
Chapter 7

Canonical Forms Applied to Structural

Mechanics

7.1 Introduction

The main objective of this chapter is to illustrate different applications of the

canonical forms in structural mechanics with particular emphasis on calculating

the buckling load and eigenfrequencies of the symmetric structures.

In the first part, the problem of finding eigenvalues and eigenvectors of symmet-

ric mass–spring vibrating systems is transferred into calculating those of their

modified subsystems. This decreases the size of the eigenvalue problems and

correspondingly increases the accuracy of their solutions and reduces the computa-

tional time [1].

In the second part, a methodology is presented for efficient calculation of

buckling loads for symmetric frame structures. This is achieved by decomposing

a symmetric model into two submodels followed by their healing to obtain the

factors of the model. The buckling load of the entire structure is then obtained by

calculating the buckling loads of its factors [2].

In the third part, the graph models of planar frame structures with different

symmetries are decomposed, and appropriate processes are designed for their

healing in order to form the corresponding factors. The eigenvalues and eigenvectors

of the entire structure are then obtained by evaluating those of its factors. The

methods developed in this part simplify the calculation of the natural frequencies

and natural modes of the planar frames with different types of symmetry [3].

In the fourth part, methods are presented for calculating the eigenfrequencies of

structures. The first approach is graph theoretical and uses graph symmetry. The

graph models are decomposed into submodels, and healing processes are employed

such that the union of the eigenvalues of the healed submodels contains the

eigenvalues of the entire model. The second method has an algebraic nature and

uses special canonical forms [4].

In the fifth part, general forms are introduced for efficient eigensolution of

special tri-diagonal and five-diagonal matrices. Applications of these forms are

illustrated using problems from mechanics of structures [5].
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In the sixth part, the decomposability conditions of matrices are studied. Matri-

ces that can be written as the sum of three Kronecker products are studied; examples

are included to show the efficiency of this decomposition approach [6].

In the seventh part, canonical forms are used to decompose the symmetric line

elements (truss and beam elements) into sub-elements of less the number of degrees

of freedom (DOFs). Then the matrices associated with each sub-element are

formed, and finally the matrices associated with each subsystem are combined to

form the matrices of the prime element [7].

In the final part, an efficient eigensolution is presented for calculating the

buckling load and free vibration of rotationally cyclic structures [8]. This solution

uses a canonical form linear algebra that often occurs in matrices associated with

graph models. A substructuring method is proposed to avoid the generation of entire

matrices. Utilising the aforementioned method, the geometric stiffness matrix is

generated in an efficient time-saving manner. Then solution for the eigenproblem is

presented for geometric nonlinearity via the canonical form based on block

diagonalisation method.

7.2 Vibrating Cores for a Mass–Spring Vibrating System

Consider a symmetric system shown in Fig. 7.1a. This system is symmetric, and its

properties can be studied using its substructures.

These properties consist of the mass m1 and the stiffness k1 . The masses,

stiffnesses and their connectivity are considered to be symmetric with respect to

the axis shown in Fig. 7.1a.

This system can be considered as two identical subsystems connected to each

other with a spring, knows as a link spring, as shown in Fig. 7.1b.

This system has two degrees of freedom v1 and v2. The natural frequencies and

natural modes for the following eigenproblem

½K� � ω2 ½m�f gfϕg ¼ f0g (7.1)

can be found as

½K� � ω2½m��� �� ¼ 0: (7.2)

where [K] is the stiffness matrix and [m] is the mass matrix of the system. The

eigenvalues and eigenvectors are denoted by ωi and ϕi, respectively.

Since [K] and [m] are both symmetric, therefore the matrix ½K� � ω2½m�½ � has
Form II as the following:

k1 þ k2 � ω2m1 �k2
�k2 k1 þ k2 � ω2m1

� �
: (7.3)
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Using ω2m1 ¼ λ, one can write

ðk1 þ k2Þ � λ �k2
�k2 ðk1 þ k2Þ � λ

����
���� ¼ 0: (7.4)

Since the stiffness matrix has Form II, thus one can find its eigenvalues by

calculating those of its condensed submatrices

C ¼ k1 þ k2 � k2½ � ¼ k1½ �
D ¼ k1 þ k2 þ k2½ � ¼ k1 þ 2k2½ �: (7.5)

The matrices C and D partially contain the eigenvalues of S. Since these

submatrices have a nature similar to that of the overall stiffness matrix, thus the

condensed matrices C and D define the stiffness matrices of the subsystems as

shown in Fig. 7.1.

The structure corresponding to the condensed submatrices are referred to as

vibrating cores. These vibrating cores contain part of the properties of the vibrating
system. Therefore, the eigenvalues and eigenvectors of the overall structure can be

found using those of C and D subsystems, Fig. 7.2.

For the system S having N degrees of freedom,m andK areN� Nmatrices, and

if the structure is symmetric, the corresponding submatrices will be N
2
� N

2
.

For investigating the vibrating modes of S and vibrating cores, consider the

following definitions:

Definition 1. Let matrix M be in Form II as follows:

M ¼
A B

B A

" #
: (7.6)

Let the corresponding eigenvalues of M be λ1; λ2; λ3; . . . ; λn with eigenvectors

being as ϕ1;ϕ2;ϕ3; . . . ;ϕn. The eigenvectors can be classified into two groups:

K1

K1

K1

K1

K2

K2

m1

m1

m1

m1

A B

S1 S2

a

b

Fig. 7.1 A symmetric

dynamic system and two

subsystems with link spring
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First group: those with eigenvectors having N
2
repeated entries

Second group: those with eigenvectors having N
2
repeated entries with reverse signs

Definition 2. If matrixM has a symmetry in Form II, then the condensed matrices

are

C ¼ Aþ B andD ¼ A� B: (7.7)

The eigenvectors of C are of the first group type and those of D are of the second

group type.

Therefore, if the eigenvectors for the eigenvalues of C (with N
2

entries) are

calculated, then those of M can easily be obtained by addition of N
2
entries, and

those of D with reversed signs should be added.

7.2.1 The Graph Model of a Mass–Spring System

The mathematical model of a dynamic system consists of masses and springs.

These masses are connected by means of springs. As the mathematical model, a

weighted graph is defined as follows:

1. The supports in the mathematical model are associated neutral nodes in the

graph.

2. For each mass, a node of graph is associated, and its weight is taken as the

magnitude of the mass.

3. An edge is considered for each spring, and its weight is taken as the stiffness of

the spring.

As an example, the graph model G1 of a dynamic system shown in Fig. 7.3a is

depicted in Fig. 7.3b.

For a dynamic system, we have

Kϕ ¼ ω2mϕ) K� ω2m
� �

ϕ ¼ 0: (7.8)

This is an eigenvalue problem for which ω is the eigenvalue and ϕ is its

eigenvector.

m1

m1

k1

k12K2

C:

D:

Fig. 7.2 Subsystems

corresponding to condensed

submatrices C and D
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If we assumem as a diagonal matrix, then its inverse can easily be found, and we

will have

m�1Kϕ ¼ m�1ω2mϕ)m�1Kϕ ¼ ω2ϕ)½m�1K� ω2I�ϕ ¼ 0: (7.9)

If ½m�1K� ¼ ½LT� and λ ¼ ω2, then we have

LT � λI½ �ϕ ¼ 0: (7.10)

This is an eigenvalue problem corresponding to eigenvalues and eigenvectors

of LT. This relationship can be associated with the corresponding graph. If LT is the

generalised Laplacian of the graph, then the above problem becomes an

eigenproblem of a graph.

7.2.2 Vibrating Systems with Form II Symmetry

As an example, the generalised Laplacian matrix for the graph G1 in Fig. 7.3 has the

following form:

LT ¼
k1 þ k2 �m1 �k2
�k2 k1 þ k2 �m1

" #
(7.11)

For a symmetric graph, an appropriate numbering of the nodes results in a

generalised Laplacian matrix with Form II.

Example 7.1. Consider a dynamic system as shown in Fig. 7.4 with graph model

being G2.

This graph is symmetric and its Laplacian and generalised matrices are as

follows:

A

A

B

B

K1 K1

K1 K1

K2

K2

m1

m1

m1

m1

a

b

Fig. 7.3 A dynamic system

and its graph model. (a) A

symmetric dynamic system.

(b) Graph model G1 of the

system
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L ¼
k1 þ k2 þ k3 �k2 �k3 0
�k2 k2 þ k3 0 �k3
�k3 0 k1 þ k2 þ k3 �k2
0 �k3 �k2 k2 þ k3

2
64

3
75 (7.12)

LT ¼
k1 þ k2 þ k3 �m1 �k2 �k3 0

�k2 k2 þ k3 �m2 0 �k3
�k3 0 k1 þ k2 þ k3 �m1 �k2
0 �k3 �k2 k2 þ k3 �m2

2
64

3
75:

(7.13)

For the symmetry in Form II, the generalised Laplacian matrix can be written as

LT ¼ S LI
LI S

� �
: (7.14)

The submatrix S is called the shape matrix and represents the properties of both

subgraphs, which are identical, and LI is called the link matrix and shows the way

two subgraphs are connected to each other. The submatrix LI represents the effect

of the springs between two subgraphs in the stiffness matrix.

As mentioned before, we have an eigenproblem for the matrix LT. According to

the properties of Form II, if ½Sþ LI� ¼ C and ½S� LI� ¼ D , then L0T can be

expressed as

L
0
T ¼ C 0

0 D

� �
: (7.15)

If L0T is the generalised Laplacian matrix of a graph, then this graph will consist

of two subgraphs with N/2 nodes for each subgraph which are not connected to each

other, and LT has eigenvalues as

K1 K1K2 K2

K3

K3

K3

K3

K2K2

K1 K1

m1

m1m1

m2 m2

m2 m1

1

1

2

2

3

3

4

4

G2

Fig. 7.4 A dynamic system and its graph model
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EIGðLTÞ ¼ EIGðCÞ [ EIGðDÞ: (7.16)

Thus, the subgraphs C and D are the dynamic cores of the model. Each core

defines part of the natural frequencies ωi of the entire system.

ωLT
f g ¼ ωDf g [ ωEf g: (7.17)

As an example, for graph G2, the cores C and D are shown in Fig. 7.5.

Laplacian matrices of C and D are as follows:

LC ¼ k1 þ k2 �k2
�k2 k2

� �
(7.18)

and

LD ¼ k1 þ k2 þ 2k3 �k2
�k2 k2 þ 2k3

� �
(7.19)

As mentioned previously, the Laplacian matrix of the corresponding graphs is

the same as the stiffness matrices of the mathematical model for each subgraph C

and D as shown in Fig. 7.6.

7.2.3 Vibrating Systems with Form III Symmetry

For a symmetric system with odd number of masses, the corresponding graph will

have Form III symmetry. For such a system, the vibrating cores can be identified

using symmetry.

As the third example, consider the model shown in Fig. 7.7a.

Fig. 7.5 The dynamic cores

C and D of G2

K1

K2

K2

K1 m1

m1m2

m

2k3

2k3

C:

D:

Fig. 7.6 The mathematical

models for C and D
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The corresponding graph is shown in Fig. 7.7b.

The Laplacian and generalised Laplacian matrices are as follows:

L ¼
k1 þ k2 0 �k2

0 k1 þ k2 �k2
�k2 �k2 2k2

2
4

3
5; (7.20)

LT ¼
k1 þ k2 �m1 0

0 k1 þ k2 �m1

�����k2�k2
�k2 �k2 2k2 �m2

3
75:

2
64 (7.21)

As it can be seen, both L and LT have Form III.

The Laplacian matrices corresponding to the vibrating cores are given below:

LD ¼ ½k1 þ k2 � 0� ¼ ½k1 þ k2�; (7.22)

and

LE ¼ k1 þ k2 �k2
�2k2 2k3

� �
: (7.23)

The graphs of these matrices are shown in Fig. 7.8.

If there is a directed edge between two nodes i and j directed from i to j, it

represents a directed spring in the dynamic system, Fig. 7.9. The main characteristic

K1

K1 K2

K2

K2

K1

K1

K2mA = m1 mB=m2 mC = m1

m2m1 m1

A BC

a

b

Fig. 7.7 A dynamic system

and its graph model

Fig. 7.8 The subgraphs for D

and E

k
i j

Fig. 7.9 A directed spring
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of such a spring is that the connection of this spring to masses is such that it does not

take part in the stiffness of kj,i, but it effects the ki,j, that is,

The mathematical models corresponding to the cores D and E are shown in

Fig. 7.10.

According to the properties of the cores,

λLTf g ¼ λDf g [ λEf g; (7.24)

and

ωLTf g ¼ ωDf g [ ωEf g: (7.25)

and from the vibrating cores E and D, the natural modes of the entire system can be

found.

If each a vibrating system contains symmetry, then the cores can be decomposed

accordingly. Further decomposition of the refined cores for symmetry is also

possible.

7.2.4 Generalized Form III and Vibrating System

As described in Chap. 4, for a graph with symmetric core having Form III, if the

complement of the core is connected by the nodes of degree 1, then the nodes can be

ordered to produce a Laplacian matrix of Form III. This property can also be used

for graphs corresponding to the vibrating systems.

Consider the system in Fig. 7.11a together with its graph being illustrated in

Fig. 7.11b.

The subgraph containing the nodes A, B and C has a symmetric core of Form III.

The nodes E and D are connected to this core through C. Therefore, the Laplacian

matrix of this graph will be in the generalised Form III. L and LT are formed as

follows:

K1

K1

K2

K2

K2

m1

m1m2

D:

E:

A

C B

Fig. 7.10 Models

corresponding to D and E
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L ¼

k1 þ k2 �k1 �k2 0 0

�k1 k1 þ k2 �k2 0 0

�k2 �k2 2k2 þ k3 �k3 0

0 0 �k3 k3 þ k4 �k4
0 0 0 �k4 k4 þ k5

2
66664

3
77775; (7.26)

LT ¼

k1þ k2�m1 �k1 �k2 0 0

�k1 k1þ k2�m1 �k2 0 0

�k2 �k2 2k2þ k3�m2 �k3 0

0 0 �k3 k3þ k4�m3 �k4
0 0 0 �k4 k4þ k5�m4

2
66664

3
77775:

(7.27)

The connected submatrices D and E are formed for LT as

D ¼ k1 þ k2 �m1 � �k1ð Þ½ � ¼ 2k1 þ k2 �m1½ �; (7.28)

E ¼
k1 þ k2 �m1 � k1 �k2 � k2 0 0

�k2 � k2 2k2 þ k3 �m2 �k3 0

0 �k3 k3 þ k4 �m3 �k4
0 0 �k4 k4 þ k5 �m4

2
664

3
775;
(7.29)

or

E ¼
k2 �m1 �k2 0 0

�2k2 2k2 þ k3 �m2 �k3 0

0 �k3 k3 þ k4 �m3 �k4
0 0 �k4 k4 þ k5 �m4

2
664

3
775: (7.30)

The subgraphs associated with the cores D and E are shown in Fig. 7.12.

K5 K4

K4 K3K5

K3 K2

K2

K2

K2

K1

K1

m4 m3 m2 m1 m1

E D C B A

m4 m3 m2

m1

m1

A

B

E D C

a

b

Fig. 7.11 A dynamic system and its graph model
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The form of the vibrating cores corresponding to D and E is shown in Fig. 7.13.

It can be observed that due to the symmetry, the generalised Laplacian is

decomposed into two submatrices of 1 � 1 and 4 � 4, and the cores are formed.

If N other nodes are connected to C in a similar manner, again the graph can be

decomposed into two cores D and E, as shown in Fig. 7.14. It should be noted that

the core D does not change.

Fig. 7.12 Subgraphs D and E

2K1 K2

K5 K4 K3
K2

K2

m1

m4 m3 m2 m1

A

E D C B

D:

E:

Fig. 7.13 Submodels D and E

Fig. 7.14 A graph decomposable into D and E

K5 K4 K3

K3

K3

K4K5

K3
K1

K2

K1

K1 K1K2
m3 m2 m1m1 m1 m1

m1

m3 m2

m1

m1

m1

F E C D B A

EF

A B

C D

Fig. 7.15 A dynamic system and its graph model
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Thus, the natural frequency of the core D and the correspondingmode of the system

will be unaltered. Therefore, one can conclude that part of the natural frequency of the

symmetric system with Form III will exactly be reflected in the whole system.

Consider the system shown in Fig. 7.15.

The LT, LD and LE matrices are as follows:

A B C D E F

LT¼

k1þk3�m1 �k1 0 0 �k3 0

�k1 k1þk2�m1 0 �k2 0 0

0 0 k1þk3�m1 �k1 �k3 0

0 �k2 �k1 k1þk2�m1 0 0

�k3 0 �k3 0 2k3þk4�m2 �k4
0 0 0 0 �k4 k4þk5�m3

2
666666664

3
777777775

(7.31)

LD ¼ k1 þ k3 �m1 �k1
�k1 k1 þ 2k2 �m1

� �
: (7.32)

And the corresponding graph and model are illustrated in Fig. 7.16.

Also we have

LE ¼
k1 þ k3 �m1 �k1 �k3 0

�k1 k1 �m1 0 0

�2k3 0 2k3 þ k4 �m2 �k4
0 0 �k4 k4 þ k5 �m3

2
664

3
775: (7.33)

And the corresponding model and graph are shown in Fig. 7.17.

K3 K1

K1

K2
K3

m1

m1 m1

m1 2K2

A B

A B

Fig. 7.16 The submodel D

and the corresponding

subgraph

K5 K4

K5 K4

K3

K3

K3

K1

K1

m3 m1 m1

m3 m2 m1

m1

m1

m1

F

F

E

E

C

C

D

D

Fig. 7.17 The submodel E

and the corresponding

subgraph
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7.2.5 Discussion

Symmetry of a mathematical model corresponds to the symmetric distribution of

the physical properties comprising of masses and stiffnesses of the springs and the

connectivity of the masses by means of springs.

For the graph model of a dynamic system, symmetry of Form II results in two

vibrating cores C and D. These cores are physically identified with the difference of

C being more flexible than D, and the main frequency and the corresponding mode

are contained in this part of the model.

For the graph model of a vibrating system having Form III symmetry, the two

vibrating cores D and E are produced. The number of masses and springs in D is less

than E, and directed springs are included in the core E.

Although the systems studied in here are mass–spring systems, however, the

application of the present method can be extended to other structural systems. The

application can also be extended to stability analysis of frame structures.

7.3 Buckling Load of Symmetric Frames

In this part a method is presented for efficient calculation of buckling loads for

symmetric frame structures. This is achieved by decomposing a symmetric model

into two submodels followed by their healing to obtain the factors of the model. The

buckling load of the entire structure is then obtained by calculating the buckling

loads of its factors.

7.3.1 Buckling Load for Symmetric Frames with Odd Number
of Spans per Storey

In this section, symmetric frames with an odd number of spans per storey are

studied. The axis of symmetry for these structures passes through the central

beams. For these frames, the matrices have canonical Form II patterns.

Non-sway Frames: Frames with no sway have no lateral displacement, and only

rotational DOF specifies the deformation of the structure. In this study, for rigid-

jointed frames in each joint, one rotational degree of freedom is considered.

For non-sway frames with odd number of spans per storey, if the loading is also

symmetric, then the stiffness matrix with an appropriate numbering of the DOF will

have canonical Form II pattern. In this case, the structure has two factors, one of

which is stiffer than the other. Naturally the weaker factor will have smaller

buckling load. Therefore, in order to find the buckling load for such a frame, with

N DOF, it is sufficient to calculate the buckling load of a weaker factor with N/2

DOF. This process reduces the computational time and the necessary storage.
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Decomposition and Healing Process: The operations performed after decompo-

sition is called the healing of substructures. The submodels obtained after the

decomposition and healing are known as the factors of the structural model.

Healing for different types of symmetry requires different operations. These

operations are designed such that the resulting factors correspond to the aforemen-

tioned condensed submatrices of the canonical forms.

For the non-sway frame with odd number of spans per storey, healing consists of

the following steps:

Step 1. Delete the beams which are crossed by the axis of symmetry. These are link
beams and are identified by Lb. Now the structure is decomposed into two

substructures S1 and S2 in the left- and right-hand sides, respectively.

Step 2. For S1, add one rotational spring, with a stiffness equal to 6EIlb
L3
Lb

¼ kCi, to the

joint at the ith storey. This provides the necessary stiffness requirement for

obtaining the factor C.

Step 3. Add a rotational spring to S2, with a stiffness of magnitude 2EIlb
L3
Lb

¼ kDi, at the

joint of the ith storey. This provides the necessary stiffness requirement for

obtaining the factor D.

S1 and S2 are now healed and the factors C and D are obtained.

The reason for selecting such stiffnesses for the springs is discussed by the

following simple example.

Example 7.2. Consider a simple symmetric portal frame with symmetric buckling

mode as shown in Fig. 7.18.

The stiffness matrix of the element with the numbering of the DOF as illustrated

in Fig. 7.19 is formed using the standard stiffness method.

k ¼ EI

L3

12 �6 �12 6
�6 4 6 �2
�12 6 12 �6
6 �2 �6 4

2
64

3
75� P

L

6
5

�1
10

�6
5

1
10

�1
10

2
15

1
10

1
30

�6
5

�1
10

6
5

�1
10

�1
10

1
30

�1
10

2
15

2
6664

3
7775: (7.34)

1 2

P P

EI EI

L

L
EI

Fig. 7.18 A simple

symmetric bending frame
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For the entire structure, the stiffness matrix is constructed as

K ¼ EI

L3

8� 4λ 2
2 8� 4λ

� �
; where λ ¼ PL2

30EI
: (7.35)

The numbering of the DOF should be such that the difference between symmetric

DOF becomes N/2.

The condensed submatrices of K are

A� B ¼ 6EI

L3
� 4EI

L3
� PL2

30EI

� �
¼ EI

L3
½6� 4λ� and

Aþ B ¼ 10EI

L3
� 4EI

L3
� PL2

30EI

� �
¼ EI

L3
½10� 4λ�;

(7.36)

corresponding to the factors D and C, respectively.

Design of the Factor D: A factor for which the stiffness matrix is

6EI
L3 � 4EI

L3 � PL2

30EI

h i
may be considered as a column under axial load P, with a spring

of stiffness kC ¼ 6EI
L3 .

Design of the Factor C: Similarly, a factor for which the stiffness matrix is

10EI
L3 � 4EI

L3 � PL2

30EI

h i
can be taken as a column under axial load P with a spring of

stiffness kD ¼ 10EI
L3 .

In order to determine the buckling load of the frame, the determinant of the

stiffness matrix is equated to zero:

detK ¼ det ½A� B� � det ½Aþ B� ¼ 0

6� 4λj j ¼ 0 and 10� 4λj j ¼ 0
(7.37)

leading to

λ1 ¼ 1:5 and λ2 ¼ 2:5:

Therefore,

λmin ¼ 1:5 ¼ PcrL
2

30EI
leading to Pcr ¼ 45EI

L2
:

L

EI
1

2 4

P P

3

Fig. 7.19 Numbering of the

DOF for a beam column
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Alternative Solution: First the factors are formed as shown in Fig. 7.20. The

buckling load of the structure is obtained by finding the buckling load of the factor D.

KC ¼ 2EI

L3
ð2Þ þ 6EI

L3
� 2P

15L

� �
¼ 10EI

L3
� 2P

15L

� �

KD ¼ 2EI

L3
ð2Þ þ 2EI

L3
� 2P

15L

� �
¼ 6EI

L3
� 2P

15L

� � (7.38)

Equating the determinant ofKD to zero, the same buckling load is obtained. This

approximation is very crude and can be improved by considering each column as

two or more elements. As an example, the columns with two elements are consid-

ered as shown in Fig. 7.21.

Now the structure consists of four rotational degrees of freedom and two

translation degrees of freedom. The corresponding stiffness matrix is obtained as

K ¼ 8EI

L3

�

24� 72λ 0 �6þ 3λ 0 0 0
0 8� 8λ 2þ λ 0 0 0

�6þ 3λ 2þ λ 1
2
þ 4� 4λ 0 0 1

4

0 0 0 24� 72λ 0 �6þ 3λ
0 0 0 0 8� 8λ 2þ λ
0 0 1

4
�6þ 3λ 2þ λ 1

2
þ 4� 4λ

2
666664

3
777775

(7.39)

kC1 kD1

P P
a bFig. 7.20 Factors of the

structure S. (a) Factor C

(b) Factor D

1

2

3

4

P P

EI,L

5

6

EI,L/2

EI,L/2

Fig. 7.21 A portal frame

with six DOFs

168 7 Canonical Forms Applied to Structural Mechanics



where λ ¼ PL2

120EI
.

Forming the determinants of A + B and A � B and equating to zero results in

λmin ¼ 0:185 corresponding to Pcr ¼ 22:21EI

L2
which is quite close to the exact

buckling load. In this case, the lowest critical load is known to correspond to

antisymmetric mode, and as it will be shown in Sect. 3.2, the buckling load for

that case will be Pcr ¼ 7:44EI

L2
.

Example 7.3. Consider a one-bay two-storey frame as shown in Fig. 7.22. This

example is studied with two different discretisations. In the first model, each

column is considered as one element as in Fig. 7.22a, and in the second model,

each column is subdivided into two elements, as illustrated in Fig. 7.22b.

The overall stiffness matrix is formed as

K¼ EI

L3

12 2 2 0
2 8 0 2
2 0 12 2
0 2 2 8

2
64

3
75� P

L

0:4000 �0:0333 0 0
�0:0333 0:1333 0 0

0 0 0:4000 �0:0333
0 0 �0:0333 0:1333

2
64

3
75:

The smallest eigenvalue, using det K ¼ 0, leads to the buckling load of the

frame as

Pcr ¼ 19:7545EI

L2
:

However, this is not a good approximation, since only one element is used for

each column. The result can easily be improved by idealising each column by two

elements, as shown in Fig. 7.22b. For this model, the stiffness matrix is formed as

L

L

L
1

2

3

EI=Const.

4

L

L

L

1

2

3
4

5

6

7

8

9
10

11

12

EI=Const.

a bFig. 7.22 A one-bay two-

storey symmetric frame.

(a) Each column as one

element. (b) Each column

as two elements

7.3 Buckling Load of Symmetric Frames 169

http://dx.doi.org/10.1007/978-3-7091-1565-7_3


K ¼EI

l3

192 0 �48 0 0 0 0 0 0 0 0 0

0 64 16 0 0 0 0 0 0 0 0 0

�48 16 36 0 0 0 0 0 2 0 0 0

0 0 0 192 0 �48 0 0 0 0 0 0

0 0 0 0 64 16 0 0 0 0 0 0

0 0 0 �48 16 36 0 0 0 0 0 2
0 0 0 0 0 0 192 0 �48 0 0 0

0 0 0 0 0 0 0 64 16 0 0 0

0 0 2 0 0 0 �48 12 36 0 0 0

0 0 0 0 0 0 0 0 0 192 0 �48
0 0 0 0 0 0 0 0 0 0 64 16

0 0 0 0 0 2 0 0 0 �48 16 36

2
6666666666666666664

3
7777777777777777775

� P

l

48

5
0
�2
5

0 0 0 0 0 0 0 0 0

0
16

15

�2
15

0 0 0 0 0 0 0 0 0

�2
5

�2
15

8

15
0 0 0 0 0 0 0 0 0

0 0 0
24

5
0
�1
5

0 0 0 0 0 0

0 0 0 0
8

15

�1
15

0 0 0 0 0 0

0 0 0
�1
5

�1
15

4

15
0 0 0 0 0 0

0 0 0 0 0 0 48

5

0 �2
5

0 0 0

0 0 0 0 0 0 0
16

15

�2
15

0 0 0

0 0 0 0 0 0
�2
5

�2
15

8

15
0 0 0

0 0 0 0 0 0 0 0 0
24

5
0
�1
5

0 0 0 0 0 0 0 0 0 0
8

15

�1
15

0 0 0 0 0 0 0 0 0
�1
5

�1
15

4

15

2
6666666666666666666666666666666666666666664

3
7777777777777777777777777777777777777777775

:

The matrixK has Form II symmetry, and the smallest eigenvalue can be obtained

leading to λ1, corresponding to Pcr ¼ 11:1049EI

L2
. The exact value for the critical

load is PcrðexactlÞ ¼ 12:6EI

L2
:

Alternative Solution: The solution with one element per column indicates that

for calculating the buckling load of the entire structure, one can calculate only the

buckling load of the factor D of the frame, as shown in Fig. 7.23.

For this factor, det KD ¼ 0 leads to
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det
10� 15λ 2þ λ
2þ λ 6� 9λ

� �
¼ 0 (7.40)

or

λmin ¼ 0:4273 and Pcr ¼ 12:82
EI

L2
;

and this is the same result as previously obtained.

Sway Frames: In this section, the buckling load of symmetric frames with sway

is studied. For simplicity, the axial deformations of the beams are neglected.

Therefore, for each storey, one lateral DOF is assumed, that is, the displacements

of the two ends of each beam have the same magnitude.

In order to have the canonical Form III pattern, first, the rotational DOF should

be numbered suitable for the formation of the Form II pattern with submatrices A

and B, followed by free numbering of the translational DOFs of the stories forming

the augmenting rows and columns. Then the stiffness matrix will have canonical

Form III pattern.

In this case, for the formation of the factors of the frame, a new element should

be defined, Fig. 7.24. Consider the following column with new values for its

stiffness as

k ¼ 2EI

L3

6 �6 3 3

�6 6 �3 �3
0 0 0 0

0 0 0 0

2
664

3
775: (7.41)

With an axial load P, the above matrix becomes

kD

kD

P

P

Fig. 7.23 The factor D of the

structure
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k ¼ 2EI

L3

6 �6 3 3

�6 6 �3 �3
0 0 0 0

0 0 0 0

2
664

3
775� P

L

6
5

�6
5

1
10

1
10�6

5
6
5

�1
10

�1
10

0 0 0 0

0 0 0 0

2
664

3
775: (7.42)

7.3.1.1 Decomposition and Healing Process

For a sway frame with odd number of spans per storey, the process of the formation

of the factors D and E consists of the following steps:

Step 1. All the beams crossed by the axis of symmetry are deleted.

Step 2. For the substructure in the left-hand side, a rotational spring with the

stiffness 2EIlb
L3
Lb

is added to obtain the substructure D. This provides the necessary

stiffness requirement for obtaining the factor D.

Step 3. For the substructure in the right-hand side, the DOF for the beam is removed

and a rotational DOF with stiffness equal to 6EIlb
L3
Lb

is added.

Step 4. The translation DOF only affects the substructure E, and all the columns of

E are doubled by the addition of the new column elements, introduced in the

previous section, with corresponding stiffnesses.

Addition of the spring in the previous step, together with the new column,

completes the formation of the factor E.

1

2

P

P

L

3

4

Fig. 7.24 A new column

element

1
2

P P

EI EI

L

L

EI
3

Fig. 7.25 A symmetric

portal frame with

antisymmetric sway buckling

mode
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Example 7.4. The symmetric frame shown in Fig. 7.25 had a stiffness matrix with

canonical Form II pattern when no lateral displacement was present. However, due

to the presence of the lateral displacement, the corresponding stiffness matrix has

canonical Form III pattern.

The stiffness matrix is now formed as

K ¼ EI

L3

8 2 �6
2 8 �6
�6 �6 24

2
4

3
5� P

L

2=15 0 �1=10
0 2=15 �1=10

�1=10 �1=10 12=5

2
4

3
5: (7.43)

This matrix is written as

K ¼ EI

L3

8� 4λ 2 �6þ 3λ
2 8� 4λ �6þ 3λ

�6þ 3λ �6þ 3λ 24� 72λ

2
4

3
5 (7.44)

where λ ¼ PL2

30EI
:

Consider a stiffness matrix in Form III as

K ¼
A B P

B A P

P P R

2
4

3
5: (7.45)

The condensed submatrices of K are

½D� ¼ ½A� B� ¼ EI

L3
½8� 4λ� 2� ¼ EI

L3
½6� 4λ�; (7.46)

and

½E� ¼ Aþ B P

2P R

� �
¼ EI

L3

10� 4λ �6þ 3λ
�12þ 6λ 24� 72λ

� �
: (7.47)

Design of D is the same as that of the non-sway frame, discussed in the previous

section.

Design of E: The condensed matrix E for the present example can be written as

E ¼ E22 E23

E32 E33

� �
¼

4EI
L3 þ 2EI

L3 � 2P
15L

� 3EI
L3 � 3EI

L3 � P
10L

2 �3EI
L3 � 3EI

L3 � P
10L

� �
12EI
L3 þ 12EI

L3 � 12P
5L

" #
: (7.48)

Deleting the second row and column, a one-by-one matrix E22 is obtained which

corresponds to the factor C in non-sway frame and can be introduced to the factor E

by adding a spring of stiffness equal to 6EI
L3 . In order to incorporate the remaining

submatrices of E, a new column element is introduced as shown in Fig. 7.24.
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Consider the stiffness matrix of this column as

k� ¼ kI kII
kIII kIV

� �
; (7.49)

where kI expresses relationship for translation DOF, kIV corresponds to rotation

DOF and kII and kIII express relationship for translation and rotation DOF.

Since the spring with stiffness 6EI
L3 is already included in the column, hence the

new column element should have no additional effect on E22, and therefore, kIV
should have all zero entries. For the formation of E23, the entry K23 in the overall

stiffness matrix K should be introduced. Thus, the new column should have zero

entries in kIII position. According to Form III decomposition, for a symmetric

matrix, E32 is equal to 2E23, that is, the entry E32 is the same as k32 in the main

column of the substructure C, plus itself, that is, the new column in kII position

should have entries similar to those of a column element in the same position. In the

present example, the entry E32 is obtained by the sum of K32 with itself:

kII ¼ EI

L3

6 6

�6 �6
� �

� P

L

1
10

1
10� 1

10
� 1

10

� �
: (7.50)

In order to transfer the effect of translation from substructure D to that of E, the

same stiffnesses as those of a general column (Eq. 7.34) are used, that is,

kI ¼ EI

L3

12 12

�12 �12
� �

� P

L

6

5

6

5

� 6

5
� 6

5

2
64

3
75: (7.51)

Thus, the stiffness matrix of the new column is obtained as

k� ¼ EI

L3

12 �12 6 6

�12 12 �6 �6
0 0 0 0

0 0 0 0

2
664

3
775� P

L

6

5

�6
5

1

10

1

10�6
5

6

5

�1
10

�1
10

0 0 0 0

0 0 0 0

2
666664

3
777775; (7.52)

and the reasoning is complete. This is an imaginary stiffness matrix, and such a

column may not exist in the nature. However, the latter property has no effect on

our calculations.

Now the determinant for the stiffness matrix of the entire structure is equated to

zero as

detK ¼ detD� detE ¼ det½6� 4λ� � det
10� 4λ �6þ 3λ
�12þ 6λ 24� 72λ

� �
¼ 0; (7.53)

leading to
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det D ¼ 0) λ1 ¼ 1:5

det E ¼ 0) λ2 ¼ 2:5 and λ3 ¼ 0:248:

Therefore,

λmin ¼ 0:248 and Pcr ¼ 7:44
EI

L2
:

The buckling load can be obtained by the direct eigensolution of a 3 � 3 matrix

as Pcr ¼ 7:5 EI
L2 . More exact value of the buckling load is obtained by the solution of

the corresponding differential equation leading to Pcr ¼ 7:34 EI
L2 .

For this example, the buckling load obtained by the present method is closer to

the exact value compared to the case when the stability analysis of the entire

structure is performed.

It can also be observed that for calculating the buckling load, only the

formation of the factor E is needed. This reduces an eigensolution problem of

size (m + n) � (m + n) to (m + n/2) � (m + n/2), where m and n are the transla-

tion and rotation degrees of freedom, respectively.

7.3.2 Buckling Load for Symmetric Frames with an Even Number
of Spans per Storey

In this section, frames with an even number of spans per storey are studied. The axis

of symmetry for these structures passes through columns, and we have no link

beams. For these frames, the stiffness matrices have canonical Form III pattern.

Non-sway Frames: For this type of frame, first, the symmetric DOF is numbered

suitable for canonical Form II part, followed by numbering the DOF corresponding

to central joints. With this numbering, the stiffness matrix will have canonical

Form III pattern.

7.3.2.1 Decomposition and Healing

Step 1. Cut the structure in a small distance ε to the left-hand side of the axis of

symmetry.

Step 2. The cut ends are altered to clamped supports. The factor D is now obtained.

Step 3. For each central joint in the substructure of the right-hand side, add a simple

support and connect this joint with a directed beam to the other end of the

existing beam, as illustrated in the following example. Then the factor E is

obtained.
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Example 7.5. Consider the frame shown in Fig. 7.26. This frame has three DOFs,

consisting of two symmetric DOFs and one central DOF.

The stiffness matrix, with canonical Form III pattern, is obtained as (Fig. 7.27)

K ¼ EI

L3

4þ 4 0 2

0 4þ 4 2

2 2 4þ 4þ 4

2
4

3
5� P

L

2
15

0 0

0 2
15

0

0 0 2
15

2
4

3
5: (7.54)

Assuming

λ ¼ 2Pl2

15EI
;

we have

D ¼ EI

L3
8� λ½ � and E ¼ EI

L3

8� λ 2

4 12� λ

� �
; (7.55)

leading to

λ1 ¼ 8; λ2 ¼ 7:17; and λ3 ¼ 12:82;

and Pcr ¼ 53:78 EI
L2 :

L

1 2

EI

3P P P

L L

EI

Fig. 7.26 A two-span

symmetric non-sway frame

23 P PP1
a bFig. 7.27 Factors of the

considered frame. (a) Factor

D. (b) Factor E
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Alternative Solution: In this approach, the factors are formed using the decom-

position and healing algorithm of the previous section. For each factor, the stiffness

matrices are

D ¼ EI

L3
8� λ½ � and E ¼ EI

L3

8� λ 2

4 12� λ

� �
; (7.56)

leading to the same buckling load as

λ1 ¼ 8; λ2 ¼ 7:17; and λ3 ¼ 12:82;

and Pcr ¼ 53:78 EI
L2 :

It was mentioned before that, with a suitable numbering of the DOF, for

symmetric frames with an even number of spans, the overall stiffness matrix of

the frame has a canonical Form III pattern as

K ¼
A B P

B A L

P L R

2
4

3
5; (7.57)

where P expresses the relationship of the DOF for the left part with those of the

central part, and L is the relationship of the DOF of the right-hand side and those of

the central part. Since the frame is symmetric, therefore P ¼ L, and the decompo-

sition of

K ¼
A B P

B A P

P P R

2
4

3
5 (7.58)

results in

D ¼ A� B½ � and E ¼ Aþ B P

2P R

� �
: (7.59)

For a typical beam, the stiffness matrix is as follows:

k ¼ k11 k12
k21 k22

� �
¼ EI

L3

12 �12 6 6
�12 12 �6 �6
6 6 4 2
�6 �6 2 4

2
64

3
75; (7.60)

provided in the displacement vector, and rotations are multiplied by L.

For frames with no sway, only the rotation DOF of the beams is of interest, and

therefore, only the submatrix k22 is important.
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For a beam (i,j) the matrix L is as follows:

L ¼ EI

L3

4 2
2 4

� �
i

j
: (7.61)

After decomposition of S, the left-hand substructure corresponds to the condensed

submatrix D. The effects of the central columns are all included in E, and therefore,

the dimension of E is bigger than D by the number of DOF for central nodes, and for

each column, one rotation DOF is considered on the top end of the column.

Design of D: The cut for decomposition is slightly towards the left of the axis of

symmetry. In this way a correct number for the DOF of D which is half the

symmetric DOF is obtained. Fixing the cut ends in D, the rotation DOF stays

unaltered and hence provides the correct DOF.

Design of E: For the substructure in the right-hand side, the DOF of the central

nodes is transferred to the right-hand substructure. The stiffness of the two ends of

the beams is not the same; therefore, a directed beam is defined, leading to a

nonsymmetric stiffness matrix.

As an example, for the frame shown in Fig. 7.28, we have

D ¼ EI

L3
8½ � and E ¼ E22 E23

E32 E33

� �
¼ EI

L3

8 2

4 12

� �
: (7.62)

For the substructure E, we should add a member such that in position E33, the

stiffness is increased by kii in Eq. 7.62, and in E22, it should remain unchanged, that

is, kjj should be zero. This member should increase E32 by kij, but E23 should be left

unaltered; that is, kji should have null value. Hence, the stiffness matrix of this beam

will be in the following form:

EI

L3

4 2

0 0

� �
: (7.63)

With a direction on this member from i to j, corresponding to a nonsymmetric

stiffness matrix, the above conditions are fulfilled. Here, i is the central node and j is

the other end of the right-hand side beam.

Considering the entries of 2P in E, one finds out that these entries can be

obtained by moments at the central DOF under the action of unit displacements

L

1 2

EI

3P P P

L L

EI

4

Fig. 7.28 A two-span sway

frame
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in the DOF of the right-hand side. Thus, for the formation of the submatrix E, this

moment is doubled, while the reverse action is not doubled. The importance of

directed beams in the formation of the factor E becomes apparent.

Sway Frames

The stiffness matrices of these frames, with appropriate numbering of the DOF,

have canonical Form III patterns. Here, the axis of symmetry passes through one or

more joints. Similar to the non-sway case, first, symmetric DOF is numbered with

n/2 difference suitable for canonical Form II pattern. Then the translational DOF is

numbered. In this numbering, the central joint DOF for storey i is more than j if the

symmetric DOF of storey i is bigger than those of j. With this numbering scheme,

the stiffness matrix of the frame will have canonical Form III pattern.

7.3.2.2 Decomposition and Healing

Step 1. Cut the main structure with an axis passing from a small distance ε to the left
of the axis of symmetry.

Step 2. Consider clamped supports for all the ends cut by this axis. The formation of

the factor D is now completed.

Step 3. In the right-hand side substructure, for each cut beam, add a directed beam

from central joint to symmetric joint to obtain E.

For this case, all the necessary elements are previously discussed and the necessity

of above steps should be obvious.

Example 7.6. Consider the frame shown in Fig. 7.28.

This structure is factored to D and E as illustrated in Fig. 7.29.

The stiffness matrices of D and E are obtained as

D ¼ EI

L3
8� λ½ � ) λ1 ¼ 8

E ¼ EI

L3

8� λ 2 �6� 0:75λ

4 12� λ �6� 0:75λ

�12� 1:5λ �6� 0:75λ 36� 32λ

2
64

3
75 ð7:64Þ

3 P PP1

4

2Fig. 7.29 The factors of the

considered frame
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where λ ¼ 2PL2

15EI
:

The solution is obtained as

λ2 ¼ 0:729; λ3 ¼ 6:88; and λ4 ¼ 15:13;

and Pcr ¼ 5:47EI
L2 :

The stiffness matrix of the factor E is

K ¼ EI

L3

8 0 2 �6
0 8 2 �6
2 2 12 �6
�6 �6 �6 36

2
664

3
775� P

L

2

15
0 0

�1
10

0
2

15
0
�1
10

0 0
2

15

�1
10�1

10

�1
10

�1
10

18

5

2
666666664

3
777777775
: (7.65)

Equating the determinant of this matrix to zero results in the same buckling load

for the frame.

For a better approximation, columns are subdivided into two elements and the

analysis is performed. As a second example, consider the frame shown in Fig. 7.30.

The stiffness matrix of this frame has canonical Form III with the following

submatrices:

A ¼
192� 72λ 0 �48þ 3λ

0 64� 8λ 16þ λ
�48þ 3λ 16þ λ 36� 4λ

2
4

3
5 and B ¼

0 0 0

0 0 0

0 0 0

2
4

3
5

P ¼
0 0 0 96� 36λ
0 0 0 �48þ 3λ
0 0 2 �48þ 3λ

2
4

3
5

and H ¼
192� 72λ 0 �48þ 3λ 96� 36λ

0 64� 8λ 16þ λ �48þ 3λ
�48þ 3λ 16þ λ 40� 4λ �48þ 3λ
96� 36λ �48þ 3λ �48þ 3λ 288� 108λ

2
664

3
775

L

L

1

2

4

5

6

7

8

9
10

EI=Const.

L

3 P P P

Fig. 7.30 A two-span one-

storey symmetric frame
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MþN¼

192�72λ 0 �48þ3λ 0 0 0 192�72λ
0 64�8λ 16þλ 0 0 0 �96þ6λ

�48þ3λ 16þ λ 36�4λ 0 0 4 �96þ6λ
0 0 0 192�72λ 0 �48þ3λ 96�36λ
0 0 0 0 64�8λ 16þλ �48þ3λ
0 0 2 �48þ3λ 16þλ 40�4λ �48þ3λ

96�36λ �48þ3λ �48þ3λ 96�48λ �48þ3λ �48þ3λ 288�108λ

2
666666664

3
777777775
:

The eigenvalues corresponding to this matrix are obtained as

λMþN ¼ f0:3423; 1:5268; 1:8055; 5:7650; 13:0571; 14:7588g:

M� N ¼

192� 72λ 0 �48þ 3λ 0 0 0 0

0 64� 8λ 16þ λ 0 0 0 0

�48þ 3λ 16þ λ 32� 4λ 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

2
666666664

3
777777775
:

and ignoring the last four rows and columns, the eigenvalues for the above matrix

are obtained as

λM�N ¼ f1:5695; 5:2540; 13:7989g:

The smallest eigenvalue is therefore λ1 ¼ 0:3423, leading to Pcr ¼ 5.1344EI/L2.

7.3.3 Discussion

Exploiting the symmetry of structures can be made by using discrete mathematics.

This prepares the ground for more efficient use of the computer and to an under-

standing which enables us to interpret the final results more readily. Factoring the

symmetric structures has the following advantages:

1. The DOF of the problem is reduced.

2. The computational effort is decreased.

3. The solution of larger problems becomes feasible.

Though the examples are selected from small structures, however, the method

shows its potential more when applied to large-scale structures.
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7.4 Eigenfrequencies of Symmetric Planar Frame

In this part the graph models of planar frame structures with different symmetries

are decomposed and appropriate processes are designed for their healing in order to

form the corresponding factors. The eigenvalues and eigenvectors of the entire

structure are then obtained by evaluating those of its factors. The methods devel-

oped in this part simplify the calculation of the natural frequencies and natural

modes of the planar frames with different types of symmetry.

7.4.1 Eigenfrequencies of Planar Symmetric Frames with Odd
Number of Spans

7.4.1.1 Definitions

The Element tc for 2D Case: The elements defined in the following are used in

decomposition for doubling some columns in place of deleting the beams. The new

column is denoted by tc, as shown in Fig. 7.31, and it is characterised by Eq. 7.66.

The properties of the deleted beam Lb; mb; EIb

Ktc ¼ EIb

Lb

� 6½ �; Mtc ¼ mbL
3
b

420
� 1½ �: (7.66)

The Element cc for 2D Case: This new column is denoted by cc, as shown in

Fig. 7.32, and it is characterised by Eq. 7.67.

2D- tc

L

Mx1

z

y

=Fig. 7.31 The new column tc,

fixed in Fy direction

2D- cc

L

1=Mx

z

y

Fig. 7.32 The new column cc
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The properties of the deleted beam Lb; mb; EIb

Kcc ¼ EIb

Lb

� 2½ � and Mcc ¼ mbL
3
b

420
� 7½ �: (7.67)

Algorithm (a): The algorithm for the decomposition of planar frames with odd

number of spans, with or without sway, is designed as follows:

Step 1. Delete all the beams crossing the axis of symmetry.

Step 2. The columns corresponding to the left part, which are connected to the

eliminated beams, are doubled by tc columns. This half for the case of non-sway

forms the factor C and in the case of sway together with the translation DOFs

forms the factor E.

Step 3. The columns of the right half, which were connected to the eliminated

beams, are doubled by cc columns. This half for the cases of sway and non-sway

forms the factor D and in the case of sway together with the translation DOFs is

deleted.

Definition of the Function f(A): Consider A as a matrix. If m is the number of

translational DOFs, then f(A) multiplies the last m rows of A by 2.

Note: In the case of non-sway frame, the problem is solved by constructing the

submatricesMC;KC andMD;KD corresponding to the Form II symmetry, and in the

sway case, the problem is solved by forming MD;KD and fðMEÞ; fðKEÞ
corresponding to the Form III symmetry.

In this algorithm, the stiffness and mass matrices of the factor E are not the same

as those obtained from the original structure. However, the responses consisting of

the determinant and eigenvalues are identical, that is,

K; M ¼
A B S R

B A S R

S S Y X

R R X Y

2
664

3
775) D ¼ A� B and E ¼

Aþ B S R

2S Y X

2R X Y

2
4

3
5: (7.68)

The stiffness and mass matrices of the factor E in the algorithm (a) are obtained

as

KE;ME ¼
Aþ B S R

S Y
2

X
2

R X
2

Y
2

2
4

3
5: (7.69)

The properties of the new columns are obtained by considering the interrelation of

the DOFs of the members. For the frames with odd number of spans, where the axis of

symmetry passes through beams, the effect of the deleted beams should be included in

the decomposed subgraphs. Adding the new columns serves as a means for
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transferring the properties of the main structure into the decomposed substructures.

These operations are healings which change the subgraphs into the factors.

Considering the Form II symmetry, we have

K ¼ A B

B A

� �
;

C ¼ Aþ B½ � and D ¼ A� B½ �;
fλKg ¼ fλCg[fλDg:

(7.70)

If we can construct substructures with the stiffness and mass matrices

corresponding to the above forms, then we can form the factors.

If the numbering is performed corresponding to the Form II symmetry, then the

submatrix B will represent the relation between the DOFs of the right side and the

left side of the frame, and the submatrixA represents the relation between the DOFs

of each half of the structure.

In general, for a beam column with one rotational DOF per node, we have

K ¼ EI

L
� 4 2

2 4

� �
; M ¼ mL3

420
� 4 �3
�3 4

� �
: (7.71)

Considering the relationship between the DOFs of the connecting beams, it

becomes obvious that the entries (1,1) and (1,2) in the mass and stiffness matrices

of the substructures C and D should be added and subtracted, respectively.

C : K ¼ EI

L
� 4þ 2½ � ¼ EI

L
� 6½ �; M ¼ mL3

420
� 4þ ð�3Þ½ � ¼ mL3

420
� 1½ �;

D : K ¼ EI

L
� 4� 2½ � ¼ EI

L
� 2½ �; M ¼ mL3

420
� 4� ð�3Þ½ � ¼ mL3

420
� 7½ �:

(7.72)

It is obvious that the length and the elastic properties in these relationships

correspond to the connecting beams which are supposed to be deleted.

Ktc ¼ EIb

Lb

� 6½ �; Mtc ¼ mbL
3
b

420
� 1½ �;

Kcc ¼ EIb

Lb

� 2½ �; Mcc ¼ mbL
3
b

420
� 7½ �:

(7.73)

In this way, the properties of the new columns are obtained.

Example 7.7. The symmetric frame shown in Fig. 7.33 is considered. This frame is

assumed to be constrained against sway and has only two rotation DOFs, as shown

in the figure.

The distribution of the mass in the link beam which crosses the axis of symmetry

should also be symmetric.
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According to the algorithm (a), the decomposition of the frame is obtained in a

step-by-step manner, whereas in the previously developed methods, the factors

were obtained by adding springs and masses.

The properties of the added columns (Fig. 7.34) are as follows:

Ktc ¼ EIb

Lb

� 6½ � ¼ 12EI

L

� �
and Mtc ¼ mbL

3
b

420
� 1½ � ¼ 6mL3

210

� �
;

Kcc ¼ EIb

Lb

� 2½ � ¼ 4EI

L

� �
and Mcc ¼ mbL

3
b

420
� 7½ � ¼ 42mL3

210

� �
:

(7.74)

Now the stiffness and mass matrices of the factors C and D are formed as

KC ¼ 4EI

L
þ 12EI

L

� �
¼ 16EI

L

� �
and MC ¼ mL

420
� 4L2 þ 6mL3

210

� �
¼ 8mL3

210

� �

ω2 ¼ X ) ω2
1 ¼

420EI

mL4
;

KD ¼ 4EI

L
þ 4EI

L

� �
¼ 8EI

L

� �
and MD ¼ mL

420
� 4L2 þ 42mL3

210

� �
¼ 44mL3

210

� �

ω2 ¼ X ) ω2
2 ¼

420EI

11mL4
;

ð7:75Þ

and the natural frequencies are easily obtained.

Example 7.8. The frame shown in Fig. 7.35 has 10 DOFs and has the Form II

symmetry.

The factors are constructed as shown in Fig. 7.36.

The stiffness and mass matrices of the added columns are as follows (Fig. 7.37):

2L,1.5m

24EI1

EI,m,L

Fig. 7.33 A symmetric

frame with two DOFs

21

EI , m , L

C D

Fig. 7.34 Factors of the

frame of Fig. 7.3
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tc2
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C D

Fig. 7.36 Factors of the frame of Fig. 7.18
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Fig. 7.35 A symmetric frame with 10 DOFs
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7
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4 m 3 m 3 m 4 m 
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cc2

cc1

tc2

9

1011

12

E D

Fig. 7.37 Factors D and E of the sway frame of Fig. 7.36
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tc1 :)Ktc1¼
EIb

Lb

� 6½ �¼ 2EI½ � & Mtc1¼
mbL

3
b

420
� 1½ �¼ 9m

140

� �
;

cc1 :)Kcc1¼
EIb

Lb

� 2½ �¼ 2EI

3

� �
& Mcc1¼

mbL
3
b

420
� 7½ �¼ 9m

20

� �
:

tc2 :)Ktc2¼
EIb

Lb

� 6½ �¼ 2EI

3

� �
& Mtc2¼

mbL
3
b

420
� 1½ �¼ 243m

70

� �
;

cc2 :)Kcc2¼
EIb

Lb

� 2½ �¼ 2EI

9

� �
& Mcc2¼

mbL
3
b

420
� 7½ �¼ 243m

10

� �
: (7.76)

The stiffness and mass matrices of the factors C and D are constructed as

KC ¼ EI�

4
3
þ 4

4
þ 4

4
2
4

2
4

0 0
2
4

4
4
þ 4

4
0 2

4
0

2
4

0 4
3
þ 4

4
þ 4

3
þ 4

4
2
4

2
3

0 2
4

2
4

4
4
þ 4

4
þ 2

3
0

0 0 2
3

0 4
3
þ 4

3
þ 2

2
6666664

3
7777775

¼ 2EI

5
3

1
4

1
4

0 0

1
4

1 0 1
4

0

1
4

0 7
3

1
4

1
3

0 1
4

1
4

4
3

0

0 0 1
3

0 7
3

2
6666666664

3
7777777775
;

MC ¼ m

420

620 �192 �192 0 0

�192 512 0 �192 0

�192 0 728 �192 �81
0 �192 �192 1241 0

0 0 �81 0 243

2
6666666664

3
7777777775
: (7.77)
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KD ¼ EI�

4
3
þ 4

4
þ 4

4
2
4

2
4

0 0
2
4

4
4
þ 4

4
0 2

4
0

2
4

0 4
3
þ 4

4
þ 4

3
þ 4

4
2
4

2
3

0 2
4

2
4

4
4
þ 4

4
þ 2

9
0

0 0 2
3

0 4
3
þ 4

3
þ 2

3

2
6666664

3
7777775

¼ 2EI

5
3

1
4

1
4

0 0
1
4

1 0 1
4

0
1
4

0 7
3

1
4

1
3

0 1
4

1
4

10
9

0

0 0 1
3

0 5
3

2
6666664

3
7777775
;

MD ¼ m

420

620 �192 �192 0 0

�192 512 0 �192 0

�192 0 728 �192 �81
0 �192 �192 5615 0

0 0 �81 0 405

2
6666664

3
7777775
:

(7.78)

In this way, the natural frequencies and the natural modes of this framewith 10DOFs

are obtained using the equation of the motion of two factors each having five DOFs as

det KC � ω2MC

� �
5�5 ¼ 0 )

ω2
1 ¼

0:6EI

m
; ω2

2 ¼
1:42EI

m
; ω2

3 ¼
2:15EI

m
; ω2

4 ¼
5:24EI

m
and ω2

5 ¼
9:56EI

m
;

det KD � ω2MD½ �5�5 ¼ 0 )

ω2
6 ¼

0:15EI

m
; ω2

7 ¼
1:1EI

m
; ω2

8 ¼
2EI

m
; ω2

9 ¼
3:52EI

m
and ω2

10 ¼
5:57EI

m
:

ð7:79Þ

Example 7.9. Consider the sway frame shown in Fig. 7.38, having 12 DOFs.

The factors are shown in Fig. 7.22.

The natural frequencies are similar to those of Example 7.8, and therefore,

ω2
1 ¼

0:15EI

m
;ω2

2 ¼
1:1EI

m
;ω2

3 ¼
2EI

m
;ω2

4 ¼
3:52EI

m
;ω2

5 ¼
5:57EI

m
: (7.80)

There is no need to solve the equation det KD � ω2MD½ �5�5 ¼ 0 for finding the

eigenvalues. The formation of the factor D can be avoided.

cc1 : )Kcc1 ¼
EIb

‘b
� 2½ � ¼ 2EI

3

� �
and Mcc1 ¼

mb‘
3
b

420
� 7½ � ¼ 9m

20

� �
;

cc2 : ) Kcc2 ¼
EIb

‘b
� 2½ � ¼ 2EI

9

� �
and Mcc2 ¼

mb‘
3
b

420
� 7½ � ¼ 243m

10

� �
: (7.81)
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The stiffness and the mass matrices of the factor E are as follows:

KE¼EI�

4
3
þ4

4
þ4

4
2
4

2
4

0 0 6
32
� 6

42
6
42

2
4

4
4
þ4

4
0 2

4
0 �6

42
6
42

2
4

0 4
3
þ4

4
þ4

3
þ4

4
2
4

2
3

6
32
� 6

42
6
42

0 2
4

2
4

4
4
þ4

4
þ2

3
0 �6

42
6
42

0 0 2
3

0 4
3
þ4

3
þ2 6

32
0

6
32
� 6

42
�6
42

6
32
� 6

42
�6
42

6
32

3�12
33
þ2�12

43
�2�12

43

6
42

6
42

6
42

6
42

0 �2�12
43

2�12
43

2
666666666666664

3
777777777777775

;

ME¼ m

420

620 �192 �192 0 0 �22�32þ22�42 13�42
�192 512 0 �192 0 �13�42 �22�42
�192 0 728 �192 �81 �22�32þ22�42 13�42
0 �192 �192 1241 0 �13�42 �22�42
0 0 �81 0 243 �22�32 0

�22�32þ22�42 �13�42 �22�32þ22�42 �13�42 �22�32 3�156�3þ2�156�4 2�54�4
13�42 �22�42 13�42 �22�42 0 2�54�4 2�156�4

2
666666666666664

3
777777777777775

:

ð7:82Þ

In this way, the natural frequencies and the natural modes of this frame with 12

DOFs are obtained using the equation of the motion of two factors having five and

seven DOFs.

The first five frequencies are as follows:

ω2
1 ¼

0:15EI

m
;ω2

2 ¼
1:1EI

m
;ω2

3 ¼
2EI

m
;ω2

4 ¼
3:52EI

m
;ω2

5 ¼
5:57EI

m
: (7.83)

The remaining seven frequencies are calculated from the factor E as

det KE � ω2ME

� �
7�7 ¼ 0)

ω2
6 ¼

0:022EI

m
; ω2

7 ¼
0:25EI

m
; ω2

8 ¼
0:61EI

m
; ω2

9 ¼
1:81EI

m
;

ω2
10 ¼

2:97EI

m
; ω2

11 ¼
5:67EI

m
and ω2

12 ¼
10:27EI

m
:

(7.84)
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Fig. 7.38 A sway frame with 12 DOFs
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The factors of the main frame in the case of sway and non-sway are identical,

Figs. 7.22 and 7.39.

Only the factor E has the additional translation DOF. Thus, for calculating the

responses of a frame in sway and non-sway cases, instead of solving a problem with

n� n and ðnþ mÞ � ðnþ mÞ matrices, we need to solve three problems

corresponding to n
2
� n

2
, n
2
� n

2
and n

2
þ m

	 
� n
2
þ m

	 

matrices, Fig. 7.40.

7.4.2 Decomposition of Symmetric Planar Frames with Even
Number of Spans

Algorithm for Decomposition: According to the present algorithm, each symmetric

structure with an even number of spans can be decomposed into two factors,

without introducing a new element. By obtaining dynamic properties of each factor

and considering the union of the results, one can obtain the dynamic properties of

the entire structure.

Definitions: A central element is defined as a column which coincides with the

axis of symmetry. Central nodes are taken as the nodes that coincide with the axis of

symmetry.

Algorithm (b): This algorithm is simple and consists of the following steps:

1

2 4

53 10 68

79

& C D

tc1

cc2

cc1

tc2

1

2 4

53

& C

tc1

tc2

10 68

79

D

cc2

cc1

Fig. 7.39 Factors of the frame in non-sway and sway cases
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Step 1. Divide the frame into two halves from the axis of symmetry, such that the

moment of inertia for the central column and the mass of their unit length, m, are

reduced to half.

Step 2. Fix the central nodes in the left half. This half is the factor D and the right

half forms the factor E.

Therefore, one can solve the main eigenproblem by constructing submatrices

KD;MD andKE;ME. In fact, the factors D and E obtained by this algorithm have the

properties of the entire structure.

Proof: The stiffness and mass matrices of the factors D and E in the algorithm (b)

are symmetric and can be formed as

D ¼ ½G�n
2
�n

2
and E ¼ Q R

Rt Y

� �
n
2
þmð Þ� n

2
þmð Þ

(7.85)

where m is the total number of rotation and translation DOFs of central nodes and

translation DOFs vertical to the plane of symmetry and n is the total number of

symmetric translation and rotation DOFs.

If the numbering of the DOFs of main frame is performed in a special form

corresponding to the Form III symmetry, then the matrices will be decomposable

and can be formed as

K;M ¼
A B S

Bt A S

St St X

2
4

3
5) Dreal ¼ A� B½ � and Ereal ¼ Aþ B S

2St X

� �
: (7.86)

After considering the interrelationship between the DOFs in the main frame and

in the factors and defining the function f, we will have

G ¼ A� B; Q ¼ Aþ B; R ¼ S and Y ¼ X

2

) D ¼ ½A� B� ¼ Dreal and E ¼ Aþ B S

St X
2

� �
) Ereal ¼ fðEÞ:

(7.87)

In this algorithm, the stiffness and mass matrices of the factor E are not the same

as those of ME and KE of the stiffness and mass matrices of the main structure.

However, as has been mentioned in the previous section, the responses consisting of

& & 

tc1

cc2

cc1

tc2

tc1

tc2

Fig. 7.40 Three factors to be considered for the solution

7.4 Eigenfrequencies of Symmetric Planar Frame 191



the determinant and eigenvalues of the free vibration are identical to those of the

main structure as was desired.

Therefore, the factors E and D obtained from this algorithm have the same

properties as those of the main structure, and the problem is solved by constructing

the submatrices KD;MD and KE;ME.

Example 7.10. Consider the frame shown in Fig. 7.41, which is constrained

against sway. This frame has three DOFs. It is assumed that the frame has symmet-

ric elastic properties with respect to the two planes of symmetry.

The factors D and E are obtained using the algorithm (b) step by step as shown in

Fig. 7.42.

These factors can be considered as shown in Fig. 7.43.

The submatrices corresponding to these two factors are obtained, and their

characteristic equations lead to the eigenfrequencies required as follows:

,EI,m

2
,

2

mI
,E,

,EI,m  

,EI,m
,EI,m

D E

Fig. 7.42 The factors of the frame of Fig. 7.41

,EI, m

2
,

2

mI
,E,

,EI, m

,EI, m ,EI, m

D                                                       E

Fig. 7.43 Alternative illustration of the factors of the frame of Fig. 7.41

231

l,EI

l,EIl,EI

Fig. 7.41 A frame with three DOFs
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KD ¼ 4EI

‘
þ 4EI

‘

� �
¼ 8EI

‘

� �
and MD ¼ 4m‘3

420
þ 4m‘3

420

� �
¼ 8m‘3

420

� �

det KD � ω2MD

� � ¼ 0) ω2
1 ¼

420EI

m‘4

KE ¼
4EI
‘ þ 4EI

‘
2EI
‘

2EI

‘

4EI

‘
þ 4 EI

2

	 

‘

2
4

3
5 ¼

4EI

‘
þ 4EI

‘

2EI

‘

2EI

‘

4EI

‘
þ 4 EI

2

	 

‘

2
664

3
775

ME ¼
4m‘3

420
þ 4m‘3

420

�3m‘3

420

�3m‘3

420

4m‘3

420
þ 4 EI

2

	 

‘3

420

2
664

3
775 det KE � ω2ME

� � ¼ 0

) ω2
2 ¼

525EI

m‘4

) ω2
3 ¼

378EI

m‘4
:

(7.88)

Example 7.11. Consider the frame with an even number of spans as shown in

Fig. 7.44, where the frame has 10 DOFs without side sway and 12 DOFs with side

sway.

In the case of non-sway, the factors D and E are obtained as (Fig. 7.45)

In this case, the eigensolution of a 10 � 10 matrix is transformed into the

eigensolution of two 4 � 4 and 6 � 6 matrices.

In the sway case, the factors D and E are obtained as shown in Fig. 7.46.

The factors of the main frame in the case of sway and non-sway are identical.

Only the factor E has the translation DOF.
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8

Fig. 7.44 A frame with four spans
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7.4.3 Discussion

Decomposition and healing process presented in this part reduce the dimensions of

the matrices for dynamic analysis of the symmetric frames. Therefore, for large-

scale problems the accuracy of calculation increases and the cost of computation

decreases.

It can be observed that for the symmetric frames, one of the factors is common

for sway and non-sway cases. Therefore, if a frame has n symmetric DOFs, then for

both sway and non-sway cases, we will have common results. As an example, for a

10-storey frame with Form II symmetry, the natural frequencies can be obtained by

three matrices of dimensions 45 � 45, 45 � 45 and 55 � 55 in place of two

matrices of dimensions 100 � 100 and 90 � 90. This results in a considerable

saving in computational time.
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Fig. 7.45 Factors D and E for the non-sway frame
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Fig. 7.46 Factors D and E for the sway frame
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7.5 Eigenfrequencies of Symmetric Planar Trusses via

Weighted Graph Symmetry and New Canonical Forms

In this part two methods are presented for calculating the eigenfrequencies of

structures. The first approach is graph theoretical and uses graph symmetry. The

graph models are decomposed into submodels and healing processes are employed

such that the union of the eigenvalues of the healed submodels contain the

eigenvalues of the entire model. The second method has an algebraic nature and

uses special canonical forms.

7.5.1 Modified Symmetry Forms

In this section, two modified forms are introduced, and methods are presented for

constructing a suitable weighted graph. These graphs are then decomposed, and

healings are performed to maintain the eigen-properties of the entire graph.

It should be mentioned that the Form II is applicable to the graph matrices like

Laplacian and adjacency matrices, or to the structural matrices when the structure

has only one degree of freedom per node, while Form A is defined for trusses with

two degrees of freedom per node. The same reasoning holds for the Form III and

Form B symmetry introduced in the subsequent subsections.

7.5.1.1 Symmetry of Form A (Modified Form II Symmetry)

For trusses with axis of symmetry passing through some members, we have the

Form A symmetry, as shown in Fig. 7.47a. The main reason for not being able to

employ the previously developed forms of symmetry for calculating the eigenfre-

quencies of truss structures is due to the existence of oblique cross members. These

members affect the entries of the stiffness and mass matrices and change the sign

for some of the entries. Separation of the horizontal and vertical DOFs, as shown in

Fig. 7.47b, results in stiffness matrices of the symmetric trusses for the case where

the axis of symmetry does not pass through the nodes as follows:

First the nodes in the left-hand side (LHS) of the symmetry axis are numbered

followed by the numbering of the nodes in the right-hand side (RHS). Now the

horizontal DOFs (along x-axis) are first numbered, and then the vertical DOFs (in y-

direction) are numbered for the LHS. A similar numbering is then performed for the

DOFs of the RHS.

Pattern of the weighted block adjacency matrix M is as follows:
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LHS RHS

H V H V

M ¼

A C D F

C B F E

D �F A �C
�F E �C B

2
6664

3
7775
H

V

H

V

LHS

RHS ð7:89Þ

Conditions for symmetry are as follows:

All the submatrices are symmetric, except F which is antisymmetric.

At ¼ A ; Bt ¼ B ; Ct ¼ C ; Dt ¼ D and Ft ¼ �F : (7.90)

Here Ft ¼ �F corresponds to the interaction of the horizontal DOFs of the LHS

nodes and the vertical DOFs of the RHS and vice versa.

Performing the following permutations, we transform the matrix M into the

Schur’s form:

������������!C2 ¼ C1 þ C3

C2 ¼ C2 � C4

M ¼

Aþ D C� F D F

Cþ F B� E F E

Aþ D �Fþ C A �C
�F� C E� B �C B

2
6664

3
7775; (7.91)

������������!R3 ¼ R3 � R1

R4 ¼ R4 þ R2

M ¼
Aþ D C� F D F

Cþ F B� E F E
0 0 A� D �C� F

0 0 F� C Bþ E

2
664

3
775: (7.92)

L

LL L

3

2 6 5

4 8 7

1

1
2 8

7
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5
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11
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9
10

L

LL L

3

2 6 5

4 8 7

1

1
4 10

7

2
5

3
6

9
12

8
11

a b

Fig. 7.47 Modified numbering of the DOFs (Form A). (a) Initial numbering. (b) Modified

numbering
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Thus,

Det½M� ¼ Det
AþD C�F

CþF B�E

� �
 !

S

� Det
A�D �C�F

�CþF BþE

� �
 !

T

:
(7.93)

Therefore, the eigenvalues of M can be obtained as

λðMÞ ¼ λðSÞ [ λðTÞ: (7.94)

It should be noted that S and T are both symmetric, because F is antisymmetric

and the remaining submatrices are symmetric. The above relationships provide the

basis of the algebraic method for trusses with odd number of bays.

7.5.1.2 Symmetry of Form B (Modified Form III Symmetry)

For trusses with axis of symmetry passing through central nodes, we have the Form

B symmetry, as shown in Fig. 7.48. First the nodes in the LHS of the symmetry axis

are numbered followed by the numbering of the nodes in the RHS, and then the

central nodes on the axis of symmetry are numbered. Now the horizontal DOFs

(along x-axis) are first numbered, and then the vertical DOFs (in y-direction) are

numbered for the LHS. A similar numbering is then performed for the DOFs of the

RHS. Finally, the horizontal DOFs (in x-direction) followed by the vertical DOFs

(in y-direction) for the central nodes on the axis of symmetry.

Pattern of the matrix M is as follows:

M ¼

A C D F G I
C B F E I H

D �F A �C G �I
�F E �C B �I H

Gt It Gt �It J L
It Ht �It Ht L K

2
6666664

3
7777775
: (7.95)
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Nodes on Nodes on Nodes on
the LHS the RHS the axis
of the axis of the axis of symmetry

���������������������!Column permutations

A C G I D F

B B H G F E
D �F G �I A �C
�F E �I H �C B

Gt It J 0 Gt �Jt
Jt Ht 0 K �Jt Ht

2
6666664

3
7777775
;

(7.96)

Nodes on Nodes on Nodes on
the LHS the RHS the axis
of the axis of the axis of symmetry

������������������!Exchange of rows

A C G I D F

C B I H F E

Gt It J 0 Gt �It
It Ht 0 K �It Ht

D �F G �I A �C
�F E �I H �C B

2
6666664

3
7777775
;

(7.97)

L

LL L

4

9 6 5

10 8 7

2

13
15 10

7

3
6

14
16

9
12

8
11

3

1

1
4

2
5

L

Fig. 7.48 A symmetric truss

with the axis passing through

central nodes
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Nodes on Nodes on Nodes on
the LHS the RHS the axis
of the axis of the axis of symmetry

������������!C2 ¼ C1 þ C3

C2 ¼ C2 � C4

Aþ D C� F G I D F

Cþ F B� E I H F E

2Gt 2It J 0 Gt �It
0 0 0 K �It Ht

Aþ D �Fþ C G �I A �C
�F� C E� B �I H �C B

2
66666664

3
77777775

(7.98)

Now the following Schur’s form is obtained as

���������!R5¼R5�R1

R6¼R6þR2

AþD C�F G I D F
CþF B�E I H F E

2Gt 2It J 0 Gt �It
0 0 0 K �It Ht

0 0 0 �2I A�D �C�F
0 0 0 2H �CþF BþE

2
6666664

3
7777775
: (7.99)

Interchanging the 4–6 rows and columns, we obtain

Det ½M� ¼ Det

Aþ D C� F G

Cþ F B� E I

2Gt 2It J

2
4

3
5

S

�
A� D �C� F �2I
�Cþ F Bþ E 2H

�It Ht K

2
4

3
5

t

:

(7.100)

Thus,

λðMÞ ¼ λðSÞ [ λðTÞ: (7.101)

Matrix L is always a null matrix due to the symmetry. We may move the nodes

on the axis of symmetry in y-direction; these nodes should not be moved in x-

direction.

The matrices A, B, C, D and E are symmetric and F is antisymmetric. These

submatrices are n� n, where n is the number of free nodes in each side of the

axis of symmetry. I, H and G are n� m submatrices, where m is the number of

node on the axis and L, J and K are m� m submatrices. L is replaced by the

null matrix 0.

The above relationships provide the basis of the algebraic method for trusses

with an even number of bays.
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7.5.1.3 Definitions: Stiffness and Mass Graphs

The stiffness graph of a truss structure with k degrees of freedom has k nodes, and

the two nodes i and j are connected if the corresponding off-diagonal entry of the

stiffness matrix is non-zero. The weight of each node as equal to the corresponding

entry on the main diagonal, and the weight of each member connecting the nodes i

and j is the same as the entry (i,j) of the stiffness matrix. The mass graph of a mass

matrix is similarly constructed.

7.5.2 Numerical Results

In this section, three examples are presented and discussed in detail to illustrate the

methods presented in the previous section.

Example 7.12. Consider the symmetric truss with an odd number of spans as shown

in Fig. 7.49. For this truss, the axis of symmetry passes through four members.

The stiffness matrix will have the following form:

K¼

2EA
L
þ EA

2L0 0 EA
2L0 0 �EA

L
�EA

2L0 0 �EA
2L0

0 EA
L
þ EA

L0 0 0 �EA
2L0 �EA

L
EA
2L0 0

EA
2L0 0 EA

L
þ EA

2L0 �EA
L

0 �EA
2L0 0 �EA

2L0

0 0 �EA
L

EA
L
þ EA

L0
EA
2L0 0 �EA

2L0 0

�EA
L

�EA
2L0 0 EA

2L0
2EA
L
þ EA

2L0 0 �EA
2L0 0

�EA
2L0 �EA

L
�EA

2L0 0 0 EA
L
þ EA

L0 0 0

0 EA
2L0 0 �EA

2L0 �EA
2L0 0 EA

L
þ EA

2L0 �EA
L

�EA
2L0 0 �EA

2L0 0 0 0 �EA
L

EA
L
þ EA

L0

2
666666666666666664

3
777777777777777775

:

(7.102)

The weighted graph corresponding to the above stiffness matrix can easily be

constructed as shown in Fig. 7.50. Here, the weight of each node is identical to the

corresponding entry on the main diagonal, and the weight of each member is

the same as the (i,j)th entry of the matrix corresponding to that member.

The subgraphs are formed using the following algorithm:

After decomposing the graph into two subgraphs using the axis of symmetry, the

following operations are performed:

(a) The subgraph corresponding to S:

1. If there is a direct member between the horizontal DOF of two symmetric

nodes, then a directed ring should be added to the node of the LHS with a

weight equal to the weight of the member.
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2. If there is a direct member between the vertical DOF of two symmetric

nodes, then a directed ring should be added to the node of the RHS with a

weight equal to the weight of the member having minus sign.

EA
+

L L'
EA

2EA
+

L 2L'
EA

1

2

3

4 8

7

5

6

EA
+

L 2L'
EA

EA
+

L L'
EA

EA
+

L L'
EA

2EA
+

L 2L'
EA

EA
+

L 2L'
EA

EA
+

L L'
EA

-EA
L

2L'
EA

2L'
-EA

-EA
L

2L
'

-EA
2L'

-EA

-EA
L

-EA
L

2L'
-EA

2L'
EA

2L'
-EA

2L'
EA

2L

-EA

2L
'

-EA

Fig. 7.50 Graph representation of the stiffness matrix
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Fig. 7.49 A truss with an odd number of bays
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3. The oblique members cut by the axis of symmetry, which connect the

horizontal (or vertical) DOFs, are in dual form, and the weight of one of

them should be added to the weight of the member connecting the

corresponding nodes. Addition should be replaced by subtraction for vertical

DOFs.

4. The weight of the members connecting the horizontal and vertical DOFs is

equal to the weight of the existing member between these two nodes minus

the weight of the connecting member of the node corresponding to the

horizontal DOF to the node corresponding to the vertical DOF, as shown

in Fig. 7.51.

The stiffness matrix corresponding to the subgraph of Fig. 7.51 is formed as

S ¼

EA
L
þ EA

2L0
�EA
2L0

EA
2L0

EA
2L0

�EA
2L0

EA
L0

�EA
2L0

0

EA
2L0

�EA
2L0

EA
L
þ EA

2L0
�EA
L
þ EA

2L0
EA
2L0 0 �EA

L
þ EA

2L0
EA
L
þ EA

L0

2
6664

3
7775 (7.103)

(b) The subgraph corresponding to T:
After decomposing the graph into two subgraphs at the cut by the axis of

symmetry, the following operations should be performed:

1. If there is a direct link between any node in the right-hand side and the LHS,

then a loop is added to the subgraph in the RHS which has a weight equal to

the weight of that node with reverse sign.

L'

EA

2EA
+

L 2L'

EA
1

2

3

4

EA
+

L 2L'

EA

EA
+

L L'

EA

2L
'

-E
A

2L'

-EA

2L'

EA

-EA
+

L 2L'

EA

2L'

EA

EA
L

+
-EA
L

-EA
L

Fig. 7.51 Formation of the

subgraph S
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2. If there is a direct link between the vertical DOFs of the LHS and the RHS,

then a directed loop is added to the subgraph in the RHS which has a weight

equal to the weight of that link member.

3. The oblique members connecting the horizontal DOF (or vertical), which are

cut, are necessarily dual, and we should reduce the weight of one of them

from the link between two corresponding nodes in one side of the symmetry

axis (right-hand side). We make addition for the vertical DOFs.

4. The weight of the member connecting the horizontal and vertical DOFs is

equal to the weight of the existing member between these two nodes (in the

RHS of the axis) plus the weight of the member connecting the node

corresponding to the horizontal DOF (in the same side of the axis) to the

node corresponding to the vertical DOF in the other side of the symmetry

axis.

The stiffness matrix corresponding to the subgraph of Fig. 7.52 is formed as

T ¼

3EA
L
þ EA

2L0
EA
2L0

�EA
2L0

EA
2L0

EA
2L0

2EA
L
þ EA

L0
�EA
L0

0
�EA
2L0

�EA
2L0

EA
L
þ EA

2L0
�EA
L
� EA

2L0
EA
2L0 0 �EA

L
� EA

2L0
EA
L
þ EA

L0

2
6664

3
7775: (7.104)

Similarly, the mass matrix is formed as

8

7

5

6
EA

+
L L'

EA

2EA
+L 2L'

EA

EA
+L 2L'

EA

EA
+

L L'

EA

2L '
E
A

2L'
-EA

2L'
-EA

2L'
EA

-EA
-

L 2L'
EA

L
EA

L
EA

Fig. 7.52 Formation the

subgraph T

7.5 Eigenfrequencies of Symmetric Planar Trusses via Weighted Graph Symmetry. . . 203



M ¼

ρALþ ρAL0
3

ρAL
6

0 0 ρAL
6

ρAL0
6

0 0

ρAL
6

2ρAL
3
þ 2ρAL0

3
0 0 ρAL0

6
ρAL
6

0 0

0 0 ρALþ ρAL0
3

ρAL
6

0 0 ρAL
6

ρAL0
6

0 0 ρAL
6

2ρAL
3
þ 2ρAL0

3
0 0 ρAL0

6
ρAL
6

ρAL
6

ρAL0
6

0 0 ρALþ ρAL0
3

ρAL
6

0 0

ρAL0
6

ρAL
6

0 0 ρAL
6

2ρAL
3
þ 2ρAL0

3
0 0

0 0 ρAL
6

ρAL0
6

0 0 ρALþ ρAL0
3

ρAL
6

0 0 ρAL0
6

ρAL
6

0 0 ρAL
6

2ρAL
3
þ 2ρAL0

3

2
6666666666666666664

3
7777777777777777775

:

ð7:105Þ

Graph representation of the mass matrix is illustrated in Fig. 7.53. The subgraphs

are formed utilising the previous algorithm as follows:

(a) The subgraph corresponding to S:
This subgraph is shown in Fig. 7.54. The mass matrix corresponding to the

subgraph shown in Fig. 7.54 is constructed as

S ¼

7ρAL
6
þ ρAL0

3
ρAL
6
þ ρAL0

6
0 0

ρAL
6
þ ρAL0

6
5ρAL
6
þ 2ρAL0

3
0 0

0 0 5ρAL
6
þ ρAL0

3
ρAL
6
� ρAL0

6

0 0 ρAL
6
� ρAL0

6
ρAL
2
þ 2ρAL0

3

2
666664

3
777775: (7.106)

(b) The subgraph corresponding to T:
This subgraph is shown in Fig. 7.55. The mass matrix corresponding to this

subgraph is as follows:

1
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  ALr
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2 +
  AL'r

3
2

  ALr +
  AL'r
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  ALr +

  AL'r
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  ALr
3

2   AL'r

3
2

  ALr +
  AL'r   ALr   AL'r

3

  ALr
3

2 +
  AL'r

3
2   ALr

3
2 +

  AL'r
3

2
  ALr
6

  AL
6

r

  ALr
6

  ALr
6

  AL'r
6

  AL'r
6

  AL
6

r

  AL
6
r

6
  ALr

6
  ALr

  AL'
6

r  AL'
6
r +

3
+

Fig. 7.53 Graph representation of the mass matrix
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T ¼

5ρAL
6
þ ρAL0

3
ρAL
6
� ρAL0

6
0 0

ρAL
6
� ρAL0

6
ρAL
2
þ 2ρAL0

3
0 0

0 0 7ρAL
6
þ ρAL0

3
ρAL
6
þ ρAL0

6

0 0 ρAL
6
þ ρAL0

6
5ρAL
6
þ 2ρAL0

3

2
6664

3
7775: (7.107)
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3
2 +

  AL'r

3
2

  ALr +
  AL'r

3

  ALr +
  AL'r

3

  ALr

3
2 +

  AL'r

3
2

  ALr

6
-

  AL'r

6

  ALr

6
+

  AL'r

6

6
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6
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6
  ALr

-

6
  ALr

-

Fig. 7.55 Formation of the

subgraph T
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Fig. 7.54 Formation of the

subgraph S
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Considering, E ¼ 2:07� 107 kN=m L ¼ 100 cm, I ¼ 100 cm2 and

ρ ¼ 78 kN=m3 and A ¼ 10 cm2 the frequencies of the structure are calculated as

ωS ¼ ½16:251; 20:608; 37:51; 40:229�
ωT ¼ ½8:294; 42:680; 45:403; 55:909�
ω ¼ ωS [ ωT ¼ ½16:251; 20:608; 37:51; 40:229; 8:294; 42:680; 45:403; 55:909�:

ð7:108Þ

Using the algebraic approach formulated in Sect. 3.1, identical eigenfrequencies

are obtained. The eigenvectors are then calculated and the mode shapes are

obtained, Fig. 7.56.

Example 7.13. Consider the symmetric truss with an even number of spans as

shown in Fig. 7.57. For this truss, the axis of symmetry passes through two nodes.

The stiffness matrix of the structure shown in Fig. 7.58 has the Form B symmetry

as follows:

K ¼

2EA
L
þ EA

2L0 0 EA
2L0 0 0 0 0 0 � EA

L
� EA

2L0 0 � EA
2L0

0 EA
L
þ EA

L0 0 0 0 0 0 0 � EA
2L0 � EA

L
EA
2L0 0

EA
2L0 0 EA

L
þ EA

2L0 � EA
L

0 0 0 0 0 � EA
2L0 0 � EA

2L0

0 0 � EA
L

EA
L
þ EA

L0 0 0 0 0 EA
2L0 0 � EA

2L0 0

0 0 0 0 2EA
L
þ EA

2L0 0 � EA
2L0 0 � EA

L
� EA

2L0 0 EA
2L0

0 0 0 0 0 EA
L
þ EA

L0 0 0 � EA
2L0 � EA

L
� EA

2L0 0

0 0 0 0 � EA
2L0 0 EA

L
þ EA

2L0 � EA
L

0 EA
2L0 0 � EA

2L0

0 0 0 0 0 0 � EA
L

EA
L
þ EA

L0 � EA
2L0 0 � EA

2L0 0

� EA
L

� EA
2L0 0 EA

2L0 � EA
L

� EA
2L0 0 � EA

2L0
2EA
L
þ EA

L0 0 0 0

� EA
2L0 � EA

L
� EA

2L0 0 � EA
2L0 � EA

L
EA
2L0 0 0 2EA

L
þ EA

L0 0 0

0 EA
2L0 0 � EA

2L0 0 � EA
2L0 0 � EA

2L0 0 0 EA
L
þ EA

L0 � EA
L

� EA
2L0 0 � EA

2L0 0 EA
2L0 0 � EA

2L0 0 0 0 � EA
L

EA
L
þ EA

L0

2
666666666666666666666666666664

3
777777777777777777777777777775

:

ð7:109Þ

Graph representation of the stiffness matrix is illustrated in Fig. 7.58.

7.5.2.1 Symmetry Property of the Graph Representation

of the Stiffness Matrix

1. The graph is symmetric with respect to the axis passing through the nodes

corresponding to the central DOFs.

2. The weight of the node i is equal to the (i,i)th entry of the stiffness (or mass)

matrix, and it is symmetric with respect to the axis.
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3. The weight of the member connecting the nodes i and j is equal to the (i,j)th

entry of the stiffness (or mass) matrix. The weight between the x DOFs (the

upper part of the graph) and the weight of the member between y DOFs (lower

part of the graph) are symmetric with respect to the axis of symmetry (the

corresponding members are identical), and the weight of the members between

x and y DOFs in two sides of the axis of symmetry is antisymmetric (equal

members with reverse signs). Finally there should be no link member between x

and y DOFs of the central nodes, that is, the submatrix L of the stiffness (or

mass) matrices should be null matrix. This had been proven differently.

7.5.2.2 Formation of the Subgraphs

The subgraphs are constructed utilising the following algorithm:

We subdivide the graph into two subgraphs by removing the members cut by the

axis of symmetry. The subgraph in the LHS corresponds to the matrix S, and the one

1st mode 2nd mode

3rd mode 4th mode

5th mode 6th mode

7th mode 8th mode

Fig. 7.56 The natural mode shapes of Example 7.12
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in the RHS corresponds to T. For the graphs on the axis of symmetry, the upper

nodes on the axis corresponding to the horizontal DOFs are associated to S and the

bottom nodes on the axis corresponding to the vertical DOFs are associated to T.
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+
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+
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+
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+
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Fig. 7.58 Graph representation of the stiffness matrix
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Fig. 7.57 A truss with an even number of bays
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The weight of the nodes and all the members (which may exist between the nodes

on the axis) are left unchanged.

(a) The subgraph corresponding to S:
If there exists a member between any node of the LHS (nodes 5, 6, 7 and 8) and

the central nodes (the existing nodes in Figs. 7.57 and 7.58), then a directed

member is added from the central node towards the node in the LHS with a

weight equal to that of the existing member. The weight of the directed member

from i to j is added to the entry Sij.

The stiffness matrix corresponding to the subgraph shown in Fig. 7.59 is

constructed as

KS ¼

2EA
L
þ EA

2L0 0 EA
2L0 0 � EA

s
� EA

2L0

0 EA
L
þ EA

L0 0 0 � EA
2L0 � EA

L
EA
2L0 0 EA

L
þ EA

2L0 � EA
L

0 � EA
2L0

0 0 � EA
L

EA
L
þ EA

L0
EA
2L0 0

� 2EA
L

� EA
L0 0 � EA

L0
2EA
L
þ EA

L0 0

� EA
L0 � 2EA

L
� EA

L0 0 0 2EA
L
þ EA

L0

2
666666664

3
777777775
: (7.110)

(b) The subgraph corresponding to T:
The weight of the nodes and the possible existing members are left unchanged.

If there exists a member between the DOFs of the RHS (nodes 5, 6, 7 and 8) and

the central nodes (the existing nodes in Figs. 7.59 and 7.60), then another

directed member is added from the LHS node towards the central node with a

weight equal to that of the existing member. For the added directed member, the

weight of the member from i to j is added to the entry Tij.

The stiffness matrix corresponding to the subgraph T, shown in Fig. 7.60, is

constructed in the following:

KT ¼

2EA
L
þ EA

2L0 0 � EA
2L0 0 0 EA

L0
0 EA

L
þ EA

L0 0 0 � EA
L0 0

� EA
2L0 0 EA

L
þ EA

2L0 � EA
L

0 � EA
L0

0 0 � EA
L

EA
L
þ EA

L0 � EA
L0 0

0 � EA
2L0 0 � EA

2L0
EA
L
þ EA

L0 � EA
L

EA
2L0 0 � EA

2L0 0 � EA
L

EA
L
þ EA

L0

2
6666664

3
7777775
: (7.111)

For the mass matrix, a similar operation is performed.
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M¼

ρAL þ ρAL0
3

ρAL
6

0 0 0 0 0 0 ρAL
6

ρAL0
6

0 0

ρAL
6

2ρAL
3
þ 2ρAL0

3
0 0 0 0 0 0 ρAL0

6
ρAL
6

0 0

0 0 ρALþ ρAL0
3

ρAL
6

0 0 0 0 0 0 ρAL
6

ρAL0
6

0 0 ρAL
6

2ρAL
3
þ 2ρAL0

3
0 0 0 0 0 0 ρAL0

6
ρAL
6

0 0 0 0 ρALþ ρAL0
3

ρAL
6

0 0 ρAL
6

ρAL0
6

0 0

0 0 0 0 ρAL
6

2ρAL
3
þ 2ρAL0

3
0 0 ρAL0

6
ρAL
6

0 0

0 0 0 0 0 0 ρALþ ρAL0
3

ρAL
6

0 0 ρAL
6

ρAL0
6

0 0 0 0 0 0 ρAL
6

2ρAL
3
þ 2ρAL0

3
0 0 ρAL0

6
ρAL
6

ρAL
6

ρAL0
6

0 0 ρAL
6

ρAL0
6

0 0 ρALþ 2ρAL0
3

ρAL
6

0 0

ρAL0
6

ρAL
6

0 0 ρAL0
6

ρAL
6

0 0 ρAL
6

ρALþ 2ρAL0
3

0 0

0 0 ρAL
6

ρAL0
6

0 0 ρAL
6

ρAL0
6

0 0 ALþ 2ρAL0
3

ρAL
6

0 0 ρAL0
6

ρAL
6

0 0 ρAL0
6

ρAL
6

0 0 ρAL
6

ρALþ 2ρAL0
3

2
66666666666666666666666666664

3
77777777777777777777777777775

:

ð7:112Þ

The graph representation of the mass matrix with the Form B symmetry is

illustrated in Fig. 7.61.

The subgraphs are constructed utilising the previous algorithm.

(a) The subgraph corresponding to S:
The mass matrix corresponding to the subgraph, shown in Fig. 7.62, is formed

as

MS¼

ρALþ ρAL0
3

ρAL
6

0 0 ρAL
6

ρAL0
6

ρAL
6

2ρAL
3
þ 2ρAL0

3
0 0 ρAL0

6
ρAL
6

0 0 ρALþ ρAL0
3

ρAL
6

0 0

0 0 ρAL
6

2ρAL
3
þ 2ρAL0

3
0 0

ρAL
3

ρAL0
3

0 0 ρALþ 2ρAL0
3

ρAL
6

ρAL0
3

ρAL
3

0 0 ρAL
6

ρALþ 2ρAL0
3

2
666666664

3
777777775
:

(7.113)

(b) The subgraph corresponding to T:
The mass matrix corresponding to the subgraph, shown in Fig. 7.63, is as

follows:

MT¼

ρALþ ρAL0
3

ρAL
6

0 0 0 0
ρAL
6

2ρAL
3
þ 2ρAL0

3
0 0 0 0

0 0 ρALþ ρAL0
3

ρAL
6

ρAL
3

ρAL0
3

0 0 ρAL
6

2ρAL
3
þ 2ρAL0

3
ρAL0
3

ρAL
3

0 0 ρAL
6

ρAL0
6

ρALþ 2ρAL0
3

ρAL
6

0 0 ρAL0
6

ρAL
6

ρAL
6

ρALþ 2ρAL0
3

2
666666664

3
777777775
:

(7.114)

Considering E ¼ 2:07� 107 kN=m, L ¼ 100 cm, I ¼ 100 cm4 and

ρ ¼ 78 kN=m3 and, the frequencies of the structure are calculated as
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Fig. 7.61 Graph representation of the mass matrix
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ωT ¼ ½48:908; 42:227; 37:548; 31:368; 26:525; 5:447�;
ωS ¼ ½11:886; 14:184; 11:722; 42:890; 45:349; 59:192�;
ω ¼ ωT [ ωS ¼ ½48:908; 42:227; 37:548; 31:368; 26:525; 5:447; 11:886;

14:184; 11:722; 42:890; 45:349; 59:192�: ð7:115Þ

Using the algebraic approach formulated in Sect. 3.2, identical eigenfrequencies

are obtained. The eigenvectors are then calculated and the mode shapes are

obtained. The first four mode shapes are illustrated in Fig. 7.64.

Important Notes: In the main graph there is no member between the nodes in the

two sides of the symmetry axis, since the submatrices D, E and F are null matrices.

The reason is the existence of a member directly connecting two nodes in two sides

of the symmetry axis. If there exist such members, then the submatrices D, E and F

will not be null, and for finding the subgraphs S and T and only for such members,

one should act as was described in the algorithm for the Form B symmetry. For

other members with the present pattern with nodes in two sides of the axis

connected to the central node, the above algorithm should be employed. This

problem can be recognised by investigating the similarity between the Form A

and Form B canonical symmetries. Part of the matrices S and T in Form A are

exactly the same as submatrices S and T in Form B.

Example 7.14. Consider a planar 2D truss with the symmetry axis passing through

central members (truss with odd number of spans), as shown in Fig. 7.65.

Considering L ¼ 100 cm, I ¼ 100 cm4, E ¼ 201 kN/mm2 and ρ ¼ 78 kN=m3,

A ¼ 10 cm2, the eigenfrequencies of the structure are calculated as:
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Fig. 7.63 Formation of the

subgraph T
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ωS¼ 26:83;42:78;92:36;108:31;150:23;159:69;169:32;171:32;180:91;

201:74;225:75;230:13;233:65;293:60

� �
;

ωT¼ 11:40;58:91;76:81;122:52;140:75;174:27;177:88;183:17;217:99;

223:18;233:94;235:82;259:0;322:24

� �
;

ω¼ωS[ωT¼

26:83;42:78;92:36;108:31;150:23;159:69;169:32;171:32;180:91;

201:74;225:75;230:13;233:65;293:60;11:40;58:91;76:81;122:52;

140:75;174:27;177:88;183:17;217:99;223:18;233:94;235:82;

259:0;322:24

2
6664

3
7775

(7.116)

1st mode

2nd mode

3rd mode

4th mode

Fig. 7.64 The first four

natural mode shapes of

Example 7.13
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Using the algebraic approach formulated in Sect. 3.1, identical eigenfrequencies

are obtained.

Example 7.15. Consider a planar 2D trusses that passes symmetry axes on middle

nodes (truss with even number of spans) as shown in Fig. 7.66.

Considering L ¼ 100 cm, I ¼ 100 cm4, E ¼ 201 kN/mm2 and ρ ¼ 78 kN=m3,

A ¼ 10 cm2, the eigenfrequencies of the structure are calculated as:
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Fig. 7.65 A 7-bay symmetric truss
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Fig. 7.66 A 6-bay truss
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ωK¼ 319:33;247:61;32:86;50:60;235:05;226:08;210:38;111:94;119:87;162:88;

175:33;177:43

� �
;

ωH¼ 15:17;73:08;86:37;142:5;157:8;170:21;182:37;189:58;225:17;226:63

234:2;284:92

� �
;

ω¼ωK[ωH¼
319:33;247:61;32:86;50:60;235:05;226:08;210:38;111:94;

119:87;162:88;175:33;177:43;15:17;73:08;86:37;142:5;157:8;

170:21;182:37;189:58;225:17;226:63;234:2;284:92

2
64

3
75

(7.117)

Using the algebraic approach formulated in Sect. 3.2, identical eigenfrequencies

are obtained.

Though in this part the examples are selected from small trusses, however, the

method shows its potential more when applied to large-scale structures. For com-

parison of the required time for calculating the eigenvalues of matrices with and

without decomposition, matrices of various dimensions are considered having

sparsity between 30 % and 40 %, and MATLAB is employed for these calculations.

7.5.3 Discussion

In this part two new canonical forms are introduced and weighted graph are

associated with these forms. Decomposition and healing processes are presented

to perform on these graphs in order to reduce the dimensions of the problem for free

vibration analysis of the symmetric trusses. Therefore, the accuracy of calculation

increases, and the cost of the computation decreases. The previously developed

methods were unable to deal with cross-link members of structures with more than

one DOF per node, while the new forms defined here overcome this difficulty.

Calculation of the eigenfrequencies can also be performed using the relationships

presented in Sects. 3.1 and 3.2 for trusses with odd and even numbers of bays,

respectively.

It should be mentioned that for automatic numbering of the degrees of freedom

(or nodal numbering suitable for the canonical forms), additional algorithm is

required.

The present method is also applicable to similar eigensolution problems such as

stability analysis of symmetric trusses for calculating their critical loads. This

approach can easily be generalised to free vibration analysis of space trusses.
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7.6 General Canonical Forms for Analytical Solution

of Problems in Structural Mechanics

In this part new forms are introduced for efficient eigensolution of special tri-diagonal

and penta-diagonal matrices. Applications of these forms are illustrated using

problems from mechanics of structures.

7.6.1 Definitions

The polynomial pðλÞ ¼ detðA� λIÞ is called the characteristic polynomial of
A. The roots of p(λ) ¼ 0 are the eigenvalues of A. Since the degree of the

characteristic polynomial p(λ) equals to N, the dimension of A has N roots, so A

has N eigenvalues. A non-zero vector x satisfyingAx ¼ λx is an eigenvector for the
eigenvalue λ.

The easiest matrix for which the eigenvalues can be calculated is a diagonal

matrix, whose eigenvalues are simply its diagonal entries. Equally easy is a

triangular matrix, whose eigenvalues are also its diagonal entries. A matrix can

have complex eigenvalues, since the roots of its characteristic polynomial may be

real or complex. Therefore, there is not always a real triangular matrix with the

same eigenvalues as a real general matrix, since a real triangular matrix can

only have real eigenvalues. Thus, one must either use complex numbers or look

beyond real triangular matrices for canonical forms for real matrices. For this

purpose, it is sufficient to consider block triangular matrices, that is, matrices of

the form

A ¼

A11 A12 : : : A1N

A22 : : : A2N

: : : :
: : :

: :
ANN

2
6666664

3
7777775
; (7.118)

where each Aii is square and all entries below Aii blocks are zero. It can easily

be shown that the characteristic polynomial det (A � λI) of A is the product
QN

i¼1
detðAii � λIÞ of the characteristic polynomial of the Aii, and therefore, the set λ(A)
of eigenvalues of A is the union [Ni¼1 λðAiiÞ of the sets of eigenvalues of the

diagonal blocks Aii.
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7.6.2 Decomposition of a Tri-diagonal Matrix

Consider a block tri-diagonal matrix as:

F ¼

A B

B C B

B C B

: : :
: : :

: : :
B C B

B C B

B A

2
6666666666664

3
7777777777775
; (7.119)

where A, B andC are m � mmatrix blocks. The matrix F contains n blocks in each

row and n blocks in each column. A matrix M in the form of F will be denoted by

Mmn ¼ FðAm;Bm;CmÞmn.

7.6.2.1 Canonical Form I

Now consider the following tri-diagonal matrix:

Mmn ¼ F Am; Bm; Amð Þmn;

where Am ¼ Fða; b; aÞm and Bm ¼ Fðc; d; cÞm:
(7.120)

Consider Tk ¼ F(0,1,0)k with eigenvalues λk, and denote the unit matrix by Ik,

where k is the dimension of the square matrices Tk and Ik. The matrix Mmn can be

decomposed as

Mmn ¼ In � Am þ Tn � Bm; (7.121)

where � denotes the Kronecker product of two matrices as defined in Sect. 4.9.

Substituting the following relationships in Eq. 7.121,

Am ¼ aIm þ bTmð Þ and Bm ¼ cIm þ dTmð Þ (7.122)

results in

Mmn ¼ aIn � Im þ bIn � Tm þ cTn � Im þ dTn � Tm: (7.123)
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It is readily verified that the eigenvalues of Tn � Tm are λmλn, and therefore,

λ ¼ aþ bλm þ cλn þ dλmλn: (7.124)

7.6.2.2 Applications

For problems where the second derivatives are present, the application of finite

difference method leads to matrices of canonical Form I. As an example, consider

the solution of the Laplace equation using the finite difference method. The

parameters of λ in Eq. 7.124 for this case are as follows:

a ¼ 4; b ¼ �1; c ¼ �1; and d ¼ 0; (7.125)

leading to

λ ¼ 4� λm � λn: (7.126)

Now consider the solution of the Laplace equation in a square domain, Fig. 7.50,

with N ¼ 4 (m ¼ n ¼ 4).

In general case, for a path Pn with n nodes, the adjacency and Laplacian matrices

are in the form Pn ¼ F(a,b,a), and the corresponding eigenvalues can be obtained

by (Fig. 7.67)

λ ¼ aþ 2b cos
kπ

nþ 1
for k ¼ 1; . . . ; n: (7.127)
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For Tm ¼ F(0,1,0) one obtains λm ¼ 2 cos kπ
nþ1 , and for maximum, λ4 ¼ 2

cos π
5
¼ 1:6180, leading to λ ¼ 4 � 1.6180 � 1.6180 ¼ 0.7639 which is quite

close to the exact value. Figures 7.68a and 7.69b show the distribution of the

components of the corresponding first eigenvector, over the grid points, in two-

and three-dimensional spaces, respectively.

7.6.3 A New Form for Efficient Solution of Eigenproblem

7.6.3.1 A General Block Diagonal Tri-diagonal Matrix

Consider a block tri-diagonal matrix as

M ¼

x 3 0 2 0 0
4 x x 0 0 0
0 2 x 3 0 2
x 0 4 x x 0
0 0 0 2 x 3
0 0 x 0 4 x

2
666664

3
777775 (7.128)

with x as some diagonal and non-diagonal entries. We are interested to find x such

that the determinant of M becomes zero. This matrix has the canonical Form I as

introduced in the previous section, and it can be expressed as Pm ¼ F(A2,B2,A2).

The corresponding eigenvalues can be obtained as

λ ¼ A2 þ 2B2 cos
kπ

nþ 1
; k ¼ 1; . . . ; n: (7.129)

1
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4Fig. 7.69 A symmetric

frame with sway
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Now one can substitute the corresponding submatrices for A2 and B2, leading to

λ ¼ x 3

4 x

� �
þ 2

0 2

x 0

� �
cos

kπ
4
; k ¼ 1; . . . ; 3: (7.130)

For det (M) ¼ 0, the determinant of λM for k ¼ 1,2,3 should be set to zero, that

is,

det
x 3

4 x

� �
þ 2

0 2

x 0

� �
cos

π
4

� �
¼ 0) x ¼ 10:4695; x ¼ �2:2268;

det
x 3

4 x

� �
þ 2

0 2

x 0

� �
cos

2π
4

� �
¼ 0) x ¼ 3:4641; x ¼ �3:4641;

det
x 3

4 x

� �
þ 2

0 2

x 0

� �
cos

3π
4

� �
¼ 0) x ¼ 0:7159; x ¼ �0:9586:

(7.131)

These are exactly the same eigenvalues obtained from det (M) ¼ 0.

For the special case n ¼ 2, we have

M ¼ A B

B A

� �
; (7.132)

resulting in

det

�
Aþ 2 cos

π
3
B

�
¼ 0

det

�
A� 2 cos

π
3
B

�
¼ 0

) detðAþ BÞ ¼ 0

detðA� BÞ ¼ 0
: (7.133)

In general, one can write

detðMÞ ¼ 0 ) det Aþ 2 cos
kπ

nþ 1
B

� �
¼ 0 for i ¼ 1; 2; . . . ; n: (7.134)

Example 7.16. Consider the symmetric frame as shown in Fig. 7.69. The numbering

for DOFs is chosen that a Form II symmetry is provided for the structural matrices.

For all the members, EI is taken as ‘a’ and the unit length mass is assumed to be

10 kg/m.

The stiffness and mass matrices are formed as
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K ¼ a

284

105

2

3

2

7
0

2

3

40

21
0

2

7

2

7
0

284

105

2

3

0
2

7

2

3

40

21

2
666666666664

3
777777777775

and

M ¼

990

21

�81
42

�1029
42

0

�81
42

740

21
0

�1029
42

�1029
42

0
990

21

�81
42

0
�1029
42

�81
42

740

21

2
66666666664

3
77777777775
:

(7.135)

The matrix K� ω2M½ � has a Form II pattern, Eq. 7.132, and using Eq. 7.133, we

have

det
2:41� 71:6x 0:67þ 2x

0:67þ 2x 1:61� 59:7x

� �
¼ 0

det
2:99� 22:6x 0:67þ 2x

0:67þ 2x 2:19� 10:7x

� �
¼ 0

(7.136)

where x ¼ ω2

a
, leading to the following natural frequencies:

x1 ¼ 0:019) ω2
1 ¼ 0:019a x3 ¼ 0:102) ω2

3 ¼ 0:102a;
x2 ¼ 0:042) ω2

2 ¼ 0:042a x4 ¼ 0:252) ω2
4 ¼ 0:252a:

(7.137)

Example 7.17. Consider a one-span frame as shown in Fig. 7.70. The columns are

subdivided into two elements. Therefore, the frame has six DOFs as illustrated in

the figure. The stiffness matrix of the structure is assembled as follows:

1

2

3

4

P P

EI,L

5

6

EI,L/2

EI,L/2

Fig. 7.70 A portal frame

with six DOF
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K ¼ EI

L3

192 0 �48 0 0 0

0 64 16 0 0 0

�48 16 36 0 0 2
0 0 0 192 0 �48
0 0 0 0 64 16

0 0 2 �48 16 36

2
6666664

3
7777775

� P

L

24
5

0 �1
5

0 0 0

0 8
15

�1
15

0 0 0

�1
5

�1
15

4
15

0 0 0

0 0 0 24
5

0 �1
5

0 0 0 0 8
15

�1
15

0 0 0 �1
5

�1
15

4
15

2
66666666664

3
77777777775
:

(7.138)

This matrix has Form II and the smallest eigenvalue corresponds toPcr ¼ 22:2097EI
L2 .

This is an approximate value compared to the real value asPcr ¼ 25:2EI
L2 :A better result

can be obtained by subdividing the columns into three elements and the beam into

two elements.

Example 7.18. Consider a one-bay two-storey frame as shown in Fig. 7.71a. This

example is studied with two different discretisations. In the first model, each

column is considered as one element as in Fig. 7.71a, and in the second model,

each column is subdivided into two elements as illustrated in Fig. 7.4.

For the first model Pcr ¼ 19:75EI
L2 , which is a crude answer.

For the second model shown in Fig. 7.71b, the stiffness matrix is formed as

L

L

L

1

2

3

EI=Const.

4
P P

PP

1

2

3

4

5

6

7

8

9

10

11

12

EI=Const.

L

L

L
P P

P P

13

14

5

a b

Fig. 7.71 A one-bay two-storey frame. (a) Four degrees of freedom. (b) Fourteen degrees of

freedom
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K ¼ EI

L3

192 0 �48 0 0 0 0 0 0 0 0 0

0 64 16 0 0 0 0 0 0 0 0 0

�48 16 36 0 0 0 0 0 2 0 0 0

0 0 0 192 0 �48 0 0 0 0 0 0

0 0 0 0 64 16 0 0 0 0 0 0

0 0 0 �48 16 36 0 0 0 0 0 2

0 0 0 0 0 0 192 0 �48 0 0 0

0 0 0 0 0 0 0 64 16 0 0 0

0 0 2 0 0 0 �48 12 36 0 0 0

0 0 0 0 0 0 0 0 0 192 0 �48
0 0 0 0 0 0 0 0 0 0 64 16

0 0 0 0 0 2 0 0 0 �48 16 36

2
6666666666666666666664

3
7777777777777777777775

� P

L

48

5
0
�2
5

0 0 0 0 0 0 0 0 0

0
16

15

�2
15

0 0 0 0 0 0 0 0 0

�2
5

�2
15

8

15
0 0 0 0 0 0 0 0 0

0 0 0
24

5
0
�1
5

0 0 0 0 0 0

0 0 0 0
8

5

�1
15

0 0 0 0 0 0

0 0 0
�1
5

�1
15

4

15
0 0 0 0 0 0

0 0 0 0 0 0 48

5

0 �2
5

0 0 0

0 0 0 0 0 0 0
16

15

�2
15

0 0 0

0 0 0 0 0 0
�2
5

�2
15

8

15
0 0 0

0 0 0 0 0 0 0 0 0
24

5
0
�1
5

0 0 0 0 0 0 0 0 0 0
8

15

�1
15

0 0 0 0 0 0 0 0 0
�1
5

�1
15

4

15

2
66666666666666666666666666666666666666666666666664

3
77777777777777777777777777777777777777777777777775

ð7:139Þ

leading to Pcr ¼ 11:1049EI
L2 . Subdividing the columns into three elements and the

beams into two elements leads toPcr ¼ 12:7554EI
L2 . The exact value for the critical load

is PcrðexactÞ ¼ 12:60EI
L2 .
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7.6.4 Canonical Penta-diagonal Form

7.6.4.1 Formulation

The numerical solution of some problems results in five-diagonal matrices. An

example of this form is depicted in the following:

Mmn ¼

A B I

B Aþ I B I

I B Aþ I : :
: : : : :

: : : : :
: : : : :

: : : B I

: B Aþ I B

I B A

2
6666666666664

3
7777777777775
n�n

: (7.140)

Using the Kronecker product, this matrix can be decomposed as

Mmn ¼ In � Am þ Tn � Bm þ Sn � Im (7.141)

where

Tn ¼ Fð0; 1; 0Þ and Sn ¼

0 0 1

0 1 0 1

1 0 1 : :
1 : : : :

: : : :
: : :

2
6666664

3
7777775
: (7.142)

It can easily be verified that

Sn ¼ T2
n � In: (7.143)

Therefore,

Mmn ¼ In � Am þ Tn � Bm þ T2
n � In

	 
� Im

¼ In � Am � Imð Þ þ Tn � Bm þ T2
n � Im:

(7.144)

In the last two terms,Tn cannot be factorised, since we have a matrix product and

not a Kronecker product. Therefore, the eigenvalues of the last two terms are

calculated to search for a possible equivalent matrix with the same eigenvalues:

λTn�BmþT2
n�Im ¼ BmλTn

þ ImλT2
n
: (7.145)
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On the other hand, we have

λT2
n
¼ λTn
ð Þ2 (7.146)

Hence,

λTn�BmþT2
n�Im ¼ λTn

Bm þ λTn
Imð Þ ¼ λTn

Bm þ 2Im cos
kπ

nþ 1

� �
: (7.147)

This is the same as the eigenvalue of the following matrix:

Tn � Bm þ 2Im cos
kπ

nþ 1

� �
: (7.148)

Substituting in Eq. 7.144 leads to

Mmn ¼ In � Am � Imð Þ þ Tn � Bm þ T2
n � Im

	 

¼ In � Am � Imð Þ þ Tn � Bm þ 2Im cos

kπ
nþ 1

� �
:

(7.149)

It can be seen that we have again a canonical Form I expressed as

F Am � Im;Bm 2Im cos
kπ

nþ 1

� �
;Am � Im

� �
(7.150)

and the eigenvalues of this form should be calculated. Therefore, a five-diagonal

form is transformed to a tri-diagonal form, and

λM ¼ Am � Imð Þ þ 2 cos
kπ

nþ 1
Bm þ 2Im cos

kπ
nþ 1

� �� �

¼ Am þ 2Bm cos
kπ

nþ 1
þ Im 4 cos2

kπ
nþ 1

� 1

� �

¼ Am þ 2Bm cos
kπ

nþ 1
þ Im 1þ 2 cos

2kπ
nþ 1

� �
:

(7.151)

Example 7.19. Consider a simply supported square thin plate as shown in

Fig. 7.72. The buckling load of this plate under uniform compressive loads Nx ¼
Ny ¼ N is required. The governing differential equation of the plate is

@4w

@x4
þ 2

@4w

@x2y2
þ @4w

@y4
þ N

D

@2w

@x2
þ @2w

@y2

� �
¼ 0; (7.152)
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or

r4wþ N

D
r2w ¼ 0: (7.153)

The exact solution of this problem is as follows:

Ncr ¼ 2π2D
a2
¼ 19:7392D

a2
: (7.154)

Using the finite difference method leads to a five-diagonal matrix with the pattern

studied in the previous section. In a special case, when n ¼ 6 (i.e. each edge is divided

into six segments), the final form of M and the matrices Am and Bm are as follows:

A5 ¼ F5ð18� 4α; α� 8; 19� 4αÞ;B5 ¼ F5ðα� 8; 2; α� 8Þ; with

α ¼ N a
6

	 
2
D
¼ Na2

36D
: ð7:155Þ

Therefore, det (M) ¼ 0 leads to

λM ¼ A5 þ 2B5 cos
kπ
6
þ I5 1þ 2 cos

2kπ
6

� �
¼ 0 for k ¼ 1; 2; . . . ; 5: (7.156)

Thus, instead of the matrix M with different magnitudes of k, the smallest value

for k ¼ 1 should be calculated, the main aim being the calculation of the critical

load. This reduces the dimension of the matrix from 25 � 25 to 5 � 5. The latter

matrix can itself be reduced as

For k ¼ 1,

λM ¼ Fða; b; cÞ

¼ F 8� 4αþ 2 cos
π
6

� �
ðα� 8Þ þ 1þ 2 cos

2π
6
; α� 8þ 4 cos

π
6
;

�
19� 4αþ 2 cos

π
6

� �
ðα� 8Þ þ 1þ 2 cos

2π
6
Þ: (7.157)

Fig. 7.72 A plate under

biaxial compressive loading
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Here c ¼ a + 1, that is this matrix has a similar form to that of the five-diagonal

matrix (7.22). Therefore, for calculating the eigenvalues, one can again employ the

same relationship, leading to

λλM ¼ 0) Aþ 2B cos
k0π
nþ 1

þ I 1þ 2 cos
2k0π
nþ 1

� �
¼ 0 : (7.158)

For k0 ¼ 1, we have

18� 4αþ 2 cos
π
6

� �
ðα� 8Þ þ 1þ 2 cos

2π
6
þ 2 cos

π
6

α� 8þ 4 cos
π
6

� �
þ I 1þ 2 cos

2π
6

� �
¼ 0

(7.159)

with I being a 1 � 1 unit matrix. Therefore, the 5 � 5 matrix is further reduced to a

1 � 1 matrix, that is, one equation with one unknown. Thus,

α ¼ 6� 8 cos π
6
þ 2 cos 2π

6

1� cos π
6

¼ 0:5359) Ncra
2

36D
¼ α) Ncr ¼ 19:2923D

a2
: (7.160)

7.6.4.2 Derivation of the Exact Solution

Having α in terms of the parameter n, the exact value of α can also be derived as

follows:

αext ¼ Limit
n!1

6� 8 cos π
n
þ 2 cos 2π

n

1� cos π
n

: (7.161)

Using cos 2θ ¼ 2cos2θ � 1 leads to

αext ¼ Limit
n!1

4 1� cos π
n

	 
2
1� cos π

n

¼ Limit
n!1 4 1� cos

π
n

� �
: (7.162)

Employing the following trigonometric relation and approximating sin θ by θ, if
θ ! 0, then we have

1� cos θ ¼ 2sin2
θ
2
� 2

θ
2

� �2

¼ θ2

2
: (7.163)
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Therefore,

αext ¼ 4
ðπÞ2
2n2
¼ 2π2

n2
: (7.164)

Substituting for α, we have

Ncr
a
n

	 
2
D

¼ 2π2

n2
; (7.165)

leading to the exact value of the critical load

Ncrð Þext ¼
2Dπ2

a2
¼ 19:7392D

a2
: (7.166)

7.7 Numerical Examples for the Matrices as the Sum of Three

Kronecker Products

Matrices that can be written as the sum of three Kronecker products are already

introduced in Sects. 4.10 and 4.11. In this part, examples are included to show the

efficiency of this decomposition approach.

In this section, five examples are presented from structural mechanics to illus-

trate the applicability and the efficiency of the present methods.

Example 7.20. Consider the truss shown in Fig. 7.73. The cross-sectional areas

and the mass of the members are as follows:

Member Cross-sectional area Mass

1 and 2 A m

3 1.5 A 3 m

4 and 5 1.5 A 2 m

The natural frequencies of the structure are required.

Using the finite element approach, the stiffness and mass matrices for a typical

element are as follows:

Ki½ � ¼ EAi

hi

C2 CS �C2 �CS
CS S2 �CS �S2
�C2 �CS C2 CS

�CS �S2 CS S2

2
664

3
775; Mi½ � ¼ mihi

6

2 0 1 0

0 2 0 1

1 0 2 0

0 1 0 2

2
664

3
775;

where C ¼ cos θ and S ¼ sin θ.
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After assembling the matrices of the elements for the entire structure and

deleting the rows and columns corresponding to support nodes 1 and 2, we obtain

K ¼ EA

16
ffiffiffi
3
p

L

32:9090 �9 0 0

�9 39:5885 0 �24
0 0 32:9090 9

0 �24 9 39:5885

2
6664

3
7775;

M ¼ mL

16
ffiffiffi
3
p

31:3960 0 8 0

0 31:3960 0 8

8 0 31:3960 0

0 8 0 31:3960

2
6664

3
7775: det K�Mω2

	 
 ¼ 0:

It can be observed that K and M have no particular form as modelled; however,

one can multiply a row and the corresponding column in (�1) such that the

eigenvalues remain unchanged. If such operations are performed for the first row

and column of K and the corresponding M, then we obtain a Form II matrix, and

constructing M + N and M � N, the eigenvalues can be obtained as

ω ¼ f0:5614; 0:8887; 1:2195; 1:6624g �
ffiffiffiffiffiffiffiffiffi
EA

mL2

r
:

Example 7.21. Using three finite elements we want to find the natural frequencies

of the clamped beam shown in Fig. 7.74. The stiffness and mass matrices of a

typical element are as follows:

L

1

2

3
4

5

3L

1

2

3

4
Fig. 7.73 A simple planar

truss
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Ki½ � ¼ EIi

L3
i

12 6L �12 6L

6L 4L2 �6L 2L2

�12 �6L 12 �6L
6L 2L2 �6L 4L2

2
6664

3
7775;

Mi½ � ¼ ρiAiLi

420

156 22L 54 �13L
22L 4L2 13L �3L2

54 13L 156 �22L
�13L �3L2 �22L 4L2

2
6664

3
7775:

Assembling the matrices for the entire structure and applying the boundary

conditions, the equation of vibration is as follows:

ρAL
420

312 0 54 �13L
0 8L2 13L �3L2

54 13L 312 0

�13L �3L2 0 8L2

2
664

3
775

€U1

€U2

€U3

€U4

2
664

3
775þ EI

L3

24 0 �12 6L

0 8L2 �6L 2L2

�12 �6L 24 0

6L 2L2 0 8L2

2
664

3
775

U1

U2

U3

U4

2
664

3
775 ¼

0

0

0

0

2
664
3
775

Here again one cannot see Form II matrices. However, multiplying the first row

and column by (�1), such matrices can be constructed. Using their factors, similar

to Example 7.20, the eigenvalues are obtained as

ω ¼ f2:4961; 6:9893; 16:2561; 32:3059g �
ffiffiffiffiffiffiffiffiffiffiffi
EI

ρAL4

s
:

Example 7.22. Consider a simply supported a � a square plate, as shown in

Fig. 7.75. The load is applied in x-direction. Using the finite difference approach,

the critical load of the plate is calculated.

Considering the governing differential equation as

r4wþ Nx

D

@2w

@x2
¼ 0

and employing the finite difference method, the matrix M is obtained in the

following form:

1 2 3

U1

U2
U3

U4

Fig. 7.74 A clamped beam

with three elements
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M ¼ I� Aþ T� Bþ S� I ¼
X3
i¼1

Ai � Bi

where

B1 ¼ Fð18� 2x; x� 8; 19� 2x; 1Þ; B2 ¼ Fð�8; 2;�8Þ;
A2 ¼ Fð0; 1; 0Þ;A3 ¼ Fð0; 0; 1; 1Þ:

Since AiAj ¼ AjAi for each pair of i and j, then

λM ¼ [
n

j¼1
eig
X3
i¼1

λj Aið ÞBiÞ
" #

; λA1
¼ 1; λA2

¼ 2 cos
kπ

nþ 1
;

λA3
¼ 1þ 2 cos

2kπ
nþ 1

:

Once λM is calculated, it can be observed that it contains diagonal blocks and

each block has the Form F. Thus, the diagonalisation is performed once again for

each block, since AiAj ¼ AjAi still holds for these blocks.

For critical load (k ¼ 1), we have

18�2x� 16 cos
π
m
þ 1þ 2 cos

2π
m
þ 2 cos

π
m

x� 8þ 4 cos
π
m

� �
þ 1 1þ 2 cos

2π
m

� �
¼ 0; m ¼ nþ 1

) x ¼
4 3� 4 cos

π
m
þ cos

2π
m

� �

1� cos
π
m

� � :

In this relationship, m!1 leads to an accurate value of the critical load as

x ¼ 4π2

m2
, where 1� cos α ffi α2

2
when α! 0. This result is in a good agreement

with the exact value, which is

Ncr ¼ xD

a

m

� �2 ¼ 4π2D
a2

:

Nx Nx

x

y

Fig. 7.75 A simply

supported plate
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Example 7.23. In the previous example, suppose the supports with no loading are

clamped, then the matrixM will still contain the decomposability property. In such

a case,

A ¼ Fð20� 2x;�8; 19� 2x; 1Þ; B ¼ Fðx� 8; 2; x� 8Þ:

Using Eq. 7.171, M appears in a block form and the block corresponding to

k ¼ 1 is

N ¼ F 20� 2xþ 2 cos
π
m
ðx� 8Þ þ 1þ 2 cos

2π
m

; �8þ 4 cos
π
m
;

�

19� 2xþ 2 cos
π
m
ðx� 8Þ þ 1þ 2 cos

2π
m

; 1

�
; m ¼ nþ 1

A1 ¼ Fð0; 1; 0; 0Þ; A2 ¼ Fð0; 0;�1; 1Þ:

Here, unlike the previous case, N does not satisfy AiAj ¼ AjAi and no further

simplification is possible. Thus, one should form det (N) ¼ 0 and solve it. Assuming

n ¼ 8, this solution leads to

x ¼ 1:1073! Ncr ¼ 7:1804
π2D
a2

:

The exact value of the critical load is Ncr ¼ 7:69
π2D
a2

. Here, in place of the

determinant of a 49 � 49 matrix, that of a 7 � 7 matrix is calculated. Choosing

larger values for n, one can easily increase the accuracy of the finite difference

approach. The present method reduces the size of a matrix to its square root.

It should be added that for a rectangular plate when subdivided into equal lengths

in x- and y-directions, similar forms will be formed.

Example 7.24. The natural bending and axial frequencies of the beam shown in

Fig. 7.76 is required.

The differential equation governing the bending of this beam can be written as

d4w

dx4
� β4w ¼ 0 where β ¼ ρAω2

EI
:

Choosing n þ 1 element for discretisation of the beam, the final matrix becomes

an n � n matrix in the following form:

M ¼ Fð5;�4; 6; 1Þ;¼ 5Iþ ð�4ÞTþ S
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where T, S and I commute two by two, and therefore, Eq. 7.171 can be employed

leading to

λM ¼ 5� 8 cos αþ ð1þ 2 cos 2αÞ ¼ 6� 8 cos αþ 2 cos 2α ¼ 4 1� cos αð Þ2

¼ 16 sin4
α
2

α ¼ kπ
m

; m ¼ nþ 1:

On the other hand,

ωk ¼ βLð Þ2k
ffiffiffiffiffiffiffiffiffi
EI

mL4

r
βLð Þ2k¼ nþ 1ð Þ2

ffiffiffi
λ
p
¼ 4m2 sin2

α
2

leading to the exact answer as

n!1) βLð Þ2k¼ 4m2 k
2π2

4m2
) βLð Þk ¼ kπ) ωk ¼ kπð Þ2

ffiffiffiffiffiffiffiffiffi
EI

mL4

r
k ¼ 1 : n:

For the axial vibration, the governing equation is as follows:

d2U

dx2
þ α2U ¼ 0

where

α ¼ ρω2

E
:

In this case, the matrix corresponding to the finite difference will be a tri-

diagonal matrix as M ¼ F(2,�1,2), and we have the following results:

M ¼ 2Iþ ð�1ÞT) λM ¼ 2þ ð�1Þð2 cos αÞ ¼ 4 sin2
α
2
;

ωk ¼ βk

ffiffiffiffiffiffiffi
EA

m

r
βLð Þk ¼ ðnþ 1Þ

ffiffiffi
λ
p
¼ 2m sin

α
2
;

n!1) βLð Þk ¼ 2m
kπ
2m
¼ kπ) ωk ¼ kπ

L

ffiffiffiffiffiffiffi
EA

m

r
:

This is an exact answer. For a beam with clamped support, a similar approach

leads to the exact result.

1 n n+12 30Fig. 7.76 A simple beam and

its discretisation
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7.8 Symmetric Finite Element Formulation Using Canonical

Forms: Truss and Frame Elements

In this part, canonical forms are used to decompose the symmetric line elements

(truss and beam elements) into sub-elements of less the number of degrees of

freedom (DOFs). Then the matrices associated with each sub-element are formed,

and finally the matrices associated with each subsystem are combined to form the

matrices of the prime element. Therefore, it becomes possible to find the pros and

cons of this method and compare the efficiency and simplicity of the present

approach to the existing methods.

7.8.1 Sign Convention

In this section, for computation of fundamental matrices for symmetric finite

elements, the origin of the local coordinate system of the elements is taken at the

centre of symmetry of the elements. Therefore, the symmetry axis or symmetry

plane of each element will divide it into two parts: the positive half and the negative

half.

If the symmetry axis passes through a node, that node will be numbered as node

1. Otherwise, node number 1 is usually chosen on the positive side of the element.

Then, all of the nodes on the positive side are numbered sequentially. Having the

nodes on the positive half of the element labelled, say from 1 (or 2) up to k, the rest

of the nodes (nodes on the negative half of the element) must be numbered,

considering the nodes of the positive side. This means that numbering of the

negative side should be started with the node which is associated with the permuta-

tion of the first positive node, and is numbered as k + 1. Then, the reflection of the

second positive node is labelled as k + 2, and this process is continued. The

numbering process is terminated with the negative node which is permutation of

the last positive node. Degrees of freedom (DOFs) of each node are numbered

following the same rule.

Translation in positive direction and counterclockwise rotation for a positive

node (node in the positive part of the element) define the positive translational and

rotational DOFs for such nodes. Positive directions for negative nodes are selected

such that the DOFs for a node and its reflection are the mirror of each other. For the

node which is located at the centre of symmetry (if available), the positive

directions can be selected arbitrarily. Figure 7.77 shows two one-dimensional

(line) elements and numbering of the nodes and associated positive degrees of

freedom, based on the convention described above.

For two- or three-dimensional elements, the general approach for numbering

and defining the positive directions are the same. If an element has more than one
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plane of symmetry, in order to apply the strategy described above, first, one of the

planes should be selected as the main plane, and then during the numbering process

for positive points (and DOFs), other planes of symmetry are taken into account

one by one. Figure 7.78 shows the numbering and positive DOFs for a plane

element possessing two main planes of symmetry: 1–1 and 2–2, where plane 1–1

which is in bold, has been taken as the principal symmetry plane. The node in the

positive–positive quarter has been selected as node 1, its image with respect to

plane 2–2 is labelled as node 2 and then the negative nodes have been numbered

with respect to the principal plane of symmetry (1–1). It should be noted that as

soon as the positive DOFs for node 1 are fixed, the positive direction for the other

DOFs will be determined by means of symmetry properties.

7.8.2 Truss Element

In this section, the properties of special symmetry form of the truss element shown

in Fig. 7.77a are utilised in order to decompose the space of variables of this

element into subspaces of divisor and co-divisor. This decreases the size of

matrices and vectors which are involved in formulation of such element and

therefore leads to a reduction in calculation time and computational effort.

Although such a reduction does not seem to be significant in small problem of a

two-node truss element for which the matrices are 2 by 2, however, this simple

example is selected in order to give an overview of the present method.

12 P1,d1P2 , d2

L 2L 2

P3,d3
2

2L

P2,d2
1

L2

P1,d1

P4,d4

2

P5,d5 

P6,d6

3

L 2

P4 ,d4 

L

P3 ,d3
P2,d2

1
2

P1,d1

4L 4L L 44L

P1,d1 

1

P2,d2

P3,d3

P4,d4

2
3

P5,d5

P6,d6

5

P9,d9

P10,d10 
4P7,d7

P8,d8

a b

c d

Fig. 7.77 Numbering of the nodes and the DOFs for symmetric line elements. (a) Two-node truss

element. (b) Two-node beam element. (c) Three-node beam element. (d) Five-node beam element
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The degrees of freedom of the truss element are collected in a vector u, which is

called the displacement vector of the element:

u ¼ δ1; δ2ð Þt: (7.167)

It is seen from the configuration of the element (Fig. 7.77a) that this element with

the DOFs shown on it has the Form II symmetry. In such symmetric problems,

where the only symmetry operation of the system is a symmetry plane, the symme-

try analysis of the system will result in decomposition of the vector space of the

problem into two independent subspaces, one of which is symmetric and the other is

antisymmetric with respect to the plane of symmetry. It is also observed that the

divisor C is always associated with the symmetric subspace and the co-divisor D is

corresponded to the antisymmetric subspace. From now on, we denote these two

subspaces as VC and VD, and we call them the divisor and the co-divisor subspaces,

respectively.

Assuming that u varies linearly through the element, the linear displacement

field within a truss element can be written in terms of the nodal displacements δ1
and δ2 as follows (it is noted that u ¼ δ1 at node 1 and u ¼ δ2 at node 2):

u ¼ N1: δ1 þ N2: δ2 (7.168)

where N1 ¼ 1
2
þ x

l and N2 ¼ 1
2
� x

l are the liner shape functions.

In general, the linear displacement field can be written as

u ¼ a:xþ b: (7.169)

We can decompose such a field into two terms, namely, (a.x) and (b). The first
term (a.x) shows the displacement field in which the translation of the positive

nodes is in the positive direction and the translation of the associated negative nodes

are in the negative direction with the same magnitude. Such a displacement field is

symmetric with respect to the symmetry plane of the element. On the other hand,
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Fig. 7.78 Numbering of the

nodes and DOFs for

symmetric plane elements
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the term (b) is a constant displacement in positive direction at all of the nodes of the

element. This displacement field is antisymmetric with respect to the plane of

symmetry.

Based on what was mentioned above, the overall displacement field u of the

problem can be decomposed into two displacement fields, corresponding to

the subspaces VC and VD; the first one is symmetric, which we denote it by uC,

and the second one is the field of the antisymmetric subspace VD, which we denote

it by uD:

uC ¼ a:x and uD ¼ b: (7.170)

If we denote the DOFs of the symmetric and antisymmetric subsystems (the

basis vectors of subspaces VC and VD) by ΔC and ΔD, respectively, then by

substituting the coordinate x ¼ l/2 at node 1, we will have

ΔC ¼ a:l=2 ) a ¼ 2

l
ΔC; (7.171)

ΔD ¼ b: (7.172)

Thus, we can rewrite the equation of displacement fields of the subspaces

(Eq. 7.170) as follows:

uC ¼ a:x ¼ 2

l
ΔC

� �
:x ¼ 2

l
x

� �
:ΔC ) NC ¼ 2

l
x; (7.173)

uD ¼ b ¼ ΔD ¼ ð1Þ:ΔD ) ND ¼ 1; (7.174)

where NC and ND are the shape functions of the divisor and co-divisor subspaces,

respectively.

Now, having the shape function of the element decomposed into symmetric and

antisymmetric sub-functions, we can readily find the matrices of the subsystems

using potential energy approach.

• Matrices of Each Subsystem: The stiffness matrix of an element can be found

using the strain energy of the element:

Ue ¼ 1

2

ð
e

σtεAdx (7.175)

in which σ ¼ Eε (Hooke’s law), and ε is calculated from the strain–displacement

relationship
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ε ¼ du

dx
: (7.176)

This relation can be written in terms of the element freedoms (δi) using the

concept of the shape function

u ¼
X

Niδi ) ε ¼ d

dx

X
Niδi

� �
(7.177)

which yields the matrix equation

ε ¼ B:δ (7.178)

where the matrix B is the element strain–displacement matrix.
Now the strain energy term of the element (Eq. 7.175) can be written as follows:

Ue ¼ 1

2

ð
e

Eεð ÞtεAdx ¼ 1

2

ð
e

δtBtEBδAdx; (7.179)

or

Ue ¼ 1

2
δt

ð
e

BtEBAdx

0
@

1
Aδ: (7.180)

Therefore, the stiffness matrix of the element will be obtained as

ke ¼
ð
e

BtEBAdx: (7.181)

Following the strategy described above, it is now possible to find the

strain–displacement matrix B of each subspace, using its own shape function.

Then the stiffness matrix of each subsystem can be calculated using Eq. 7.181,

noting that integration should be carried out over only the positive half of the

element.

For the divisor subspace VC,

NC ¼ 2

l
x ) uC ¼ NC:ΔC ¼ 2

l
x:ΔC;

BC ¼ dNC

dx
¼ 2

l

� �
: ð7:182Þ
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Thus,

kC ¼ EA

ð12
0

2

l

� �
2

l

� �
dx

2
664

3
775 ¼ 2EA

l

� �
: (7.183)

Similarly, for the co-divisor subspace VD,

ND ¼ 1) BD ¼ dND

dx
¼ ½0�: (7.184)

Therefore,

kD ¼ ½0�: (7.185)

Special attention should be paid to the physical interpretation of the stiffness

matrices kC and kD. The symmetric subsystem is associated with divisor subspace,

with shape functionNC ¼ 2

l
xcorresponding to a bar element in which the end nodes

are moving away from the origin of the element with the same rate. The antisym-

metric subsystem associated with the co-divisor subspace, on the other hand, is a

bar element in which both of the end nodes are moving in the same direction and

with the same rate; the stiffness in such a case will be vanished.

The consistent–mass matrix for an element can be found as

m ¼ ρA

ð
l

Nt:N dx: (7.186)

Thus, it is possible to find the mass matrices of the subsystems, using their own

shape functions, in a similar manner to those of stiffness matrices:

mC ¼ ρA

ð12
0

2

l
x

� �2

dx ¼ 1
6
ρAL

� �
; (7.187)

mD ¼ ρA

ð12
0

ð1Þ2dx ¼ 1
2
ρAL

� �
: (7.188)
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• Combination of the Subspaces and Finding the Matrices of the Element: In order
to extract the matrix of the symmetric element from its devisor and co-divisor

matrices, the properties of the canonical Form II should be considered. One of

the main advantages of the method based on linear algebra, compared to similar

methods (such as group theory), is in this stage of the procedure.

As it was mentioned in Sect. 7.2.2, a symmetric matrix of canonical Form II has

the following pattern:

M ¼ A B

B A

� �
:

For which, the divisor and co-divisor matrices are

C ¼ Aþ B and D ¼ A� B:

Now, we have the divisor and co-divisor matrices for the symmetric truss

element, and one can easily find the matrices of the main element, combining the

condensed submatrices as follows:

A ¼ 1
2
ðCþ DÞ and B ¼ 1

2
ðC� DÞ: (7.189)

Thus, for the stiffness matrix, we will have

kA ¼ 1
2
kC þ kDð Þ ¼ EA

2l
½2þ 0� ¼ EA

l

� �
: (7.190)

kB ¼ 1
2
kC � kDð Þ ¼ EA

2l
½2� 0� ¼ EA

l

� �
; (7.191)

which results in the stiffness matrix of the truss element as

ke ¼ EA

l

1 1
1 1

� �
: (7.192)

Similarly, for the consistent–mass matrix,

mA ¼ 1
2
mC þmDð Þ ¼ ρAL

2

1

6
þ 1

2

� �
¼ ρAL

3

� �
; (7.193)

mB ¼ 1
2
mC �mDð Þ ¼ ρAL

2

1

6
� 1

2

� �
¼ � ρAL

6

� �
; (7.194)
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) me ¼ ρAL

6

2 �1
�1 2

� �
: (7.195)

Finally, it should be noted that the above matrices are resulted using the sign

convention described in Sect. 7.3. A more conventional node numbering and

sign convention for truss elements is shown in Fig. 7.79. In order to convert the

results to this convention, it is enough to reverse the sign of the first line and then

the first column of the matrices. This action is physically justified as follows: An

out-of-plane rotation on element of Fig. 7.77a will result in the same node number-

ing with the conventional element, Fig. 7.79. Then it is enough to change the

positive direction for freedom δ1 in order to make two elements completely

identical. The final results are the well-known matrices of a two-dimensional

truss element:

ke ¼ EA

l
1 �1
�1 1

� �
and me ¼ ρAL

6
2 1
1 2

� �
: (7.196)

7.8.3 Beam Element

The concepts discussed for truss elements can be repeated here for the beam

elements. The element of Fig. 7.77b clearly shows the canonical Form II symmetry.

Again, the vector space of the problem can be decomposed into the symmetric

divisor subspace and the antisymmetric co-divisor subspace.

The process starts with decomposition of the shape function of the displacement

field. Whereas both the nodal displacements and nodal slopes are involved in a

beam element, one should define Hermite shape functions, which satisfy nodal

value and slope continuity requirements. Each of the shape functions is of cubic

order represented by

Ni ¼ ai þ bixþ cix
2 þ dix

3: (7.197)

The displacement field of the element will be of cubic order, and the rotation of

each point through the element will be calculated from the following quadratic

equation:

21 P2,d2P1,d1

L

Fig. 7.79 Conventional node numbering and the positive DOFs for truss elements

7.8 Symmetric Finite Element Formulation Using Canonical Forms: Truss and. . . 243



vðxÞ ¼ aþ bxþ cx2 þ dx3; (7.198)

v 0ðxÞ ¼ d

dx
vðxÞ ¼ bþ 2cxþ 3dx2: (7.199)

Each term of the displacement field equation and its first derivation (which

shows the rotations) is studied individually in Figs. 7.80 and 7.81, respectively.

Similar to what was mentioned for the truss element, we separate the symmetric and

antisymmetric terms and allocate them to the divisor and co-divisor subspaces,

respectively.

Based on Figs. 7.80 and 7.81, the displacement field of the element can be

decomposed as follows:

For the divisor subspace,

vCðxÞ ¼ aþ cx2;

v 0CðxÞ ¼ 2cx: (7.200)

For the co-divisor subspace,

a

2 1

a 2
1

bL/2

-bL/2

2 1

cL/4
2

cL/4
2 2

1

dL/8
3

-dL/8
3

a
b

c d

Fig. 7.80 Terms of v(x).

(a) v1 ¼ a: symmetric.

(b) v2 ¼ bx: antisymmetric.

(c) v3 ¼ cx2: symmetric.

(d) v4 ¼ dx3: antisymmetric

2

1

q=b

q=b

2 1

q=cLq=-cL

q=0

2
1

3dL/4
2

3dL/4
2

a b

c

Fig. 7.81 Terms of v0ðxÞ.
(a) v01 ¼ b: antisymmetric.

(b) v02 ¼ 2cx: symmetric.

(c) v03 ¼ 3dx2: antisymmetric
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vDðxÞ ¼ bxþ dx3;

v 0DðxÞ ¼ bþ 3dx2: (7.201)

At node 1 (x ¼ l/2), we have

vD ¼ Δ1D; v 0D ¼ Δ2D;

vC ¼ Δ1C; v 0C ¼ Δ2C: (7.202)

The values of a, b, c and d can be found as follows:

vC

v 0C

� �
¼ 1 x2

0 2x

� �
a

c

� �
) Δ1C

Δ2C

� �
¼ 1

l2

4
0 l

2
4

3
5 a

c

� �
)

a ¼ Δ1C � Δ2C

4

c ¼ Δ2C

l

8><
>: ;

vD

v0D

� �
¼ x x3

1 3x2

� �
b

d

� �
) Δ1D

Δ2D

� �
¼

l

2

l3

8

1
3l2

4

2
664

3
775 b

d

� �
)

b ¼ 3Δ1D

l
� Δ2D

2

d ¼ 2Δ2D

l2
� 4Δ1D

l3

8><
>: ;

) a

c

� �
¼

1
�l
4

0
1

l

2
64

3
75 Δ1C

Δ2C

� �
and

b

d

� �
¼

3

l

�1
2

�4
l3

2

l2

2
64

3
75 Δ1D

Δ2D

� �
:

(7.203)

Substituting these values in Eq. 7.202 results in

vC
v 0C

� �
¼ 1 x2

0 2x

� � 1
�l
4

0
1

l

2
64

3
75 Δ1C

Δ2C

� �
¼

1
x2

l
� l

4

0
2x

l

2
64

3
75 Δ1C

Δ2C

� �
; (7.204)

vD
v0D

� �
¼ x x3

1 3x2

� � 3

l

�1
2�4

l3
2

l2

2
64

3
75 Δ1D

Δ2D

� �

¼
3x

l
� 4

x

l

� �3
2
x3

l2
� x

2
3

l
� 12

x2

l3
3

x

l

� �2
� 1

2

2
64

3
75 Δ1D

Δ2D

� �
: (7.205)

Therefore, the shape function matrix of each subspace can be written as
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NC ¼ 1
x2

l
� l

4

� �
and ND ¼ 3x

l
� 4

x

l

� �3
2
x3

l2
� x

2

� �
: (7.206)

This is crucial for the continuation of the solution. Based on the potential energy

approach, we can write the strain energy equation for a beam element as

Ue ¼ 1

2
EI

ð
e

d2v

dx2

� �2

dx

0
@

1
A (7.207)

in which

v ¼ Nδ ) d2v

dx2
¼ d2N

dx2

� �
δ

Thus, we have

Ue ¼ 1

2
δt EI

ð
e

d2N

dx2

� �t
d2N

dx2

� �
dx

0
@

1
Aδ (7.208)

which means that the stiffness matrix of the beam element can be calculated as

ke ¼ EI

ð
e

d2N

dx2

� �t
d2N

dx2

� �
dx: (7.209)

Now it will be possible to find the stiffness matrix of each subsystem using the

shape function matrix of its subspace, noting the fact that the integration should be

carried out over only the positive half of the element:

For divisor subspace,

d2NC

dx2
¼ 0

2

l

� �
) d2NC

dx2

� �t
d2NC

dx2

� �
¼

0
2

l

" #
0

2

l

� �
¼

0 0

0
4

l2

" #

) kC ¼ EI

ð12
0

0 0

0
4

l2

" #
dx ¼ EI

l3
0 0

0 2l2

� �
: (7.210)

And for the co-divisor subspace,
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d2ND

dx2
¼ � 24x

l3
12x

l2

� �
) d2ND

dx2

� �t
d2ND

dx2

� �
¼
� 24x

l3

12x

l2

2
64

3
75 � 24x

l3
12x

l2

� �

¼ 12� 12

4x2

l6
� 2x2

l5

� 2x2

l5
x2

l4

2
664

3
775

) kD ¼ EI

ð12
0

4x2

l6
� 2x2

l5

� 2x2

l5
x2

l4

2
664

3
775dx ¼ EI

l3
24 �12l
�12l 6l2

� �
:

(7.211)

It should be noted that both of the matrices kC and kD are symmetric. This is due

to the fact that these are stiffness matrices of subsystems. Now it is easy to combine

the matrices of the subsystems and find the factors of stiffness matrix of the

element, based on what was mentioned for the truss element:

kA ¼ 1
2
kC þ kDð Þ ¼ 1

2

EI

l3
0 0

0 2l2

� �
þ 24 �12l
�12l 6l2

� �� �

¼ EI

l3
12 �6l
�6l 4l2

� �
; (7.212)

kB ¼ 1
2
kC � kDð Þ ¼ 1

2

EI

l3
0 0

0 2l2

� �
� 24 �12l
�12l 6l2

� �� �

¼ EI

l3
�12 6l
6l �2l2

� �
: (7.213)

Eventually, the stiffness matrix of the beam element will be as follows:

ke ¼ EI

l3

12 �6l �12 6l
�6l 4l2 6l �2l2
�12 6l 12 �6l
6l �2l2 �6l 4l2

2
664

3
775: (7.214)

Other matrices of the element can be found exactly in the same manner as was

described here, using the shape function matrices of the individual subspaces.

A beam element with classical system of nodal numbering and sign convention

for DOFs is shown in Fig. 7.82. As it is seen, the element for which we derived the

stiffness matrix (Fig. 7.77b) can coincide with this element by an out-of-plane

rotation and changing the direction of DOF δ2. Therefore, in order to adapt the
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stiffness matrix of Eq. 7.214 to conventional form, it is enough to reverse the sign of

the entries of the second line and the second column as follows:

ke ¼ EI

l3

12 6l �12 6l
6l 4l2 �6l 2l2

�12 �6l 12 �6l
6l 2l2 �6l 4l2

2
64

3
75: (7.215)

7.8.4 Discussion

In this part a new computational approach is presented for finding the matrices of

elements in FEM, using the symmetry analysis of each element. Here, we first adapt

the appearance of the element and its degrees of freedom with one of the canonical

symmetry forms which are well known in linear algebra. This is done by the means

of an appropriate numbering and sign convention. Then, we use the properties of the

canonical forms in order to decompose the element into a number of sub-elements.

This reduces the number of DOFs which are involved in forming the matrices of the

element. In other words, we decompose the vector space of the first problem into a

number of independent subspaces with smaller orders. Each of the resulted subspaces

is physically associated with a symmetry type of the structure (this is the meaning of

the symmetry analysis through which we decouple different symmetry modes of a

symmetrical system). We use the concept of symmetry type of each subspace and the

decomposition of the overall shape function of the element into a number of sub-

functions, each of which corresponds to the symmetry type of one of the subspaces

(e.g. symmetric and antisymmetric terms). When such a decomposition is valid and

each sub-element has its own shape function, it will be very easy to form the matrices

of each sub-element by means of one of the conventional methods – such as potential

energy method – using its own shape function. Finally, we combine the matrices of

different sub-elements, based on the properties of the canonical forms, and construct

the matrix of the original element.

The method is originally inspired by group-theoretical methods which are

presented in the literature, but the present approach involves less computational

time and effort, and relatively less judgment is needed in this method, compared

to the pure group-theoretical approach. Combination of matrices of sub-elements

and forming the matrix of the main element is much easier and more direct in this

P1,d1
1

P4,d4

2
L

P3,d3

P2,d2Fig. 7.82 Conventional node

numbering and positive DOFs

for beam elements
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method, and in the case of elements with odd number of nodes, this approach seems

to be more adaptable.

The present method can be more helpful in the case of complex elements having

a number of nodes, where usually one of the canonical forms of symmetry exists;

however, in this part, only the formulation for simple truss and beam elements is

derived, since the focus of this part was on the general concepts. It should be noted

that in the case of more complex elements, the same steps are involved. As an

example, this idea can easily be applied to three-node and five-node line elements,

where the symmetry of the element has the canonical Form III symmetry.

7.9 Eigensolution of Rotationally Repetitive Space Structures

In this part the eigensolution for calculating the buckling load and free vibration of

systems are presented using a canonical form from linear algebra, known as

circulant matrix. This form is block tri-diagonal matrices with additional corner

blocks and occurs in matrices concerned with graph models associated with

rotationally repetitive structures. In this method, the structure is decomposed into

repeated substructures, and the solution for static analysis is obtained partially, and

the problem of finding the eigenvalues and eigenvectors for buckling loads of the

main structures is transformed into calculating those of their special repeating

substructures.

7.9.1 Basic Formulation of the Used Stiffness Matrix

Basically, a rotationally repetitive structure is a structure constituting a cyclically

symmetric configuration with angle of cyclic symmetry equal to θ as shown in

symbolic manner in Fig. 7.83.

Let the configuration be divided by some imaginary lines or surfaces inton ¼ 2π

θ
segments S1; S2 . . . Sn . The segmental division must satisfy the following

requirements:

A. An angleψ i belongs to each segment by which the direction of first DOFs of nodes

allocated in that segment is defined, and this angle is an integer multiple of the

angle θ. Obviously the nodes located in a segment will have a same angle ψ i.

B. The imaginary segmental boundaries may not pass through any joint so that the

segment to which a given joint belongs can be uniquely determined. The word

‘joint’ is used here to refer to a joint in the skeletal system but can be used as a

nodal point in continuum, and this convention is followed throughout.

As the consequence of the above conditions, the segment can not contain any

joint lying on the axis of symmetry.
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The stiffness matrix of a typical element having nodes in different segments, that

is, an element between two consecutive segments, is calculated as follows:

The stiffness matrix in the local (element) coordinate system is the common

stiffness matrix for a 3D beam element (shown in Fig. 7.84); however, the transfor-

mation matrix from local coordinate system to the global coordinate system is as

follows:

The stiffness matrix of each element is calculated in its local coordinate system

and transformed into the global coordinate system (segmental directions) specified

at its extreme nodes by the following transformation matrix:

Fig. 7.83 Symbolic representation of a rotationally repetitive structure

Fig. 7.84 A 3D beam element between two consecutive segments
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T ¼

T11

T11

T22

T22

2
6664

3
7775;

where T11 ¼
Tx1 Tx2 Tx3

Ty1 Ty2 Ty3

Tz1 Tz2 Tz3

2
64

3
75 and T22 ¼

Tx4 Tx5 Tx6

Ty4 Ty5 Ty6

Tz4 Tz5 Tz6

2
64

3
75: ð7:216Þ

Here, Txi is the cosine of the angle between x-axis (element direction from first

point to second one) and direction of the ith degree of freedom in the global

coordinate systems (segmental directions for DOFs), and the subscripts y and z

are representatives for directions of principal axes in the cross section of the

element. The overall stiffness matrix of the rotationally repetitive space structure

is obtained by assembling the stiffness matrices of the elements which has a special

canonical form introduced in Sect. 7.3.

Since each extreme node of a typical element shown in Fig. 7.1 has different

segmental directions, these will have different ψi , and the transformation matrix

between local coordinates and global coordinates will be as depicted in Eq. 7.206.

7.9.2 A Canonical Form Associated with Rotationally Repetitive
Structures

In this section, a canonical form is presented for rotationally repetitive structures,

and the efficient eigensolution via this form is followed. The methodology for nodal

numbering is as follows:

The difference between the number of an arbitrarily selected node in an arbi-

trarily segment and the number of corresponding node in the adjacent segment is

constant.

If the stiffness matrix of a rotationally repetitive structure is formed using the

transformation of Eq. 7.214, then the following canonical form will be achieved.

M ¼

A B 0 0 . . . 0 0 Bt

Bt A B 0 . . . 0 0 0

0 Bt A B . . . 0 0 0

0 0 Bt . .
. . .

.
0 0 0

..

. ..
. ..

. . .
.

A B 0 0

0 0 0 0 Bt A B 0

0 0 0 0 0 Bt A B

B 0 0 0 0 0 Bt A

2
666666666664

3
777777777775
: (7.217)
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From now on this canonical form will be referred to as block tri-diagonal matrix

with corner blocks abbreviated as BTMCB.

7.9.3 Eigensolution for Finding Buckling Load of Structure
with the BTMCB Form

Block diagonalisation of the BTMCB forms is discussed in Sect. 4.12, and here the

eigensolution for finding the buckling load of rotationally repetitive structures, with

no node on the axis of symmetry, and under vertical lumped loads located at the

extreme nodes of the elements, is presented via the BTMCB form. The smallest

eigenvalue shows the buckling load of the system, and the corresponding eigenvec-

tor is the buckling mode shape.

If the stiffness matrix of a rotationally repetitive structure is generated using the

transformation matrix presented in Sect. 7.2, the BTMCB form will be achieved.

In order to find the buckling load of the system, the geometric stiffness matrix of the

structure should be generated.

If the segmental stiffness matrix for each segment of structure is separately

generated, it can be observed that the segmental stiffness matrices are the same,

and the displacements in different segmental coordinates are identical. From the

latter fact, it can be realised that internal forces made in identical elements within

any two arbitrarily selected segments due to displacements occurred in segmental

coordinates are equal.

It is obvious that the values of entries in local geometric stiffness matrix for an

element depend on forces made in its local degrees of freedom, and there are same

displacements and consequently tantamount identical forces for similar elements in

any two arbitrarily selected segments. As the transformation matrix should be the

same for both of elastic stiffness and geometric stiffness matrices, a BTMCB form

in geometric stiffness matrix similar to that of elastic stiffness matrix is expected.

After generating the global geometric stiffness matrix of structure as it was

predicted, a similar BTMCB form will be obtained. Thus, the eigensolution for

finding the eigenvalues of Ke½ � � P Kg½ �j j ¼ 0 via this BTMCB form becomes

possible. Here, Ke is the elastic stiffness matrix, and Kg is the geometric stiffness

matrix of the structure. The process of calculation is as follows:

1.1 First the elastic stiffness matrices of elements are formed in their local coordi-

nate system and then transformed into the global coordinates. These matrices

are assembled to form the overall elastic stiffness matrix of the rotationally

repetitive structure.

1.2 In this step, a static problem is solved, for the stiffness matrix calculated in the

previous step and for the forces lumped in the nodes. This leads to the nodal

displacements of the structure in the global coordinate system.

1.3 The results obtained in step 2 are used to calculated displacements in local

coordinate system for each element.
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1.4 Using the displacements calculated in step 3 and local stiffness matrix of each

element, the internal forces are computed in the local coordinate system of the

element as defined in Fig. 7.85.

1.5 Utilising the internal forces calculated in step 4 in geometric stiffness matrix of

a 3D beam element presented in Eq. 7.247, the local geometric stiffness matrix

of elements is computed:

Kg½ � ¼

a c �a �c
b d g �h �a �b l �g �h

b e h g �c �b m h �g
f i k �d �e �f �i �k

j �g �h �i n �o
j h �g �k o n

a c

b �l g h

b �m �h g

sym f a c

j

j

2
6666666666666666664

3
7777777777777777775

(7.218)

where

a ¼
1Mzaþ1Mzb

L2
; b ¼ 61Fxb

5L
; c ¼ �

1Myaþ1Myb

L2
; d ¼

1Mya

L
; e ¼

1Mza

L

f ¼
1FxbJ

AL
; g ¼

1Mxb

L
; h ¼ �

1Fxb

10
; i ¼

1Mzaþ1Mzb

6
; j ¼ 2 1FxbL

15
;

k ¼ �
1Myaþ1Myb

6
; l ¼

1Myb

L
; m ¼

1Mzb

L
; n ¼ �

1FxbL

30
; o ¼ �

1Mxb

2
:

1.6 The process of assembling of the geometric stiffness matrices leads to the

formation of the structural geometric stiffness matrix having the BTMCB form.

y

1Mxa

1Mya
1Myb

1Mxb
1Fyb

1Fzb

1Mzb

1Fxb

1Mza

1Fxa
1Fya

1Fza

z

x

Fig. 7.85 The internal forces of a typical element in its local coordinate system
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1.7 After calculating the geometric stiffness matrix of structure via the above six

steps, the eigensolution with BTMCB form is performed as follows:

A. Extract the submatrices A and B from the geometric and elastic stiffness

matrices using the mathematical process of Sect. 7.4 to construct an

eigenproblem in the BTMCB form.

B. Generate the H matrix. This depends on the number of repetitive

substructures; however, calculating its eigenvalues, λj, depends on the latter
number being odd or even.

C. Generate the block matrices BLj from matricesA and B for both elastic and

geometric stiffness matrices of the structure.

D. Define the block submatrices BLKg�1Ke

	 

j
for each pair of blocks BL

K
gð Þj

and BLKeð Þj via the following equation:

BL
K

g�1
Ke

� �
j
¼ BLKgð Þj

�1
BLKeð Þj: (7.219)

E. Find the eigenvalues of the block matrices calculated in step D and gather

all of the eigenvalues calculated by means of Eq. 7.249:

eig Kg�1Ke
	 
 ¼[n

j¼1
eig BL

Kg�1Ke

� �
j

¼
[n
j¼1

eig BLKg
j

	 
�1
BLKe

j

	 
� �
: (7.220)

F. The eigenvector corresponding to each eigenvalue of block submatrix

BLKg�1Ke is obtained by the following relationship:

BLjYi ¼ μiYi: (7.221)

Each eigenvalue of the block matrixBLj obtained by Eq. 7.249 is an eigenvalue

of Kg�1Ke matrix; however, the eigenvectors obtained by Eq. 7.250 need to be

healed by a Kronecker product as

ϕi ¼ Uðej � YiÞ ¼ ðX� IÞðej � YiÞ ¼ Xej � IYi ! ϕi ¼ Xj � Yi (7.222)

where Xj is the eigenvector of corresponding to the jth eigenvalue of the matrix H.

The matrix X is calculated by Eq. 7.240. Finally, if an eigenvalue calculated by

Eq. 7.249 is a simple one, the corresponding eigenvector will be real, but if the

eigenvalue is a multiple root of the characteristic polynomial, the corresponding

eigenvector will be complex. Adding two conjugate eigenvectors will result in the

real eigenvectors for both of them.
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7.9.4 Eigensolution for Free Vibration of Structural Systems
with the BTMCB Form

Using the nodal numbering presented in Sect. 7.3, the elastic stiffness matrix of the

structure shown in Fig. 7.1 is formed, as explained in Sect. 7.2. The corresponding

lumped mass matrix is then generated by classic methods. The matrix corresponding

to this dynamic set will be in the following BTMCB form:

½K� � ω2½M� ¼

A B 0 0 . . . 0 0 Bt

Bt A B 0 . . . 0 0 0

0 Bt A B . . . 0 0 0

0 0 Bt . .
. . .

.
0 0 0

..

. ..
. ..

. . .
.

A B 0 0

0 0 0 0 Bt A B 0

0 0 0 0 0 Bt A B

B 0 0 0 0 0 Bt A

2
666666666664

3
777777777775
: (7.223)

Therefore, the natural frequencies and natural modes can be found by

½K� � ω2½M��� �� ¼ 0: (7.224)

The eigenvalues and eigenvectors are denoted by ωi and φi, respectively.

Applying the BTMCB form to Eq. 7.35 for calculating the eigenvalues and

eigenvectors of the above set is similar to the process mentioned in Sect. 7.5. After

generating the mass matrix of structure, the process of finding the natural

frequencies and natural mode shapes can be performed as follows:

1.8 Extract the submatricesA andB from the mass and stiffness matrices using the

mathematical process presented in Sect. 7.4.

1.9 Generate the H matrix, which depends on the number of repetitive

substructures. Calculating the concerned eigenvalues, λj, depends on the latter
number being odd or even.

1.10 Generate the block matrices BLj from submatrices A and B for both elastic

stiffness and mass matrices of structure.

1.11 Find m eigenvalues for each of n pairs of block matrices ðBLMÞj and BLKeð Þj
calculated in the previous step by solving Eq. 7.254:

BL
Ke � ω2BL

M

�� ��
j
¼ 0 )

[m
i¼1

ωj
2: (7.225)
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1.12 Gather all of the eigenvalues calculated by Eq. 7.254 as in the following

equation:

ζi ¼ ωi
2 ¼

[n
j¼1

[m
i¼1

ωj
2

 !
: (7.226)

1.13 The eigenvector corresponding to each eigenvalue of Eq. 7.255 is obtained as

BLjVi ¼ ζiVi: (7.227)

1.14 Each eigenvalue obtained by Eq. 7.37 is an eigenvalue of total system, but the

eigenvectors obtained by Eq. 7.38 need to be healed by a Kronecker product

as

φi ¼ U ej � Vi

	 
 ¼ ðX� IÞ ej � Vi

	 
 ¼ Xej � IVi ! φi ¼ Xj � Vi (7.228)

whereXj is the eigenvector corresponding to the jth eigenvalue of the H matrix, and

the X matrix is calculated in the way shown in Eq. 7.240. Finally, if the eigenvalue

calculated by Eq. 7.255 is a simple one, the corresponding eigenvector will be real;

however, if the eigenvalue is a multiple root of characteristic polynomial, the

corresponding eigenvector will be complex. Adding two conjugate eigenvectors

will result in real eigenvectors for both of them.

7.9.5 Reducing Computational Efforts by Substructuring
the System

In this section a substructuring method is used for finding the block submatrices A

and B in mass and elastic stiffness matrices. As will be shown, less effort is needed

to generate the corresponding submatrices in geometric stiffness matrix as a

consequence of the aforementioned methodology.

The substructuring process may be performed as follows:

Step A. Generating the submatrices A and B in mass and elastic stiffness matrices:

Using the segmental division introduced in Sect. 7.2, the nodes of the

structure are divided into n subset of nodes. In order to find the required

substructure, the nodes associated with three arbitrarily selected consecutive

segments should be extracted from the set of all the nodes of the structure.

After defining the nodes in substructure, the corresponding elements should

be defined.

Thus, an adjacency submatrix between previously selected nodes should

be specified by which the required submatrices can completely be generated.

This adjacencymatrix comprises all the elements existing in the intermediate

segment as well as elements between the nodes in the intermediate segment
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and the ones in two other segments. Calculating the mass and stiffness

matrices for the aforementioned substructure leads to the formation of

matrices in the following form:

½Msubstructure� ¼
C B 0

Bt A B

0 Bt D

2
4

3
5 and Kelastic

substructure

� � ¼ C B 0

Bt A B

0 Bt D

2
4

3
5: (7.229)

Thus, we need bigger matrices to compute in order to extract the

submatrices A and B from them.

Step B. Solution of the static problem:

As the structure has similar stiffness submatrices in different segments and

the exterior loads applied to the structure are similar in different segments,

the displacements will be identical as well. Since having the displacements

in a segment is sufficient, therefore the solution of static problem merely

for one segment will be adequate if the stiffness matrix of the substructure

is calculated appropriately. The stiffness matrix of a segment is calculated

by the following relationship:

Kelastic
segment ¼ Aþ Bþ Bt: (7.230)

The static problem which should be solved will be as follows:

½Fsegment� ¼ Kelastic
segment

h i
½X�: (7.231)

Solving the above equation results in the displacements of an arbitrarily

substructure in the global coordinate system.

Step C. Generating the submatrices Step A and Step B in the geometric stiffness

matrix:

By calculating the transformation matrix of Sect. 7.2 for each element of

the substructure defined in Step A and by pre-multiplying the aforemen-

tioned transformation matrix into displacements achieved in Step B for

extreme nodes of the cited element, the displacements in local coordinate

system will be calculated.

As the stiffness matrix of each element in its coordinate system is com-

putable by elastic stiffness matrix for a 3D beam element and the displace-

ment of the element in its coordinate system are calculated above by means

of Eq. 7.260, the internal forces for each element can be calculated as

½Finternal� ¼ ½Klocal� ½Xlocal�: (7.232)

Substituting the internal forces in Eq. 7.248 leads to the formation of the

geometric stiffness matrix for each element, and the assembling process of
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the matrices leads to the formation of a geometric stiffness matrix having

the following form:

K
geometric
substructure

h i
¼

C B 0

Bt A B

0 Bt D

2
4

3
5: (7.233)

By the steps A to C of Sect. 7.7, the submatricesA andB of the mass, elastic

and geometric stiffness matrices are calculated, and the process of

eigensolution described in Sects. 7.5 and 7.6 for finding the buckling loads

and natural frequencies of rotationally repetitive structure can be executed

with the least efforts.

7.9.6 Numerical Examples

Examples for finding the first six buckling loads and the first six maximum periods

for both solution methods for four dome structures are presented in this section. The

results are compared to those obtained by considering the entire structure in the

solution without using the symmetry property of the structures.

For all the structures, the density of the material is considered as 78.5 kN/m3, and

the modulus of elasticity is equal to 2e + 8 kN/m2.

Example 7.25: Type 1 configuration Specifications of the first configuration are

as follows:

Span ¼ 145 m, height ¼ 46.2 m, A ¼ sweep angle ¼ 65 (in degrees), number

of cycles ¼ 32 and number of members in a rib ¼ 16.

Element cross-sectional properties consisting of pipes are as follows:

Exterior diameter ¼ 0:3239m; thickness ¼ 0:01m and cross-sectional area

¼ 0:00986m2

The configuration of the dome presented and the selected substructure for

computing the geometric and elastic stiffness matrices of the substructure are

shown in Fig. 7.86. This substructure is selected such that its cyclic repetition

covers the entire structure, and it has minimum number of elements with respect to

this property.

The first six buckling loads and the first six maximum periods of the structure for

both classic and present methods are presented in Table 7.1.

Example 7.26: Type 2 configuration Specifications of the second configuration

are as follows:
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Span ¼ 75m; height ¼ 23 m; A ¼ sweep angle ¼ 63:04 ðin degreesÞ;
number of cycles ¼ 16 and number of members in a rib ¼ 9:

Element cross-sectional properties consisting of pipes are as follows:

Exterior diameter ¼ 0:273m; thickness ¼ 0:0063m and cross-sectional area

¼ 0:00528m2:

The configuration of the dome presented and the selected substructure for

computing the geometric and elastic stiffness matrices of the substructure are

shown in Fig. 7.5. This substructure is selected such that its cyclic repetition covers

the entire structure, and it has minimum number of elements with respect to this

property (Fig. 7.87).

Fig. 7.86 A dome and the selected substructure (Example 7.25)

Table 7.1 Comparison of the results for Example 7.25

Method

First six buckling

loads (kN) Elapsed time (s) First six periods (s) Elapsed time (s)

Present method 67.111171586 1.56 0.054773 0.45

67.363499398 0.054773

67.363499398 0.049093

68.140308485 0.049094

68.140308485 0.045122

69.504374950 0.039380

Classic method 68.143713692 65.46 0.062228 88.46

68.401052322 0.062228

68.401052322 0.050445

69.192595933 0.047125

69.192595933 0.047125

70.580117663 0.042186

Time ratio ¼ time for presentmethod

time for classicmethod

0.024 0.0051

7.9 Eigensolution of Rotationally Repetitive Space Structures 259



The first six buckling loads and the first six maximum periods of the structure for

both classic and the present methods are presented in Table 7.2.

Example 7.27: Type 3 configuration Specifications of the example, considered

for first type of configurations are as follows:

Span ¼ 69.28 m, height ¼ 20 m, A ¼ sweep angle ¼ 60 (in degrees), number

of cycles ¼ 16 and number of members in a rib ¼ 8.

Element cross-sectional properties ðpipesÞ : Exterior diameter ¼ 0:273m;

thickness ¼ 0:016 m and cross-sectional area ¼ 0:0129m2:

Fig. 7.87 A dome and the selected substructure (Example 7.26)

Table 7.2 Comparison of the results for Example 7.26

Method

First six buckling

loads (kN) Elapsed time (s) First six periods (s) Elapsed time (s)

Present method 42.626768260 2.71 1.076111 1.86

42.950213071 1.076111

42.950213071 0.327777

44.038557461 0.230387

44.038557461 0.169891

46.324767177 0.169891

Classic method 42.972754775 114 1.053611 138

43.249623685 1.053611

43.370217133 0.322513

44.365376027 0.230462

44.517103987 0.163465

46.694711532 0.152487

Time ratio ¼ time for presentmethod

time for classicmethod

0.024 0.014
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The configuration of the dome presented and the selected substructure for

computing the geometric and elastic stiffness matrices of the substructure are

shown in Fig. 7.88. This substructure is selected such that its cyclic repetition

covers the entire structure, and it has minimum number of elements with respect to

this property (Fig. 7.88).

The first six buckling loads and the first six maximum periods of the structure for

both classic and the present methods are presented in Table 7.3.

Example 7.28: Type 4 configuration Specifications of the example, considered

for first type of configurations are as follows:

Span ¼ 75 m, height ¼ 12.97 m, diameter of gap inside ¼ 45 m, A ¼ sweep

angle ¼ 50 (in degrees), number of cycles ¼ 24, number of members in a rib in

upper layer ¼ 4 and number of members in a rib in lower layer ¼ 3.

Fig. 7.88 A dome and the selected substructure (Example 7.27)

Table 7.3 Comparison of the results for Example 7.27

Method

First six buckling

loads (kN) Elapsed time (s) First six periods (s) Elapsed time (s)

Present method 64.849808347 2.43 0.182603 1.21

65.051354899 0.182603

65.051354899 0.152094

65.592911269 0.152094

65.592911269 0.150714

66.519733355 0.150714

Classic method 66.069444015 145 0.141674 186

66.162547554 0.135081

66.416914783 0.135081

66.802945238 0.127772

67.024791100 0.127772

67.764475434 0.102673

Time ratio ¼ time for presentmethod

time for classicmethod

0.017 0.007
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Element cross-sectional properties ðpipesÞ : Exterior diameter ¼ 0:1778m;

thickness ¼ 0:0063m and cross-sectional area ¼ 3:39e� 3m2:

The configuration of the dome presented and the selected substructure for

computing the geometric and elastic stiffness matrices of the substructure are

shown in Fig. 7.7. This substructure is selected such that its cyclic repetition covers

the entire structure, and it has minimum number of elements with respect to this

property (Fig. 7.89).

The first six buckling loads and the first six maximum periods of the structure for

both classic and the present methods are presented in Table 7.4.

7.9.7 Concluding Remarks

Symmetry in rotationally repetitive structures results in the decomposition of the

systems into smaller subsystems. The matrices corresponding to the detached

Fig. 7.89 A dome and the

selected substructure

(Example 7.28)

Table 7.4 Comparison of the results for Example 7.28

Method

First six buckling

loads (kN) Elapsed time (s) First six periods (s) Elapsed time (s)

Present method 53.150070147 0.89 0.169493 0.36

53.776869149 0.169493

53.776869149 0.164238

55.744596127 0.164238

55.744596126 0.127169

59.338436596 0.127169

Classic method 52.173264063 41.56 0.167541 55.56

52.808894050 0.167541

52.808894051 0.163075

54.802130814 0.163075

54.802130814 0.125557

58.435492680 0.125557

Time ratio ¼ time for present method

time for classic method

0.022 0.007
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subsystems have diminutive dimension in comparison to the dimension of primary

matrices. By the decomposition of the rotationally repetitive structures into

subsystems, large eigenproblems transform into much more smaller eigenproblems.

In fact, for a structure having n rotationally repeating segments, instead of finding

the eigenvalues of an nm� nm matrix, one can n times calculate the eigenvalues of

m� m matrix, where m is equal to the number of active degrees of freedom in a

subsystem.

Besides, by applying the substructuring methodologies for eigensolution, there

is no need to generate the entire mass, elastic stiffness and geometric stiffness

matrices for the main structure. This leads to a drastical reduction in time and

memory needed. Although the structures studied here are domes, the application of

the presented method can easily be extended to other rotationally repetitive civil

engineering structures such as cooling towers and chimneys or structures such as

milling cutters, turbine bladed disks, gears and fan or pump impellers in mechanical

engineering.

The saving in the required time and memory is divided into three parts:

1. Saving in time and memory due to calculating the mass, elastic and geometric

stiffness matrices of subsystem; in fact, instead of generating the entire mass,

elastic and geometric stiffness matrices of the structure, the associated matrices

of the subsystem can be calculated, and the process of eigensolution can be

pursued.

2. Saving in time and memory due to partial static analysis of the structure for

buckling load problem.

3. Saving in time and memory due to calculating n times the eigenvalues and

eigenvectors of a problem in dimensions of active DOFs in a subsystem instead

of calculating the eigenvalues and eigenvector of a structure with an enormous

number of DOFs.
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