores, consider the
following definitions:

Definition 1. Let matrix M be in Form II as follows:

A B

B A
Let the corresponding eigenvalues of M be Ay, 4,, 43, ..., 4, with eigenvectors

being as ¢, §,, @3, . . ., ¢,. The eigenvectors can be classified into two groups:

M = (7.6)
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Fig. 7.2 Subsystems ki m;

corresponding to condensed C:
submatrices C and D '
2K, my k4
D: j—/\/\/\/\’%w\/—k

First group: those with eigenvectors having % repeated entries
Second group: those with eigenvectors having % repeated entries with reverse signs

Definition 2. If matrix M has a symmetry in Form II, then the condensed matrices
are

C=A+BandD = A — B. (7.7)

The eigenvectors of C are of the first group type and those of D are of the second
group type.

Therefore, if the eigenvectors for the eigenvalues of C (with entries) are

N

2
calculated, then those of M can easily be obtained by addition of %
those of D with reversed signs should be added.

entries, and

7.2.1 The Graph Model of a Mass—Spring System

The mathematical model of a dynamic system consists of masses and springs.
These masses are connected by means of springs. As the mathematical model, a
weighted graph is defined as follows:

1. The supports in the mathematical model are associated neutral nodes in the
graph.

2. For each mass, a node of graph is associated, and its weight is taken as the
magnitude of the mass.

3. An edge is considered for each spring, and its weight is taken as the stiffness of
the spring.

As an example, the graph model G1 of a dynamic system shown in Fig. 7.3a is
depicted in Fig. 7.3b.
For a dynamic system, we have

K¢ = 0’mé = [K — 0’m]d = 0. (7.8)

This is an eigenvalue problem for which @ is the eigenvalue and ¢ is its
eigenvector.
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If we assume m as a diagonal matrix, then its inverse can easily be found, and we
will have

m K¢ =m 'o’'mp = m 'K¢ = 0’p = [m 'K — o’Ij¢ = 0. (7.9)

If [m~'K] = [Lt] and A = ©?, then we have
[Lt — Allp = 0. (7.10)
This is an eigenvalue problem corresponding to eigenvalues and eigenvectors
of L. This relationship can be associated with the corresponding graph. If L is the

generalised Laplacian of the graph, then the above problem becomes an
eigenproblem of a graph.

7.2.2 Vibrating Systems with Form Il Symmetry

As an example, the generalised Laplacian matrix for the graph G1 in Fig. 7.3 has the
following form:

k] + k2 — m ‘ —k2

Ly — (7.11)

—k> ‘ ki +k, —my

For a symmetric graph, an appropriate numbering of the nodes results in a
generalised Laplacian matrix with Form II.

Example 7.1. Consider a dynamic system as shown in Fig. 7.4 with graph model
being G2.

This graph is symmetric and its Laplacian and generalised matrices are as
follows:
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Fig. 7.4 A dynamic system and its graph model
ki+k+ks -k } —k3 0
—k» kr + k3 0 —Kk3
L= —k3 0 ki+k+ks -k (7.12)
0 —k3 —k» kr + k3
k] —|—k2—|—k3 — m —k2 —k3 0
Lo — —ks ko +ks —mp 0 —k3
T = —k3 0 ki +k, +ks —my —ks
0 —k3 —k2 kz + k3 — my
(7.13)

For the symmetry in Form II, the generalised Laplacian matrix can be written as
S LI
Lt = {LI S ] (7.14)

The submatrix S is called the shape matrix and represents the properties of both
subgraphs, which are identical, and LI is called the /ink matrix and shows the way
two subgraphs are connected to each other. The submatrix LI represents the effect
of the springs between two subgraphs in the stiffness matrix.

As mentioned before, we have an eigenproblem for the matrix Lt. According to
the properties of Form II, if [S+ LI] =C and [S— LI} =D, then L't can be
expressed as

) C 0
L= [0 D} (7.15)

If L'y is the generalised Laplacian matrix of a graph, then this graph will consist
of two subgraphs with N/2 nodes for each subgraph which are not connected to each
other, and Lt has eigenvalues as



7.2 Vibrating Cores for a Mass—Spring Vibrating System 159
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EIG(Ly) = EIG(C) UEIG(D). (7.16)

Thus, the subgraphs C and D are the dynamic cores of the model. Each core
defines part of the natural frequencies w; of the entire system.

{o1,} = {wp} U {we}. (7.17)

As an example, for graph G2, the cores C and D are shown in Fig. 7.5.
Laplacian matrices of C and D are as follows:

. ki+k, —ko
Lc = [ ks ks :| (7.18)
and
ky + kp + 2Kk3 —ks
Lp = 7.19
P [ —ka ks + 2Kk3 ] (7.19)

As mentioned previously, the Laplacian matrix of the corresponding graphs is
the same as the stiffness matrices of the mathematical model for each subgraph C
and D as shown in Fig. 7.6.

7.2.3 Vibrating Systems with Form III Symmetry

For a symmetric system with odd number of masses, the corresponding graph will
have Form III symmetry. For such a system, the vibrating cores can be identified
using symmetry.

As the third example, consider the model shown in Fig. 7.7a.
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Fig. 7.7 A dynamic system
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The corresponding graph is shown in Fig. 7.7b.
The Laplacian and generalised Laplacian matrices are as follows:
ki + ko 0 -k,
L= 0 ki+k -k, (7.20)
-k -k, 2k,
ki +k, —my 0 -k,
LT — 0 k] + k2 — my —k2 (721)
—k2 —kz 21(2 — My
As it can be seen, both L and Lt have Form III.
The Laplacian matrices corresponding to the vibrating cores are given below:
Lp = [k; + ks — 0] = [k + k], (7.22)
and

L [kitk —k
E7 2k, 2k3 |°

(7.23)
The graphs of these matrices are shown in Fig. 7.8.

If there is a directed edge between two nodes i and j directed from i to j, it
represents a directed spring in the dynamic system, Fig. 7.9. The main characteristic
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of such a spring is that the connection of this spring to masses is such that it does not
take part in the stiffness of k;;, but it effects the k; j, that is,

The mathematical models corresponding to the cores D and E are shown in
Fig. 7.10.

According to the properties of the cores,
{ﬂLT} = {ﬂD} @] {/15}7 (7.24)

and

and from the vibrating cores E and D, the natural modes of the entire system can be
found.

If each a vibrating system contains symmetry, then the cores can be decomposed
accordingly. Further decomposition of the refined cores for symmetry is also
possible.

7.2.4 Generalized Form III and Vibrating System

As described in Chap. 4, for a graph with symmetric core having Form III, if the
complement of the core is connected by the nodes of degree 1, then the nodes can be
ordered to produce a Laplacian matrix of Form III. This property can also be used
for graphs corresponding to the vibrating systems.

Consider the system in Fig. 7.11a together with its graph being illustrated in
Fig. 7.11b.

The subgraph containing the nodes A, B and C has a symmetric core of Form III.
The nodes E and D are connected to this core through C. Therefore, the Laplacian
matrix of this graph will be in the generalised Form III. L and Lt are formed as
follows:
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Fig. 7.11 A dynamic system and its graph model

ki +k; -k —ks 0 0
—k; ki + k; —k; 0 0
L= —ky —ks 2k; + k3 —k3 0 , (7.26)
0 0 —Kkj3 ks + k4 —ky
0 0 0 —ks k4 +Kks
ki +ky —my -k —ks 0 0
—k1 kl +k2 —my —k2 0 0
LT = —kz —k2 21(2 + k3 —1my —k3 0
0 0 —ks k3 + kg4 —m3 —ky
0 0 0 —ky4 ks +ks —my
(7.27)
The connected submatrices D and E are formed for L+ as
D= [kl +ko —my — (—kl)] = [21(1 +ky, — ml], (7.28)
k|—|—k2—m1—k1 —kz—kz 0 0
E— —ka —ky 2k, + k3 —mp —ks3 0
- 0 71(3 k3 + k4 — ms3 71(4 ’
0 0 —ky ks +ks —my
(7.29)
or
k2 — 1m —k2 0 0
. -2k, 2k, + k3 —my —k3 0
E= 0 —k3 k3 4+ k4 — m3 —ky (7.30)
0 0 —k4 k4 + k5 — My

The subgraphs associated with the cores D and E are shown in Fig. 7.12.
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Fig. 7.15 A dynamic system and its graph model

The form of the vibrating cores corresponding to D and E is shown in Fig. 7.13.

It can be observed that due to the symmetry, the generalised Laplacian is
decomposed into two submatrices of 1 x 1 and 4 x 4, and the cores are formed.

If N other nodes are connected to C in a similar manner, again the graph can be
decomposed into two cores D and E, as shown in Fig. 7.14. It should be noted that
the core D does not change.
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Fig. 7.16 The submodel D
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Thus, the natural frequency of the core D and the corresponding mode of the system
will be unaltered. Therefore, one can conclude that part of the natural frequency of the
symmetric system with Form III will exactly be reflected in the whole system.

Consider the system shown in Fig. 7.15.

The Lt Lp and Lg matrices are as follows:

A B C D E F
[k +ks; —my -k 0 0 —k3 0 T
-k ki +ko —my 0 —k; 0 0
Lo — 0 0 k] +k3 —my —kl —k3 0
T 0 —k, ki ki+ky—m 0 0
—k3 0 —k3 0 2k; +k4 —my —k4
L 0 0 0 0 —ky k4 +ks —mj |
(7.31)
| ki +ks —m -k
Lp = K, K +2ks —m; | (7.32)
And the corresponding graph and model are illustrated in Fig. 7.16.
Also we have
k] + k3 —mj —k1 —k3 0
_ —k] k] — my 0 0
Le=1 o, 0 ks ki —ms Ky (7.33)
0 0 —ky k4 + ks — m3

And the corresponding model and graph are shown in Fig. 7.17.
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7.2.5 Discussion

Symmetry of a mathematical model corresponds to the symmetric distribution of
the physical properties comprising of masses and stiffnesses of the springs and the
connectivity of the masses by means of springs.

For the graph model of a dynamic system, symmetry of Form II results in two
vibrating cores C and D. These cores are physically identified with the difference of
C being more flexible than D, and the main frequency and the corresponding mode
are contained in this part of the model.

For the graph model of a vibrating system having Form III symmetry, the two
vibrating cores D and E are produced. The number of masses and springs in D is less
than E, and directed springs are included in the core E.

Although the systems studied in here are mass—spring systems, however, the
application of the present method can be extended to other structural systems. The
application can also be extended to stability analysis of frame structures.

7.3 Buckling Load of Symmetric Frames

In this part a method is presented for efficient calculation of buckling loads for
symmetric frame structures. This is achieved by decomposing a symmetric model
into two submodels followed by their healing to obtain the factors of the model. The
buckling load of the entire structure is then obtained by calculating the buckling
loads of its factors.

7.3.1 Buckling Load for Symmetric Frames with Odd Number
of Spans per Storey

In this section, symmetric frames with an odd number of spans per storey are
studied. The axis of symmetry for these structures passes through the central
beams. For these frames, the matrices have canonical Form II patterns.

Non-sway Frames: Frames with no sway have no lateral displacement, and only
rotational DOF specifies the deformation of the structure. In this study, for rigid-
jointed frames in each joint, one rotational degree of freedom is considered.

For non-sway frames with odd number of spans per storey, if the loading is also
symmetric, then the stiffness matrix with an appropriate numbering of the DOF will
have canonical Form II pattern. In this case, the structure has two factors, one of
which is stiffer than the other. Naturally the weaker factor will have smaller
buckling load. Therefore, in order to find the buckling load for such a frame, with
N DOF, it is sufficient to calculate the buckling load of a weaker factor with N/2
DOF. This process reduces the computational time and the necessary storage.
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Fig. 7.18 A simple
symmetric bending frame

Decomposition and Healing Process: The operations performed after decompo-
sition is called the healing of substructures. The submodels obtained after the
decomposition and healing are known as the factors of the structural model.

Healing for different types of symmetry requires different operations. These
operations are designed such that the resulting factors correspond to the aforemen-
tioned condensed submatrices of the canonical forms.

For the non-sway frame with odd number of spans per storey, healing consists of
the following steps:

Step 1. Delete the beams which are crossed by the axis of symmetry. These are link
beams and are identified by Lb. Now the structure is decomposed into two
substructures S; and S, in the left- and right-hand sides, respectively.

Step 2. For Sy, add one rotational spring, with a stiffness equal to 65—5: =

joint at the ith storey. This provides the necessary stiffness requirement for

obtaining the factor C.

Step 3. Add a rotational spring to S,, with a stiffness of magnitude

kci, to the

2El, __
b —
Lis

joint of the ith storey. This provides the necessary stiffness requirement for
obtaining the factor D.

kDi» at the

S, and S, are now healed and the factors C and D are obtained.
The reason for selecting such stiffnesses for the springs is discussed by the
following simple example.

Example 7.2. Consider a simple symmetric portal frame with symmetric buckling
mode as shown in Fig. 7.18.

The stiffness matrix of the element with the numbering of the DOF as illustrated
in Fig. 7.19 is formed using the standard stiffness method.

6 =1 =6 1
12 -6 { -12 6 s, W ‘ R
-1
k*g —6 4 6 =2 _E 10 15 10 30 734
3|12 6 12 —6| L|=* F | ¢ F (739
6 =2 -6 4 -1 1 =1 2
0 30 0 15
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Fig. 7.19 Numbering of the 2 4
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For the entire structure, the stiffness matrix is constructed as

8—42 | 2 _ PL?
K= L%{ 3 | 8_M},where /1_30EI' (7.35)

The numbering of the DOF should be such that the difference between symmetric
DOF becomes N/2.
The condensed submatrices of K are

6EI 4EI PL? EI
A-B= |55 x-— [6 — 44] and
L’ L3 30EI| L° (7:36)
10EI 4EI PL2 EI ’
A+B=|— —— 10 — 42
* { [ER T 3OEI} Bl b

corresponding to the factors D and C, respectively.
Design of the Factor D: A factor for which the stiffness matrix is

{% — 4 W} may be considered as a column under axial load P, with a spring

of stlffness ke = 6EI.

Design of the Factor C: Similarly, a factor for which the stiffness matrix is

{1851 ‘f;l X 31301151} can be taken as a column under axial load P with a spring of

stiffness kp = IE];:I.

In order to determine the buckling load of the frame, the determinant of the
stiffness matrix is equated to zero:

detK = det[A — B] x det[A +B] =0
(7.37)
|6 —44] =0 and |10 — 44| =0
leading to
A1 =15 and 4, =25.

Therefore,

L2 45EI

Amin = 1.5 = 30EL leading to P = 47
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Fig. 7.20 Factors of the
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Alternative Solution: First the factors are formed as shown in Fig. 7.20. The
buckling load of the structure is obtained by finding the buckling load of the factor D.

2EI 6EI 2P 10EI 2P
Ke= |52 +—m— | = |5 o

L > 15L LF 150 738)
o _ [2E (2)+2EI 2P| [6EI 2P :
P L’ 15L| |L3  15L

Equating the determinant of Kp, to zero, the same buckling load is obtained. This
approximation is very crude and can be improved by considering each column as
two or more elements. As an example, the columns with two elements are consid-
ered as shown in Fig. 7.21.

Now the structure consists of four rotational degrees of freedom and two
translation degrees of freedom. The corresponding stiffness matrix is obtained as

24-72 0 —6 434 0 0 0
0 8—81 2+14 0 0 0
—64+32 2+1 1+4-44 0 0 !
0 0 0 24-722 0 —6+31
0 0 0 0 8—81 2424
0 0 ! —6+312 244 L+4-42

(7.39)
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Fig. 7.22 A one-bay two- a b
storey symmetric frame. 2 4 6 12
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where 1 = .
120EI
Forming the determinants of A + B and A — B and equating to zero results in
. 22.21EI L .
Amin = 0.185 corresponding to P, = T which is quite close to the exact

buckling load. In this case, the lowest critical load is known to correspond to
antisymmetric mode, and as it will be shown in Sect. 3.2, the buckling load for

that case will be P, = @
Example 7.3. Consider a one-bay two-storey frame as shown in Fig. 7.22. This
example is studied with two different discretisations. In the first model, each
column is considered as one element as in Fig. 7.22a, and in the second model,
each column is subdivided into two elements, as illustrated in Fig. 7.22b.

The overall stiffness matrix is formed as

122|120 0.4000 —0.0333 ’ 0 0

K*E 2 8/ 0 2 P|-0.0333 0.1333 0 0
T3l 2 0122 L 0 0 0.4000 —0.0333
02|28 0 0 ’ —0.0333 0.1333

The smallest eigenvalue, using det K = 0, leads to the buckling load of the
frame as

19.7545E1
=T

However, this is not a good approximation, since only one element is used for
each column. The result can easily be improved by idealising each column by two
elements, as shown in Fig. 7.22b. For this model, the stiffness matrix is formed as
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(192 0 —48 0 0 0 0O 0 0 0 0 0
0 64 16 0 0 0 0 0 0 0 0 0
48 16 36 0 0 0 0 0 2 0 0 0
0 0 0 192 0 —48 0 0 0O 0 0 0
0 0 0 0 64 16 0O 0 0 0 0 0
K_Fl| 0 0 0 -48 16 36 0O 0 0 0 0 2
Tl 0 0 0 0 0 0 192 0 48 0 0 0
0O 0 0O 0 0 0 0 64 16 0 0 0
0O 0 2 0 0 0 48 12 36 0 0 0
0O 0 0O 0 0 0 0 0 0 192 0 -—48
0O 0 0O 0 0 0 0 0 0 0 64 16
0 0 0 0 0 2 0 0 0 -—48 16 36 |
[ 48 ) ]
20 = 0 0 0 0 0 0 0 0 0
5 5
0 16 —2 0 0 0 0 0 0 0 0 0
15 15
2 -2 8
= = 2 0 0 0 0 0 0O 0 0
5 15 15
0 0 0 25—4 o L1 0o 0o 0o 0o 0o o
8 1
0 0 0 0 -5 | 0 0 0 0 0 0
1 -1 4
0o 0 0 — — — 0 0 0 0 0 0
_P 5 15 15
o 0o o o0 o 48 0 -2 0 0 0
> 16 %
0 0 0 0 0 0 0 = 55 0 0 0
2 -2 8
0.0 0 0 0 0|5 5 5 0 0 0
0 0 0 0 0 0 0 0 0 24 0o !
5 5
0 0 0 0 0 0 o 0o o o o> I
15 15
1 -1 4
0 0 0 0 0 0 0o 0 0 — — —
L 5 15 154

The matrix K has Form II symmetry, and the smallest eigenvalue can be obtained

11.1049E1
leading to 4;, corresponding to P, = —Q The exact value for the critical
. 12.6EI
load is Periexacly = Iz

Alternative Solution: The solution with one element per column indicates that
for calculating the buckling load of the entire structure, one can calculate only the
buckling load of the factor D of the frame, as shown in Fig. 7.23.

For this factor, det Kp = 0 leads to
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Fig. 7.23 The factor D of the P
structure
-5 * kp

10-152 244

detl " H i1 6-91] "

0 (7.40)

or
EI
Amin = 0.4273  and P, = 1282?’

and this is the same result as previously obtained.

Sway Frames: In this section, the buckling load of symmetric frames with sway
is studied. For simplicity, the axial deformations of the beams are neglected.
Therefore, for each storey, one lateral DOF is assumed, that is, the displacements
of the two ends of each beam have the same magnitude.

In order to have the canonical Form III pattern, first, the rotational DOF should
be numbered suitable for the formation of the Form II pattern with submatrices A
and B, followed by free numbering of the translational DOFs of the stories forming
the augmenting rows and columns. Then the stiffness matrix will have canonical
Form III pattern.

In this case, for the formation of the factors of the frame, a new element should
be defined, Fig. 7.24. Consider the following column with new values for its
stiffness as

6 -6 3 3
2B1| -6 6 -3 -3
k=510 o0 o0 ol (7.41)

o o0 0 O

With an axial load P, the above matrix becomes



172 7 Canonical Forms Applied to Structural Mechanics

Fig. 7.24 A new column P

element
1 ) 3

I
i

Fig. 7.25 A symmetric
portal frame with
antisymmetric sway buckling
mode

6 -6 1
6 -6 3 3 5T fq i
Ko 2Bl -6 6 =3 3] PI% & 5 55 (7.42)
2lo o o o L|I0O 0O 0 O
0 0 0 0 0 0 0 0

7.3.1.1 Decomposition and Healing Process

For a sway frame with odd number of spans per storey, the process of the formation
of the factors D and E consists of the following steps:

Step 1. All the beams crossed by the axis of symmetry are deleted.
Step 2. For the substructure in the left-hand side, a rotational spring with the

stiffness % is added to obtain the substructure D. This provides the necessary
Lb

stiffness requirement for obtaining the factor D.
Step 3. For the substructure in the right-hand side, the DOF for the beam is removed
and a rotational DOF with stiffness equal to % is added.
Lb
Step 4. The translation DOF only affects the substructure E, and all the columns of
E are doubled by the addition of the new column elements, introduced in the

previous section, with corresponding stiffnesses.

Addition of the spring in the previous step, together with the new column,
completes the formation of the factor E.
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Example 7.4. The symmetric frame shown in Fig. 7.25 had a stiffness matrix with
canonical Form II pattern when no lateral displacement was present. However, due
to the presence of the lateral displacement, the corresponding stiffness matrix has
canonical Form III pattern.

The stiffness matrix is now formed as

8 2 —6] p[2/15 0 —1/10
K==12 8 —6/—-| 0 215 —1/10. (7.43)
—6 —6 24 ~1/10 —1/10 12/5

This matrix is written as
8 — 44 2 —6+ 31

2 §—41 —6+34 (7.44)
—6+31 —6+31 24724

_EI

K=D

_ pL?
where 4 = 30T -

Consider a stiffness matrix in Form III as

A B P
K=(B A P (7.45)
P P R
The condensed submatrices of K are
EI EI
[D]:[A—B]:—3[8—4/1—2]:—3[6—4/1], (7.46)
L L
and
_|A+B P| EI| 10-42 —6+31
[E]_{ 2P R} _F[—12+6/1 24—721} (7.47)

Design of D is the same as that of the non-sway frame, discussed in the previous
section.
Design of E: The condensed matrix E for the present example can be written as

4Bl  2BI 2P _ 3Bl _3EI__ P
E— Exn Ex| L 'L 15L L* L 10 7 48
= |E, Eu | |of=3E_3E1_ » 12EI | 12E1 _ 12P |- (7.48)
32 33 L3 3 10L L3 L3 5L

Deleting the second row and column, a one-by-one matrix E,; is obtained which
corresponds to the factor C in non-sway frame and can be introduced to the factor E
by adding a spring of stiffness equal to % In order to incorporate the remaining
submatrices of E, a new column element is introduced as shown in Fig. 7.24.
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Consider the stiffness matrix of this column as

« | ki Kny
K = {km kw}’ (7.49)

where k; expresses relationship for translation DOF, kyy corresponds to rotation
DOF and ky; and kyy; express relationship for translation and rotation DOF.

Since the spring with stiffness % is already included in the column, hence the
new column element should have no additional effect on E,,, and therefore, kpy
should have all zero entries. For the formation of E,3, the entry K3 in the overall
stiffness matrix K should be introduced. Thus, the new column should have zero
entries in kyy position. According to Form III decomposition, for a symmetric
matrix, E3, is equal to 2E,3, that is, the entry Es, is the same as k3, in the main
column of the substructure C, plus itself, that is, the new column in ky position
should have entries similar to those of a column element in the same position. In the
present example, the entry E3, is obtained by the sum of K3, with itself:

_EI 6 6 P ILO %
kII—F[_6 —6}_E{ I - (7.50)

10 10

In order to transfer the effect of translation from substructure D to that of E, the
same stiffnesses as those of a general column (Eq. 7.34) are used, that is,

6 6
_EIf 12 12 Pl 3 5
kI_L3[—12 _12] L 7§ 7§ (7.51)
5 5
Thus, the stiffness matrix of the new column is obtained as
6 -6 1 1
12 —-12 6 6 g ? E 1_0
EI|[-12 12 -6 -6 P|l-6 6 -1 -1
k' =— = = — —, 7.52
L’ 0 0 0 O L|5 5 10 10 (7:52)
0 0 0 0 0 0 0 0
0 0 0 0

and the reasoning is complete. This is an imaginary stiffness matrix, and such a
column may not exist in the nature. However, the latter property has no effect on
our calculations.

Now the determinant for the stiffness matrix of the entire structure is equated to
Zero as

10-41 —6+434

detK = detD x detE = det[6 — 44] x det 12462 24—722

=0, (7.53)

leading to



7.3 Buckling Load of Symmetric Frames 175

detD=0= 4, =15
det E=0= 4, =2.5 and 43 = 0.248.

Therefore,

EI
Amin = 0.248 and P, = 7.44—2.
L

The buckling load can be obtained by the direct eigensolution of a 3 x 3 matrix
asP, =75 % More exact value of the buckling load is obtained by the solution of
the corresponding differential equation leading to P, = 7.34%.

For this example, the buckling load obtained by the present method is closer to
the exact value compared to the case when the stability analysis of the entire
structure is performed.

It can also be observed that for calculating the buckling load, only the
formation of the factor E is needed. This reduces an eigensolution problem of
size (m + n) X (m + n) to (m + n/2) x (m + n/2), where m and n are the transla-
tion and rotation degrees of freedom, respectively.

7.3.2 Buckling Load for Symmetric Frames with an Even Number
of Spans per Storey

In this section, frames with an even number of spans per storey are studied. The axis
of symmetry for these structures passes through columns, and we have no link
beams. For these frames, the stiffness matrices have canonical Form III pattern.

Non-sway Frames: For this type of frame, first, the symmetric DOF is numbered
suitable for canonical Form II part, followed by numbering the DOF corresponding
to central joints. With this numbering, the stiffness matrix will have canonical
Form III pattern.

7.3.2.1 Decomposition and Healing

Step 1. Cut the structure in a small distance € to the left-hand side of the axis of
symmetry.

Step 2. The cut ends are altered to clamped supports. The factor D is now obtained.

Step 3. For each central joint in the substructure of the right-hand side, add a simple
support and connect this joint with a directed beam to the other end of the
existing beam, as illustrated in the following example. Then the factor E is
obtained.
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Fig. 7.26 A two-span

[}
U
symmetric non-sway frame />:<\
P 5 [P o P
In  Fy
I EI EI
T
— L—— 1
Fig. 7.27 Factors of the a b
considered frame. (a) Factor 1P 3 P 2 | P
D. (b) Factor E k \ '/\

Example 7.5. Consider the frame shown in Fig. 7.26. This frame has three DOFs,
consisting of two symmetric DOFs and one central DOF.
The stiffness matrix, with canonical Form III pattern, is obtained as (Fig. 7.27)

2
gr4+4 0 2 pl5 (2) 0
K=—=| 0 4+4 2 iy 0 £ O (7.54)
L 2 4+4+4 00 2
Assuming
_2pP
~ 15EI’
we have
EI EI[8—21 2
D=8 andEﬁ[ ) 12_2], (7.55)
leading to

M =8, 1,=717, and i3 = 12.82,

and P, = 53.78 5.
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Alternative Solution: In this approach, the factors are formed using the decom-
position and healing algorithm of the previous section. For each factor, the stiffness
matrices are

EI EI[8—
D=— [8 A2 } (7.56)

—L3[8—/1] andE:F 4 127

leading to the same buckling load as
A =38, A =717, and 43 = 12.82,

and P, = 53.78 1.

It was mentioned before that, with a suitable numbering of the DOF, for
symmetric frames with an even number of spans, the overall stiffness matrix of
the frame has a canonical Form III pattern as

A B P
K=|B A L|, (7.57)
P LR

where P expresses the relationship of the DOF for the left part with those of the
central part, and L is the relationship of the DOF of the right-hand side and those of
the central part. Since the frame is symmetric, therefore P = L, and the decompo-
sition of

A B P
K=|B A P (7.58)
P P R
results in
- _|A+B P
D=[A—-B| and E= { P R} (7.59)
For a typical beam, the stiffness matrix is as follows:
12 —12 6 6
ki kg 7% —-12 12 -6 —6
k= {kﬂ kzz} 13| 6 6 i 2| (7.60)
-6 -6 2 4

provided in the displacement vector, and rotations are multiplied by L.
For frames with no sway, only the rotation DOF of the beams is of interest, and
therefore, only the submatrix ks, is important.
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Fig. 7.28 A two-span sway 1P 3 P 2 | P
frame LD

L EI EI
— L —— 11—
For a beam (i,j) the matrix L is as follows:
El |4 2|
Lzﬁ{z 4]j' (7.61)

After decomposition of S, the left-hand substructure corresponds to the condensed
submatrix D. The effects of the central columns are all included in E, and therefore,
the dimension of E is bigger than D by the number of DOF for central nodes, and for
each column, one rotation DOF is considered on the top end of the column.

Design of D: The cut for decomposition is slightly towards the left of the axis of
symmetry. In this way a correct number for the DOF of D which is half the
symmetric DOF is obtained. Fixing the cut ends in D, the rotation DOF stays
unaltered and hence provides the correct DOF.

Design of E: For the substructure in the right-hand side, the DOF of the central
nodes is transferred to the right-hand substructure. The stiffness of the two ends of
the beams is not the same; therefore, a directed beam is defined, leading to a
nonsymmetric stiffness matrix.

As an example, for the frame shown in Fig. 7.28, we have

EI

D=5 (7.62)

_ |Exn Exp| EI[8 2
[8] and E{Eﬂ E33]F 4 1l

For the substructure E, we should add a member such that in position Ess, the
stiffness is increased by k;; in Eq. 7.62, and in E,,, it should remain unchanged, that
is, kj; should be zero. This member should increase E3; by k;;, but E;3 should be left
unaltered; that is, kj; should have null value. Hence, the stiffness matrix of this beam
will be in the following form:

EI [4 2
5 { 0 0] . (7.63)
With a direction on this member from i to j, corresponding to a nonsymmetric
stiffness matrix, the above conditions are fulfilled. Here, i is the central node and j is
the other end of the right-hand side beam.
Considering the entries of 2P in E, one finds out that these entries can be
obtained by moments at the central DOF under the action of unit displacements
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—_

Fig. 7.29 The factors of the

P P
considered frame '/‘\ R '/‘\ '/"\

in the DOF of the right-hand side. Thus, for the formation of the submatrix E, this
moment is doubled, while the reverse action is not doubled. The importance of
directed beams in the formation of the factor E becomes apparent.

Sway Frames

The stiffness matrices of these frames, with appropriate numbering of the DOF,
have canonical Form III patterns. Here, the axis of symmetry passes through one or
more joints. Similar to the non-sway case, first, symmetric DOF is numbered with
n/2 difference suitable for canonical Form II pattern. Then the translational DOF is
numbered. In this numbering, the central joint DOF for storey i is more than j if the
symmetric DOF of storey i is bigger than those of j. With this numbering scheme,
the stiffness matrix of the frame will have canonical Form III pattern.

7.3.2.2 Decomposition and Healing

Step 1. Cut the main structure with an axis passing from a small distance € to the left
of the axis of symmetry.

Step 2. Consider clamped supports for all the ends cut by this axis. The formation of
the factor D is now completed.

Step 3. In the right-hand side substructure, for each cut beam, add a directed beam
from central joint to symmetric joint to obtain E.

For this case, all the necessary elements are previously discussed and the necessity
of above steps should be obvious.

Example 7.6. Consider the frame shown in Fig. 7.28.
This structure is factored to D and E as illustrated in Fig. 7.29.
The stiffness matrices of D and E are obtained as

EI
D=SB—i=h=8

8 — ) 2 —6—0.751
4 12-4  —6-0.75) (7.64)
—12-1.54 —6-0.751 36—324

EI
E:—3
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180
Fig. 7.30 A two-span one-
S S ic fi
storey symmetric frame 5 P NE 6P
10 £ £y
Lh,
L 1 -7 4
EI=Const. i -
— L —— L —
2PL2
h = .
where A Goi
The solution is obtained as
A =0.729, 13 =6.88, and A4 = 15.13,
and P, = 5.47EL
The stiffness matrix of the factor E is
-5 1A
5 2 %10
8 0 2 -6 0 2 0 1
_EI| 0O 8 2 -6 P 15 10
K=Fl2 2 12 6| L o o 2 —I (7.6)
-6 -6 —6 36 15 10
-1 -1 -1 18
L10 10 10 5 J

Equating the determinant of this matrix to zero results in the same buckling load
for the frame.

For a better approximation, columns are subdivided into two elements and the
analysis is performed. As a second example, consider the frame shown in Fig. 7.30.

The stiffness matrix of this frame has canonical Form III with the following

submatrices:
192 — 724 0 —48 + 31 0 0 O
A= 0 64 — 81 16 + 4 and B=(0 0 O
—48+31 16+41 36—42 0 0 O
0 0 0 96-—364
P=|0 0 0 -—-48+34
0 0 2 —-48+34
192 — 724 0 —48 +31 96 — 364
and H — 0 64 — 81 16+ 4 —48 4 31
T | —48431 16 + 4 40 — 42 —48 + 34

96 —364 —48+31 —48+31 288 — 1084
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[192 —722 0 —48+4-31 0 0 0 192 —722 ]
0 64—-81 16424 0 0 0 —96+61
48434 16+1 36—44 0 0 4 —96 + 64
M+N= 0 0 0 192 —722 0 —484-31 96364
0 0 0 0 64—-81 16+1 —48+31
0 0 2 —48+31 16+4 40-41 —48+3]
| 96—-361 —48+31 —48+31 96—48) —48+31 —48+31 288 — 1084 |

The eigenvalues corresponding to this matrix are obtained as

AmsN = {0.3423,1.5268, 1.8055,5.7650, 13.0571, 14.7588}.

[192-724 0  —48+4312 0 0 0 0]

0 64—81 1644 0 0 0 0

—48+31 16+4 32—41 0 0 0 0

M-N= 0 0 0 0000
0 0 0 0000

0 0 0 0000

0 0 0 000 0

and ignoring the last four rows and columns, the eigenvalues for the above matrix
are obtained as

Am-N = {1.5695,5.2540, 13.7989}.

The smallest eigenvalue is therefore 4; = 0.3423, leading to P, = 5.1344EI/L2.

7.3.3 Discussion

Exploiting the symmetry of structures can be made by using discrete mathematics.
This prepares the ground for more efficient use of the computer and to an under-
standing which enables us to interpret the final results more readily. Factoring the
symmetric structures has the following advantages:

1. The DOF of the problem is reduced.
2. The computational effort is decreased.
3. The solution of larger problems becomes feasible.

Though the examples are selected from small structures, however, the method
shows its potential more when applied to large-scale structures.
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Fig.7.31 The new column tc,

fixed in F, direction ’
L
A
z

2D- tc
y

Fig. 7.32 The new column cc , 1=M\

z

2D-cc
y

77

7.4 Eigenfrequencies of Symmetric Planar Frame

In this part the graph models of planar frame structures with different symmetries
are decomposed and appropriate processes are designed for their healing in order to
form the corresponding factors. The eigenvalues and eigenvectors of the entire
structure are then obtained by evaluating those of its factors. The methods devel-
oped in this part simplify the calculation of the natural frequencies and natural
modes of the planar frames with different types of symmetry.

7.4.1 Eigenfrequencies of Planar Symmetric Frames with Odd
Number of Spans

7.4.1.1 Definitions

The Element tc for 2D Case: The elements defined in the following are used in
decomposition for doubling some columns in place of deleting the beams. The new
column is denoted by tc, as shown in Fig. 7.31, and it is characterised by Eq. 7.66.

The properties of the deleted beam L, my, EI

EI
K. = L—b x [6], My =
b

x [1]. (7.66)

The Element cc for 2D Case: This new column is denoted by cc, as shown in
Fig. 7.32, and it is characterised by Eq. 7.67.
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The properties of the deleted beam Ly, my, Ely

EI myL3
Ko = L—:’ x [2] and Mge = ﬁ

x [7]. (7.67)
Algorithm (a): The algorithm for the decomposition of planar frames with odd
number of spans, with or without sway, is designed as follows:

Step 1. Delete all the beams crossing the axis of symmetry.

Step 2. The columns corresponding to the left part, which are connected to the
eliminated beams, are doubled by tc columns. This half for the case of non-sway
forms the factor C and in the case of sway together with the translation DOFs
forms the factor E.

Step 3. The columns of the right half, which were connected to the eliminated
beams, are doubled by cc columns. This half for the cases of sway and non-sway
forms the factor D and in the case of sway together with the translation DOFs is
deleted.

Definition of the Function f(A): Consider A as a matrix. If m is the number of
translational DOFs, then f(A) multiplies the last m rows of A by 2.

Note: In the case of non-sway frame, the problem is solved by constructing the
submatrices M¢, K¢ and Mp, K corresponding to the Form II symmetry, and in the
sway case, the problem is solved by forming Mp,Kp and f(Mg),f(Kg)
corresponding to the Form III symmetry.

In this algorithm, the stiffness and mass matrices of the factor E are not the same
as those obtained from the original structure. However, the responses consisting of
the determinant and eigenvalues are identical, that is,

g i g ﬁ A+B S R

K, M= =D=A-B andE = 28 Y X |. (7.68)
S S Y X )R X Y
R R X Y

The stiffness and mass matrices of the factor E in the algorithm (a) are obtained
as

A+B S R
Ke,Mg=| S ¥ 3% (7.69)
R 33

The properties of the new columns are obtained by considering the interrelation of
the DOFs of the members. For the frames with odd number of spans, where the axis of
symmetry passes through beams, the effect of the deleted beams should be included in
the decomposed subgraphs. Adding the new columns serves as a means for
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transferring the properties of the main structure into the decomposed substructures.
These operations are healings which change the subgraphs into the factors.
Considering the Form II symmetry, we have

A B
k= [B A}’
C=[A+B] and D = [A —B|,
(JK} = {AC}T{iD}.

(7.70)

If we can construct substructures with the stiffness and mass matrices
corresponding to the above forms, then we can form the factors.

If the numbering is performed corresponding to the Form II symmetry, then the
submatrix B will represent the relation between the DOFs of the right side and the
left side of the frame, and the submatrix A represents the relation between the DOFs
of each half of the structure.

In general, for a beam column with one rotational DOF per node, we have

K — (7.71)

L2 4 220 ° |3 4

EI L} -
[4 2} M_m [ 4 3} _
Considering the relationship between the DOFs of the connecting beams, it
becomes obvious that the entries (1,1) and (1,2) in the mass and stiffness matrices
of the substructures C and D should be added and subtracted, respectively.

EI EI mL3 mL3
EI EI mL* mL*
(7.72)

It is obvious that the length and the elastic properties in these relationships
correspond to the connecting beams which are supposed to be deleted.

EI L}
Ke =72 [6], M= “:'JT(;’ x [1],
b
P R (1.73)
CC Lb ) cc — 420 .

In this way, the properties of the new columns are obtained.

Example 7.7. The symmetric frame shown in Fig. 7.33 is considered. This frame is
assumed to be constrained against sway and has only two rotation DOFs, as shown
in the figure.

The distribution of the mass in the link beam which crosses the axis of symmetry
should also be symmetric.
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Fig. 7.33 A symmetric 1 4EI 2
frame with two DOFs
ELm,L
<>
2L,1.5m
Fig. 7.34 Factors of the 1 2
frame of Fig. 7.3
El,m, L
C D

According to the algorithm (a), the decomposition of the frame is obtained in a
step-by-step manner, whereas in the previously developed methods, the factors
were obtained by adding springs and masses.

The properties of the added columns (Fig. 7.34) are as follows:

EI, 12EI mpL} 6mL?
K.=-—x1[6]=|— d Me=——"x[1] = |5+,
o=, x 0 {L] and - My =22 x 1] = | =70

EI 4EI my L3 42mL3 7.74)
Ko =—2x 2] = |[==— d Mg =-2"bx[7] = .
=1 *[ {L] and - Mee = =o 2 > [7] 210

Now the stiffness and mass matrices of the factors C and D are formed as

AEI 12EI]  [16EI mL , 6mL’] [8mL’]
Ke = [L+ L ]_ { L ] and Mc = [420X4L + 210] - [210_
420EI
CU2 =X = CO% = T,
4EI 4EI zI;nEI mL 42mL3 44mL*] (7.75)
e — —_— = —_— = —_— 2 =
KD[L L} [L}aﬂdMD [420X4L+ 210] [210_
420EI
o =X a)% =—7,
11mL

and the natural frequencies are easily obtained.

Example 7.8. The frame shown in Fig. 7.35 has 10 DOFs and has the Form II
symmetry.

The factors are constructed as shown in Fig. 7.36.

The stiffness and mass matrices of the added columns are as follows (Fig. 7.37):
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B A N )
T/ 4/ 4/ J
p) 4 9 7 .
) ™ ~ NN )
"/1 “/3 5 10 ‘/8 1% I3m
== == == e
4 m 3m 3m 3m 4m

Fig. 7.35 A symmetric frame with 10 DOFs

2 4 9 7
16y 2 4 m
1 3 5 10 8 6
3m
tey ccy
== == == =
4m 3m 3m 4m
C D
Fig. 7.36 Factors of the frame of Fig. 7.18
2 :z 4 9 7
tc, ccy 4m
10
1 1 3 5 8 6
tey ccy 3m
— — — —
S>> >
4m 3m 3m 4m
E D

Fig. 7.37 Factors D and E of the sway frame of Fig. 7.36
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El myL; 9m
tc; : = Ky, :L—:x [6]=[2El] & M, :%Obx [1]= {—} ,

El, 2EI mp Ly 9m
ccy: :>ch1 :L—b X [2] = |:T:| & Mccl = 420b X [7] = I:%] .

EI 2EI mpL3 243m
e =L 2xl0= ] & M=t [).
El 2EI mpL> 243m
CCy: = KCCz :L—; X [2} = |:7:| & MCCZ = 4bzob X [7] = |: 10 :| . (7.76)

The stiffness and mass matrices of the factors C and D are constructed as

4341 1 3 0o 0
AR P
Kc = EI x 2 0 #+4+4+% 2 3
L .
2 4, 4
0 0 5 0 3t3+2
Ll oo
L1 0 Lo
[} 0 7} 4.
0Lk o
0 0 3 0 1]
620 —192 —192 0 0
—-192 512 0 -192 0
m
=—|-192 0 728 —192 -81]. 7.77
Me=20| " ’ 777
0 —192 —192 1241 0
0 0 81 0 243
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RS R S o0
Pt 0 0
Kp = EI x 2 0 $+4+4+4 2 3
A N
0 0 2 0 1+442
Fhi00
L't olo
=2EI|; 0 % & %[, (7.78)
014w
0011 o3
620 —192 —192 0 0
—-192 512 0 -192 0
m
Mp=—|—192 28 —192 -8l
=75 |-192 0 72 92 -8
0 —192 —192 5615 0
0 0 81 0 405

In this way, the natural frequencies and the natural modes of this frame with 10 DOFs
are obtained using the equation of the motion of two factors each having five DOFs as

det [Kc — @’Mcl; =0 =
0.6EI 1.42EI 2.15EI 5.24EI 9.56EI
w%:T7a)§: - , 03 = - , W) = - and w3 = e
(7.79)
det [KD — a)ZMD}st =0 =>
0.15EI 1.1EI 2EI 3.52EI 5.57EI
wi = - , w3 = - ,w§:;7w§: - and @}, = -

Example 7.9. Consider the sway frame shown in Fig. 7.38, having 12 DOFs.
The factors are shown in Fig. 7.22.

The natural frequencies are similar to those of Example 7.8, and therefore,
0.15er , I1.1EI , 2EI , 3.52EI
7602 :_70)3 :—,CO4 =
m m m m

5.57EI
o

W = , 0% = (7.80)

There is no need to solve the equation det [Kp — @*Mp]s, s = 0 for finding the
eigenvalues. The formation of the factor D can be avoided.

El 2EI I 9
cor: = Ko, =—2x 2] = [—} and M, =% [7]= [ m]7

A 3 420 20
El 2EI % 243
ccrt = Ke, :éTbx 2] = {9] and My, :%Obx [7] = {mm] (7.81)
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Fig. 7.38 A sway frame with 12 DOFs

The stiffness and the mass matrices of the factor E are as follows:

B 7 0 0 aE § ]
R N
O L T U I o
Kg=EIx| 0 2 2 444+ o0 # s |,
0 0 2 0 $+3+2 7 0
P P R @ % Bai2xE -2xE
L & & @ F0 S2xE o 2xE
[ 620 —192 —192 0 0 —22x32+22x4? 13x42 ]
—-192 512 0 —192 0 —13x4? —22x4?
—-192 0 728 -192 -8l —22x 32422 x 4? 13 x 42
Mk% 0 —192 —192 1241 0 —13x4? —22 % 4?
0 0 —81 0 243 —22x3? 0
—22x32422x4% —13x4% —22x324+22x 4% —13x4? —22x 32 3x 156 x3+2x156 x4 2x54x4
13x4? —22x4? 13x 4% —22x4> 0 2x54x4 2% 156 x4 |
(7.82)

In this way, the natural frequencies and the natural modes of this frame with 12
DOFs are obtained using the equation of the motion of two factors having five and

seven DOFs.

The first five frequencies are as follows:

2EI

0.15EI 1.1EI 3.52EI 5.57E1
a)%: ,0)3277(1)%:7,6042‘: ,a)gz . (7.83)
m m m m m
The remaining seven frequencies are calculated from the factor E as
det [Kg — o’MEg], . =0=
, 0.022EI , 0251 , O0.61EI , 1.81EI
W =" T, BT » Wo =T T (7.84)
, 297EI , 5.67EI , 10.27EI
Wy =—"—"H O = Opp=— "
m m m
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Fig. 7.39 Factors of the frame in non-sway and sway cases

The factors of the main frame in the case of sway and non-sway are identical,
Figs. 7.22 and 7.39.

Only the factor E has the additional translation DOF. Thus, for calculating the
responses of a frame in sway and non-sway cases, instead of solving a problem with
nxn and (n+m)x (n+m) matrices, we need to solve three problems
corresponding to 5 x 7, 7 X 7 and (% + m) X (g + m) matrices, Fig. 7.40.

7.4.2 Decomposition of Symmetric Planar Frames with Even
Number of Spans

Algorithm for Decomposition: According to the present algorithm, each symmetric
structure with an even number of spans can be decomposed into two factors,
without introducing a new element. By obtaining dynamic properties of each factor
and considering the union of the results, one can obtain the dynamic properties of
the entire structure.

Definitions: A central element is defined as a column which coincides with the
axis of symmetry. Central nodes are taken as the nodes that coincide with the axis of
symmetry.

Algorithm (b): This algorithm is simple and consists of the following steps:
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Fig. 7.40 Three factors to be considered for the solution
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Step 1. Divide the frame into two halves from the axis of symmetry, such that the
moment of inertia for the central column and the mass of their unit length, m, are
reduced to half.

Step 2. Fix the central nodes in the left half. This half is the factor D and the right
half forms the factor E.

Therefore, one can solve the main eigenproblem by constructing submatrices
Kp, Mp and Kg, ME. In fact, the factors D and E obtained by this algorithm have the
properties of the entire structure.

Proof: The stiffness and mass matrices of the factors D and E in the algorithm (b)
are symmetric and can be formed as

and E = {Q R

D= [G]‘ R! Y:| (%+m)x(§+m)

a
2

2 (7.85)

where m is the total number of rotation and translation DOFs of central nodes and
translation DOFs vertical to the plane of symmetry and » is the total number of
symmetric translation and rotation DOFs.

If the numbering of the DOFs of main frame is performed in a special form
corresponding to the Form III symmetry, then the matrices will be decomposable
and can be formed as

A B S
KM= |B A S| =De=[A—B] andErealz[A;gtB )S(] (7.86)
st st X

After considering the interrelationship between the DOFs in the main frame and
in the factors and defining the function f, we will have

X
G=A-B, Q=A+B, R=S and Y:E

A+B S
s X

(7.87)

=D=[A—B] =D,y and E = { } = By = f(E).

In this algorithm, the stiffness and mass matrices of the factor E are not the same
as those of Mg and Kg of the stiffness and mass matrices of the main structure.
However, as has been mentioned in the previous section, the responses consisting of
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Fig. 7.41 A frame with three DOFs
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Fig. 7.42 The factors of the frame of Fig. 7.41
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Fig. 7.43 Alternative illustration of the factors of the frame of Fig. 7.41

the determinant and eigenvalues of the free vibration are identical to those of the
main structure as was desired.

Therefore, the factors E and D obtained from this algorithm have the same
properties as those of the main structure, and the problem is solved by constructing
the submatrices Kp, Mp and Kg, Mg.

Example 7.10. Consider the frame shown in Fig. 7.41, which is constrained
against sway. This frame has three DOFs. It is assumed that the frame has symmet-
ric elastic properties with respect to the two planes of symmetry.

The factors D and E are obtained using the algorithm (b) step by step as shown in
Fig. 7.42.

These factors can be considered as shown in Fig. 7.43.

The submatrices corresponding to these two factors are obtained, and their
characteristic equations lead to the eigenfrequencies required as follows:
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Fig. 7.44 A frame with four spans

3 3 3
Ko — {4El+4EI] _ [SEI} and My, [4m€ +4m€] _ {Smé}

l L 14 420 420 420

420EI
2 _ 2 _
det[KD—a) MD] —0:>601 —W
4EI 4EI 2EI
e W Tt T
Ke=| 281 4B1 4(%)|= EI 4EI 4(B)
] —+—2
¢ ¢ ¢ (7.88)
4me n 4m/3 —3ms
420 ' 420 420 2
Mg = det[Kg — *Mg| = 0
k “3mA  Amp 4E)A [Ke — oM
420 420 ' 420
,  525EI
7T A
, 378EI
= w3 = m—£4 .

Example 7.11. Consider the frame with an even number of spans as shown in
Fig. 7.44, where the frame has 10 DOFs without side sway and 12 DOFs with side
sway.

In the case of non-sway, the factors D and E are obtained as (Fig. 7.45)

In this case, the eigensolution of a 10 x 10 matrix is transformed into the
eigensolution of two 4 x 4 and 6 x 6 matrices.

In the sway case, the factors D and E are obtained as shown in Fig. 7.46.

The factors of the main frame in the case of sway and non-sway are identical.
Only the factor E has the translation DOF.
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Fig. 7.45 Factors D and E for the non-sway frame
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Fig. 7.46 Factors D and E for the sway frame

7.4.3 Discussion

Decomposition and healing process presented in this part reduce the dimensions of
the matrices for dynamic analysis of the symmetric frames. Therefore, for large-
scale problems the accuracy of calculation increases and the cost of computation
decreases.

It can be observed that for the symmetric frames, one of the factors is common
for sway and non-sway cases. Therefore, if a frame has n symmetric DOFs, then for
both sway and non-sway cases, we will have common results. As an example, for a
10-storey frame with Form II symmetry, the natural frequencies can be obtained by
three matrices of dimensions 45 x 45, 45 x 45 and 55 x 55 in place of two
matrices of dimensions 100 x 100 and 90 x 90. This results in a considerable
saving in computational time.
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7.5 Eigenfrequencies of Symmetric Planar Trusses via
Weighted Graph Symmetry and New Canonical Forms

In this part two methods are presented for calculating the eigenfrequencies of
structures. The first approach is graph theoretical and uses graph symmetry. The
graph models are decomposed into submodels and healing processes are employed
such that the union of the eigenvalues of the healed submodels contain the
eigenvalues of the entire model. The second method has an algebraic nature and
uses special canonical forms.

7.5.1 Modified Symmetry Forms

In this section, two modified forms are introduced, and methods are presented for
constructing a suitable weighted graph. These graphs are then decomposed, and
healings are performed to maintain the eigen-properties of the entire graph.

It should be mentioned that the Form II is applicable to the graph matrices like
Laplacian and adjacency matrices, or to the structural matrices when the structure
has only one degree of freedom per node, while Form A is defined for trusses with
two degrees of freedom per node. The same reasoning holds for the Form III and
Form B symmetry introduced in the subsequent subsections.

7.5.1.1 Symmetry of Form A (Modified Form II Symmetry)

For trusses with axis of symmetry passing through some members, we have the
Form A symmetry, as shown in Fig. 7.47a. The main reason for not being able to
employ the previously developed forms of symmetry for calculating the eigenfre-
quencies of truss structures is due to the existence of oblique cross members. These
members affect the entries of the stiffness and mass matrices and change the sign
for some of the entries. Separation of the horizontal and vertical DOFs, as shown in
Fig. 7.47b, results in stiffness matrices of the symmetric trusses for the case where
the axis of symmetry does not pass through the nodes as follows:

First the nodes in the left-hand side (LHS) of the symmetry axis are numbered
followed by the numbering of the nodes in the right-hand side (RHS). Now the
horizontal DOFs (along x-axis) are first numbered, and then the vertical DOFs (in y-
direction) are numbered for the LHS. A similar numbering is then performed for the
DOFs of the RHS.

Pattern of the weighted block adjacency matrix M is as follows:
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a b
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| |
| |
LLL J—LJ LLJ* -Jf LJ
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Fig. 7.47 Modified numbering of the DOFs (Form A). (a) Initial numbering. (b) Modified
numbering

LHS RHS
H V H V
A C D F1H
c B F E|vHS
M=1p _F Ao —clu
- - RHS (7.89)
F E -C B ]|V

Conditions for symmetry are as follows:
All the submatrices are symmetric, except F which is antisymmetric.

A'=A, B'=B, C'=C, D'=D and F'=-F . (7.90)
Here F' = —F corresponds to the interaction of the horizontal DOFs of the LHS

nodes and the vertical DOFs of the RHS and vice versa.

Performing the following permutations, we transform the matrix M into the
Schur’s form:

A+D C-F D F

C,=C C C+F B—-E F E
2 1+GC3 M — , (7.91)

C=C-C4 A+D -F+C A —C

-F-C E-B -C B

A+D C-F ‘ D F

R;= R;— R C+F B-E F E

FoeT 0 0 ‘ F-C B+E
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Thus,
A+D C—F A-D —C-F
Det[M] = Det{ ] * Det ¢ .
C+F B-E —C+F B+E (7.93)
-
s T

Therefore, the eigenvalues of M can be obtained as
AM) = A(S) UA(T). (7.94)

It should be noted that S and T are both symmetric, because F is antisymmetric
and the remaining submatrices are symmetric. The above relationships provide the
basis of the algebraic method for trusses with odd number of bays.

7.5.1.2 Symmetry of Form B (Modified Form III Symmetry)

For trusses with axis of symmetry passing through central nodes, we have the Form
B symmetry, as shown in Fig. 7.48. First the nodes in the LHS of the symmetry axis
are numbered followed by the numbering of the nodes in the RHS, and then the
central nodes on the axis of symmetry are numbered. Now the horizontal DOFs
(along x-axis) are first numbered, and then the vertical DOFs (in y-direction) are
numbered for the LHS. A similar numbering is then performed for the DOFs of the
RHS. Finally, the horizontal DOFs (in x-direction) followed by the vertical DOFs
(in y-direction) for the central nodes on the axis of symmetry.
Pattern of the matrix M is as follows:

A C D F G 1
C B F E I H
D F| A -C | G -I
M=1_f g -C B -1 H (7.95)
G T G -I' | J L
I H | - H L K
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Fig. 7.48 A symmetric truss
with the axis passing through
central nodes

Column permutations

Exchange of rows

7 Canonical Forms Applied to Structural Mechanics

\
5 6 16 12 11
2 3 14, 9 8
3 4 0 8 7
1 2 g 6 5
e — |
4 A15 10
1 13' 7
Nodes on Nodes on Nodes on
the LHS the RHS the axis
of the axis  of the axis of symmetry
A C G 1 D F
B B H G F E (7.96)
D -F G -1 A -C
-F E -1 H — B |
G' T J 0 Gt -
Jt Ht 0 K _ Jl Ht
Nodes on Nodes on Nodes on
the LHS the RHS the axis
of the axis  of the axis  of symmetry
A C G 1 D F
C B 1 H| F E (7.97)
Gt 1 J 0 Gt -1
I' H 0 K -1 H' |’
D -F G -1 A -C
-F E -1 H -C B
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Nodes on Nodes on Nodes on
the LHS the RHS the axis
of the axis of the axis  of symmetry
A+D C-F G 1 D F (7.98)
C+F B—E 1 H F E
C;=C;+C; 2G! 21 J 0 G' I
—_ t t
Cy=Cr—C,y 0 0 0 K —I' H
A+D -F+C G -1 A -C
-F-C E-B -1 H -C B

Now the following Schur’s form is obtained as

A+D C-F G 1 D F
C+F B-E 1 H F E
Rs=Rs—R 2GY 21 0 G It
As=Rs R J : ; 7.99)
R¢=R¢+R> 0 0 0 K —I H
0 0 0| -2 A-D -C-F
0 0 0| 2H -C+F B+E
Interchanging the 4-6 rows and columns, we obtain
A+D C-F G A-D -C-F -2
DetM]=Det |C+F B-E 1|*|-C+F B+E 2H
2G! aAt ] - H' K
S t
(7.100)
Thus,
AM) = A(S) UA(T). (7.101)

Matrix L is always a null matrix due to the symmetry. We may move the nodes
on the axis of symmetry in y-direction; these nodes should not be moved in x-
direction.

The matrices A, B, C, D and E are symmetric and F is antisymmetric. These
submatrices are n x n, where n is the number of free nodes in each side of the
axis of symmetry. I, H and G are n x m submatrices, where m is the number of
node on the axis and L, J and K are m x m submatrices. L is replaced by the
null matrix 0.

The above relationships provide the basis of the algebraic method for trusses
with an even number of bays.
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7.5.1.3 Definitions: Stiffness and Mass Graphs

The stiffness graph of a truss structure with k degrees of freedom has k nodes, and
the two nodes i and j are connected if the corresponding off-diagonal entry of the
stiffness matrix is non-zero. The weight of each node as equal to the corresponding
entry on the main diagonal, and the weight of each member connecting the nodes i
and j is the same as the entry (i,j) of the stiffness matrix. The mass graph of a mass
matrix is similarly constructed.

7.5.2 Numerical Results

In this section, three examples are presented and discussed in detail to illustrate the
methods presented in the previous section.

Example 7.12. Consider the symmetric truss with an odd number of spans as shown
in Fig. 7.49. For this truss, the axis of symmetry passes through four members.
The stiffness matrix will have the following form:

[2EA | EA EA _EA _EA _EA ]
L +2L’ 0 2L/ 0 L 2L/ 0 2L/
EA | EA EA EA EA
0 T+ | 0 2w "L o 0
EA EA_ EA _EA _EA _EA
2L/ 0 L+2L’ L 0 2L/ 0 2L/
EA EA | EA EA _EA
‘. 0 0 —EA EALE b 0 BA 0
T | _EA _EA 0 EA 2EA {EA _EA 0
L 2L 2L L 2L/ 2L/
_EA  _EA _EA EA | EA
o B o BB o R R
EA EA EA EA EA
w0 w0 0 0 L Ltr
(7.102)

The weighted graph corresponding to the above stiffness matrix can easily be
constructed as shown in Fig. 7.50. Here, the weight of each node is identical to the
corresponding entry on the main diagonal, and the weight of each member is
the same as the (i,j)th entry of the matrix corresponding to that member.

The subgraphs are formed using the following algorithm:

After decomposing the graph into two subgraphs using the axis of symmetry, the
following operations are performed:

(a) The subgraph corresponding to S:

1. If there is a direct member between the horizontal DOF of two symmetric
nodes, then a directed ring should be added to the node of the LHS with a
weight equal to the weight of the member.
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Fig. 7.49 A truss with an odd number of bays

Fig. 7.50 Graph representation of the stiffness matrix

2. If there is a direct member between the vertical DOF of two symmetric

nodes, then a directed ring should be added to the node of the RHS with a
weight equal to the weight of the member having minus sign.
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Fig. 7.51 Formation of the EA
subgraph § L

3. The oblique members cut by the axis of symmetry, which connect the
horizontal (or vertical) DOFs, are in dual form, and the weight of one of
them should be added to the weight of the member connecting the
corresponding nodes. Addition should be replaced by subtraction for vertical
DOFs.

4. The weight of the members connecting the horizontal and vertical DOFs is
equal to the weight of the existing member between these two nodes minus
the weight of the connecting member of the node corresponding to the
horizontal DOF to the node corresponding to the vertical DOF, as shown
in Fig. 7.51.

The stiffness matrix corresponding to the subgraph of Fig. 7.51 is formed as

EA | EA _EA  EA EA
L 2L 2L 2L 2L
—EA EA ZEA 0
_ 2L/ L 2L/

S=| EA  BA EALEA _EA_ EA (7.103)
2L 2L L 2L L 2L
EA —EA | EA EA | EA
57 0 o+ 3L + 37

(b) The subgraph corresponding to T:
After decomposing the graph into two subgraphs at the cut by the axis of
symmetry, the following operations should be performed:

1. If there is a direct link between any node in the right-hand side and the LHS,
then a loop is added to the subgraph in the RHS which has a weight equal to
the weight of that node with reverse sign.
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Fig. 7.52 Formation the
subgraph T

2. If there is a direct link between the vertical DOFs of the LHS and the RHS,
then a directed loop is added to the subgraph in the RHS which has a weight
equal to the weight of that link member.

3. The oblique members connecting the horizontal DOF (or vertical), which are
cut, are necessarily dual, and we should reduce the weight of one of them
from the link between two corresponding nodes in one side of the symmetry
axis (right-hand side). We make addition for the vertical DOFs.

4. The weight of the member connecting the horizontal and vertical DOFs is
equal to the weight of the existing member between these two nodes (in the
RHS of the axis) plus the weight of the member connecting the node
corresponding to the horizontal DOF (in the same side of the axis) to the
node corresponding to the vertical DOF in the other side of the symmetry
axis.

The stiffness matrix corresponding to the subgraph of Fig. 7.52 is formed as

3EA | EA  EA —EA EA
L 2L/ 2L/ 2L/ 2L/
EA~ ZEALEA EA 0
T= 2L Lok 7.104)
= | Zea _EA  EA [ EA _BA_EA|- .
oL/ L/ L 2L/ L 2L/
EA 0 —EA _EA EA | EA
2L/ L i L L

Similarly, the mass matrix is formed as
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, PAL
2PAL HPAL", o g 2PAL 5 PAL
3 3 PAL' | pAL 3 3
PAL PAL
6 6
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a2 2= 27
I+ 8 3 "3
Fig. 7.53 Graph representation of the mass matrix
[ AL +£4% oaL 0 0 pAL eAL! 0 0o ]
e 0 weoow 0 0
0 0 pAL -+ AL pAL 0 0 pAL pAL!
0 0 mewma | 0 woo o
M= pAL pAL’ 0 0 pAL + PAL pAL 0 0
woow 0 0 memeaw | 0
0 0 pAL pAL 0 0 pAL -+ PAL pAL
o 0 wew | 0 e
(7.105)

Graph representation of the mass matrix is illustrated in Fig. 7.53. The subgraphs
are formed utilising the previous algorithm as follows:

(a) The subgraph corresponding to S:
This subgraph is shown in Fig. 7.54. The mass matrix corresponding to the

subgraph shown in Fig. 7.54 is constructed as

TpAL AL/ AL AL/
S e Sy 0 0
AL AL’ AL 2pAL/
PAL | pAL'  SpAL | 2pAL 0 0
§=|>—0& 6 3 (7.106)
0 0 SpAL + pAL"  pAL  pAL’ .
6 3 6 6
pAL  pAL’  pAL | 2pAL’
0 0 6 6 2 + 3

(b) The subgraph corresponding to T:
This subgraph is shown in Fig. 7.55. The mass matrix corresponding to this
subgraph is as follows:
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PAL'

7 PAL.—=
PAL  PAL
TAR A

6
PAL PAL ,PAL'
5 3 3
SpAL | pAL'  pAL _ pAL’
6 + 3, 6 6 , 0 0
PAL _ pAL’  pAL | 2pAL
T= 6 6 > T3 7pAL 0 pAL'  pAL 0 pAL |- (7.107)
0 0 ot ot
pAL | pAL'  SpAL | 2pAL
0 0 e t% 6 t75-

3
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Considering, E =2.07 x 107 kN/m L = 100 cm, I =100 cm? and
p =78 kN/m? and A = 10 cm? the frequencies of the structure are calculated as

ws = [16.251,20.608, 37.51,40.229]
wr = [8.294,42.680,45.403,55.909]
w = ws Uor = [16.251,20.608,37.51,40.229, 8.294, 42.680, 45.403, 55.909].
(7.108)

Using the algebraic approach formulated in Sect. 3.1, identical eigenfrequencies
are obtained. The eigenvectors are then calculated and the mode shapes are
obtained, Fig. 7.56.

Example 7.13. Consider the symmetric truss with an even number of spans as
shown in Fig. 7.57. For this truss, the axis of symmetry passes through two nodes.

The stiffness matrix of the structure shown in Fig. 7.58 has the Form B symmetry
as follows:

(U e 0 0 0 0 0 -& —Ea A 0
£ 0 EALEA EA 0 0 0 0 0 -B 0 -B
0 0 —E BEALEA 0 0 0 A 0 -5 0
0 0 0 0 EALE 0 -2 0 -k -5 0 i
K- 0 0 0 0 By oo 0 -2 - _E 0
0 0 0 -2 0 EA4LRA _EA 0 B 0 -
0 0 0 0 0 0 —EA BALERA B8 0 - 0
BB 0 B RSB 0SB BB 0 0 0
o L R R T R S
0 Ea 0 -k 0 - 0 -k 0 0 EALEL EA
-EA 0 £ 0 EA 0 -5 0 0 0 —EA EALEA|
(7.109)

Graph representation of the stiffness matrix is illustrated in Fig. 7.58.

7.5.2.1 Symmetry Property of the Graph Representation
of the Stiffness Matrix

1. The graph is symmetric with respect to the axis passing through the nodes
corresponding to the central DOFs.

2. The weight of the node i is equal to the (i,i)th entry of the stiffness (or mass)
matrix, and it is symmetric with respect to the axis.
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r——"1——-r =1

Fig. 7.56 The natural mode shapes of Example 7.12

3. The weight of the member connecting the nodes i and j is equal to the (i,j)th
entry of the stiffness (or mass) matrix. The weight between the x DOFs (the
upper part of the graph) and the weight of the member between y DOFs (lower
part of the graph) are symmetric with respect to the axis of symmetry (the
corresponding members are identical), and the weight of the members between
x and y DOFs in two sides of the axis of symmetry is antisymmetric (equal
members with reverse signs). Finally there should be no link member between x
and y DOFs of the central nodes, that is, the submatrix L of the stiffness (or
mass) matrices should be null matrix. This had been proven differently.

7.5.2.2 Formation of the Subgraphs

The subgraphs are constructed utilising the following algorithm:
We subdivide the graph into two subgraphs by removing the members cut by the
axis of symmetry. The subgraph in the LHS corresponds to the matrix S, and the one
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Fig. 7.58 Graph representation of the stiffness matrix

in the RHS corresponds to T. For the graphs on the axis of symmetry, the upper
nodes on the axis corresponding to the horizontal DOFs are associated to S and the
bottom nodes on the axis corresponding to the vertical DOFs are associated to T.
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The weight of the nodes and all the members (which may exist between the nodes
on the axis) are left unchanged.

(a) The subgraph corresponding to S:

If there exists a member between any node of the LHS (nodes 5, 6, 7 and 8) and
the central nodes (the existing nodes in Figs. 7.57 and 7.58), then a directed
member is added from the central node towards the node in the LHS with a
weight equal to that of the existing member. The weight of the directed member
from i to j is added to the entry S;;.

The stiffness matrix corresponding to the subgraph shown in Fig. 7.59 is
constructed as

EALEA EA 0 _EA _EA

L 2L/ EA - EA 2L/ By oL’
EA | EA _EA EA
L + L 0 0 2L/ -1
EA EA | EA _EA EA
K< — 2L’ 0 Lt L 0 —a (7.110)
S 0 0 _EA EAEA  EA o |
L L % 2L
2EA _EA _EA 2EA | EA
_T LI O L! L + L/ 0
B I R S

(b) The subgraph corresponding to T:
The weight of the nodes and the possible existing members are left unchanged.
If there exists a member between the DOFs of the RHS (nodes 5, 6, 7 and 8) and
the central nodes (the existing nodes in Figs. 7.59 and 7.60), then another
directed member is added from the LHS node towards the central node with a
weight equal to that of the existing member. For the added directed member, the
weight of the member from i to j is added to the entry Tj;.

The stiffness matrix corresponding to the subgraph T, shown in Fig. 7.60, is
constructed in the following:

2EA | EA _EA EA
o T+ 0 0 - 0
EA EA EA EA EA
Ke— | —2U 0 Tty -1 0 - 7.111)
! 0 0 & EALRL EA 0 S
L L L
_EA _EA" EA [ BA _EA
0 2L’ 0 2L/ L+L’ L
EA 0 _EA 0 _EA" EA | BA
2L/ 2L/ L L L’

For the mass matrix, a similar operation is performed.
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EA

Fig. 7.59 Formation the subgraph S

2EA  EA
+ "
L oL
-EA
oL
EA EA EA_EA
N ;
T o L 2L
EA  EA EA
+ ' 1
L L L

Fig. 7.60 Formation the subgraph T
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(7.112)

The graph representation of the mass matrix with the Form B symmetry is

illustrated in Fig. 7.61.

The subgraphs are constructed utilising the previous algorithm.

(a) The subgraph corresponding to S:

The mass matrix corresponding to the subgraph, shown in Fig. 7.62, is formed

as
r pAL AL
PAL+55 5 0
PAL 2pAL | 2pAL 0
6 3 3 ,
M. 0 0  pAL+23E
5T 0 0 PAL
6
pAL pAL 0
ij’ ng
L 53 5 0

(b) The subgraph corresponding to T:
The mass matrix corresponding to the subgraph, shown in Fig. 7.63,

0
0

pAL
6

2pAL
=5+
0

0

2pAL’

3

pAL pAL T
pA6L’ /&
6 6
0 0
0 0
20AL AL
pAt —:L E pTz AL’
5 AL+
(7.113)

is as
follows:
[pAL 424K paL 0 0 0 0
DAL 2oL ZALT 0 0 0
AL/ AL AL AL/
My = 0 0 pAL;pT 2 ALPTZ AL/ pATL’ p/iL
0 0 pATL pT:L’pS E 2pAL’ pATL
° O LY
L0 0 e b B PAL+5]
(7.114)
Considering E =2.07 x 10’kN/m, L =100 cm, I=100cm* and

p =78 kN/m?

and, the frequencies of the structure are calculated as



7 Canonical Forms Applied to Structural Mechanics

212
) PAL pAL
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Fig. 7.62 Formation of the subgraph S
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Fig. 7.63 Formation of the PAL , PAL'
+

subgraph T 6 273 3
PAL
N6
5 pPAL; PAL

3

7 PALy p’:L'
2 PAL 5 PAL
wr = [48.908,42.227,37.548,31.368,26.525,5.447],
ws = [11.886,14.184,11.722,42.890,45.349,59.192],
® = or Uws = [48.908,42.227,37.548,31.368, 26.525, 5.447, 11.886,
14.184,11.722,42.890,45.349,59.192]. (7.115)

Using the algebraic approach formulated in Sect. 3.2, identical eigenfrequencies
are obtained. The eigenvectors are then calculated and the mode shapes are
obtained. The first four mode shapes are illustrated in Fig. 7.64.

Important Notes: In the main graph there is no member between the nodes in the
two sides of the symmetry axis, since the submatrices D, E and F are null matrices.
The reason is the existence of a member directly connecting two nodes in two sides
of the symmetry axis. If there exist such members, then the submatrices D, E and F
will not be null, and for finding the subgraphs S and 7 and only for such members,
one should act as was described in the algorithm for the Form B symmetry. For
other members with the present pattern with nodes in two sides of the axis
connected to the central node, the above algorithm should be employed. This
problem can be recognised by investigating the similarity between the Form A
and Form B canonical symmetries. Part of the matrices S and T in Form A are
exactly the same as submatrices S and T in Form B.

Example 7.14. Consider a planar 2D truss with the symmetry axis passing through
central members (truss with odd number of spans), as shown in Fig. 7.65.

Considering L = 100 cm, I = 100 cm4, E = 201 kN/mm? and p="78 kN/m3,
A = 10cm?, the eigenfrequencies of the structure are calculated as:


http://dx.doi.org/10.1007/978-3-7091-1565-7_3
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Fig. 7.64 The first four
natural mode shapes of
Example 7.13

4% mode

201.74,225.75,230.13,233.65,293.60

o [11.40,58.91,76.81,122.52,140.75,174.27,177.88,183.17,217.99,
17 1223.18,233.94,235.82,259.0,322.24 ’

26.83,42.78,92.36,108.31,150.23,159.69,169.32,171.32,180.91,
201.74,225.75,230.13,233.65,293.60,11.40,58.91,76.81,122.52,
140.75,174.27,177.88,183.17,217.99,223.18,233.94,235.82,
259.0,322.24

. [26.83,42.78,92.36,108.31,150.23,159.69,169.32,171.32,180.91,]
S = )

w=wsUwr=

(7.116)
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Fig. 7.65 A 7-bay symmetric truss
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Fig. 7.66 A 6-bay truss
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Using the algebraic approach formulated in Sect. 3.1, identical eigenfrequencies

are obtained.

Example 7.15. Consider a planar 2D trusses that passes symmetry axes on middle
nodes (truss with even number of spans) as shown in Fig. 7.66.

Considering L = 100 cm, I = 100 cm*, E = 201 kN/mm” and p = 78 kN/m>,
A = 10cm?, the eigenfrequencies of the structure are calculated as:


http://dx.doi.org/10.1007/978-3-7091-1565-7_3

216 7 Canonical Forms Applied to Structural Mechanics

L [319.33,247.61,32.86,50.60,235.05,226.08,210.38,111.94,119.87,162.88,
K= 1175.33,177.43 ’

_ [15.17,73.08,86.37,142.5,157.8,170.21,182.37,189.58,225.17,226.63
PH=1234.2.284.92 :

319.33,247.61,32.86,50.60,235.05,226.08,210.38,111.94,
w=wxUaoy= |119.87,162.88,175.33,177.43,15.17,73.08,86.37,142.5,157.8,
170.21,182.37,189.58,225.17,226.63,234.2,284.92

(7.117)

Using the algebraic approach formulated in Sect. 3.2, identical eigenfrequencies
are obtained.

Though in this part the examples are selected from small trusses, however, the
method shows its potential more when applied to large-scale structures. For com-
parison of the required time for calculating the eigenvalues of matrices with and
without decomposition, matrices of various dimensions are considered having
sparsity between 30 % and 40 %, and MATLAB is employed for these calculations.

7.5.3 Discussion

In this part two new canonical forms are introduced and weighted graph are
associated with these forms. Decomposition and healing processes are presented
to perform on these graphs in order to reduce the dimensions of the problem for free
vibration analysis of the symmetric trusses. Therefore, the accuracy of calculation
increases, and the cost of the computation decreases. The previously developed
methods were unable to deal with cross-link members of structures with more than
one DOF per node, while the new forms defined here overcome this difficulty.
Calculation of the eigenfrequencies can also be performed using the relationships
presented in Sects. 3.1 and 3.2 for trusses with odd and even numbers of bays,
respectively.

It should be mentioned that for automatic numbering of the degrees of freedom
(or nodal numbering suitable for the canonical forms), additional algorithm is
required.

The present method is also applicable to similar eigensolution problems such as
stability analysis of symmetric trusses for calculating their critical loads. This
approach can easily be generalised to free vibration analysis of space trusses.


http://dx.doi.org/10.1007/978-3-7091-1565-7_3
http://dx.doi.org/10.1007/978-3-7091-1565-7_3
http://dx.doi.org/10.1007/978-3-7091-1565-7_3

7.6 General Canonical Forms for Analytical Solution of Problems in Structural. . . 217

7.6 General Canonical Forms for Analytical Solution
of Problems in Structural Mechanics

In this part new forms are introduced for efficient eigensolution of special tri-diagonal
and penta-diagonal matrices. Applications of these forms are illustrated using
problems from mechanics of structures.

7.6.1 Definitions

The polynomial p(1) = det(A — AI) is called the characteristic polynomial of
A. The roots of p(d) = 0 are the eigenvalues of A. Since the degree of the
characteristic polynomial p(1) equals to N, the dimension of A has N roots, so A
has N eigenvalues. A non-zero vector x satisfying Ax = Ax is an eigenvector for the
eigenvalue A.

The easiest matrix for which the eigenvalues can be calculated is a diagonal
matrix, whose eigenvalues are simply its diagonal entries. Equally easy is a
triangular matrix, whose eigenvalues are also its diagonal entries. A matrix can
have complex eigenvalues, since the roots of its characteristic polynomial may be
real or complex. Therefore, there is not always a real triangular matrix with the
same eigenvalues as a real general matrix, since a real triangular matrix can
only have real eigenvalues. Thus, one must either use complex numbers or look
beyond real triangular matrices for canonical forms for real matrices. For this
purpose, it is sufficient to consider block triangular matrices, that is, matrices of
the form

A Ap . . . A
Ay . . . Ax

A= , (7.118)
Ann

where each A;; is square and all entries below A;; blocks are zero. It can easily
be shown that the characteristic polynomial det (A — AI) of A is the product Hi]
det(A;; — AI) of the characteristic polynomial of the Aj;, and therefore, the set A(A)
of eigenvalues of A is the union UY | A(A;) of the sets of eigenvalues of the
diagonal blocks Aj;.
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7.6.2 Decomposition of a Tri-diagonal Matrix

Consider a block tri-diagonal matrix as:

[A
B

NN
aw
=

F— L : (7.119)

==
-NeR--|

B
A_

where A, B and C are m x m matrix blocks. The matrix F contains n blocks in each
row and n blocks in each column. A matrix M in the form of F will be denoted by
M = F(An, B, Cin) -

7.6.2.1 Canonical Form I

Now consider the following tri-diagonal matrix:

an = F(Am7 Bma Am)mm (7.120)
where A, =F(a,b,a),, and B, =F(c,d,c),,.

Consider Ty = F(0,1,0), with eigenvalues /i, and denote the unit matrix by I,
where k is the dimension of the square matrices Ty and I. The matrix M, can be
decomposed as

Mun =1, ® Ap + T, ® By, (7.121)

where ® denotes the Kronecker product of two matrices as defined in Sect. 4.9.
Substituting the following relationships in Eq. 7.121,

A, = (al, +bTy,) and By, = (cI, + dTy,) (7.122)
results in

Mmn =al, @I + b, @ Ty + Ty @ Iy + dT, @ Thn. (7.123)


http://dx.doi.org/10.1007/978-3-7091-1565-7_4
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Fig. 7.67 A square domain A finite difference grid
and its grid points 0

20

25

—_
(&3]

000000000000 00000C0COCGOCOOTOSSSTS

000000000000 0C0CBOCOCGOOOOOOONTONNTS

30 [ XXX

0 5 10 15 20 25 0
It is readily verified that the eigenvalues of T,, ® T, are 4,4, and therefore,

A=a+bly +ciy + dini,. (7.124)

7.6.2.2 Applications

For problems where the second derivatives are present, the application of finite
difference method leads to matrices of canonical Form I. As an example, consider
the solution of the Laplace equation using the finite difference method. The
parameters of A in Eq. 7.124 for this case are as follows:

a=4 b=—-1,c=—-1, andd =0, (7.125)
leading to
A=4—2Am — /n- (7.126)
Now consider the solution of the Laplace equation in a square domain, Fig. 7.50,
withN =4 (m =n = 4).
In general case, for a path P, with n nodes, the adjacency and Laplacian matrices

are in the form P,, = F(a,b,a), and the corresponding eigenvalues can be obtained
by (Fig. 7.67)

k
l=a+2bcos—— fork=1,...,n. (7.127)
n-+1
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Fig. 7.68 Distributions of the
first eigenvector in 2D and 3D
spaces. (a) Components of the
first eigenvector in 2D space.
(b) Components of the first
eigenvector in 3D space
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Fig. 7.69 A symmetric 2 XN 4
frame with sway N\ N\
T
3m |1 3
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Sm
J7777 7777
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For T,, = F(0,1,0) one obtains A, = ZCOSHI%, and for maximum, A4 = 2
cost = 1.6180, leading to 4 =4 — 1.6180 — 1.6180 = 0.7639 which is quite
close to the exact value. Figures 7.68a and 7.69b show the distribution of the
components of the corresponding first eigenvector, over the grid points, in two-

and three-dimensional spaces, respectively.

7.6.3 A New Form for Efficient Solution of Eigenproblem

7.6.3.1 A General Block Diagonal Tri-diagonal Matrix

Consider a block tri-diagonal matrix as

(7.128)

Il
O O* Ok x
O olo X W
X Ok X% ©
O NX WO
A Xx oo o
* wlo o o

with x as some diagonal and non-diagonal entries. We are interested to find x such
that the determinant of M becomes zero. This matrix has the canonical Form I as
introduced in the previous section, and it can be expressed as P, = F(A;,B;,A»).
The corresponding eigenvalues can be obtained as

k
A=Ay +2Bycos——: k=1,....n. (7.129)
n+1
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Now one can substitute the corresponding submatrices for A, and B, leading to

X 3 0o 2 kmn
/1{4 x]+2[x O}cos4,k1,...,3. (7.130)

For det (M) = 0, the determinant of Ay for k = 1,2,3 should be set to zero, that
is,

(x 3 [0 27 P
det +2 cos— | =0=x=10.4695, x = —2.2268,
14 x| |x 0] 4
(x 3] [0 2] 2n
det +2 cos— | =0=x=3.4641, x = —3.4641, (7.131)
14 x| | x O] 4
(x 3] [0 2] 3n
det +2 cos— | =0=x=0.7159, x = —0.9586.
14 x| |x 0] 4

These are exactly the same eigenvalues obtained from det (M) = 0.
For the special case n = 2, we have

A B
M= [B A]’ (7.132)
resulting in
det( A +2cosZB) =0
3 N det(A+B)=0
T det(tA—B) =0’ (7.133)
det(A — 2cos3B) =0

In general, one can write

k
det(M) =0 =>det<A—|—2cosnle> —0fori=1,2,....n. (7.134)

Example 7.16. Consider the symmetric frame as shown in Fig. 7.69. The numbering
for DOFs is chosen that a Form II symmetry is provided for the structural matrices.
For all the members, EI is taken as ‘a’ and the unit length mass is assumed to be
10 kg/m.

The stiffness and mass matrices are formed as
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Fig. 7.70 A portal frame P 3 P,6
with six DOF I N
T
ELL2 |» 5
+ i An)
1 4
ELL/2
l 7777 7777
f ELL {
r284 2 2 0 T
105 3 7
2 40 2
z o =
K 3 21 7 d
— 2 o | 284 2 an
7 105 3
0 2 2 40
L 7 3 214 (7.135)
990 —81 —1029 0 T
21 42 42
—81 740 0 —1029
42 21 42
M=
—1029 0 990 —81
42 21 42
0 —1029 —81 740
L 42 42 21
The matrix [K — @*M] has a Form II pattern, Eq. 7.132, and using Eq. 7.133, we
have
[2.41 —71.6x 0.67+2x ] 0
0.674+2x  1.61 —59.7x|
tx X (7.136)
[2.99 —22.6x 0.67 4+ 2x ]
0.67+2x  2.19-10.7x]
where x = %, leading to the following natural frequencies:
_ 2 _ _ 2 _
x; = 0.019 = w7 = 0.019a x3 = 0.102 = w3 = 0.102a, (7.137)

Xy = 0.042 = w} = 0.042a x4 = 0.252 = o] = 0.252a.

Example 7.17. Consider a one-span frame as shown in Fig. 7.70. The columns are
subdivided into two elements. Therefore, the frame has six DOFs as illustrated in
the figure. The stiffness matrix of the structure is assembled as follows:
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a b
P 5 P 4 P P
6
3 12
T Mt
/R TN
L L -4 -
P p 5 P Py
4 + o
2
WL A s N
L | <7
El= .
i A ot EI=Const. l e o Const
— L — — L —

Fig. 7.71 A one-bay two-storey frame. (a) Four degrees of freedom. (b) Fourteen degrees of
freedom

192 0 —48 0 0 0

0 64 16 0 0 0

K _El|=48 16 36 0 0 2

310 0 o 92 0 —48

0 0 0 0 64 16

0o 0 2 —48 16 36 |
031000 (7.138)

o & =L 0 0 0

Pzt 2 210 0 0

"Lio 0 o0 | 2 o

0o 0 0| o0 & =

00 0 | 5 F %

This matrix has Form 1T and the smallest eigenvalue corresponds to P, = 22307EL

This is an approximate value compared to the real value asP., = ZSL%EI . A better result
can be obtained by subdividing the columns into three elements and the beam into

two elements.

Example 7.18. Consider a one-bay two-storey frame as shown in Fig. 7.71a. This
example is studied with two different discretisations. In the first model, each
column is considered as one element as in Fig. 7.71a, and in the second model,
each column is subdivided into two elements as illustrated in Fig. 7.4.

For the first model P, = 19'L725E1, which is a crude answer.

For the second model shown in Fig. 7.71b, the stiffness matrix is formed as
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(192 0 —-48 0 0 O 0 0 0 0 0 O0
0 64 16 0 0 0 0 0 0 0 0 O0
48 16 36 0 0 0 0 0 2 0 0 0
0 0 0 192 0 -—48 0 0 0 0 0 0
0 0 0 0 64 16 0 0 0 0 0 0
gl 0 0 0 48 16 36 o0 0 0 0 0 2
K=510 0o o o0 o o 192 0 -48 0 0 0
0 0 0 0 0 0 0 64 16 0 0 0
0 0 2 0 0 0 48 12 36 0 0 0
0 0 0 0 0 0 0 0 0 192 0 -48
0 0 0 0 0 0 0 0 0 0 64 16
0 0 0 0 0 2 0 0 0 -48 16 36
[ 48 -2 T
5 0 5 0 0 0 0 0 0 0 0 0
16 -2
5 s 0 00 0 0 0 0 0 0
2 -2 8
5 5 33 0 0 0 0 0 0 0 0 0
24 —1
0 0 0 = o 0 0 0 0 0 0
5 5
o 0o o o o ! 0 0 0 0 0 0
5 15
o o o L -1 2 0 0 0 0 0 0
P 5 15 15 7 139
"L|lo 0o o o0 o0 48 0 -2 0 0 o0 (7.139)
5 5
16 -2
0 0 0 0 0 O 0 5 5 0 0 0
2 -2 8
0 0 0 0 0 O 5 5 35 0 0 0
24 1
0 0 0 0 0 O 0 0o o = o
5 5
8 -1
0 0 0 0 0 O 0 0 0 0 & o
1 -1 4
0 0 0 0 0 0 0 0 0 & = i

. Subdividing the columns into three elements and the

leading to P, = H-1EE

beams into two elements leads toP., = %. The exact value for the critical load

H __ 12.60EI
18 Pcr(exacl) =12
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7.6.4 Canonical Penta-diagonal Form

7.6.4.1 Formulation

The numerical solution of some problems results in five-diagonal matrices. An
example of this form is depicted in the following:

My, = . . (7.140)

. B
B A+I
I B

L 4 nXn

> = -

Using the Kronecker product, this matrix can be decomposed as

Mun=LRAn+Th @By +Sh ® Iy (7.141)
where
0 0 1
01 0 1
1 0 1
T, =F(0,1,0)andS, = 1 (7.142)
It can easily be verified that
So =T —1,. (7.143)
Therefore,
an :In®Am+Tn®Bm+ (Tﬁ_ln) ®Im
(7.144)

:In® (Am _Im)+Tn®Bm+Tﬁ®Im
In the last two terms, T, cannot be factorised, since we have a matrix product and
not a Kronecker product. Therefore, the eigenvalues of the last two terms are

calculated to search for a possible equivalent matrix with the same eigenvalues:

A1, eBot12er, = BmAt, + Indp2. (7.145)
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On the other hand, we have

Iz = (Mr,)? (7.146)
Hence,
krn
At op, 2er, = A1, (Bm +A1,In) = A1, | By + 21y cos 1) (7.147)
This is the same as the eigenvalue of the following matrix:
k
T, ® (Bm 4 21, cos —~ > (7.148)
n—+1
Substituting in Eq. 7.144 leads to
an :In®(Am _Im) +Tn®Bm + (Ti®lm)
k (7.149)
— 1, ® (An —Ln) + Ty @ (Bm—|—2lmcos i )
n+1

It can be seen that we have again a canonical Form I expressed as

k
F <Am —1,,B, (21m cos “) A — Im) (7.150)
n+1

and the eigenvalues of this form should be calculated. Therefore, a five-diagonal
form is transformed to a tri-diagonal form, and

kn km
m = (An —Iy) —|—200snJr 7 (Bm —|—2Im<cosnJr 1))

K k
:Am+2Bmcosnf1+Im<4coszn: —1) (7.151)

k 2k
:Am—l—ZBmcos—n—i—Im(l—i—Zcos T
n+1 n

Example 7.19. Consider a simply supported square thin plate as shown in
Fig. 7.72. The buckling load of this plate under uniform compressive loads N, =
N, = N is required. The governing differential equation of the plate is

4 2 2
O*w NFtrw  Nw N<8w 8w>:07 (7.152)

ot Covy oy’ 'D\oxw oy
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Fig. 7.72 A plate under N
biaxial compressive loading
X
N
a
a
y
or
4 N,
Vw+BVW:0. (7.153)
The exact solution of this problem is as follows:
2D 19.7392D
Ny = 2 — , (7.154)

a2 a2

Using the finite difference method leads to a five-diagonal matrix with the pattern
studied in the previous section. In a special case, whenn = 6 (i.e. each edge is divided
into six segments), the final form of M and the matrices A, and B, are as follows:

As = F5(18 — 4o, 0 — 8,19 — 4a), Bs = Fs(a — 8,2, o — 8), with
CNE® N2
D 36D’

(7.155)

Therefore, det (M) = 0 leads to
k 2%k
I = As +2Bscos§+15(1 +2cosT’t) —0fork=1,2,....5. (7.156)

Thus, instead of the matrix M with different magnitudes of k, the smallest value
for k = 1 should be calculated, the main aim being the calculation of the critical
load. This reduces the dimension of the matrix from 25 x 25 to 5 x 5. The latter
matrix can itself be reduced as

Fork =1,

m =F(a, b, ¢)
Lo 2n T
:F<8—4(x+2<cosg>((x—8)+l+2 cosg,oc—8+4 cos ¢,

2
19—40c+2<cosg)((x—8)+1+2cosg). (7.157)
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Here ¢ = a + 1, that is this matrix has a similar form to that of the five-diagonal
matrix (7.22). Therefore, for calculating the eigenvalues, one can again employ the
same relationship, leading to

Kn

u’
diy = 0= A+ 2B cos +I<1+2005 “)0 . (7.158)
n—+1 n+1

For k' = 1, we have

2
18 —4(x+2(cosg)(0c— 8)+1+2 cosgn—&-ZcosE ((X—8+4COSE)

o 6 (7.159)
—|—I(1 +2 cos€> =0

with I beinga 1 x 1 unit matrix. Therefore, the 5 x 5 matrix is further reduced to a
1 x 1 matrix, that is, one equation with one unknown. Thus,

6 —8cosE+2cos2® al :
. cosZ 4 cos6:0'5359;xN2;:a;chr:192923D.

7.160
1 —cos% 3 a2 ( )

7.6.4.2 Derivation of the Exact Solution

Having o in terms of the parameter n, the exact value of o can also be derived as
follows:

2
6—800s§+200s;".

Oexy = Limit - (7.161)
n—o0 1 —cos?
Using cos 20 = 2cos”0 — 1 leads to
2
.. 4(1 —cos¥) " n
Oyt = Limit ——2— = Limit 4(1 — Cos f>. (7.162)
n—oo 1 —cosk n—o0 n

Employing the following trigonometric relation and approximating sin 0 by 0, if
0 — 0, then we have

0 0\’ o
lcose2sin22%2(2> =5 (7.163)
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Therefore,
(n)?  2n
Olext :4F:¥ (7164)
Substituting for a, we have
No(l)" _ 2 (7.165)
D  n?’ ’
leading to the exact value of the critical load
2Dn?>  19.7392D
(Ner)oxs = = . (7.166)

a2 a2

7.7 Numerical Examples for the Matrices as the Sum of Three
Kronecker Products

Matrices that can be written as the sum of three Kronecker products are already
introduced in Sects. 4.10 and 4.11. In this part, examples are included to show the
efficiency of this decomposition approach.

In this section, five examples are presented from structural mechanics to illus-
trate the applicability and the efficiency of the present methods.

Example 7.20. Consider the truss shown in Fig. 7.73. The cross-sectional areas
and the mass of the members are as follows:

Member Cross-sectional area Mass
1 and 2 A m

3 1.5A 3m
4 and 5 1.5A 2m

The natural frequencies of the structure are required.
Using the finite element approach, the stiffness and mass matrices for a typical
element are as follows:

2 CcS -C* —cCs 2010

_BAj | cS 2 —-CcS -%? ~mhi (0 2 0 1
[Ki] = h, | -C* -CcS C* s (M) 6 |1 0 2 o’
-cS -§* ¢s §? 010 2

where C = cos 8 and S = sin 6.


http://dx.doi.org/10.1007/978-3-7091-1565-7_4
http://dx.doi.org/10.1007/978-3-7091-1565-7_4
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Fig. 7.73 A simple planar @
truss

—

After assembling the matrices of the elements for the entire structure and
deleting the rows and columns corresponding to support nodes 1 and 2, we obtain

329090 -9 0 0
_ EA —9  39.5885 0 —24
T16v3L| 0 0 329000 9 |
0 —24 9 39.5885
31.3960 0 8 0
T det(K — Mo?) = 0.
1613 8 0 31.3960 0
0 8 0 31.3960

It can be observed that K and M have no particular form as modelled; however,
one can multiply a row and the corresponding column in (—1) such that the
eigenvalues remain unchanged. If such operations are performed for the first row
and column of K and the corresponding M, then we obtain a Form II matrix, and
constructing M + N and M — N, the eigenvalues can be obtained as

EA
w = {0.5614, 0.8887, 1.2195, 1.6624} x ,/?.
m

Example 7.21. Using three finite elements we want to find the natural frequencies
of the clamped beam shown in Fig. 7.74. The stiffness and mass matrices of a
typical element are as follows:
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Fig. 7.74 A clamped beam @ @ @
with three elements

12 6L —12 6L

EL | 6L 4L> —6L 2L?
L3 |-12 —-6L 12 —6L]|’

6L 2L —6L 4L2

156  22L 54 —13L

pAL; | 22L 4L 13L -3L?

MI="50 | s4 130 156 2oL

—13L —3L* —22L 4L?

Assembling the matrices for the entire structure and applying the boundary
conditions, the equation of vibration is as follows:

312 0 54 —13L] [0, 24 0 -—12 6L][y 0
pAL | 0 8L2 13L 3.2 ||U,| EI| 0 8L —6L 2L2||U,| |O
20| s4 1L 312 o0 |0 T -12 —e 24 0 [|us| T |o

—-13L -3L2 0  8L? Uy 6L 212 0 8L?||U, 0

Here again one cannot see Form II matrices. However, multiplying the first row
and column by (—1), such matrices can be constructed. Using their factors, similar
to Example 7.20, the eigenvalues are obtained as

[ EI
o = {2.4961,6.9893,16.2561,32.3059} x .
4

pAL

Example 7.22. Consider a simply supported a X a square plate, as shown in
Fig. 7.75. The load is applied in x-direction. Using the finite difference approach,
the critical load of the plate is calculated.

Considering the governing differential equation as

N, Pw
vt - —=0
W D 0x?
and employing the finite difference method, the matrix M is obtained in the

following form:
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Fig. 7.75 A simply
supported plate

M:I®A—|—T®B+S®I:ZAi®Bi

i=1

where
B, = F(18 —2x, x — 8,19 — 2x, 1), B, = F(-8,2,-8),
A, = F(0,1,0),A; =F(0,0,1,1).

Since AjA; = AjA; for each pair of i and j, then

w3

2k7r,
Aa, =1 +2005n+ T

kn
iAa, =1, Aa, =2
A Ay Cos Nt

HC::

Once Ay is calculated, it can be observed that it contains diagonal blocks and
each block has the Form F. Thus, the diagonalisation is performed once again for

each block, since AjA; = AjA; still holds for these blocks.
For critical load (k = 1), we have

2
18—2x — 16cos£+ 1 +200s—n+200s£(x—8+4cos£)
m m m m
2
+ 1(1+200s£> =0; m=n+1

2
4<3 — 4cos£+cos—n>
m m

= X = T
(1 —cos—)
m

In this relationship, m — oo leads to an accurate value of the critical load as

2 2
o . .
X = o where 1 — cos o = > when o — 0. This result is in a good agreement
with the exact value, which is
_ xb 47’D
Ncr - a - 7 .



234 7 Canonical Forms Applied to Structural Mechanics

Example 7.23. In the previous example, suppose the supports with no loading are
clamped, then the matrix M will still contain the decomposability property. In such
a case,

A =F(20—2x,-8,19 —2x,1), B=F(x —8,2,x —8).

Using Eq. 7.171, M appears in a block form and the block corresponding to
k=1Iis

2
N:F(20—2x+2cos£(x—8)+ 1 —|—200s—n7 —8+4cos£,
m m m

2
19—2x+2005£(x—8)+1+200s—n,1>; m=n+1

m m

A, =F(0,1,0,0), A, =F(0,0,—1,1).

Here, unlike the previous case, N does not satisfy A;A; = AjA; and no further
simplification is possible. Thus, one should form det (N) = 0 and solve it. Assuming
n = 8, this solution leads to

2
D
x = 1.1073 — Ny :7.18047;—2.

2
D

The exact value of the critical load is N, = 7.69n—2. Here, in place of the

a

determinant of a 49 x 49 matrix, that of a 7 x 7 matrix is calculated. Choosing
larger values for n, one can easily increase the accuracy of the finite difference
approach. The present method reduces the size of a matrix to its square root.
It should be added that for a rectangular plate when subdivided into equal lengths
in x- and y-directions, similar forms will be formed.

Example 7.24. The natural bending and axial frequencies of the beam shown in
Fig. 7.76 is required.
The differential equation governing the bending of this beam can be written as

d*w

pAw?
dx4 ’

4
—_ = h =
*w =0 where I

Choosing n + 1 element for discretisation of the beam, the final matrix becomes
an n X n matrix in the following form:

M =F(5,—4,6,1),= 51+ (—4)T + 8
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Fig.7.76 A simple beam and 0123 n n+l
|

its discretisation
—
s e

where T, S and I commute two by two, and therefore, Eq. 7.171 can be employed
leading to

M =5—8cosa+ (1+2cos2a) =6 — 8cosa+ 2cos2a = 4(1 — cosa)’
= 16sin‘lg
kn
o=—; m=n+1.
m

On the other hand,

EI

Wy = (BL)i L2 (BL)i: (n+ 1)2\/1 = 4m? sinzg

leading to the exact answer as

k2 2
n— oo = (BL)i: 4m2ﬁ = (L), =kn = o = (km)?

EI

— k=1:n.

For the axial vibration, the governing equation is as follows:

u
W—Fa U=0
where
2
a=P"
E

In this case, the matrix corresponding to the finite difference will be a tri-
diagonal matrix as M = F(2,—1,2), and we have the following results:

M = 2L+ (—)T = Ay = 2 + (—1)(2cos @) :4sinzg,

Wg = ﬁk\/% (L), = (n+ 1)\/7—\ = 2msing7

kn kn /EA
= (L), =2m-—=kn = oy = —1{/—.
n— oo = (PL), mo —=kn= o =14/

This is an exact answer. For a beam with clamped support, a similar approach
leads to the exact result.
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7.8 Symmetric Finite Element Formulation Using Canonical
Forms: Truss and Frame Elements

In this part, canonical forms are used to decompose the symmetric line elements
(truss and beam elements) into sub-elements of less the number of degrees of
freedom (DOFs). Then the matrices associated with each sub-clement are formed,
and finally the matrices associated with each subsystem are combined to form the
matrices of the prime element. Therefore, it becomes possible to find the pros and
cons of this method and compare the efficiency and simplicity of the present
approach to the existing methods.

7.8.1 Sign Convention

In this section, for computation of fundamental matrices for symmetric finite
elements, the origin of the local coordinate system of the elements is taken at the
centre of symmetry of the elements. Therefore, the symmetry axis or symmetry
plane of each element will divide it into two parts: the positive half and the negative
half.

If the symmetry axis passes through a node, that node will be numbered as node
1. Otherwise, node number 1 is usually chosen on the positive side of the element.
Then, all of the nodes on the positive side are numbered sequentially. Having the
nodes on the positive half of the element labelled, say from 1 (or 2) up to k, the rest
of the nodes (nodes on the negative half of the element) must be numbered,
considering the nodes of the positive side. This means that numbering of the
negative side should be started with the node which is associated with the permuta-
tion of the first positive node, and is numbered as k + 1. Then, the reflection of the
second positive node is labelled as k + 2, and this process is continued. The
numbering process is terminated with the negative node which is permutation of
the last positive node. Degrees of freedom (DOFs) of each node are numbered
following the same rule.

Translation in positive direction and counterclockwise rotation for a positive
node (node in the positive part of the element) define the positive translational and
rotational DOFs for such nodes. Positive directions for negative nodes are selected
such that the DOFs for a node and its reflection are the mirror of each other. For the
node which is located at the centre of symmetry (if available), the positive
directions can be selected arbitrarily. Figure 7.77 shows two one-dimensional
(line) elements and numbering of the nodes and associated positive degrees of
freedom, based on the convention described above.

For two- or three-dimensional elements, the general approach for numbering
and defining the positive directions are the same. If an element has more than one
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a b
¥ T
Py L;—l P13y P3~53$62—o—01\)$ P53,
‘ L/2 L/2 ‘ ‘ L/Z L/Z 7‘

Fig. 7.77 Numbering of the nodes and the DOFs for symmetric line elements. (a) Two-node truss
element. (b) Two-node beam element. (¢) Three-node beam element. (d) Five-node beam element

plane of symmetry, in order to apply the strategy described above, first, one of the
planes should be selected as the main plane, and then during the numbering process
for positive points (and DOFs), other planes of symmetry are taken into account
one by one. Figure 7.78 shows the numbering and positive DOFs for a plane
element possessing two main planes of symmetry: 1-1 and 2-2, where plane 1-1
which is in bold, has been taken as the principal symmetry plane. The node in the
positive—positive quarter has been selected as node 1, its image with respect to
plane 2-2 is labelled as node 2 and then the negative nodes have been numbered
with respect to the principal plane of symmetry (1-1). It should be noted that as
soon as the positive DOFs for node 1 are fixed, the positive direction for the other
DOFs will be determined by means of symmetry properties.

7.8.2 Truss Element

In this section, the properties of special symmetry form of the truss element shown
in Fig. 7.77a are utilised in order to decompose the space of variables of this
element into subspaces of divisor and co-divisor. This decreases the size of
matrices and vectors which are involved in formulation of such element and
therefore leads to a reduction in calculation time and computational effort.

Although such a reduction does not seem to be significant in small problem of a
two-node truss element for which the matrices are 2 by 2, however, this simple
example is selected in order to give an overview of the present method.
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Fig. 7.78 Numbering of the 1
nodes and DOFs for Pg. 8¢
symmetric plane elements

Py.8;

Pll>811 P5~85

The degrees of freedom of the truss element are collected in a vector u, which is
called the displacement vector of the element:

u= (5, 8)". (7.167)

It is seen from the configuration of the element (Fig. 7.77a) that this element with
the DOFs shown on it has the Form II symmetry. In such symmetric problems,
where the only symmetry operation of the system is a symmetry plane, the symme-
try analysis of the system will result in decomposition of the vector space of the
problem into two independent subspaces, one of which is symmetric and the other is
antisymmetric with respect to the plane of symmetry. It is also observed that the
divisor C is always associated with the symmetric subspace and the co-divisor D is
corresponded to the antisymmetric subspace. From now on, we denote these two
subspaces as V¢ and Vp, and we call them the divisor and the co-divisor subspaces,
respectively.

Assuming that u varies linearly through the element, the linear displacement
field within a truss element can be written in terms of the nodal displacements &,
and &, as follows (it is noted that u = &, at node 1 and u = 8, at node 2):

u=N;. 0 +N5. & (7.168)

where Ny =144 and N, = § — 4 are the liner shape functions.

In general, the linear displacement field can be written as
u=ax+h. (7.169)

We can decompose such a field into two terms, namely, (a.x) and (b). The first
term (a.x) shows the displacement field in which the translation of the positive
nodes is in the positive direction and the translation of the associated negative nodes
are in the negative direction with the same magnitude. Such a displacement field is
symmetric with respect to the symmetry plane of the element. On the other hand,
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the term (b) is a constant displacement in positive direction at all of the nodes of the
element. This displacement field is antisymmetric with respect to the plane of
symmetry.

Based on what was mentioned above, the overall displacement field u of the
problem can be decomposed into two displacement fields, corresponding to
the subspaces V¢ and Vp; the first one is symmetric, which we denote it by uc,
and the second one is the field of the antisymmetric subspace Vp, which we denote
it by up:

uc =a.x and up =b. (7.170)

If we denote the DOFs of the symmetric and antisymmetric subsystems (the
basis vectors of subspaces V¢ and Vp) by Ac and Ap, respectively, then by
substituting the coordinate x = 1/2 at node 1, we will have

2
Ac=al/2 = a:7Ac, (7.171)

Ap = b. (7.172)

Thus, we can rewrite the equation of displacement fields of the subspaces
(Eq. 7.170) as follows:

2 2 2
Uc =ax = <7Ac> X = <7x> Ac = Ne = 7x, (7.173)

up =b=A4Ap = (I)AD = Np=1, (7174)

where N¢ and Np, are the shape functions of the divisor and co-divisor subspaces,
respectively.

Now, having the shape function of the element decomposed into symmetric and
antisymmetric sub-functions, we can readily find the matrices of the subsystems
using potential energy approach.

e Matrices of Each Subsystem: The stiffness matrix of an element can be found
using the strain energy of the element:

U, = Jo’eAdx (7.175)

e

N —

in which 6 = Ee (Hooke’s law), and € is calculated from the strain—displacement
relationship
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_du

=_. 1
£= (7.176)

This relation can be written in terms of the element freedoms (8;) using the
concept of the shape function

d
u=>. e= (2 @.177)
which yields the matrix equation
e=B.d (7.178)

where the matrix B is the element strain—displacement matrix.
Now the strain energy term of the element (Eq. 7.175) can be written as follows:

1 1
Ue =3 J (Ee)'eAdx = Jﬁ’B’EBSAdx, (7.179)
or
1
U =58 JBfEBAdx 5. (7.180)

e

Therefore, the stiffness matrix of the element will be obtained as

k, = JB’EBAdx. (7.181)

e

Following the strategy described above, it is now possible to find the
strain—displacement matrix B of each subspace, using its own shape function.
Then the stiffness matrix of each subsystem can be calculated using Eq. 7.181,
noting that integration should be carried out over only the positive half of the
element.

For the divisor subspace V,

2 2
Nec = 7x = uc =N¢c.Ac = 7X.Ac,

dN¢ 2
Be=—=1|-]|. 7.182
o= H (7.182)
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Thus,

(OB

Similarly, for the co-divisor subspace Vp,

dN,
Np=1=Bp=—L=1]0). (7.184)
dx

Therefore,
kp = [0]. (7.185)
Special attention should be paid to the physical interpretation of the stiffness
matrices K¢ and kp. The symmetric subsystem is associated with divisor subspace,

2
with shape function N¢ = Yxcorresponding to a bar element in which the end nodes

are moving away from the origin of the element with the same rate. The antisym-
metric subsystem associated with the co-divisor subspace, on the other hand, is a
bar element in which both of the end nodes are moving in the same direction and
with the same rate; the stiffness in such a case will be vanished.

The consistent—-mass matrix for an element can be found as

m :pAJN’.Ndx. (7.186)
1

Thus, it is possible to find the mass matrices of the subsystems, using their own
shape functions, in a similar manner to those of stiffness matrices:

2°\° '
<1x> dx = [LpAL], (7.187)

1
2

mp = pA J (1)%dx = [1pAL]. (7.188)
0
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e Combination of the Subspaces and Finding the Matrices of the Element: In order
to extract the matrix of the symmetric element from its devisor and co-divisor
matrices, the properties of the canonical Form II should be considered. One of
the main advantages of the method based on linear algebra, compared to similar
methods (such as group theory), is in this stage of the procedure.

As it was mentioned in Sect. 7.2.2, a symmetric matrix of canonical Form II has
the following pattern:

ol

B Al
For which, the divisor and co-divisor matrices are
C=A+B and D=A-B.
Now, we have the divisor and co-divisor matrices for the symmetric truss
element, and one can easily find the matrices of the main element, combining the
condensed submatrices as follows:

A=4C+D) and B=1C-D). (7.189)

Thus, for the stiffness matrix, we will have

| EA EA

EA EA
kB:%(kC_kD):—[Z_O]: —1, (7.191)

21 l
which results in the stiffness matrix of the truss element as
EA |1 1
kel{l l} (7.192)
Similarly, for the consistent—-mass matrix,
pAL |1 1 PAL

ms = J(me — mp) =255 £ 1| = |- 22E]. (7.194)
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P.5, 1 2 P,.5,
—— @ —

= L —]

Fig. 7.79 Conventional node numbering and the positive DOFs for truss elements

m ="~ | S (7.195)

_/ﬂ{ 2 —1}

Finally, it should be noted that the above matrices are resulted using the sign
convention described in Sect. 7.3. A more conventional node numbering and
sign convention for truss elements is shown in Fig. 7.79. In order to convert the
results to this convention, it is enough to reverse the sign of the first line and then
the first column of the matrices. This action is physically justified as follows: An
out-of-plane rotation on element of Fig. 7.77a will result in the same node number-
ing with the conventional element, Fig. 7.79. Then it is enough to change the
positive direction for freedom &, in order to make two elements completely
identical. The final results are the well-known matrices of a two-dimensional
truss element:

EAT 1 ~1 AL
ke:—|: 1 :| and m, :pT|:% 5:| (7.196)

7.8.3 Beam Element

The concepts discussed for truss elements can be repeated here for the beam
elements. The element of Fig. 7.77b clearly shows the canonical Form II symmetry.
Again, the vector space of the problem can be decomposed into the symmetric
divisor subspace and the antisymmetric co-divisor subspace.

The process starts with decomposition of the shape function of the displacement
field. Whereas both the nodal displacements and nodal slopes are involved in a
beam element, one should define Hermite shape functions, which satisfy nodal
value and slope continuity requirements. Each of the shape functions is of cubic
order represented by

N; = a; + bix + cix* + dix>. (7.197)
The displacement field of the element will be of cubic order, and the rotation of

each point through the element will be calculated from the following quadratic
equation:
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Fig. 7.80 Terms of v(x).
(a) vi = a: symmetric.

(b) v, = bx: antisymmetric.
(©) v3 = cx*: symmetric.
(d) vq = dx>: antisymmetric

Fig. 7.81 Terms of v/ (x).

(a) Vv'{ = b: antisymmetric.
(b) v, = 2cx: symmetric.

(€) V'3 = 3dx?: antisymmetric

2
7 3dL/4

v(x) = a+ bx + cx® + dx’, (7.198)

d
v (x) = d—v(x) = b+ 2cx + 3dv’. (7.199)
X

Each term of the displacement field equation and its first derivation (which
shows the rotations) is studied individually in Figs. 7.80 and 7.81, respectively.
Similar to what was mentioned for the truss element, we separate the symmetric and
antisymmetric terms and allocate them to the divisor and co-divisor subspaces,
respectively.

Based on Figs. 7.80 and 7.81, the displacement field of the element can be
decomposed as follows:

For the divisor subspace,

ve(x) = 2ex. (7.200)

For the co-divisor subspace,
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vp(x) = bx + dx*,
Vp(x) = b + 3dx*. (7.201)
Atnode 1 (x = 1/2), we have
vp = Aip, v'p= A,
Ve = AIC; V/C = Agc. (7202)

The values of a, b, ¢c and d can be found as follows:

A
2 o 20
A I el - [ S
— = = 4 = )
ve 0 2x]lec Ase / c

0 _ A
l
I B 3Aip Ayp
A S [ R i B AT SR IAFS
= = = ,
VD 1 3% ld Aop 32| L d d— 200p  4A1p
4 I B
| l 3 -1
a4 A b 3 A
{0, Tt e {1 e}
C 0 1 Azc d ;4 E A2D
l & 2
(7.203)

| -1 x> 1
Ve _ 1 X2 T A _ 1 7 1 Aic
V/C 0 2x l AQC
l

. (7204
0 0o = AZC} ( :
l
) 3 -1
1%») X )C3 7 7 AID
le 1 3)(2 -4 2 AZD
] Bor
[3x X\ 3 X ox
)
! ! 22 (JAwl (7.205)
3t 3(5)2_1 Aaop .
L/ B [ 2

Therefore, the shape function matrix of each subspace can be written as
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2 l} [3}( n?: X x

Ne=|1 “_L| and Np = __4(_) PR (7.206)
‘ { 14 PN tE T2

This is crucial for the continuation of the solution. Based on the potential energy
approach, we can write the strain energy equation for a beam element as

1 *v\*

e

in which

d*v d*N
—N6 = V(T
Y = @ <dx2)

Thus, we have

1 &N\’ (d*N
U, ==08|ElI||— ) [—|dx |5 7.208
c 2 J(dxz) <dx2> * ( )
which means that the stiffness matrix of the beam element can be calculated as
&N\’ (®N
k., =El||— | | — |dx. 7.209
J<dx2) (dx2> * ( )

e

Now it will be possible to find the stiffness matrix of each subsystem using the
shape function matrix of its subspace, noting the fact that the integration should be
carried out over only the positive half of the element:

For divisor subspace,

2 o3 - @@L 1[0 4]

dx? /
0 0
EITO O
4]dx _ = { } (7.210)

= ke =EI

O — o

And for the co-divisor subspace,
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24x
Np [ 24 1] _ (@Np\'(&Np\ _ |7 [[_24x 12«
a: | B2 dx? ) | 12 || B P
12
452 242
s B
=12x12
2x2 X2
5K
: 42 242
s B EIT 24 —121
= kp = EI =—
P J w2 | 13[121 612
L

(7.211)

It should be noted that both of the matrices k¢ and kp are symmetric. This is due
to the fact that these are stiffness matrices of subsystems. Now it is easy to combine
the matrices of the subsystems and find the factors of stiffness matrix of the
element, based on what was mentioned for the truss element:

1EL([0 0 24 —12
kA:%(kCJFkD):Ez_S([o 212]+[—121 612 D

Ell 12 -6l
e {—61 42 }’ (7.212)
LEI/{0O O 24 —12]
— L. _ - -
kp =3ke —ko) =5 5 ([0 212] [—121 61> D
EI'l—12 6l
=5 { 6/ _212]. (7.213)
Eventually, the stiffness matrix of the beam element will be as follows:
12 -6l ‘ —-12 6l
El | —61 4P 6/ 2P
k=% =12 & | 12 -6l 7219
6l 2P —6[ 41

Other matrices of the element can be found exactly in the same manner as was
described here, using the shape function matrices of the individual subspaces.

A beam element with classical system of nodal numbering and sign convention
for DOFs is shown in Fig. 7.82. As it is seen, the element for which we derived the
stiffness matrix (Fig. 7.77b) can coincide with this element by an out-of-plane
rotation and changing the direction of DOF §,. Therefore, in order to adapt the
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Fig. 7.82 Conventional node P,.8, P43,
numbering and positive DOFs P.5, ‘ \* P35,
for beam elements ! /

_
‘FL%

stiffness matrix of Eq. 7.214 to conventional form, it is enough to reverse the sign of
the entries of the second line and the second column as follows:

12 6 ‘ 12 6l

El| 6/ 4P | —6l 2P
ke=%1"12 —ea1 | 12 6| (7.215)

6 22 | —6l 4P

7.8.4 Discussion

In this part a new computational approach is presented for finding the matrices of
elements in FEM, using the symmetry analysis of each element. Here, we first adapt
the appearance of the element and its degrees of freedom with one of the canonical
symmetry forms which are well known in linear algebra. This is done by the means
of an appropriate numbering and sign convention. Then, we use the properties of the
canonical forms in order to decompose the element into a number of sub-elements.
This reduces the number of DOFs which are involved in forming the matrices of the
element. In other words, we decompose the vector space of the first problem into a
number of independent subspaces with smaller orders. Each of the resulted subspaces
is physically associated with a symmetry type of the structure (this is the meaning of
the symmetry analysis through which we decouple different symmetry modes of a
symmetrical system). We use the concept of symmetry type of each subspace and the
decomposition of the overall shape function of the element into a number of sub-
functions, each of which corresponds to the symmetry type of one of the subspaces
(e.g. symmetric and antisymmetric terms). When such a decomposition is valid and
each sub-element has its own shape function, it will be very easy to form the matrices
of each sub-element by means of one of the conventional methods — such as potential
energy method — using its own shape function. Finally, we combine the matrices of
different sub-elements, based on the properties of the canonical forms, and construct
the matrix of the original element.

The method is originally inspired by group-theoretical methods which are
presented in the literature, but the present approach involves less computational
time and effort, and relatively less judgment is needed in this method, compared
to the pure group-theoretical approach. Combination of matrices of sub-elements
and forming the matrix of the main element is much easier and more direct in this
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method, and in the case of elements with odd number of nodes, this approach seems
to be more adaptable.

The present method can be more helpful in the case of complex elements having
a number of nodes, where usually one of the canonical forms of symmetry exists;
however, in this part, only the formulation for simple truss and beam elements is
derived, since the focus of this part was on the general concepts. It should be noted
that in the case of more complex elements, the same steps are involved. As an
example, this idea can easily be applied to three-node and five-node line elements,
where the symmetry of the element has the canonical Form III symmetry.

7.9 Eigensolution of Rotationally Repetitive Space Structures

In this part the eigensolution for calculating the buckling load and free vibration of
systems are presented using a canonical form from linear algebra, known as
circulant matrix. This form is block tri-diagonal matrices with additional corner
blocks and occurs in matrices concerned with graph models associated with
rotationally repetitive structures. In this method, the structure is decomposed into
repeated substructures, and the solution for static analysis is obtained partially, and
the problem of finding the eigenvalues and eigenvectors for buckling loads of the
main structures is transformed into calculating those of their special repeating
substructures.

7.9.1 Basic Formulation of the Used Stiffness Matrix

Basically, a rotationally repetitive structure is a structure constituting a cyclically
symmetric configuration with angle of cyclic symmetry equal to 6 as shown in
symbolic manner in Fig. 7.83.

. . o . . 2r
Let the configuration be divided by some imaginary lines or surfaces inton = v

segments Sy, S»...S, . The segmental division must satisfy the following
requirements:

A. Anangley; belongs to each segment by which the direction of first DOFs of nodes
allocated in that segment is defined, and this angle is an integer multiple of the
angle 6. Obviously the nodes located in a segment will have a same angle ;.

B. The imaginary segmental boundaries may not pass through any joint so that the
segment to which a given joint belongs can be uniquely determined. The word
‘joint’ is used here to refer to a joint in the skeletal system but can be used as a
nodal point in continuum, and this convention is followed throughout.

As the consequence of the above conditions, the segment can not contain any
joint lying on the axis of symmetry.
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Fig. 7.83 Symbolic representation of a rotationally repetitive structure
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Fig. 7.84 A 3D beam element between two consecutive segments

The stiffness matrix of a typical element having nodes in different segments, that
is, an element between two consecutive segments, is calculated as follows:

The stiffness matrix in the local (element) coordinate system is the common
stiffness matrix for a 3D beam element (shown in Fig. 7.84); however, the transfor-
mation matrix from local coordinate system to the global coordinate system is as
follows:

The stiffness matrix of each element is calculated in its local coordinate system
and transformed into the global coordinate system (segmental directions) specified
at its extreme nodes by the following transformation matrix:
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Tn
T — Ty 7
T2
T
T Txa Txs Txa Txs Txe
where Tip = |Ty1 Tyo Tys | and Ty = |Tys Tys Tye |- (7.216)
T Tp Ta Ta T Tu

Here, Ty; is the cosine of the angle between x-axis (element direction from first
point to second one) and direction of the ith degree of freedom in the global
coordinate systems (segmental directions for DOFs), and the subscripts y and z
are representatives for directions of principal axes in the cross section of the
element. The overall stiffness matrix of the rotationally repetitive space structure
is obtained by assembling the stiffness matrices of the elements which has a special
canonical form introduced in Sect. 7.3.

Since each extreme node of a typical element shown in Fig. 7.1 has different
segmental directions, these will have different ;, and the transformation matrix
between local coordinates and global coordinates will be as depicted in Eq. 7.206.

7.9.2 A Canonical Form Associated with Rotationally Repetitive
Structures

In this section, a canonical form is presented for rotationally repetitive structures,
and the efficient eigensolution via this form is followed. The methodology for nodal
numbering is as follows:

The difference between the number of an arbitrarily selected node in an arbi-
trarily segment and the number of corresponding node in the adjacent segment is
constant.

If the stiffness matrix of a rotationally repetitive structure is formed using the
transformation of Eq. 7.214, then the following canonical form will be achieved.

A B 0 0 0 0 B
BE A B 0 0 0 0
0 BB A B 0 0 0
-
M = 0 B 0 0 0 (7217)

A B 0 0
0 0 0 0 B A B 0
O 0 0 0 0 B A B
B 0 0 0 0 0 B A
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From now on this canonical form will be referred to as block tri-diagonal matrix
with corner blocks abbreviated as BTMCB.

7.9.3 Eigensolution for Finding Buckling Load of Structure
with the BTMCB Form

Block diagonalisation of the BTMCB forms is discussed in Sect. 4.12, and here the
eigensolution for finding the buckling load of rotationally repetitive structures, with
no node on the axis of symmetry, and under vertical lumped loads located at the
extreme nodes of the elements, is presented via the BTMCB form. The smallest
eigenvalue shows the buckling load of the system, and the corresponding eigenvec-
tor is the buckling mode shape.

If the stiffness matrix of a rotationally repetitive structure is generated using the
transformation matrix presented in Sect. 7.2, the BTMCB form will be achieved.
In order to find the buckling load of the system, the geometric stiffness matrix of the
structure should be generated.

If the segmental stiffness matrix for each segment of structure is separately
generated, it can be observed that the segmental stiffness matrices are the same,
and the displacements in different segmental coordinates are identical. From the
latter fact, it can be realised that internal forces made in identical elements within
any two arbitrarily selected segments due to displacements occurred in segmental
coordinates are equal.

It is obvious that the values of entries in local geometric stiffness matrix for an
element depend on forces made in its local degrees of freedom, and there are same
displacements and consequently tantamount identical forces for similar elements in
any two arbitrarily selected segments. As the transformation matrix should be the
same for both of elastic stiffness and geometric stiffness matrices, a BTMCB form
in geometric stiffness matrix similar to that of elastic stiffness matrix is expected.

After generating the global geometric stiffness matrix of structure as it was
predicted, a similar BTMCB form will be obtained. Thus, the eigensolution for
finding the eigenvalues of |[K°] — P[K®]| =0 via this BTMCB form becomes
possible. Here, K€ is the elastic stiffness matrix, and K# is the geometric stiffness
matrix of the structure. The process of calculation is as follows:

1.1 First the elastic stiffness matrices of elements are formed in their local coordi-
nate system and then transformed into the global coordinates. These matrices
are assembled to form the overall elastic stiffness matrix of the rotationally
repetitive structure.

1.2 In this step, a static problem is solved, for the stiffness matrix calculated in the
previous step and for the forces lumped in the nodes. This leads to the nodal
displacements of the structure in the global coordinate system.

1.3 The results obtained in step 2 are used to calculated displacements in local
coordinate system for each element.
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Fig. 7.85 The internal forces of a typical element in its local coordinate system

1.4 Using the displacements calculated in step 3 and local stiffness matrix of each
element, the internal forces are computed in the local coordinate system of the
element as defined in Fig. 7.85.

1.5 Utilising the internal forces calculated in step 4 in geometric stiffness matrix of
a 3D beam element presented in Eq. 7.247, the local geometric stiffness matrix
of elements is computed:

[ a ¢ —a —cC 1
b g —-h —a —b I —g -—h
b e h g —c -b m h -—g
f 1 k —-d —e —f -1 -k
] —-g -h —-i n -o
J h —-g -k o n

[K#] A o (7.218)
b -1 g h
b —m —-h g
sym f a c
J
L j
where
= 1Mza+1Mzh b= 61Fxb c= — 1Mya+]Myb d = ]Mya e — lea
L? ’ 5L’ L? ’ L’ L
lFbe lMx‘b lFxh . 1Mza+1Mzb . 2 lFxbL
L A e T/ R A S A R
'Myo+'My, "My, "M, 'FoL "My,
k=— , = , m= , = — , 0= — .
6 L L 30 2

1.6 The process of assembling of the geometric stiffness matrices leads to the
formation of the structural geometric stiffness matrix having the BTMCB form.
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1.7 After calculating the geometric stiffness matrix of structure via the above six
steps, the eigensolution with BTMCB form is performed as follows:

A. Extract the submatrices A and B from the geometric and elastic stiffness
matrices using the mathematical process of Sect. 7.4 to construct an
eigenproblem in the BTMCB form.

B. Generate the H matrix. This depends on the number of repetitive
substructures; however, calculating its eigenvalues, 4;, depends on the latter
number being odd or even.

C. Generate the block matrices BL; from matrices A and B for both elastic and
geometric stiffness matrices of the structure.

D. Define the block submatrices (BLys-1x:); for each pair of blocks (BLy:);

and (BLxe )j via the following equation:
(BLKg”Ke) T (BLk:); (BLxe);. (7.219)

E. Find the eigenvalues of the block matrices calculated in step D and gather
all of the eigenvalues calculated by means of Eq. 7.249:

cig (K& 'K*) = Oeig(BLKquc) - Oeig ((BLk:) (BLxs)). (7220
=1 j=1

i

F. The eigenvector corresponding to each eigenvalue of block submatrix
BLy.-1k- is obtained by the following relationship:

BLjYi = P«iYi- (7221)

Each eigenvalue of the block matrix BL; obtained by Eq. 7.249 is an eigenvalue

of K& 'K matrix; however, the eigenvectors obtained by Eq. 7.250 need to be
healed by a Kronecker product as

where X/ is the eigenvector of corresponding to the j* eigenvalue of the matrix H.
The matrix X is calculated by Eq. 7.240. Finally, if an eigenvalue calculated by
Eq. 7.249 is a simple one, the corresponding eigenvector will be real, but if the
eigenvalue is a multiple root of the characteristic polynomial, the corresponding
eigenvector will be complex. Adding two conjugate eigenvectors will result in the
real eigenvectors for both of them.
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7.9.4 [Eigensolution for Free Vibration of Structural Systems
with the BTMCB Form

Using the nodal numbering presented in Sect. 7.3, the elastic stiffness matrix of the
structure shown in Fig. 7.1 is formed, as explained in Sect. 7.2. The corresponding
lumped mass matrix is then generated by classic methods. The matrix corresponding
to this dynamic set will be in the following BTMCB form:

(A B 0 0 0 0 B']
BB A B 0 0O 0 0
0 BB A B 0O 0 0
.
K-o'm=|" O P 000 (7.223)
: : : . A B 0 0
0 0 0 0 B A B 0
0 0 0 0 0 B'" A B
LB 0 0 0 0 o0 B Aj
Therefore, the natural frequencies and natural modes can be found by
|K] — 0’[M]| = 0. (7.224)

The eigenvalues and eigenvectors are denoted by @; and ¢;, respectively.

Applying the BTMCB form to Eq. 7.35 for calculating the eigenvalues and
eigenvectors of the above set is similar to the process mentioned in Sect. 7.5. After
generating the mass matrix of structure, the process of finding the natural
frequencies and natural mode shapes can be performed as follows:

1.8 Extract the submatrices A and B from the mass and stiffness matrices using the
mathematical process presented in Sect. 7.4.

1.9 Generate the H matrix, which depends on the number of repetitive
substructures. Calculating the concerned eigenvalues, 4;, depends on the latter
number being odd or even.

1.10 Generate the block matrices BL; from submatrices A and B for both elastic
stiffness and mass matrices of structure.

1.11 Find m eigenvalues for each of n pairs of block matrices (BLwm); and (BLx:);

calculated in the previous step by solving Eq. 7.254:

BLKe—wZBLMj:O = Uwﬂ. (7.225)
i=1
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1.12 Gather all of the eigenvalues calculated by Eq. 7.254 as in the following
equation:

G=o’=J ( wﬂ) (7.226)
j 1

J:1 i=

1.13 The eigenvector corresponding to each eigenvalue of Eq. 7.255 is obtained as
BL;V; = Vi. (7.227)

1.14 Each eigenvalue obtained by Eq. 7.37 is an eigenvalue of total system, but the
eigenvectors obtained by Eq. 7.38 need to be healed by a Kronecker product
as

@, = U(ej 0y Vi) =(X®I (ej & Vi) =Xe¢;®IV; — @, = X @ V; (7.228)
where X! is the eigenvector corresponding to the j eigenvalue of the H matrix, and
the X matrix is calculated in the way shown in Eq. 7.240. Finally, if the eigenvalue
calculated by Eq. 7.255 is a simple one, the corresponding eigenvector will be real;
however, if the eigenvalue is a multiple root of characteristic polynomial, the
corresponding eigenvector will be complex. Adding two conjugate eigenvectors
will result in real eigenvectors for both of them.

7.9.5 Reducing Computational Efforts by Substructuring
the System

In this section a substructuring method is used for finding the block submatrices A
and B in mass and elastic stiffness matrices. As will be shown, less effort is needed
to generate the corresponding submatrices in geometric stiffness matrix as a
consequence of the aforementioned methodology.

The substructuring process may be performed as follows:

Step A. Generating the submatrices A and B in mass and elastic stiffness matrices:
Using the segmental division introduced in Sect. 7.2, the nodes of the
structure are divided into n subset of nodes. In order to find the required
substructure, the nodes associated with three arbitrarily selected consecutive
segments should be extracted from the set of all the nodes of the structure.
After defining the nodes in substructure, the corresponding elements should
be defined.

Thus, an adjacency submatrix between previously selected nodes should
be specified by which the required submatrices can completely be generated.
This adjacency matrix comprises all the elements existing in the intermediate
segment as well as elements between the nodes in the intermediate segment
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and the ones in two other segments. Calculating the mass and stiffness
matrices for the aforementioned substructure leads to the formation of
matrices in the following form:

C B 0 ‘ C B 0
[Myubstruewre] = |B' A B | and K35 o] = |B' A B|. (7.229)
0 B' D 0 B'' D

Step B.

Step C.

Thus, we need bigger matrices to compute in order to extract the
submatrices A and B from them.

Solution of the static problem:

As the structure has similar stiffness submatrices in different segments and
the exterior loads applied to the structure are similar in different segments,
the displacements will be identical as well. Since having the displacements
in a segment is sufficient, therefore the solution of static problem merely
for one segment will be adequate if the stiffness matrix of the substructure
is calculated appropriately. The stiffness matrix of a segment is calculated
by the following relationship:

Kelastic _ A+B+Bt (7230)

segment

The static problem which should be solved will be as follows:

[Fyegment] = [K“”‘ic } XJ. (7.231)

segment

Solving the above equation results in the displacements of an arbitrarily
substructure in the global coordinate system.

Generating the submatrices Step A and Step B in the geometric stiffness
matrix:

By calculating the transformation matrix of Sect. 7.2 for each element of
the substructure defined in Step A and by pre-multiplying the aforemen-
tioned transformation matrix into displacements achieved in Step B for
extreme nodes of the cited element, the displacements in local coordinate
system will be calculated.

As the stiffness matrix of each element in its coordinate system is com-
putable by elastic stiffness matrix for a 3D beam element and the displace-
ment of the element in its coordinate system are calculated above by means
of Eq. 7.260, the internal forces for each element can be calculated as

[Fintemal] = [Klocal] [Xlocal]- (7232)

Substituting the internal forces in Eq. 7.248 leads to the formation of the
geometric stiffness matrix for each element, and the assembling process of



258 7 Canonical Forms Applied to Structural Mechanics

the matrices leads to the formation of a geometric stiffness matrix having
the following form:

|:K geometric i| _

substructure

S --Ne
%> =

0
B|. (7.233)
D

By the steps A to C of Sect. 7.7, the submatrices A and B of the mass, elastic
and geometric stiffness matrices are calculated, and the process of
eigensolution described in Sects. 7.5 and 7.6 for finding the buckling loads
and natural frequencies of rotationally repetitive structure can be executed
with the least efforts.

7.9.6 Numerical Examples

Examples for finding the first six buckling loads and the first six maximum periods
for both solution methods for four dome structures are presented in this section. The
results are compared to those obtained by considering the entire structure in the
solution without using the symmetry property of the structures.

For all the structures, the density of the material is considered as 78.5 kN/m?, and
the modulus of elasticity is equal to 2e + 8 kN/m?.

Example 7.25: Type 1 configuration Specifications of the first configuration are
as follows:

Span = 145 m, height = 46.2 m, A = sweep angle = 65 (in degrees), number
of cycles = 32 and number of members in a rib = 16.

Element cross-sectional properties consisting of pipes are as follows:

Exterior diameter = 0.3239 m, thickness = 0.01 m and cross-sectional area

= 0.00986 m>

The configuration of the dome presented and the selected substructure for
computing the geometric and elastic stiffness matrices of the substructure are
shown in Fig. 7.86. This substructure is selected such that its cyclic repetition
covers the entire structure, and it has minimum number of elements with respect to
this property.

The first six buckling loads and the first six maximum periods of the structure for
both classic and present methods are presented in Table 7.1.

Example 7.26: Type 2 configuration Specifications of the second configuration
are as follows:
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Fig. 7.86 A dome and the selected substructure (Example 7.25)

Table 7.1 Comparison of the results for Example 7.25
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First six buckling

Method loads (kN) Elapsed time (s) First six periods (s) Elapsed time (s)
Present method  67.111171586 1.56 0.054773 0.45
67.363499398 0.054773
67.363499398 0.049093
68.140308485 0.049094
68.140308485 0.045122
69.504374950 0.039380
Classic method  68.143713692 65.46 0.062228 88.46
68.401052322 0.062228
68.401052322 0.050445
69.192595933 0.047125
69.192595933 0.047125
70.580117663 0.042186
. . time for present method  0.024 0.0051
Time ratio = — -
time for classic method

Span = 75m, height = 23 m, A = sweep angle = 63.04 (in degrees),
number of cycles = 16 and number of members in a rib = 9.

Element cross-sectional properties consisting of pipes are as follows:

Exterior diameter = 0.273 m, thickness = 0.0063 m and cross-sectional area

= 0.00528 m>.

The configuration of the dome presented and the selected substructure for
computing the geometric and elastic stiffness matrices of the substructure are
shown in Fig. 7.5. This substructure is selected such that its cyclic repetition covers
the entire structure, and it has minimum number of elements with respect to this
property (Fig. 7.87).
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Fig. 7.87 A dome and the selected substructure (Example 7.26)

Table 7.2 Comparison of the results for Example 7.26

First six buckling

Method loads (kN) Elapsed time (s) First six periods (s) Elapsed time (s)
Present method  42.626768260 2.71 1.076111 1.86
42.950213071 1.076111
42.950213071 0.327777
44.038557461 0.230387
44.038557461 0.169891
46.324767177 0.169891
Classic method  42.972754775 114 1.053611 138
43.249623685 1.053611
43.370217133 0.322513
44.365376027 0.230462
44.517103987 0.163465
46.694711532 0.152487
time for present method ~ 0.024 0.014

Time ratio =

time for classic method

The first six buckling loads and the first six maximum periods of the structure for
both classic and the present methods are presented in Table 7.2.

Example 7.27: Type 3 configuration Specifications of the example, considered
for first type of configurations are as follows:

Span = 69.28 m, height = 20 m, A = sweep angle = 60 (in degrees), number
of cycles = 16 and number of members in a rib = 8.

Element cross-sectional properties (pipes) : Exterior diameter = 0.273 m,

thickness = 0.016 m and cross-sectional area = 0.0129 m>.
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Fig. 7.88 A dome and the selected substructure (Example 7.27)

Table 7.3 Comparison of the results for Example 7.27

First six buckling

Method loads (kN) Elapsed time (s) First six periods (s) Elapsed time (s)
Present method  64.849808347 243 0.182603 1.21
65.051354899 0.182603
65.051354899 0.152094
65.592911269 0.152094
65.592911269 0.150714
66.519733355 0.150714
Classic method  66.069444015 145 0.141674 186
66.162547554 0.135081
66.416914783 0.135081
66.802945238 0.127772
67.024791100 0.127772
67.764475434 0.102673
. . time for present method  0.017 0.007
Time ratio = — -
time for classic method

The configuration of the dome presented and the selected substructure for
computing the geometric and elastic stiffness matrices of the substructure are
shown in Fig. 7.88. This substructure is selected such that its cyclic repetition
covers the entire structure, and it has minimum number of elements with respect to
this property (Fig. 7.88).

The first six buckling loads and the first six maximum periods of the structure for
both classic and the present methods are presented in Table 7.3.

Example 7.28: Type 4 configuration Specifications of the example, considered
for first type of configurations are as follows:

Span = 75 m, height = 12.97 m, diameter of gap inside = 45 m, A = sweep
angle = 50 (in degrees), number of cycles = 24, number of members in a rib in
upper layer = 4 and number of members in a rib in lower layer = 3.



262 7 Canonical Forms Applied to Structural Mechanics

Fig. 7.89 A dome and the
selected substructure
(Example 7.28)

Table 7.4 Comparison of the results for Example 7.28

First six buckling

Method loads (kN) Elapsed time (s) First six periods (s) Elapsed time (s)
Present method  53.150070147 0.89 0.169493 0.36
53.776869149 0.169493
53.776869149 0.164238
55.744596127 0.164238
55.744596126 0.127169
59.338436596 0.127169
Classic method ~ 52.173264063 41.56 0.167541 55.56
52.808894050 0.167541
52.808894051 0.163075
54.802130814 0.163075
54.802130814 0.125557
58.435492680 0.125557
. . time for present method ~ 0.022 0.007
Time ratio =

time for classic method

Element cross-sectional properties (pipes) : Exterior diameter = 0.1778 m,

thickness = 0.0063 m and cross-sectional area = 3.39¢ — 3 m>.

The configuration of the dome presented and the selected substructure for
computing the geometric and elastic stiffness matrices of the substructure are
shown in Fig. 7.7. This substructure is selected such that its cyclic repetition covers
the entire structure, and it has minimum number of elements with respect to this
property (Fig. 7.89).

The first six buckling loads and the first six maximum periods of the structure for
both classic and the present methods are presented in Table 7.4.

7.9.7 Concluding Remarks

Symmetry in rotationally repetitive structures results in the decomposition of the
systems into smaller subsystems. The matrices corresponding to the detached
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subsystems have diminutive dimension in comparison to the dimension of primary
matrices. By the decomposition of the rotationally repetitive structures into
subsystems, large eigenproblems transform into much more smaller eigenproblems.
In fact, for a structure having n rotationally repeating segments, instead of finding
the eigenvalues of an nm X nm matrix, one can n times calculate the eigenvalues of
m X m matrix, where m is equal to the number of active degrees of freedom in a
subsystem.

Besides, by applying the substructuring methodologies for eigensolution, there
is no need to generate the entire mass, elastic stiffness and geometric stiffness
matrices for the main structure. This leads to a drastical reduction in time and
memory needed. Although the structures studied here are domes, the application of
the presented method can easily be extended to other rotationally repetitive civil
engineering structures such as cooling towers and chimneys or structures such as
milling cutters, turbine bladed disks, gears and fan or pump impellers in mechanical
engineering.

The saving in the required time and memory is divided into three parts:

1. Saving in time and memory due to calculating the mass, elastic and geometric
stiffness matrices of subsystem; in fact, instead of generating the entire mass,
elastic and geometric stiffness matrices of the structure, the associated matrices
of the subsystem can be calculated, and the process of eigensolution can be
pursued.

2. Saving in time and memory due to partial static analysis of the structure for
buckling load problem.

3. Saving in time and memory due to calculating n times the eigenvalues and
eigenvectors of a problem in dimensions of active DOFs in a subsystem instead
of calculating the eigenvalues and eigenvector of a structure with an enormous
number of DOFs.
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