
Chapter 2

Introduction to Graph Theory and Algebraic

Graph Theory

2.1 Introduction

Graph theory is a branch of mathematics started by Euler [1] as early as

1736. It took a hundred years before the second important contribution of Kirchhoff

[2] had been made for the analysis of electrical networks. Cayley [3] and Sylvester

[4] discovered several properties of special types of graphs known as trees.
Poincaré [5] defined in principle what is known nowadays as the incidence matrix
of a graph. It took another century before the first book was published by König [6].

After the Second World War, further books appeared on graph theory (Ore [7],

Behzad and Chartrand [8], Tutte [9], Berge [10], Harary [11], Gould [12], Wilson

[13], Wilson and Watkins [14] and West [15], among many others).

Algebraic graph theory can be viewed as an extension to graph theory in

which algebraic methods are applied to problems about graphs (Biggs [16]).

Spectral graph theory, as the main branch of algebraic graph theory, is the study

of properties of graphs in relationship to the characteristic polynomial, eigenvalues

and eigenvectors of matrices associated with graphs, such as its adjacency matrix or
Laplacian matrix. Spectral graph theory emerged in the 1950s and 1960s. The 1980

monograph Spectra of Graphs [17] by Cvetković, Doob and Sachs has summarised

nearly all research to date in the area. In 1988 it was updated by the survey Recent
Results in the Theory of Graph Spectra [18].

Graph theory has found many applications in engineering and science, such as

chemical, electrical, civil and mechanical engineering, architecture, management

and control, communication, operational research, sparse matrix technology, com-

binatorial optimisation and computer science. Therefore, many books have been

published on applied graph theory such as those by Bondy and Murty [19], Chen

[20], Thulasiraman and Swamy [21], Beineke and Wilson [22], Mayeda [23],

Christofides [24], Gondran and Minoux [25], Deo [26], Cooke et al. [27] and

Kaveh [28, 29]. In recent years, due to the extension of the concepts and

applications of the graph theory, many journals such as Journal of Graph Theory,
Journal of Combinatorial Theory A & B, Discrete and Applied Mathematics, SIAM
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Journal of Discrete Mathematics, European Journal of Combinatorics and Graphs
and Combinatorics are being published to cover the advances made in this field.

In this chapter basic definitions and concepts of graph theory and algebraic

graph theory are briefly presented; however, for proofs and details the reader

may refer to textbooks on this subject, Refs. [11, 15, 28, 29].

2.2 Basic Concepts and Definitions of Graph Theory

There are many physical systems whose performance depends not only on the

characteristics of their components but also on their relative location. As an

example, in a structure, if the properties of a member are altered, the overall

behaviour of the structure will be changed. This indicates that the performance

of a structure depends on the characteristics of its members. On the other hand,

if the location of a member is changed, the properties of the structure will again

be different. Therefore, the connectivity (topology) of the structure influences the

performance of the entire structure. Hence, it is important to represent a system so

that its topology can clearly be understood. The graph model of a system provides

a powerful means for this purpose.

In this section, basic concepts and definitions of graph theory are presented.

Since some of the readers may be unfamiliar with the theory of graphs, simple

examples are included to make it easier to understand the main concepts.

Some of the uses of the theory of graphs in the context of civil engineering are as

follows. A graph can be a model of a structure, a hydraulic network, a traffic

network, a transportation system, a construction system or a resource allocation

system. These are only some of such models, and the applications of graph theory

are much extensive. In this book, the theory of graphs is used as the model of a

skeletal structure, and it is employed also as a means for transforming the connec-

tivity properties of finite element meshes to those of graphs. This section will also

enable the readers to develop their own ideas and methods in the light of the

principles of graph theory. For further definitions and proofs, the reader may refer

to Harary [11] and West [15].

2.2.1 Definition of a Graph

A graph S consists of a non-empty set N(S) of elements called nodes (vertices or
points) and a set M(S) of elements called members (edges or arcs) together with a

relation of incidence which associates with each member a pair of nodes (not

necessarily distinct), called its ends.
Two or more members joining the same pair of nodes are known as multiple

members, and a member joining a node to itself is called a loop. A graph with no

loops and multiple members is called a simple graph. If N(S) and M(S) are
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countable sets, then the corresponding graph S is finite. In this book only finite

graphs are needed, which are referred to as graphs.

The above definitions correspond to abstract graphs; however, a graph may be

visualised as a set of points connected by line segments in Euclidean space;

the nodes of a graph are identified with points, and its members are identified

as line segments without their end points. Such a configuration is known as a

topological graph. These definitions are illustrated in Fig. 2.1.

2.2.2 Adjacency and Incidence

Two nodes of a graph are called adjacent if these nodes are the end nodes of a

member. A member is called incident with a node if this node is an end node of

the member. Two members are called incident if they have a common end node.

The degree (valency) of a node ni of a graph, denoted by deg (ni), is the number

of members incident with that node. Since each member has two end nodes,

the sum of node degrees of a graph is twice the number of its members.

2.2.3 Graph Operations

A subgraph Si of S is a graph for which N(Si) � N(S) and M(Si) � M(S),

and each member of Si has the same ends as in S.

The union of subgraphs S1, S2, . . . , Sk of S, denoted by Sk ¼ [k
i¼1

Si ¼ S1[

S2 [ . . . [ Sk, is a subgraph of S with N Sk
� � ¼ [k

i¼1
N Sið Þ and M Sk

� � ¼ [k
i¼1

M Sið Þ.
The intersection of two subgraphs Si and Sj is similarly defined using inter-
sections of node sets and member sets of the two subgraphs. The ring sum of

two subgraphs Si � Sj is a subgraph which contains the nodes and members of

Si and Sj except those elements common to Si and Sj. These definitions are

illustrated in Fig. 2.2.

a bFig. 2.1 Simple and

non-simple graphs.

(a) A simple graph.

(b) A graph with a loop

and multiple members
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There are other important graph operations consisting of different graph products

which will be described in detail in Chap. 3 of this book. These products and their

applications in structural mechanics are the main concern of the present book.

Two graphs are called isomorphic if they have the same number of nodes and

the adjacency is preserved. As an example three isomorphic graphs are shown

in Fig. 2.3.

2.2.4 Walks, Trails and Paths

A walk Pk of S is a finite sequence Pk ¼ {n0, m1, n1, . . . , mp, np} whose terms

are alternately nodes ni and members mi of S for 1 � i � p, and ni�1 and ni are

the two ends of mi. A trail in S is a walk in which no member of S appears

more than once. A path is a trail in which no node appears more than once.

The length of a path Pi, denoted by L(Pi), is taken as the number of its members.

Pi is called the shortest path between the two nodes n0 and np, if for any other

path Pj between these nodes L(Pi) � L(Pj). The distance between two nodes

of a graph is defined as the number of the members of a shortest path between

these nodes.

Two nodes ni and nj are said to be connected in S if there exists a path between

these nodes. A graph S is called connected if all pairs of its nodes are connected.

A component of a graph S is a maximal connected subgraph, that is, it is not a

subgraph of any other connected subgraph of S.

a b c

d e f

Fig. 2.2 A graph, two of

its subgraphs, their union,

intersection and ring sum.

(a) S. (b) Si. (c) Sj. (d) Si [ Sj.
(e) Si \ Sj. (f) Si � Sj

Fig. 2.3 Three isomorphic

graphs
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2.2.5 Cycles and Cutsets

A cycle is a path (n0, m1, n1, . . . , mp, np) for which n0 ¼ np and p � 1; that is,

a cycle is a closed path. Similarly a closed trail (hinged cycle) and a closed walk
can be defined. A cycle of a graph and a hinged cycle are shown in Fig. 2.4a, b,

respectively.

A disconnecting set of a connected graph S is a set of members whose

removal disconnects S. As an example the removal of bold members in Fig. 2.5a

will result in three disconnected subgraphs. A cutset is defined as a disconnecting

set, no proper subset of which a disconnecting set. Obviously the removal of the

members of a cutset will separate the remainder of the graph into two disjoint

components S1 and S2, which are linked by each member of the cutset, Fig. 2.5b.

Notice that no proper subsets of a cutset have this property. A link is a member

which has its ends in S1 and S2. If one of S1 or S2 consists of a single node,

the cutset is called a co-cycle (Fig. 2.5c).

2.2.6 Trees, Spanning Trees and Shortest Route Trees

A tree T of S is a connected subgraph of S which contains no cycle. A set of trees

of S forms a forest. Obviously a forest with k trees contains N(S) � k members.

If a tree contains all the nodes of S, it is called a spanning tree of S. Henceforth,

for simplicity it will be referred to as a tree. The complement of T in S is called

a cotree, denoted by T*. The members of T are known as branches and those

of T* are called chords.
A shortest route tree (SRT) rooted at a specified node n0 of S is a tree for

which the distance between every node nj of T and n0 is minimum. An SRT of a

graph can be generated by the following simple algorithm:

Label the selected root n0 as ‘0’ and the adjacent nodes as ‘1’. Record

the members incident to ‘0’ as tree members. Repeat the process of labelling with

a bFig. 2.4 A cycle and

a hinged cycle of S.

(a) A cycle of S.

(b) A hinged cycle of S

a b cFig. 2.5 A disconnecting set,

a cutset and a co-cycle of S.

(a) A disconnecting set.

(b) A cutset. (c) A co-cycle
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‘2’ the unnumbered ends of all the members incident with nodes labelled as ‘1’,

again recording the tree members. This process terminates when each node of

S is labelled and all the tree members are recorded. This algorithm has many

applications in engineering, and it is also called a breadth-first-search algorithm.

The above definitions are illustrated in Fig. 2.6.

It is easy to prove that for a tree T

M Tð Þ ¼ N Tð Þ � 1 (2.1)

where M(T) and N(T) are the numbers of members and nodes of T, respectively.

For a connected graph S, the number of chords is given by

M T�ð Þ ¼ M Sð Þ �M Tð Þ: (2.2)

Since N(T) ¼ N(S), hence,

MðT�Þ ¼ MðSÞ � NðSÞ þ 1; (2.3)

where M(S) and N(S) are the numbers of members and nodes of S, respectively.

Notice that for a set and its cardinality, the same notation is used and the difference

should be obvious from the context.

2.2.7 Directed Graphs

A directed graph or digraph D is a set of nodes N(D), a set of members M(D),

together with a relationship which associates a pair of ordered nodes with each

member. The first node of an ordered pair is called the start node, and the

second is known as the end node of a directed member. We say a member is

directed from its start node to its end node. Naturally the underlying graph a

directed graph D is a graph S with the members of D being treated as unordered

pairs. A directed graph D and its underlying graphs S are shown in Fig. 2.7.

a b c

d e f

Fig. 2.6 Different subgraphs

in relation with tree of S.

(a) A graph S. (b) A tree

T of S. (c) A spanning tree

T0 of S. (d) An SRT rooted

from n0. (e) The cotree of T
0.

(f) A forest with two trees
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2.2.8 Different Types of Graphs

In order to simplify the study of properties of graphs, different types of graphs

have been defined. Some important and relevant to our study are as follows:

A null graph is a graph which contains no members, Fig. 2.8a. Thus, Nk is a

graph containing k isolated nodes.

A path graph is a graph consisting of a single path, Fig. 2.8b. Hence, Pk is a

path with k nodes and (k�1) members.

A cycle graph is a graph consisting of a single cycle, Fig. 2.8c. Therefore, Ck

is a polygon with k members.

A wheel graph Wk is defined as the union of a star graph with k�1 members

and a cycle graph Ck�1, connected as shown in Fig. 2.9, for k ¼ 6. Alternatively

a wheel graph Wk can be obtained from the cycle graph Ck�1 by adding a node O

and members (spokes) joining O to each nodes of Ck�1.

A complete graph is a graph in which every two distinct nodes are connected

by exactly one member, Fig. 2.10a. A complete graph with N nodes is denoted by KN.

It can easily be proved that a complete graph with N nodes has N(N � 1)/2 members.

a bFig. 2.7 A directed graph

and its underlying graph.

(a) A directed graph D.

(b) The underlying graph of D

a b cFig. 2.8 Three different

types of graphs. (a) A null

graph N6. (b) A path graph P4.
(c) A cycle graph C5

a bFig. 2.9 Two different types

of graphs. (a) A wheel graph

W7. (b) A star graph

a b cFig. 2.10 Different types of

graphs. (a) A complete graph

K6. (b) A bipartite graph with

r ¼ 3 and s ¼ 4. (c) A

complete bipartite graph K3,4
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A graph is called bipartite if the corresponding node set can be split into two

sets N1 and N2 in such a way that each member of S joins a node of N1 to a node

of N2. This graph is denoted by B(S) ¼ (N1, M, N2), Fig. 2.10b. A complete
bipartite graph is a bipartite graph in which each node N1 is joined to each node

of N2 by exactly one member. If the numbers of nodes in N1 and N2 are denoted by

r and s, respectively, then a complete bipartite graph is denoted by Kr,s, Fig. 2.10c.

A graph S is called regular if all of its nodes have the same degree. If this

degree is k, then S is k-regular graph. As an example, a triangle graph is 2-regular

and a cubic graph is 3-regular.

2.3 Vector Spaces Associated with a Graph

A vector space can be associated with a graph by defining a vector, the field and

the binary operations as follows:

Any subset of the M(S) members of a graph S can be represented by a vector x

whose M(S) components are elements of the field of integer modulo 2, where

component xi ¼ 1 when the ith member is an element of the subset, and xi ¼ 0

otherwise. The sum of two subset vectors x and y, a vector z with entries defined

by zi ¼ xi þ yi, represents the symmetric difference of the original subsets. The

scalar product of x and y defined by Σxiyi is 0 or 1 according as the original

subsets have an even or an odd number of members in common. Although this

vector space can be constructed over an arbitrary field, for simplicity the field of

integer modulo 2 is considered, in which 1 þ 1 ¼ 0.

Two important subspaces of the above vector space of a graph S are the cycle

subspace and cutset subspace, known as cycle space and cutset space of S.

2.3.1 Cycle Space

Let a cycle set of members of a graph be defined as a set of members which form

a cycle or form several cycles having no common member, but perhaps common

nodes. The null set is also defined as a cycle set. A vector representing a cycle

set is called a cycle set vector. It can be shown that the sum of two cycle set

vectors of a graph is also a cycle set vector. Thus, the cycle set vectors of a

graph form a vector space over the field of integer modulo 2. The dimension of

a cycle space is given by

nullity Sð Þ ¼ ν Sð Þ ¼ b1 Sð Þ ¼ M Sð Þ � N Sð Þ þ b0 Sð Þ; (2.4)

where b1(S) and b0(S) are the first and zero Betti numbers of S, respectively.

As an example, the nullity of the graph S in Fig. 2.11a is ν(S) ¼ 10 � 8 þ 1 ¼ 3.

22 2 Introduction to Graph Theory and Algebraic Graph Theory



2.3.2 Cutset Space

Consider a cutset vector similar to that of a cycle vector. Let the null set be

also defined as a cutset. It can be shown that the sum of two cutset vectors of

a graph is also a cutset vector. Therefore, the cutset vectors of a graph form a

vector space, the dimension of which is given by

rank Sð Þ ¼ ρ Sð Þ ¼ N Sð Þ � b0 Sð Þ: (2.5)

As an example, the rank of S in Fig. 2.11a is ρ(S) ¼ 8 � 1 ¼ 7.

2.3.3 Cycle Bases Matrices

The cycle–member incidence matrix �C of a graph S has a row for each cycle

or hinged cycle and a column for each member. An entry cij of �C is 1 if cycle

Ci contains member mj, and it is 0 otherwise. In contrast to the node adjacency

and node–member incidence matrix, the cycle–member incidence matrix does not

determine a graph up to isomorphism; that is, two totally different graphs may

have the same cycle–member incidence matrix.

For a graph S there exist 2b1 Sð Þ � 1 cycles or hinged cycles. Thus, �C is a

(2b1 Sð Þ � 1) � M matrix. However, one does not need all the cycles of S, and the

elements of a cycle basis are sufficient. For a cycle basis, a cycle–member incidence

matrix becomes a b1(S) � M matrix, denoted by C, known as the cycle basis
incidence matrix of S. As an example, matrix C for the graph shown in Fig. 2.11,

for the following cycle basis,

C1 ¼ m1; m4; m5; m8ð Þ; C2 ¼ m2; m8; m6; m9ð Þ; C3 ¼ m3; m9; m7; m10ð Þ

is given by

a b cFig. 2.11 A graph S with a

cycle basis and a cutset basis.

(a) A graph model S.

(b) A cycle basis. (c) A cutest

basis
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C ¼
C1

C2

C3

1 0 0 1 1 0 0 1 0 0

0 1 0 0 0 1 0 1 1 0

0 0 1 0 0 0 1 0 1 1

2
4

3
5 (2.6)

The cycle adjacency matrix D is a b1(S) � b1(S) matrix, each entry dij of

which is 1 if Ci and Cj have at least one member in common, and it is 0 otherwise.

This matrix is related to the cycle–member incidence matrix by the following

relationship:

CCt ¼ DþW; (2.7)

where W is diagonal matrix with wii being the length of the ith cycle and its

trace being equal to the total length of the cycles of the basis.

2.3.4 Cutset Bases Matrices

The cutset–member incidence matrix �C
�
for a graph S has a row for each cutset

of S and a column for eachmember. An entry�c�ij of �C
�
is 1 if cutsetC�

i containsmember

mj, and it is 0 otherwise. This matrix, like �C, does not determine a graph completely.

Independent rows of �C
�

for a cutset basis, denoted by C*, form a matrix

known as a cutset basis incidence matrix, which is a η(S) � M matrix, η(S) being
the rank of graph S. As an example, C* for the cutset of Fig. 2.11 with members

labelled as in Fig. 2.11a is given below.

C� ¼

0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 1

0 1 0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 0 1 1

0 0 0 1 0 0 0 1 1 1

1 0 0 0 0 0 0 1 1 1

0 0 0 0 1 0 0 1 1 1

2
666666664

3
777777775
: (2.8)

The cutset adjacency matrix D* is a η(S) � η(S) matrix defined analogously

to cycle adjacency matrix D.

2.4 Graphs Associated with Matrices

Through these matrices, many concepts from matrix algebra can be related to

those of graph theory. Three types of matrices and the corresponding graphs are

shown in Fig. 2.12. The sign * is used to indicate a non-zero number. M1 is a
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nonsymmetric square matrix, and the corresponding graph is a directed graph with

N nodes, where N is the dimension of the matrix. M2 is a symmetric square matrix,

and the corresponding graph is a nondirected graph with N nodes, where N is

the dimension of the matrix. M3 is an arbitrary rectangular matrix of dimension

M � N, and the corresponding graph is a bipartite graph KM,N. In fact M1, M2

and M3 are the node adjacency matrices of these graphs.

2.5 Planar Graphs: Euler’s Polyhedron Formula

Graph theory and properties of planar graphs were first discovered by Euler in 1736.

After 190 years Kuratowski found a criterion for a graph to be planar. Whitney

developed some important properties of embedding graphs in the plane. MacLane

Matrix Graph

=

***

***

**

**

M1

0

0

00

00

n4

n3

n2

n1

n4n3n2n1

=

****

***

****

***

M2
0

0

n4

n3

n2

n1

n4n3n2n1

=

00

0

00

n3

n2

n1

n4n3n2n1

**

***

**

M3

''''

Fig. 2.12 Matrices and the associated graphs
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expressed the planarity of a graph in terms of its cycle basis. In this section, some

of these criteria are studied, and Euler’s polyhedron formula is proved.

2.5.1 Planar Graphs

A graph S is called planar if it can be drawn (embedded) in the plane in such a

way that no two members cross each other. As an example, a complete graph

K4 shown in Fig. 2.13 is planar since it can be drawn in the plane as shown.

On the other hand K5, Fig. 2.14, is not planar, since every drawing of K5

contains at least one crossing.

Similarly K3,3 is not planar.

A planar graph S drawn in the plane divides the plane into regions, all of

which are bounded and only one is unbounded. If S is drawn on a sphere, all the

regions will be bounded; however, the number of regions will not change. The

cycle bounding a region is called a regional cycle. Obviously the sum of the lengths

of regional cycles is twice the number of members of the graph.

Theorem. (Euler [1]): Let S be a connected planar graph. Then,

R Sð Þ �M Sð Þ þ N Sð Þ ¼ 2: (2.9)

Proof. For a proof, S is re-formed in two stages. In the first stage a spanning tree T

of S is considered in the plane for which R(T) � M(T) þ N(T) ¼ 2. This is true

a bFig. 2.13 K4 and two of

its drawings. (a) A complete

graph K4. (b) Planar drawings

of K4

a bFig. 2.14 K5 and two of its

drawings. (a) A complete

graph K5. (b) Two drawings

of K5 with one crossing
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since R(T) ¼ 1 and M(T) ¼ N(T) � 1. In the second stage chords are added one

at a time. Addition of a chord increases the number of members and regions each

by unity, leaving the left-hand side of Eq. 2.9 unchanged during the entire process,

and the result follows.

2.6 Definitions from Algebraic Graph Theory

Spectral graph theory, as a branch of algebraic graph theory, is the study of

properties of a graph in relationship to the characteristic polynomial, eigenvalues

and eigenvectors of matrices associated to the graph, such as its adjacency

matrix or Laplacian matrix. An undirected graph has a symmetric adjacency

matrix and therefore has real eigenvalues (the multiset of which is called

the graph’s spectrum) and a complete set of orthonormal eigenvectors. While

the adjacency matrix depends on the vertex labelling, its spectrum is a graph

invariant.

2.6.1 Incidence, Adjacency and Laplacian Matrices of a Graph

A directed graph S consists of node set N(S) and member set M(S), where a

member, or directed member, is an ordered pair of distinct nodes. An undirected

graph can be equally viewed as a directed graph where (ni,nj) is a member whenever

(nj,ni) is a member.

The incidence matrix B ¼ bij
� �

n�m
of a graph S, whose nodes are labelled as

1,2, . . . , n, and members as 1, 2, 3, . . . , m, is defined as

bij ¼
1 if node ni is incident with member mj

0 otherwise

(
(2.10)

The adjacency matrix A ¼ aij
� �

n�n
of a graph S, whose nodes are labelled as

1,2, . . . , n, is defined as

aij ¼
1 if node ni is adjacent to nj

0 otherwise

(
(2.11)

The degree matrix D ¼ dij
� �

n�n
is a diagonal matrix containing node degrees.

dij is equal to the degree of the ith node.

The Laplacian matrix L ¼ lij
� �

n�n
is defined as
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L ¼ D� A: (2.12)

Therefore, the entries of L are as follows:

lij ¼
�1 node ni is adjacent to nj

deg nið Þ if i ¼ j

0 otherwise:

8><
>: (2.13)

As an example, the incidence, adjacency, degree and Laplacian matrices of

the graph S shown in Fig. 2.15 are as follows:

2.6.2 Incidence and Adjacency Matrices of a Directed Graph

The incidence matrix B ¼ bij
� �

n�m
of a directed graph S, whose nodes are labelled

as 1,2, . . . , n, and members as 1, 2, 3, . . . , m, is defined as

bij ¼
þ1 if node ni is connected to nj and ni is the start node of member mj

�1 if node ni is connected to nj and ni is the end node of member mj

0 otherwise

8><
>:

(2.14)
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Fig. 2.15 A graph S
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The adjacency matrix A ¼ aij
� �

n�n
of a directed graph D, whose nodes are

labelled as 1,2, . . ., n, is defined as

aij ¼
þ1 if node ni is connected to nj and directed from ni to nj

�1 if node ni is connected to nj and directed from nj to ni

0 otherwise

8><
>: (2.15)

As an example, the incidence and adjacency matrices of the directed graph

of Fig. 2.16 are shown in the following:

2.6.3 Adjacency and Laplacian Matrices of a Weighted Graph

Consider a graph with weights assigned to its nodes and edges. The nodal weight

vector is

NW ¼ nwi½ 	; i ¼ 1; 2; . . . ;N; (2.16)

and edge weight vector is defined as follows:

EW ¼ ewij

� �
; i; jð Þ ¼ 1; ; . . . ;N; (2.17)

The adjacency matrix A ¼ aij
� �

n�n
of a weighted graph S, containing n nodes,

is defined as follows:

aij ¼ ewij if ni is adjacent to nj
0 otherwise

�
(2.18)

For a non-weighted graph ewij should be replaced by unity.
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The entries of the weighted Laplacian matrix L of a weighted graph is defined as

L ¼ D� A; (2.19)

The entries of L are as follows:

lij ¼

�ewij ¼ �ewji if nodes ni and nj are adjacent

ewi ¼
XDi

j¼1

ewij for i ¼ j

0 otherwise

8>>>><
>>>>:

(2.20)

For non-weighted graph this reduces to Eq. 2.13.

2.6.4 Eigenvalues and Eigenvectors of an Adjacency Matrix

Consider the eigenproblem as

Aϕi ¼ μiϕi (2.21)

where μi is the eigenvalue and ϕi is the corresponding eigenvector. Since A is a

symmetric real matrix, all its eigenvalues are real and can be expressed as

μ1 � μ2 � . . . � μn�1 � μn (2.22)

The largest eigenvalue μn is the single root of the characteristic equation of A.

The corresponding eigenvectorϕn is the only eigenvector with positive entries. This

vector has attractive properties employed in geography and structural mechanics.

The characteristic polynomial of a matrix A is a polynomial

ϕ A; λð Þ ¼ det λI� Að Þ: (2.23)

Consider ϕ(A,λ) as the characteristic polynomial of A. The spectrum of a

matrix is the list of its eigenvalues together with their multiplicities. The spectrum

of a graph S is the spectrum of its adjacency matrix A. For two isomorphic graphs S

and S0, ϕ(S, λ) ¼ ϕ(S0, λ). However, two graphs may have the same spectrum and

yet be non-isomorphic. Information such as valencies of nodes or planarity cannot

be determined by the spectrum.

The following properties can easily be proved:

1. The number of walks with length k from ni to nj in a graph S is equal to

(i,j)th entry of Ak. This can be proved by induction on k.

2. The trace of a square matrix A is the sum of its diagonal entries, denoted by

traceA. The number of closed walks with length k in a graph is equal to trace Ak.

Thus, for a graph with Mmembers and T triangles, trace A ¼ 0, trace A2 ¼ 2M,
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and trace A3 ¼ 6T. Since the trace of a square matrix is also equal to the

sum of its eigenvalues, therefore, the eigenvalues of Ak are the kth power of

the eigenvalues of A. Hence, trace Ak is determined by the spectrum of A, that

is, the spectrum of a graph S determines the number of nodes, members and

triangles in S.

3. The complement �S of a graph S has the same node set as S, where nodes

ni and nj are adjacent in �S if and only if they are not adjacent in S. Let �S be the

complement of S. Then the adjacency matrix of the complement S is given by

A �Sð Þ ¼ J� I� A Sð Þ; (2.24)

where J is all-one matrix and I is a unit matrix.

2.6.5 Eigenvalues and Eigenvectors of a Laplacian Matrix

Consider the following eigenproblem:

Lvi ¼ λivi; (2.25)

where λi is the eigenvalue and vi is the corresponding eigenvector. As for A,

all the eigenvalues of L are real. It can be shown that matrix L is a positive

semi-definite matrix with

0 ¼ λ1 � λ2 � . . . � λn: (2.26)

And

vt1 ¼ 1; 1; . . . ; 1f g: (2.27)

The second eigenvalue λ2 and the corresponding eigenvector v2 have attractive

properties. Fiedler [30] has investigated various properties of λ2. This eigenvalue
is also known as the algebraic connectivity of a graph.

2.6.6 Additional Properties of a Laplacian Matrix

Consider a graph S with an arbitrary orientation. The Laplacian of S is a matrix

L(S) ¼ BBt, where B is the member–node incidence matrix. Naturally the

Laplacian does not depend on the orientation considered for the graph. The

following results can be proved:
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The rank of the Laplacian matrixL(S) of S is equal to the rank ofL(S) ¼ N–b0(S).

1. If S is a graph on N nodes and 2 � i � N, then λi �Sð Þ ¼ N� λN�iþ2 Sð Þ, where �S
is the complement of S.

Proof. It can be observed that

L Sð Þ þ L �Sð Þ ¼ NI� J: (2.28)

The vector I ¼ {1 1 1 . . . 1}t is an eigenvector of L(S) and L �Sð Þ with the

corresponding eigenvector 0. Let x be another eigenvector of L(S) with eigenvalue

λ. One can assume that x is orthogonal to I. Then Jx ¼ 0, and

Nx ¼ NI� Jð Þx ¼ L SÞxþ L S
� �

x ¼ λxþ L S
� �

x:
�

(2.29)

Therefore, L �Sð Þ ¼ N� λð Þx, and the proof follows.

2. Let S be a graph on N nodes with Laplacian L. Then for any vector x, we have

xtLx ¼
X

i;jð Þ2M Sð Þ
xi � xj
� �2

(2.30)

Proof. This follows from the observation that

xtLx ¼ xtBBtx ¼ Btxð Þt Btxð Þ; (2.31)

and that if (i,j) ∈ M(S), then the entry of Btx corresponding to (i,j) is 
 (xi – xj).

2.7 Matrix Representation of a Graph in Computer

A graph can be represented in various forms. Some of these representations are

of theoretical importance; others are useful from the programming point of view

when applied to realistic problems. In this section, six different representations

of a graph are described.

Two important matrices, namely, incidence matrix B and the adjacency matrices

A defined in Sect. 2.6.3, can be used for representing a graph to a computer.

However, the storage requirements for these matrices are high and proportional

to N � N and M � (N � 1), respectively. In fact large numbers of unnecessary

zeros are stored in these matrices. In practice one can use different approaches

to reduce the storage required, some of which are described in the following.

Member List: This type of representation is a common approach in structural

mechanics. A member list consists of two rows (or columns) and M columns
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(or rows). Each column (or row) contains the labels of the two end nodes of each

member, in which members are arranged sequentially. For example, the member

list of S in Fig. 2.15 is

m1 m2 m3 m4 m5 m6 m7

ML ¼ ni

nj

1 2 1 2 2 3 4

2 3 4 4 5 5 5

� �
:

(2.32)

It should be noted that a member list can also represent orientations on

members. The storage required for this representation is 2 � M. Some engineers

prefer to add a third row containing the member’s labels, for easy addressing.

In this case, the storage is increased to 3 � M.

A different way of preparing a member list is to use a vector containing

the end nodes of members sequentially; for example, for the previous example,

this vector becomes

1; 2; 2; 3; 1; 4; 2; 4; 2; 5; 3; 5; 4; 5ð Þ: (2.33)

This is a compact description of a graph; however, it is impractical because

of the extra search required for its use in various algorithms.

Adjacency List: This list consists of N rows and D columns, where D is the

maximum degree of the nodes of S. The ith row contains the labels of the nodes

adjacent to node i of S. For the graph S shown in Fig. 2.15, the adjacency list is

AL ¼

n1
n2
n3
n4
n5

2 4

1 3 4 5

2 5

1 2 5

2 3 4

2
66664

3
77775
N�D

(2.34)

The storage needed for an adjacency list is N � D.

Compact Adjacency List: In this list the rows of AL are continually arranged in

a row vector R, and an additional vector of pointers P is considered. For example,

the compact adjacency list of Fig. 2.15 can be written as

R ¼ 2; 4; 1; 3; 4; 5; 2; 5; 1; 2; 5; 2; 3; 4ð Þ;
P ¼ 1; 3; 7; 9; 12; 15ð Þ: ð2:35Þ

P is a vector (p1, p2, p3, . . .) which helps to list the nodes adjacent to each

node. For node ni one should start reading R at entry pi and finish at pi+1 � 1.

An additional restriction can be put on R, by ordering the nodes adjacent to

each node ni in ascending order of their degrees. This ordering can be of some

2.7 Matrix Representation of a Graph in Computer 33



advantage, an example of which is nodal ordering for bandwidth optimisation.

The storage required for this list is 2M þ N þ 1.

2.8 Historical Problem of Graph Theory

As mentioned before, in a topological graph the nodes are shown by points and

the edges are usually identified by arcs or lines. However, an abstract graph

can model a much more general set of object and relations. The following

problem shows this general aspect even in the earliest application.

Euler began his paper on graphs by discussing a puzzle, the so-called

Königsberg Bridge Problem. The city of Königsberg (now Kaliningrad) in East

Prussia is located at the banks and on two islands of the river Pregel. The various

parts of the city were connected by seven bridges. The problem arose: Is it possible

to plan a tour in such a manner that starting from home, one can return there

after having crossed each river bridge just once?

A schematic map of the Königsberg is reproduced in Fig. 2.17. The four parts

of the city are denoted by letters A, B, C and D. Since we are interested only

in the bridge crossings, we may think of A, B, C and D as the vertices of the graph

with connecting edges corresponding to the bridges.

Euler showed that this graph cannot be traversed completely in a single

circular path; in other words, no matter at which vertex one begins, one cannot

cover the graph and come back to the starting point without retracing one’s steps.

Such a path would have to enter each vertex as many times as it departs from it;

hence, it requires an even number of edges at each vertex, and this condition is

not fulfilled in the graph representing the map of Königsberg.

In this historical problem, the incidence of different parts of a city is considered

with edges representing the bridges, that is, even the first graph model has been

such a general one and has not been confined to points and edges as imagined

by some users.

For definition on topology, the reader may refer to any textbook on topology,

for example, Cooks [31].

Fig. 2.17 Königsberg Bridge

Problem
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5. Poincaré H (1901) Second complement à l0analysis situs. Proc Lond Math Soc 32:277–308

6. König D (1936) Theory der endlichen und unendlichen Graphen. Chelsea, 1950, 1st edn. Akad.

Verlag, Leipzig

7. Ore O (1962) Theory of graphs, vol 38. American Mathematical Society Colloquium Publica-

tion, Providence

8. Behzad M, Chartrand G (1971) Introduction to the theory of graphs. Allyn and Bacon, Boston

9. Tutte WT (1966) Connectivity in graphs. University of Toronto Press, Toronto

10. Berge C (1973) Graphs and hypergraphs. North-Holland, Amsterdam

11. Harary F (1969) Graph theory. Addison-Wesley, Reading, Mass

12. Gould RJ (1988) Graph theory. Benjamin/Cummings. Menlo Park, CA

13. Wilson RJ (1996) Introduction to graph theory. Longman, University of California, USA

14. Wilson RJ, Beineke LW (1979) Applications of graph theory. Academic, London

15. West DB (1996) Introduction to graph theory. Prentice Hall, USA

16. Biggs N (1993) Algebraic graph theory, 2nd edn. Cambridge University Press, Cambridge
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