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Foreword

Recent advances in structural technology require greater accuracy, efficiency and

speed in the analysis of structural systems, referred to as Optimal Analysis of
Structures Using Concepts of Symmetry and Regularity. It is, therefore, not

surprising that new methods have been developed for the analysis of structures

with a large number of nodes and members.

The requirement of accuracy in analysis has been brought about by the need for

demonstrating structural safety. Consequently, accurate methods of analysis had to

be developed, since conventional methods, although perfectly satisfactory when

used on simple structures, have been found inadequate because of the requirement

of high computational effort for large-scale structures. Another reason why greater

accuracy is required is the need to achieve efficient and optimal use of the material,

i.e. optimal design.

In this book, different mathematical concepts are combined to make the optimal

analysis of structures feasible. Canonical forms from matrix algebra, product

graphs from graph theory and symmetry groups from group theory are some of

the concepts involved in the variety of efficient methods and algorithms presented.

The methods and algorithms elucidated in this book enable the analysts to handle

large-scale structural systems by lowering their computational cost fulfilling the

requirement for faster analysis and design of future complex systems. The value of

the presented methods becomes all the more evident in cases where the analysis

needs to be repeated hundreds or even thousands of times, as is the case with the

optimal design of structures using different meta-heuristic algorithms.

This book is of interest to all those engaged in computer-aided analysis and

design, and also to software developers in this field. Though the methods are

illustrated mainly through skeletal structures, however, some continuum models

have also been added to show the generality of the methods. The concepts presented

in this book are not only applicable to different types of structures, but can equally

be used for the analysis of other systems, such as hydraulic and electrical networks.

The author has been involved in various developments and applications of graph

theory in the last four decades. The present book contains part of this research,

suitable for various aspects of matrix structural analysis.
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The present book is intended to serve as a textbook for the optimal analysis of

large-scale structures utilising concepts of symmetry and regularity. Special atten-

tion is focused on efficient methods for eigensolution of matrices involved in static,

dynamic and stability analyses of symmetric and regular structures, or those general

structures containing such components. Powerful tools are also developed for

configuration processing, which is an important issue in the analysis and design

of space structures and finite element models.

The book is written in an attractive dynamic style that immediately goes to the

heart of each subtopic. The many worked out examples will help the reader to

appreciate the theory. The book is likely to be of interest to pure and applied

mathematicians who use and teach graph theory as well as to students and

researchers in structural engineering and architecture.

Vienna University of Technology

Austria

Professor Emeritus

Dr. Dr. h.c. Franz Ziegler
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Preface

Concepts from different fields of mathematics are combined to obtain powerful

tools and algorithms for efficient analysis of structures. Many structures are either

symmetric or regular, and some others can be made symmetric or regular by

addition or elimination of a small number of nodes and/or members. For these

structures, the matrices have canonical forms and the corresponding equations can

easily be solved using some concepts from matrix algebra, linear algebra, graph

theory, and group theory.

The methods and algorithms developed in this book make the analysis of large-

scale structures possible by reducing their computational time and storage, fulfilling

the requirements for a faster analysis of complex systems. The power of the

presented methods becomes more evident when analysis needs to be repeated

many times, as is the case with optimum design of structures utilizing different

meta-heuristic algorithms.

The author has been involved in various developments and applications of graph

theory in the last four decades. The present book contains part of this research,

suitable for matrix analysis of symmetric and regular structures.

Methods of this book can efficiently be used in computer-aided analysis and

design, and commercial software developments. Though these methods are mainly

illustrated through skeletal structures, some continuum models have also been

included to show the generality of the algorithms.

The present book is intended to serve as a textbook for the optimal analysis of

large-scale structures utilising concepts of symmetry and regularity. Special atten-

tion is focused on efficient methods for eigensolution of matrices involved in static,

dynamic and stability analyses of symmetric and regular structures, or those general

structures containing such components. Powerful tools are also developed for

configuration processing, which is an important issue in the analysis and design

of space structures and finite element models.

In Chap. 1, an introduction is provided to the definitions and basic concepts of

symmetry and regularity. Chapter 2 presents a background of the mathematics

extensively used in this book, consisting of definitions from graph theory and

algebraic graph theory. Standard definitions of graph products and their extensions
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http://dx.doi.org/10.1007/978-3-7091-1565-7_1
http://dx.doi.org/10.1007/978-3-7091-1565-7_2


are provided in Chap. 3 and utilised in the important topic of configuration processing

of structures. Basic definitions of canonical forms and their properties involved in

symmetric and regular structures are discussed in Chap. 4. The canonical forms are

applied to two important combinatorial optimisation problems consisting of nodal

ordering to improve the patterns of the structural matrices, and graph partitioning for

use in parallel computing in Chap. 5. Chapter 6 utilises graph products for similar

purposes as in the previous chapter. Canonical forms have important applications in

structural mechanics. These applications are discussed in Chap. 7. Graph products

make the efficient analysis of regular structures feasible, providing closed-form

solutions for this purpose as discussed in Chap. 8. Some structural models are not

regular but can be made regular by adding and/or deleting of some members.

Chapter 9 contains efficient methods for eigensolution and analysis of such structures

using direct methods. Iterative methods for similar purposes are presented in

Chap. 10. Group theory is known as the language of symmetry. Basic concepts and

applications of group theory are discussed in Chap. 11. Finally, the interrelation of

canonical forms, graph products and group theory and their applications to the

analysis of symmetric-regular structures are presented in Chap. 12.

I would like to take this opportunity to acknowledge a deep sense of gratitude to

a number of colleagues and friends who in different ways have helped in the

preparation of this book. Mr. J.C. de C. Henderson, formerly of Imperial College

of Science and Technology, first introduced me to the subject with most stimulating

discussions on various aspects of topology and combinatorial mathematics. Professor

F. Ziegler encouraged and supported me to write this book. My special thanks are due

toMrs. Silvia Schilgerius, the senior editor of the applied sciences of Springer, for her

constructive comments, editing and unfailing kindness in the course of the prepara-

tion of this book. My sincere appreciation is extended to our Springer colleagues

Mr. C. Bachem and Ms. G. Umamaheswari.

I would like to thank my former Ph.D. and M.Sc. students, Dr. H. Rahami,

Dr. H. Fazli, Dr. M. Nikbakht, Dr. K. Koohestani, Dr. M.A. Sayarinejad,

Dr. B. Salimbahrami, Dr. L. Shahryari, Dr. M. Nouri, Dr. H.A. Rahimi Bonderabady,

Mr. H. Mehanpour, Mr. F. Nemati and Mr. S. Najafian and Mr. S. Beheshti, for

permitting me to use our joint papers and for their help in various stages of writing

this book. I would like to thank the publishers who permitted some of our papers to

be utilised in the preparation of this book, consisting of Springer Verlag, John Wiley

and Sons, and Elsevier.

My warmest gratitude is due to my wife, Mrs. Leopoldine Kaveh, for her

continued support in the course of preparing this book and my son, Mr. Babak

Kaveh, for proof reading.

Every effort has been made to render the book error free. However, the author

would appreciate any remaining errors being brought to his attention through the

following email address: alikaveh@iust.ac.ir.

Tehran, Iran

January 2013
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Chapter 1

Introduction to Symmetry and Regularity

1.1 Symmetric Structures

1.1.1 Definition of Symmetry

Symmetry is not only one of the most fundamental concepts in science and

engineering, but it is also an ideal bridging idea crossing various branches of

sciences and different fields of engineering. In the past, symmetry has been

considered important for its aesthetic appeal; however, this century has witnessed

a great enhancement in its recognition as a basis of scientific and engineering

principle. At the same time, the meaning and utility of symmetry have greatly

expanded. It is not surprising that many valuable books are published in this field

and regular annual conferences are devoted to symmetry in various fields of science

and engineering. In the following, different definitions are provided for symmetry.

Symmetry is the classical Greek word ΣΥM-MΕΤΡIA, the same measure, due
proportion. Proportion means equal division, and ‘due’ implies that there is some

higher moral criterion. In Greek culture due proportion in everything was the ideal.

The word and usage have been taken over as a technical term into most European

languages.

Some other definitions and comments on symmetry are as follows:

To say that an object or a situation is symmetrical in space–time coordinate x, y,

z, t means that part of the object (etc.) has the same measure as another part.

Measure implies identity to within the limits of the measuring device employed.

‘Symmetry’ is one more fundamental scientific concept, which alongside with

the ‘harmony’ concept has a relation practically to all frames of the nature, science

and art.

The outstanding mathematician Hermann Weil highly evaluated the role of

symmetry in modern science:

Symmetry, as though is wide or narrow we did not perceive this word, there is the idea, with

the help of which a man attempted to explain and to create the order, beauty and perfection.

A. Kaveh, Optimal Analysis of Structures by Concepts of Symmetry and Regularity,
DOI 10.1007/978-3-7091-1565-7_1, © Springer-Verlag Wien 2013
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In a simple language, when we look in the mirror, we can see in it our reflection;

this is the example of the ‘mirror’ symmetry. The mirror reflection is the example of

the so-called ‘orthogonal’ transformation varying orientation.

In the most general case, ‘symmetry’ in mathematics is perceived as such

transformation of space (plane), at which each point of M passes in other point of

M0 regarding to some plane (or straight line) a, when the line segment of MM0 is
perpendicular to the plane (or to the straight line) a and is divided by it in halves.

The plane (or the straight line) a is called as the plane (or axis) of symmetry. The
plane of symmetry, symmetry axis and centre of symmetry are fundamental concepts

of symmetry. The plane of symmetry is called such plane, which divides the figure

into two mirror-equal parts arranged from each other as some subject and its mirror

reflection. It is easy to establish that the cube has nine planes of symmetry. The

symmetry axis L is called such straight line, around of which the symmetrical figure

can be turned around some times in such manner that each time the figure is

‘combined’ with itself in space. A number of such turns around of the symmetry

axis are called the order of the axis. For example, the equilateral triangle has the

symmetry axis L3, that is, there are three ways of turn of the triangle around the axis,
at which there is its ‘self-alignment’. It is clear that the square has the symmetry

axis L4 and the pentagon has L5. The cone has also the symmetry axis, and as

the number of turns of the cone around of the symmetry axis resulting in

‘self-alignment’ is infinitely, thus the cone has the symmetry axis of the type L1.
Finally, the symmetry centre C is called such singular point inside the figure that

any straight line drawn through the point C and on the equal distances from the

centre C meets identical points of the figure. ‘Ideal’ example of such figure is a

sphere, which the centre is its centre of symmetry.

The concept of ‘symmetry’ with reference to the physical laws is used widely in

modern physics. If the laws, establishing relations between values or determining a

change of these values in the course of time, do not vary at definite operations

(transformations), to which the system can be subjected, we say that these laws

have symmetry (or are invariant) concerning to the given transformations. For

example, the law of gravitation acts in any points of space, that is, it is invariant

regarding to carry of a system as the whole in space.

In the opinion of academician Vernadski, the outstanding Russian scientist, ‘the

symmetry encompasses properties of all fields of physics and chemistry’.

Still and Pythagoreans paid attention to the phenomenon of symmetry in the

live nature in connection with development of their harmony doctrine. It is

established that in nature two kinds of symmetry, the ‘mirror’ and ‘radial’ symme-

try, are most widespread. The butterfly, the leaf and the beetle have the ‘mirror’

symmetry, and often such kind of symmetry is called as the ‘leaf symmetry’ or the

‘bilateral symmetry’. The mushroom, the chamomile and the pine tree have

the ‘radial’ symmetry and often such kind of symmetry is called as the

‘chamomile–mushroom’ symmetry.

Still in the nineteenth century, the researches in this area resulted in the conclu-

sion that the symmetry of the natural forms largely depends on the influence of

the Earth gravitation forces, which have the symmetry of the cone in each point.
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In outcome, the following law was found, to which the forms of natural bodies are

subjected:

Everything that grows or moves in vertical direction, that is up or down regarding to the

Earth surface is subjected by the “radial” (“chamomile- mushroom”) symmetry. Everything

that grows and moves horizontally or sloping regarding to the Earth surface is subjected by

the “bilateral” symmetry, the “leaf symmetry”.

In modern science, the interest in symmetry and its diverse applications to

nature, science, art and engineering increased extremely, and the establishment in

1989 of the International Society for Interdisciplinary Study of Symmetry (ISIS-
Symmetry) became the beginning of considerable intellectual motion.

Symmetry has been categorised to help us study it. As we look for patterns, we

will also learn the language of symmetry. Here were a few definitions to start with

that were mainly quoted from an excellent book of Symmetry 2: Unifying Human
Understanding, edited by István Hargittai, 1994. Do not worry too much about

them now; they are here for reference and will make more sense later. A transfor-
mation is an operation which maps, or moves, a figure to a new position. We will be

looking at several transformations. An isometry is a transformation which preserves

lengths. That is, a figure is moved, turned and/or flipped, but it still has the same size

and shape. All transformations we will be working with are isometries.

An image has rotational symmetry if there is a centre point where an object is

turned a certain number of degrees and still looks the same. An image has transla-

tional symmetry if it can be divided by straight lines into a sequence of identical

figures. Translational symmetry results from moving a figure a certain distance in a

certain direction also called translating (moving) by a vector (length and direction).

1.1.2 History of the Developments of Symmetry in Structural
Engineering

In this section, the history of the developments of symmetry in structural engineer-

ing is presented that is mainly adopted from the excellent review paper of Kangwai

et al. [1].

A symmetric structure is a structure that is left unaltered, geometrically and

mechanically, after a symmetry operation is performed. These operations can be

reflection, rotation, improper rotation (a reflection in a plane followed by a rotation

about an axis perpendicular to that plane), translation or dilations. Only infinite

structures can be left unaltered by a translation or dilation, so the last two symmetry

operation will be dealt separately. Some repetitive structures are left unaltered by a

translation or dilation, apart from regions near the boundaries, and can be analysed

by symmetry techniques.

The development of methods to exploit the symmetry properties of a structure

does not have a clearly defined origin nor a continuous historical path. In common

with other areas of structural analysis, there has been an increase in work done in
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this area with the advent of the electronic computer and especially since the

development of finite element structural package.

The main advances in the analysis of symmetric structures have come through

two differing approaches. The first approach usually exploits only rotational sym-

metry of the structure with a method based on the discrete Fourier transformation,

which can be extended to translation and dilation symmetry. The second more

recent development is a method which can exploit any symmetry, based on the

application of representation theory to structural analysis.

The Fourier approach was first developed by Fortescue [2], for the analysis of

polyphase electrical circuits. He used a tensor analysis approach to find a new

symmetry-adapted coordinate system, which reduces the governing system of

equations into a number of independent subsystems of equations. Another electrical

engineer [3] presented Fortescue’s method of symmetric components in matrix

form and set up a transformation matrix (the Fourier matrix) which reduces the

governing matrix to a block-diagonalised form. A detailed description of symmetric

components in matrix form is given in [4].

The first application of discrete Fourier transformation methods to structural

analysis was made by Renton [5], who was concerned with the stability analysis of

symmetric frameworks. Further development has been carried out by several

authors. Hussey [6] has applied the discrete Fourier transformation method in

order to decouple the stiffness equations and investigate the buckling under cycli-

cally symmetric loading. Thomas [7] and Williams [8–10] have provided exact

methods for solving eigenvalue problems of rotationally periodic structures purely

from the stiffness equations of the repeating symmetry substructure. Thomas [7]

has analysed the dynamics of rotationally periodic structures to show that any

forced vibrations can be decomposed into independent rotating components.

References [5, 11] have shown how the Fourier approach can be extended to

repetitive structures.

Although the Fourier approach has been shown to be useful for rotational

symmetry and some other simple symmetry types, it is not easily extended to

structures with more complicated symmetry properties. To do this, the alternative

approach, based on group theory, was required.

Group theory provides a systematic way to describe the full symmetry of any

structure, and the extension to group representation theory allows for the maximum

utilisation of a structure’s symmetry properties. The theoretical basis of the abstract

group representation theory has been extensively developed [12–14]. It is widely

used in physics and chemistry [15–17] to simplify calculation concerning the

vibration of molecules or crystals. Reference [18] provides a detailed review of

the history and application of the group representation theory approach and also

shows that the Fourier method is simply a special case of group representation

theory, a point which is expanded in [1].

The first application of group representation theory to structural analysis was by

Zolkovic [19, 20], who formulated the so-called G-vector analysis based on group

representation theory and applied it to problems in static, vibration and stability.

The development and application of this method to finite element analysis is
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described in [21] and [22]. However, because G-vector analysis is based on the

characters of irreducible representations, rather than the representations them-

selves, it is not able to directly split subspaces corresponding to more-than-one-

dimensional irreducible representations. For two-dimensional representations, this

is usually easily rectified.

Bossavit [23–25] has considered using group representation theory to find

reduced linear systems of equations for boundary value problems. Bossavit has

also shown that the Fourier method is a special case of group representation theory.

References [26–28] show how the group theoretical techniques aid the understand-

ing of bifurcation problems with symmetry. References [29–33] apply group

representation theory to bifurcation problems in non-linear mechanics and consider

symmetry-breaking solutions. References [34–50] show applications of group

representation theory to eigenvalue problems associated with static and vibrations

of mechanical systems, in order to find reduced solutions.

The writer and colleagues have performed extensive amount of research on

symmetry using linear algebra, graph theory and group theory [51–54]. In early

stage, the symmetry of graphs was of interest to calculate the eigenvalues of the

adjacency and Laplacian matrices of such graphs. For this purpose, a decomposi-

tion followed by healing approach was used for canonical forms and the

corresponding graphs. Later this method was extended to eigensolution of symmet-

ric truss and frame structures [55–59]. The developed methods were applied to

efficient calculation of buckling load and finding the eigenfrequencies and

eigenmodes of these structures. More complex symmetries and regular structures

were studied [60–77]. The latter can be viewed as a generalised symmetry. Methods

were developed for eigensolution of the regular graph models. These methods were

utilised for nodal ordering and graph partitioning. The ideas were then extended to

skeletal structures for efficient stability analysis for vibration of such structures.

The tools used for the above-mentioned methods were based on linear algebra and

graph theory. Group theory was also used extensively in our research. Pure group

theory and combination group theory and linear algebra (in the form of canonical

forms) are applied to many problems in structural analysis [78–83]. Mixed group

and graph theory is found very attractive in simplifying the pure group theoretical

methods [84]. The forthcoming chapters of this book contain some of the most

useful theories and results of the above-mentioned researches.

1.2 Regular Structures

1.2.1 Repetitive and Cyclic Structures

A structure is said to be repetitive if it consists of a number of identical units which

are connected together in a regular form. Repetitive structures may be categorised

as consisting of a finite or infinite number of repetitive units. Repetitive trusses are
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periodically stiffened shells; are widely used in construction, aeronautic engineer-

ing and shipbuilding; and have repetitive geometric form.

The symmetry properties of the repetitive structures are systematically treated in

the symmetry group theory. The symmetric structure, accordingly, is defined as one

invariant to a symmetry operation. The basic spatial symmetry operations are

reflections, rotations, translations and dilatations.

In these methods the analysis of the entire structure is reduced to the analysis of

the repeating module under transformed loading and boundary conditions. Conse-

quently, both the design parameters and the analysis variables constitute a relatively

small set which facilitates the analysis process. Such method is especially reward-

ing when the analysis should be performed many times such as in optimisation and

non-linear analysis.

The main difficulty in developing repetitive structures lies in devising a way of

interconnecting the basic components comprising the structure.

1.2.2 Definition of Regularity

A structural model is called regular if it can be considered as the graph product of

two or three subgraphs. The most well-known graph products are Cartesian, strong

Cartesian, direct and lexicographic products. However, in order to be able to define

the model of practical space structures and different finite element models, other

graph products are defined which will be discussed in this book.

Graph products have been known to mathematician for a long time. However,

the application to structural mechanics has been made by Kaveh and Rahami

[60–64], and in the last decade extensively developed and applied to many

problems in combinatorial optimisation and eigensolution in structural mechanics.

Many structural models can be generated as the graph products of two or three

subgraphs known as their generators. The main types of graph products consist of

Cartesian, strong Cartesian, direct and lexicographic products. This simplifies many

complicated calculations, particularly in relation with eigensolution of regular

structures. In this book, a general method is presented for the factorisation of

these graph products, such that the eigenvalues of the entire graph is obtained as

the union of the eigenvalues of the weighted subgraphs defined here. The adjacency

and Laplacian for each graph product is separately studied. For graphs with missing

elements (cut-outs) or additional elements, the eigenvalues are calculated with the

additional use of the Rayleigh quotient approach. The main idea steams from the

rules recently developed by the authors for block diagonalisation of matrices. These

products have many applications in computational mechanics, such as ordering,

graph partitioning, dynamic analysis and stability analysis of structures. Finally

group theory as the language of symmetry is utilised in eigensolution and analysis

of structures. Then some concepts of graph theory and group theory together with

ideas from linear algebra are combined to provide powerful means for the analysis

of structures. Though the main structure discussed here will be skeletal structures,
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however, the ideas can easily be extended to finite element analysis of continuum

structures.

There is a close relationship between symmetry and regularity which will also be

exploited in subsequent chapters.

1.3 Examples of Symmetric and Regular Structural Models

In this section, some examples of symmetry and regularity are provided utilising

their configurations.

Example 1.1. A 2D model with two axes of symmetry is shown in Fig. 1.1.

Example 1.2. A 3D bridge model with a plane of symmetry is shown in Fig. 1.2.

Example 1.3. A 2D and 3D circular (circulant) models with many axes of symme-

try are shown in Fig. 1.3a, b, respectively.

Example 1.4. A 3D dome with 660 nodes, shown in Fig. 1.4a, is considered. This

model is called a regular model, with generators being shown in Fig. 1.4b.

Example 1.5. A 3D model with 750 nodes, shown in Fig. 1.5a, is considered. The

corresponding generators are illustrated in Fig. 1.5b.

Example 1.6. A regular 3D double-layer cylinder with 768 nodes, shown in

Fig. 1.6a, is considered. The corresponding generators are illustrated in Fig. 1.6b.

Fig. 1.1 A 2D truss model with two axis of symmetry

Fig. 1.2 A 3D bridge with a plane of symmetry
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Example 1.7. A hypercube with 750 nodes is considered, as shown in Fig. 1.7a.

The corresponding generators are illustrated in Fig. 1.7b.

Example 1.8. A double-layer grid with 352 nodes is considered, as shown in

Fig. 1.8a. The corresponding generators are illustrated in Fig. 1.8b.

Example 1.9. Some additional regular structures are shown in Fig. 1.9.

Fig. 1.3 (a) A 2D model with many axes of symmetry. (b) A 3D model with many axes of

symmetry (circular or circulant models)

a b

Fig. 1.4 A 3D regular dome and its generators. (a) A dome-shaped model. (b) Generators of the

dome

a b

Fig. 1.5 A regular 3D torus-shaped model and the corresponding generators. (a) A torus-shaped

model. (b) Generators of the torus
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a bFig. 1.8 A regular model in

the form of a double-layer

grid and its generators.

(a) A double-layer grid.

(b) Generators of the grid

a b

c d

Fig. 1.9 Different regular

structures. (a) The model of a

cylindrical model. (b) Model

of a barrel vault. (c) Model of

a double-layer tower. (d)

Model of a torus-shaped

structure

a bFig. 1.7 A regular 3D

hypercube and its generators.

(a) A double-layer cylinder.

(b) Generators of the model

a bFig. 1.6 A regular 3D

double-layer cylinder and its

generators. (a) A double-layer

cylinder. (b) Generators of

the model
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Example 1.10. A non-regular graph is considered as shown in Fig. 1.10a. This

structure can be considered as a regular model as shown in Fig. 1.10b and an

additional model as illustrated in Fig. 1.10c.

1.4 Optimal Analysis of Structures

An analysis is called optimal if the matrices involved in the analysis are sparse, well

structured and well conditioned. Methods for the formation of such matrices are

developed in a book by the author, entitled Optimal Structural Analysis, Kaveh
[84]. Sparsity can be provided by selection of localised self-compatible and self-

equilibrating systems for the stiffness and flexibility matrices of structures,

a

b

c

Fig. 1.10 A non-regular model decomposed into two parts. (a) A non-regular truss. (b) The

regular part of the structure. (c) The excessive members being highlighted
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respectively. The matrices can be made well structured by ordering the considered

variables of the structures (nodes and cycles of the structural models). Conditioning

can be improved by selecting suitable kinematic and static bases for stiffness and

flexibility methods, respectively. In the above methods, the entire models have been

used for the solution of the structure.

In this book, methods are developed for configuration processing, eigensolution

and analysis of structures utilising some concepts of symmetry and regularity. The

use of these concepts permits the analysis of these structures to be performed

considering only small parts of the structures, and in some cases, matrices of

much smaller dimensions are utilised to perform the eigensolution of matrices of

very large dimensions. However, this does not mean that only symmetric and

regular structures can be dealt with by the methods of the present book. Those

structures which can be obtained by addition or removal of members and/or nodes

can also be efficiently analysed.

Graph products often correspond to special block matrices, the so-called canoni-

cal forms. On the other hand canonical forms are often encountered in structural

mechanics because of the repeated nature of some structural models. This is why

the titles of chapters of the present book are selected in terms of canonical forms
and graph products.
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Chapter 2

Introduction to Graph Theory and Algebraic

Graph Theory

2.1 Introduction

Graph theory is a branch of mathematics started by Euler [1] as early as

1736. It took a hundred years before the second important contribution of Kirchhoff

[2] had been made for the analysis of electrical networks. Cayley [3] and Sylvester

[4] discovered several properties of special types of graphs known as trees.
Poincaré [5] defined in principle what is known nowadays as the incidence matrix
of a graph. It took another century before the first book was published by König [6].

After the Second World War, further books appeared on graph theory (Ore [7],

Behzad and Chartrand [8], Tutte [9], Berge [10], Harary [11], Gould [12], Wilson

[13], Wilson and Watkins [14] and West [15], among many others).

Algebraic graph theory can be viewed as an extension to graph theory in

which algebraic methods are applied to problems about graphs (Biggs [16]).

Spectral graph theory, as the main branch of algebraic graph theory, is the study

of properties of graphs in relationship to the characteristic polynomial, eigenvalues

and eigenvectors of matrices associated with graphs, such as its adjacency matrix or
Laplacian matrix. Spectral graph theory emerged in the 1950s and 1960s. The 1980

monograph Spectra of Graphs [17] by Cvetković, Doob and Sachs has summarised

nearly all research to date in the area. In 1988 it was updated by the survey Recent
Results in the Theory of Graph Spectra [18].

Graph theory has found many applications in engineering and science, such as

chemical, electrical, civil and mechanical engineering, architecture, management

and control, communication, operational research, sparse matrix technology, com-

binatorial optimisation and computer science. Therefore, many books have been

published on applied graph theory such as those by Bondy and Murty [19], Chen

[20], Thulasiraman and Swamy [21], Beineke and Wilson [22], Mayeda [23],

Christofides [24], Gondran and Minoux [25], Deo [26], Cooke et al. [27] and

Kaveh [28, 29]. In recent years, due to the extension of the concepts and

applications of the graph theory, many journals such as Journal of Graph Theory,
Journal of Combinatorial Theory A & B, Discrete and Applied Mathematics, SIAM

A. Kaveh, Optimal Analysis of Structures by Concepts of Symmetry and Regularity,
DOI 10.1007/978-3-7091-1565-7_2, © Springer-Verlag Wien 2013
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Journal of Discrete Mathematics, European Journal of Combinatorics and Graphs
and Combinatorics are being published to cover the advances made in this field.

In this chapter basic definitions and concepts of graph theory and algebraic

graph theory are briefly presented; however, for proofs and details the reader

may refer to textbooks on this subject, Refs. [11, 15, 28, 29].

2.2 Basic Concepts and Definitions of Graph Theory

There are many physical systems whose performance depends not only on the

characteristics of their components but also on their relative location. As an

example, in a structure, if the properties of a member are altered, the overall

behaviour of the structure will be changed. This indicates that the performance

of a structure depends on the characteristics of its members. On the other hand,

if the location of a member is changed, the properties of the structure will again

be different. Therefore, the connectivity (topology) of the structure influences the

performance of the entire structure. Hence, it is important to represent a system so

that its topology can clearly be understood. The graph model of a system provides

a powerful means for this purpose.

In this section, basic concepts and definitions of graph theory are presented.

Since some of the readers may be unfamiliar with the theory of graphs, simple

examples are included to make it easier to understand the main concepts.

Some of the uses of the theory of graphs in the context of civil engineering are as

follows. A graph can be a model of a structure, a hydraulic network, a traffic

network, a transportation system, a construction system or a resource allocation

system. These are only some of such models, and the applications of graph theory

are much extensive. In this book, the theory of graphs is used as the model of a

skeletal structure, and it is employed also as a means for transforming the connec-

tivity properties of finite element meshes to those of graphs. This section will also

enable the readers to develop their own ideas and methods in the light of the

principles of graph theory. For further definitions and proofs, the reader may refer

to Harary [11] and West [15].

2.2.1 Definition of a Graph

A graph S consists of a non-empty set N(S) of elements called nodes (vertices or
points) and a set M(S) of elements called members (edges or arcs) together with a

relation of incidence which associates with each member a pair of nodes (not

necessarily distinct), called its ends.
Two or more members joining the same pair of nodes are known as multiple

members, and a member joining a node to itself is called a loop. A graph with no

loops and multiple members is called a simple graph. If N(S) and M(S) are
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countable sets, then the corresponding graph S is finite. In this book only finite

graphs are needed, which are referred to as graphs.

The above definitions correspond to abstract graphs; however, a graph may be

visualised as a set of points connected by line segments in Euclidean space;

the nodes of a graph are identified with points, and its members are identified

as line segments without their end points. Such a configuration is known as a

topological graph. These definitions are illustrated in Fig. 2.1.

2.2.2 Adjacency and Incidence

Two nodes of a graph are called adjacent if these nodes are the end nodes of a

member. A member is called incident with a node if this node is an end node of

the member. Two members are called incident if they have a common end node.

The degree (valency) of a node ni of a graph, denoted by deg (ni), is the number

of members incident with that node. Since each member has two end nodes,

the sum of node degrees of a graph is twice the number of its members.

2.2.3 Graph Operations

A subgraph Si of S is a graph for which N(Si) � N(S) and M(Si) � M(S),

and each member of Si has the same ends as in S.

The union of subgraphs S1, S2, . . . , Sk of S, denoted by Sk ¼ [k
i¼1

Si ¼ S1[

S2 [ . . . [ Sk, is a subgraph of S with N Sk
� � ¼ [k

i¼1
N Sið Þ and M Sk

� � ¼ [k
i¼1

M Sið Þ.
The intersection of two subgraphs Si and Sj is similarly defined using inter-
sections of node sets and member sets of the two subgraphs. The ring sum of

two subgraphs Si � Sj is a subgraph which contains the nodes and members of

Si and Sj except those elements common to Si and Sj. These definitions are

illustrated in Fig. 2.2.

a bFig. 2.1 Simple and

non-simple graphs.

(a) A simple graph.

(b) A graph with a loop

and multiple members
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There are other important graph operations consisting of different graph products

which will be described in detail in Chap. 3 of this book. These products and their

applications in structural mechanics are the main concern of the present book.

Two graphs are called isomorphic if they have the same number of nodes and

the adjacency is preserved. As an example three isomorphic graphs are shown

in Fig. 2.3.

2.2.4 Walks, Trails and Paths

A walk Pk of S is a finite sequence Pk ¼ {n0, m1, n1, . . . , mp, np} whose terms

are alternately nodes ni and members mi of S for 1 � i � p, and ni�1 and ni are

the two ends of mi. A trail in S is a walk in which no member of S appears

more than once. A path is a trail in which no node appears more than once.

The length of a path Pi, denoted by L(Pi), is taken as the number of its members.

Pi is called the shortest path between the two nodes n0 and np, if for any other

path Pj between these nodes L(Pi) � L(Pj). The distance between two nodes

of a graph is defined as the number of the members of a shortest path between

these nodes.

Two nodes ni and nj are said to be connected in S if there exists a path between

these nodes. A graph S is called connected if all pairs of its nodes are connected.

A component of a graph S is a maximal connected subgraph, that is, it is not a

subgraph of any other connected subgraph of S.

a b c

d e f

Fig. 2.2 A graph, two of

its subgraphs, their union,

intersection and ring sum.

(a) S. (b) Si. (c) Sj. (d) Si [ Sj.
(e) Si \ Sj. (f) Si � Sj

Fig. 2.3 Three isomorphic

graphs
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2.2.5 Cycles and Cutsets

A cycle is a path (n0, m1, n1, . . . , mp, np) for which n0 ¼ np and p � 1; that is,

a cycle is a closed path. Similarly a closed trail (hinged cycle) and a closed walk
can be defined. A cycle of a graph and a hinged cycle are shown in Fig. 2.4a, b,

respectively.

A disconnecting set of a connected graph S is a set of members whose

removal disconnects S. As an example the removal of bold members in Fig. 2.5a

will result in three disconnected subgraphs. A cutset is defined as a disconnecting

set, no proper subset of which a disconnecting set. Obviously the removal of the

members of a cutset will separate the remainder of the graph into two disjoint

components S1 and S2, which are linked by each member of the cutset, Fig. 2.5b.

Notice that no proper subsets of a cutset have this property. A link is a member

which has its ends in S1 and S2. If one of S1 or S2 consists of a single node,

the cutset is called a co-cycle (Fig. 2.5c).

2.2.6 Trees, Spanning Trees and Shortest Route Trees

A tree T of S is a connected subgraph of S which contains no cycle. A set of trees

of S forms a forest. Obviously a forest with k trees contains N(S) � k members.

If a tree contains all the nodes of S, it is called a spanning tree of S. Henceforth,

for simplicity it will be referred to as a tree. The complement of T in S is called

a cotree, denoted by T*. The members of T are known as branches and those

of T* are called chords.
A shortest route tree (SRT) rooted at a specified node n0 of S is a tree for

which the distance between every node nj of T and n0 is minimum. An SRT of a

graph can be generated by the following simple algorithm:

Label the selected root n0 as ‘0’ and the adjacent nodes as ‘1’. Record

the members incident to ‘0’ as tree members. Repeat the process of labelling with

a bFig. 2.4 A cycle and

a hinged cycle of S.

(a) A cycle of S.

(b) A hinged cycle of S

a b cFig. 2.5 A disconnecting set,

a cutset and a co-cycle of S.

(a) A disconnecting set.

(b) A cutset. (c) A co-cycle
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‘2’ the unnumbered ends of all the members incident with nodes labelled as ‘1’,

again recording the tree members. This process terminates when each node of

S is labelled and all the tree members are recorded. This algorithm has many

applications in engineering, and it is also called a breadth-first-search algorithm.

The above definitions are illustrated in Fig. 2.6.

It is easy to prove that for a tree T

M Tð Þ ¼ N Tð Þ � 1 (2.1)

where M(T) and N(T) are the numbers of members and nodes of T, respectively.

For a connected graph S, the number of chords is given by

M T�ð Þ ¼ M Sð Þ �M Tð Þ: (2.2)

Since N(T) ¼ N(S), hence,

MðT�Þ ¼ MðSÞ � NðSÞ þ 1; (2.3)

where M(S) and N(S) are the numbers of members and nodes of S, respectively.

Notice that for a set and its cardinality, the same notation is used and the difference

should be obvious from the context.

2.2.7 Directed Graphs

A directed graph or digraph D is a set of nodes N(D), a set of members M(D),

together with a relationship which associates a pair of ordered nodes with each

member. The first node of an ordered pair is called the start node, and the

second is known as the end node of a directed member. We say a member is

directed from its start node to its end node. Naturally the underlying graph a

directed graph D is a graph S with the members of D being treated as unordered

pairs. A directed graph D and its underlying graphs S are shown in Fig. 2.7.

a b c

d e f

Fig. 2.6 Different subgraphs

in relation with tree of S.

(a) A graph S. (b) A tree

T of S. (c) A spanning tree

T0 of S. (d) An SRT rooted

from n0. (e) The cotree of T
0.

(f) A forest with two trees
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2.2.8 Different Types of Graphs

In order to simplify the study of properties of graphs, different types of graphs

have been defined. Some important and relevant to our study are as follows:

A null graph is a graph which contains no members, Fig. 2.8a. Thus, Nk is a

graph containing k isolated nodes.

A path graph is a graph consisting of a single path, Fig. 2.8b. Hence, Pk is a

path with k nodes and (k�1) members.

A cycle graph is a graph consisting of a single cycle, Fig. 2.8c. Therefore, Ck

is a polygon with k members.

A wheel graph Wk is defined as the union of a star graph with k�1 members

and a cycle graph Ck�1, connected as shown in Fig. 2.9, for k ¼ 6. Alternatively

a wheel graph Wk can be obtained from the cycle graph Ck�1 by adding a node O

and members (spokes) joining O to each nodes of Ck�1.
A complete graph is a graph in which every two distinct nodes are connected

by exactly one member, Fig. 2.10a. A complete graph with N nodes is denoted by KN.

It can easily be proved that a complete graph with N nodes has N(N � 1)/2 members.

a bFig. 2.7 A directed graph

and its underlying graph.

(a) A directed graph D.

(b) The underlying graph of D

a b cFig. 2.8 Three different

types of graphs. (a) A null

graph N6. (b) A path graph P4.
(c) A cycle graph C5

a bFig. 2.9 Two different types

of graphs. (a) A wheel graph

W7. (b) A star graph

a b cFig. 2.10 Different types of

graphs. (a) A complete graph

K6. (b) A bipartite graph with

r ¼ 3 and s ¼ 4. (c) A

complete bipartite graph K3,4
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A graph is called bipartite if the corresponding node set can be split into two

sets N1 and N2 in such a way that each member of S joins a node of N1 to a node

of N2. This graph is denoted by B(S) ¼ (N1, M, N2), Fig. 2.10b. A complete
bipartite graph is a bipartite graph in which each node N1 is joined to each node

of N2 by exactly one member. If the numbers of nodes in N1 and N2 are denoted by

r and s, respectively, then a complete bipartite graph is denoted by Kr,s, Fig. 2.10c.

A graph S is called regular if all of its nodes have the same degree. If this

degree is k, then S is k-regular graph. As an example, a triangle graph is 2-regular

and a cubic graph is 3-regular.

2.3 Vector Spaces Associated with a Graph

A vector space can be associated with a graph by defining a vector, the field and

the binary operations as follows:

Any subset of the M(S) members of a graph S can be represented by a vector x

whose M(S) components are elements of the field of integer modulo 2, where

component xi ¼ 1 when the ith member is an element of the subset, and xi ¼ 0

otherwise. The sum of two subset vectors x and y, a vector z with entries defined

by zi ¼ xi þ yi, represents the symmetric difference of the original subsets. The

scalar product of x and y defined by Σxiyi is 0 or 1 according as the original

subsets have an even or an odd number of members in common. Although this

vector space can be constructed over an arbitrary field, for simplicity the field of

integer modulo 2 is considered, in which 1 þ 1 ¼ 0.

Two important subspaces of the above vector space of a graph S are the cycle

subspace and cutset subspace, known as cycle space and cutset space of S.

2.3.1 Cycle Space

Let a cycle set of members of a graph be defined as a set of members which form

a cycle or form several cycles having no common member, but perhaps common

nodes. The null set is also defined as a cycle set. A vector representing a cycle

set is called a cycle set vector. It can be shown that the sum of two cycle set

vectors of a graph is also a cycle set vector. Thus, the cycle set vectors of a

graph form a vector space over the field of integer modulo 2. The dimension of

a cycle space is given by

nullity Sð Þ ¼ ν Sð Þ ¼ b1 Sð Þ ¼ M Sð Þ � N Sð Þ þ b0 Sð Þ; (2.4)

where b1(S) and b0(S) are the first and zero Betti numbers of S, respectively.

As an example, the nullity of the graph S in Fig. 2.11a is ν(S) ¼ 10 � 8 þ 1 ¼ 3.
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2.3.2 Cutset Space

Consider a cutset vector similar to that of a cycle vector. Let the null set be

also defined as a cutset. It can be shown that the sum of two cutset vectors of

a graph is also a cutset vector. Therefore, the cutset vectors of a graph form a

vector space, the dimension of which is given by

rank Sð Þ ¼ ρ Sð Þ ¼ N Sð Þ � b0 Sð Þ: (2.5)

As an example, the rank of S in Fig. 2.11a is ρ(S) ¼ 8 � 1 ¼ 7.

2.3.3 Cycle Bases Matrices

The cycle–member incidence matrix �C of a graph S has a row for each cycle

or hinged cycle and a column for each member. An entry cij of �C is 1 if cycle

Ci contains member mj, and it is 0 otherwise. In contrast to the node adjacency

and node–member incidence matrix, the cycle–member incidence matrix does not

determine a graph up to isomorphism; that is, two totally different graphs may

have the same cycle–member incidence matrix.

For a graph S there exist 2b1 Sð Þ � 1 cycles or hinged cycles. Thus, �C is a

(2b1 Sð Þ � 1) � M matrix. However, one does not need all the cycles of S, and the

elements of a cycle basis are sufficient. For a cycle basis, a cycle–member incidence

matrix becomes a b1(S) � M matrix, denoted by C, known as the cycle basis
incidence matrix of S. As an example, matrix C for the graph shown in Fig. 2.11,

for the following cycle basis,

C1 ¼ m1; m4; m5; m8ð Þ; C2 ¼ m2; m8; m6; m9ð Þ; C3 ¼ m3; m9; m7; m10ð Þ

is given by

a b cFig. 2.11 A graph S with a

cycle basis and a cutset basis.

(a) A graph model S.

(b) A cycle basis. (c) A cutest

basis
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C ¼
C1

C2

C3

1 0 0 1 1 0 0 1 0 0

0 1 0 0 0 1 0 1 1 0

0 0 1 0 0 0 1 0 1 1

2
4

3
5 (2.6)

The cycle adjacency matrix D is a b1(S) � b1(S) matrix, each entry dij of

which is 1 if Ci and Cj have at least one member in common, and it is 0 otherwise.

This matrix is related to the cycle–member incidence matrix by the following

relationship:

CCt ¼ DþW; (2.7)

where W is diagonal matrix with wii being the length of the ith cycle and its

trace being equal to the total length of the cycles of the basis.

2.3.4 Cutset Bases Matrices

The cutset–member incidence matrix �C
�
for a graph S has a row for each cutset

of S and a column for eachmember. An entry�c�ij of �C
�
is 1 if cutsetC�i containsmember

mj, and it is 0 otherwise. This matrix, like �C, does not determine a graph completely.

Independent rows of �C
�

for a cutset basis, denoted by C*, form a matrix

known as a cutset basis incidence matrix, which is a η(S) � M matrix, η(S) being
the rank of graph S. As an example, C* for the cutset of Fig. 2.11 with members

labelled as in Fig. 2.11a is given below.

C� ¼

0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 1

0 1 0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 0 1 1

0 0 0 1 0 0 0 1 1 1

1 0 0 0 0 0 0 1 1 1

0 0 0 0 1 0 0 1 1 1

2
666666664

3
777777775
: (2.8)

The cutset adjacency matrix D* is a η(S) � η(S) matrix defined analogously

to cycle adjacency matrix D.

2.4 Graphs Associated with Matrices

Through these matrices, many concepts from matrix algebra can be related to

those of graph theory. Three types of matrices and the corresponding graphs are

shown in Fig. 2.12. The sign * is used to indicate a non-zero number. M1 is a
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nonsymmetric square matrix, and the corresponding graph is a directed graph with

N nodes, where N is the dimension of the matrix. M2 is a symmetric square matrix,

and the corresponding graph is a nondirected graph with N nodes, where N is

the dimension of the matrix. M3 is an arbitrary rectangular matrix of dimension

M � N, and the corresponding graph is a bipartite graph KM,N. In fact M1, M2

and M3 are the node adjacency matrices of these graphs.

2.5 Planar Graphs: Euler’s Polyhedron Formula

Graph theory and properties of planar graphs were first discovered by Euler in 1736.

After 190 years Kuratowski found a criterion for a graph to be planar. Whitney

developed some important properties of embedding graphs in the plane. MacLane

Matrix Graph

=

***

***

**

**

M1

0

0

00

00

n4

n3

n2

n1

n4n3n2n1

=

****

***

****

***

M2
0

0

n4

n3

n2

n1

n4n3n2n1

=

00

0

00

n3

n2

n1

n4n3n2n1

**

***

**

M3

''''

Fig. 2.12 Matrices and the associated graphs
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expressed the planarity of a graph in terms of its cycle basis. In this section, some

of these criteria are studied, and Euler’s polyhedron formula is proved.

2.5.1 Planar Graphs

A graph S is called planar if it can be drawn (embedded) in the plane in such a

way that no two members cross each other. As an example, a complete graph

K4 shown in Fig. 2.13 is planar since it can be drawn in the plane as shown.

On the other hand K5, Fig. 2.14, is not planar, since every drawing of K5

contains at least one crossing.

Similarly K3,3 is not planar.

A planar graph S drawn in the plane divides the plane into regions, all of

which are bounded and only one is unbounded. If S is drawn on a sphere, all the

regions will be bounded; however, the number of regions will not change. The

cycle bounding a region is called a regional cycle. Obviously the sum of the lengths

of regional cycles is twice the number of members of the graph.

Theorem. (Euler [1]): Let S be a connected planar graph. Then,

R Sð Þ �M Sð Þ þ N Sð Þ ¼ 2: (2.9)

Proof. For a proof, S is re-formed in two stages. In the first stage a spanning tree T

of S is considered in the plane for which R(T) � M(T) þ N(T) ¼ 2. This is true

a bFig. 2.13 K4 and two of

its drawings. (a) A complete

graph K4. (b) Planar drawings

of K4

a bFig. 2.14 K5 and two of its

drawings. (a) A complete

graph K5. (b) Two drawings

of K5 with one crossing
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since R(T) ¼ 1 and M(T) ¼ N(T) � 1. In the second stage chords are added one

at a time. Addition of a chord increases the number of members and regions each

by unity, leaving the left-hand side of Eq. 2.9 unchanged during the entire process,

and the result follows.

2.6 Definitions from Algebraic Graph Theory

Spectral graph theory, as a branch of algebraic graph theory, is the study of

properties of a graph in relationship to the characteristic polynomial, eigenvalues

and eigenvectors of matrices associated to the graph, such as its adjacency

matrix or Laplacian matrix. An undirected graph has a symmetric adjacency

matrix and therefore has real eigenvalues (the multiset of which is called

the graph’s spectrum) and a complete set of orthonormal eigenvectors. While

the adjacency matrix depends on the vertex labelling, its spectrum is a graph

invariant.

2.6.1 Incidence, Adjacency and Laplacian Matrices of a Graph

A directed graph S consists of node set N(S) and member set M(S), where a

member, or directed member, is an ordered pair of distinct nodes. An undirected

graph can be equally viewed as a directed graph where (ni,nj) is a member whenever

(nj,ni) is a member.

The incidence matrix B ¼ bij
� �

n�m of a graph S, whose nodes are labelled as

1,2, . . . , n, and members as 1, 2, 3, . . . , m, is defined as

bij ¼
1 if node ni is incident with member mj

0 otherwise

(
(2.10)

The adjacency matrix A ¼ aij
� �

n�n of a graph S, whose nodes are labelled as

1,2, . . . , n, is defined as

aij ¼
1 if node ni is adjacent to nj

0 otherwise

(
(2.11)

The degree matrix D ¼ dij
� �

n�n is a diagonal matrix containing node degrees.

dij is equal to the degree of the ith node.

The Laplacian matrix L ¼ lij
� �

n�n is defined as

2.6 Definitions from Algebraic Graph Theory 27



L ¼ D� A: (2.12)

Therefore, the entries of L are as follows:

lij ¼
�1 node ni is adjacent to nj
deg nið Þ if i ¼ j

0 otherwise:

8><
>: (2.13)

As an example, the incidence, adjacency, degree and Laplacian matrices of

the graph S shown in Fig. 2.15 are as follows:

2.6.2 Incidence and Adjacency Matrices of a Directed Graph

The incidence matrix B ¼ bij
� �

n�m of a directed graph S, whose nodes are labelled

as 1,2, . . . , n, and members as 1, 2, 3, . . . , m, is defined as

bij ¼
þ1 if node ni is connected to nj and ni is the start node of member mj

�1 if node ni is connected to nj and ni is the end node of member mj

0 otherwise

8><
>:

(2.14)
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Fig. 2.15 A graph S
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The adjacency matrix A ¼ aij
� �

n�n of a directed graph D, whose nodes are

labelled as 1,2, . . ., n, is defined as

aij ¼
þ1 if node ni is connected to nj and directed from ni to nj

�1 if node ni is connected to nj and directed from nj to ni

0 otherwise

8><
>: (2.15)

As an example, the incidence and adjacency matrices of the directed graph

of Fig. 2.16 are shown in the following:

2.6.3 Adjacency and Laplacian Matrices of a Weighted Graph

Consider a graph with weights assigned to its nodes and edges. The nodal weight

vector is

NW ¼ nwi½ 	; i ¼ 1; 2; . . . ;N; (2.16)

and edge weight vector is defined as follows:

EW ¼ ewij

� �
; i; jð Þ ¼ 1; ; . . . ;N; (2.17)

The adjacency matrix A ¼ aij
� �

n�n of a weighted graph S, containing n nodes,

is defined as follows:

aij ¼ ewij if ni is adjacent to nj
0 otherwise

�
(2.18)

For a non-weighted graph ewij should be replaced by unity.
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The entries of the weighted Laplacian matrix L of a weighted graph is defined as

L ¼ D� A; (2.19)

The entries of L are as follows:

lij ¼

�ewij ¼ �ewji if nodes ni and nj are adjacent

ewi ¼
XDi

j¼1
ewij for i ¼ j

0 otherwise

8>>>><
>>>>:

(2.20)

For non-weighted graph this reduces to Eq. 2.13.

2.6.4 Eigenvalues and Eigenvectors of an Adjacency Matrix

Consider the eigenproblem as

Aϕi ¼ μiϕi (2.21)

where μi is the eigenvalue and ϕi is the corresponding eigenvector. Since A is a

symmetric real matrix, all its eigenvalues are real and can be expressed as

μ1 � μ2 � . . . � μn�1 � μn (2.22)

The largest eigenvalue μn is the single root of the characteristic equation of A.

The corresponding eigenvectorϕn is the only eigenvector with positive entries. This

vector has attractive properties employed in geography and structural mechanics.

The characteristic polynomial of a matrix A is a polynomial

ϕ A; λð Þ ¼ det λI� Að Þ: (2.23)

Consider ϕ(A,λ) as the characteristic polynomial of A. The spectrum of a

matrix is the list of its eigenvalues together with their multiplicities. The spectrum

of a graph S is the spectrum of its adjacency matrix A. For two isomorphic graphs S

and S0, ϕ(S, λ) ¼ ϕ(S0, λ). However, two graphs may have the same spectrum and

yet be non-isomorphic. Information such as valencies of nodes or planarity cannot

be determined by the spectrum.

The following properties can easily be proved:

1. The number of walks with length k from ni to nj in a graph S is equal to

(i,j)th entry of Ak. This can be proved by induction on k.

2. The trace of a square matrix A is the sum of its diagonal entries, denoted by

traceA. The number of closed walks with length k in a graph is equal to trace Ak.

Thus, for a graph with Mmembers and T triangles, trace A ¼ 0, trace A2 ¼ 2M,
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and trace A3 ¼ 6T. Since the trace of a square matrix is also equal to the

sum of its eigenvalues, therefore, the eigenvalues of Ak are the kth power of

the eigenvalues of A. Hence, trace Ak is determined by the spectrum of A, that

is, the spectrum of a graph S determines the number of nodes, members and

triangles in S.

3. The complement �S of a graph S has the same node set as S, where nodes

ni and nj are adjacent in �S if and only if they are not adjacent in S. Let �S be the

complement of S. Then the adjacency matrix of the complement S is given by

A �Sð Þ ¼ J� I� A Sð Þ; (2.24)

where J is all-one matrix and I is a unit matrix.

2.6.5 Eigenvalues and Eigenvectors of a Laplacian Matrix

Consider the following eigenproblem:

Lvi ¼ λivi; (2.25)

where λi is the eigenvalue and vi is the corresponding eigenvector. As for A,

all the eigenvalues of L are real. It can be shown that matrix L is a positive

semi-definite matrix with

0 ¼ λ1 � λ2 � . . . � λn: (2.26)

And

vt1 ¼ 1; 1; . . . ; 1f g: (2.27)

The second eigenvalue λ2 and the corresponding eigenvector v2 have attractive

properties. Fiedler [30] has investigated various properties of λ2. This eigenvalue
is also known as the algebraic connectivity of a graph.

2.6.6 Additional Properties of a Laplacian Matrix

Consider a graph S with an arbitrary orientation. The Laplacian of S is a matrix

L(S) ¼ BBt, where B is the member–node incidence matrix. Naturally the

Laplacian does not depend on the orientation considered for the graph. The

following results can be proved:
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The rank of the Laplacian matrixL(S) of S is equal to the rank ofL(S) ¼ N–b0(S).

1. If S is a graph on N nodes and 2 � i � N, then λi �Sð Þ ¼ N� λN�iþ2 Sð Þ, where �S
is the complement of S.

Proof. It can be observed that

L Sð Þ þ L �Sð Þ ¼ NI� J: (2.28)

The vector I ¼ {1 1 1 . . . 1}t is an eigenvector of L(S) and L �Sð Þ with the

corresponding eigenvector 0. Let x be another eigenvector of L(S) with eigenvalue

λ. One can assume that x is orthogonal to I. Then Jx ¼ 0, and

Nx ¼ NI� Jð Þx ¼ L SÞxþ L S
� �

x ¼ λxþ L S
� �

x:
�

(2.29)

Therefore, L �Sð Þ ¼ N� λð Þx, and the proof follows.

2. Let S be a graph on N nodes with Laplacian L. Then for any vector x, we have

xtLx ¼
X

i;jð Þ2M Sð Þ
xi � xj
� �2

(2.30)

Proof. This follows from the observation that

xtLx ¼ xtBBtx ¼ Btxð Þt Btxð Þ; (2.31)

and that if (i,j) ∈ M(S), then the entry of Btx corresponding to (i,j) is 
 (xi – xj).

2.7 Matrix Representation of a Graph in Computer

A graph can be represented in various forms. Some of these representations are

of theoretical importance; others are useful from the programming point of view

when applied to realistic problems. In this section, six different representations

of a graph are described.

Two important matrices, namely, incidence matrix B and the adjacency matrices

A defined in Sect. 2.6.3, can be used for representing a graph to a computer.

However, the storage requirements for these matrices are high and proportional

to N � N and M � (N � 1), respectively. In fact large numbers of unnecessary

zeros are stored in these matrices. In practice one can use different approaches

to reduce the storage required, some of which are described in the following.

Member List: This type of representation is a common approach in structural

mechanics. A member list consists of two rows (or columns) and M columns
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(or rows). Each column (or row) contains the labels of the two end nodes of each

member, in which members are arranged sequentially. For example, the member

list of S in Fig. 2.15 is

m1 m2 m3 m4 m5 m6 m7

ML ¼ ni

nj

1 2 1 2 2 3 4

2 3 4 4 5 5 5

� �
:

(2.32)

It should be noted that a member list can also represent orientations on

members. The storage required for this representation is 2 � M. Some engineers

prefer to add a third row containing the member’s labels, for easy addressing.

In this case, the storage is increased to 3 � M.

A different way of preparing a member list is to use a vector containing

the end nodes of members sequentially; for example, for the previous example,

this vector becomes

1; 2; 2; 3; 1; 4; 2; 4; 2; 5; 3; 5; 4; 5ð Þ: (2.33)

This is a compact description of a graph; however, it is impractical because

of the extra search required for its use in various algorithms.

Adjacency List: This list consists of N rows and D columns, where D is the

maximum degree of the nodes of S. The ith row contains the labels of the nodes

adjacent to node i of S. For the graph S shown in Fig. 2.15, the adjacency list is

AL ¼

n1
n2
n3
n4
n5

2 4

1 3 4 5

2 5

1 2 5

2 3 4

2
66664

3
77775
N�D

(2.34)

The storage needed for an adjacency list is N � D.

Compact Adjacency List: In this list the rows of AL are continually arranged in

a row vector R, and an additional vector of pointers P is considered. For example,

the compact adjacency list of Fig. 2.15 can be written as

R ¼ 2; 4; 1; 3; 4; 5; 2; 5; 1; 2; 5; 2; 3; 4ð Þ;
P ¼ 1; 3; 7; 9; 12; 15ð Þ: ð2:35Þ

P is a vector (p1, p2, p3, . . .) which helps to list the nodes adjacent to each

node. For node ni one should start reading R at entry pi and finish at pi+1 � 1.

An additional restriction can be put on R, by ordering the nodes adjacent to

each node ni in ascending order of their degrees. This ordering can be of some
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advantage, an example of which is nodal ordering for bandwidth optimisation.

The storage required for this list is 2M þ N þ 1.

2.8 Historical Problem of Graph Theory

As mentioned before, in a topological graph the nodes are shown by points and

the edges are usually identified by arcs or lines. However, an abstract graph

can model a much more general set of object and relations. The following

problem shows this general aspect even in the earliest application.

Euler began his paper on graphs by discussing a puzzle, the so-called

Königsberg Bridge Problem. The city of Königsberg (now Kaliningrad) in East

Prussia is located at the banks and on two islands of the river Pregel. The various

parts of the city were connected by seven bridges. The problem arose: Is it possible

to plan a tour in such a manner that starting from home, one can return there

after having crossed each river bridge just once?

A schematic map of the Königsberg is reproduced in Fig. 2.17. The four parts

of the city are denoted by letters A, B, C and D. Since we are interested only

in the bridge crossings, we may think of A, B, C and D as the vertices of the graph

with connecting edges corresponding to the bridges.

Euler showed that this graph cannot be traversed completely in a single

circular path; in other words, no matter at which vertex one begins, one cannot

cover the graph and come back to the starting point without retracing one’s steps.

Such a path would have to enter each vertex as many times as it departs from it;

hence, it requires an even number of edges at each vertex, and this condition is

not fulfilled in the graph representing the map of Königsberg.

In this historical problem, the incidence of different parts of a city is considered

with edges representing the bridges, that is, even the first graph model has been

such a general one and has not been confined to points and edges as imagined

by some users.

For definition on topology, the reader may refer to any textbook on topology,

for example, Cooks [31].

Fig. 2.17 Königsberg Bridge

Problem
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Chapter 3

Graph Products and Configuration Processing

3.1 Introduction

Graph products are defined and developed in the past 50 years (see, e.g. Berge [1],

Sabidussi [2], Harary and Wilcox [3]). An excellent book covering the mathematics

of graph products is that of Imrich and Klavzar [4]. In this chapter, the necessary

definitions from graph products are presented and examples are included to illus-

trate the definitions pictorially. The number of graph products in literature is far

more than four; however, products which have extensively been studied in mathe-

matics are as follows:

Cartesian graph product

Strong Cartesian graph product

Direct graph product

Lexicographic graph product

For configuration processing in structural engineering, additional new products

were needed. Four such products were named and Type I, Type II, Type III and

Type IV products are defined by Kaveh and Koohestani [5]. The latter types of

products were obtained for subgraphs with directed members and containing loops.

The corresponding product graphs have configurations most suitable for

representing space structures and finite element models.

Though there is no restriction in the number of subgraphs for the graph products,

however, in structural mechanics the product of two subgraphs is sufficient for

studying of the practical models. Again though the subgraphs can be general ones,

however paths and cycles are sufficient to form most of the models encountered in

structural engineering.

Finally weighted graph are introduced by assigning weights to the nodes and

members of the subgraphs, leading to triangular and circular products [6, 7, 8].

A. Kaveh, Optimal Analysis of Structures by Concepts of Symmetry and Regularity,
DOI 10.1007/978-3-7091-1565-7_3, © Springer-Verlag Wien 2013
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3.2 Definitions of Different Graph Products

Many structures have regular patterns and can be viewed as the Cartesian product,

strong Cartesian product or direct product of a number of simple graphs. These

subgraphs, used in the formation of a model, are called the generators of that model.

In order to show different graph products with no direction (undirected graphs),

the symbol (X) will be used. The indices C, SC, D and LEXwill be employed to show

Cartesian, strong Cartesian, direct and lexicographic, respectively. As an example,

C5 (X)SC P7 shows the strong Cartesian product of the cycle C5 by the path P7.

3.2.1 Boolean Operation on Graphs

In order to explain the products of graphs, let us consider a graph S as a subset of all

unordered pairs of its nodes. The node set and member set of S are denoted by N(S)

and M(S), respectively. The nodes of S are labelled as s1, s2,. . .,sm,. . ., sn, and the

resulting graph is a labelled graph. Two distinct adjacent nodes, sm and sn, form a

member, denoted by smsn2M(S).

A Boolean operation on an ordered pair of disjoint labelled graphs K and H

results in a labelled graph S, which has N(K) � N(H) as its nodes. The set M(S) of

members of S is expressed, in terms of the members in M(K) and M(H), differently

for each Boolean operations. In the first part of this chapter, four different

operations are provided, corresponding to Cartesian product, strong Cartesian

product, direct product and Lexicographic product of two graphs. In the second

part, another four products, namely, Type I, Type II, Type III and Type IV graph

products, are presented. Triangular and circular products will then be discussed in

the third part.

3.2.2 Cartesian Product of Two Graphs

The simplest Boolean operation on a graph is the Cartesian product K (X)C H

introduced by Sabidussi [2]. The Cartesian product is a Boolean operation S ¼ K

(X)C H, in which, for any two nodes sm ¼ (ui,vk) and sn ¼ (uj,vl) in N(K) � N(H),

the member smsn is in M(S) whenever

ui ¼ uj and vkvl 2 M Hð Þ; (3.1a)

Or vk ¼ vl and ui uj 2 M Kð Þ: (3.1b)
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As an example, the Cartesian product of K ¼ P2 and H ¼ P3 is shown in

Fig. 3.1.

In this product, the two nodes (u1,v2) and (u2,v2) are joined by a member, since

the condition (3.1b) is satisfied.

The Cartesian product of two graphs K and H, denoted by K (X)C H, can be

constructed by taking one copy of H for each node of K and joining copies of H

corresponding to adjacent nodes of K by matching of size N(H).

The graphs K and H will be referred to as the generators of S. The Cartesian

product operation is symmetric, that is, K (X)C H ffi H (X)C K. For other useful

graph operations, the reader may refer to the work by Gross and Yellen [9].

Examples. In this example, the Cartesian product C8 (X)C P5 of the path graph

with five nodes K denoted by P5 and a cycle graph H shown by C8 is illustrated in

Fig. 3.2.

A product graph can be represented in different forms. As an example two

representations of the Cartesian product C3 (X)C P4 are illustrated in Fig. 3.3.

The Cartesian product Pm1 (X)C Pm2 (X)C Pm3 of three paths forms a three-

dimensional mesh. As an example, the Cartesian product of P6 (X)C P4 (X)C P5,

resulting in a 5 � 3 � 4 grid, is shown in Fig. 3.4.

A graph can be the product of more than two specific graphs, such as paths and

cycles. As an example, the product of three graphs, P2 (X)C K3 (X)C P4, is shown in

Fig. 3.5. The product of a general graph S and the P4, denoted by S (X)C P4, is

illustrated in Fig. 3.6.

a bFig. 3.1 The Cartesian

product S of two simple graphs

K and H. (a) K ¼ P2 and

H ¼ P3. (b) S ¼ P2 (X)C P3

K

H

Fig. 3.2 Representation of

C8 (X)C P5
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It can be proved that the Cartesian product of two graphs is connected if and only

if both generators are connected [4].

3.2.3 Strong Cartesian Product of Two Graphs

This is another Boolean operation, known as the strong Cartesian product. The
strong Cartesian product is a Boolean operation S ¼ K Xð ÞSC H in which, for any

two distinct nodes sm ¼ (ui,vk) and sn ¼ (uj,vl) in N(K) � N(H), the member smsn
is in M(S) if

ui ¼ uj and vkvl 2 M Hð Þ; (3.2a)

or vk ¼ vl and uiuj 2 M Kð Þ; (3.2b)

or uiuj 2 M Kð Þ and vkvl 2 M Hð Þ: (3.2c)

As an example, the strong Cartesian product of K ¼ P2 and H ¼ P3 is shown in

Fig. 3.7.

Fig. 3.4 Representation

of a 5 � 3 � 4 mesh

P2 K3

P4

a bFig. 3.5 The Cartesian

product of three graphs

P2 (X)C K3 (X)C P4.

(a) Generators. (b) Product

a bFig. 3.3 Two different

representations of C3 (X)C P4.

(a) A 2D representation. (b) A

3D representation
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In this example, the nodes (u1,v1) and (u2,v2) are joined, since the condition

(3.2c) is satisfied.

Examples. In this example, the strong Cartesian product P7 (X)SC P5 of the path P7
and the path graph P5 is illustrated in Fig. 3.8. As a second example, the strong

Cartesian product C7 (X)SC P4 is shown in Fig. 3.9.

3.2.4 Direct Product of Two Graphs

This is another Boolean operation, known as the direct product, introduced by

Weichsel [10], who called it the Kronecker product. However, in this book,

S P4

a bFig. 3.6 The Cartesian

product S (X)C P4 of S by P4.

(a) Generators sand P4.

(b) Product S (X)C P4

a bFig. 3.7 The strong

Cartesian product of two

simple graphs. (a) Generators

K ¼ P2 and H ¼ P3.

(b) S ¼ P2 (X)SC P3

Fig. 3.8 Strong product

representation of P7 (X)SC P5
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Kronecker product will be defined and used in matrix algebraic sense. The direct

product is a Boolean operation S ¼ K (X)D H, in which, for any two nodes sm ¼
(ui,vk) and sn ¼ (uj,vl) in N(K) � N(H), the member smsn is in M(S) if

uiuj 2 M Kð Þ and vkvl 2 M Hð Þ: (3.3)

As an example, the direct product of K ¼ P2 and H ¼ P3 is shown in Fig. 3.10.

Here, the two nodes (u1,v1) and (u2,v2) are joined, since the condition (3.3) is

satisfied.

Examples. The direct product P7 (X)D P5 of the path graph P7 and path graph P5 is

illustrated in Fig. 3.11. As a second example, the direct product C7 (X)D P4 is shown

in Fig. 3.12.

Fig. 3.9 Strong product

representation of C7 (X)SC P4

a bFig. 3.10 The direct product

of two simple graphs.

(a) K ¼ generators P2 and

H ¼ P3. (b) S ¼ P2 (X)D P3

Fig. 3.11 Direct product

representation of P7 (X)D P5
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3.2.5 Lexicographic Product of Two Graphs

This is another Boolean operation known as the lexicographic product introduced
by Harary and Wilcox [3], and occasionally it is referred to as the composition
product. The lexicographic product is a Boolean operation S ¼ K (X)LEX H in

which for any two nodes sm ¼ (ui,vk) and sn ¼ (uj,vl) in N(K) � N(H), the edge

smsn is in M(S) if

uiuj 2 M Kð Þ; (3.4a)

or ui ¼ uj and vkvl 2 M Hð Þ: (3.4b)

More concretely, the lexicographic product can be formed by replacing

each node of K with a copy of H and drawing all possible edges between adjacent

copies.

As an example, the lexicographic product of K ¼ P3 and H ¼ P2 is shown in

Fig. 3.13.

Here, the two nodes (u1,v1) and (u2,v3) are joined, since the condition (3.4a) is

satisfied.

Fig. 3.12 Direct product

representation of C7 (X)D P4

a bFig. 3.13 The lexicographic

product K (X)LEX H of two

path graphs P2 and P3.

(a) Generators K ¼ P2
and H ¼ P3.

(b) S ¼ P2 (X)LEX P3

3.2 Definitions of Different Graph Products 43



Cartesian, strong Cartesian and direct products are extensively studied and

applied in structural mechanics, as will be described in Chap. 6. Therefore, only

additional examples from the lexicographic product are presented. The lexicographic

products of the two graphs shown in Fig. 3.14 are illustrated in Fig. 3.15.

a b

c d

Fig. 3.14 Four generators G1, G2, G3 and G4. (a) G1. (b) G2. (c) G3. (d) G4

a b

c d

Fig. 3.15 The lexicographic graph products. (a) The lexicographic product G1 (X)LEX G2. (b) The

lexicographic product G2 (X)LEX G1. (c) The lexicographic product G3 (X)LEX G2. (d) The

lexicographic product G1 (X)LEX G4
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Example. In this example four domes are generated using the four undirected

graph products defined in this section, Fig. 3.16.

3.3 Directed Graph Products

Graph products introduced in Sect. 3.2 are extensively used in combinatorial

optimisation and structural mechanics; however, the directed graph products are

recently developed [5], which are discussed in this section.

In this section four types of directed graph products are presented. Operators for

the union and ring sum of these products are also defined and utilised.

Since in these products the graphs are directed and often contain loops, therefore

for better explanation of the generators, the following notations are adopted:

In general a path and a cycle with no direction and no loop are denoted byPn and

Cn, respectively. If a path contains some loops, it will have super indices a, e, o, b or

m, designating loops in all the nodes, in the nodes with even numbers, in the nodes

with odd numbers, in end nodes and in non-end nodes, respectively. The sign ‘:’ has

the same implication as in MATLAB, that is, the total number of the list or a loop.

In an expression, when the sign ‘:’ is used twice, then the number in between shows

the increment of interval. Some paths together with the corresponding signs are

illustrated in Fig. 3.17.

P7 (X)C C20 P7 (X)SC C20

C20 (X)D P7 C20 (X)LEX P7

Fig. 3.16 Four domes generated by four undirected graph products

3.3 Directed Graph Products 45



In order to show the directed graphs and for specifying the direction and the

number of members, the index D for P and C is used. The indices consist of one or

some numbers with + and � signs as their superscripts. Therefore, the numbers

show the number of directed member with the same direction. For members with

both directions, the subscript d is employed. The direction for + and � direction is

quite optional, and members with no direction have no sign. Some examples for the

above notation are shown in Fig. 3.18.

3.3.1 Type I Directed Graph Products

One shortcoming of the products defined in Sect. 3.2 is their incapability in

generating triangular submodels. This reduces the applicability of undirected

graph products in configuration processing of the practical structures and emphasises

the need for employing directed graph products. The use of directed strong Cartesian

product can be considered as an efficient tool for creating diagonal members for the

panels. Thus, the formation of space structures with different connectivity becomes

feasible.

The product for two directed graphs K andH is denoted by ðXÞ1, and it is defined
as follows:

• The product has NK � NH nodes, where NK;NH are the numbers of nodes of

K and H, respectively.

5P
a

P5

e
P5

o
P5

b
P5

m
P5

[1,2]

5P
[2:4]

5P
[2:2:4]

5P
e

C
6

Fig. 3.17 Examples of paths with different loop systems

D (1:2 + ,3- ) P4D (1:3 + ) P4 D (1- ,2+ ,3- ) P4

D (1d ,2+ ,3d) P4 D (1d , 2:3 + ) P4 D (1:4 + ,5
-
,6+ ) C6

Fig. 3.18 Notations used for directed graphs
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• Two nodes sm ¼ (ui,vk) and sn ¼ (uj,vl) are connected by a member smsn if one
of the following conditions holds:

ui ¼ uj and vl:adj:vk or vk:adj:vlð Þ� �
(3.5a)

or ui:adj:uj and vk:adj:vl
� �

or uj:adj:ui and vl:adj:vk
� �� �

(3.5b)

or vk ¼ vl and uj:adj:ui or ui:adj:uj
� �� �

(3.5c)

where adj is an abbreviation for ‘adjacent’.

Some examples of this product are shown in Fig. 3.19, where the method for

controlling the diagonal members is clearly illustrated.

3.3.2 Type II Directed Graph Products

In this type of product, loops are used to control the inclusion or exclusion of

members in different parts of the model. The product ofK andH is denoted by ðXÞ2,
and it is defined as follows:

• The product has NK � NH nodes, where NK;NH are the numbers of nodes of

K and H, respectively.
• Two nodes sm ¼ (ui,vk) and sn ¼ (uj,vl) are connected by a member smsn if one

of the following conditions holds:

D(1:2+) K3(X )1D(1:2+)H3 D(1+,2-)K3(X )1D(1:2+)H3 D(1+,2-)K3(X )1D(1+,2-)H3

D(1-,2+)K3(X )1D(1+,2-)H3 D(1:2+)K3(X )1D(1+,2-)H3 D(1:2-)K3(X )1D(1:2+)H3

Fig. 3.19 Examples of Type I directed graph products
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ui ¼ uj and ui:~ adj:ui no loopð Þ and vk:adj:vl
� �

(3.6a)

or vk ¼ vl and vk:~ adj:vk no loopð Þ and ui:adj:uj
� �

: (3.6b)

where adj refers to ‘adjacent’ and ~adj means ‘not adjacent’.

Two examples of this type of products are shown in Fig. 3.20.

3.3.3 Type III Directed Graph Products

In Type II product, it is possible to delete the members of one complete row. Since

this is required for the formation of complicated graphs, therefore, in Type III

product, loops and directed members are simultaneously used to control the inclu-

sion or exclusion of members. Using this product one can form graphs in the form

of honeycombs. This product for two graphs G and H is denoted by ðXÞ3, and it is

defined as follows:

• The product has NK � NH nodes.

• Two nodes sm ¼ (ui,vk) and sn ¼ (uj,vl) are connected by a member smsn if one
of the following conditions holds:

ui ¼ uj and ui:adj:ui loopð Þ and vk:adj:vl and vl:adj:vk
� �

(3.7a)

or ui ¼ uj and ui:~ adj:ui no loopð Þ and vk:adj:vl and vl:~ adj:vk
� �

(3.7b)

or vk ¼ vl and ui:adj:uj
� �

: (3.7c)

a b

Fig. 3.20 Two examples of Type II directed graph products. (a) Ke
5ðXÞ2He

5. (b) K
e
5ðXÞ2H3
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It should be mentioned that the topological properties of the presented products

contain the properties of their generators. However, the configurations can be

changed with different geometric transformations. Examples of this type of

products together with their geometric transformations are shown in Fig. 3.21.

Further explanations will be provided in subsequent section.

3.3.4 Type IV Directed Graph Products

In this section a summation of different types of graph products is presented. This

approach is particularly suitable for the formation of the double-layer grids.

The product and sum of two graphs K and H is a graph S with algebraic

representation denoted by S ¼ KðXÞHðþÞ4EKðXÞEH , where K and H are the

main subgraphs and EK and EH are two subgraphs which can easily be obtained

from the main subgraphs. In fact these subgraphs are graphs with each node being

associated with a member of the main subgraph, and two nodes are connected if the

corresponding members are incident in the main subgraphs.

• Therefore, the graph S has the nodes as NK � NH þMK �MH , where MK and

MH are the numbers of members of K and H, respectively.
• The graph S has two subgraphsKðXÞH andEKðXÞEH, and the product can be an

arbitrary product introduced in the previous sections.

• The nodes of these two subgraphs which are denoted by ðu; vÞ for KðXÞH and

ðeu; evÞ for EKðXÞEH are connected to each other if the following condition

holds:

u; vð Þ; eu; evð Þ � � � � > u inc eu and v inc evð Þ: (3.8)

Fig. 3.21 (a) Type III directed graph product. (b) Product with geometric transformation
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Here, inc represents incidence. The above relationship indicates that for the node
u corresponding to the member eu, and the node v corresponding to member ev, the
ðu; vÞ is connected to ðeu; evÞ. The above operation has extremely good capability

for generating double-layer grids. Examples of simultaneous product and summa-

tion are shown in Fig. 3.22. In these examples the products used are Cartesian

products.

3.4 Weighted Triangular and Circular Graph Products

for Configuration Processing

In this section new weighted triangular and circular graph products are presented

for configuration processing of the new forms of structural models. Here, the

weighted triangular and circular products are employed for the configuration

processing of space structures that are of triangular shapes or a combination of

triangular and rectangular shapes and also of the solid circular shapes as domes and

some space structural models. The covered graph products are represented for

selecting or eliminating some parts or panels from the product graph by using the

second weights for the nodes of the generators. Cut-out products are other types of

graph products which are defined to eliminate all of the connected elements to a

specified node, to configure the model or grid with some vacant panels inside of the

model [7, 8].

3.4.1 Extension of Classic Graph Products

For generating the configurations encountered in practice, some elements should be

removed with an additional rule. In order to avoid such a complication, weighted

Fig. 3.22 An example of Type IV directed graph product and sum
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graphs can be employed. Here, zero weights are assigned to the nodes and members

which are supposed to be removed.

After the formation of the nodes according to the nodes of the generators, a

member is added between two typical nodes (Uk,Vl) and (Ui,Vj), with the weights

Wik, Wki, Wjl and Wlj for elements and Wi and Wj for the nodes, if the following

conditions are fulfilled:

If Ui ¼ Uk and Wi ¼ 0 and Wjl 6¼ 0 and Wlj 6¼ 0
� �� ��

or Ui ¼ Uk and Wi 6¼ 0 and Wjl
� Wlj ¼ 0 and Wjl 6¼ 0 or Wlj 6¼ 0

� �� �� �
or Vj ¼ Vl and Wj ¼ 0 and Wik 6¼ 0 and Wki 6¼ 0ð Þ� �
or Vj ¼ Vl and Wj 6¼ 0 and Wik

� Wki ¼ 0 and Wik 6¼ 0 or Wki 6¼ 0ð Þð Þ� ��
(3.9)

Figure 3.23 illustrates the constructed configurations by the above rules. Though

the formulae for both configurations in this figure are identical, however, due to the

use of different weighted generators, dissimilar configurations are obtained.

3.4.2 Formulation of Weighted Strong Cartesian Product

Simple graph products can only generate panels with two crossing members, and in

order to generate configurations with panels having single bracing elements,

weighted strong Cartesian products cannot be used. In order to produce

configurations with triangular panels, weighted generators should be employed.

Here, zero weights are assigned to the nodes and members which should be

removed. After the formation of the nodes according to the nodes of the generator,

a member is added between two typical nodes (Uk,Vl) and (Ui,Vj), with the weights

Wik, Wki, Wjl and Wlj for elements, if the following conditions are fulfilled:
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Fig. 3.23 Two weighted Cartesian graph products
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If Ui ¼ Uk and Wjl 6¼ 0 or Wlj 6¼ 0
� �� ��

or Vj ¼ Vl and ðWik 6¼ 0 or Wki 6¼ 0Þ� �
or Wki 6¼ 0 or Wlj 6¼ 0

� ��
(3.10)

Three examples of grids generated by these relationships are shown in Fig. 3.24.

For each configuration the corresponding weighted generator are also depicted.

3.4.3 Formulation of Weighted Direct New Product

Here, zero weights are assigned to the nodes and also to the members which should

be removed. After the formation of the nodes according to the nodes of the

generator, a member is added between two typical nodes (Uk,Vl) and (Ui,Vj), with

the weights Wik, Wki, Wjl, and Wlj for elements, if the following conditions are

fulfilled:

If Wki 6¼ 0 and Wlj 6¼ 0
� �

(3.11)

Two examples of weighted direct products of PW7*PW7 are illustrated in

Fig. 3.25. The considered weights for the paths are different, thus resulting in

different configurations.

3.4.4 Weighted Cartesian Direct Graph Products

By combining the weighted Cartesian and direct graph products, weighted Cartesian

direct graph product is defined. In the weighted Cartesian product, both elements and

nodes have weights, and the conditions are implemented by using these weights. But

in the weighted direct product, only the nodes of the generators are weighted, so the
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Fig. 3.24 Three weighted strong Cartesian graph products
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conditions are defined based on the weights of the elements. In the weighted Cartesian

direct product, both the elements and nodes are weighted. For configuring vertical and

horizontal elements, both weights are implemented and the conditions of weighted

Cartesian product must be fulfilled. But for configuring diagonal elements, only nodal

weights and weighted direct product must be satisfied. By simultaneous use of the

product’s conditions, a new graph product can be defined for configuring some special

models with the horizontal, vertical and diagonal elements. After the formation of the

nodes according to the nodes of the generators, a member is added between two

typical nodes (Uk,Vl) and (Ui,Vj), with the weights Wik, Wki, Wjl and Wlj for elements

and Wi and Wj for the nodes, if one of the following conditions is fulfilled:

If Ui ¼ Uk and Wi ¼ 0 and Wjl 6¼ 0 and Wlj 6¼ 0
� �� ���

or Ui ¼ Uk and Wi 6¼ 0 and Wjl
� Wlj ¼ 0 and Wjl 6¼ 0 or Wlj 6¼ 0

� �� �� �
or Vj ¼ Vl and Wj ¼ 0 and Wik 6¼ 0 and Wki 6¼ 0ð Þ� �
or Vj ¼ Vl and Wj 6¼ 0 and Wik

� Wki ¼ 0 and Wik 6¼ 0 or Wki 6¼ 0ð Þð Þ� ��
or Wki 6¼ 0 or Wlj 6¼ 0

� �� ð3:12Þ

Some examples of this product are demonstrated in Fig. 3.26.

3.5 Definition of Weighted Triangular Graph Products

Since the classic graph products use only the adjacency conditions in the

generators, therefore these products can only form simple shapes and models. For

configuring other classes of models, it is necessary to assign other conditions

and definitions to the previously mentioned generators and also to the conditions

of the products. Assigning weights to the nodes and elements can be considered as

new additions to the conditions and definitions. For creating the new graph products
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Fig. 3.25 Two weighted direct graph products
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and new configurations, Kaveh and Nouri [6] generated new models in the forms of

the classic products with assigning weights to the nodes and elements of the

generators.

Assigning weights to the nodes and defining new conditions according to these

weights can have a wide range of applications and can make it possible to generate

many other different configurations which are impossible to be generated by using

classic products. In other words, the new definitions obtained by assigning nodal

weights, new variables become available to consider as the adjacency conditions of

the nodes in a product graph.

Using the existing graph products, only models in the form of rectangular or

circular shapes can be generated with no centre node. For generating other types of

configurations, we define a new graph product for generating the triangular and a

wide range of polygonal shapes. By using this product, it becomes possible to

generate triangular, trapezoid, parallelogram and many other combinations of

triangular and rectangular shapes.

3.5.1 Weights Assigned to Nodes of the Generators and Product
Graphs

The weights for the nodes of a product graph are considered the same as the sum of

the weights of the nodes of the corresponding subgraphs, Fig. 3.27. Obviously

assigning the weights to the nodes of a product graph according to the weights of

the generators can have different types such as sum, difference or product.

After assigning weights to the nodes of a product graph, some conditions should

be imposed to assess the adjacency of the nodes. First WMAX is defined as the

maximum weight of the subgraphs. For example, for two subgraphs with the

weights [1 2 3 4 5] and [2 3 2 3 4],WMAX is equal to 5. Considering the significance

of WMAX and using Wi,j(i,j) and Wi,j(k,l), the new conditions are implemented.
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3.5.2 Weighted Triangular Strong Cartesian Graph Product

After the formation of weights of the nodes in a product graph, a member should be

added between two typical nodes (Uk,Vl) and (Ui,Vj) if the following conditions are

satisfied:

Weights of the nodes : Wk;l ¼ WiðkÞ þWjðlÞ; Wi; j ¼ WiðiÞ þWjð jÞ (3.13a)

Weights of the elements : Wik;Wki;Wjl;Wlj (3.13b)

If f½½UiUk 2 EðKÞ and VjVl 2 EðHÞ� and ½Wi;j;Wk;l ¼ Wmax��
or ½½½Vj ¼ Vl and ðWik 6¼ 0 or Wki 6¼ 0Þ� or ½ðWki�Wlj 6¼ 0 or Wik�Wjl 6¼ 0Þ
or ðWik�Wlj 6¼ 0 or Wki�Wjl 6¼ 0Þ�� and ½Wi;j;Wk;l � Wmax��g

(3.14)

Four examples of grids generated by these relationships are shown in Fig. 3.28.

For each configuration the corresponding weighted generators are also depicted.

3.5.3 Weighted Triangular Semistrong Cartesian Graph Product

In this product, both diagonal and horizontal elements can be connected. After the

formation of weights of the nodes in the product graph, a member should be added

between two typical nodes (Uk,Vl) and (Ui,Vj) if the following conditions are

satisfied:

Fig. 3.27 Assigning weights to the nodes of a product graph
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Using the same definitions as Eqs. 3.13a and 3.13b,

If UiUk 2 EðKÞ and VjVl 2 EðHÞ� �
and Wi;j;Wk;l ¼ Wmax

� �� ��
or Vj ¼ Vl and Wik 6¼ 0 or Wki 6¼ 0ð Þ� �

or ðWki �Wlj 6¼ 0 orWik �Wjl 6¼ 0Þ���
or ðWik �Wlj 6¼ 0 orWki �Wjl 6¼ 0Þ�� and Wi;j;Wk;l � Wmax

� ��� ð3:15Þ

Two examples of grids generated by these relationships are shown in Fig. 3.29.

For each configuration the corresponding weighted generators are also depicted.

3.6 Definition of a Weighted Circular Graph Product

In the field of space structures, domes are of special importance. From the structural

point of view, domes are always similar to solid circular-shaped models. For

configuring solid circles using graph products, one should either use the transforma-

tion of product graph of two paths or the graph product of a path, and a cycle should

be employed. Another graph for covering the central part can be added. In this

section, a new graph product is defined to configure solid circular-shaped models.
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3.6.1 Weighted Circular Cartesian Graph Products

In this product weights are assigned to the nodes of the subgraphs, and the

conditions and definitions of this product are based on these weights. In this

product, the conditions are merely provided for the adjacency of the vertical and

horizontal elements. Two nodes, (Ui,Vj) and (Uk,Vl), in the product graph, with the

weightsWi, Wj, Wk andWl, and with the weightsWik, Wki, Wjl andWlj for elements,

are adjacent if the following conditions are fulfilled:

If Ui¼Uk andWi¼ 0 and Wjl 6¼ 0 andWlj 6¼ 0
� �� ����

or Ui¼Uk andWi 6¼ 0 and Wjl � Wlj¼ 0 and Wjl 6¼ 0 orWlj 6¼ 0
� �� �� �

or Vj¼Vl andWj¼ 0 and Wik 6¼ 0 andWki 6¼ 0ð Þ� �
or Vj¼Vl andWj 6¼ 0 and Wik �Wki¼ 0 and Wik 6¼ 0 orWki 6¼ 0ð Þð Þ� ��
and Wj;Wl� 1

� ��
or VjVl 2EðKÞ

� �
and Wj > 1 and i¼ 1

� �� ��
and Wk¼ 0 andWjl �Wlj 6¼ 0

� ��
or Wk 6¼ 0 andWjl �Wlj¼ 0 and ðWjl 6¼ 0 or Wlj 6¼ 0

�� ���� ð3:16Þ

Some examples of this product are demonstrated in Fig. 3.30.

3.6.2 Weighted Circular Strong Cartesian Graph Product

In this product, the nodes of generators are assigned some weights, and conditions

are defined based on the weights. Using this product the nodes (Ui,Vj) and (Uk,Vl) in

the product graph which the weights Wi, Wj, Wk and Wl are assigned to the nodes

and also the weights Wik, Wki, Wjl, Wlj assigned to the elements will be connected if

the following conditions are fulfilled:

6 5 4 3 2 1 0 0 0 0 0 1 2 3 4 5 6

3

2

1

0

1

2

3

4

5

0
1

1
0

0
1

1
0

0
1

1
0

0
1

1
0

0
1

1
0

0
1

1
0

0
1

1
0

0
1

1
0

10

01

10

01

10

01

10

01

4 3 2 1 0 0 0 0 0 0 0 0 0 1 2 3 4

4

3

2

1

0

1

2

3

4

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

10

10

10

10

01

01

01

01

Fig. 3.29 Two weighted triangular semistrong Cartesian products
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If Ui ¼ Uk and Wjl 6¼ 0 orWlj 6¼ 0
� �� �

or Vj ¼ Vl and Wik 6¼ 0 orWki 6¼ 0ð Þ� ����
or Wki 6¼ 0 orWlj 6¼ 0
� ��

and Wj;Wl � 1
� ��

or VjVl 2 EðKÞ� �
and Wj > 1 and i ¼ 1

� �� �� ð3:17Þ

Some examples of this product are illustrated in Fig. 3.31.

3.6.3 Weighted Circular Direct Graph Product

In this product only the diagonal elements will be connected. The nodes of generators

are weighted and conditions are defined based on the weights. Using this product, the

nodes (Ui,Vj) and (Uk,Vl) in the product graph which the weights Wi, Wj, Wk and Wl

assigned to them will be connected if the following conditions are fulfilled:

If Wki 6¼ 0 or Wlj 6¼ 0
� �

and Wj;Wl � 1
� �� ��

or VjVl 2 EðKÞ� �
and Wj > 1 and i ¼ 1

� �� �� ð3:18Þ

Some examples of this product are demonstrated in Fig. 3.32.

Fig. 3.30 Three weighted circular Cartesian products
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Fig. 3.31 Five weighted circular strong Cartesian products
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Fig. 3.32 Three weighted circular direct products
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3.6.4 Weighted Circular Cartesian Direct Graph Product

In this product, only the diagonal elements will be connected. The nodes of

generators are weighted and conditions are defined based on the weights. Using

this product, the nodes (Ui,Vj) and (Uk,Vl) in the product graph which the weights

Wi, Wj, Wk andWl are assigned to them will be connected if the following conditions

are fulfilled:

If
�

Ui ¼ Uk and Wi ¼ 0 and Wjl 6¼ 0 and Wlj 6¼ 0
� �� ���

:

or Ui ¼ Uk and Wi 6¼ 0 and Wjl
� Wlj ¼ 0 and Wjl 6¼ 0 or Wlj 6¼ 0

� �� �� �
or Vj ¼ Vl and Wj ¼ 0 and Wik 6¼ 0 and Wki 6¼ 0ð Þ� �
or Vj ¼ Vl andWj 6¼ 0 and Wik �Wki ¼ 0 and Wik 6¼ 0 orWki 6¼ 0ð Þð Þ� ��
and Wj;Wl � 1

� ��
or Wki 6¼ 0 or Wlj 6¼ 0

� �
and Wj;Wl � 1

� �� �
or VjVl 2 EðKÞ� �

and Wj > 1& i ¼ 1
� �� �� ð3:19Þ

Some examples of this product are demonstrated in Fig. 3.33.

3.7 Weighted Cut-Out in Graph Products

Utilising all the previous products, the product graphs have continuous and regular

shapes, and all of the nodes in the inner panels are connected. However, some models

are in forms where there exist some inner panels as hollow and some nodes have no

connections with the other nodes. On the other hand, the connected elements to some
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nodes must be eliminated. In this section a new graph product for eliminating an

optional node or nodes with the connected elements (stars) is defined. Using this

product, all the nodes in the product graph which have equal or larger weight than a

specified value will have no connections with the other nodes and elements.

3.7.1 Weighted Cut-Outs in Cartesian Graph Product Models

This graph product provides the conditions for connecting vertical and horizontal

elements according to the weights of the generators. Using this product, the nodes

(Ui,Vj) and (Uk,Vl) in the product graph with weightsWi,Wj,Wk andWl assigned to

them are connected if the following conditions are fulfilled:

If Ui ¼ Uk and Wi ¼ 0 and Wjl 6¼ 0 and Wlj 6¼ 0
� �� ���

or Ui ¼ Uk and Wi 6¼ 0 and ðWjl
� Wlj ¼ 0 and Wjl 6¼ 0 or Wlj 6¼ 0

� ��� �
or Vj ¼ Vl andWj ¼ 0 and Wik 6¼ 0 and Wki 6¼ 0ð Þ� �
or Vj ¼ Vl and Wj 6¼ 0 and Wik

� Wki ¼ 0 and Wik 6¼ 0 or Wki 6¼ 0ð Þð Þ� ��
and Wi; Wj; Wk; Wl � 1

� �
or Wi 6¼ Wj andWk 6¼ Wl

� �� �� ð3:20Þ

Examples of this product are demonstrated in Fig. 3.34.

3.7.2 Weighted Cut-Out Cartesian Direct Graph Product

This product provides the conditions for connecting vertical, horizontal and diago-

nal elements according to the weights of the generators. Using this product, the

nodes (Ui,Vj) and (Uk,Vl) in the product graph which the weightsWi, Wj, Wk andWl

assigned to them and also the weightsWik, Wki, Wjl andWlj assigned to the elements

will be connected if the following conditions are fulfilled:
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Fig. 3.34 Two weighted cut-out Cartesian products
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If Ui ¼ Uk andWi ¼ 0 and Wjl 6¼ 0 and Wlj 6¼ 0
� �� ���

or Ui ¼ Uk andWi 6¼ 0 and Wjl
� Wlj ¼ 0 and Wjl 6¼ 0 or Wlj 6¼ 0

� �� �� �
or Vj ¼ Vl andWj ¼ 0 and Wik 6¼ 0 and Wki 6¼ 0ð Þ� �
or Vj ¼ Vl andWj 6¼ 0 and Wik

� Wki ¼ 0 and Wik 6¼ 0 or Wki 6¼ 0ð Þð Þ� �
or Wki 6¼ 0 orWlj 6¼ 0
� ��

and Wi; Wj; Wk; Wl � 1
� �

or Wi 6¼ Wj &Wk 6¼ Wl

� �� �� ð3:21Þ

Some examples of this product are demonstrated in Fig. 3.35.

3.7.3 Weighted Cut-Out Strong Cartesian Graph Product

In this product conditions consist of direct graph product conditions and a new

condition for deleting the special nodes with special weights. Thus, in this product,

only the diagonal elements will be connected.

Using this product, the nodes (Ui,Vj) and (Uk,Vl) in the product graph which the

weights Wi, Wj, Wk and Wl are assigned to them will be connected if the following

conditions are fulfilled:

If
�

Ui ¼ Uk and Wjl 6¼ 0 or Wlj 6¼ 0
� �� ��

or Vj ¼ Vl and Wik 6¼ 0 or Wki 6¼ 0ð Þ� �
or Wki 6¼ 0 or Wlj 6¼ 0
� ��

and Wi; Wj; Wk; Wl � 1
� �

or Wi 6¼ Wj and Wk 6¼ Wl

� �� �� ð3:22Þ

Some examples of this product are demonstrated in Fig. 3.36.

3.7.4 Weighted Cut-Out Semistrong Cartesian Graph Product

In this product conditions consist of direct graph product conditions and a new

condition for deleting the special nodes with special weights. Thus, in this product,

only the diagonal elements will be connected.
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Using this product, the nodes (Ui,Vj) and (Uk,Vl) in the product graph which the

weights Wi, Wj, Wk and Wl are assigned to them will be connected if the following

conditions are fulfilled:

If Vj ¼ Vl and Wik 6¼ 0 or Wki 6¼ 0ð Þ� �
or Wki 6¼ 0 or Wlj 6¼ 0
� �� ��

and Wi; Wj; Wk; Wl � 1
� �

or Wi 6¼ Wj and Wk 6¼Wl

� �� �� ð3:23Þ

Some examples of this product are demonstrated in Fig. 3.37.

3.8 Covered Graph Products

By using the new graph products, a vast amount of different shapes and models can

be generated; however, in some product graphs, it is necessary to choose or

eliminate some parts of the shape of the product graph to generate the desired

models. On the other hand, for generating the other shapes, it is often necessary to

select some parts of the previous models. In this section by adding a condition to
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the previous conditions, it becomes possible to select the desired part of the product

graph. This condition is implemented by assigning some other weights to the nodes

of the subgraphs. This means that the primary elemental and nodal weights

generate the full parts of the shapes and the secondary nodal weights select or

eliminate the desired part of the original shape or model. Even it is possible to

increase the number of selecting process by assigning additional weights to the

nodes of the subgraphs. For understanding the importance of this product, three

shapes are illustrated where the shape 3.38a can not directly be generated by the

prior graph products, but by cutting the shape 3.38b from the shape 3.38c, shape

3.38a can be produced. The constitution of the covered product is similar to this

cutting process.

3.8.1 Covered Cut-Out Cartesian Graph Product

After the formation of weights of the nodes in the product graph according to the

following relations:

Weights of the nodes for product graph : W2i;2j

¼ W2iðiÞ þW2jðjÞ;W2k;2l ¼ W2iðkÞ þW2jðlÞ (3.24a)

Weights of the nodes for subgraph : W1i;W1j; W1k;W1l and W2i;W2j; W2k;W2l

(3.24b)

Weights of the elements : Wik; Wki;Wjl; Wlj (3.24c)

A member should be added between two typical nodes (Uk,Vl) and (Ui,Vj) if the

following conditions are satisfied:

If Ui ¼ Uk andVjVl 2 EðKÞ� �
or UiUk 2 EðHÞ and Vj ¼ Vl

� �� ��
and W1i; W1j; W1k; W1l � 1

� �
or W1i 6¼ W1j and W1k 6¼ W1l

� �
and W2i;2j;W2k;2l � W2max

� �� ð3:25Þ

Some examples of this product are demonstrated in Fig. 3.39.

a b c

Fig. 3.38 Three cut-out direct products
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3.8.2 Covered Cut-Out Strong Cartesian Graph Product

Using this product, the nodes (Ui,Vj) and (Uk,Vl) in the product graph which the

weights Wi, Wj, Wk and Wl are assigned to them will be connected if the following

conditions are fulfilled:

If Ui ¼ Uk andVjVl 2 EðKÞ� �
or UiUk 2 EðHÞ andVj ¼ Vl

� ���
or UiUk 2 EðKÞ andVjVl 2 EðHÞ� ��
and W1i; W1j; W1k; W1l � 1

� �
or W1i 6¼ W1j andW1k 6¼ W1l

� �� �
and W2i;2j;W2k;2l � W2max

� �� ð3:26Þ

Some examples of this product are demonstrated in Fig. 3.40.
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3.8.3 Weighted Covered Cut-Out Strong Cartesian Graph Product

Using this product the nodes (Ui,Vj) and (Uk,Vl) in the product graph which the

weights Wi, Wj, Wk and Wl are assigned to them will be connected if the following

conditions are fulfilled:

If Ui ¼ Uk and Wjl 6¼ 0 orWlj 6¼ 0
� �� �

or Vj ¼ Vl and ðWik 6¼ 0 or Wki 6¼ 0Þ� ���
or Wki 6¼ 0 or Wlj 6¼ 0
� �

and W1i; W1j; W1k; W1l � 1
� �

or W1i 6¼ W1j and W1k 6¼ W1l

� �� �
and W2i;2j;W2k;2l � W2max

� �� ð3:27Þ

Some examples of this product are demonstrated in Fig. 3.41.

3.8.4 Weighted Covered Cut-Out Semistrong Cartesian Graph
Product

Using this product, the nodes (Ui,Vj) and (Uk,Vl) in the product graph where the

weights Wi, Wj, Wk and Wl are assigned to them will be connected if the following

conditions are fulfilled:

If Vj ¼ Vl and Wik 6¼ 0 orWki 6¼ 0ð Þ� �
or Wki 6¼ 0 orWlj 6¼ 0
� �� ��

and W1i; W1j; W1k; W1l � 1
� �

or W1i 6¼ W1j and W1k 6¼W1l

� �� �
and W2i;2j;W2k;2l � W2max

� �� ð3:28Þ

Some examples of this product are shown in Fig. 3.42.

Using the weighted triangular graph product, it becomes possible to generate

triangular and a wide range of polygonal-shaped configurations. It is also
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possible to configure triangle, trapezoid, parallelogram and many combinations of

triangular- and rectangular-shaped models. Employing triangular graph products,

the formation of different configurations based on a simple algebra and graph

theory becomes feasible. Circular graph products make it possible to generate the

solid circles which are the models of some space structures like domes.

The use of graph products reduces the storage requirement for data processing of

structures, and it makes it much easier and less costly in the computer. This is

obvious since in place of the data for the entire model, only the information for two

much smaller subgraphs (generators) is needed to be stored.
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Chapter 4

Canonical Forms, Basic Definitions

and Properties

4.1 Introduction

In this chapter, linear algebra is employed for the study of symmetry, followed by

graph-theoretical interpretations. The application of the methods presented in this

chapter is not limited to geometric symmetry. Thus, the symmetry studied here can

more appropriately be considered as topological symmetry. The methods considered

in this chapter can be considered as special techniques for transforming the matrices

into block triangular forms. These forms allow good saving of computation effort for

many important problems such as computing determinants, eigenvalue problems and

solution of linear system of equations. For each of these tasks with dimension N, the

computing cost grows approximately with N3. Therefore, reducing, for example, the

dimension to N/2, the effort decreases eight times which is a great advantage.

Here different canonical forms are presented. Methods are developed for

decomposing and healing of the graph models associated with these forms for

efficient calculation of the eigenvalues of matrices associated with these forms

[1–5]. The formation of divisors and co-divisors, using a graph-theoretical ap-

proach, is developed by Rempel and Schwolow [6] and well described in reference

[7]. Here, only symmetric forms are presented, since simple graph-theoretical

concepts are sufficient for their formation. Two important forms known as tri-

diagonal and penta-diagonal forms are also presented, and methods are provided

for their decomposition. It is shown that different canonical forms can be de-

rived from the block tri-diagonal form [8, 9].

4.2 Decomposition of Matrices to Special Forms

In this section, a 2N � 2N symmetric matrixM is considered with all entries being

real. For four canonical forms, the eigenvalues of M are obtained using the

properties of its submatrices.

A. Kaveh, Optimal Analysis of Structures by Concepts of Symmetry and Regularity,
DOI 10.1007/978-3-7091-1565-7_4, © Springer-Verlag Wien 2013
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4.2.1 Canonical Form I

In this case, matrix M has the following pattern:

M ¼
AN�N 0N�N

0N�N AN�N

2
4

3
5
2N�2N

(4.1)

Considering the set of eigenvalues of the submatrix A as fλAg , the set of

eigenvalues of M can be obtained as follows:

fλMg ¼ fλAg[fλAg: (4.2)

where the sign[ is used for the collection of the eigenvalues of the submatrices and

not necessarily their union.

Since det M ¼ det A � det A, the proof becomes evident. Here ‘det’ stands for

the determinant.

Form I can be generalised to a decomposed formwith diagonal submatricesA1,A2,

A3, . . ., Ap of different dimensions, and the eigenvalues can be calculated as follows:

fλMg ¼ fλA1g[fλA2g[fλA3g[ . . . [fλApg: (4.3)

The proof follows from the fact that detM ¼ det A1 � det A2 � det A3 � . . . �
det Ap.

Example 4.1. Consider the matrix M as follows:

M ¼
1 2 0 0
3 4 0 0
0 0 1 2
0 0 3 4

2
64

3
75;

with A ¼ 1 2

3 4

� �
.

Since {λA} ¼ {�0.3723, 5.3723}, therefore {λM} ¼ {�0.3723, 5.3723,

�0.3723, 5.3723}.

4.2.2 Canonical Form II

For this case, matrix M can be decomposed into the following form:
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M ¼ AN�N BN�N
BN�N AN�N

� �
2N�2N

(4.4)

The eigenvalues of M can be calculated as follows:

fλMg ¼ fλCg[fλDg: (4.5)

C and D are called condensed submatrices of M.

Proof. In block form, addition of the second column of the matrix M to the first

column and reducing the first row from the second row results in

Aþ B B

Aþ B A

� �
) Aþ B B

0 A� B

� �
¼ C B

0 D

� �
(4.6)

where

C ¼ Aþ B and D ¼ A� B; (4.7)

and

det M ¼ detC� detD; (4.8)

and the proof is complete.

Example 4.2. Consider the matrix M as follows:

M ¼
10 15 8 2

16 20 4 �3
8 2 10 15

4 �3 16 20

2
664

3
775

This matrix has the pattern of Form II and is decomposed according to Eq. 4.4,

leading to

A ¼ 10 15

16 20

� �
and B ¼ 8 2

4 �3
� �

:

Matrices C and D are formed using Eq. 4.5 as

C ¼ Aþ B ¼ 18 17

20 17

� �
; and D ¼ A� B ¼ 2 13

12 23

� �
:
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For these matrices, the eigenvalues are

fλCg ¼ f35:9459;�0:9459g and fλDg ¼ f�3:8172; 28:8172g;

hence,

fλMg ¼ fλCg[fλDg ¼ f�0:9459;�3:8172; 28:8172; 35:9459g:

4.2.3 Canonical Form III

This form has a Form II submatrix augmented by some rows and columns as shown

in the following:

=

Z(2N+k,2N+k)Z(2N+k,2N+1)Z(2N+k,2N)Z(2N+k,1)
.

C(2N+1,2N+k)C(2N+1,2N+1)C(2N+1,2N)C(2N+1,1)

LNk

L2k

LN1

L21

L1kL11

LNkLN1

L2kL21

L1kL11

AB

BA

M ð4:9Þ

where M is a (2N + k) � (2N + k) matrix, with a 2N � 2N submatrix with the

pattern of Form II, and k augmented columns and rows. The entries of the

augmented columns at the top right-hand side are L1i, L2i,. . ., LNi (i ¼ 1,. . .,k)
and then repeated again, and all the entries of M are real numbers.

Now D is obtained as D ¼ A � B, and E is constructed as the following:

+

=

Z(2N+k,2N+k)Z(2N+k,2N+1)Z(2N+k,1)+Z(2N+k,N+1)

C(2N+1,2N+k)C(2N+1,2N+1)C(2N+1,1)+C(2N+1,N+1)

LNkLN1

L2kL21

L1kL11

BA

E ð4:10Þ

D is an N � N matrix and E is an (N + k) � (N + k) matrix. The set of

eigenvalues for M is obtained as follows:

fλMg ¼ fλDg[fλEg: (4.11)
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Proof. Similar to Form II,M can be factored by rows and columns permutation. In

this case, first the augmented rows and columns are transformed into the central part

of the matrix. The last column (in block form) is added to the first column, followed

by reducing the first row from the last row.

M ¼
A B P

B A P

Q H R

2
64

3
75)

A P B

B P A

Q R H

2
64

3
75)

A P B

Q R H

B P A

2
64

3
75)

Aþ B P B

QþH R H

Bþ A P A

2
64

3
75)

Aþ B P B

QþH R H

0 0 A� B

2
64

3
75

(4.12)

that is, the matrix is now in a factored form.

M ¼ E K

0 D

� �
; (4.13)

where D and E are constructed as follows:

D ¼ A� B;

+

=

Z(2N+k,2N+k)Z(2N+k,2N+1)

C(2N+1,2N+k)C(2N+1,2N+1)C(2N+1,1)+C(2N+1,N+1)

Z(2N+k,1)+Z(2N+k,N+1)

LNkLN1

L2kL21

L1kL11

BA

E

and

detM ¼ detD� detE: (4.14)

Example 4.3. Consider a matrix M as follows:

----
-
----
-
----

=

7.53.13.133.123.11

3.10439.08.0

3.105.017.07.0

3.109.08.043

3.107.07.05.01

M

Condensed submatrices are calculated using Eq. 4.15 as follows:
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D ¼ �1 0:5
3 4

� �
� �0:7 �0:7

0:8 0:9

� �
¼ �0:3 1:2

2:2 3:1

� �
;

and

E ¼
�1� 0:7 0:5� 0:7 �10:3
3þ 0:8 4þ 0:9 �10:3

�13:3� 11:3 �12:3þ 1:3 �5:7

2
4

3
5 ¼ �1:7 �0:2 �10:3

3:8 4:9 �10:3
�24:6 �11 �5:7

2
4

3
5:

Eigenvalues for D and E are calculated as follows:

fλDg ¼ f�0:9516; 3:7516g;

fλEg ¼ f1:6224; 17:6885;�21:8109g:

Therefore, the eigenvalues of M are obtained:

fλMg ¼ fλDg[fλEg ¼ f�0:9516; 3:7516; 1:6224; 17:6885;�21:8109g:

4.2.4 Transformation of Form III into Form II

In this section, it is shown that the canonical Form III can be obtained from the

canonical Form II, Ref. [10]. In order to show this property, the following results are

first considered:

Let a 2N � 2Nmatrix L be augmented by an arbitrary row and a column with all

zero entries, as follows:

C ¼ L 0

X 0

� �
ð2Nþ1Þð2Nþ1Þ

: (4.15)

The matrix C has in its (2N + 1)th column all zero entries, and the eigenvalues

of C and L are identical, with the exception of an additional zero eigenvalue for C.

This can be proved as follows:

The first 2N rows of C are multiplied by k1, k2, . . ., k2N, respectively, and the

sum is equated to zero. Since any multiple of the last column will be zero, therefore

the following equations are obtained:

LKþ X ¼ 0: (4.16)

If L is invertible (i.e. if det (L) 6¼ 0), then K ¼ �L�1X and k1, k2, . . ., k2N can

be found and the last row of C becomes zero. However, if det (L) ¼ 0, then there

are many sets of ki which put the last row of C into zero. Therefore, one can
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conclude that there is always at least one transformation that makes the last row of

C as zero.

If the kth row of a matrix is multiplied in m and the kth column is divided by m,

the eigenvalues of this matrix stay unchanged. The reason is that the magnitude of

the diagonal entry stays constant, and if it is expanded with respect to a row and

column, the determinant of the submatrices stays unaltered.

Algorithm. Add a zero column together with an arbitrary row with zero entry in

the second column as shown in the following:

A B P

B A P

Q H R

2
4

3
5)

A 0 B P
ðH�QÞ

2
0
ðH�QÞ

2
0

B 0 A P

Q 0 H R

2
6664

3
7775: (4.17)

Add half of the 4th column to column 2, and add half of 4th row to row 2. Now

interchange column 2 with column 4. These operations are shown in the following:

A P=2 B P

H=2 R=4 Q=2 R=2

B P=2 A P

Q R=2 H R

2
6664

3
7775)

A P B P=2

H=2 R=2 Q=2 R=4

B P A P=2

Q R H R=2

2
664

3
775: (4.18)

Column 4 is multiplied by 2 and row 4 is multiplied by 1/2, resulting in

A P B P

H

2

R

2

Q

2

R

2

B P A P

Q

2

R

2

H

2

R

2

2
666666664

3
777777775
) M N

N M

� �
(4.19)

where
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A
P

2
B P

H

2

R

4

Q

2

R

2

B
P

2
A P

Q
R

2
H R

2
6666666664

3
7777777775
)

A P B
P

2
H

2

R

2

Q

2

R

4

B P A
P

2

Q R H
R

2

2
6666666664

3
7777777775

Mþ N ¼
Aþ B 2P
ðQþHÞ

2
R

" #
; M� N ¼

A�B 0
ðH�QÞ

2
0

" #
: (4.20)

Column 2 is multiplied by 1/2, and the second row is multiplied by 2, resulting

in E.

E ¼ Aþ B P

QþH R

� �
: (4.21)

The right-hand matrix M � N in Eq. 4.20 has the same eigenvalues as those of

A � B with exception of having 2N extra zeros. E and D are the same matrices

obtained for Form III in the previous section.

4.2.5 Form IV Symmetry

Definition. Consider the following 6 � 6 matrix in a tri-diagonal form:

66hssh
shsh

hssh
shsh

hssh
shhs

´--
--

--
--

--
--

=M ð4:22Þ

The entries of M have the following properties:

1. Each row-sum of this matrix is equal to zero and the row-sum of non-diagonal

entries has the same value as its diagonal entry with reverse sign.

2. Matrix M has a central core in the following form:
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C ¼
s �h Q

�h s

s �h
Qt �h s

2
64

3
75
4�4

where Q ¼ 0 0
h� s 0

h i
: (4.23)

The core C consists of two parts in Form II, with Q showing the type of the link

between these two parts.

Matrix M is obtained by the addition of two rows and two columns to the

beginning and end of C.

The characteristic polynomial of M can be expressed as follows:

PMðλÞ ¼ λð2h� 2sþ λÞ½ � λ2 � 2sλþ sh� h2
� �

λ2 � 2sλþ 3sh� 3h2
� �

: (4.24)

• The first term of this equation can be considered as the characteristic equation of

the following matrix;

e1 ¼ s� h h� s

h� s s� h

� �
) λe1 ¼ f0;�2hþ 2sg; (4.25)

e1 is a matrix of Form II.

• The second term of Eq. 4.24 can be taken as the characteristic equation of the

following matrix:

e2 ¼ sþ h �s
s s� h

� �
) λe2 ¼ sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ h2 � sh

p
; s�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ h2 � sh

pn o
: (4.26)

• The third part of Eq. 4.24 is treated as the characteristic equation of

e3 ¼ 2s 3h

h� s 0

� �
) λe3 ¼ sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2� 3shþ 3h2

p
; s�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2� 3shþ 3h2

pn o
: (4.27)

Rearranging the entries of an arbitrary matrix M, one may find one or more

submatrices such that the eigenvalues of these submatrices are among the

eigenvalues of M. Then M is called a reflective matrix, and the submatrices with

the above properties are called the principal submatrices of M.

Now we want to know when M is a reflective matrix and which submatrices of

M are principal. Suppose

SM ¼ s �h
�h s

� �
(4.28)

be a principal submatrix of M. For SM we have
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PSMðλÞ ¼ λ2 � 2sλþ s2 � h2:

In order to relate the eigenvalues of SM to those of e3, the polynomials of

SM and e3 are equated as

λ2 � 2sλþ s2 � h2 ¼ λ2 � 2sλþ 3sh� 3h2; (4.29)

resulting in

s1 ¼ 2h and s2 ¼ h:

Thus, for s ¼ 2h and s ¼ h, the matrix M becomes reflective, and SM in

Eq. 4.28 becomes its principal submatrix.

For s ¼ 2h,

Pe2ðλÞ ¼ λ2 � 4hλ� h2;

and

Pe3 ðλÞ ¼ λ2 � 4hλþ 3h2:

It is easy to show that for s ¼ 2h,

λe2f g 6¼ λe3f g;

and similarly

λe3f g 6¼ λe1f g:

Therefore

λe1f g \ λe2f g \ λe3f g ¼ ;: (4.30)

Hence, for s ¼ 2h, the matrix M becomes a well-structured reflective matrix.

4.2.6 Method for the Formation of e1 and e2 Matrices

The matrixM of Eq. 4.22 can be considered as two Form III matrices connected to

each other by a submatrix Q as follows:

M ¼ Form III Q

Qt Form III

� �
: (4.31)
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The upper-left part being a Form III matrix having the following condensed

matrix:

M0 ¼
s� h h� s 0

h� s s �h
0 �h s

2
4

3
5: (4.32)

This matrix has a Form II core as follows:

e1 ¼ s� h h� s

h� s s� h

� �
:

Hence, using Eq. 4.7, its factorisation leads to

eC ¼ ½s� hþ h� s� ¼ ½0�;

eD ¼ ½s� h� hþ s� ¼ ½2s� 2h�:

The lower-right part of M in Eq. 4.22 has Form III symmetry as

M0 ¼
s �h 0

�h s h� s

0 h� s s� h

2
4

3
5; (4.33)

with a condensed matrix:

e2 ¼ s� ð�hÞ h� sþ ð�hÞ
h� s s� h

� �
¼ sþ h �s

h� s s� h

� �
:

The submatrices e1 and e2 are called operative submatrices of M.

Example 4.4. Consider a 6�6 matrix M as follows:

-

--

--

-

--

-

=

330000

352000

025300

003520

000253

000033

M

For this matrix, s ¼ 5 and h ¼ 2, and since s 6¼ h and s 6¼ 2h, therefore

M cannot be a reflective matrix.

The eigenvalues of M are as follows:
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λM ¼ 0:6411; 0; 2:3542; 6; 7:6458; 9:3589f g:

The operative submatrices are constructed as follows:

e1 ¼ 3 �3þ ð0Þ
�3 5þ 9� 2Þ

� �
¼ 3 �3
�3 3

� �
) λe1 ¼ f0; 6g;

e2 ¼ 5� ð�2Þ �3þ ð�2Þ
�3� ð0Þ 3þ ð0Þ

� �
¼ 7 �5
�3 3

� �
) λe2 ¼ f9:3589; 0:6411g;

e3 ¼ 2� 5 3� 2

2� 5 0

� �
¼ 10 6

�3 0

� �
) λe3 ¼ f7:6458; 2:3542g:

Therefore,

λM ¼ λe1f g [ λe2f g [ λe3f g:

Now if we select s ¼ 2h with h ¼ 1, then a reflective matrix will be formed as

follows:

-

--

--

--

--

-

=

110000

121000

012100

001210

000121

000011

M

with

fλMg ¼ 0:2679; 0; 1; 2; 3; 3:7321f g:

The submatrix e3 is a principal submatrix of M, since the eigenvalues of e2 are

reflected in those of M. As the eigenvalues of e3 have no common overlap with

those of e1 and e2, hence, M is a well-structured reflective matrix.

The submatrices and their eigenvalues are calculated as follows:

e1 ¼ 1 �1
�1 1

� �
) λe1 ¼ f0; 2g; e2 ¼ 3 �2

�1 1

� �
) λe2 ¼ f3:7321; 0:2679g;

e3 ¼ 2 �1
�1 2

� �
) λe3 ¼ f3; 1g:
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4.3 Generalization of Form IV to Higher-Order Matrices

In order to maintain the properties of the previous matrices, the row-sum of non-

diagonal entries should be the same as the diagonal entry of the considered row with

reverse sign.

Consider an N � N block symmetric matrix Mg for which the cores E1, E2 and

E3 contain submatrices S andH in place of the entries s and h. Therefore,Mg can be

written as follows:

Mg ¼

S�H H� S 0 0 0 0

H� S S �H 0 0 0

0 �H S H� S 0 0

0 0 H� S S �H 0

0 0 0 �H S H� S

0 0 0 0 H� S S�H

2
6666664

3
7777775
6N�6N

: (4.34)

Since [H � S]t ¼ [H � S], therefore S6 � 6 and H6 � 6 are both symmetric. For

this matrix E1, E2 and E3 are calculated as follows:

E1 ¼
S�H H� S

H� S S�H

� �
2N�2N

; E2 ¼
SþH �S
H� S S�H

� �
2N�2N

;

and E3 ¼
2S 3H

H� S 0

� �
2N�2N

: (4.35)

Example 4.5. The following 12 � 12 matrix has the required properties.

1212626200000000

262600000000

638022000000

260822000000

002280220000

002208220000

000022802200

000022082200

000000228062

000000220826

000000006262

000000002626

´--
--
---

---
----
----

----
----

---
--

-
--

=Mg

Considering the partitioning with 2 � 2 submatrices, S and H are as follows:
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S¼ 8 0

0 8

� �
and H¼ 2 2

2 2

� �
) S�H¼ 6 �2

�2 6

� �
and H�S¼ �6 2

2 �6
� �

:

Now the cores E1, E2 and E3 are formed as follows:

E1 ¼
6 �2 �6 2

�2 6 2 �6
�6 2 6 �2
2 �6 �2 6

2
664

3
775:

E1 itself has a Form II symmetry, and using Eq. 4.15 it is decomposed as follows:

E1C ¼ 6þ ð�6Þ �2þ 2

�2þ 2 6þ ð�6Þ
� �

¼ 0 0

0 0

� �
) λE1C ¼ f0; 0g;

E1D ¼ 6� ð�6Þ �2� ð2Þ
�2� 2 6� ð�6Þ

� �
¼ 12 �4
�4 12

� �
) χE1D ¼ f8; 16g:

Therefore,

λE1 ¼ 0; 0; 8; 16f g:

The matrices E2 and E3 are constructed by substituting S and H in Eq. 4.38.

The calculation for the eigenvalues of the submatrices in a similar manner leads to

λE2 ¼ 0; 16; 14:9282; 1:0718f g and λE3 ¼ 16; 0; 12; 4f g:

Thus,

λMg ¼ 0; 0; 8; 16; 0; 16; 14:9282; 1:0718; 0; 16; 12; 4f g:

Remark. Consider the central core of Mg as a principal submatrix MgP, that is,

MgP ¼
8 0 �6 2

0 8 2 �6
�6 2 8 0

2 �6 0 8

2
664

3
775;

then the eigenvalues will be

λE3 ¼ 0; 4; 12; 16f g:

Therefore, Mg is a well-structured reflective matrix.
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4.4 Special Pattern Form IV Matrices

Here, the conditions are derived for having well-structured reflective matrices.

Consider the following matrix:

66hsh

hsh

hsh

hsh

hsh

hhs

´--

--

--

--

--

--

=Ms ð4:36Þ

The difference between this matrix and that of Eq. 4.22 is that inMs the row-sum

for rows is s � 2h and not zero. The characteristic polynomial of Ms is as follows:

PMsðλÞ ¼ ðλ� sÞð2h� sþ λÞ � ðh� sþ λÞð�h� sþ λÞ
� �3h2 þ s2 � 2sλþ λ2
� �

:
(4.37)

The first term can be taken as the polynomial for the following e1 matrix:

e1 ¼ s� h �h
�h s� h

� �
) λe1 ¼ fs; s� 2hg: (4.38)

The second part of the polynomial corresponds to

e3 ¼ s �h
�h s

� �
) λe3 ¼ fs� h; sþ hg: (4.39)

This matrix is a principal submatrix of Ms, since its eigenvalues are reflected in

those ofMs. It has Form II symmetry and the eigenvalues can be obtained using this

property.

The third part belongs to

e2 ¼ sþ h �2h
2h s� h

� �
) λe2 ¼ sþ

ffiffiffi
3
p

h; s�
ffiffiffi
3
p

h
n o

: (4.40)

Therefore,
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λðMsÞg ¼ λe1 [ λe2 [ λe3 ¼ s; s� 2h; s� h; sþ h; sþ
ffiffiffi
3
p

h; s�
ffiffiffi
3
p

h
n o

: (4.41)

This special case can also be generalised to matrices of higher dimensions, by

considering submatrices S and H in place of the entries s and h.

For this form, one can easily identify the principal submatrix positioned at the

central part of the matrix. The submatrices S andH can immediately be formed and

used in the formation of E2 and E3 matrices.

Example 4.6. Consider a 12 � 12 matrix as follows, which has the properties of

special Form IV matrices.

1212211000000000
120100000000
103110000000

011301000000
001031100000
000113010000
000010311000
000001130100
000000103110
000000011301
000000001021
000000000112

´--
--
---

---
---

---
---

---
---

---
--

--

=Ms

The principal submatrix can easily be identified as

E3 ¼
3 �1 �1 0

�1 3 0 �1
�1 0 3 �1
0 �1 �1 3

2
664

3
775) λE3 ¼ f1; 3; 3; 5g;

and we have

S¼ 3 �1
�1 3

� �
;H¼ 1 0

0 1

� �
; S�H¼ 2 �1

�1 2

� �
and S�2H¼ 1 �1

�1 1

� �
:

E1 and E2 and the corresponding eigenvalues can then easily be calculated as

follows:

E1 ¼ S�H �H
�H S�H

� �
) λE1 ¼ f0,2,2,4g:
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Similarly

E2 ¼ SþH �2H
�H S�H

� �
) λE2 ¼ f5:7321,0:2679,3:7321,2:2679g:

Leading to

λMs ¼ λE1 [ λE2 [ λE3

¼ f0; 2; 2; 4; 5:731; 0:2679; 3:7321; 2:2679; 1; 3; 3; 5g:

4.5 Eig[M] Operator

For a matrix M, Eig[M] is defined as an operator which acts on M and results its

eigenvalues. For example, for an N � N matrix M we have

Eig½MN�N� ¼ ~Vn ¼ fλ1; λ2; . . . ; λng: (4.42)

For the factors E1, E2 and E3, we had

Eig E1½ � ¼ S; S� 2Hf gt; Eig E2½ � ¼ Sþ 3H; S� 3Hf gt; and

Eig E3½ � ¼ S�H; SþHf gt:

The most interesting property of Form IV is that if S and H submatrices are

replaced by s and h, then the operator ‘Eig’ will be as follows:

Eig E1½ � ¼ Eig S; S� 2H½ �t ¼ Eig S½ �;Eig S� 2H½ �f gt;
Eig E2½ � ¼ Eig Sþ

ffiffiffi
3
p

H; S�
ffiffiffi
3
p

H
n ot

¼ Eig Sþ
ffiffiffi
3
p

H
h i

;Eig S�
ffiffiffi
3
p

H
h in ot

;

Eig E3½ � ¼ Eig S�H; SþHf gt ¼ Eig S�H½ �;Eig SþH½ �f gt: ð4:44Þ

This simplifies the computation, since once S and H are formed, all the

eigenvalues of M can be obtained as follows:

Eig M½ � ¼ Eig S½ �;Eig S� 2H½ �;Eig S�H½ �;Eig SþH½ �;Eig Sþ
ffiffiffi
3
p

H
h i

;
n

Eig S�
ffiffiffi
3
p

H
h iot

; (4.45)

and there is no need for explicit formation of E1, E2 and E3. The application is

presented in the following section.
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4.6 Laplacian Matrices for Different Forms

The Laplacian matrix L(S) is an important matrix associated with a graph S. The

list of eigenvalues together with their multiplicities of L(S) is known as the

spectrum of S. There are interesting relationships between the properties of a

graph and the Laplacian spectrum. Since a graph is the underlying model of a

vibrating structure or a system, therefore eigenvalues of graphs are of great

importance in their study.

The Laplacian L(S) ¼ [lij]N � N of a weighted graph S is an N � N matrix

defined as follows:

L Sð Þ ¼ D Sð Þ � A Sð Þ; (4.46)

where N is the number of vertices of the graph and

lij ¼
�ðsum of the member weights connecting ni to njÞ
sum of the weights of members connected to ni

0

8<
:

for ni connected to nj;
for ni ¼ nj;
otherwise:

(4.47)

When the weights of members are considered as one, then D(S) and A(S)

become the degree matrix and adjacency matrix of S, respectively.

4.6.1 Symmetry and Laplacian of Graphs

In this section, M is taken as the Laplacian of S, and for different forms of M, the

corresponding graphs are introduced. This correspondence provides an efficient

means for calculating the eigenvalues of the Laplacian of graphs.

Consider a symmetric graph S with an axis of symmetry. The following cases

may arise:

Symmetry of Form I: The axis of symmetry does not pass through members and

nodes. In this case, S is a disjoint graph and its components S1 and S2 are

isomorphic subgraphs, Fig. 4.1. In order to have the Laplacian matrix in Form I,

S1 S2

Fig. 4.1 Symmetry of Form I
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the nodes of S1 are numbered first as 1, 2, . . ., N/2, followed by the labelling of the

nodes of S2 as N/2 + 1, N/2 + 2,. . .,N, such that for a typical node I in S1, the

corresponding symmetric counterpart in S2 is labelled as I + N/2.

Symmetry of Form II: The axis of symmetry passes through members, and the

graph S has an even number of nodes. The members cut by the axis of symmetry are

called link members, and their end nodes are taken as linked nodes, Fig. 4.2. Link
members connect the two isomorphic subgraphs S1 and S2 to each other. For this

case, two different types of connections can be considered, as illustrated in

S1 S2

I

J

K

I+N/2

J+N/2

K+N/2

I I+N/2

S1

K

J

K+N/2

S2

J+N/2

a b

Fig. 4.2 Symmetry of Form II. (a) A direct connection. (b) A cross-connection

S1 S2 S1 S2

m

n

m

n

a b

Fig. 4.3 Symmetry of Form II with axis passing through nodes. (a) The axis of symmetry.

(b) Altering the axis of symmetry

S1 S2

Fig. 4.4 A symmetry of Form III
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Fig. 4.2a, b. The first one is a direct connection and the second is called a cross-
connection.

In a direct connection, a typical node I in S1 is connected to the node labelled as

I + N/2 in S2 by a link member. In cross-connection, a typical pair of nodes I and J

in S1 is connected to J + N/2 and I + N/2, respectively. A combination of the direct

and cross-connection is also possible.

For some graphs, the axis of symmetry may pass through an even number of

nodes, as illustrated in Fig. 4.3a. Then, one may still consider the graph as Form II

by altering the axis of symmetry, as shown in Fig. 4.3b, while maintaining the

topological symmetry of the model.

Symmetry of Form III: In this case, the axis of symmetry passes through nodes,

while the conditions of direct or cross-connections are not fulfilled, Fig. 4.4. The

nodes on the axis of symmetry are called central nodes.
A combination of Form II and Form III connections may also exist in a model.

4.6.2 Factorisation of Symmetric Graphs

Once the three types of symmetry are identified, the isomorphic subgraphs S1
and S2 are modified such that the union of eigenvalues of the Laplacian matrices

of the two modified subgraphs becomes the same as the eigenvalues of the entire

graph S. The process of the modifications applied to the subgraphs is called

healing of the subgraphs, and the entire process may be considered as the

factorisation of a graph. The subgraphs obtained for a graph S after healings

are called the divisor and co-divisor of S. The following operations should be

performed for different forms.

Factorisation for Symmetry of Form I: No healing is required, and S1 and S2 are

the factors of S.

Factorisation for Symmetry of Form II: For direct connection, link members are

removed and S1 resulting in the subgraph C, known as the divisor of S, is

obtained. Loops are added to the linked nodes of the subgraph S2 to form the

co-divisor D of S.

For cross-connection, after removal of the link members, new members are

added between I and J in S1 in order to obtain the divisor C. For S2, k loops are

added to each linked node, where k is the number of links connected to that

particular linked node. The members between a typical pair of nodes labelled as

J + N/2 and I + N/2 are then removed, in order to obtain the co-divisor D.

Factorisation for Symmetry of Form III: The nodes on the axis of symmetry are

changed to neutral nodes in S1 to obtain the divisor D. A neutral node is a node

which is drawn in the graph; however, it does not take part in the formation of the

Laplacian matrix. In order to obtain the co-divisor E, the nodes on the axis of

symmetry are added to S2, and each central node is connected to the corresponding

linked nodes in S2 by directed members.
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The above rules provide simple means for factorising graphs with symmetry.

Therefore, simple calculation of eigenvalues of the Laplacian matrices of such

graphs becomes feasible.

Example 4.7. Consider the symmetric graph S shown in Fig. 4.5.

The nodes A, B and C in the first subgraph have the corresponding nodes A0, B0

andC0 in the second subgraph. If A, B, C,A0, B0 andC0 are numbered as 1–6, then the

Laplacian of S in Fig. 4.5 can be written as follows:

L ¼

3 �1 �1 �1 0 0
�1 2 �1 0 0 0
�1 �1 3 0 0 �1
�1 0 0 3 �1 �1
0 0 0 �1 2 �1
0 0 �1 �1 �1 3

2
6666664

3
7777775
¼

G LI

LI G

2
666664

3
777775
N�N

:

The �1 entries in LI correspond to the link members AA0 and CC0.
The condensed matrices C and D in this form are obtained as follows:

C ¼ Gþ LI and D ¼ G� LI: (4.48)

Matrix C is the same as G with �1 added to its linked nodes A and C, and D is

the same asG with�(�1) added to its linked nodesA0 andC0. Therefore, C and D

can be viewed as the Laplacian matrices of two subgraphs C and D as shown in

Fig. 4.5, healed with loops being added to D at A0 and C0. Thus, a factorisation of
S is obtained where healings are made to include the effect of link members AA0

and CC0.
The matrices C and D are calculated as follows:

C ¼
3 �1 �1
�1 2 �1
�1 �1 3

2
4

3
5þ �1 0 0

0 0 0

0 0 �1

2
4

3
5 ¼ 2 �1 �1

�1 2 �1
�1 �1 2

2
4

3
5;

B'B

S
C D

B

A

C

A'

C' B'

A'

C

A

C'

Fig. 4.5 A symmetric graph

S and its factorisation
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and

½D� ¼
3 �1 �1
�1 2 �1
�1 �1 3

2
4

3
5� �1 0 0

0 0 0

0 0 �1

2
4

3
5 ¼ 4 �1 �1

�1 2 �1
�1 �1 4

2
4

3
5 :

Therefore, in place of finding the eigenvalues of the Laplacian of S, those of

C and D can be calculated, and

λL Sð Þ ¼ λC Sð Þf g[ λD Sð Þf g
λCðSÞ ¼ f0; 3; 3g; λDðSÞf g ¼ f1; 4; 5g; (4.49)

and

fλL Sð Þg ¼ 0; 1; 3; 3; 4; 5f g:

Example 4.8. Consider a graph S with symmetry of Form II and cross-

connections, as shown in Fig. 4.6. For this graph the Laplacian matrix is as follows:

L ¼
3 �1 �1 �1
�1 3 �1 �1
�1 �1 3 �1
�1 �1 �1 3

2
64

3
75:

In this example, the link members 1–3 and 2–4 have direct connections and 1–4

and 2–3 have cross-connections. Therefore, one loop in node 1 and one in node

2 are produced with respect to direct symmetry, and additional loops are due to the

cross symmetry. The deletion of member 1–2 and the addition of an extra member

between 3 and 4 are also the healing required because of the cross-connection. The

factorisation is shown in Fig. 4.6 and the corresponding C and D matrices are as

follows:

A'

A

B'

B

S

C D

B

A

A'

B'

Fig. 4.6 A graph S and its

factors C and D
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C ¼ 2 �2
�2 2

� �
and D ¼ 4 0

0 4

� �
:

Example 4.9. A graph S is considered as shown in Fig. 4.7. The Laplacian of S is

a 16 � 16 matrix, which is put in Form II with suitable ordering. The subgraphs

corresponding to the condensed submatrices C and D are obtained as shown in

Fig. 4.7. Here the members in C with both ends as linked nodes are changed into

multiple members, and the linked nodes in D have received the appropriate

number of loops. Further decompositions result in the subgraphs illustrated in

Fig. 4.7. The eigenvalues are then calculated for the subgraphs as provided in

Table 4.1.

The eigenvalues for the Laplacian L of S are obtained as follows:

λL Sð Þf g ¼ 0; 7; 4; 5; 1:4364; 9:8053; 6:3596; 1:4364; 9:8053; 4:3987;f
6:3596; 2:1518; 5:6727; 7; 9:1755g:

Using the symmetry, the Laplacian matrix of S with dimension 16 � 16 having

256 entries is reduced to four matrices of dimension 4 � 4 having counted together

64 entries.

Table 4.1 Subgraphs of S

and their eigenvalues
Subgraphs Eigenvalues

CC 0, 7, 4, 5

DC 1.4364, 9.8053, 6.3596

CD 1.4364, 9.8053, 4.3987, 6.3596

DD 2.1518, 5.6727, 7, 9.1755

CC: CD: DC: DD:

C D
S

Fig. 4.7 A graph S with

symmetry and its

decomposition
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Factorisation for Symmetry of Form IV: Consider the matrix M as given in the

example of Sect. 4.4. This matrix can be considered as the Laplacian matrix of the

graph G in Fig. 4.8.

4.6.3 Form III as an Augmented Form II

Consider the Laplacian for Form II and augment it by a row and a column as follows:

=

zcba

c

b

a

GLI

LIG

L ð4:50Þ

Here, we have no column with equal entries, and the only augmented row is the

transpose of the augmented column. Similar to the general case, many augmented

rows and columns may be included.

Consider the graph shown in Fig. 4.9:

1 2

3

4

Fig. 4.9 A graph S

e1 e2e3

Fig. 4.8 A graph and its

factors

92 4 Canonical Forms, Basic Definitions and Properties



The Laplacian is formed as follows:

[ ]

-
---

--
--

=

1100

1311

0121

0112

L ,

where G ¼ ½2� and I ¼ ½�1�.
The condensed matrices D and E and their eigenvalues are obtained as follows:

D ¼ 2½ � � �1½ � ¼ 3½ � and λD ¼ 3f g;

and

E½ � ¼
2þ ð�1Þ �1 0

�1þ ð�1Þ 3 �1
0þ 0 �1 1

2
4

3
5 ¼ 1 �1 0

�2 3 �1
0 �1 1

2
4

3
5and fλEg ¼ 0; 1; 4f g:

Hence, λL Sð Þf g ¼ 0; 1; 4; 3f g:
In Form III, the matrix L contains a submatrixH corresponding to the symmetric

core of the graph. A symmetric core of a graph is a subgraph for which the

corresponding Laplacian matrix is of Form II. As an example, for the graph

shown in Fig. 4.10, the edge KL is the symmetric core.

Node I is linked to nodes K and L in a symmetric manner. K and L are called in-
core nodes and I is known as the out-of-core node.

In order to construct Form III, the in-core nodes and the out-of-core nodes should

be ordered. In-core nodes are numbered in a suitable manner for Form II, followed

by an arbitrary ordering of the out-of-core nodes.

For constructing the graphmodel of the condensedmatrixE, it should be noticed that

the addition of the last augmenting row and column results in a nonsymmetric matrix.

Therefore, we should define a directed subgraph. In a directed graph, the members are

directed, and the degree of a node is the number of arrows leaving that node. Amember

with two opposing arrows can be treated as a member with no direction.

K L

i

Fig. 4.10 A graph with a

symmetric core
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Example 4.10. Consider the symmetric graph of Fig. 4.11 with an odd number of

nodes. This graph has seven nodes and contains a symmetric core of Form II. The

additional node A is connected to symmetric nodes 3 and 30. It can be seen that the

symmetry is preserved.

The Laplacian of the graph shown in Fig. 4.11 has Form III. The nodal number-

ing of the core is the same as for Form II, followed by node A numbered as 7. The

corresponding Laplacian has the following pattern:

L ¼

2 �1 �1 0 0 0 0

�1 2 �1 0 0 0 0

�1 �1 3 0 0 0 �1
0 0 0 2 �1 �1 0

0 0 0 �1 2 �1 0

0 0 0 �1 �1 3 �1
0 0 �1 0 0 �1 2

2
666666664

3
777777775
:

The corresponding condensed matrices are as follows:

D ¼
2 �1 �1
�1 2 �1
�1 �1 3

2
4

3
5) fλDg ¼ f3:7321; 3; 0:2679g;

E ¼
2 �1 �1 0

�1 2 �1 0

�1 �1 3 �1
0 0 �2 2

2
664

3
775) fλEg ¼ f0; 3; 4:4142; 1:5858g:

The matrix L without partitioning leads to fλLg ¼ fλDg �[fλEg ¼ 3; 3:7321;f
3; 0:2679; 4:4142; 1:5858; 0g . Here, L has 49 entries, while the sum of entries

for two condensed matrices D and E is 3 � 3 + 4 � 4 ¼ 25. For cores with higher

numbers of nodes, partitioning leads to higher saving in numerical calculations.

In this example, the diagonal entry of D in the third row is 3, while the sum

of non-diagonal entries in that row is �2. Here, unlike the condensed matrix of

1

2
3

1'

2'
3'

A
D E

S

neutral node

1

2
3

A

1'

2'
3'

Fig. 4.11 A symmetric graph

with seven nodes and its

factors D and E
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Form II, where the sum of absolute values of non-diagonal entries is bigger than the

diagonal entry by an even number, the sum is bigger by an odd number. The reason

is that one non-diagonal non-zero entry is in the augmented column which does not

take part in the subtraction for calculating D. Therefore, a neutral node is defined as
a node which we draw in the graph; however, it does not take part in the formation

of the Laplacian matrix.

Example 4.11. For the graph shown in Fig. 4.12, the subgraphs of E and D are

illustrated in this figure.

For the subgraph D, the Laplacian and its eigenvalues are as follows:

D ¼

3 �1 �1 0 0 0 0 0

�1 4 0 �1 0 0 0 0

�1 0 3 �1 �1 0 0 0

0 �1 �1 5 0 �1 0 0

0 0 �1 0 3 �1 �1 0

0 0 0 �1 �1 5 0 �1
0 0 0 0 �1 0 2 �1
0 0 0 0 0 �1 �1 4

2
66666666664

3
77777777775
;

fλDg ¼ f4; 4:1815; 3:4613; 2:8305; 1:5179; 5:4664; 0:6958; 6:8423g:

For the subgraph E, the Laplacian and the corresponding eigenvalues are as

follows:

E ¼

3 �1 �1 0 0 0 0 0 �1
�1 2 0 �1 0 0 0 0 0

�1 0 3 �1 �1 0 0 0 0

0 �1 �1 3 0 �1 0 0 0

0 0 �1 0 3 �1 �1 0 0

0 0 0 �1 �1 3 0 �1 0

0 0 0 0 �1 0 2 �1 0

0 0 0 0 0 �1 �1 2 0

�2 0 0 0 0 0 0 0 2

2
6666666666664

3
7777777777775
;

SD E

neutral node

Fig. 4.12 A graph S and its

factors D and E
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fλEg ¼ f0; 5:5254; 1:4470; 4:4778; 2:3028; 3:1780; 3:5584; 2; 0:5105g:

The set of eigenvalues of L is the union of the eigenvalues of E and D.

The main graph has 17 � 17 ¼ 289 entries in L, while the sum of entries of E

and D is 9 � 9 + 8 � 8 ¼ 145, which is nearly half of that of L.

4.6.4 Mixed Models

A graph may have different symmetries in the process of sequential decomposition.

In the following, examples are considered containing both Form II and Form III

symmetries.

Example 4.12. For this example, operations for decomposing and healing are

shown in Fig. 4.13, where S is first decomposed to C and D, both being Form III.

Then C is decomposed to CD and CE. Similarly, D is decomposed to DD and DE.

Example 4.13. For this model, operations for decomposing and healing are shown

in Fig. 4.14, where S is first decomposed to C and D having Form II and Form III,

respectively. Then C is decomposed to CC and CD, both being Form II. Similarly,

D is decomposed to DD and DE, which have Form II and Form III, respectively. CC

is decomposed to CCC and CCD, and CD is decomposed to CDC and CDD.

S

C D

CD CE DD DE

Fig. 4.13 A symmetric

graphs S and the

corresponding decomposition

and healing

S

C D

CC DECD DD

CCC CCD

CDC CDD

Fig. 4.14 A symmetric graph

S, its decomposition and

healing
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Remark. A graph may contain different symmetries, and an optimal sequence of

using these symmetries for decomposition can have a decisive effect on the size and

quality of the factors of the graph.

4.7 Graph Representation of Form IV Symmetry

4.7.1 Graph Representation

Matrix [M] can be viewed as the Laplacian matrix of the graph, as shown in

Fig. 4.15.

For [M] in Eq. 4.22, the submatrices ½e1�; ½e2� and ½e3� correspond to the

subgraphs shown in Fig. 4.16.

This graph has two symmetries of Form III, connected to each other by a Form II

symmetry. Using the previously developed factorisation method of [1, 2], one

obtains the factors as illustrated in Fig. 4.17. The decomposition is performed by

a Form II factorisation, followed by a Form III factorisation.

A comparison of Figs. 4.16 and 4.17 shows that the factors are quite different.

In the latter factorisation, a core is resulted with a matrix having the dimension as
N
2
� N

2
, while the present method results in factors with smaller dimensions.

The graph e3 is a principal factor of S, since its eigenvalues are exactly reflected
in those of S, and this is an attractive result for graphs.

Consider six identical subgraphs g, connected by subgraphs c, as shown in

Fig. 4.18.

Let Lg

� �
be the Laplacian matrix of an internal graph g and [Lc] be the Laplacian

matrix of the connecting graph c. For a typical internal unit, we have

Lc½ � � 2½H� ¼ Lg

� �
; (4.51)

and for an external unit,

L0c½ � � ½H� ¼ Lg

� �
; (4.52)

where [ L
0
c ] is the Laplacian matrix of the external graphs g. The necessary

and sufficient condition of the Laplacian of S to have Form IV symmetry is that

H½ �t ¼ ½H�. This equality holds when Lc½ � and L
0
c

� �
are also symmetric. This form

simplifies the eigensolution of grid type of models.

1 2 3 4 5 6

Fig. 4.15 The graph representation of [M] in Eq. 4.35
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4.7.2 Examples

Example 4.14. Consider the grid G shown in Fig. 4.19.

The Laplacian matrix L(G) can easily be constructed. For calculating the

eigenvalues of L(G), the submatrices [Lc] and [H] can be identified as follows:

Lc½ � ¼
3 �1 0

�1 4 �1
0 �1 3

2
4

3
5) Eig Lc½ � ¼ f2; 3; 5g;

1 2 3 4 5 6

Fig. 4.17 Factorisation of

the graph S

g g g g g g
c c c c c

Fig. 4.18 A general sketch of

a graph with identical

subgraphs

Fig. 4.19 A simple grid G

1 2 3 4 5 6

21
65

43

e1

e2

e3

Fig. 4.16 A graph and its

factors
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½H� ¼
1 0 0

0 1 0

0 0 1

2
4

3
5:

Now the submatrices of Eq. 4.44 are formed and the corresponding Eigs are

calculated:

Eig½Lc � 2H� ¼ f0; 1; 3g; Eig½Lc þH� ¼ f3,4,6g; Eig½Lc �H� ¼ f1; 2; 4g;
Eig½Lc þ

ffiffiffi
3
p

H� ¼ f3:7321; 4:7321; 6:7321g; and

Eig½Lc �
ffiffiffi
3
p

H� ¼ f0:2679; 1:2679; 3:2679g:

Eig[Ms] is then found as the union of the above eigenvalues. Six factors of the grid

are shown in Fig. 4.20a–f. These factors have Form III symmetry and can further be

factorised.

Example 4.15. Consider the graph shown in Fig. 4.21. For the numbering provided

in this figure, a 48 � 48 Laplacian matrix L(G) can easily be constructed. For

calculating the eigenvalues of L(G), the submatrices [Lc] and [H] can be expressed

as follows:

Lc¼

4 �1 0 0 0 0 0 �1
�1 4 �1 0 0 0 0 0

0 �1 4 �1 0 0 0 0

0 0 �1 4 �1 0 0 0

0 0 0 �1 4 �1 0 0

0 0 0 0 �1 4 �1 0

0 0 0 0 0 �1 4 �1
�1 0 0 0 0 0 �1 4

2
66666666666666664

3
77777777777777775

and H¼

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

2
6666666666666666666664

3
7777777777777777777775

:

a

b

c 

d

e

f

Fig. 4.20 The factors of G

obtained by operator Eig.

(a) Lc, (b) Lc � 2H, (c) Lc

þH, (d) Lc �H, (e) Lc þ
ffiffiffi
3
p

H, (f) Lc �
ffiffiffi
3
p

H
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The eigenvalues for the factors are obtained as follows:

Eig Lc½ � ¼ f4:0000; 4:000; 2:5858; 2:5858; 5:4142; 5:4142; 2:0000; 6:0000g;
Eig Lc � 2H½ � ¼ f2:0000; :0000; 0:5858,0:5858,3:4142,3:4142,0:0000; 4:0000g;
Eig Lc �H½ � ¼ f3:0000; 3:0000; 1:5858; 1:5858; 4:4142; 4:4142; 1:0000; 5:0000g;
Eig Lc þH½ � ¼ f5:0000; 5:0000; 3:5858; 3:5858; 6:4142; 6:4142; 3:0000; 7:0000g;
Eig Lc þ

ffiffiffi
3
p

H
h i

¼ f5:7321; 5:7321; 4:3178; 4:3178; 7:1463; 7:1463; 3:7321;
3:7321g; and

Eig Lc �
ffiffiffi
3
p

H
h i

¼ f0:8537; 0:8537; 2:2679; 2:2679; 3:6822; 3:6822; 0:2679;
4:2679g:

The eigenvalues of the entire graph is now obtained as the union of the eigenvalues

of its factors as Eig[L(G)] ¼

f4:0000; 4:000; 2:5858; 2:5858; 5:4142; 5:4142; 2:0000; 6:0000; 2:0000; :0000;
0:5858,0:5858,3:4142; 3:4142; 0:0000; 4:0000; 3:0000; 3:0000; 1:5858; 1:5858;

4:4142; 4:4142; 1:0000; 5:0000; 5:0000; 5:0000; 3:5858; 3:5858; 6:4142; 6:4142;

3:0000; 7:0000; 5:7321; 5:7321; 4:3178; 4:3178; 7:1463; 7:1463; 3:7321; 3:7321;

0:8537; 0:8537; 2:2679; 2:2679; 3:6822; 3:6822; 0:2679; 4:2679g:

1

2

3

4

5

6

7

8

9

10

18 26 34 42

11

19

27

35
43

1

2 3

4

5

67

8

9

10 11

18
26

27

19

34

35

12

13

12

20

21

28

36

45

20

2128
29

29

3637
44

37
223038

46

Fig. 4.21 A graph with

circular node and member

numbering
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4.8 Generalised Form III Matrix

Now the question arises whether rows and columns with other properties can be

added to the core of a Form II pattern. When the sum of the absolute values for the

entries of an augmenting row is the same as that of its column, then D and E can be

formed as before. It should be noted that such a restriction is not necessary to be

imposed on the last row and column.

Consider the following form:

th row 

PH*

H][][

*][][

i®= AB

BA

M , ð4:53Þ

where P is a real number.

For the ith row,

or

Hþ bði;1Þ þ . . .þ bði; nÞ þ aði;nþ1Þ þ . . .þ aði;2nÞ ¼ aði;iÞ
		 		;

HþPn
j¼1

bði;jÞ þ
P2n

j¼n & j 6¼i
aði;jÞ ¼ aði;iÞ

		 		: (4.54)

Example 4.16. Consider a core in Form II:

N ¼ �6 2

2 �6
� �

2�2
:

Add an augmenting row and column to form M with the following properties:

1. Matrix M is symmetric.

2. M has condensed submatrices D and E.

3. Two numerical values are considered for H inM, namely H1 ¼ 4 and H2 ¼ �8.

-
-

=
PHH

H62

H26

M ð4:55Þ

For H ¼ 4, P is taken arbitrarily as 8, that is,

{lM1}={-8,-6.2462,10.2462}
844

462

426

1 Þ-
-

=M

The condensed submatrices are as follows:
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D1 ¼ ½�6� 2� ¼ ½�8� ) fλD1g ¼ f�8g:

E1 ¼ �4 4

8 8

� �
) λE1f g ¼ �6:2462; 10:2462f g:

These submatrices will contain the eigen-properties of part of the M.

For H ¼ 8, the numerical value of P is taken as �16, and

{lM2}={-8,2.8062,-22.8062}.
1688
862
826

2 Þ
---
--
--

=M

The corresponding condensed submatrices are as follows:

D2 ¼ ½�8� ) λD2f g ¼ �8f g;

E2 ¼ �4 �8
�16 �16

� �
) λE2f g ¼ 2:8062;�22:8062f g:

As mentioned before, in both M1 and M2 matrices some properties of the core

are left unaltered. These eigenvalues correspond to those of D. In this example,

H ¼ �8, the eigenvalue corresponding to D1 has this property.

All the properties of Sect. 4.5 are applicable to this special pattern. As an

example, the eigenvalues of M2 are:

λ1 ¼ �8) v1 ¼
�1
1

0

8>><
>>:

9>>=
>>;; λ2 ¼ 2:8062) v2 ¼

1

1

�0:85

8>><
>>:

9>>=
>>; ;

λ3 ¼ �22:8062) v3 ¼
0:4253

0:4253

1

8><
>:

9>=
>;:

It should be mentioned that the above argument is also applicable when k rows
and columns are added to the symmetric core of Form II.

4.9 Block Diagonalization of Compound Matrices

In linear algebra it is known that a square matrix can be diagonalised using the

normalised eigenvectors, provided all the eigenvectors are orthogonal. It is also

proved that if the matrix is Hermitian, then it can be diagonalised and diagonal
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entries constitute the eigenvalues of this matrix. A matrix is Hermitian if its

conjugate is the same as its transpose. Therefore, if a matrix is real, then symmetry

is the only requirement for the matrix to be Hermitian. The eigenvalues of

Hermitian matrices are real, and the eigenvectors corresponding to any arbitrary

pairs of distinct eigenvalues are orthogonal.

If M is a Hermitian matrix, then using UtMU it can be diagonalised. All what is

required, is the formation of an orthogonal matrixU. This can in fact be achieved by

the singular value decomposition (SVD) approach for symmetric matrices.

Definition. The Kronecker product of two matrices A and B is the matrix we get

by replacing the ij, the entry of A by aijB, for all i and j.

As an example,

1 1

1 0

� �
� a b

c d

� �
¼

a b a b

c d c d

a b 0 0

c d 0 0

2
664

3
775; (4.56)

where entry 1 in the first matrix has been replaced by a complete copy of the second

matrix.

Now the main question is how one can block diagonalise a compound matrix.

For a matrixM defined as a single Kronecker product, in the formM ¼ A1 � B1, it

is obvious that if A1 is Hermitian, then the diagonalisation leads to a block diagonal

matrix of the form DA1
� B1.

Now suppose a compound matrixM can be written as the sum of two Kronecker

products:

M ¼ A1 � B1 þ A2 � B2: (4.57)

We want to find a matrix P, which diagonalises A1 and A2 simultaneously. In

such a case, one should show thatU ¼ P� I block diagonalisesM, that is, we have

to show that UtMU is a block diagonal matrix.

From algebra we have A� Bð Þt ¼ At � Bt and ðA� BÞðC� DÞ ¼ AC� BD.

Then

UtMUð Þ ¼ Pt � Itð Þ A1 � B1 þ A2 � B2ð ÞðP� IÞ
¼ ðPtA1 � IB1ð Þ þ PtA2ð Þ � IB2ð Þ½ �ðP� IÞÞ
¼ PtA1Pð Þ � B1Ið Þ þ PtA2Pð Þ � B2Ið Þ
¼ PtA1Pð Þ � B1ð Þ þ PtA2Pð Þ � B2ð Þ:

(4.58)

Since it is assumed that P diagonalises A1 and A2, thus

PtA1P ¼ DA1
and PtA2P ¼ DA2

; (4.59)
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and therefore,

UtMU ¼ DA1
� B1 þ DA2

� B2: (4.60)

In this way, U becomes block diagonalised and in order to calculate the

eigenvalues of M, one can evaluate the eigenvalues of the blocks on the diagonal.

The matrices M and UtMU are similar matrices, since P is orthogonal, thus U is

also orthogonal and its inverse is equal to its transpose.

Now an important question is whether the assumptions made at the beginning of

this section are feasible; that is, can one always find a matrix P, which diagonalises

A1 and A2 simultaneously?

For a matrix to be diagonalisable, it is necessary to be Hermitian. However, for

two matrices to be diagonalisable, not only these two matrices should be Hermitian,

but these matrices should also commute [10]; that is,

A1A2 ¼ A2A1: (4.61)

Therefore, if A1 and A2 commute with respect to multiplication, then

λM ¼ [
n

i¼1
eig λi A1ð ÞB1 þ λi A2ð ÞB2ð Þ½ �: (4.62)

The λi Aj

� �
for j ¼ 1,2 is a diagonal matrix containing all the eigenvalues ofAj, and

n is the dimension of thematrixAi. It should be noticed that the order of the eigenvalues

in A1 and A2 is important. The order is the same as obtained after simultaneous

diagonalisation of the two matrices, which appear on the diagonal of the matrices.

As an example, for the special case with A1 ¼ I, it is obvious that IA2 ¼ A2I,

and we have

M ¼ I� B1 þ A2 � B2

λM ¼ [
n

i¼1
eig B1 þ λi A2ð ÞB2ð Þ½ � and λi A1ð Þ ¼ 1:

(4.63)

These special cases are already shown in early sections of this chapter.

One can use another A1 matrix except I, provided it commutes with respect to

A2. The Hermitian property is obvious, due to the symmetry, and it is real; though

for complex matrices this property still holds. For the formation of P, it is sufficient

to use SVD decomposition for a linear combination of A1 and A2, that is, if we use

the SVD decomposition on N ¼ a1A1 þ a2A2, then P can be obtained; here, a1 and

a2 are two arbitrary nonequal numbers.

As an example, consider the following matrix which has the Form II form:

M ¼ A B

B A

� �
¼ I� Aþ T� B; where T ¼ 0 1

1 0

� �
: (4.64)

104 4 Canonical Forms, Basic Definitions and Properties



Since I and T commute, one can, for example, decompose N ¼ 2Iþ T. Here, I

and T have much smaller dimensions compared to that of M, and in this particular

case, these are 2 � 2 matrices. Decomposition of N leads to

P¼
ffiffiffi
2
p

2

1 1

1 �1
� �

)U¼P� I¼
ffiffiffi
2
p

2

I I

I �I
� �

)UtMU¼ AþB 0

0 A�B

� �
: (4.65)

Therefore, it is only necessary to calculate the eigenvalues of A + B and A � B,

and if the diagonal entries are not needed, then using Eq. 4.63

λM ¼ [
n

i¼1
eig Aþ λiðTÞBð Þ½ � and λT ¼ f1;�1g:

λM ¼ [ eigðAþ BÞ; eigðA� BÞ½ �:
(4.66)

As another example, consider a matrix M in the following form:

M ¼
A B 0

B A B

0 B A

2
4

3
5 ¼ I� Aþ T� B; where T ¼

0 1 0

1 0 1

0 1 0

2
4

3
5: (4.67)

As before, P can be obtained from a linear combination of I and T as follows:

P ¼ 1

2

1
ffiffiffi
2
p

1

� ffiffiffi
2
p

0
ffiffiffi
2
p

1 � ffiffiffi
2
p

1

2
4

3
5) U ¼ P� I) UtMU

¼
A� ffiffiffi

2
p

B 0 0

0 A 0

0 0 Aþ ffiffiffi
2
p

B

2
4

3
5: (4.68)

Using Eq. 4.66 leads to

λM ¼ [ eig Aþ λiðTÞBð Þ½ � and λT ¼ �
ffiffiffi
2
p

; 0
n o

)

λM ¼ [ eig A�
ffiffiffi
2
p

B;A

 �n o : (4.69)

The interesting point about the matrices of the above form is that the determinant

of the matrix is calculated after they are put in block forms, decomposition is

performed, and the components are then obtained. As the first example, consider

det ðMÞ ¼ A2 � B2 ¼ ðAþ BÞðA� BÞ; (4.70)

and as the second example consider

det ðMÞ ¼ A3 � 2AB2 ¼ A A2 � 2B2
� � ¼ A Aþ

ffiffiffi
2
p

B

 �

A�
ffiffiffi
2
p

B

 �

: (4.71)
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It should be noted that here blocks are treated as numbers, that is, these have the

commuting property. In general, one can show that

Mmn ¼

Am Bm

Bm Am :
: : :

: Am Bm

Bm Am

2
66664

3
77775
n

¼ Fn Am;Bm;Amð Þ (4.72)

) det ðMÞ ¼
Xn2½ �
n¼0
�1ð Þn n� i

n

� 
Aðn�2iÞB2i ¼

Xn
i¼1

Aþ αiBð Þ: (4.73)

Comparing with Eq. 4.63, we have αi ¼ λT: Since T ¼ Fð0; 1; 0Þ, therefore as

mentioned before, we have αi ¼ λT ¼ 2 cos kπ
nþ1 , where k ¼ 1:n.

Applications of these relationships will be demonstrated in Examples 7.20 and

7.21 of Chap. 7. As it will be shown, one may need to multiply rows or columns

with certain numbers to transform the matrix into the above form.

The present approach is always applicable. As an example, consider the follow-

ing matrix:

Mmn ¼

0 A B

A B A B

B A B : :
B : : : B

: : : A B

B A B A

B A 0

2
666666664

3
777777775
; (4.74)

which is a block penta-diagonal matrix and can be presented more simply by F

matrices as

M ¼ Fð0;A;B;BÞ ¼ Fð0; 1; 0Þ � Aþ Fð0; 0; 1; 1Þ � B

¼ T� Aþ S� B: (4.75)

Here M shown by an F matrix in a similar manner to that of Eq. 4.72, The only

difference is that in this case an additional argument is introduced, which is the

magnitude of the entries in the additional diagonals introduced compared to a tri-

diagonal matrix.

It can be shown that S and T are not unit matrices, and therefore, Eq. 4.63 is not

applicable. However, since TS ¼ ST, thus Eq. 4.62 should be employed.

λT ¼ 2 cos
kπ

nþ 1
; λS ¼ 1þ 2 cos

2kπ
nþ 1

; k ¼ 1 : n (4.76)
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λM ¼ [ eig 2 A cos
kπ

nþ 1
þ B cos

2kπ
nþ 1

� 
þ B

� �� �
; k ¼ 1 : n (4.77)

As an example, for m ¼ 8 and n ¼ 5, instead of calculating the eigenvalues of a

40 � 40 matrix, the eigenvalues of five 8 � 8 matrices will be needed, since T and

S commute and M is block diagonalisable.

4.10 Matrices as the Sum of Three Kronecker Products

Now we assume M to be the sum of three Kronecker products as

M ¼
X3
i¼1

Ai � Bj: (4.78)

If the block diagonalisation of M is required, as for the case with two terms, Ai

(i ¼ 1:3) should commute for any two matrices Ai, that is,

AiAj ¼ AjAi i; j ¼ 1 : 3; i 6¼ j: (4.79)

With these conditions holding, the matrixM can be transformed into tri-diagonal

matrix and then to a diagonal matrix.

Consider a penta-diagonal matrix as

M¼

A B I

B Aþ I : :
I : : : :

: : : : I

: : Aþ I B

I B A

2
6666664

3
7777775
¼ I�AþT�BþS� I¼

X3
i¼1

Ai�Bi (4.80)

where

T ¼ Fð0; 1; 0Þ and S ¼ Fð0; 0; 1; 1Þ:

Here, AiAj ¼ AjAi i; j ¼ 1 : 3; i 6¼ j holds and M can be diagonalised.

A matrix with numerical entries can be decomposed by SVD to obtain P. Then

U ¼ P� I is selected (e.g. N ¼ A1 + 2A2 + 3A3) as

P ¼
ffiffiffi
3
p

6

1 �1 ffiffiffi
3
p

2 � ffiffiffi
3
pffiffiffi

3
p ffiffiffi

3
p ffiffiffi

3
p

0
ffiffiffi
3
p

2 �2 0 �2 0ffiffiffi
3
p ffiffiffi

3
p � ffiffiffi

3
p

0 � ffiffiffi
3
p

1 �1 � ffiffiffi
3
p

2
ffiffiffi
3
p

2
66664

3
77775) U ¼ P� I) UtMU (4.81)
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resulting in a block matrix UtMU. Therefore, instead of calculating U, we calculate

the block matrices by

λM ¼ [
n

j¼1
eig

X3
i¼1

λj Aið ÞBi

" #
: (4.82)

In order to demonstrate the applications, in Examples 7.22 and 7.23 of Chap. 7, a

plate will be studied under uniaxial forces, and their buckling loads will be

calculated. Example 7.24 will study the natural frequency of a system with contin-

uous distributed mass.

4.11 The Commutating Condition

In this section, the condition for two matrices of the form F to commute is

investigated.

Theorem 1. For two penta-diagonal (tri-diagonal as a special case) matrices of

the form Ai ¼ Fðai; bi; ci; diÞ; AiAj ¼ AjAi if t1 ¼ ai�ci
di

and t2 ¼ ai�ciþdi
bi

for both

matrices Ai and Aj are identical.

Proof. Consider

Ai¼Fðai;bi;ci;diÞ ¼ ciIþbiFð0;1;0Þþ ðai� ciÞFð1;0;0ÞþdiFð0;0;0;1Þ (4.83)

ai to di are all numbers. From definition of t1 and t2, we have

ðai � ciÞ ¼ t1di; t2 ¼ 1þ t1ð Þ di
bi
: (4.84)

Substituting Ai we obtain

Ai¼ ciIþ 1þ t1

t2

� 
diFð0;1;0Þþ t1diFð1;0;0Þþ diFð0;0;0;1Þ ¼ ciIþdiR: (4.85)

In the last three terms, di is factorised and R is obtained. If t1 and t2 are the same

for both matrices, then they have identical R, and it is only necessary to show that

ciIþ diRð Þ cjIþ djR
� � ¼ cjIþ djR

� �
ciIþ diRð Þ: (4.86)

This is obvious since I and R commute and R2 can be cancelled from two sides.

The proof is then complete.

It should be noted that if one of the above expressions for t1 and t2 becomes 0
0
,

then the condition for commuting will hold and no control is required. We also

consider the result of dividing two nonequal numbers as non-zero. Therefore, for

108 4 Canonical Forms, Basic Definitions and Properties



two tri-diagonal matrices, the above condition holds for t1’s (since the divisor is

always zero and the magnitude of dividend is not important), and t2’s should be

equal. As an example, in Example 7.22 we will have

T ¼ Fð0; 1; 0; 0Þ; t1 ¼ 0

0
;

S ¼ Fð0; 0; 1; 1Þ; t2 ¼ 0

0
:

(4.87)

Since t1 of the matrix T is equal to 0
0
, thus there is no need to calculate t1 of S, and

also t2 ¼ 0
0
for S. Therefore, these two matrices (S and T) commute. One can also

control T, I, S, I for commuting. However, in Example 7.23, it will be seen that

after block diagonalisation, M is transformed into N, and N does not satisfy the

above condition, since

T ¼ Fð0; 1; 0; 0Þ; t1 ¼ 0

0
t2 ¼ 0

1
;

S ¼ Fð0; 0;�1; 1Þ; t2 ¼ 2

0
:

(4.88)

t1 requires no control; however, t2 for S and T are not identical. Therefore, no

further simplification can be made for N. While in Example 7.22, N had S and T

similar to M, and we can reduce it into simple non-matrix equation.

4.12 A Block Tri-diagonal Matrix with Corner Blocks

and Its Block Diagonalisation

In this section, a canonical form is introduced and an efficient method is developed

for its block diagonalisation.

Consider a matrix M as

M ¼

A B Bt

Bt A B

Bt A B

: : :
: : :

Bt A B

B Bt A

2
666666664

3
777777775
nm�nm

: (4.89)

This matrix is a block symmetric matrix which has n� n blocks. The blocks of

this matrix are Am�m;Bm�m and Bt
m�m ; thus, this matrix generally has nm� nm

entries. BlockA is located on the main diagonal and blocksB andBt are situated on
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the upper and lower adjacent diagonals and also in the lower-left corner and the

upper-right corner, respectively.

The problem is to find the eigenvalues and eigenvectors of M. This matrix is

symmetric and a set of nm real eigenvalues μi and real eigenvectors φi can be

calculated in such a manner that Mφi ¼ μiφi ( i ¼ 1; . . . ; nm). Now, using the

decomposed form of M, an efficient method is presented for its eigensolution.

Matrix M can be decomposed as the sum of three Kronecker products:

Mnm�nm ¼ In�n � Am�m þHn�n � Bm�m þHt
n�n � Bt

m�m (4.90)

where, I is an n� n identity matrix and H is an n� n unsymmetric matrix as

H ¼

0 1 0

0 1

: :
: :

0 : :
0 1

1 0

2
666666664

3
777777775
n�n

: (4.91)

Since H is unsymmetric, the block diagonalisation of M needs additional

considerations. Firstly, H is a permutation matrix and thus it is orthogonal.

Therefore,

HtH ¼ I: (4.92)

Secondly, H and Ht have commutative property. On the other hand

HtH ¼ HHt: (4.93)

This means that these two matrices can simultaneously be diagonalised. Now,

using a matrix such as U ¼ X� I, M is diagonalised.

U�1MU ¼ U�1 I� AþH� BþHt � Btð ÞU
¼ X� Ið Þ�1 I� AþH� BþHt � Btð ÞðX� IÞ
¼ X�1 � I�1

� �
I� AþH� BþHt � Btð ÞðX� IÞ

¼ X�1 � Aþ X�1H� Bþ X�1Ht � Bt
� �ðX� IÞ

¼ I� Aþ X�1HX� Bþ X�1HtX� Bt
� �

:

(4.94)

Since a similarity transformation is used, thus the eigenvalues do not change. In

Eq. 4.94, I is a diagonal matrix and it is sufficient to show thatX diagonalisesH and

Ht. On the other hand, it is assumed that
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X�1HX ¼ D1 (4.95)

X�1HtX ¼ D2 (4.96)

in whichD1 andD2 are diagonal matrices. Thus, the block diagonal form ofMcan be

written as

U�1MU ¼ I� Aþ D1 � Bþ D2 � Bt
� �

: (4.97)

Generally, Eqs. 4.95 and 4.96 are eigenvalue decomposition of matrices H and

Ht in whichX andD are eigenvector and eigenvalue matrices, respectively. SinceH

is orthogonal, a relationship between D1 and D2 can be established. If we find the

inverse of Eq. 4.95, then with respect to the orthogonal property ofH, we will have

X�1H�1X ¼ D�11 (4.98)

X�1HtX ¼ D2: (4.99)

Thus,

D2 ¼ D�11 : (4.100)

Now the eigenvalues and eigenvectors of matrix H (entries of D and X) are

analytically calculated. As previously mentioned,H is an n� n permutation matrix

and its characteristic polynomial (using variable λ) can be written as

λn � 1 ¼ 0: (4.101)

In general, Eq. 4.101 has n real and complex roots. It is clear that if n is even or

odd, then (�1, 1) and (1) are only real roots of Eq. 4.101, respectively. Other

complex roots of this equation can easily be calculated. Since the absolute value

of each root is unit, therefore the roots of Eq. 4.101 are identical to those of

Eq. 4.102.

cos nθþ i sin nθ ¼ 1: (4.102)

These complex and real roots are presented in Table 4.2.

According to Table 4.2, depending on n being even or odd, two real and n� 2

complex roots or a real and n� 1 complex roots should be calculated, respectively.

In addition, the normalised eigenvectors xi associated with the eigenvalues λi
i ¼ 1; . . . ; nð Þ can analytically be evaluated by solving the following equation:

ðH� λiIÞxi ¼ 0: (4.103)
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This is a linear equation and by selecting x1 , all other entries of x
i (unknown

eigenvector) are found as follows:

λi; xi ¼ x1; xj; xn
� �t

; i ¼ 1; . . . ; n (4.104)

x1 ¼ 1ffiffiffi
n
p ; xj ¼ λixj�1 j ¼ 2; . . . ; n� 1

� �
; xn ¼ x1

λi
: (4.105)

It is important to note that if x1 ¼ 1ffiffi
n
p is assumed, each eigenvector will be

calculated in a normalised form with no additional effort. Also the matrixXwith its

columns being the eigenvectors of H, can easily be generated as

X ¼ x1; x2; . . . ; xn
� �

: (4.106)

Now, Eq. 4.97 can be expressed in a much simpler form. Since λis are located on
the diagonal entries ofD dii ¼ λið Þ, and the absolute value of each λi is unit, thus, the
inverse of the complex diagonal matrix equals to its conjugate, and Eq. 4.100 can

simply be written as

D2 ¼ �D1: (4.107)

Finally, according to Eq. 4.108, the eigenvalues of matrixM can be found using

the union of the eigenvalues of n blocks as

eigðMÞ ¼
[n
j¼1

eig BLj

� � ¼[n
j¼1

eig Aþ λjðHÞBþ �λjðHÞBt
� �

(4.108)

where BLj

� �
is the jth diagonal block of U�1MU associated with λj , that is, the

calculation of the eigenvalues of an nm� nm matrix is transformed into those of n

times m� m matrices. Clearly, this process leads to a significant decrease in

computational time and memory.

Table 4.2 Roots of the

characteristic polynomial

associated with matrix H

Real roots Complex roots

n is even � 1; 1

cos θ� i sin θ; θ ¼ 2kπ
n

;

k ¼ 1; 2; . . . ;
n� 2ð Þ
2

n is odd 1

cos θ� i sin θ; θ ¼ 2kπ
n

;

k ¼ 1; 2; . . . ;
n� 1ð Þ
2
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Also, for each eigenvalue μi which is obtained from Eq. 4.108 (for the jth block),

an eigenvector yi is calculated as

BLjyi ¼ μ iyi: (4.109)

This eigenvector can easily be transformed into an eigenvector of M using the

following relationships:

φi ¼ U ej � yi
� � ¼ ðX� IÞ ej � yi

� � ¼ Xej � Iyi (4.110)

φi ¼ xj � yi: (4.111)

Therefore, if μi is a simple root of characteristic polynomial corresponding to M,

Eq. 4.111 leads to an eigenvector with real entries. However, ifμi is a multiple root of

characteristic polynomial, Eq. 4.111 leads to eigenvectors with complex entries. As

we know, λj and λj are the roots of Eq. 4.101, leading to two conjugate blocks BLj

� �
which have identical eigenvalues, and their conjugate eigenvectors are found by

Eq. 4.111. For such eigenvalues, the eigenvectors with real entries can be generated.

This is done by simply adding two complex conjugate eigenvectors. Obviously, the

imaginary parts of these two vectors will be eliminated. The remaining vector is also

orthogonal to other eigenvectors and should be normalised. However, other orthogo-

nal real eigenvectors for multiple eigenvalues should be calculated by an orthogona-

lisation algorithm, such as Gram–Schmidt method [11], if needed.
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Chapter 5

Canonical Forms for Combinatorial

Optimisation, Nodal Ordering and Graph

Partitioning

5.1 Introduction

Ordering is an important issue in the analysis of large-scale structures. In the

standard approach depending on the solution scheme, the bandwidth, profile or

front width of the structural matrices should be optimised. For parallel computing,

the model of the structure (domain) should be partitioned (decomposed) into a

number of substructures (subdomain) having certain properties. The latter can also

be considered as an ordering problem.

There are many applications of algebraic graph theory in nodal and element

ordering and graph partitioning. However, despite of the efficiency of graph spectra

for combinatorial optimisation, the calculation of eigenvalues and eigenvectors of

large graphs and their corresponding structural models without considering patterns

and the sparsity of theirmatrices requires additionalmemory and computational time.

There are numerous applications of graph theory and algebraic graph theory in

optimal structural analysis, Kaveh [1, 2]. In this chapter, a canonical form as well as

its relation with four structural models often encountered in practice and their

corresponding graphs are presented, Kaveh and Koohestani [3]. Furthermore, the

block diagonalisation of this form, which is performed using three Kronecker

products and unsymmetric matrices, is studied. This block diagonalisation leads

to an efficient method for the eigensolution of adjacency and Laplacian matrices of

special graphs. The eigenvalues and eigenvectors are used for efficient nodal

ordering and partitioning of large structural models.

5.2 Preliminary Definitions

Consider the solution of sparse linear system of equations

Ax ¼ b; (5.1)

where the n � n matrix A is a sum of elemental matrices.

A. Kaveh, Optimal Analysis of Structures by Concepts of Symmetry and Regularity,
DOI 10.1007/978-3-7091-1565-7_5, © Springer-Verlag Wien 2013
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The bandwidth of the matrix A is defined as

B ¼ max bif g; (5.2)

where

bi ¼ max i� jþ 1f g with aij 6¼ 0 (5.3)

The profile of the matrix A is the total number of coefficients in the lower

triangle when any zero ahead of the first entry in its row is excluded. That is,

P ¼
Xn
i¼1

max bif g: (5.4)

Note that sinceA is assumed to have a symmetric pattern of non-zeros, it follows

that

P ¼
Xn
i¼1

fi: (5.5)

5.3 Algebraic Graph Theory for Ordering and Partitioning

Algebraic graph theory can be considered as a branch of mathematics that connects

the algebra and theory of graph. In this theory, eigenvalues and eigenvectors of

certain matrices are employed to deduce the principal properties of a graph. In fact

eigenvalues are closely related to most of the invariants of a graph, linking one

extremal property to another. These eigenvalues play a central role in our funda-

mental understanding of graphs. There are interesting books on algebraic graph

theory such as Biggs [4], Cvetković et al. [5] and Seidel [6].

The Laplacian matrix of a graph is already introduced in Chap. 2, and here the

eigen-properties of this matrix will be employed for bisection of graphs and its

nodal ordering.

One of the major contributions in algebraic graph theory is due to Fiedler [7, 8],

where the properties of the second eigenvalue and eigenvector of the Laplacian of a

graph have been introduced. The latter, known as the Fiedler vector, is used in

nodal ordering and bipartition of skeletal structures as well as finite element

models, Mohar [9], Pothen et al. [10] and Topping and Sziveri [11].

Mohar [9] has applied (λ2,v2) to different problems such as graph partitioning and

ordering. Paulino et al. [12] used v2 for element ordering and nodal numbering. Pothen

et al. [10], Simon [13], Seale and Topping [14], Kaveh [15], Kaveh and Davaran [16]

and Kaveh and Rahimi Bondarabady [17, 18] have used the properties of v2, for
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partitioning graphs. However, for calculating λ2, when the entire model is considered,

a fair amount of computational time and storage space is required. In this chapter, for

regular structural models, this goal is achieved by far more efficient method.

General methods are available in the literature for calculating the eigenvalues of

matrices; however, for matrices corresponding to special models, it is beneficial to

make use of their extra properties.

5.4 Eigenvalue Problems and Similarity Transformation

A complex scalar λi is called an eigenvalue of the square matrix An�n if a nonzero
vector vi ofC

n exists such thatAvi ¼ λivi. The vectorvi is called an eigenvector ofA
associated with λi. The set of eigenvalues of A is called the spectrum of A.

A scalar λi is an eigenvalue of A if and only if det A� λiIð Þ ¼ 0. That is true if

and only if λi is a root of the characteristic polynomial.

Two matrices A and B are said to be similar if there is a nonsingular matrix U

such that

B ¼ U�1AU: (5.6)

The mappingA! B is called a similarity transformation. It can easily be shown
that similarity transformations preserve the eigenvalues of matrices.

Avi ¼ λivi i ¼ 1; . . . ; nð Þ (5.7)

U�1AUU�1vi ¼ λiU�1vi: (5.8)

By substituting B ¼ U�1AU and yi ¼ U�1vi, we will have

Byi ¼ λiyi: (5.9)

Equation 5.9 which is a standard representation of eigenproblems means that λi
(i ¼ 1,. . .,n) are also the eigenvalues of the matrixB. This transformation is used in

the next sections for block diagonalisation of adjacency and Laplacian matrices

with special pattern.

5.5 A Special Canonical Form and Its Block Diagonalisation

MatrixMwith a pattern shown in Eq. 5.10 is a block symmetric matrix which has

n� n blocks. The blocks of this matrix are Am�m , Bm�m and Bt
m�m ; thus, this

matrix generally has nm� nm entries. Block A is located on the main diagonal
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and blocks B and Bt are located on the upper and lower adjacent diagonals and

also in the lower-left corner and the upper-right corner, respectively.

M ¼

A B Bt

Bt A B

Bt A B

: : :
: : :

Bt A B

B Bt A

2
666666664

3
777777775
nm�nm

(5.10)

The problem is to find the eigenvalues and eigenvectors of M. This matrix is

symmetric and a set of nm real eigenvalues μi and real eigenvectors φi can be

calculated in such a manner that Mφi ¼ μiφi ði ¼ 1; . . . ; nmÞ: Using the

decomposed form of M, an efficient method is already presented in Sect. 4.12 of

the previous chapter for its eigensolution. In the following only the main necessary

relationships are restated.

The eigenvalues of matrixMcan be found using the union of the eigenvalues ofn
blocks as

eig Mð Þ ¼
[n
j¼1

eig BLj

� � ¼[n
j¼1

eig Aþ λj Hð ÞBþ �λj Hð ÞBtÞ�
(5.11)

where BLjÞ
�

is the jth diagonal block of U�1MU associated with λj , that is, the
calculation of the eigenvalues of a nm� nm matrix is transformed into those of n
times m� m matrices. Clearly, this process leads to a significant decrease in

computational time and memory. Also, for each eigenvalue μi which is obtained

from Eq. 5.11 (for the jth block), an eigenvector yi is calculated as

BLjyi ¼ μiyi (5.12)

This eigenvector can easily be transformed into an eigenvector of M using the

following equations:

φi ¼ U ej � yiÞ ¼ X� Ið Þ ej � yiÞ ¼ Xej � Iyi
��

(5.13)

φi ¼ xj � yi (5.14)

Therefore, if μi is a simple root of characteristic polynomial corresponding toM,

Eq. 5.14 leads to an eigenvector with real entries. However, ifμi is a multiple root of

characteristic polynomial, Eq. 5.14 leads to eigenvectors with complex entries. As

we know, λj and λj are the roots of the characteristic equation of H (defined in

Eq. 4.91), leading to two conjugate blocks BLj

� �
which have identical eigenvalues,

and their conjugate eigenvectors are found by Eq. 5.14. For such eigenvalues, the

eigenvectors with real entries can be generated. This can be done by simply adding
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two complex conjugate eigenvectors. Obviously, the imaginary parts of these two

vectors will be eliminated. The remaining vector is also orthogonal to other

eigenvectors and should be normalised. However, other orthogonal real

eigenvectors for multiple eigenvalues should be calculated by an orthogonalisation

algorithm, such as Gram–Schmidt method, if needed [19].

5.6 Adjacency and Laplacian Matrices for Models of Different

Topologies

In this section, the graph models of four configurations (having different topology)

often encountered in structural mechanics and space structures are studied. Matri-

ces associated with these graphs have the same pattern as those presented in the

previous section. These configurations can also be generated using graph products

which are different standard products. In this chapter, the spectral properties of

these graphs are studied in relation with the present canonical form, without

reference to their representations as graph products.

5.6.1 Configuration of Type 1

The first type of configurations is shown in Fig. 5.1. The pattern of adjacency and

Laplacian matrices for such a model and the corresponding graph is completely

dependent on its nodal numbering. However, using the numbering scheme shown in

Fig. 5.1, a desired pattern (introduced form in Sect. 5.5) can be achieved. On the other

hand, nodes on each edge (nodes which are shown in the hidden bounding box)

should be numbered sequentially. If such a numbering scheme is used, the adjacency

and Laplacian matrices will have nm� nm entries with m� m blocks. Then the size

of matricesA andBwill bem� m. Obviously, the graph shown in Fig. 5.1, for clarity
in topology and nodal numbering, is depicted by small number of nodes and members

(n ¼ 6 andm ¼ 3). However, the related matrices which are utilised for large models

in the subsequent section are illustrated in their general forms.

Aadj ¼

0 1 0

1 0 1

1 0 1

: : :
: : :

: : :
: : :

1 0 1

0 1 0

2
6666666666664

3
7777777777775
m�m

Badj ¼

1 1 0

1 1

1 1

: :
: :

: :
: :

1 1

0 1

2
6666666666664

3
7777777777775
m�m
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ALap ¼

4 �1 0

�1 6 �1
�1 6 �1

: : :
: : :

: : :
: : :
�1 6 �1

0 �1 4

2
6666666666664

3
7777777777775
m�m

BLap ¼ �Badj

5.6.2 Configurations of Type 2, Type 3 and Type 4

Here, block matrices A and B as well as suitable nodal numbering scheme are

presented for other three types, Figs. 5.2, 5.3, and 5.4. In these types of

configurations, if the number of nodes of a member is k, then the total number

of nodes which are shown in the hidden bounding box will be 2k� 1. In fact, this

is the size of internal blocks. On the other hand, a member with k nodes and a

cycle with n nodes lead to a graph with nm nodes in which m ¼ 2k� 1.

Fig. 5.1 Configuration of

Type 1
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Aadj ¼

0 1 1 0

1 0 1 0

1 1 0 1 1

0 1 : : :
1 : : : :

: : : : 0

: 1 0 1 1

0 1 0 1

0 1 1 0

2
6666666666664

3
7777777777775
m�m

Badj ¼

1 0

1 0 1

1

1 0 1

:
: : 1

1

1 0 1

0 1

2
6666666666664

3
7777777777775
m�m

Fig. 5.3 Configuration of

Type 3

Fig. 5.2 Configuration of

Type 2
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ALap ¼

5 �1 �1 0

�1 4 �1 0

�1 �1 8 �1 �1
0 �1 4 �1 :
�1 : : : :

: : : : 0

: �1 8 �1 �1
0 �1 4 �1

0 �1 �1 5

2
6666666666664

3
7777777777775
m�m

BLap ¼ �Badj

It should be noted that Types 2 and 3 configurations are only similar to the

configurations which can be made by strong Cartesian and direct graph products of

cycles and paths, already defined in Chap. 3. In fact, the present types have different

number of nodes and members and have nodes in all the crossing points of the

members which make their topologies completely different from those of the

above-mentioned graph products.

Aadj ¼

0 1 0

1 0 1

1 0 1

: :
: : :

: : :
1 0 1

1 0 1

0 1 0

2
6666666666664

3
7777777777775
m�m

Badj ¼

1 0

1 0 1

0

1 0 1

:
: : 1

0

1 0 1

0 1

2
6666666666664

3
7777777777775
m�m

Fig. 5.4 Configuration of

Type 4
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ALap ¼

4 �1 0

�1 4 �1
�1 4 �1

: : :
: : :

: : :
�1 4 �1

�1 4 �1
0 �1 4

2
6666666666664

3
7777777777775
m�m

BLap ¼ �Badj

Aadj ¼

0 1 1 0

1 0 1 1

1 1 0 1 1

1 1 : : :
1 : : : :

: : : : 1

: 1 0 1 1

1 1 0 1

0 1 1 0

2
6666666666664

3
7777777777775
m�m

Badj ¼

1 0

1 1 1

1

1 1 1

:
: : 1

1

1 1 1

0 1

2
6666666666664

3
7777777777775
m�m

ALap ¼

5 �1 �1 0

�1 7 �1 �1
�1 �1 8 �1 �1

�1 : : : :
: : : : :

: : : : �1
�1 �1 8 �1 �1

�1 �1 7 �1
0 �1 �1 5

2
6666666666664

3
7777777777775
m�m

BLap ¼ �Badj

5.7 Examples from Structural Models

In this section, using the developed canonical form, the eigensolutions of various

structural models are studied through some examples. In these examples, the largest

eigenvalue of the adjacency matrices and the second eigenvalue and eigenvector of

the Laplacian matrices are calculated for efficient nodal ordering and graph

partitioning.

In the present method, eigenvalues and eigenvectors of a nm� nm matrix are

found only by n times eigensolutions of different m� m matrices. This is achieved

by block diagonalisation of the related matrices. This process guarantees the high

accuracy and considerable decrease in computational times. The present method
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has a complexity of n O mrð Þ compared to classical methods which have a com-

plexity of O nmrð Þ: Thus, a considerable decrease in computational times is

achieved. For larger models this difference becomes more noticeable, and the

usage of any program or programming language (uniformly) does not change the

efficiency. However, in this chapter for all eigensolutions (n timesm� mmatrices),

MATLAB functions are used. For a correct comparison this uniformity has been

maintained.

Example 5.1. A circular dome is considered as shown in Fig. 5.5. This model has

2940 nodes and 5880 members in which n ¼ 60 and k ¼ 25: Adjacency and

Laplacian matrices of this model are generated using matrices which are presented

for configuration of Type 3. The largest eigenvalue of the adjacency and second

eigenvalue and eigenvector of Laplacian are calculated and utilised for ordering.

Also the computational time of presented method and eigensolutions using

MATLAB program are compared.

The largest eigenvalue of adjacency matrices has some special properties which

can be used to decrease the complexity of the calculation. According to

Perron–Frobenius theorem, the largest eigenvalue of an adjacency matrix is a

simple root of corresponding characteristic polynomial, Kaveh [3]. This means

thatμmax Adjð Þ cannot be found from blocks associated with complexλi. Then realλi
and obviously λ ¼ 1 should be used for this calculation. Using Eq. 5.11 the block

with μmax Adjð Þ which can be found from it has the following form:

Aþ Bþ Bt ¼

2 2

2 0 2:
: : :

2 0 2

2 2

2
66664

3
77775:

The sum of all rows of this matrix is equal to 4, and therefore, 4 is an eigenvalue

associated with the eigenvector 1 1 : : 1½ �t . This is also the largest eigen-

value because 4 is the upper eigenvalue bound of this matrix. This can easily be

revealed from the Gerschgorin first theorem, Jacques and Judd [19].

Fig. 5.5 A circular dome
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Finally, μmax Adjð Þ ¼ 4 and the corresponding normalised eigenvector is φ ¼
1

2940

� �� 1 1 : : 1½ �t.
Unfortunately, the second eigenvalue of Laplacian matrices is not always a

simple root. However, such a clarification can be used for a simpler solution. On

the other hand, using the Gerschgorin theorem, μ2 Lapð Þ should be found from

blocks which correspond toλj with a large positive real parts. Since suchλi leads to a
considerable decrease in the diagonal entries of blocks, therefore, the centre of the

well-known Gerschgorin circles will be closer to the origin. If μ2 Lapð Þ is a simple

root, it can be found from the block associated with λ ¼ 1.

For this example, the second eigenvalue of the Laplacian matrix is a double root

and equals μ2 Lapð Þ ¼ 0:0058068 which are found from the blocks associated with

complex conjugate λ ¼ 0:9945� 0:1045i. For a realistic comparison between the

computational times, all λj are used and after the calculation of eigenvalues, the

second of them is selected. Also, the computational time of the present method for

all the eigenvalues’ calculations is 0.975 s compared to the 411.27 s extracted from

MATLAB program.

Finally, using the second eigenvector of the Laplacian (Fiedler vector), a nodal

ordering is performed. The remarkable reduction in bandwidth compared to the

initial value can be observed from Table 5.1.

Example 5.2. In Fig. 5.6 the skeleton graph of a finite element model of a cooling

tower is shown. This graph and the corresponding matrices are generated using

Type 1 configuration. This graph has 1650 nodes and 4850 members with n ¼ 50

and m ¼ 33. The largest eigenvalue of the adjacency matrix as well as the second

eigenvalue and eigenvector of the Laplacian matrix are calculated, and using the

second eigenvector a nodal ordering is performed and the model is bisected. Also,

the bandwidth and profile of the Laplacian matrix of the model before and after

ordering are compared in Table 5.2.

As previously mentioned, the largest eigenvalue of adjacency matrix is a simple

root of the characteristic polynomial, and this value must be calculated from the

block which corresponds toλ ¼ 1. This block is a tri-diagonal matrix with its entries

equal to 2. The decomposed form of such a matrix can be written as

Aþ Bþ Bt ¼ 2Im�m þ 2Fm�m 0; 1; 0ð Þ ¼

2 2

2 2 2

: : :
2 2 2

2 2

2
66664

3
77775
m�m

Table 5.1 The bandwidth and profile of the Laplacian matrix before and after ordering

Bandwidth of the Laplacian matrix Profile of the Laplacian matrix

Initial bandwidth Bandwidth after ordering Initial profile Profile after ordering by φ2

2892 98 1502220 150906
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where F 0; 1; 0ð Þ is only a compact representation of a matrix. A comprehensive

explanation of this representation and its corresponding eigenvalues can be found in

Sect. 4.9. However, the largest eigenvalue can analytically be calculated as

μmax Adjð Þ ¼ 2þ 4 max cos
iπ

mþ 1

� �
i ¼ 1; . . . ;m:

Since i ¼ 1 maximises the term which is in the brackets, therefore,

μmax Adjð Þ ¼ 5:982936:

The second eigenvalue of the Laplacian matrix is calculated as μ2 Lapð Þ ¼
0:0181123, and the corresponding eigenvector is also obtained using the present

method. The model is also bisected using the Fiedler vector, and its partitioned form

is illustrated in Fig. 5.7.

For this example, the computational time for the present method when all the

eigenvalues are calculated is 0.093 s compared to the 58.29 s extracted from

MATLAB program.

Fig. 5.6 Skeleton graph for the finite element model of a cooling tower

Table 5.2 The bandwidth and profile of the Laplacian matrix before and after ordering

Bandwidth of the Laplacian matrix Profile of the Laplacian matrix

Initial bandwidth Bandwidth after ordering Initial profile Profile after ordering by φ2

1616 54 107201 81703

126 5 Canonical Forms for Combinatorial Optimisation, Nodal Ordering and Graph. . .



Example 5.3. In Fig. 5.8 a double-layer spherical dome is shown. The total

number of nodes and elements of this graph are 2360 and 9280, respectively,

with n ¼ 40 and k ¼ 30. This graph and the corresponding matrices are generated

by the details of Type 4 configuration. The largest eigenvalue of adjacency and the

second eigenvalue and eigenvector of Laplacian matrices are also calculated. The

bandwidth and profile of the Laplacian matrix of the model before and after

ordering are also shown in Table 5.3.

Fig. 5.7 The bisected form

of cooling tower through the

Fiedler vector

Fig. 5.8 Spherical double-

layer dome
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The largest eigenvalue of the adjacency matrix can easily be calculated by finding

the largest eigenvalue of the following matrix (block associated with λ ¼ 1):

AþBþBt ¼ 2Im�mþ 2Fm�m 0;1;0ð ÞþFm�m 0;0;1;0ð Þ ¼

2 2 1

2 2 2 :
1 : : : 1

: 2 2 2

1 2 2

2
66664

3
77775
m�m

:

Therefore, μmax Adjð Þ ¼ 7:9837910. This value and the corresponding eigenvec-
tor can be used for the selection of a good starting node for graph-theoretical-based

ordering methods, Kaveh [1, 2]. Also the largest eigenvalue of Laplacian matrix

which is a simple root is calculated as μ2 Lapð Þ ¼ 0:0169988, and using the

corresponding eigenvector, a nodal ordering is performed. The results shown in

Table 5.3 indicate a considerable reduction in the bandwidth and profile of the

Laplacian matrix of this model. For this example, the computational time of

presented method for all eigenvalues’ calculations is 0.234 s compared to the

196.59 s extracted from MATLAB program. Thus, using the present method, all

the eigenvalues can be calculated in a fraction of a second.

The efficiency of algebraic graph theory in combinatorial optimisation, espe-

cially in nodal ordering and partitioning of graphs, is well known. However, large

structural models and their corresponding graphs require considerable computa-

tional time for evaluating their eigenvalues and eigenvectors. In this chapter, using

a special canonical form, a highly efficient method was presented for eigensolution

of some special structural and finite element models which are often encountered in

structural mechanics.
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Chapter 6

Graph Products for Ordering and Domain

Decomposition

6.1 Introduction

A number of algorithms based on domain decomposition methods have been

proposed for the solution of the partial differential equations arising in solid and

fluid mechanics problems, among others. These methods are generally spurred by

the advent of parallel processors and are motivated by the fact that domain

decomposition provides a natural route to parallelism. Given a number of available

processors q, an arbitrary finite element model (FEM) is decomposed into q

subdomains where formation of element matrices, assembly of global matrices,

partial factorisation of the stiffness matrix and state determination or evaluation of

generalised stresses can be carried out independently of similar computations for

the other subdomains and hence can be performed in parallel.

While the subdomains are processed in a parallel architecture, the time to

complete a task will be the time to compute the longest subtask. An algorithm for

domain decomposition will be efficient if it yields subdomains that require an equal

amount of execution time. In other words, the algorithm has to achieve a load

balance among the processors. In general, this will be particularly ensured if each

subdomain contains an equal number of elements or equal total number of degrees

of freedom.

In the previous chapter ordering and graph partitioning were performed using

special canonical forms. In this chapter, the properties of graph products are utilised

for efficient ordering and decomposition. Here, an efficient analytical method is

presented for calculating the eigenvalues of space structures and finite element

meshes (FEMs) with regular topologies. In this method, the graph model of a FEM

is considered as the Cartesian product of its generators. The eigenvalues of the

Laplacian matrix for this graph model is then easily calculated using the

eigenvalues of their generators [1, 2]. An exceptionally fast method is also proposed

for computing the second eigenvalue and eigenvector v2 of the Laplacian of the

graph model. The entries of v2 are then ordered and accordingly the graph is

partitioned, and the corresponding finite element mesh is bisected. This vector is

A. Kaveh, Optimal Analysis of Structures by Concepts of Symmetry and Regularity,
DOI 10.1007/978-3-7091-1565-7_6, © Springer-Verlag Wien 2013
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also employed for the nodal numbering to reduce the profile of the stiffness

matrices. The idea study is extended to other graph products and an efficient

approximate method is presented. Examples are included to illustrate the efficiency

of the method.

It should be noted that in this chapter, the two words ‘generator’ and ‘regular’ are

used in their literal senses and their meaning should not be taken identical to those

employed in topology and graph theory. Here, the geometry of the models need not

be regular, and the only requirement is the regularity of the topology, that is, a

regular model affected by an arbitrary geometrical transformation can also be

bisected with the method of this chapter.

6.2 Graph Models of Finite Element Meshes

There are at least ten different graph models in the literature for transforming the

connectivity properties of FE meshes into the topological properties of their graphs,

Kaveh [3, 4]. In this chapter the simplest one, known as the skeleton graph, is used

for this transformation.

The skeleton graph of a FE mesh is a graph whose nodes are the same as those of

the FE mesh, and the boundaries of the elements form the edges of the skeleton

graph. A small FE mesh containing linear rectangular and triangular elements is

depicted in Fig. 6.1a, and the skeleton graph of this FE mesh is shown in Fig. 6.1b.

Many mechanical models can be viewed as the Cartesian product of a number of

simple graphs. Such models are called regular in this chapter. The subgraphs used

in the formation of a model are called the generators of that model, as discussed in

Chap. 3.

6.3 Eigenvalues of Graph Matrices for Cartesian Product

6.3.1 Properties of Kronecker Product

The Kronecker product, previously defined in Sect. 4.9, has the property that if B,

C, D and E are four matrices, such that BD and CE exist, then

a bFig. 6.1 A FE mesh and its

skeleton graph. (a) A simple

finite element mesh. (b) The

skeleton graph of the FE mesh
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ðB� CÞðD� EÞ ¼ BD� CE: (6.1)

Thus, if u and v are vectors of the correct dimensions, then

ðB� CÞðu� vÞ ¼ Bu� Cv: (6.2)

If u and v are eigenvectors of B and C, with eigenvalues λ and μ, respectively,
then,

Bu� Cv ¼ λμu� v; (6.3)

Whence, u � v is an eigenvector of B � C with eigenvalue λμ.
For a Cartesian product K � H, the adjacency matrix A can be written as

follows:

AðK� HÞ ¼ AðKÞ � INðHÞ þ INðKÞ � AðHÞ: (6.4)

In this relation, A(K) � IN(H) is the adjacency matrix of N(H) node-disjoint

copies of K, and IN(K) � A(H) is the adjacency matrix of N(K) node-disjoint copies

of H, Refs. [1, 2].

In the case of Cartesian product, similar relationship holds for the Laplacian

matrices, that is,

LðK� HÞ ¼ LðKÞ � INðHÞ þ INðKÞ � LðHÞ: (6.5)

6.3.2 Theorem

Let λ1,λ2,. . .,λm and μ1,μ2,. . .,μn be the eigenvalues for the Laplacian matrices of K

and H, respectively. Then m�n eigenvalues of the Laplacian of G ¼ K � H are

{λi + μj} i ¼ 1:m and j ¼ 1:n.

Proof. Using the above relationship, we have

LðK� HÞðui � vjÞ ¼ LðKÞ � INðHÞ
� �ðui � vjÞ þ INðKÞ � LðHÞ� �ðui � vjÞ: (6.6)

The associativity property of the Kronecker product results in

LðKÞ� INðHÞ
� �

ui�vj
� �þ INðKÞ �LðHÞ� �

ui�vj
� �

¼ LðKÞð Þ uið Þ� INðHÞ
� �

vj
� �þ INðHÞ

� �
uj
� �� LðKÞð Þ uið Þ¼ λiui�vjþui�μjvj ð6:7Þ

leading to
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L
�
K� H

��
ui � vj

� ¼ �λi þ μj
�
ui � vj; (6.8)

and the proof is complete.

Once the eigenvalues are found, the corresponding eigenvectors can be calcu-

lated. However, this can be done much simpler considering that the eigenvectors of

G are the Kronecker product of the eigenvectors of K and H, that is, wk ¼ ui � vj,

where wk, ui and vj are the eigenvectors of G, K and H, respectively.

6.3.3 Eigenvalues of Graph Matrices for Cycle and Path Graphs

Consider the adjacency matrix A of a cycle graph Cn. When A is expanded with

respect to the first row, the characteristic polynomial of Cn is obtained as A� λIj j ¼ 0.

The eigenvalues corresponding to the above relations can simply be expressed as

λr ¼ 2 cos
2πr
n

� �
: r ¼ 1 : n: (6.9)

Now λr is obtained for the Laplacian matrix L of a graph. For a cycle graph we

have D ¼ 2In. In fact for a regular graph D ¼ kIn and for a cycle k ¼ 2. Therefore,

detðL� λIÞ ¼ 0 ) det ðD� AÞ � λI½ � ¼ 0) det �A� λ� 2ð ÞI½ � ¼ 0: (6.10)

The eigenvalues of�A are the same as those ofAwith a reverse sign. Therefore,

once the eigenvalues of A are obtained, the signs are reversed and two units are

added.

For the Laplacian matrix L, the equation L� λIj j ¼ 0 should be solved as

λr ¼ 2� 2 cos
2πr
n

� �
¼ 2sinπr

n

� �2

: r ¼ 0 : n� 1 and

r ¼ 0 ) λ1 ¼ 0:

(6.11)

Obviously the maximum value of λr for matrix A is equal to 2, and the minimum

value of λr for Laplacian, by ignoring 0, is equal to 2sinπ
n

� �2
. As an example, for

n ¼ 10, λ2 ¼ 0.3820. The above equation reveals that λr ∈ {0,4}.

Repeating the above arguments, for the adjacency matrix of a path graph Pn, we

have

λr ¼ 2cos
πr

ðnþ 1Þ
� �

: r ¼ 1 : n; (6.12)
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and for the Laplacian matrix of Pn,

λr ¼ 2� 2cos
πr
n

� 	
¼ 2sinπr

2n

� �2

: r ¼ 0 : n� 1 and r ¼ 0 ) λ1 ¼ 0: (6.13)

Again here we have λr ∈ {0,4}.

Obviously, the maximum value of λr for the adjacency matrix is 2cos π
nþ1ð Þ
h i

, and

λ2 for the Laplacian matrix is 2sinπ
2n

� �2
.

6.3.4 Example

Consider the Cartesian product of two paths P6 and P4 as shown in Fig. 6.2. In order

to calculate the eigenvalues of the Laplacian matrix L of the graph obtained by the

Cartesian product of P6 and P4, first, the eigenvalues for these paths should be

obtained. Then the first eigenvalue of P6 is added to all the eigenvalues of P4. Next

the second eigenvalue of P6 is added to those of P4. This process is continued until

all eigenvalues of S ¼ P6 (X)C P4 are obtained.

As a numerical example, consider the two path graphs as P6 and P4. The

eigenvalues for the Laplacian matrix L of S are calculated as follows:

λðP6Þ : f0; 0:2679; 1; 2; 3; 3:7321g;
λðP4Þ : f0; 0:5858; 2; 3:4142g;
λðSÞ ¼ λ P6ð Þ þ λ P4ð Þ ¼ f0; 0:5858; 2; 3:4142; 0:2679; . . . ; 7:1463g:

For the Laplacian matrix L of each path graph, the eigenvalues lie in the range

[0,4]. Thus, the final results are contained in the range [0,8]. For this case, the first

eigenvalue is zero, and therefore, for calculating the second eigenvalues, λ2, one
should choose the smallest eigenvalue from P6 and P4, so that when added to zero,

λ2 for S is obtained. Obviously as the number of nodes of a graph increases, the

corresponding λ2 will decrease. Hence, for evaluating λ2 of S, it is sufficient to

select the generator with the higher number of nodes (i.e. λ2(P6) in this example):

λ2ðSÞ ¼ λ2 P6ð Þ since n P6ð Þ > n P4ð Þ: (6.14)

Fig. 6.2 Cartesian product

P6 (X)C P4 of two path graphs
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For this case, the eigenvalues of the path P3 and the cycle C7 are calculated:

λðP3Þ : f0; 1; 3g;
λðC7Þ : f0; 0:7530; 0:7530; 2:4450; 2:4450; 3:8019; 3:8019g;
λ2ðSÞ ¼ λ2 C7ð Þ ¼ 0:7530;

and all the eigenvalues of L for S can be obtained, similar to the previous example.

Further simplification can be achieved if the cycle has an even number of nodes

more than two. For such a case, two eigenvalues are 0 and 4. For evaluating the

remaining eigenvalues, one can divide the number of nodes by 2 and consider an

equivalent path graph with this number of nodes, and each eigenvalue obtained

should be repeated once.

6.4 Spectral Method for Bisection

6.4.1 Computing λ2 for Laplacian of Regular Models

In the method of the previous section, if only the magnitude of λ2 is required, then
the method can further be simplified. As an example, in the above problem half of

the nodes of the cycle should be compared to the number of nodes of the path

generator, and the one with the largest number of nodes should be selected. For this

graph, the second eigenvalue λ2 has the same value as that of the main graph S.

The above idea can easily be generalised to three-dimensional models. Consider

a three-dimensional grid as S ¼ P8 (X)C P5 (X)C P4. This graph has 160 nodes, and

P8, P5 and P4 have 8, 5 and 4 nodes, respectively. Thus, λ2(S) ¼ λ2(P8) ¼ 0.1522,

since P8 has more nodes than the other generators.

Consider a simple model as shown in Fig. 6.3a. After some geometric

transformations, the models shown in Fig. 6.3b–c are obtained (see Nooshin [5]

for such transformations). These models are equivalent to a circle with 25 and 72

sectors. Since 72/2 ¼ 36 > 26, therefore λ2 ¼ 2sinπ
72

� �2 ¼ 0:0076.

6.4.2 Algorithm

This method is simple and consists of the following steps:

Step 1. Calculate the second eigenvalue λ2 of the Laplacian matrix L of the model.

Step 2. Construct the second eigenvector v2 corresponding to λ2.
Step 3. Order the entries of v2 in an ascending order.

Step 4. Construct the status vector Sv for bisection of the model according to their

occurrence in v2, and correspondingly number the nodes of the FEM.

The above algorithm can easily be used for graph partitioning, and correspond-

ingly the domain decomposition can easily be performed.
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6.5 Numerical Results

In this section the results for three FE meshes are presented. The models are chosen

from those encountered in practice having different topologies. Here, for the

standard method, MATLAB is employed for calculating λ2 and v2. However, for

the present method, no computational time is provided for the examples since

unlike the standard known methods, for each example it takes a fraction of a second

to calculate the eigenvalues and eigenvectors.

Example 6.1. A simply connected rectangular FE mesh with rectangular elements

is considered as shown in Fig. 6.4. This model consists of 3,168 nodes and 3,045

elements. The skeleton graph is considered as P88 (X)C P36 and is partitioned with

λ2 ¼ 0.00127 corresponding to P88, and the corresponding FEM is bisected. The

process is repeated for further decomposition of the FEM into four, eight, sixteen

and thirty-two subdomains as illustrated in the same figure.

The computational time was 119.7 s for evaluating λ2, and 614.7 s for calculating
λ2 and v2, while the present method takes a few seconds to evaluate λ2 and v2
analytically.

Example 6.2. A circular FE mesh is considered as shown in Fig. 6.5. This model

consists of 1,872 nodes and 1,800 rectangular elements. The skeleton graph is consid-

ered as C72 (X)C P26 and is partitioned with λ2 ¼ 0.007611 corresponding to C72, and

the corresponding FEM is bisected. The process is repeated for further decomposition

of the FEM into four, eight and sixteen subdomains as illustrated in the same figure.

The computational time was 19.8 s for evaluating λ2, and 103.5 s for calculating
λ2 and v2, while the present method takes a few seconds to evaluate λ2 and v2
analytically.

a

b c

Fig. 6.3 Models as the Cartesian product of a circle and a path. (a) A simple finite element mesh
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Example 6.3. A finite element mesh of a nuzzle is considered as shown in

Fig. 6.6a. This model consists of 4,000 nodes and 3,960 rectangular shell elements.

The skeleton graph is considered as P100 (X)C C40 and is partitioned with

λ2 ¼ 0.000987 corresponding to P100, and the corresponding FEM is bisected,

Fig. 6.6b. The process is repeated for further decomposition of the FEM into four

subdomains as illustrated in Fig. 6.6c.

The computational time was 269.5 s for evaluating λ2, and 1072.3 s for calculating

λ2 and v2, while the presentmethod takes a few seconds to evaluate λ2 and v2 analytically.
In the above examples, the generators were chosen as paths and or cycles. In the

following examples one of the generators is selected as an arbitrary graph. Again

λ2 for the entire model can easily be obtained by comparison of the λ2 for the

generators. In this case, however, the second eigenvalue of the generators should be

calculated using classical methods.

Example 6.4. Consider a model with an arbitrary subgraph S1 as its generator,

Fig. 6.7. The Cartesian products of S1 (X)C P4 and S1 (X)C C4 are considered. The

corresponding eigenvalues are as follows:

Fig. 6.4 A rectangular FE mesh and its sequential bisections

Fig. 6.5 A circular FE mesh and its sequential bisections
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λ2 S1ð Þ¼ 1:2679 and λ2 P4ð Þ¼ 0:5858; and therefore λ2 S1 ðXÞC P4
� �¼ 0:5858;

λ2 S1ð Þ¼ 1:2679 and λ2 C4ð Þ¼2:0000; and thereforeλ2 S1 ðXÞC C4

� �¼ 1:2679: ð6:15Þ

Since in this problem a small number of nodes are involved, therefore the

computational time using MATLAB is also small. However, if S1 (X)C P100 and

S1 (X)C C100 are considered, the computational time becomes significant with

MATLAB, namely, 1.6540 and 7.1500 for computing λ2 and v2 for S1 (X)C P100
and 1.6380 and 6.2890 for those of S1 (X)C C100. While the present method

requires only the use of simple analytical relationships as discussed in Sect. 6.3.

a

b c

Fig. 6.6 A cylindrical shaped FE mesh and its decompositions. (a) A simple finite element mesh

for a nuzzle. (b) Bisected model. (c) Further bisection

6 7

8

1

2 3

4 5

Fig. 6.7 The arbitrary generator S1 of the considered model
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Example 6.5. Consider a model with an arbitrary subgraph S2 as its generator,

Fig. 6.8. The Cartesian products of S2 (X)C P10 and S2 (X)C C10 are considered.

The corresponding eigenvalues are as follows:

λ2 S2ð Þ¼0:2765 and λ2 P10ð Þ¼0:0979; and therefore λ2 S2 ðXÞC P10
� �¼0:0979;

λ2 S2ð Þ¼0:2765 andλ2 C10ð Þ¼0:3820; and thereforeλ2 S2ðXÞCC10

� �¼0:2765:ð6:16Þ
Since in this problem a small number of nodes are involved, therefore the compu-

tational time using MATLAB is also small. However, if S2 (X)C P100 and

S2 (X)C C100 are considered, the computational time becomes substantial with

MATLAB, namely, 31.6170 and 151.0570 for computing λ2 and v2 for S2 (X)C P100
and 31.1570 and 125.4680 for those of S2 (X)C C100. While the present method

requires only the use of simple analytical relationships as discussed in Sect. 6.4.

From these examples it can easily be observed that the present analytical method is

highly efficient and makes the calculation of eigenvalues for Laplacian matrices of

regular FE meshes very simple and fast, compared to the use of classic numerical

methods. The only restriction corresponds to irregular models, for which additional ef-

fort is needed to regularisation. However, for irregular models, the results of the present

approach can always be used as a primary approximation for further optimisation.

6.6 Spectral Method for Nodal Ordering

This method is simple and consists of the following steps:

Step 1. Calculate the second eigenvalue λ2 of the Laplacian matrix L of the model.

Step 2. Construct the second eigenvector v2 corresponding to λ2.
Step 3. Order the entries of v2 in an ascending order.

Step 4. Renumber the nodes of the model according to their occurrence in v2.

The above algorithm leads to well-structured stiffness matrices with low band-

width and low profile. In the following examples are included to illustrate the

performance of the present method.

1 2 3 4

9 10 11

12 13 14

15 16 17 18

5 6 7

8

Fig. 6.8 The arbitrary

generator S2 of the considered

model
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Example 6.6. A cylindrical grid S with two generators P16 and C15 is shown in

Fig. 6.9. This model has 240 nodes and 465 members. Since 16 > 15/2, thus for P16

we have λ2 ¼ 2sinπ
2�16
� �2 ¼ 0:038429corresponding to the second eigenvalue of the entire

model. The results corresponding to the bandwidth and profile of S before and after

nodal ordering, using the second eigenvector of its Laplacian, are illustrated inTable 6.1.

Example 6.7. A circular grid S with beam elements is shown in Fig. 6.10. This grid

S has two generators P13 and C96. This model has 1,248 nodes and 1,152 members.

Since 96/2 > 13, thus for C96 we have λ2 ¼ 2 sin π
96

� �2 ¼ 0:01711 corresponding to

the second eigenvalue of the entire model. The results corresponding to the band-

width and profile of S before and after nodal ordering, using the second eigenvector

of its Laplacian, are illustrated in Table 6.2.

For these examples, no comparison is made with other methods, since in the

present approach calculating λ2 takes only a fraction of a second. However, for the

present method additional effort is needed to identify the generators.

6.7 Spectral Method for Different Product Graphs:

An Approximate Method

In this section, an approximate method is introduced. In this approach, using the

Laplacian matrix and exerting some modifications on its entries, one can directly

write this matrix in algebraic terms, and the corresponding eigensolution becomes a

straightforward process. These modifications lead to a better approximation, and it

is simpler than the existing methods, since in the new approach the construction of a

Fig. 6.9 A cylindrical grid S

Table 6.1 Results of

Example 6.6
Profile Bandwidth

Initial 16,258 239

New 3,642 16
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new model by adding members and rewriting the Laplacian matrix for the modified

model can be avoided.

In graph product of two subgraphs K and H with degree n and degree m,
respectively, one can express the Laplacian matrix as

L ¼ Fn Am;Bm;Cmð Þ ¼

Am Bm

Bm Cm Bm

Bm Cm Bm

� � �
Bm Cm Bm

Bm Am

2
6666664

3
7777775
: (6.17)

It can be seen that the Laplacian matrix has a three-diagonal form with degree

nm� nm . For calculating the eigenvalues of such a matrix in terms of the

eigenvalues of its subgraphs, one has to write the Laplacian matrix in algebraic

terms. Most of the approximate methods exert some modifications into the

Laplacian matrices. Such condition can be attained by writing a relation between

the blocks of the considered matrix. For example, in the methods develop by Pothen

et al. [6] or Kaveh and Rahami [2], the modifications lead to a relation between

blocks of Laplacian matrix as Am ¼ Bm þ Cm that makes an easy eigensolution

feasible. Now in the present method, without using the graphical model, we rewrite

the Laplacian matrix in algebraic terms which can be expressed as the sum of some

Kronecker products as

Fig. 6.10 A circular grid S

Table 6.2 Results of

Example 6.7
Profile Bandwidth

Initial 49,972 239

New 34,848 46
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L ¼ In � Am þ Bmð Þ � Tn � Bm þKn � Cm � Am þ Bmð Þ (6.18)

in which Tn ¼ Fnð1;�1; 2Þ andKn ¼ Fnð0; 0; 1Þ. However, the blocks Am;Bm and

Cm have a similar three-diagonal pattern similar to the main Laplacian matrix L.

Thus, we can write these as

Am ¼ Fm a1; b1; c1ð Þ
Bm ¼ Fm a2; b2; c2ð Þ
Cm ¼ Fm a3; b3; c3ð Þ

8>><
>>:
Am ¼ Im � a1 þ b1ð Þ � Tm � b1 þKm � c1 � a1 þ b1ð Þ
Bm ¼ Im � a2 þ b2ð Þ � Tm � b2 þKm � c2 � a2 þ b2ð Þ
Cm ¼ Im � a3 þ b3ð Þ � Tm � b3 þKm � c3 � a3 þ b3ð Þ

8><
>:

(6.19)

Now employing the above relationships, the Laplacian matrix can be rewritten as

L¼ In� Im� a1þb1ð Þ�Tm�b1þKm� c1� a1þb1ð Þf gþ Im� a2þb2ð Þfð
�Tm�b2þKm� c2� a2þb2ð ÞÞg�Tn� Im� a2þb2ð Þf
�Tm�b2þKm� c2þ a3þb2ð ÞgþKm� Im� a3þb3ð Þfð �
�Tm�b3þKm� c3� a3þb3ð Þg� Im� a1þb1ð Þ�Tm� a1þb1ð Þ�Tm�b1f þ
þKm� c1� a1þb1ð Þgþ Im� a2þb2ð Þ�Tm�b2þKm� c2� a2þb2ð Þf g:

ð6:20Þ

For calculating the eigenvalues of the sum of the Kronecker products, the

following theorem is available.

6.7.1 Main Theorem

Theorem. (Kaveh and Rahami [2]): The necessary conditions for the following to
hold

eig
Xn
i¼1

Ai � Bi

 !
¼
Xn
i¼1

eig Ai � Bið Þ (6.21)

is as follows:

AiAj ¼ AjAi; BiBj ¼ BjBi; i; j ¼ 1; :::; n (6.22)
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In writing the Laplacian matrix, three types of matrices as I;T;K are encountered.

In the first term In;Tn;Kn and in the second term Im;Tm;Km are present,

respectively.

The commutative property holds for each pair of the matricesKi andTi. By some

modifications in the entries ofKi, one can change it to such a form that for the above

theorem all the necessary conditions are satisfied. If K0i is the modified form of Ki,

then clearly K0i will commute with Ti.

Using the above theorem, the eigensolution equation for Laplacian matrix can be

written as

eigðLÞ¼ a1þb1ð Þ�b1λmþμm c1� a1þb1ð Þþ a2þb2ð Þ�b2λm
þμm c2� a2þb2ð Þ�λn a2þb2ð Þ�b2λmþμm c2� a2þb2ð Þf g
þμn a3þb3ð Þf �b3λmþμm c3� a3þb3ð Þ� a1þb1ð Þ
þb1λm�μm c1� a1þb1ð Þþ a2þb2ð Þ�b2λmþμm c2� a2þb2ð Þg ð6:23Þ

in which λm; λn are the eigenvalues of the Laplacian matrices corresponding to two

subgraphs of product and μn and μm are the eigenvalues of the modified matricesK0n
and K0m, respectively. Since (i�2) eigenvalues for Ki are equal to ‘1’ and only two

eigenvalues are ‘0’, thus the best modification in entries of Ki can be considered

as changing them to the unit matrices Ii . For this purpose, it is sufficient to

change the first and last entries of Ki from ‘0’ to ‘1’. However, one may also

change the Ki matrix in a different manner such that it becomes commutative to Ti.

As an example, Ki can be considered as Ii in the modified form by replacing each μi
with ‘1’ in Eq. 6.20.

6.7.2 Eigensolution in Cartesian Product of Two Graphs

In order to find a formula for calculating the eigenvalues of the Laplacian matrix in

Cartesian product of graphs, one can write

L ¼ Fn Am;Bm;Cmð Þ
Am ¼ Fm a1; b1; c1ð Þ
Bm ¼ Fm a2; b2; c2ð Þ
Cm ¼ Fm a2; b3; c3ð Þ;

8>><
>>:

(6.24)

a1 ¼ 2

b1 ¼ �1
c1 ¼ 3;

a2 ¼ �1
b2 ¼ 0

c2 ¼ �1;

a3 ¼ 3

b3 ¼ �1
c3 ¼ 4:

8><
>:

8><
>:

8><
>: (6.25)
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After replacing these quantities in eig(L), one obtains

eigðLÞ ¼ λm þ λn: (6.26)

From Kaveh [4], we know that this equation is an exact relationship. The

approximation parameters, μi, are deleted in Eq. 6.23, leading to an exact relation-

ship for the Cartesian products.

6.7.3 Eigensolution in Direct Product of Two Graphs

In order to find a relationship for calculating the eigenvalues of the Laplacian

matrix in direct product of graphs, one can write

L ¼ FnðAm;Bm;CmÞ
Am ¼ Fm a1; b1; c1ð Þ
Bm ¼ Fm a2; b2; c2ð Þ
Cm ¼ Fm a2; b3; c3ð Þ;

8>><
>>:

(6.27)

a1 ¼ 1

b1 ¼ 0

c1 ¼ 2;

a2 ¼ 0

b2 ¼ �1
c2 ¼ 0;

a3 ¼ 2

b3 ¼ 0

c3 ¼ 4:

8><
>:

8><
>:

8><
>: (6.28)

After replacing these quantities in eig(L), we obtain

eigðLÞ ¼ 2λm þ 2λn � λmλn þ μmλn þ μnλm; (6.29)

and from the above discussions, the best relationship is attained by replacing μn; μm
with ‘1’ as

eigðLÞ ¼ 2λm þ 2λn � λmλn: (6.30)

This equation is the same as the one used by Pothen et al. [6].

6.7.4 Eigensolution in Strong Cartesian Product of Two Graphs

In order to find a relationship for calculating the eigenvalues of the Laplacian

matrix in the strong Cartesian product of graphs, one can also write
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L ¼ Fn Am;Bm;Cmð Þ where

Am ¼ Fm a1; b1; c1ð Þ
Bm ¼ Fm a2; b2; c2ð Þ
Cm ¼ Fm a3; b3; c3ð Þ

8<
: ; (6.31)

a1 ¼ 3

b1 ¼ �1
c1 ¼ 5;

a2 ¼ �1
b2 ¼ �1
c2 ¼ �1;

a3 ¼ 5

b3 ¼ �1
c3 ¼ 8:

8><
>:

8><
>:

8><
>: (6.32)

And by substituting these quantities in eig(L), we have

eigðLÞ ¼ 2λm þ 2λn � λnλm þ μmλn þ μnλm: (6.33)

Assuming μn ¼ μm ¼ 1,

eigðLÞ ¼ 3λm þ 3λn � λnλm: (6.34)

This approximate relationship for calculating the eigenvalues of the Laplacian

matrix of strong Cartesian product is also the same as those obtained by Pothen

et al. [6].

In the following two examples are provided to further clarify the difference of

the three methods.

6.7.5 Examples

Example 6.8. The strong Cartesian product P3 (X)SC P6 is considered as shown in

Fig. 6.11a.

In this example, the Laplacian matrix before modification is as follows:

L ¼ Fn Am;Bm;Cmð Þ

Fn Am;Bm;Cmð Þ ¼

Am Bm

Bm Cm Bm

Bm Cm Bm

� � �
Bm Cm Bm

Bm Am

2
666666664

3
777777775

where

Am ¼ Fmð3;�1; 5Þ
Bm ¼ Fmð�1;�1;�1Þ
Cm ¼ Fmð5;�1; 8Þ

8>><
>>:

(6.35)
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1. Pothen et al. [6] Modification: In this approach, members are added to four sides

of the model. Algebraically this is equivalent to

L ¼ Fn Am;Bm;Cmð Þ where

Am ¼ Fmð5;�2; 7Þ
Bm ¼ Fmð�2;�1;�1Þ
Cm ¼ Fmð7;�1; 8Þ

8><
>: (6.36)

It can be seen that after this modification, we have Am ¼ Bm þ Cm and this

enables us to decompose the Laplacian matrix.

2. Kaveh–Rahami Modification [1]: In this approach, members are added to only

two opposite sides of the model. Algebraically this is equivalent to

L ¼ Fn Am;Bm;Cmð Þ where

Am ¼ Fmð4;�2; 7Þ
Bm ¼ Fmð�1;�1;�1Þ
Cm ¼ Fmð5;�1; 8Þ

8><
>: (6.37)

It can also be seen that after modification of Kaveh-Rahami, the relationship

Am ¼ Bm þ Cm holds.

In Table 6.3 the exact and approximate values for strong Cartesian product of

P3 (X)SC P6 are compared.

a

b c

Fig. 6.11 A strong Cartesian product and its modified models. (a) Strong Cartesian product of

P3 (X)SC P6 in graphical model. (b) The modified model of P3 (X)SC P6 by Pothen et al. method. (c)

The modified model of P3 (X)SC P6 by Kaveh–Rahami method

Table 6.3 Comparison of some of the eigenvalues

Eigenvalue Real (exact) Pothen et al. method Kaveh–Rahami method

λ2 0.6226 0.8038 0.8038

λ3 2.2828 3.000 2.5663

λ10 5.7053 9.000 6.7184
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The table shows that in general, Kaveh–Rahami method performs better as an

approximate approach. For this example, which is not a large-scale problem, the

difference between the approximate and exact solutions is considerable; however,

as the number of nodes increases, this difference reduces, as will be shown in the

subsequent example.

Example 6.9. P20 (X)SC P30 for strong Cartesian product is considered as shown in

Fig. 6.12.

In this example, the Laplacian matrix before modification is as follows:

L¼Fn Am;Bm;Cmð Þ

Fn Am;Bm;Cmð Þ¼

Am Bm

Bm Cm Bm

Bm Cm Bm

� � �
Bm Cm Bm

Bm Am

2
666666664

3
777777775

where

Am¼Fmð3;�1;5Þ
Bm¼Fmð�1;�1;�1Þ
Cm¼Fmð5;�1;8Þ

8>><
>>:

(6.38)

a

b c

Fig. 6.12 A strong Cartesian product and its modified model. (a) Strong Cartesian product of

P20 (X)SC P30 in graphical model. (b) The modified model ofP3 (X)SC P6 by Pothen et al. method. (c)

The modified model of P3 (X)SC P6 by Kaveh–Rahami method
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1. Pothen et al. modification:

L ¼ Fn Am;Bm;Cmð Þ where

Am ¼ Fmð5;�2; 7Þ
Bm ¼ Fmð�2;�1;�1Þ
Cm ¼ Fmð7;�1; 8Þ

8><
>: (6.39)

It can be observed that after modification, we have

Am ¼ Bm þ Cm; (6.40)

and this can help to decompose the Laplacian matrix for eigensolution.

2. Kaveh–Rahami modification:

L ¼ Fn Am;Bm;Cmð Þ where

Am ¼ Fmð4;�2; 7Þ
Bm ¼ Fmð�1;�1;�1Þ
Cm ¼ Fmð5;�1; 8Þ

8><
>: (6.41)

Also one can see that after the modification by Kaveh–Rahami method, we have

Am ¼ Bm þ Cm.

Comparison of the exact and approximate eigenvalues for strong Cartesian

product of P20 (X)SC P30 is made in Table 6.4.

It can be observed that the new algebraic method can be used easily in

eigensolution of the Laplacian matrix of any other graph product with two

generators and can also be applied to the graph product of three generators and

more.

In Fig. 6.13 the comparison of the computational time consumed for

eigensolution in the two existing methods and the present approximate approach

is illustrated. It can be observed that the present method requires much less

computational time for the eigensolution of Laplacian matrices.

6.8 Numerical Examples

Example 6.10. The finite element model of a cooling tower is considered as shown

in Fig. 6.14a. This model consists of 875 nodes and 816 rectangular shell elements.

Table 6.4 Comparison of some of the eigenvalues

Eigenvalue Real (exact) Pothen et al. method [6] Kaveh–Rahami method [2]

λ2 0.0318 0.029 0.0329

λ3 0.0722 0.0739 0.0722

λ10 0.3413 0.3651 0.03619
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The skeleton graph, as defined in Kaveh [4], is considered as P25 (X)C C35 and is

partitioned with λ2 ¼ 0:0158. The corresponding bisected FEM is shown in

Fig. 6.14b.

Example 6.11. In this example, the finite element model of a shell structure is

considered, as shown in Fig. 6.15a. This model has 1,225 nodes and 1,156 rectan-

gular shell elements. The model is trisected as illustrated in Fig. 6.15b

corresponding to λ3 ¼ 0:0081. The skeleton graph is considered as P35 (X)C P35.

Example 6.12. In this example, the strong Cartesian product of P40 and C55,

includes 2,200 nodes and 8,424 triangular elements, is partitioned into 3

subdomains as illustrated in Fig. 6.16 corresponding to λ3 ¼ 0:0384. In Fig. 6.16,

it can be seen that one of these subdomains includes two distinct parts as in left and

right. MATLAB is also employed to calculate λ3 and v3, where the necessary CPU
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Fig. 6.14 The FE model of a cooling tower and its partitioning
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time for eigensolution was 87.834 s. However, the present method takes a few

seconds to perform the subdomaining of this model by considering the eigenvalues

of its generators.

In this chapter, using an algebraic approximate method on Laplacian matrices of

graph products, a general equation for eigensolution is introduced which is not only

applicable to all the existing graph products with two generators but also can be

used for graph product of three or more subgraphs. Employing this method one

can partition the graph model of a structure into two or more submodels. Each of

these submodels can reflect the properties of initial model for parallel computation.

The simplicity of the present method for eigensolution is that for constructing the

derivation of the final relationship, one does not need the graph model of the

product, and the Laplacian matrix is sufficient to obtain the necessary relationship.
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Chapter 7

Canonical Forms Applied to Structural

Mechanics

7.1 Introduction

The main objective of this chapter is to illustrate different applications of the

canonical forms in structural mechanics with particular emphasis on calculating

the buckling load and eigenfrequencies of the symmetric structures.

In the first part, the problem of finding eigenvalues and eigenvectors of symmet-

ric mass–spring vibrating systems is transferred into calculating those of their

modified subsystems. This decreases the size of the eigenvalue problems and

correspondingly increases the accuracy of their solutions and reduces the computa-

tional time [1].

In the second part, a methodology is presented for efficient calculation of

buckling loads for symmetric frame structures. This is achieved by decomposing

a symmetric model into two submodels followed by their healing to obtain the

factors of the model. The buckling load of the entire structure is then obtained by

calculating the buckling loads of its factors [2].

In the third part, the graph models of planar frame structures with different

symmetries are decomposed, and appropriate processes are designed for their

healing in order to form the corresponding factors. The eigenvalues and eigenvectors

of the entire structure are then obtained by evaluating those of its factors. The

methods developed in this part simplify the calculation of the natural frequencies

and natural modes of the planar frames with different types of symmetry [3].

In the fourth part, methods are presented for calculating the eigenfrequencies of

structures. The first approach is graph theoretical and uses graph symmetry. The

graph models are decomposed into submodels, and healing processes are employed

such that the union of the eigenvalues of the healed submodels contains the

eigenvalues of the entire model. The second method has an algebraic nature and

uses special canonical forms [4].

In the fifth part, general forms are introduced for efficient eigensolution of

special tri-diagonal and five-diagonal matrices. Applications of these forms are

illustrated using problems from mechanics of structures [5].

A. Kaveh, Optimal Analysis of Structures by Concepts of Symmetry and Regularity,
DOI 10.1007/978-3-7091-1565-7_7, © Springer-Verlag Wien 2013
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In the sixth part, the decomposability conditions of matrices are studied. Matri-

ces that can be written as the sum of three Kronecker products are studied; examples

are included to show the efficiency of this decomposition approach [6].

In the seventh part, canonical forms are used to decompose the symmetric line

elements (truss and beam elements) into sub-elements of less the number of degrees

of freedom (DOFs). Then the matrices associated with each sub-element are

formed, and finally the matrices associated with each subsystem are combined to

form the matrices of the prime element [7].

In the final part, an efficient eigensolution is presented for calculating the

buckling load and free vibration of rotationally cyclic structures [8]. This solution

uses a canonical form linear algebra that often occurs in matrices associated with

graph models. A substructuring method is proposed to avoid the generation of entire

matrices. Utilising the aforementioned method, the geometric stiffness matrix is

generated in an efficient time-saving manner. Then solution for the eigenproblem is

presented for geometric nonlinearity via the canonical form based on block

diagonalisation method.

7.2 Vibrating Cores for a Mass–Spring Vibrating System

Consider a symmetric system shown in Fig. 7.1a. This system is symmetric, and its

properties can be studied using its substructures.

These properties consist of the mass m1 and the stiffness k1 . The masses,

stiffnesses and their connectivity are considered to be symmetric with respect to

the axis shown in Fig. 7.1a.

This system can be considered as two identical subsystems connected to each

other with a spring, knows as a link spring, as shown in Fig. 7.1b.

This system has two degrees of freedom v1 and v2. The natural frequencies and

natural modes for the following eigenproblem

½K� � ω2 ½m�f gfϕg ¼ f0g (7.1)

can be found as

½K� � ω2½m��� �� ¼ 0: (7.2)

where [K] is the stiffness matrix and [m] is the mass matrix of the system. The

eigenvalues and eigenvectors are denoted by ωi and ϕi, respectively.

Since [K] and [m] are both symmetric, therefore the matrix ½K� � ω2½m�½ � has
Form II as the following:

k1 þ k2 � ω2m1 �k2
�k2 k1 þ k2 � ω2m1

� �
: (7.3)
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Using ω2m1 ¼ λ, one can write

ðk1 þ k2Þ � λ �k2
�k2 ðk1 þ k2Þ � λ

����
���� ¼ 0: (7.4)

Since the stiffness matrix has Form II, thus one can find its eigenvalues by

calculating those of its condensed submatrices

C ¼ k1 þ k2 � k2½ � ¼ k1½ �
D ¼ k1 þ k2 þ k2½ � ¼ k1 þ 2k2½ �: (7.5)

The matrices C and D partially contain the eigenvalues of S. Since these

submatrices have a nature similar to that of the overall stiffness matrix, thus the

condensed matrices C and D define the stiffness matrices of the subsystems as

shown in Fig. 7.1.

The structure corresponding to the condensed submatrices are referred to as

vibrating cores. These vibrating cores contain part of the properties of the vibrating
system. Therefore, the eigenvalues and eigenvectors of the overall structure can be

found using those of C and D subsystems, Fig. 7.2.

For the system S having N degrees of freedom,m andK areN� Nmatrices, and

if the structure is symmetric, the corresponding submatrices will be N
2
� N

2
.

For investigating the vibrating modes of S and vibrating cores, consider the

following definitions:

Definition 1. Let matrix M be in Form II as follows:

M ¼
A B

B A

" #
: (7.6)

Let the corresponding eigenvalues of M be λ1; λ2; λ3; . . . ; λn with eigenvectors

being as ϕ1;ϕ2;ϕ3; . . . ;ϕn. The eigenvectors can be classified into two groups:

K1

K1

K1

K1

K2

K2

m1

m1

m1

m1

A B

S1 S2

a

b

Fig. 7.1 A symmetric

dynamic system and two

subsystems with link spring

7.2 Vibrating Cores for a Mass–Spring Vibrating System 155



First group: those with eigenvectors having N
2
repeated entries

Second group: those with eigenvectors having N
2
repeated entries with reverse signs

Definition 2. If matrixM has a symmetry in Form II, then the condensed matrices

are

C ¼ Aþ B andD ¼ A� B: (7.7)

The eigenvectors of C are of the first group type and those of D are of the second

group type.

Therefore, if the eigenvectors for the eigenvalues of C (with N
2

entries) are

calculated, then those of M can easily be obtained by addition of N
2
entries, and

those of D with reversed signs should be added.

7.2.1 The Graph Model of a Mass–Spring System

The mathematical model of a dynamic system consists of masses and springs.

These masses are connected by means of springs. As the mathematical model, a

weighted graph is defined as follows:

1. The supports in the mathematical model are associated neutral nodes in the

graph.

2. For each mass, a node of graph is associated, and its weight is taken as the

magnitude of the mass.

3. An edge is considered for each spring, and its weight is taken as the stiffness of

the spring.

As an example, the graph model G1 of a dynamic system shown in Fig. 7.3a is

depicted in Fig. 7.3b.

For a dynamic system, we have

Kϕ ¼ ω2mϕ) K� ω2m
� �

ϕ ¼ 0: (7.8)

This is an eigenvalue problem for which ω is the eigenvalue and ϕ is its

eigenvector.

m1

m1

k1

k12K2

C:

D:

Fig. 7.2 Subsystems

corresponding to condensed

submatrices C and D
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If we assumem as a diagonal matrix, then its inverse can easily be found, and we

will have

m�1Kϕ ¼ m�1ω2mϕ)m�1Kϕ ¼ ω2ϕ)½m�1K� ω2I�ϕ ¼ 0: (7.9)

If ½m�1K� ¼ ½LT� and λ ¼ ω2, then we have

LT � λI½ �ϕ ¼ 0: (7.10)

This is an eigenvalue problem corresponding to eigenvalues and eigenvectors

of LT. This relationship can be associated with the corresponding graph. If LT is the

generalised Laplacian of the graph, then the above problem becomes an

eigenproblem of a graph.

7.2.2 Vibrating Systems with Form II Symmetry

As an example, the generalised Laplacian matrix for the graph G1 in Fig. 7.3 has the

following form:

LT ¼
k1 þ k2 �m1 �k2
�k2 k1 þ k2 �m1

" #
(7.11)

For a symmetric graph, an appropriate numbering of the nodes results in a

generalised Laplacian matrix with Form II.

Example 7.1. Consider a dynamic system as shown in Fig. 7.4 with graph model

being G2.

This graph is symmetric and its Laplacian and generalised matrices are as

follows:

A

A

B

B

K1 K1

K1 K1

K2

K2

m1

m1

m1

m1

a

b

Fig. 7.3 A dynamic system

and its graph model. (a) A

symmetric dynamic system.

(b) Graph model G1 of the

system
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L ¼
k1 þ k2 þ k3 �k2 �k3 0
�k2 k2 þ k3 0 �k3
�k3 0 k1 þ k2 þ k3 �k2
0 �k3 �k2 k2 þ k3

2
64

3
75 (7.12)

LT ¼
k1 þ k2 þ k3 �m1 �k2 �k3 0

�k2 k2 þ k3 �m2 0 �k3
�k3 0 k1 þ k2 þ k3 �m1 �k2
0 �k3 �k2 k2 þ k3 �m2

2
64

3
75:

(7.13)

For the symmetry in Form II, the generalised Laplacian matrix can be written as

LT ¼ S LI
LI S

� �
: (7.14)

The submatrix S is called the shape matrix and represents the properties of both

subgraphs, which are identical, and LI is called the link matrix and shows the way

two subgraphs are connected to each other. The submatrix LI represents the effect

of the springs between two subgraphs in the stiffness matrix.

As mentioned before, we have an eigenproblem for the matrix LT. According to

the properties of Form II, if ½Sþ LI� ¼ C and ½S� LI� ¼ D , then L0T can be

expressed as

L
0
T ¼ C 0

0 D

� �
: (7.15)

If L0T is the generalised Laplacian matrix of a graph, then this graph will consist

of two subgraphs with N/2 nodes for each subgraph which are not connected to each

other, and LT has eigenvalues as

K1 K1K2 K2

K3

K3

K3

K3

K2K2

K1 K1

m1

m1m1

m2 m2

m2 m1

1

1

2

2

3

3

4

4

G2

Fig. 7.4 A dynamic system and its graph model
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EIGðLTÞ ¼ EIGðCÞ [ EIGðDÞ: (7.16)

Thus, the subgraphs C and D are the dynamic cores of the model. Each core

defines part of the natural frequencies ωi of the entire system.

ωLT
f g ¼ ωDf g [ ωEf g: (7.17)

As an example, for graph G2, the cores C and D are shown in Fig. 7.5.

Laplacian matrices of C and D are as follows:

LC ¼ k1 þ k2 �k2
�k2 k2

� �
(7.18)

and

LD ¼ k1 þ k2 þ 2k3 �k2
�k2 k2 þ 2k3

� �
(7.19)

As mentioned previously, the Laplacian matrix of the corresponding graphs is

the same as the stiffness matrices of the mathematical model for each subgraph C

and D as shown in Fig. 7.6.

7.2.3 Vibrating Systems with Form III Symmetry

For a symmetric system with odd number of masses, the corresponding graph will

have Form III symmetry. For such a system, the vibrating cores can be identified

using symmetry.

As the third example, consider the model shown in Fig. 7.7a.

Fig. 7.5 The dynamic cores

C and D of G2

K1

K2

K2

K1 m1

m1m2

m

2k3

2k3

C:

D:

Fig. 7.6 The mathematical

models for C and D
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The corresponding graph is shown in Fig. 7.7b.

The Laplacian and generalised Laplacian matrices are as follows:

L ¼
k1 þ k2 0 �k2

0 k1 þ k2 �k2
�k2 �k2 2k2

2
4

3
5; (7.20)

LT ¼
k1 þ k2 �m1 0

0 k1 þ k2 �m1

�����k2�k2
�k2 �k2 2k2 �m2

3
75:

2
64 (7.21)

As it can be seen, both L and LT have Form III.

The Laplacian matrices corresponding to the vibrating cores are given below:

LD ¼ ½k1 þ k2 � 0� ¼ ½k1 þ k2�; (7.22)

and

LE ¼ k1 þ k2 �k2
�2k2 2k3

� �
: (7.23)

The graphs of these matrices are shown in Fig. 7.8.

If there is a directed edge between two nodes i and j directed from i to j, it

represents a directed spring in the dynamic system, Fig. 7.9. The main characteristic

K1

K1 K2

K2

K2

K1

K1

K2mA = m1 mB=m2 mC = m1

m2m1 m1

A BC

a

b

Fig. 7.7 A dynamic system

and its graph model

Fig. 7.8 The subgraphs for D

and E

k
i j

Fig. 7.9 A directed spring
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of such a spring is that the connection of this spring to masses is such that it does not

take part in the stiffness of kj,i, but it effects the ki,j, that is,

The mathematical models corresponding to the cores D and E are shown in

Fig. 7.10.

According to the properties of the cores,

λLTf g ¼ λDf g [ λEf g; (7.24)

and

ωLTf g ¼ ωDf g [ ωEf g: (7.25)

and from the vibrating cores E and D, the natural modes of the entire system can be

found.

If each a vibrating system contains symmetry, then the cores can be decomposed

accordingly. Further decomposition of the refined cores for symmetry is also

possible.

7.2.4 Generalized Form III and Vibrating System

As described in Chap. 4, for a graph with symmetric core having Form III, if the

complement of the core is connected by the nodes of degree 1, then the nodes can be

ordered to produce a Laplacian matrix of Form III. This property can also be used

for graphs corresponding to the vibrating systems.

Consider the system in Fig. 7.11a together with its graph being illustrated in

Fig. 7.11b.

The subgraph containing the nodes A, B and C has a symmetric core of Form III.

The nodes E and D are connected to this core through C. Therefore, the Laplacian

matrix of this graph will be in the generalised Form III. L and LT are formed as

follows:

K1

K1

K2

K2

K2

m1

m1m2

D:

E:

A

C B

Fig. 7.10 Models

corresponding to D and E
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L ¼

k1 þ k2 �k1 �k2 0 0

�k1 k1 þ k2 �k2 0 0

�k2 �k2 2k2 þ k3 �k3 0

0 0 �k3 k3 þ k4 �k4
0 0 0 �k4 k4 þ k5

2
66664

3
77775; (7.26)

LT ¼

k1þ k2�m1 �k1 �k2 0 0

�k1 k1þ k2�m1 �k2 0 0

�k2 �k2 2k2þ k3�m2 �k3 0

0 0 �k3 k3þ k4�m3 �k4
0 0 0 �k4 k4þ k5�m4

2
66664

3
77775:

(7.27)

The connected submatrices D and E are formed for LT as

D ¼ k1 þ k2 �m1 � �k1ð Þ½ � ¼ 2k1 þ k2 �m1½ �; (7.28)

E ¼
k1 þ k2 �m1 � k1 �k2 � k2 0 0

�k2 � k2 2k2 þ k3 �m2 �k3 0

0 �k3 k3 þ k4 �m3 �k4
0 0 �k4 k4 þ k5 �m4

2
664

3
775;
(7.29)

or

E ¼
k2 �m1 �k2 0 0

�2k2 2k2 þ k3 �m2 �k3 0

0 �k3 k3 þ k4 �m3 �k4
0 0 �k4 k4 þ k5 �m4

2
664

3
775: (7.30)

The subgraphs associated with the cores D and E are shown in Fig. 7.12.

K5 K4

K4 K3K5

K3 K2

K2

K2

K2

K1

K1

m4 m3 m2 m1 m1

E D C B A

m4 m3 m2

m1

m1

A

B

E D C

a

b

Fig. 7.11 A dynamic system and its graph model
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The form of the vibrating cores corresponding to D and E is shown in Fig. 7.13.

It can be observed that due to the symmetry, the generalised Laplacian is

decomposed into two submatrices of 1 � 1 and 4 � 4, and the cores are formed.

If N other nodes are connected to C in a similar manner, again the graph can be

decomposed into two cores D and E, as shown in Fig. 7.14. It should be noted that

the core D does not change.

Fig. 7.12 Subgraphs D and E

2K1 K2

K5 K4 K3
K2

K2

m1

m4 m3 m2 m1

A

E D C B

D:

E:

Fig. 7.13 Submodels D and E

Fig. 7.14 A graph decomposable into D and E

K5 K4 K3

K3

K3

K4K5

K3
K1

K2

K1

K1 K1K2
m3 m2 m1m1 m1 m1

m1

m3 m2

m1

m1

m1

F E C D B A

EF

A B

C D

Fig. 7.15 A dynamic system and its graph model
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Thus, the natural frequency of the core D and the correspondingmode of the system

will be unaltered. Therefore, one can conclude that part of the natural frequency of the

symmetric system with Form III will exactly be reflected in the whole system.

Consider the system shown in Fig. 7.15.

The LT, LD and LE matrices are as follows:

A B C D E F

LT¼

k1þk3�m1 �k1 0 0 �k3 0

�k1 k1þk2�m1 0 �k2 0 0

0 0 k1þk3�m1 �k1 �k3 0

0 �k2 �k1 k1þk2�m1 0 0

�k3 0 �k3 0 2k3þk4�m2 �k4
0 0 0 0 �k4 k4þk5�m3

2
666666664

3
777777775

(7.31)

LD ¼ k1 þ k3 �m1 �k1
�k1 k1 þ 2k2 �m1

� �
: (7.32)

And the corresponding graph and model are illustrated in Fig. 7.16.

Also we have

LE ¼
k1 þ k3 �m1 �k1 �k3 0

�k1 k1 �m1 0 0

�2k3 0 2k3 þ k4 �m2 �k4
0 0 �k4 k4 þ k5 �m3

2
664

3
775: (7.33)

And the corresponding model and graph are shown in Fig. 7.17.
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Fig. 7.16 The submodel D

and the corresponding

subgraph
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Fig. 7.17 The submodel E

and the corresponding

subgraph
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7.2.5 Discussion

Symmetry of a mathematical model corresponds to the symmetric distribution of

the physical properties comprising of masses and stiffnesses of the springs and the

connectivity of the masses by means of springs.

For the graph model of a dynamic system, symmetry of Form II results in two

vibrating cores C and D. These cores are physically identified with the difference of

C being more flexible than D, and the main frequency and the corresponding mode

are contained in this part of the model.

For the graph model of a vibrating system having Form III symmetry, the two

vibrating cores D and E are produced. The number of masses and springs in D is less

than E, and directed springs are included in the core E.

Although the systems studied in here are mass–spring systems, however, the

application of the present method can be extended to other structural systems. The

application can also be extended to stability analysis of frame structures.

7.3 Buckling Load of Symmetric Frames

In this part a method is presented for efficient calculation of buckling loads for

symmetric frame structures. This is achieved by decomposing a symmetric model

into two submodels followed by their healing to obtain the factors of the model. The

buckling load of the entire structure is then obtained by calculating the buckling

loads of its factors.

7.3.1 Buckling Load for Symmetric Frames with Odd Number
of Spans per Storey

In this section, symmetric frames with an odd number of spans per storey are

studied. The axis of symmetry for these structures passes through the central

beams. For these frames, the matrices have canonical Form II patterns.

Non-sway Frames: Frames with no sway have no lateral displacement, and only

rotational DOF specifies the deformation of the structure. In this study, for rigid-

jointed frames in each joint, one rotational degree of freedom is considered.

For non-sway frames with odd number of spans per storey, if the loading is also

symmetric, then the stiffness matrix with an appropriate numbering of the DOF will

have canonical Form II pattern. In this case, the structure has two factors, one of

which is stiffer than the other. Naturally the weaker factor will have smaller

buckling load. Therefore, in order to find the buckling load for such a frame, with

N DOF, it is sufficient to calculate the buckling load of a weaker factor with N/2

DOF. This process reduces the computational time and the necessary storage.
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Decomposition and Healing Process: The operations performed after decompo-

sition is called the healing of substructures. The submodels obtained after the

decomposition and healing are known as the factors of the structural model.

Healing for different types of symmetry requires different operations. These

operations are designed such that the resulting factors correspond to the aforemen-

tioned condensed submatrices of the canonical forms.

For the non-sway frame with odd number of spans per storey, healing consists of

the following steps:

Step 1. Delete the beams which are crossed by the axis of symmetry. These are link
beams and are identified by Lb. Now the structure is decomposed into two

substructures S1 and S2 in the left- and right-hand sides, respectively.

Step 2. For S1, add one rotational spring, with a stiffness equal to 6EIlb
L3
Lb

¼ kCi, to the

joint at the ith storey. This provides the necessary stiffness requirement for

obtaining the factor C.

Step 3. Add a rotational spring to S2, with a stiffness of magnitude 2EIlb
L3
Lb

¼ kDi, at the

joint of the ith storey. This provides the necessary stiffness requirement for

obtaining the factor D.

S1 and S2 are now healed and the factors C and D are obtained.

The reason for selecting such stiffnesses for the springs is discussed by the

following simple example.

Example 7.2. Consider a simple symmetric portal frame with symmetric buckling

mode as shown in Fig. 7.18.

The stiffness matrix of the element with the numbering of the DOF as illustrated

in Fig. 7.19 is formed using the standard stiffness method.

k ¼ EI

L3

12 �6 �12 6
�6 4 6 �2
�12 6 12 �6
6 �2 �6 4

2
64

3
75� P

L

6
5

�1
10

�6
5

1
10

�1
10

2
15

1
10

1
30

�6
5

�1
10

6
5

�1
10

�1
10

1
30

�1
10

2
15

2
6664

3
7775: (7.34)

1 2

P P

EI EI

L

L
EI

Fig. 7.18 A simple

symmetric bending frame
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For the entire structure, the stiffness matrix is constructed as

K ¼ EI

L3

8� 4λ 2
2 8� 4λ

� �
; where λ ¼ PL2

30EI
: (7.35)

The numbering of the DOF should be such that the difference between symmetric

DOF becomes N/2.

The condensed submatrices of K are

A� B ¼ 6EI

L3
� 4EI

L3
� PL2

30EI

� �
¼ EI

L3
½6� 4λ� and

Aþ B ¼ 10EI

L3
� 4EI

L3
� PL2

30EI

� �
¼ EI

L3
½10� 4λ�;

(7.36)

corresponding to the factors D and C, respectively.

Design of the Factor D: A factor for which the stiffness matrix is

6EI
L3 � 4EI

L3 � PL2

30EI

h i
may be considered as a column under axial load P, with a spring

of stiffness kC ¼ 6EI
L3 .

Design of the Factor C: Similarly, a factor for which the stiffness matrix is

10EI
L3 � 4EI

L3 � PL2

30EI

h i
can be taken as a column under axial load P with a spring of

stiffness kD ¼ 10EI
L3 .

In order to determine the buckling load of the frame, the determinant of the

stiffness matrix is equated to zero:

detK ¼ det ½A� B� � det ½Aþ B� ¼ 0

6� 4λj j ¼ 0 and 10� 4λj j ¼ 0
(7.37)

leading to

λ1 ¼ 1:5 and λ2 ¼ 2:5:

Therefore,

λmin ¼ 1:5 ¼ PcrL
2

30EI
leading to Pcr ¼ 45EI

L2
:

L

EI
1

2 4

P P

3

Fig. 7.19 Numbering of the

DOF for a beam column
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Alternative Solution: First the factors are formed as shown in Fig. 7.20. The

buckling load of the structure is obtained by finding the buckling load of the factor D.

KC ¼ 2EI

L3
ð2Þ þ 6EI

L3
� 2P

15L

� �
¼ 10EI

L3
� 2P

15L

� �

KD ¼ 2EI

L3
ð2Þ þ 2EI

L3
� 2P

15L

� �
¼ 6EI

L3
� 2P

15L

� � (7.38)

Equating the determinant ofKD to zero, the same buckling load is obtained. This

approximation is very crude and can be improved by considering each column as

two or more elements. As an example, the columns with two elements are consid-

ered as shown in Fig. 7.21.

Now the structure consists of four rotational degrees of freedom and two

translation degrees of freedom. The corresponding stiffness matrix is obtained as

K ¼ 8EI

L3

�

24� 72λ 0 �6þ 3λ 0 0 0
0 8� 8λ 2þ λ 0 0 0

�6þ 3λ 2þ λ 1
2
þ 4� 4λ 0 0 1

4

0 0 0 24� 72λ 0 �6þ 3λ
0 0 0 0 8� 8λ 2þ λ
0 0 1

4
�6þ 3λ 2þ λ 1

2
þ 4� 4λ

2
666664

3
777775

(7.39)

kC1 kD1

P P
a bFig. 7.20 Factors of the

structure S. (a) Factor C

(b) Factor D

1

2

3

4

P P

EI,L

5

6

EI,L/2

EI,L/2

Fig. 7.21 A portal frame

with six DOFs
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where λ ¼ PL2

120EI
.

Forming the determinants of A + B and A � B and equating to zero results in

λmin ¼ 0:185 corresponding to Pcr ¼ 22:21EI

L2
which is quite close to the exact

buckling load. In this case, the lowest critical load is known to correspond to

antisymmetric mode, and as it will be shown in Sect. 3.2, the buckling load for

that case will be Pcr ¼ 7:44EI

L2
.

Example 7.3. Consider a one-bay two-storey frame as shown in Fig. 7.22. This

example is studied with two different discretisations. In the first model, each

column is considered as one element as in Fig. 7.22a, and in the second model,

each column is subdivided into two elements, as illustrated in Fig. 7.22b.

The overall stiffness matrix is formed as

K¼ EI

L3

12 2 2 0
2 8 0 2
2 0 12 2
0 2 2 8

2
64

3
75� P

L

0:4000 �0:0333 0 0
�0:0333 0:1333 0 0

0 0 0:4000 �0:0333
0 0 �0:0333 0:1333

2
64

3
75:

The smallest eigenvalue, using det K ¼ 0, leads to the buckling load of the

frame as

Pcr ¼ 19:7545EI

L2
:

However, this is not a good approximation, since only one element is used for

each column. The result can easily be improved by idealising each column by two

elements, as shown in Fig. 7.22b. For this model, the stiffness matrix is formed as

L

L

L
1

2

3

EI=Const.

4

L

L

L

1

2

3
4

5

6

7

8

9
10

11

12

EI=Const.

a bFig. 7.22 A one-bay two-

storey symmetric frame.

(a) Each column as one

element. (b) Each column

as two elements
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K ¼EI

l3

192 0 �48 0 0 0 0 0 0 0 0 0

0 64 16 0 0 0 0 0 0 0 0 0

�48 16 36 0 0 0 0 0 2 0 0 0

0 0 0 192 0 �48 0 0 0 0 0 0

0 0 0 0 64 16 0 0 0 0 0 0

0 0 0 �48 16 36 0 0 0 0 0 2
0 0 0 0 0 0 192 0 �48 0 0 0

0 0 0 0 0 0 0 64 16 0 0 0

0 0 2 0 0 0 �48 12 36 0 0 0

0 0 0 0 0 0 0 0 0 192 0 �48
0 0 0 0 0 0 0 0 0 0 64 16

0 0 0 0 0 2 0 0 0 �48 16 36

2
6666666666666666664

3
7777777777777777775

� P

l

48

5
0
�2
5

0 0 0 0 0 0 0 0 0

0
16

15

�2
15

0 0 0 0 0 0 0 0 0

�2
5

�2
15

8

15
0 0 0 0 0 0 0 0 0

0 0 0
24

5
0
�1
5

0 0 0 0 0 0

0 0 0 0
8

15

�1
15

0 0 0 0 0 0

0 0 0
�1
5

�1
15

4

15
0 0 0 0 0 0

0 0 0 0 0 0 48

5

0 �2
5

0 0 0

0 0 0 0 0 0 0
16

15

�2
15

0 0 0

0 0 0 0 0 0
�2
5

�2
15

8

15
0 0 0

0 0 0 0 0 0 0 0 0
24

5
0
�1
5

0 0 0 0 0 0 0 0 0 0
8

15

�1
15

0 0 0 0 0 0 0 0 0
�1
5

�1
15

4

15

2
6666666666666666666666666666666666666666664

3
7777777777777777777777777777777777777777775

:

The matrixK has Form II symmetry, and the smallest eigenvalue can be obtained

leading to λ1, corresponding to Pcr ¼ 11:1049EI

L2
. The exact value for the critical

load is PcrðexactlÞ ¼ 12:6EI

L2
:

Alternative Solution: The solution with one element per column indicates that

for calculating the buckling load of the entire structure, one can calculate only the

buckling load of the factor D of the frame, as shown in Fig. 7.23.

For this factor, det KD ¼ 0 leads to
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det
10� 15λ 2þ λ
2þ λ 6� 9λ

� �
¼ 0 (7.40)

or

λmin ¼ 0:4273 and Pcr ¼ 12:82
EI

L2
;

and this is the same result as previously obtained.

Sway Frames: In this section, the buckling load of symmetric frames with sway

is studied. For simplicity, the axial deformations of the beams are neglected.

Therefore, for each storey, one lateral DOF is assumed, that is, the displacements

of the two ends of each beam have the same magnitude.

In order to have the canonical Form III pattern, first, the rotational DOF should

be numbered suitable for the formation of the Form II pattern with submatrices A

and B, followed by free numbering of the translational DOFs of the stories forming

the augmenting rows and columns. Then the stiffness matrix will have canonical

Form III pattern.

In this case, for the formation of the factors of the frame, a new element should

be defined, Fig. 7.24. Consider the following column with new values for its

stiffness as

k ¼ 2EI

L3

6 �6 3 3

�6 6 �3 �3
0 0 0 0

0 0 0 0

2
664

3
775: (7.41)

With an axial load P, the above matrix becomes

kD

kD

P

P

Fig. 7.23 The factor D of the

structure
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k ¼ 2EI

L3

6 �6 3 3

�6 6 �3 �3
0 0 0 0

0 0 0 0

2
664

3
775� P

L

6
5

�6
5

1
10

1
10�6

5
6
5

�1
10

�1
10

0 0 0 0

0 0 0 0

2
664

3
775: (7.42)

7.3.1.1 Decomposition and Healing Process

For a sway frame with odd number of spans per storey, the process of the formation

of the factors D and E consists of the following steps:

Step 1. All the beams crossed by the axis of symmetry are deleted.

Step 2. For the substructure in the left-hand side, a rotational spring with the

stiffness 2EIlb
L3
Lb

is added to obtain the substructure D. This provides the necessary

stiffness requirement for obtaining the factor D.

Step 3. For the substructure in the right-hand side, the DOF for the beam is removed

and a rotational DOF with stiffness equal to 6EIlb
L3
Lb

is added.

Step 4. The translation DOF only affects the substructure E, and all the columns of

E are doubled by the addition of the new column elements, introduced in the

previous section, with corresponding stiffnesses.

Addition of the spring in the previous step, together with the new column,

completes the formation of the factor E.

1

2

P

P

L

3

4

Fig. 7.24 A new column

element

1
2

P P

EI EI

L

L

EI
3

Fig. 7.25 A symmetric

portal frame with

antisymmetric sway buckling

mode
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Example 7.4. The symmetric frame shown in Fig. 7.25 had a stiffness matrix with

canonical Form II pattern when no lateral displacement was present. However, due

to the presence of the lateral displacement, the corresponding stiffness matrix has

canonical Form III pattern.

The stiffness matrix is now formed as

K ¼ EI

L3

8 2 �6
2 8 �6
�6 �6 24

2
4

3
5� P

L

2=15 0 �1=10
0 2=15 �1=10

�1=10 �1=10 12=5

2
4

3
5: (7.43)

This matrix is written as

K ¼ EI

L3

8� 4λ 2 �6þ 3λ
2 8� 4λ �6þ 3λ

�6þ 3λ �6þ 3λ 24� 72λ

2
4

3
5 (7.44)

where λ ¼ PL2

30EI
:

Consider a stiffness matrix in Form III as

K ¼
A B P

B A P

P P R

2
4

3
5: (7.45)

The condensed submatrices of K are

½D� ¼ ½A� B� ¼ EI

L3
½8� 4λ� 2� ¼ EI

L3
½6� 4λ�; (7.46)

and

½E� ¼ Aþ B P

2P R

� �
¼ EI

L3

10� 4λ �6þ 3λ
�12þ 6λ 24� 72λ

� �
: (7.47)

Design of D is the same as that of the non-sway frame, discussed in the previous

section.

Design of E: The condensed matrix E for the present example can be written as

E ¼ E22 E23

E32 E33

� �
¼

4EI
L3 þ 2EI

L3 � 2P
15L

� 3EI
L3 � 3EI

L3 � P
10L

2 �3EI
L3 � 3EI

L3 � P
10L

� �
12EI
L3 þ 12EI

L3 � 12P
5L

" #
: (7.48)

Deleting the second row and column, a one-by-one matrix E22 is obtained which

corresponds to the factor C in non-sway frame and can be introduced to the factor E

by adding a spring of stiffness equal to 6EI
L3 . In order to incorporate the remaining

submatrices of E, a new column element is introduced as shown in Fig. 7.24.
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Consider the stiffness matrix of this column as

k� ¼ kI kII
kIII kIV

� �
; (7.49)

where kI expresses relationship for translation DOF, kIV corresponds to rotation

DOF and kII and kIII express relationship for translation and rotation DOF.

Since the spring with stiffness 6EI
L3 is already included in the column, hence the

new column element should have no additional effect on E22, and therefore, kIV
should have all zero entries. For the formation of E23, the entry K23 in the overall

stiffness matrix K should be introduced. Thus, the new column should have zero

entries in kIII position. According to Form III decomposition, for a symmetric

matrix, E32 is equal to 2E23, that is, the entry E32 is the same as k32 in the main

column of the substructure C, plus itself, that is, the new column in kII position

should have entries similar to those of a column element in the same position. In the

present example, the entry E32 is obtained by the sum of K32 with itself:

kII ¼ EI

L3

6 6

�6 �6
� �

� P

L

1
10

1
10� 1

10
� 1

10

� �
: (7.50)

In order to transfer the effect of translation from substructure D to that of E, the

same stiffnesses as those of a general column (Eq. 7.34) are used, that is,

kI ¼ EI

L3

12 12

�12 �12
� �

� P

L

6

5

6

5

� 6

5
� 6

5

2
64

3
75: (7.51)

Thus, the stiffness matrix of the new column is obtained as

k� ¼ EI

L3

12 �12 6 6

�12 12 �6 �6
0 0 0 0

0 0 0 0

2
664

3
775� P

L

6

5

�6
5

1

10

1

10�6
5

6

5

�1
10

�1
10

0 0 0 0

0 0 0 0

2
666664

3
777775; (7.52)

and the reasoning is complete. This is an imaginary stiffness matrix, and such a

column may not exist in the nature. However, the latter property has no effect on

our calculations.

Now the determinant for the stiffness matrix of the entire structure is equated to

zero as

detK ¼ detD� detE ¼ det½6� 4λ� � det
10� 4λ �6þ 3λ
�12þ 6λ 24� 72λ

� �
¼ 0; (7.53)

leading to
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det D ¼ 0) λ1 ¼ 1:5

det E ¼ 0) λ2 ¼ 2:5 and λ3 ¼ 0:248:

Therefore,

λmin ¼ 0:248 and Pcr ¼ 7:44
EI

L2
:

The buckling load can be obtained by the direct eigensolution of a 3 � 3 matrix

as Pcr ¼ 7:5 EI
L2 . More exact value of the buckling load is obtained by the solution of

the corresponding differential equation leading to Pcr ¼ 7:34 EI
L2 .

For this example, the buckling load obtained by the present method is closer to

the exact value compared to the case when the stability analysis of the entire

structure is performed.

It can also be observed that for calculating the buckling load, only the

formation of the factor E is needed. This reduces an eigensolution problem of

size (m + n) � (m + n) to (m + n/2) � (m + n/2), where m and n are the transla-

tion and rotation degrees of freedom, respectively.

7.3.2 Buckling Load for Symmetric Frames with an Even Number
of Spans per Storey

In this section, frames with an even number of spans per storey are studied. The axis

of symmetry for these structures passes through columns, and we have no link

beams. For these frames, the stiffness matrices have canonical Form III pattern.

Non-sway Frames: For this type of frame, first, the symmetric DOF is numbered

suitable for canonical Form II part, followed by numbering the DOF corresponding

to central joints. With this numbering, the stiffness matrix will have canonical

Form III pattern.

7.3.2.1 Decomposition and Healing

Step 1. Cut the structure in a small distance ε to the left-hand side of the axis of

symmetry.

Step 2. The cut ends are altered to clamped supports. The factor D is now obtained.

Step 3. For each central joint in the substructure of the right-hand side, add a simple

support and connect this joint with a directed beam to the other end of the

existing beam, as illustrated in the following example. Then the factor E is

obtained.

7.3 Buckling Load of Symmetric Frames 175



Example 7.5. Consider the frame shown in Fig. 7.26. This frame has three DOFs,

consisting of two symmetric DOFs and one central DOF.

The stiffness matrix, with canonical Form III pattern, is obtained as (Fig. 7.27)

K ¼ EI

L3

4þ 4 0 2

0 4þ 4 2

2 2 4þ 4þ 4

2
4

3
5� P

L

2
15

0 0

0 2
15

0

0 0 2
15

2
4

3
5: (7.54)

Assuming

λ ¼ 2Pl2

15EI
;

we have

D ¼ EI

L3
8� λ½ � and E ¼ EI

L3

8� λ 2

4 12� λ

� �
; (7.55)

leading to

λ1 ¼ 8; λ2 ¼ 7:17; and λ3 ¼ 12:82;

and Pcr ¼ 53:78 EI
L2 :

L

1 2

EI

3P P P

L L

EI

Fig. 7.26 A two-span

symmetric non-sway frame

23 P PP1
a bFig. 7.27 Factors of the

considered frame. (a) Factor

D. (b) Factor E
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Alternative Solution: In this approach, the factors are formed using the decom-

position and healing algorithm of the previous section. For each factor, the stiffness

matrices are

D ¼ EI

L3
8� λ½ � and E ¼ EI

L3

8� λ 2

4 12� λ

� �
; (7.56)

leading to the same buckling load as

λ1 ¼ 8; λ2 ¼ 7:17; and λ3 ¼ 12:82;

and Pcr ¼ 53:78 EI
L2 :

It was mentioned before that, with a suitable numbering of the DOF, for

symmetric frames with an even number of spans, the overall stiffness matrix of

the frame has a canonical Form III pattern as

K ¼
A B P

B A L

P L R

2
4

3
5; (7.57)

where P expresses the relationship of the DOF for the left part with those of the

central part, and L is the relationship of the DOF of the right-hand side and those of

the central part. Since the frame is symmetric, therefore P ¼ L, and the decompo-

sition of

K ¼
A B P

B A P

P P R

2
4

3
5 (7.58)

results in

D ¼ A� B½ � and E ¼ Aþ B P

2P R

� �
: (7.59)

For a typical beam, the stiffness matrix is as follows:

k ¼ k11 k12
k21 k22

� �
¼ EI

L3

12 �12 6 6
�12 12 �6 �6
6 6 4 2
�6 �6 2 4

2
64

3
75; (7.60)

provided in the displacement vector, and rotations are multiplied by L.

For frames with no sway, only the rotation DOF of the beams is of interest, and

therefore, only the submatrix k22 is important.
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For a beam (i,j) the matrix L is as follows:

L ¼ EI

L3

4 2
2 4

� �
i

j
: (7.61)

After decomposition of S, the left-hand substructure corresponds to the condensed

submatrix D. The effects of the central columns are all included in E, and therefore,

the dimension of E is bigger than D by the number of DOF for central nodes, and for

each column, one rotation DOF is considered on the top end of the column.

Design of D: The cut for decomposition is slightly towards the left of the axis of

symmetry. In this way a correct number for the DOF of D which is half the

symmetric DOF is obtained. Fixing the cut ends in D, the rotation DOF stays

unaltered and hence provides the correct DOF.

Design of E: For the substructure in the right-hand side, the DOF of the central

nodes is transferred to the right-hand substructure. The stiffness of the two ends of

the beams is not the same; therefore, a directed beam is defined, leading to a

nonsymmetric stiffness matrix.

As an example, for the frame shown in Fig. 7.28, we have

D ¼ EI

L3
8½ � and E ¼ E22 E23

E32 E33

� �
¼ EI

L3

8 2

4 12

� �
: (7.62)

For the substructure E, we should add a member such that in position E33, the

stiffness is increased by kii in Eq. 7.62, and in E22, it should remain unchanged, that

is, kjj should be zero. This member should increase E32 by kij, but E23 should be left

unaltered; that is, kji should have null value. Hence, the stiffness matrix of this beam

will be in the following form:

EI

L3

4 2

0 0

� �
: (7.63)

With a direction on this member from i to j, corresponding to a nonsymmetric

stiffness matrix, the above conditions are fulfilled. Here, i is the central node and j is

the other end of the right-hand side beam.

Considering the entries of 2P in E, one finds out that these entries can be

obtained by moments at the central DOF under the action of unit displacements

L

1 2

EI

3P P P

L L

EI

4

Fig. 7.28 A two-span sway

frame
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in the DOF of the right-hand side. Thus, for the formation of the submatrix E, this

moment is doubled, while the reverse action is not doubled. The importance of

directed beams in the formation of the factor E becomes apparent.

Sway Frames

The stiffness matrices of these frames, with appropriate numbering of the DOF,

have canonical Form III patterns. Here, the axis of symmetry passes through one or

more joints. Similar to the non-sway case, first, symmetric DOF is numbered with

n/2 difference suitable for canonical Form II pattern. Then the translational DOF is

numbered. In this numbering, the central joint DOF for storey i is more than j if the

symmetric DOF of storey i is bigger than those of j. With this numbering scheme,

the stiffness matrix of the frame will have canonical Form III pattern.

7.3.2.2 Decomposition and Healing

Step 1. Cut the main structure with an axis passing from a small distance ε to the left
of the axis of symmetry.

Step 2. Consider clamped supports for all the ends cut by this axis. The formation of

the factor D is now completed.

Step 3. In the right-hand side substructure, for each cut beam, add a directed beam

from central joint to symmetric joint to obtain E.

For this case, all the necessary elements are previously discussed and the necessity

of above steps should be obvious.

Example 7.6. Consider the frame shown in Fig. 7.28.

This structure is factored to D and E as illustrated in Fig. 7.29.

The stiffness matrices of D and E are obtained as

D ¼ EI

L3
8� λ½ � ) λ1 ¼ 8

E ¼ EI

L3

8� λ 2 �6� 0:75λ

4 12� λ �6� 0:75λ

�12� 1:5λ �6� 0:75λ 36� 32λ

2
64

3
75 ð7:64Þ

3 P PP1

4

2Fig. 7.29 The factors of the

considered frame
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where λ ¼ 2PL2

15EI
:

The solution is obtained as

λ2 ¼ 0:729; λ3 ¼ 6:88; and λ4 ¼ 15:13;

and Pcr ¼ 5:47EI
L2 :

The stiffness matrix of the factor E is

K ¼ EI

L3

8 0 2 �6
0 8 2 �6
2 2 12 �6
�6 �6 �6 36

2
664

3
775� P

L

2

15
0 0

�1
10

0
2

15
0
�1
10

0 0
2

15

�1
10�1

10

�1
10

�1
10

18

5

2
666666664

3
777777775
: (7.65)

Equating the determinant of this matrix to zero results in the same buckling load

for the frame.

For a better approximation, columns are subdivided into two elements and the

analysis is performed. As a second example, consider the frame shown in Fig. 7.30.

The stiffness matrix of this frame has canonical Form III with the following

submatrices:

A ¼
192� 72λ 0 �48þ 3λ

0 64� 8λ 16þ λ
�48þ 3λ 16þ λ 36� 4λ

2
4

3
5 and B ¼

0 0 0

0 0 0

0 0 0

2
4

3
5

P ¼
0 0 0 96� 36λ
0 0 0 �48þ 3λ
0 0 2 �48þ 3λ

2
4

3
5

and H ¼
192� 72λ 0 �48þ 3λ 96� 36λ

0 64� 8λ 16þ λ �48þ 3λ
�48þ 3λ 16þ λ 40� 4λ �48þ 3λ
96� 36λ �48þ 3λ �48þ 3λ 288� 108λ

2
664

3
775

L

L

1

2

4

5

6

7

8

9
10

EI=Const.

L

3 P P P

Fig. 7.30 A two-span one-

storey symmetric frame
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MþN¼

192�72λ 0 �48þ3λ 0 0 0 192�72λ
0 64�8λ 16þλ 0 0 0 �96þ6λ

�48þ3λ 16þ λ 36�4λ 0 0 4 �96þ6λ
0 0 0 192�72λ 0 �48þ3λ 96�36λ
0 0 0 0 64�8λ 16þλ �48þ3λ
0 0 2 �48þ3λ 16þλ 40�4λ �48þ3λ

96�36λ �48þ3λ �48þ3λ 96�48λ �48þ3λ �48þ3λ 288�108λ

2
666666664

3
777777775
:

The eigenvalues corresponding to this matrix are obtained as

λMþN ¼ f0:3423; 1:5268; 1:8055; 5:7650; 13:0571; 14:7588g:

M� N ¼

192� 72λ 0 �48þ 3λ 0 0 0 0

0 64� 8λ 16þ λ 0 0 0 0

�48þ 3λ 16þ λ 32� 4λ 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

2
666666664

3
777777775
:

and ignoring the last four rows and columns, the eigenvalues for the above matrix

are obtained as

λM�N ¼ f1:5695; 5:2540; 13:7989g:

The smallest eigenvalue is therefore λ1 ¼ 0:3423, leading to Pcr ¼ 5.1344EI/L2.

7.3.3 Discussion

Exploiting the symmetry of structures can be made by using discrete mathematics.

This prepares the ground for more efficient use of the computer and to an under-

standing which enables us to interpret the final results more readily. Factoring the

symmetric structures has the following advantages:

1. The DOF of the problem is reduced.

2. The computational effort is decreased.

3. The solution of larger problems becomes feasible.

Though the examples are selected from small structures, however, the method

shows its potential more when applied to large-scale structures.
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7.4 Eigenfrequencies of Symmetric Planar Frame

In this part the graph models of planar frame structures with different symmetries

are decomposed and appropriate processes are designed for their healing in order to

form the corresponding factors. The eigenvalues and eigenvectors of the entire

structure are then obtained by evaluating those of its factors. The methods devel-

oped in this part simplify the calculation of the natural frequencies and natural

modes of the planar frames with different types of symmetry.

7.4.1 Eigenfrequencies of Planar Symmetric Frames with Odd
Number of Spans

7.4.1.1 Definitions

The Element tc for 2D Case: The elements defined in the following are used in

decomposition for doubling some columns in place of deleting the beams. The new

column is denoted by tc, as shown in Fig. 7.31, and it is characterised by Eq. 7.66.

The properties of the deleted beam Lb; mb; EIb

Ktc ¼ EIb

Lb

� 6½ �; Mtc ¼ mbL
3
b

420
� 1½ �: (7.66)

The Element cc for 2D Case: This new column is denoted by cc, as shown in

Fig. 7.32, and it is characterised by Eq. 7.67.

2D- tc

L

Mx1

z

y

=Fig. 7.31 The new column tc,

fixed in Fy direction

2D- cc

L

1=Mx

z

y

Fig. 7.32 The new column cc
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The properties of the deleted beam Lb; mb; EIb

Kcc ¼ EIb

Lb

� 2½ � and Mcc ¼ mbL
3
b

420
� 7½ �: (7.67)

Algorithm (a): The algorithm for the decomposition of planar frames with odd

number of spans, with or without sway, is designed as follows:

Step 1. Delete all the beams crossing the axis of symmetry.

Step 2. The columns corresponding to the left part, which are connected to the

eliminated beams, are doubled by tc columns. This half for the case of non-sway

forms the factor C and in the case of sway together with the translation DOFs

forms the factor E.

Step 3. The columns of the right half, which were connected to the eliminated

beams, are doubled by cc columns. This half for the cases of sway and non-sway

forms the factor D and in the case of sway together with the translation DOFs is

deleted.

Definition of the Function f(A): Consider A as a matrix. If m is the number of

translational DOFs, then f(A) multiplies the last m rows of A by 2.

Note: In the case of non-sway frame, the problem is solved by constructing the

submatricesMC;KC andMD;KD corresponding to the Form II symmetry, and in the

sway case, the problem is solved by forming MD;KD and fðMEÞ; fðKEÞ
corresponding to the Form III symmetry.

In this algorithm, the stiffness and mass matrices of the factor E are not the same

as those obtained from the original structure. However, the responses consisting of

the determinant and eigenvalues are identical, that is,

K; M ¼
A B S R

B A S R

S S Y X

R R X Y

2
664

3
775) D ¼ A� B and E ¼

Aþ B S R

2S Y X

2R X Y

2
4

3
5: (7.68)

The stiffness and mass matrices of the factor E in the algorithm (a) are obtained

as

KE;ME ¼
Aþ B S R

S Y
2

X
2

R X
2

Y
2

2
4

3
5: (7.69)

The properties of the new columns are obtained by considering the interrelation of

the DOFs of the members. For the frames with odd number of spans, where the axis of

symmetry passes through beams, the effect of the deleted beams should be included in

the decomposed subgraphs. Adding the new columns serves as a means for
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transferring the properties of the main structure into the decomposed substructures.

These operations are healings which change the subgraphs into the factors.

Considering the Form II symmetry, we have

K ¼ A B

B A

� �
;

C ¼ Aþ B½ � and D ¼ A� B½ �;
fλKg ¼ fλCg[fλDg:

(7.70)

If we can construct substructures with the stiffness and mass matrices

corresponding to the above forms, then we can form the factors.

If the numbering is performed corresponding to the Form II symmetry, then the

submatrix B will represent the relation between the DOFs of the right side and the

left side of the frame, and the submatrixA represents the relation between the DOFs

of each half of the structure.

In general, for a beam column with one rotational DOF per node, we have

K ¼ EI

L
� 4 2

2 4

� �
; M ¼ mL3

420
� 4 �3
�3 4

� �
: (7.71)

Considering the relationship between the DOFs of the connecting beams, it

becomes obvious that the entries (1,1) and (1,2) in the mass and stiffness matrices

of the substructures C and D should be added and subtracted, respectively.

C : K ¼ EI

L
� 4þ 2½ � ¼ EI

L
� 6½ �; M ¼ mL3

420
� 4þ ð�3Þ½ � ¼ mL3

420
� 1½ �;

D : K ¼ EI

L
� 4� 2½ � ¼ EI

L
� 2½ �; M ¼ mL3

420
� 4� ð�3Þ½ � ¼ mL3

420
� 7½ �:

(7.72)

It is obvious that the length and the elastic properties in these relationships

correspond to the connecting beams which are supposed to be deleted.

Ktc ¼ EIb

Lb

� 6½ �; Mtc ¼ mbL
3
b

420
� 1½ �;

Kcc ¼ EIb

Lb

� 2½ �; Mcc ¼ mbL
3
b

420
� 7½ �:

(7.73)

In this way, the properties of the new columns are obtained.

Example 7.7. The symmetric frame shown in Fig. 7.33 is considered. This frame is

assumed to be constrained against sway and has only two rotation DOFs, as shown

in the figure.

The distribution of the mass in the link beam which crosses the axis of symmetry

should also be symmetric.
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According to the algorithm (a), the decomposition of the frame is obtained in a

step-by-step manner, whereas in the previously developed methods, the factors

were obtained by adding springs and masses.

The properties of the added columns (Fig. 7.34) are as follows:

Ktc ¼ EIb

Lb

� 6½ � ¼ 12EI

L

� �
and Mtc ¼ mbL

3
b

420
� 1½ � ¼ 6mL3

210

� �
;

Kcc ¼ EIb

Lb

� 2½ � ¼ 4EI

L

� �
and Mcc ¼ mbL

3
b

420
� 7½ � ¼ 42mL3

210

� �
:

(7.74)

Now the stiffness and mass matrices of the factors C and D are formed as

KC ¼ 4EI

L
þ 12EI

L

� �
¼ 16EI

L

� �
and MC ¼ mL

420
� 4L2 þ 6mL3

210

� �
¼ 8mL3

210

� �

ω2 ¼ X ) ω2
1 ¼

420EI

mL4
;

KD ¼ 4EI

L
þ 4EI

L

� �
¼ 8EI

L

� �
and MD ¼ mL

420
� 4L2 þ 42mL3

210

� �
¼ 44mL3

210

� �

ω2 ¼ X ) ω2
2 ¼

420EI

11mL4
;

ð7:75Þ

and the natural frequencies are easily obtained.

Example 7.8. The frame shown in Fig. 7.35 has 10 DOFs and has the Form II

symmetry.

The factors are constructed as shown in Fig. 7.36.

The stiffness and mass matrices of the added columns are as follows (Fig. 7.37):

2L,1.5m

24EI1

EI,m,L

Fig. 7.33 A symmetric

frame with two DOFs

21

EI , m , L

C D

Fig. 7.34 Factors of the

frame of Fig. 7.3
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1

2 4

53 10 68

7

4 m 

3 m 

4 m 3 m 3 m 4 m 

tc1

cc2

cc1

tc2

9

C D

Fig. 7.36 Factors of the frame of Fig. 7.18

1

2 4

53 10 68

79

3 m 

4 m 

3 m 

4 m 3 m 3 m 4 m 

Fig. 7.35 A symmetric frame with 10 DOFs

1

2 4

53 68

7

4 m 

3 m 

4 m 3 m 3 m 4 m 

tc1

cc2

cc1

tc2

9

1011

12

E D

Fig. 7.37 Factors D and E of the sway frame of Fig. 7.36
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tc1 :)Ktc1¼
EIb

Lb

� 6½ �¼ 2EI½ � & Mtc1¼
mbL

3
b

420
� 1½ �¼ 9m

140

� �
;

cc1 :)Kcc1¼
EIb

Lb

� 2½ �¼ 2EI

3

� �
& Mcc1¼

mbL
3
b

420
� 7½ �¼ 9m

20

� �
:

tc2 :)Ktc2¼
EIb

Lb

� 6½ �¼ 2EI

3

� �
& Mtc2¼

mbL
3
b

420
� 1½ �¼ 243m

70

� �
;

cc2 :)Kcc2¼
EIb

Lb

� 2½ �¼ 2EI

9

� �
& Mcc2¼

mbL
3
b

420
� 7½ �¼ 243m

10

� �
: (7.76)

The stiffness and mass matrices of the factors C and D are constructed as

KC ¼ EI�

4
3
þ 4

4
þ 4

4
2
4

2
4

0 0
2
4

4
4
þ 4

4
0 2

4
0

2
4

0 4
3
þ 4

4
þ 4

3
þ 4

4
2
4

2
3

0 2
4

2
4

4
4
þ 4

4
þ 2

3
0

0 0 2
3

0 4
3
þ 4

3
þ 2

2
6666664

3
7777775

¼ 2EI

5
3

1
4

1
4

0 0

1
4

1 0 1
4

0

1
4

0 7
3

1
4

1
3

0 1
4

1
4

4
3

0

0 0 1
3

0 7
3

2
6666666664

3
7777777775
;

MC ¼ m

420

620 �192 �192 0 0

�192 512 0 �192 0

�192 0 728 �192 �81
0 �192 �192 1241 0

0 0 �81 0 243

2
6666666664

3
7777777775
: (7.77)
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KD ¼ EI�

4
3
þ 4

4
þ 4

4
2
4

2
4

0 0
2
4

4
4
þ 4

4
0 2

4
0

2
4

0 4
3
þ 4

4
þ 4

3
þ 4

4
2
4

2
3

0 2
4

2
4

4
4
þ 4

4
þ 2

9
0

0 0 2
3

0 4
3
þ 4

3
þ 2

3

2
6666664

3
7777775

¼ 2EI

5
3

1
4

1
4

0 0
1
4

1 0 1
4

0
1
4

0 7
3

1
4

1
3

0 1
4

1
4

10
9

0

0 0 1
3

0 5
3

2
6666664

3
7777775
;

MD ¼ m

420

620 �192 �192 0 0

�192 512 0 �192 0

�192 0 728 �192 �81
0 �192 �192 5615 0

0 0 �81 0 405

2
6666664

3
7777775
:

(7.78)

In this way, the natural frequencies and the natural modes of this framewith 10DOFs

are obtained using the equation of the motion of two factors each having five DOFs as

det KC � ω2MC

� �
5�5 ¼ 0 )

ω2
1 ¼

0:6EI

m
; ω2

2 ¼
1:42EI

m
; ω2

3 ¼
2:15EI

m
; ω2

4 ¼
5:24EI

m
and ω2

5 ¼
9:56EI

m
;

det KD � ω2MD½ �5�5 ¼ 0 )

ω2
6 ¼

0:15EI

m
; ω2

7 ¼
1:1EI

m
; ω2

8 ¼
2EI

m
; ω2

9 ¼
3:52EI

m
and ω2

10 ¼
5:57EI

m
:

ð7:79Þ

Example 7.9. Consider the sway frame shown in Fig. 7.38, having 12 DOFs.

The factors are shown in Fig. 7.22.

The natural frequencies are similar to those of Example 7.8, and therefore,

ω2
1 ¼

0:15EI

m
;ω2

2 ¼
1:1EI

m
;ω2

3 ¼
2EI

m
;ω2

4 ¼
3:52EI

m
;ω2

5 ¼
5:57EI

m
: (7.80)

There is no need to solve the equation det KD � ω2MD½ �5�5 ¼ 0 for finding the

eigenvalues. The formation of the factor D can be avoided.

cc1 : )Kcc1 ¼
EIb

‘b
� 2½ � ¼ 2EI

3

� �
and Mcc1 ¼

mb‘
3
b

420
� 7½ � ¼ 9m

20

� �
;

cc2 : ) Kcc2 ¼
EIb

‘b
� 2½ � ¼ 2EI

9

� �
and Mcc2 ¼

mb‘
3
b

420
� 7½ � ¼ 243m

10

� �
: (7.81)
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The stiffness and the mass matrices of the factor E are as follows:

KE¼EI�

4
3
þ4

4
þ4

4
2
4

2
4

0 0 6
32
� 6

42
6
42

2
4

4
4
þ4

4
0 2

4
0 �6

42
6
42

2
4

0 4
3
þ4

4
þ4

3
þ4

4
2
4

2
3

6
32
� 6

42
6
42

0 2
4

2
4

4
4
þ4

4
þ2

3
0 �6

42
6
42

0 0 2
3

0 4
3
þ4

3
þ2 6

32
0

6
32
� 6

42
�6
42

6
32
� 6

42
�6
42

6
32

3�12
33
þ2�12

43
�2�12

43

6
42

6
42

6
42

6
42

0 �2�12
43

2�12
43

2
666666666666664

3
777777777777775

;

ME¼ m

420

620 �192 �192 0 0 �22�32þ22�42 13�42
�192 512 0 �192 0 �13�42 �22�42
�192 0 728 �192 �81 �22�32þ22�42 13�42
0 �192 �192 1241 0 �13�42 �22�42
0 0 �81 0 243 �22�32 0

�22�32þ22�42 �13�42 �22�32þ22�42 �13�42 �22�32 3�156�3þ2�156�4 2�54�4
13�42 �22�42 13�42 �22�42 0 2�54�4 2�156�4

2
666666666666664

3
777777777777775

:

ð7:82Þ

In this way, the natural frequencies and the natural modes of this frame with 12

DOFs are obtained using the equation of the motion of two factors having five and

seven DOFs.

The first five frequencies are as follows:

ω2
1 ¼

0:15EI

m
;ω2

2 ¼
1:1EI

m
;ω2

3 ¼
2EI

m
;ω2

4 ¼
3:52EI

m
;ω2

5 ¼
5:57EI

m
: (7.83)

The remaining seven frequencies are calculated from the factor E as

det KE � ω2ME

� �
7�7 ¼ 0)

ω2
6 ¼

0:022EI

m
; ω2

7 ¼
0:25EI

m
; ω2

8 ¼
0:61EI

m
; ω2

9 ¼
1:81EI

m
;

ω2
10 ¼

2:97EI

m
; ω2

11 ¼
5:67EI

m
and ω2

12 ¼
10:27EI

m
:

(7.84)

1
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3 m 

4 m 

3 m 

4 m 3 m 3 m 4 m 

11
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Fig. 7.38 A sway frame with 12 DOFs
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The factors of the main frame in the case of sway and non-sway are identical,

Figs. 7.22 and 7.39.

Only the factor E has the additional translation DOF. Thus, for calculating the

responses of a frame in sway and non-sway cases, instead of solving a problem with

n� n and ðnþ mÞ � ðnþ mÞ matrices, we need to solve three problems

corresponding to n
2
� n

2
, n
2
� n

2
and n

2
þ m

	 
� n
2
þ m

	 

matrices, Fig. 7.40.

7.4.2 Decomposition of Symmetric Planar Frames with Even
Number of Spans

Algorithm for Decomposition: According to the present algorithm, each symmetric

structure with an even number of spans can be decomposed into two factors,

without introducing a new element. By obtaining dynamic properties of each factor

and considering the union of the results, one can obtain the dynamic properties of

the entire structure.

Definitions: A central element is defined as a column which coincides with the

axis of symmetry. Central nodes are taken as the nodes that coincide with the axis of

symmetry.

Algorithm (b): This algorithm is simple and consists of the following steps:

1

2 4

53 10 68

79

& C D

tc1

cc2

cc1

tc2

1

2 4

53

& C

tc1

tc2

10 68

79

D

cc2

cc1

Fig. 7.39 Factors of the frame in non-sway and sway cases
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Step 1. Divide the frame into two halves from the axis of symmetry, such that the

moment of inertia for the central column and the mass of their unit length, m, are

reduced to half.

Step 2. Fix the central nodes in the left half. This half is the factor D and the right

half forms the factor E.

Therefore, one can solve the main eigenproblem by constructing submatrices

KD;MD andKE;ME. In fact, the factors D and E obtained by this algorithm have the

properties of the entire structure.

Proof: The stiffness and mass matrices of the factors D and E in the algorithm (b)

are symmetric and can be formed as

D ¼ ½G�n
2
�n

2
and E ¼ Q R

Rt Y

� �
n
2
þmð Þ� n

2
þmð Þ

(7.85)

where m is the total number of rotation and translation DOFs of central nodes and

translation DOFs vertical to the plane of symmetry and n is the total number of

symmetric translation and rotation DOFs.

If the numbering of the DOFs of main frame is performed in a special form

corresponding to the Form III symmetry, then the matrices will be decomposable

and can be formed as

K;M ¼
A B S

Bt A S

St St X

2
4

3
5) Dreal ¼ A� B½ � and Ereal ¼ Aþ B S

2St X

� �
: (7.86)

After considering the interrelationship between the DOFs in the main frame and

in the factors and defining the function f, we will have

G ¼ A� B; Q ¼ Aþ B; R ¼ S and Y ¼ X

2

) D ¼ ½A� B� ¼ Dreal and E ¼ Aþ B S

St X
2

� �
) Ereal ¼ fðEÞ:

(7.87)

In this algorithm, the stiffness and mass matrices of the factor E are not the same

as those of ME and KE of the stiffness and mass matrices of the main structure.

However, as has been mentioned in the previous section, the responses consisting of

& & 

tc1

cc2

cc1

tc2

tc1

tc2

Fig. 7.40 Three factors to be considered for the solution
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the determinant and eigenvalues of the free vibration are identical to those of the

main structure as was desired.

Therefore, the factors E and D obtained from this algorithm have the same

properties as those of the main structure, and the problem is solved by constructing

the submatrices KD;MD and KE;ME.

Example 7.10. Consider the frame shown in Fig. 7.41, which is constrained

against sway. This frame has three DOFs. It is assumed that the frame has symmet-

ric elastic properties with respect to the two planes of symmetry.

The factors D and E are obtained using the algorithm (b) step by step as shown in

Fig. 7.42.

These factors can be considered as shown in Fig. 7.43.

The submatrices corresponding to these two factors are obtained, and their

characteristic equations lead to the eigenfrequencies required as follows:

,EI,m

2
,

2

mI
,E,

,EI,m  

,EI,m
,EI,m

D E

Fig. 7.42 The factors of the frame of Fig. 7.41

,EI, m

2
,

2

mI
,E,

,EI, m

,EI, m ,EI, m

D                                                       E

Fig. 7.43 Alternative illustration of the factors of the frame of Fig. 7.41

231

l,EI

l,EIl,EI

Fig. 7.41 A frame with three DOFs
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KD ¼ 4EI

‘
þ 4EI

‘

� �
¼ 8EI

‘

� �
and MD ¼ 4m‘3

420
þ 4m‘3

420

� �
¼ 8m‘3

420

� �

det KD � ω2MD

� � ¼ 0) ω2
1 ¼

420EI

m‘4

KE ¼
4EI
‘ þ 4EI

‘
2EI
‘

2EI

‘

4EI

‘
þ 4 EI

2

	 

‘

2
4

3
5 ¼

4EI

‘
þ 4EI

‘

2EI

‘

2EI

‘

4EI

‘
þ 4 EI

2

	 

‘

2
664

3
775

ME ¼
4m‘3

420
þ 4m‘3

420

�3m‘3

420

�3m‘3

420

4m‘3

420
þ 4 EI

2

	 

‘3

420

2
664

3
775 det KE � ω2ME

� � ¼ 0

) ω2
2 ¼

525EI

m‘4

) ω2
3 ¼

378EI

m‘4
:

(7.88)

Example 7.11. Consider the frame with an even number of spans as shown in

Fig. 7.44, where the frame has 10 DOFs without side sway and 12 DOFs with side

sway.

In the case of non-sway, the factors D and E are obtained as (Fig. 7.45)

In this case, the eigensolution of a 10 � 10 matrix is transformed into the

eigensolution of two 4 � 4 and 6 � 6 matrices.

In the sway case, the factors D and E are obtained as shown in Fig. 7.46.

The factors of the main frame in the case of sway and non-sway are identical.

Only the factor E has the translation DOF.

1

2 4

3 9 57

610

3 m 

4 m 

3 m 

4 m 3 m 4 m 

8

Fig. 7.44 A frame with four spans
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7.4.3 Discussion

Decomposition and healing process presented in this part reduce the dimensions of

the matrices for dynamic analysis of the symmetric frames. Therefore, for large-

scale problems the accuracy of calculation increases and the cost of computation

decreases.

It can be observed that for the symmetric frames, one of the factors is common

for sway and non-sway cases. Therefore, if a frame has n symmetric DOFs, then for

both sway and non-sway cases, we will have common results. As an example, for a

10-storey frame with Form II symmetry, the natural frequencies can be obtained by

three matrices of dimensions 45 � 45, 45 � 45 and 55 � 55 in place of two

matrices of dimensions 100 � 100 and 90 � 90. This results in a considerable

saving in computational time.

1

2 4

3 9 57

6

4 m 
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4 m 3 m 3 m  4 m 

810

2
,

2
mI

D E

Fig. 7.45 Factors D and E for the non-sway frame
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Fig. 7.46 Factors D and E for the sway frame
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7.5 Eigenfrequencies of Symmetric Planar Trusses via

Weighted Graph Symmetry and New Canonical Forms

In this part two methods are presented for calculating the eigenfrequencies of

structures. The first approach is graph theoretical and uses graph symmetry. The

graph models are decomposed into submodels and healing processes are employed

such that the union of the eigenvalues of the healed submodels contain the

eigenvalues of the entire model. The second method has an algebraic nature and

uses special canonical forms.

7.5.1 Modified Symmetry Forms

In this section, two modified forms are introduced, and methods are presented for

constructing a suitable weighted graph. These graphs are then decomposed, and

healings are performed to maintain the eigen-properties of the entire graph.

It should be mentioned that the Form II is applicable to the graph matrices like

Laplacian and adjacency matrices, or to the structural matrices when the structure

has only one degree of freedom per node, while Form A is defined for trusses with

two degrees of freedom per node. The same reasoning holds for the Form III and

Form B symmetry introduced in the subsequent subsections.

7.5.1.1 Symmetry of Form A (Modified Form II Symmetry)

For trusses with axis of symmetry passing through some members, we have the

Form A symmetry, as shown in Fig. 7.47a. The main reason for not being able to

employ the previously developed forms of symmetry for calculating the eigenfre-

quencies of truss structures is due to the existence of oblique cross members. These

members affect the entries of the stiffness and mass matrices and change the sign

for some of the entries. Separation of the horizontal and vertical DOFs, as shown in

Fig. 7.47b, results in stiffness matrices of the symmetric trusses for the case where

the axis of symmetry does not pass through the nodes as follows:

First the nodes in the left-hand side (LHS) of the symmetry axis are numbered

followed by the numbering of the nodes in the right-hand side (RHS). Now the

horizontal DOFs (along x-axis) are first numbered, and then the vertical DOFs (in y-

direction) are numbered for the LHS. A similar numbering is then performed for the

DOFs of the RHS.

Pattern of the weighted block adjacency matrix M is as follows:
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LHS RHS

H V H V

M ¼

A C D F

C B F E

D �F A �C
�F E �C B

2
6664

3
7775
H

V

H

V

LHS

RHS ð7:89Þ

Conditions for symmetry are as follows:

All the submatrices are symmetric, except F which is antisymmetric.

At ¼ A ; Bt ¼ B ; Ct ¼ C ; Dt ¼ D and Ft ¼ �F : (7.90)

Here Ft ¼ �F corresponds to the interaction of the horizontal DOFs of the LHS

nodes and the vertical DOFs of the RHS and vice versa.

Performing the following permutations, we transform the matrix M into the

Schur’s form:

������������!C2 ¼ C1 þ C3

C2 ¼ C2 � C4

M ¼

Aþ D C� F D F

Cþ F B� E F E

Aþ D �Fþ C A �C
�F� C E� B �C B

2
6664

3
7775; (7.91)

������������!R3 ¼ R3 � R1

R4 ¼ R4 þ R2

M ¼
Aþ D C� F D F

Cþ F B� E F E
0 0 A� D �C� F

0 0 F� C Bþ E

2
664

3
775: (7.92)
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LL L

3
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1
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1
4 10

7

2
5

3
6

9
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a b

Fig. 7.47 Modified numbering of the DOFs (Form A). (a) Initial numbering. (b) Modified

numbering
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Thus,

Det½M� ¼ Det
AþD C�F

CþF B�E

� �
 !

S

� Det
A�D �C�F

�CþF BþE

� �
 !

T

:
(7.93)

Therefore, the eigenvalues of M can be obtained as

λðMÞ ¼ λðSÞ [ λðTÞ: (7.94)

It should be noted that S and T are both symmetric, because F is antisymmetric

and the remaining submatrices are symmetric. The above relationships provide the

basis of the algebraic method for trusses with odd number of bays.

7.5.1.2 Symmetry of Form B (Modified Form III Symmetry)

For trusses with axis of symmetry passing through central nodes, we have the Form

B symmetry, as shown in Fig. 7.48. First the nodes in the LHS of the symmetry axis

are numbered followed by the numbering of the nodes in the RHS, and then the

central nodes on the axis of symmetry are numbered. Now the horizontal DOFs

(along x-axis) are first numbered, and then the vertical DOFs (in y-direction) are

numbered for the LHS. A similar numbering is then performed for the DOFs of the

RHS. Finally, the horizontal DOFs (in x-direction) followed by the vertical DOFs

(in y-direction) for the central nodes on the axis of symmetry.

Pattern of the matrix M is as follows:

M ¼

A C D F G I
C B F E I H

D �F A �C G �I
�F E �C B �I H

Gt It Gt �It J L
It Ht �It Ht L K

2
6666664

3
7777775
: (7.95)
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Nodes on Nodes on Nodes on
the LHS the RHS the axis
of the axis of the axis of symmetry

���������������������!Column permutations

A C G I D F

B B H G F E
D �F G �I A �C
�F E �I H �C B

Gt It J 0 Gt �Jt
Jt Ht 0 K �Jt Ht

2
6666664

3
7777775
;

(7.96)

Nodes on Nodes on Nodes on
the LHS the RHS the axis
of the axis of the axis of symmetry

������������������!Exchange of rows

A C G I D F

C B I H F E

Gt It J 0 Gt �It
It Ht 0 K �It Ht

D �F G �I A �C
�F E �I H �C B

2
6666664

3
7777775
;

(7.97)

L

LL L

4
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10 8 7

2

13
15 10

7

3
6
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16
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3

1

1
4

2
5

L

Fig. 7.48 A symmetric truss

with the axis passing through

central nodes
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Nodes on Nodes on Nodes on
the LHS the RHS the axis
of the axis of the axis of symmetry

������������!C2 ¼ C1 þ C3

C2 ¼ C2 � C4

Aþ D C� F G I D F

Cþ F B� E I H F E

2Gt 2It J 0 Gt �It
0 0 0 K �It Ht

Aþ D �Fþ C G �I A �C
�F� C E� B �I H �C B

2
66666664

3
77777775

(7.98)

Now the following Schur’s form is obtained as

���������!R5¼R5�R1

R6¼R6þR2

AþD C�F G I D F
CþF B�E I H F E

2Gt 2It J 0 Gt �It
0 0 0 K �It Ht

0 0 0 �2I A�D �C�F
0 0 0 2H �CþF BþE

2
6666664

3
7777775
: (7.99)

Interchanging the 4–6 rows and columns, we obtain

Det ½M� ¼ Det

Aþ D C� F G

Cþ F B� E I

2Gt 2It J

2
4

3
5

S

�
A� D �C� F �2I
�Cþ F Bþ E 2H

�It Ht K

2
4

3
5

t

:

(7.100)

Thus,

λðMÞ ¼ λðSÞ [ λðTÞ: (7.101)

Matrix L is always a null matrix due to the symmetry. We may move the nodes

on the axis of symmetry in y-direction; these nodes should not be moved in x-

direction.

The matrices A, B, C, D and E are symmetric and F is antisymmetric. These

submatrices are n� n, where n is the number of free nodes in each side of the

axis of symmetry. I, H and G are n� m submatrices, where m is the number of

node on the axis and L, J and K are m� m submatrices. L is replaced by the

null matrix 0.

The above relationships provide the basis of the algebraic method for trusses

with an even number of bays.
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7.5.1.3 Definitions: Stiffness and Mass Graphs

The stiffness graph of a truss structure with k degrees of freedom has k nodes, and

the two nodes i and j are connected if the corresponding off-diagonal entry of the

stiffness matrix is non-zero. The weight of each node as equal to the corresponding

entry on the main diagonal, and the weight of each member connecting the nodes i

and j is the same as the entry (i,j) of the stiffness matrix. The mass graph of a mass

matrix is similarly constructed.

7.5.2 Numerical Results

In this section, three examples are presented and discussed in detail to illustrate the

methods presented in the previous section.

Example 7.12. Consider the symmetric truss with an odd number of spans as shown

in Fig. 7.49. For this truss, the axis of symmetry passes through four members.

The stiffness matrix will have the following form:

K¼

2EA
L
þ EA

2L0 0 EA
2L0 0 �EA

L
�EA

2L0 0 �EA
2L0

0 EA
L
þ EA

L0 0 0 �EA
2L0 �EA

L
EA
2L0 0

EA
2L0 0 EA

L
þ EA

2L0 �EA
L

0 �EA
2L0 0 �EA

2L0

0 0 �EA
L

EA
L
þ EA

L0
EA
2L0 0 �EA

2L0 0

�EA
L

�EA
2L0 0 EA

2L0
2EA
L
þ EA

2L0 0 �EA
2L0 0

�EA
2L0 �EA

L
�EA

2L0 0 0 EA
L
þ EA

L0 0 0

0 EA
2L0 0 �EA

2L0 �EA
2L0 0 EA

L
þ EA

2L0 �EA
L

�EA
2L0 0 �EA

2L0 0 0 0 �EA
L

EA
L
þ EA

L0

2
666666666666666664

3
777777777777777775

:

(7.102)

The weighted graph corresponding to the above stiffness matrix can easily be

constructed as shown in Fig. 7.50. Here, the weight of each node is identical to the

corresponding entry on the main diagonal, and the weight of each member is

the same as the (i,j)th entry of the matrix corresponding to that member.

The subgraphs are formed using the following algorithm:

After decomposing the graph into two subgraphs using the axis of symmetry, the

following operations are performed:

(a) The subgraph corresponding to S:

1. If there is a direct member between the horizontal DOF of two symmetric

nodes, then a directed ring should be added to the node of the LHS with a

weight equal to the weight of the member.
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2. If there is a direct member between the vertical DOF of two symmetric

nodes, then a directed ring should be added to the node of the RHS with a

weight equal to the weight of the member having minus sign.

EA
+

L L'
EA

2EA
+

L 2L'
EA

1

2

3

4 8

7

5

6

EA
+

L 2L'
EA

EA
+

L L'
EA

EA
+

L L'
EA

2EA
+

L 2L'
EA

EA
+

L 2L'
EA

EA
+

L L'
EA

-EA
L

2L'
EA

2L'
-EA

-EA
L

2L
'

-EA
2L'

-EA

-EA
L

-EA
L

2L'
-EA

2L'
EA

2L'
-EA

2L'
EA

2L

-EA

2L
'

-EA

Fig. 7.50 Graph representation of the stiffness matrix
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Fig. 7.49 A truss with an odd number of bays

7.5 Eigenfrequencies of Symmetric Planar Trusses via Weighted Graph Symmetry. . . 201



3. The oblique members cut by the axis of symmetry, which connect the

horizontal (or vertical) DOFs, are in dual form, and the weight of one of

them should be added to the weight of the member connecting the

corresponding nodes. Addition should be replaced by subtraction for vertical

DOFs.

4. The weight of the members connecting the horizontal and vertical DOFs is

equal to the weight of the existing member between these two nodes minus

the weight of the connecting member of the node corresponding to the

horizontal DOF to the node corresponding to the vertical DOF, as shown

in Fig. 7.51.

The stiffness matrix corresponding to the subgraph of Fig. 7.51 is formed as

S ¼

EA
L
þ EA

2L0
�EA
2L0

EA
2L0

EA
2L0

�EA
2L0

EA
L0

�EA
2L0

0

EA
2L0

�EA
2L0

EA
L
þ EA

2L0
�EA
L
þ EA

2L0
EA
2L0 0 �EA

L
þ EA

2L0
EA
L
þ EA

L0

2
6664

3
7775 (7.103)

(b) The subgraph corresponding to T:
After decomposing the graph into two subgraphs at the cut by the axis of

symmetry, the following operations should be performed:

1. If there is a direct link between any node in the right-hand side and the LHS,

then a loop is added to the subgraph in the RHS which has a weight equal to

the weight of that node with reverse sign.

L'

EA

2EA
+

L 2L'

EA
1

2

3

4

EA
+

L 2L'

EA

EA
+

L L'

EA

2L
'

-E
A

2L'

-EA

2L'

EA

-EA
+

L 2L'

EA

2L'

EA

EA
L

+
-EA
L

-EA
L

Fig. 7.51 Formation of the

subgraph S
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2. If there is a direct link between the vertical DOFs of the LHS and the RHS,

then a directed loop is added to the subgraph in the RHS which has a weight

equal to the weight of that link member.

3. The oblique members connecting the horizontal DOF (or vertical), which are

cut, are necessarily dual, and we should reduce the weight of one of them

from the link between two corresponding nodes in one side of the symmetry

axis (right-hand side). We make addition for the vertical DOFs.

4. The weight of the member connecting the horizontal and vertical DOFs is

equal to the weight of the existing member between these two nodes (in the

RHS of the axis) plus the weight of the member connecting the node

corresponding to the horizontal DOF (in the same side of the axis) to the

node corresponding to the vertical DOF in the other side of the symmetry

axis.

The stiffness matrix corresponding to the subgraph of Fig. 7.52 is formed as

T ¼

3EA
L
þ EA

2L0
EA
2L0

�EA
2L0

EA
2L0

EA
2L0

2EA
L
þ EA

L0
�EA
L0

0
�EA
2L0

�EA
2L0

EA
L
þ EA

2L0
�EA
L
� EA

2L0
EA
2L0 0 �EA

L
� EA

2L0
EA
L
þ EA

L0

2
6664

3
7775: (7.104)

Similarly, the mass matrix is formed as

8

7

5

6
EA

+
L L'

EA

2EA
+L 2L'

EA

EA
+L 2L'

EA

EA
+

L L'

EA

2L '
E
A

2L'
-EA

2L'
-EA

2L'
EA

-EA
-

L 2L'
EA

L
EA

L
EA

Fig. 7.52 Formation the

subgraph T
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M ¼

ρALþ ρAL0
3

ρAL
6

0 0 ρAL
6

ρAL0
6

0 0

ρAL
6

2ρAL
3
þ 2ρAL0

3
0 0 ρAL0

6
ρAL
6

0 0

0 0 ρALþ ρAL0
3

ρAL
6

0 0 ρAL
6

ρAL0
6

0 0 ρAL
6

2ρAL
3
þ 2ρAL0

3
0 0 ρAL0

6
ρAL
6

ρAL
6

ρAL0
6

0 0 ρALþ ρAL0
3

ρAL
6

0 0

ρAL0
6

ρAL
6

0 0 ρAL
6

2ρAL
3
þ 2ρAL0

3
0 0

0 0 ρAL
6

ρAL0
6

0 0 ρALþ ρAL0
3

ρAL
6

0 0 ρAL0
6

ρAL
6

0 0 ρAL
6

2ρAL
3
þ 2ρAL0

3

2
6666666666666666664

3
7777777777777777775

:

ð7:105Þ

Graph representation of the mass matrix is illustrated in Fig. 7.53. The subgraphs

are formed utilising the previous algorithm as follows:

(a) The subgraph corresponding to S:
This subgraph is shown in Fig. 7.54. The mass matrix corresponding to the

subgraph shown in Fig. 7.54 is constructed as

S ¼

7ρAL
6
þ ρAL0

3
ρAL
6
þ ρAL0

6
0 0

ρAL
6
þ ρAL0

6
5ρAL
6
þ 2ρAL0

3
0 0

0 0 5ρAL
6
þ ρAL0

3
ρAL
6
� ρAL0

6

0 0 ρAL
6
� ρAL0

6
ρAL
2
þ 2ρAL0

3

2
666664

3
777775: (7.106)

(b) The subgraph corresponding to T:
This subgraph is shown in Fig. 7.55. The mass matrix corresponding to this

subgraph is as follows:
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2 +
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  ALr
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  AL
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6

  AL
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6
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6
  ALr
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6

r  AL'
6
r +

3
+

Fig. 7.53 Graph representation of the mass matrix
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T ¼

5ρAL
6
þ ρAL0

3
ρAL
6
� ρAL0

6
0 0

ρAL
6
� ρAL0

6
ρAL
2
þ 2ρAL0

3
0 0

0 0 7ρAL
6
þ ρAL0

3
ρAL
6
þ ρAL0

6

0 0 ρAL
6
þ ρAL0

6
5ρAL
6
þ 2ρAL0

3

2
6664

3
7775: (7.107)
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3
2 +

  AL'r

3
2

  ALr +
  AL'r

3

  ALr +
  AL'r

3

  ALr

3
2 +

  AL'r

3
2

  ALr

6
-
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6

  ALr

6
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6

6
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6
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6
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-

6
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-

Fig. 7.55 Formation of the

subgraph T
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Fig. 7.54 Formation of the

subgraph S
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Considering, E ¼ 2:07� 107 kN=m L ¼ 100 cm, I ¼ 100 cm2 and

ρ ¼ 78 kN=m3 and A ¼ 10 cm2 the frequencies of the structure are calculated as

ωS ¼ ½16:251; 20:608; 37:51; 40:229�
ωT ¼ ½8:294; 42:680; 45:403; 55:909�
ω ¼ ωS [ ωT ¼ ½16:251; 20:608; 37:51; 40:229; 8:294; 42:680; 45:403; 55:909�:

ð7:108Þ

Using the algebraic approach formulated in Sect. 3.1, identical eigenfrequencies

are obtained. The eigenvectors are then calculated and the mode shapes are

obtained, Fig. 7.56.

Example 7.13. Consider the symmetric truss with an even number of spans as

shown in Fig. 7.57. For this truss, the axis of symmetry passes through two nodes.

The stiffness matrix of the structure shown in Fig. 7.58 has the Form B symmetry

as follows:

K ¼

2EA
L
þ EA

2L0 0 EA
2L0 0 0 0 0 0 � EA

L
� EA

2L0 0 � EA
2L0

0 EA
L
þ EA

L0 0 0 0 0 0 0 � EA
2L0 � EA

L
EA
2L0 0

EA
2L0 0 EA

L
þ EA

2L0 � EA
L

0 0 0 0 0 � EA
2L0 0 � EA

2L0

0 0 � EA
L

EA
L
þ EA

L0 0 0 0 0 EA
2L0 0 � EA

2L0 0

0 0 0 0 2EA
L
þ EA

2L0 0 � EA
2L0 0 � EA

L
� EA

2L0 0 EA
2L0

0 0 0 0 0 EA
L
þ EA

L0 0 0 � EA
2L0 � EA

L
� EA

2L0 0

0 0 0 0 � EA
2L0 0 EA

L
þ EA

2L0 � EA
L

0 EA
2L0 0 � EA

2L0

0 0 0 0 0 0 � EA
L

EA
L
þ EA

L0 � EA
2L0 0 � EA

2L0 0

� EA
L

� EA
2L0 0 EA

2L0 � EA
L

� EA
2L0 0 � EA

2L0
2EA
L
þ EA

L0 0 0 0

� EA
2L0 � EA

L
� EA

2L0 0 � EA
2L0 � EA

L
EA
2L0 0 0 2EA

L
þ EA

L0 0 0

0 EA
2L0 0 � EA

2L0 0 � EA
2L0 0 � EA

2L0 0 0 EA
L
þ EA

L0 � EA
L

� EA
2L0 0 � EA

2L0 0 EA
2L0 0 � EA

2L0 0 0 0 � EA
L

EA
L
þ EA

L0

2
666666666666666666666666666664

3
777777777777777777777777777775

:

ð7:109Þ

Graph representation of the stiffness matrix is illustrated in Fig. 7.58.

7.5.2.1 Symmetry Property of the Graph Representation

of the Stiffness Matrix

1. The graph is symmetric with respect to the axis passing through the nodes

corresponding to the central DOFs.

2. The weight of the node i is equal to the (i,i)th entry of the stiffness (or mass)

matrix, and it is symmetric with respect to the axis.
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3. The weight of the member connecting the nodes i and j is equal to the (i,j)th

entry of the stiffness (or mass) matrix. The weight between the x DOFs (the

upper part of the graph) and the weight of the member between y DOFs (lower

part of the graph) are symmetric with respect to the axis of symmetry (the

corresponding members are identical), and the weight of the members between

x and y DOFs in two sides of the axis of symmetry is antisymmetric (equal

members with reverse signs). Finally there should be no link member between x

and y DOFs of the central nodes, that is, the submatrix L of the stiffness (or

mass) matrices should be null matrix. This had been proven differently.

7.5.2.2 Formation of the Subgraphs

The subgraphs are constructed utilising the following algorithm:

We subdivide the graph into two subgraphs by removing the members cut by the

axis of symmetry. The subgraph in the LHS corresponds to the matrix S, and the one

1st mode 2nd mode

3rd mode 4th mode

5th mode 6th mode

7th mode 8th mode

Fig. 7.56 The natural mode shapes of Example 7.12
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in the RHS corresponds to T. For the graphs on the axis of symmetry, the upper

nodes on the axis corresponding to the horizontal DOFs are associated to S and the

bottom nodes on the axis corresponding to the vertical DOFs are associated to T.
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Fig. 7.58 Graph representation of the stiffness matrix
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The weight of the nodes and all the members (which may exist between the nodes

on the axis) are left unchanged.

(a) The subgraph corresponding to S:
If there exists a member between any node of the LHS (nodes 5, 6, 7 and 8) and

the central nodes (the existing nodes in Figs. 7.57 and 7.58), then a directed

member is added from the central node towards the node in the LHS with a

weight equal to that of the existing member. The weight of the directed member

from i to j is added to the entry Sij.

The stiffness matrix corresponding to the subgraph shown in Fig. 7.59 is

constructed as

KS ¼

2EA
L
þ EA

2L0 0 EA
2L0 0 � EA

s
� EA

2L0

0 EA
L
þ EA

L0 0 0 � EA
2L0 � EA

L
EA
2L0 0 EA

L
þ EA

2L0 � EA
L

0 � EA
2L0

0 0 � EA
L

EA
L
þ EA

L0
EA
2L0 0

� 2EA
L

� EA
L0 0 � EA

L0
2EA
L
þ EA

L0 0

� EA
L0 � 2EA

L
� EA

L0 0 0 2EA
L
þ EA

L0

2
666666664

3
777777775
: (7.110)

(b) The subgraph corresponding to T:
The weight of the nodes and the possible existing members are left unchanged.

If there exists a member between the DOFs of the RHS (nodes 5, 6, 7 and 8) and

the central nodes (the existing nodes in Figs. 7.59 and 7.60), then another

directed member is added from the LHS node towards the central node with a

weight equal to that of the existing member. For the added directed member, the

weight of the member from i to j is added to the entry Tij.

The stiffness matrix corresponding to the subgraph T, shown in Fig. 7.60, is

constructed in the following:

KT ¼

2EA
L
þ EA

2L0 0 � EA
2L0 0 0 EA

L0
0 EA

L
þ EA

L0 0 0 � EA
L0 0

� EA
2L0 0 EA

L
þ EA

2L0 � EA
L

0 � EA
L0

0 0 � EA
L

EA
L
þ EA

L0 � EA
L0 0

0 � EA
2L0 0 � EA

2L0
EA
L
þ EA

L0 � EA
L

EA
2L0 0 � EA

2L0 0 � EA
L

EA
L
þ EA

L0

2
6666664

3
7777775
: (7.111)

For the mass matrix, a similar operation is performed.
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M¼

ρAL þ ρAL0
3

ρAL
6

0 0 0 0 0 0 ρAL
6

ρAL0
6

0 0

ρAL
6

2ρAL
3
þ 2ρAL0

3
0 0 0 0 0 0 ρAL0

6
ρAL
6

0 0

0 0 ρALþ ρAL0
3

ρAL
6

0 0 0 0 0 0 ρAL
6

ρAL0
6

0 0 ρAL
6

2ρAL
3
þ 2ρAL0

3
0 0 0 0 0 0 ρAL0

6
ρAL
6

0 0 0 0 ρALþ ρAL0
3

ρAL
6

0 0 ρAL
6

ρAL0
6

0 0

0 0 0 0 ρAL
6

2ρAL
3
þ 2ρAL0

3
0 0 ρAL0

6
ρAL
6

0 0

0 0 0 0 0 0 ρALþ ρAL0
3

ρAL
6

0 0 ρAL
6

ρAL0
6

0 0 0 0 0 0 ρAL
6

2ρAL
3
þ 2ρAL0

3
0 0 ρAL0

6
ρAL
6

ρAL
6

ρAL0
6

0 0 ρAL
6

ρAL0
6

0 0 ρALþ 2ρAL0
3

ρAL
6

0 0

ρAL0
6

ρAL
6

0 0 ρAL0
6

ρAL
6

0 0 ρAL
6

ρALþ 2ρAL0
3

0 0

0 0 ρAL
6

ρAL0
6

0 0 ρAL
6

ρAL0
6

0 0 ALþ 2ρAL0
3

ρAL
6

0 0 ρAL0
6

ρAL
6

0 0 ρAL0
6

ρAL
6

0 0 ρAL
6

ρALþ 2ρAL0
3

2
66666666666666666666666666664

3
77777777777777777777777777775

:

ð7:112Þ

The graph representation of the mass matrix with the Form B symmetry is

illustrated in Fig. 7.61.

The subgraphs are constructed utilising the previous algorithm.

(a) The subgraph corresponding to S:
The mass matrix corresponding to the subgraph, shown in Fig. 7.62, is formed

as

MS¼

ρALþ ρAL0
3

ρAL
6

0 0 ρAL
6

ρAL0
6

ρAL
6

2ρAL
3
þ 2ρAL0

3
0 0 ρAL0

6
ρAL
6

0 0 ρALþ ρAL0
3

ρAL
6

0 0

0 0 ρAL
6

2ρAL
3
þ 2ρAL0

3
0 0

ρAL
3

ρAL0
3

0 0 ρALþ 2ρAL0
3

ρAL
6

ρAL0
3

ρAL
3

0 0 ρAL
6

ρALþ 2ρAL0
3

2
666666664

3
777777775
:

(7.113)

(b) The subgraph corresponding to T:
The mass matrix corresponding to the subgraph, shown in Fig. 7.63, is as

follows:

MT¼

ρALþ ρAL0
3

ρAL
6

0 0 0 0
ρAL
6

2ρAL
3
þ 2ρAL0

3
0 0 0 0

0 0 ρALþ ρAL0
3

ρAL
6

ρAL
3

ρAL0
3

0 0 ρAL
6

2ρAL
3
þ 2ρAL0

3
ρAL0
3

ρAL
3

0 0 ρAL
6

ρAL0
6

ρALþ 2ρAL0
3

ρAL
6

0 0 ρAL0
6

ρAL
6

ρAL
6

ρALþ 2ρAL0
3

2
666666664

3
777777775
:

(7.114)

Considering E ¼ 2:07� 107 kN=m, L ¼ 100 cm, I ¼ 100 cm4 and

ρ ¼ 78 kN=m3 and, the frequencies of the structure are calculated as
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ωT ¼ ½48:908; 42:227; 37:548; 31:368; 26:525; 5:447�;
ωS ¼ ½11:886; 14:184; 11:722; 42:890; 45:349; 59:192�;
ω ¼ ωT [ ωS ¼ ½48:908; 42:227; 37:548; 31:368; 26:525; 5:447; 11:886;

14:184; 11:722; 42:890; 45:349; 59:192�: ð7:115Þ

Using the algebraic approach formulated in Sect. 3.2, identical eigenfrequencies

are obtained. The eigenvectors are then calculated and the mode shapes are

obtained. The first four mode shapes are illustrated in Fig. 7.64.

Important Notes: In the main graph there is no member between the nodes in the

two sides of the symmetry axis, since the submatrices D, E and F are null matrices.

The reason is the existence of a member directly connecting two nodes in two sides

of the symmetry axis. If there exist such members, then the submatrices D, E and F

will not be null, and for finding the subgraphs S and T and only for such members,

one should act as was described in the algorithm for the Form B symmetry. For

other members with the present pattern with nodes in two sides of the axis

connected to the central node, the above algorithm should be employed. This

problem can be recognised by investigating the similarity between the Form A

and Form B canonical symmetries. Part of the matrices S and T in Form A are

exactly the same as submatrices S and T in Form B.

Example 7.14. Consider a planar 2D truss with the symmetry axis passing through

central members (truss with odd number of spans), as shown in Fig. 7.65.

Considering L ¼ 100 cm, I ¼ 100 cm4, E ¼ 201 kN/mm2 and ρ ¼ 78 kN=m3,

A ¼ 10 cm2, the eigenfrequencies of the structure are calculated as:
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Fig. 7.63 Formation of the

subgraph T
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ωS¼ 26:83;42:78;92:36;108:31;150:23;159:69;169:32;171:32;180:91;

201:74;225:75;230:13;233:65;293:60

� �
;

ωT¼ 11:40;58:91;76:81;122:52;140:75;174:27;177:88;183:17;217:99;

223:18;233:94;235:82;259:0;322:24

� �
;

ω¼ωS[ωT¼

26:83;42:78;92:36;108:31;150:23;159:69;169:32;171:32;180:91;

201:74;225:75;230:13;233:65;293:60;11:40;58:91;76:81;122:52;

140:75;174:27;177:88;183:17;217:99;223:18;233:94;235:82;

259:0;322:24

2
6664

3
7775

(7.116)

1st mode

2nd mode

3rd mode

4th mode

Fig. 7.64 The first four

natural mode shapes of

Example 7.13
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Using the algebraic approach formulated in Sect. 3.1, identical eigenfrequencies

are obtained.

Example 7.15. Consider a planar 2D trusses that passes symmetry axes on middle

nodes (truss with even number of spans) as shown in Fig. 7.66.

Considering L ¼ 100 cm, I ¼ 100 cm4, E ¼ 201 kN/mm2 and ρ ¼ 78 kN=m3,

A ¼ 10 cm2, the eigenfrequencies of the structure are calculated as:
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Fig. 7.65 A 7-bay symmetric truss
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ωK¼ 319:33;247:61;32:86;50:60;235:05;226:08;210:38;111:94;119:87;162:88;

175:33;177:43

� �
;

ωH¼ 15:17;73:08;86:37;142:5;157:8;170:21;182:37;189:58;225:17;226:63

234:2;284:92

� �
;

ω¼ωK[ωH¼
319:33;247:61;32:86;50:60;235:05;226:08;210:38;111:94;

119:87;162:88;175:33;177:43;15:17;73:08;86:37;142:5;157:8;

170:21;182:37;189:58;225:17;226:63;234:2;284:92

2
64

3
75

(7.117)

Using the algebraic approach formulated in Sect. 3.2, identical eigenfrequencies

are obtained.

Though in this part the examples are selected from small trusses, however, the

method shows its potential more when applied to large-scale structures. For com-

parison of the required time for calculating the eigenvalues of matrices with and

without decomposition, matrices of various dimensions are considered having

sparsity between 30 % and 40 %, and MATLAB is employed for these calculations.

7.5.3 Discussion

In this part two new canonical forms are introduced and weighted graph are

associated with these forms. Decomposition and healing processes are presented

to perform on these graphs in order to reduce the dimensions of the problem for free

vibration analysis of the symmetric trusses. Therefore, the accuracy of calculation

increases, and the cost of the computation decreases. The previously developed

methods were unable to deal with cross-link members of structures with more than

one DOF per node, while the new forms defined here overcome this difficulty.

Calculation of the eigenfrequencies can also be performed using the relationships

presented in Sects. 3.1 and 3.2 for trusses with odd and even numbers of bays,

respectively.

It should be mentioned that for automatic numbering of the degrees of freedom

(or nodal numbering suitable for the canonical forms), additional algorithm is

required.

The present method is also applicable to similar eigensolution problems such as

stability analysis of symmetric trusses for calculating their critical loads. This

approach can easily be generalised to free vibration analysis of space trusses.
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7.6 General Canonical Forms for Analytical Solution

of Problems in Structural Mechanics

In this part new forms are introduced for efficient eigensolution of special tri-diagonal

and penta-diagonal matrices. Applications of these forms are illustrated using

problems from mechanics of structures.

7.6.1 Definitions

The polynomial pðλÞ ¼ detðA� λIÞ is called the characteristic polynomial of
A. The roots of p(λ) ¼ 0 are the eigenvalues of A. Since the degree of the

characteristic polynomial p(λ) equals to N, the dimension of A has N roots, so A

has N eigenvalues. A non-zero vector x satisfyingAx ¼ λx is an eigenvector for the
eigenvalue λ.

The easiest matrix for which the eigenvalues can be calculated is a diagonal

matrix, whose eigenvalues are simply its diagonal entries. Equally easy is a

triangular matrix, whose eigenvalues are also its diagonal entries. A matrix can

have complex eigenvalues, since the roots of its characteristic polynomial may be

real or complex. Therefore, there is not always a real triangular matrix with the

same eigenvalues as a real general matrix, since a real triangular matrix can

only have real eigenvalues. Thus, one must either use complex numbers or look

beyond real triangular matrices for canonical forms for real matrices. For this

purpose, it is sufficient to consider block triangular matrices, that is, matrices of

the form

A ¼

A11 A12 : : : A1N

A22 : : : A2N

: : : :
: : :

: :
ANN

2
6666664

3
7777775
; (7.118)

where each Aii is square and all entries below Aii blocks are zero. It can easily

be shown that the characteristic polynomial det (A � λI) of A is the product
QN

i¼1
detðAii � λIÞ of the characteristic polynomial of the Aii, and therefore, the set λ(A)
of eigenvalues of A is the union [Ni¼1 λðAiiÞ of the sets of eigenvalues of the

diagonal blocks Aii.
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7.6.2 Decomposition of a Tri-diagonal Matrix

Consider a block tri-diagonal matrix as:

F ¼

A B

B C B

B C B

: : :
: : :

: : :
B C B

B C B

B A

2
6666666666664

3
7777777777775
; (7.119)

where A, B andC are m � mmatrix blocks. The matrix F contains n blocks in each

row and n blocks in each column. A matrix M in the form of F will be denoted by

Mmn ¼ FðAm;Bm;CmÞmn.

7.6.2.1 Canonical Form I

Now consider the following tri-diagonal matrix:

Mmn ¼ F Am; Bm; Amð Þmn;

where Am ¼ Fða; b; aÞm and Bm ¼ Fðc; d; cÞm:
(7.120)

Consider Tk ¼ F(0,1,0)k with eigenvalues λk, and denote the unit matrix by Ik,

where k is the dimension of the square matrices Tk and Ik. The matrix Mmn can be

decomposed as

Mmn ¼ In � Am þ Tn � Bm; (7.121)

where � denotes the Kronecker product of two matrices as defined in Sect. 4.9.

Substituting the following relationships in Eq. 7.121,

Am ¼ aIm þ bTmð Þ and Bm ¼ cIm þ dTmð Þ (7.122)

results in

Mmn ¼ aIn � Im þ bIn � Tm þ cTn � Im þ dTn � Tm: (7.123)
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It is readily verified that the eigenvalues of Tn � Tm are λmλn, and therefore,

λ ¼ aþ bλm þ cλn þ dλmλn: (7.124)

7.6.2.2 Applications

For problems where the second derivatives are present, the application of finite

difference method leads to matrices of canonical Form I. As an example, consider

the solution of the Laplace equation using the finite difference method. The

parameters of λ in Eq. 7.124 for this case are as follows:

a ¼ 4; b ¼ �1; c ¼ �1; and d ¼ 0; (7.125)

leading to

λ ¼ 4� λm � λn: (7.126)

Now consider the solution of the Laplace equation in a square domain, Fig. 7.50,

with N ¼ 4 (m ¼ n ¼ 4).

In general case, for a path Pn with n nodes, the adjacency and Laplacian matrices

are in the form Pn ¼ F(a,b,a), and the corresponding eigenvalues can be obtained

by (Fig. 7.67)

λ ¼ aþ 2b cos
kπ

nþ 1
for k ¼ 1; . . . ; n: (7.127)
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For Tm ¼ F(0,1,0) one obtains λm ¼ 2 cos kπ
nþ1 , and for maximum, λ4 ¼ 2

cos π
5
¼ 1:6180, leading to λ ¼ 4 � 1.6180 � 1.6180 ¼ 0.7639 which is quite

close to the exact value. Figures 7.68a and 7.69b show the distribution of the

components of the corresponding first eigenvector, over the grid points, in two-

and three-dimensional spaces, respectively.

7.6.3 A New Form for Efficient Solution of Eigenproblem

7.6.3.1 A General Block Diagonal Tri-diagonal Matrix

Consider a block tri-diagonal matrix as

M ¼

x 3 0 2 0 0
4 x x 0 0 0
0 2 x 3 0 2
x 0 4 x x 0
0 0 0 2 x 3
0 0 x 0 4 x

2
666664

3
777775 (7.128)

with x as some diagonal and non-diagonal entries. We are interested to find x such

that the determinant of M becomes zero. This matrix has the canonical Form I as

introduced in the previous section, and it can be expressed as Pm ¼ F(A2,B2,A2).

The corresponding eigenvalues can be obtained as

λ ¼ A2 þ 2B2 cos
kπ

nþ 1
; k ¼ 1; . . . ; n: (7.129)

1

2

3m

5m

7m

3

4Fig. 7.69 A symmetric

frame with sway
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Now one can substitute the corresponding submatrices for A2 and B2, leading to

λ ¼ x 3

4 x

� �
þ 2

0 2

x 0

� �
cos

kπ
4
; k ¼ 1; . . . ; 3: (7.130)

For det (M) ¼ 0, the determinant of λM for k ¼ 1,2,3 should be set to zero, that

is,

det
x 3

4 x

� �
þ 2

0 2

x 0

� �
cos

π
4

� �
¼ 0) x ¼ 10:4695; x ¼ �2:2268;

det
x 3

4 x

� �
þ 2

0 2

x 0

� �
cos

2π
4

� �
¼ 0) x ¼ 3:4641; x ¼ �3:4641;

det
x 3

4 x

� �
þ 2

0 2

x 0

� �
cos

3π
4

� �
¼ 0) x ¼ 0:7159; x ¼ �0:9586:

(7.131)

These are exactly the same eigenvalues obtained from det (M) ¼ 0.

For the special case n ¼ 2, we have

M ¼ A B

B A

� �
; (7.132)

resulting in

det

�
Aþ 2 cos

π
3
B

�
¼ 0

det

�
A� 2 cos

π
3
B

�
¼ 0

) detðAþ BÞ ¼ 0

detðA� BÞ ¼ 0
: (7.133)

In general, one can write

detðMÞ ¼ 0 ) det Aþ 2 cos
kπ

nþ 1
B

� �
¼ 0 for i ¼ 1; 2; . . . ; n: (7.134)

Example 7.16. Consider the symmetric frame as shown in Fig. 7.69. The numbering

for DOFs is chosen that a Form II symmetry is provided for the structural matrices.

For all the members, EI is taken as ‘a’ and the unit length mass is assumed to be

10 kg/m.

The stiffness and mass matrices are formed as
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K ¼ a

284

105

2

3

2

7
0

2

3

40

21
0

2

7

2

7
0

284

105

2

3

0
2

7

2

3

40

21

2
666666666664

3
777777777775

and

M ¼

990

21

�81
42

�1029
42

0

�81
42

740

21
0

�1029
42

�1029
42

0
990

21

�81
42

0
�1029
42

�81
42

740

21

2
66666666664

3
77777777775
:

(7.135)

The matrix K� ω2M½ � has a Form II pattern, Eq. 7.132, and using Eq. 7.133, we

have

det
2:41� 71:6x 0:67þ 2x

0:67þ 2x 1:61� 59:7x

� �
¼ 0

det
2:99� 22:6x 0:67þ 2x

0:67þ 2x 2:19� 10:7x

� �
¼ 0

(7.136)

where x ¼ ω2

a
, leading to the following natural frequencies:

x1 ¼ 0:019) ω2
1 ¼ 0:019a x3 ¼ 0:102) ω2

3 ¼ 0:102a;
x2 ¼ 0:042) ω2

2 ¼ 0:042a x4 ¼ 0:252) ω2
4 ¼ 0:252a:

(7.137)

Example 7.17. Consider a one-span frame as shown in Fig. 7.70. The columns are

subdivided into two elements. Therefore, the frame has six DOFs as illustrated in

the figure. The stiffness matrix of the structure is assembled as follows:

1

2

3

4

P P

EI,L

5

6

EI,L/2

EI,L/2

Fig. 7.70 A portal frame

with six DOF
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K ¼ EI

L3

192 0 �48 0 0 0

0 64 16 0 0 0

�48 16 36 0 0 2
0 0 0 192 0 �48
0 0 0 0 64 16

0 0 2 �48 16 36

2
6666664

3
7777775

� P

L

24
5

0 �1
5

0 0 0

0 8
15

�1
15

0 0 0

�1
5

�1
15

4
15

0 0 0

0 0 0 24
5

0 �1
5

0 0 0 0 8
15

�1
15

0 0 0 �1
5

�1
15

4
15

2
66666666664

3
77777777775
:

(7.138)

This matrix has Form II and the smallest eigenvalue corresponds toPcr ¼ 22:2097EI
L2 .

This is an approximate value compared to the real value asPcr ¼ 25:2EI
L2 :A better result

can be obtained by subdividing the columns into three elements and the beam into

two elements.

Example 7.18. Consider a one-bay two-storey frame as shown in Fig. 7.71a. This

example is studied with two different discretisations. In the first model, each

column is considered as one element as in Fig. 7.71a, and in the second model,

each column is subdivided into two elements as illustrated in Fig. 7.4.

For the first model Pcr ¼ 19:75EI
L2 , which is a crude answer.

For the second model shown in Fig. 7.71b, the stiffness matrix is formed as

L

L

L

1

2

3

EI=Const.

4
P P

PP

1

2

3

4

5

6

7

8

9

10

11

12

EI=Const.

L

L

L
P P

P P

13

14

5

a b

Fig. 7.71 A one-bay two-storey frame. (a) Four degrees of freedom. (b) Fourteen degrees of

freedom
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K ¼ EI

L3

192 0 �48 0 0 0 0 0 0 0 0 0

0 64 16 0 0 0 0 0 0 0 0 0

�48 16 36 0 0 0 0 0 2 0 0 0

0 0 0 192 0 �48 0 0 0 0 0 0

0 0 0 0 64 16 0 0 0 0 0 0

0 0 0 �48 16 36 0 0 0 0 0 2

0 0 0 0 0 0 192 0 �48 0 0 0

0 0 0 0 0 0 0 64 16 0 0 0

0 0 2 0 0 0 �48 12 36 0 0 0

0 0 0 0 0 0 0 0 0 192 0 �48
0 0 0 0 0 0 0 0 0 0 64 16

0 0 0 0 0 2 0 0 0 �48 16 36

2
6666666666666666666664

3
7777777777777777777775

� P

L

48

5
0
�2
5

0 0 0 0 0 0 0 0 0

0
16

15

�2
15

0 0 0 0 0 0 0 0 0

�2
5

�2
15

8

15
0 0 0 0 0 0 0 0 0

0 0 0
24

5
0
�1
5

0 0 0 0 0 0

0 0 0 0
8

5

�1
15

0 0 0 0 0 0

0 0 0
�1
5

�1
15

4

15
0 0 0 0 0 0

0 0 0 0 0 0 48

5

0 �2
5

0 0 0

0 0 0 0 0 0 0
16

15

�2
15

0 0 0

0 0 0 0 0 0
�2
5

�2
15

8

15
0 0 0

0 0 0 0 0 0 0 0 0
24

5
0
�1
5

0 0 0 0 0 0 0 0 0 0
8

15

�1
15

0 0 0 0 0 0 0 0 0
�1
5

�1
15

4

15

2
66666666666666666666666666666666666666666666666664

3
77777777777777777777777777777777777777777777777775

ð7:139Þ

leading to Pcr ¼ 11:1049EI
L2 . Subdividing the columns into three elements and the

beams into two elements leads toPcr ¼ 12:7554EI
L2 . The exact value for the critical load

is PcrðexactÞ ¼ 12:60EI
L2 .
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7.6.4 Canonical Penta-diagonal Form

7.6.4.1 Formulation

The numerical solution of some problems results in five-diagonal matrices. An

example of this form is depicted in the following:

Mmn ¼

A B I

B Aþ I B I

I B Aþ I : :
: : : : :

: : : : :
: : : : :

: : : B I

: B Aþ I B

I B A

2
6666666666664

3
7777777777775
n�n

: (7.140)

Using the Kronecker product, this matrix can be decomposed as

Mmn ¼ In � Am þ Tn � Bm þ Sn � Im (7.141)

where

Tn ¼ Fð0; 1; 0Þ and Sn ¼

0 0 1

0 1 0 1

1 0 1 : :
1 : : : :

: : : :
: : :

2
6666664

3
7777775
: (7.142)

It can easily be verified that

Sn ¼ T2
n � In: (7.143)

Therefore,

Mmn ¼ In � Am þ Tn � Bm þ T2
n � In

	 
� Im

¼ In � Am � Imð Þ þ Tn � Bm þ T2
n � Im:

(7.144)

In the last two terms,Tn cannot be factorised, since we have a matrix product and

not a Kronecker product. Therefore, the eigenvalues of the last two terms are

calculated to search for a possible equivalent matrix with the same eigenvalues:

λTn�BmþT2
n�Im ¼ BmλTn

þ ImλT2
n
: (7.145)
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On the other hand, we have

λT2
n
¼ λTn
ð Þ2 (7.146)

Hence,

λTn�BmþT2
n�Im ¼ λTn

Bm þ λTn
Imð Þ ¼ λTn

Bm þ 2Im cos
kπ

nþ 1

� �
: (7.147)

This is the same as the eigenvalue of the following matrix:

Tn � Bm þ 2Im cos
kπ

nþ 1

� �
: (7.148)

Substituting in Eq. 7.144 leads to

Mmn ¼ In � Am � Imð Þ þ Tn � Bm þ T2
n � Im

	 

¼ In � Am � Imð Þ þ Tn � Bm þ 2Im cos

kπ
nþ 1

� �
:

(7.149)

It can be seen that we have again a canonical Form I expressed as

F Am � Im;Bm 2Im cos
kπ

nþ 1

� �
;Am � Im

� �
(7.150)

and the eigenvalues of this form should be calculated. Therefore, a five-diagonal

form is transformed to a tri-diagonal form, and

λM ¼ Am � Imð Þ þ 2 cos
kπ

nþ 1
Bm þ 2Im cos

kπ
nþ 1

� �� �

¼ Am þ 2Bm cos
kπ

nþ 1
þ Im 4 cos2

kπ
nþ 1

� 1

� �

¼ Am þ 2Bm cos
kπ

nþ 1
þ Im 1þ 2 cos

2kπ
nþ 1

� �
:

(7.151)

Example 7.19. Consider a simply supported square thin plate as shown in

Fig. 7.72. The buckling load of this plate under uniform compressive loads Nx ¼
Ny ¼ N is required. The governing differential equation of the plate is

@4w

@x4
þ 2

@4w

@x2y2
þ @4w

@y4
þ N

D

@2w

@x2
þ @2w

@y2

� �
¼ 0; (7.152)
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or

r4wþ N

D
r2w ¼ 0: (7.153)

The exact solution of this problem is as follows:

Ncr ¼ 2π2D
a2
¼ 19:7392D

a2
: (7.154)

Using the finite difference method leads to a five-diagonal matrix with the pattern

studied in the previous section. In a special case, when n ¼ 6 (i.e. each edge is divided

into six segments), the final form of M and the matrices Am and Bm are as follows:

A5 ¼ F5ð18� 4α; α� 8; 19� 4αÞ;B5 ¼ F5ðα� 8; 2; α� 8Þ; with

α ¼ N a
6

	 
2
D
¼ Na2

36D
: ð7:155Þ

Therefore, det (M) ¼ 0 leads to

λM ¼ A5 þ 2B5 cos
kπ
6
þ I5 1þ 2 cos

2kπ
6

� �
¼ 0 for k ¼ 1; 2; . . . ; 5: (7.156)

Thus, instead of the matrix M with different magnitudes of k, the smallest value

for k ¼ 1 should be calculated, the main aim being the calculation of the critical

load. This reduces the dimension of the matrix from 25 � 25 to 5 � 5. The latter

matrix can itself be reduced as

For k ¼ 1,

λM ¼ Fða; b; cÞ

¼ F 8� 4αþ 2 cos
π
6

� �
ðα� 8Þ þ 1þ 2 cos

2π
6
; α� 8þ 4 cos

π
6
;

�
19� 4αþ 2 cos

π
6

� �
ðα� 8Þ þ 1þ 2 cos

2π
6
Þ: (7.157)

Fig. 7.72 A plate under

biaxial compressive loading
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Here c ¼ a + 1, that is this matrix has a similar form to that of the five-diagonal

matrix (7.22). Therefore, for calculating the eigenvalues, one can again employ the

same relationship, leading to

λλM ¼ 0) Aþ 2B cos
k0π
nþ 1

þ I 1þ 2 cos
2k0π
nþ 1

� �
¼ 0 : (7.158)

For k0 ¼ 1, we have

18� 4αþ 2 cos
π
6

� �
ðα� 8Þ þ 1þ 2 cos

2π
6
þ 2 cos

π
6

α� 8þ 4 cos
π
6

� �
þ I 1þ 2 cos

2π
6

� �
¼ 0

(7.159)

with I being a 1 � 1 unit matrix. Therefore, the 5 � 5 matrix is further reduced to a

1 � 1 matrix, that is, one equation with one unknown. Thus,

α ¼ 6� 8 cos π
6
þ 2 cos 2π

6

1� cos π
6

¼ 0:5359) Ncra
2

36D
¼ α) Ncr ¼ 19:2923D

a2
: (7.160)

7.6.4.2 Derivation of the Exact Solution

Having α in terms of the parameter n, the exact value of α can also be derived as

follows:

αext ¼ Limit
n!1

6� 8 cos π
n
þ 2 cos 2π

n

1� cos π
n

: (7.161)

Using cos 2θ ¼ 2cos2θ � 1 leads to

αext ¼ Limit
n!1

4 1� cos π
n

	 
2
1� cos π

n

¼ Limit
n!1 4 1� cos

π
n

� �
: (7.162)

Employing the following trigonometric relation and approximating sin θ by θ, if
θ ! 0, then we have

1� cos θ ¼ 2sin2
θ
2
� 2

θ
2

� �2

¼ θ2

2
: (7.163)
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Therefore,

αext ¼ 4
ðπÞ2
2n2
¼ 2π2

n2
: (7.164)

Substituting for α, we have

Ncr
a
n

	 
2
D

¼ 2π2

n2
; (7.165)

leading to the exact value of the critical load

Ncrð Þext ¼
2Dπ2

a2
¼ 19:7392D

a2
: (7.166)

7.7 Numerical Examples for the Matrices as the Sum of Three

Kronecker Products

Matrices that can be written as the sum of three Kronecker products are already

introduced in Sects. 4.10 and 4.11. In this part, examples are included to show the

efficiency of this decomposition approach.

In this section, five examples are presented from structural mechanics to illus-

trate the applicability and the efficiency of the present methods.

Example 7.20. Consider the truss shown in Fig. 7.73. The cross-sectional areas

and the mass of the members are as follows:

Member Cross-sectional area Mass

1 and 2 A m

3 1.5 A 3 m

4 and 5 1.5 A 2 m

The natural frequencies of the structure are required.

Using the finite element approach, the stiffness and mass matrices for a typical

element are as follows:

Ki½ � ¼ EAi

hi

C2 CS �C2 �CS
CS S2 �CS �S2
�C2 �CS C2 CS

�CS �S2 CS S2

2
664

3
775; Mi½ � ¼ mihi

6

2 0 1 0

0 2 0 1

1 0 2 0

0 1 0 2

2
664

3
775;

where C ¼ cos θ and S ¼ sin θ.
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After assembling the matrices of the elements for the entire structure and

deleting the rows and columns corresponding to support nodes 1 and 2, we obtain

K ¼ EA

16
ffiffiffi
3
p

L

32:9090 �9 0 0

�9 39:5885 0 �24
0 0 32:9090 9

0 �24 9 39:5885

2
6664

3
7775;

M ¼ mL

16
ffiffiffi
3
p

31:3960 0 8 0

0 31:3960 0 8

8 0 31:3960 0

0 8 0 31:3960

2
6664

3
7775: det K�Mω2

	 
 ¼ 0:

It can be observed that K and M have no particular form as modelled; however,

one can multiply a row and the corresponding column in (�1) such that the

eigenvalues remain unchanged. If such operations are performed for the first row

and column of K and the corresponding M, then we obtain a Form II matrix, and

constructing M + N and M � N, the eigenvalues can be obtained as

ω ¼ f0:5614; 0:8887; 1:2195; 1:6624g �
ffiffiffiffiffiffiffiffiffi
EA

mL2

r
:

Example 7.21. Using three finite elements we want to find the natural frequencies

of the clamped beam shown in Fig. 7.74. The stiffness and mass matrices of a

typical element are as follows:

L

1

2

3
4

5

3L

1

2

3

4
Fig. 7.73 A simple planar

truss
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Ki½ � ¼ EIi

L3
i

12 6L �12 6L

6L 4L2 �6L 2L2

�12 �6L 12 �6L
6L 2L2 �6L 4L2

2
6664

3
7775;

Mi½ � ¼ ρiAiLi

420

156 22L 54 �13L
22L 4L2 13L �3L2

54 13L 156 �22L
�13L �3L2 �22L 4L2

2
6664

3
7775:

Assembling the matrices for the entire structure and applying the boundary

conditions, the equation of vibration is as follows:

ρAL
420

312 0 54 �13L
0 8L2 13L �3L2

54 13L 312 0

�13L �3L2 0 8L2

2
664

3
775

€U1

€U2

€U3

€U4

2
664

3
775þ EI

L3

24 0 �12 6L

0 8L2 �6L 2L2

�12 �6L 24 0

6L 2L2 0 8L2

2
664

3
775

U1

U2

U3

U4

2
664

3
775 ¼

0

0

0

0

2
664
3
775

Here again one cannot see Form II matrices. However, multiplying the first row

and column by (�1), such matrices can be constructed. Using their factors, similar

to Example 7.20, the eigenvalues are obtained as

ω ¼ f2:4961; 6:9893; 16:2561; 32:3059g �
ffiffiffiffiffiffiffiffiffiffiffi
EI

ρAL4

s
:

Example 7.22. Consider a simply supported a � a square plate, as shown in

Fig. 7.75. The load is applied in x-direction. Using the finite difference approach,

the critical load of the plate is calculated.

Considering the governing differential equation as

r4wþ Nx

D

@2w

@x2
¼ 0

and employing the finite difference method, the matrix M is obtained in the

following form:

1 2 3

U1

U2
U3

U4

Fig. 7.74 A clamped beam

with three elements
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M ¼ I� Aþ T� Bþ S� I ¼
X3
i¼1

Ai � Bi

where

B1 ¼ Fð18� 2x; x� 8; 19� 2x; 1Þ; B2 ¼ Fð�8; 2;�8Þ;
A2 ¼ Fð0; 1; 0Þ;A3 ¼ Fð0; 0; 1; 1Þ:

Since AiAj ¼ AjAi for each pair of i and j, then

λM ¼ [
n

j¼1
eig
X3
i¼1

λj Aið ÞBiÞ
" #

; λA1
¼ 1; λA2

¼ 2 cos
kπ

nþ 1
;

λA3
¼ 1þ 2 cos

2kπ
nþ 1

:

Once λM is calculated, it can be observed that it contains diagonal blocks and

each block has the Form F. Thus, the diagonalisation is performed once again for

each block, since AiAj ¼ AjAi still holds for these blocks.

For critical load (k ¼ 1), we have

18�2x� 16 cos
π
m
þ 1þ 2 cos

2π
m
þ 2 cos

π
m

x� 8þ 4 cos
π
m

� �
þ 1 1þ 2 cos

2π
m

� �
¼ 0; m ¼ nþ 1

) x ¼
4 3� 4 cos

π
m
þ cos

2π
m

� �

1� cos
π
m

� � :

In this relationship, m!1 leads to an accurate value of the critical load as

x ¼ 4π2

m2
, where 1� cos α ffi α2

2
when α! 0. This result is in a good agreement

with the exact value, which is

Ncr ¼ xD

a

m

� �2 ¼ 4π2D
a2

:

Nx Nx

x

y

Fig. 7.75 A simply

supported plate
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Example 7.23. In the previous example, suppose the supports with no loading are

clamped, then the matrixM will still contain the decomposability property. In such

a case,

A ¼ Fð20� 2x;�8; 19� 2x; 1Þ; B ¼ Fðx� 8; 2; x� 8Þ:

Using Eq. 7.171, M appears in a block form and the block corresponding to

k ¼ 1 is

N ¼ F 20� 2xþ 2 cos
π
m
ðx� 8Þ þ 1þ 2 cos

2π
m

; �8þ 4 cos
π
m
;

�

19� 2xþ 2 cos
π
m
ðx� 8Þ þ 1þ 2 cos

2π
m

; 1

�
; m ¼ nþ 1

A1 ¼ Fð0; 1; 0; 0Þ; A2 ¼ Fð0; 0;�1; 1Þ:

Here, unlike the previous case, N does not satisfy AiAj ¼ AjAi and no further

simplification is possible. Thus, one should form det (N) ¼ 0 and solve it. Assuming

n ¼ 8, this solution leads to

x ¼ 1:1073! Ncr ¼ 7:1804
π2D
a2

:

The exact value of the critical load is Ncr ¼ 7:69
π2D
a2

. Here, in place of the

determinant of a 49 � 49 matrix, that of a 7 � 7 matrix is calculated. Choosing

larger values for n, one can easily increase the accuracy of the finite difference

approach. The present method reduces the size of a matrix to its square root.

It should be added that for a rectangular plate when subdivided into equal lengths

in x- and y-directions, similar forms will be formed.

Example 7.24. The natural bending and axial frequencies of the beam shown in

Fig. 7.76 is required.

The differential equation governing the bending of this beam can be written as

d4w

dx4
� β4w ¼ 0 where β ¼ ρAω2

EI
:

Choosing n þ 1 element for discretisation of the beam, the final matrix becomes

an n � n matrix in the following form:

M ¼ Fð5;�4; 6; 1Þ;¼ 5Iþ ð�4ÞTþ S
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where T, S and I commute two by two, and therefore, Eq. 7.171 can be employed

leading to

λM ¼ 5� 8 cos αþ ð1þ 2 cos 2αÞ ¼ 6� 8 cos αþ 2 cos 2α ¼ 4 1� cos αð Þ2

¼ 16 sin4
α
2

α ¼ kπ
m

; m ¼ nþ 1:

On the other hand,

ωk ¼ βLð Þ2k
ffiffiffiffiffiffiffiffiffi
EI

mL4

r
βLð Þ2k¼ nþ 1ð Þ2

ffiffiffi
λ
p
¼ 4m2 sin2

α
2

leading to the exact answer as

n!1) βLð Þ2k¼ 4m2 k
2π2

4m2
) βLð Þk ¼ kπ) ωk ¼ kπð Þ2

ffiffiffiffiffiffiffiffiffi
EI

mL4

r
k ¼ 1 : n:

For the axial vibration, the governing equation is as follows:

d2U

dx2
þ α2U ¼ 0

where

α ¼ ρω2

E
:

In this case, the matrix corresponding to the finite difference will be a tri-

diagonal matrix as M ¼ F(2,�1,2), and we have the following results:

M ¼ 2Iþ ð�1ÞT) λM ¼ 2þ ð�1Þð2 cos αÞ ¼ 4 sin2
α
2
;

ωk ¼ βk

ffiffiffiffiffiffiffi
EA

m

r
βLð Þk ¼ ðnþ 1Þ

ffiffiffi
λ
p
¼ 2m sin

α
2
;

n!1) βLð Þk ¼ 2m
kπ
2m
¼ kπ) ωk ¼ kπ

L

ffiffiffiffiffiffiffi
EA

m

r
:

This is an exact answer. For a beam with clamped support, a similar approach

leads to the exact result.

1 n n+12 30Fig. 7.76 A simple beam and

its discretisation
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7.8 Symmetric Finite Element Formulation Using Canonical

Forms: Truss and Frame Elements

In this part, canonical forms are used to decompose the symmetric line elements

(truss and beam elements) into sub-elements of less the number of degrees of

freedom (DOFs). Then the matrices associated with each sub-element are formed,

and finally the matrices associated with each subsystem are combined to form the

matrices of the prime element. Therefore, it becomes possible to find the pros and

cons of this method and compare the efficiency and simplicity of the present

approach to the existing methods.

7.8.1 Sign Convention

In this section, for computation of fundamental matrices for symmetric finite

elements, the origin of the local coordinate system of the elements is taken at the

centre of symmetry of the elements. Therefore, the symmetry axis or symmetry

plane of each element will divide it into two parts: the positive half and the negative

half.

If the symmetry axis passes through a node, that node will be numbered as node

1. Otherwise, node number 1 is usually chosen on the positive side of the element.

Then, all of the nodes on the positive side are numbered sequentially. Having the

nodes on the positive half of the element labelled, say from 1 (or 2) up to k, the rest

of the nodes (nodes on the negative half of the element) must be numbered,

considering the nodes of the positive side. This means that numbering of the

negative side should be started with the node which is associated with the permuta-

tion of the first positive node, and is numbered as k + 1. Then, the reflection of the

second positive node is labelled as k + 2, and this process is continued. The

numbering process is terminated with the negative node which is permutation of

the last positive node. Degrees of freedom (DOFs) of each node are numbered

following the same rule.

Translation in positive direction and counterclockwise rotation for a positive

node (node in the positive part of the element) define the positive translational and

rotational DOFs for such nodes. Positive directions for negative nodes are selected

such that the DOFs for a node and its reflection are the mirror of each other. For the

node which is located at the centre of symmetry (if available), the positive

directions can be selected arbitrarily. Figure 7.77 shows two one-dimensional

(line) elements and numbering of the nodes and associated positive degrees of

freedom, based on the convention described above.

For two- or three-dimensional elements, the general approach for numbering

and defining the positive directions are the same. If an element has more than one
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plane of symmetry, in order to apply the strategy described above, first, one of the

planes should be selected as the main plane, and then during the numbering process

for positive points (and DOFs), other planes of symmetry are taken into account

one by one. Figure 7.78 shows the numbering and positive DOFs for a plane

element possessing two main planes of symmetry: 1–1 and 2–2, where plane 1–1

which is in bold, has been taken as the principal symmetry plane. The node in the

positive–positive quarter has been selected as node 1, its image with respect to

plane 2–2 is labelled as node 2 and then the negative nodes have been numbered

with respect to the principal plane of symmetry (1–1). It should be noted that as

soon as the positive DOFs for node 1 are fixed, the positive direction for the other

DOFs will be determined by means of symmetry properties.

7.8.2 Truss Element

In this section, the properties of special symmetry form of the truss element shown

in Fig. 7.77a are utilised in order to decompose the space of variables of this

element into subspaces of divisor and co-divisor. This decreases the size of

matrices and vectors which are involved in formulation of such element and

therefore leads to a reduction in calculation time and computational effort.

Although such a reduction does not seem to be significant in small problem of a

two-node truss element for which the matrices are 2 by 2, however, this simple

example is selected in order to give an overview of the present method.
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L 2L 2
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Fig. 7.77 Numbering of the nodes and the DOFs for symmetric line elements. (a) Two-node truss

element. (b) Two-node beam element. (c) Three-node beam element. (d) Five-node beam element
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The degrees of freedom of the truss element are collected in a vector u, which is

called the displacement vector of the element:

u ¼ δ1; δ2ð Þt: (7.167)

It is seen from the configuration of the element (Fig. 7.77a) that this element with

the DOFs shown on it has the Form II symmetry. In such symmetric problems,

where the only symmetry operation of the system is a symmetry plane, the symme-

try analysis of the system will result in decomposition of the vector space of the

problem into two independent subspaces, one of which is symmetric and the other is

antisymmetric with respect to the plane of symmetry. It is also observed that the

divisor C is always associated with the symmetric subspace and the co-divisor D is

corresponded to the antisymmetric subspace. From now on, we denote these two

subspaces as VC and VD, and we call them the divisor and the co-divisor subspaces,

respectively.

Assuming that u varies linearly through the element, the linear displacement

field within a truss element can be written in terms of the nodal displacements δ1
and δ2 as follows (it is noted that u ¼ δ1 at node 1 and u ¼ δ2 at node 2):

u ¼ N1: δ1 þ N2: δ2 (7.168)

where N1 ¼ 1
2
þ x

l and N2 ¼ 1
2
� x

l are the liner shape functions.

In general, the linear displacement field can be written as

u ¼ a:xþ b: (7.169)

We can decompose such a field into two terms, namely, (a.x) and (b). The first
term (a.x) shows the displacement field in which the translation of the positive

nodes is in the positive direction and the translation of the associated negative nodes

are in the negative direction with the same magnitude. Such a displacement field is

symmetric with respect to the symmetry plane of the element. On the other hand,
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Fig. 7.78 Numbering of the

nodes and DOFs for

symmetric plane elements
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the term (b) is a constant displacement in positive direction at all of the nodes of the

element. This displacement field is antisymmetric with respect to the plane of

symmetry.

Based on what was mentioned above, the overall displacement field u of the

problem can be decomposed into two displacement fields, corresponding to

the subspaces VC and VD; the first one is symmetric, which we denote it by uC,

and the second one is the field of the antisymmetric subspace VD, which we denote

it by uD:

uC ¼ a:x and uD ¼ b: (7.170)

If we denote the DOFs of the symmetric and antisymmetric subsystems (the

basis vectors of subspaces VC and VD) by ΔC and ΔD, respectively, then by

substituting the coordinate x ¼ l/2 at node 1, we will have

ΔC ¼ a:l=2 ) a ¼ 2

l
ΔC; (7.171)

ΔD ¼ b: (7.172)

Thus, we can rewrite the equation of displacement fields of the subspaces

(Eq. 7.170) as follows:

uC ¼ a:x ¼ 2

l
ΔC

� �
:x ¼ 2

l
x

� �
:ΔC ) NC ¼ 2

l
x; (7.173)

uD ¼ b ¼ ΔD ¼ ð1Þ:ΔD ) ND ¼ 1; (7.174)

where NC and ND are the shape functions of the divisor and co-divisor subspaces,

respectively.

Now, having the shape function of the element decomposed into symmetric and

antisymmetric sub-functions, we can readily find the matrices of the subsystems

using potential energy approach.

• Matrices of Each Subsystem: The stiffness matrix of an element can be found

using the strain energy of the element:

Ue ¼ 1

2

ð
e

σtεAdx (7.175)

in which σ ¼ Eε (Hooke’s law), and ε is calculated from the strain–displacement

relationship
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ε ¼ du

dx
: (7.176)

This relation can be written in terms of the element freedoms (δi) using the

concept of the shape function

u ¼
X

Niδi ) ε ¼ d

dx

X
Niδi

� �
(7.177)

which yields the matrix equation

ε ¼ B:δ (7.178)

where the matrix B is the element strain–displacement matrix.
Now the strain energy term of the element (Eq. 7.175) can be written as follows:

Ue ¼ 1

2

ð
e

Eεð ÞtεAdx ¼ 1

2

ð
e

δtBtEBδAdx; (7.179)

or

Ue ¼ 1

2
δt

ð
e

BtEBAdx

0
@

1
Aδ: (7.180)

Therefore, the stiffness matrix of the element will be obtained as

ke ¼
ð
e

BtEBAdx: (7.181)

Following the strategy described above, it is now possible to find the

strain–displacement matrix B of each subspace, using its own shape function.

Then the stiffness matrix of each subsystem can be calculated using Eq. 7.181,

noting that integration should be carried out over only the positive half of the

element.

For the divisor subspace VC,

NC ¼ 2

l
x ) uC ¼ NC:ΔC ¼ 2

l
x:ΔC;

BC ¼ dNC

dx
¼ 2

l

� �
: ð7:182Þ
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Thus,

kC ¼ EA

ð12
0

2

l

� �
2

l

� �
dx

2
664

3
775 ¼ 2EA

l

� �
: (7.183)

Similarly, for the co-divisor subspace VD,

ND ¼ 1) BD ¼ dND

dx
¼ ½0�: (7.184)

Therefore,

kD ¼ ½0�: (7.185)

Special attention should be paid to the physical interpretation of the stiffness

matrices kC and kD. The symmetric subsystem is associated with divisor subspace,

with shape functionNC ¼ 2

l
xcorresponding to a bar element in which the end nodes

are moving away from the origin of the element with the same rate. The antisym-

metric subsystem associated with the co-divisor subspace, on the other hand, is a

bar element in which both of the end nodes are moving in the same direction and

with the same rate; the stiffness in such a case will be vanished.

The consistent–mass matrix for an element can be found as

m ¼ ρA

ð
l

Nt:N dx: (7.186)

Thus, it is possible to find the mass matrices of the subsystems, using their own

shape functions, in a similar manner to those of stiffness matrices:

mC ¼ ρA

ð12
0

2

l
x

� �2

dx ¼ 1
6
ρAL

� �
; (7.187)

mD ¼ ρA

ð12
0

ð1Þ2dx ¼ 1
2
ρAL

� �
: (7.188)
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• Combination of the Subspaces and Finding the Matrices of the Element: In order
to extract the matrix of the symmetric element from its devisor and co-divisor

matrices, the properties of the canonical Form II should be considered. One of

the main advantages of the method based on linear algebra, compared to similar

methods (such as group theory), is in this stage of the procedure.

As it was mentioned in Sect. 7.2.2, a symmetric matrix of canonical Form II has

the following pattern:

M ¼ A B

B A

� �
:

For which, the divisor and co-divisor matrices are

C ¼ Aþ B and D ¼ A� B:

Now, we have the divisor and co-divisor matrices for the symmetric truss

element, and one can easily find the matrices of the main element, combining the

condensed submatrices as follows:

A ¼ 1
2
ðCþ DÞ and B ¼ 1

2
ðC� DÞ: (7.189)

Thus, for the stiffness matrix, we will have

kA ¼ 1
2
kC þ kDð Þ ¼ EA

2l
½2þ 0� ¼ EA

l

� �
: (7.190)

kB ¼ 1
2
kC � kDð Þ ¼ EA

2l
½2� 0� ¼ EA

l

� �
; (7.191)

which results in the stiffness matrix of the truss element as

ke ¼ EA

l

1 1
1 1

� �
: (7.192)

Similarly, for the consistent–mass matrix,

mA ¼ 1
2
mC þmDð Þ ¼ ρAL

2

1

6
þ 1

2

� �
¼ ρAL

3

� �
; (7.193)

mB ¼ 1
2
mC �mDð Þ ¼ ρAL

2

1

6
� 1

2

� �
¼ � ρAL

6

� �
; (7.194)
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) me ¼ ρAL

6

2 �1
�1 2

� �
: (7.195)

Finally, it should be noted that the above matrices are resulted using the sign

convention described in Sect. 7.3. A more conventional node numbering and

sign convention for truss elements is shown in Fig. 7.79. In order to convert the

results to this convention, it is enough to reverse the sign of the first line and then

the first column of the matrices. This action is physically justified as follows: An

out-of-plane rotation on element of Fig. 7.77a will result in the same node number-

ing with the conventional element, Fig. 7.79. Then it is enough to change the

positive direction for freedom δ1 in order to make two elements completely

identical. The final results are the well-known matrices of a two-dimensional

truss element:

ke ¼ EA

l
1 �1
�1 1

� �
and me ¼ ρAL

6
2 1
1 2

� �
: (7.196)

7.8.3 Beam Element

The concepts discussed for truss elements can be repeated here for the beam

elements. The element of Fig. 7.77b clearly shows the canonical Form II symmetry.

Again, the vector space of the problem can be decomposed into the symmetric

divisor subspace and the antisymmetric co-divisor subspace.

The process starts with decomposition of the shape function of the displacement

field. Whereas both the nodal displacements and nodal slopes are involved in a

beam element, one should define Hermite shape functions, which satisfy nodal

value and slope continuity requirements. Each of the shape functions is of cubic

order represented by

Ni ¼ ai þ bixþ cix
2 þ dix

3: (7.197)

The displacement field of the element will be of cubic order, and the rotation of

each point through the element will be calculated from the following quadratic

equation:

21 P2,d2P1,d1

L

Fig. 7.79 Conventional node numbering and the positive DOFs for truss elements
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vðxÞ ¼ aþ bxþ cx2 þ dx3; (7.198)

v 0ðxÞ ¼ d

dx
vðxÞ ¼ bþ 2cxþ 3dx2: (7.199)

Each term of the displacement field equation and its first derivation (which

shows the rotations) is studied individually in Figs. 7.80 and 7.81, respectively.

Similar to what was mentioned for the truss element, we separate the symmetric and

antisymmetric terms and allocate them to the divisor and co-divisor subspaces,

respectively.

Based on Figs. 7.80 and 7.81, the displacement field of the element can be

decomposed as follows:

For the divisor subspace,

vCðxÞ ¼ aþ cx2;

v 0CðxÞ ¼ 2cx: (7.200)

For the co-divisor subspace,

a

2 1

a 2
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bL/2

-bL/2
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c d

Fig. 7.80 Terms of v(x).

(a) v1 ¼ a: symmetric.

(b) v2 ¼ bx: antisymmetric.

(c) v3 ¼ cx2: symmetric.

(d) v4 ¼ dx3: antisymmetric

2
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q=b

q=b

2 1

q=cLq=-cL

q=0

2
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2

3dL/4
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c

Fig. 7.81 Terms of v0ðxÞ.
(a) v01 ¼ b: antisymmetric.

(b) v02 ¼ 2cx: symmetric.

(c) v03 ¼ 3dx2: antisymmetric
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vDðxÞ ¼ bxþ dx3;

v 0DðxÞ ¼ bþ 3dx2: (7.201)

At node 1 (x ¼ l/2), we have

vD ¼ Δ1D; v 0D ¼ Δ2D;

vC ¼ Δ1C; v 0C ¼ Δ2C: (7.202)

The values of a, b, c and d can be found as follows:

vC

v 0C

� �
¼ 1 x2

0 2x

� �
a

c

� �
) Δ1C

Δ2C

� �
¼ 1

l2

4
0 l

2
4

3
5 a

c

� �
)

a ¼ Δ1C � Δ2C

4

c ¼ Δ2C

l

8><
>: ;

vD

v0D

� �
¼ x x3

1 3x2

� �
b

d

� �
) Δ1D

Δ2D

� �
¼

l

2

l3

8

1
3l2

4

2
664

3
775 b

d

� �
)

b ¼ 3Δ1D

l
� Δ2D

2

d ¼ 2Δ2D

l2
� 4Δ1D

l3

8><
>: ;

) a

c

� �
¼

1
�l
4

0
1

l

2
64

3
75 Δ1C

Δ2C

� �
and

b

d

� �
¼

3

l

�1
2

�4
l3

2

l2

2
64

3
75 Δ1D

Δ2D

� �
:

(7.203)

Substituting these values in Eq. 7.202 results in

vC
v 0C

� �
¼ 1 x2

0 2x

� � 1
�l
4

0
1

l

2
64

3
75 Δ1C

Δ2C

� �
¼

1
x2

l
� l

4

0
2x

l

2
64

3
75 Δ1C

Δ2C

� �
; (7.204)

vD
v0D

� �
¼ x x3

1 3x2

� � 3

l

�1
2�4

l3
2

l2

2
64

3
75 Δ1D

Δ2D

� �

¼
3x

l
� 4

x

l

� �3
2
x3

l2
� x

2
3

l
� 12

x2

l3
3

x

l

� �2
� 1

2

2
64

3
75 Δ1D

Δ2D

� �
: (7.205)

Therefore, the shape function matrix of each subspace can be written as
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NC ¼ 1
x2

l
� l

4

� �
and ND ¼ 3x

l
� 4

x

l

� �3
2
x3

l2
� x

2

� �
: (7.206)

This is crucial for the continuation of the solution. Based on the potential energy

approach, we can write the strain energy equation for a beam element as

Ue ¼ 1

2
EI

ð
e

d2v

dx2

� �2

dx

0
@

1
A (7.207)

in which

v ¼ Nδ ) d2v

dx2
¼ d2N

dx2

� �
δ

Thus, we have

Ue ¼ 1

2
δt EI

ð
e

d2N

dx2

� �t
d2N

dx2

� �
dx

0
@

1
Aδ (7.208)

which means that the stiffness matrix of the beam element can be calculated as

ke ¼ EI

ð
e

d2N

dx2

� �t
d2N

dx2

� �
dx: (7.209)

Now it will be possible to find the stiffness matrix of each subsystem using the

shape function matrix of its subspace, noting the fact that the integration should be

carried out over only the positive half of the element:

For divisor subspace,

d2NC

dx2
¼ 0

2

l

� �
) d2NC

dx2

� �t
d2NC

dx2

� �
¼

0
2

l

" #
0

2

l

� �
¼

0 0

0
4

l2

" #

) kC ¼ EI

ð12
0

0 0

0
4

l2

" #
dx ¼ EI

l3
0 0

0 2l2

� �
: (7.210)

And for the co-divisor subspace,
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d2ND

dx2
¼ � 24x

l3
12x

l2

� �
) d2ND

dx2

� �t
d2ND

dx2

� �
¼
� 24x

l3

12x

l2

2
64

3
75 � 24x

l3
12x

l2

� �

¼ 12� 12

4x2

l6
� 2x2

l5

� 2x2

l5
x2

l4

2
664

3
775

) kD ¼ EI

ð12
0

4x2

l6
� 2x2

l5

� 2x2

l5
x2

l4

2
664

3
775dx ¼ EI

l3
24 �12l
�12l 6l2

� �
:

(7.211)

It should be noted that both of the matrices kC and kD are symmetric. This is due

to the fact that these are stiffness matrices of subsystems. Now it is easy to combine

the matrices of the subsystems and find the factors of stiffness matrix of the

element, based on what was mentioned for the truss element:

kA ¼ 1
2
kC þ kDð Þ ¼ 1

2

EI

l3
0 0

0 2l2

� �
þ 24 �12l
�12l 6l2

� �� �

¼ EI

l3
12 �6l
�6l 4l2

� �
; (7.212)

kB ¼ 1
2
kC � kDð Þ ¼ 1

2

EI

l3
0 0

0 2l2

� �
� 24 �12l
�12l 6l2

� �� �

¼ EI

l3
�12 6l
6l �2l2

� �
: (7.213)

Eventually, the stiffness matrix of the beam element will be as follows:

ke ¼ EI

l3

12 �6l �12 6l
�6l 4l2 6l �2l2
�12 6l 12 �6l
6l �2l2 �6l 4l2

2
664

3
775: (7.214)

Other matrices of the element can be found exactly in the same manner as was

described here, using the shape function matrices of the individual subspaces.

A beam element with classical system of nodal numbering and sign convention

for DOFs is shown in Fig. 7.82. As it is seen, the element for which we derived the

stiffness matrix (Fig. 7.77b) can coincide with this element by an out-of-plane

rotation and changing the direction of DOF δ2. Therefore, in order to adapt the
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stiffness matrix of Eq. 7.214 to conventional form, it is enough to reverse the sign of

the entries of the second line and the second column as follows:

ke ¼ EI

l3

12 6l �12 6l
6l 4l2 �6l 2l2

�12 �6l 12 �6l
6l 2l2 �6l 4l2

2
64

3
75: (7.215)

7.8.4 Discussion

In this part a new computational approach is presented for finding the matrices of

elements in FEM, using the symmetry analysis of each element. Here, we first adapt

the appearance of the element and its degrees of freedom with one of the canonical

symmetry forms which are well known in linear algebra. This is done by the means

of an appropriate numbering and sign convention. Then, we use the properties of the

canonical forms in order to decompose the element into a number of sub-elements.

This reduces the number of DOFs which are involved in forming the matrices of the

element. In other words, we decompose the vector space of the first problem into a

number of independent subspaces with smaller orders. Each of the resulted subspaces

is physically associated with a symmetry type of the structure (this is the meaning of

the symmetry analysis through which we decouple different symmetry modes of a

symmetrical system). We use the concept of symmetry type of each subspace and the

decomposition of the overall shape function of the element into a number of sub-

functions, each of which corresponds to the symmetry type of one of the subspaces

(e.g. symmetric and antisymmetric terms). When such a decomposition is valid and

each sub-element has its own shape function, it will be very easy to form the matrices

of each sub-element by means of one of the conventional methods – such as potential

energy method – using its own shape function. Finally, we combine the matrices of

different sub-elements, based on the properties of the canonical forms, and construct

the matrix of the original element.

The method is originally inspired by group-theoretical methods which are

presented in the literature, but the present approach involves less computational

time and effort, and relatively less judgment is needed in this method, compared

to the pure group-theoretical approach. Combination of matrices of sub-elements

and forming the matrix of the main element is much easier and more direct in this

P1,d1
1

P4,d4

2
L

P3,d3

P2,d2Fig. 7.82 Conventional node

numbering and positive DOFs

for beam elements
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method, and in the case of elements with odd number of nodes, this approach seems

to be more adaptable.

The present method can be more helpful in the case of complex elements having

a number of nodes, where usually one of the canonical forms of symmetry exists;

however, in this part, only the formulation for simple truss and beam elements is

derived, since the focus of this part was on the general concepts. It should be noted

that in the case of more complex elements, the same steps are involved. As an

example, this idea can easily be applied to three-node and five-node line elements,

where the symmetry of the element has the canonical Form III symmetry.

7.9 Eigensolution of Rotationally Repetitive Space Structures

In this part the eigensolution for calculating the buckling load and free vibration of

systems are presented using a canonical form from linear algebra, known as

circulant matrix. This form is block tri-diagonal matrices with additional corner

blocks and occurs in matrices concerned with graph models associated with

rotationally repetitive structures. In this method, the structure is decomposed into

repeated substructures, and the solution for static analysis is obtained partially, and

the problem of finding the eigenvalues and eigenvectors for buckling loads of the

main structures is transformed into calculating those of their special repeating

substructures.

7.9.1 Basic Formulation of the Used Stiffness Matrix

Basically, a rotationally repetitive structure is a structure constituting a cyclically

symmetric configuration with angle of cyclic symmetry equal to θ as shown in

symbolic manner in Fig. 7.83.

Let the configuration be divided by some imaginary lines or surfaces inton ¼ 2π

θ
segments S1; S2 . . . Sn . The segmental division must satisfy the following

requirements:

A. An angleψ i belongs to each segment by which the direction of first DOFs of nodes

allocated in that segment is defined, and this angle is an integer multiple of the

angle θ. Obviously the nodes located in a segment will have a same angle ψ i.

B. The imaginary segmental boundaries may not pass through any joint so that the

segment to which a given joint belongs can be uniquely determined. The word

‘joint’ is used here to refer to a joint in the skeletal system but can be used as a

nodal point in continuum, and this convention is followed throughout.

As the consequence of the above conditions, the segment can not contain any

joint lying on the axis of symmetry.
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The stiffness matrix of a typical element having nodes in different segments, that

is, an element between two consecutive segments, is calculated as follows:

The stiffness matrix in the local (element) coordinate system is the common

stiffness matrix for a 3D beam element (shown in Fig. 7.84); however, the transfor-

mation matrix from local coordinate system to the global coordinate system is as

follows:

The stiffness matrix of each element is calculated in its local coordinate system

and transformed into the global coordinate system (segmental directions) specified

at its extreme nodes by the following transformation matrix:

Fig. 7.83 Symbolic representation of a rotationally repetitive structure

Fig. 7.84 A 3D beam element between two consecutive segments
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T ¼

T11

T11

T22

T22

2
6664

3
7775;

where T11 ¼
Tx1 Tx2 Tx3

Ty1 Ty2 Ty3

Tz1 Tz2 Tz3

2
64

3
75 and T22 ¼

Tx4 Tx5 Tx6

Ty4 Ty5 Ty6

Tz4 Tz5 Tz6

2
64

3
75: ð7:216Þ

Here, Txi is the cosine of the angle between x-axis (element direction from first

point to second one) and direction of the ith degree of freedom in the global

coordinate systems (segmental directions for DOFs), and the subscripts y and z

are representatives for directions of principal axes in the cross section of the

element. The overall stiffness matrix of the rotationally repetitive space structure

is obtained by assembling the stiffness matrices of the elements which has a special

canonical form introduced in Sect. 7.3.

Since each extreme node of a typical element shown in Fig. 7.1 has different

segmental directions, these will have different ψi , and the transformation matrix

between local coordinates and global coordinates will be as depicted in Eq. 7.206.

7.9.2 A Canonical Form Associated with Rotationally Repetitive
Structures

In this section, a canonical form is presented for rotationally repetitive structures,

and the efficient eigensolution via this form is followed. The methodology for nodal

numbering is as follows:

The difference between the number of an arbitrarily selected node in an arbi-

trarily segment and the number of corresponding node in the adjacent segment is

constant.

If the stiffness matrix of a rotationally repetitive structure is formed using the

transformation of Eq. 7.214, then the following canonical form will be achieved.

M ¼

A B 0 0 . . . 0 0 Bt

Bt A B 0 . . . 0 0 0

0 Bt A B . . . 0 0 0

0 0 Bt . .
. . .

.
0 0 0

..

. ..
. ..

. . .
.

A B 0 0

0 0 0 0 Bt A B 0

0 0 0 0 0 Bt A B

B 0 0 0 0 0 Bt A

2
666666666664

3
777777777775
: (7.217)
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From now on this canonical form will be referred to as block tri-diagonal matrix

with corner blocks abbreviated as BTMCB.

7.9.3 Eigensolution for Finding Buckling Load of Structure
with the BTMCB Form

Block diagonalisation of the BTMCB forms is discussed in Sect. 4.12, and here the

eigensolution for finding the buckling load of rotationally repetitive structures, with

no node on the axis of symmetry, and under vertical lumped loads located at the

extreme nodes of the elements, is presented via the BTMCB form. The smallest

eigenvalue shows the buckling load of the system, and the corresponding eigenvec-

tor is the buckling mode shape.

If the stiffness matrix of a rotationally repetitive structure is generated using the

transformation matrix presented in Sect. 7.2, the BTMCB form will be achieved.

In order to find the buckling load of the system, the geometric stiffness matrix of the

structure should be generated.

If the segmental stiffness matrix for each segment of structure is separately

generated, it can be observed that the segmental stiffness matrices are the same,

and the displacements in different segmental coordinates are identical. From the

latter fact, it can be realised that internal forces made in identical elements within

any two arbitrarily selected segments due to displacements occurred in segmental

coordinates are equal.

It is obvious that the values of entries in local geometric stiffness matrix for an

element depend on forces made in its local degrees of freedom, and there are same

displacements and consequently tantamount identical forces for similar elements in

any two arbitrarily selected segments. As the transformation matrix should be the

same for both of elastic stiffness and geometric stiffness matrices, a BTMCB form

in geometric stiffness matrix similar to that of elastic stiffness matrix is expected.

After generating the global geometric stiffness matrix of structure as it was

predicted, a similar BTMCB form will be obtained. Thus, the eigensolution for

finding the eigenvalues of Ke½ � � P Kg½ �j j ¼ 0 via this BTMCB form becomes

possible. Here, Ke is the elastic stiffness matrix, and Kg is the geometric stiffness

matrix of the structure. The process of calculation is as follows:

1.1 First the elastic stiffness matrices of elements are formed in their local coordi-

nate system and then transformed into the global coordinates. These matrices

are assembled to form the overall elastic stiffness matrix of the rotationally

repetitive structure.

1.2 In this step, a static problem is solved, for the stiffness matrix calculated in the

previous step and for the forces lumped in the nodes. This leads to the nodal

displacements of the structure in the global coordinate system.

1.3 The results obtained in step 2 are used to calculated displacements in local

coordinate system for each element.
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1.4 Using the displacements calculated in step 3 and local stiffness matrix of each

element, the internal forces are computed in the local coordinate system of the

element as defined in Fig. 7.85.

1.5 Utilising the internal forces calculated in step 4 in geometric stiffness matrix of

a 3D beam element presented in Eq. 7.247, the local geometric stiffness matrix

of elements is computed:

Kg½ � ¼

a c �a �c
b d g �h �a �b l �g �h

b e h g �c �b m h �g
f i k �d �e �f �i �k

j �g �h �i n �o
j h �g �k o n

a c

b �l g h

b �m �h g

sym f a c

j

j

2
6666666666666666664

3
7777777777777777775

(7.218)

where

a ¼
1Mzaþ1Mzb

L2
; b ¼ 61Fxb

5L
; c ¼ �

1Myaþ1Myb

L2
; d ¼

1Mya

L
; e ¼

1Mza

L

f ¼
1FxbJ

AL
; g ¼

1Mxb

L
; h ¼ �

1Fxb

10
; i ¼

1Mzaþ1Mzb

6
; j ¼ 2 1FxbL

15
;

k ¼ �
1Myaþ1Myb

6
; l ¼

1Myb

L
; m ¼

1Mzb

L
; n ¼ �

1FxbL

30
; o ¼ �

1Mxb

2
:

1.6 The process of assembling of the geometric stiffness matrices leads to the

formation of the structural geometric stiffness matrix having the BTMCB form.

y

1Mxa

1Mya
1Myb

1Mxb
1Fyb

1Fzb

1Mzb

1Fxb

1Mza

1Fxa
1Fya

1Fza

z

x

Fig. 7.85 The internal forces of a typical element in its local coordinate system
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1.7 After calculating the geometric stiffness matrix of structure via the above six

steps, the eigensolution with BTMCB form is performed as follows:

A. Extract the submatrices A and B from the geometric and elastic stiffness

matrices using the mathematical process of Sect. 7.4 to construct an

eigenproblem in the BTMCB form.

B. Generate the H matrix. This depends on the number of repetitive

substructures; however, calculating its eigenvalues, λj, depends on the latter
number being odd or even.

C. Generate the block matrices BLj from matricesA and B for both elastic and

geometric stiffness matrices of the structure.

D. Define the block submatrices BLKg�1Ke

	 

j
for each pair of blocks BL

K
gð Þj

and BLKeð Þj via the following equation:

BL
K

g�1
Ke

� �
j
¼ BLKgð Þj

�1
BLKeð Þj: (7.219)

E. Find the eigenvalues of the block matrices calculated in step D and gather

all of the eigenvalues calculated by means of Eq. 7.249:

eig Kg�1Ke
	 
 ¼[n

j¼1
eig BL

Kg�1Ke

� �
j

¼
[n
j¼1

eig BLKg
j

	 
�1
BLKe

j

	 
� �
: (7.220)

F. The eigenvector corresponding to each eigenvalue of block submatrix

BLKg�1Ke is obtained by the following relationship:

BLjYi ¼ μiYi: (7.221)

Each eigenvalue of the block matrixBLj obtained by Eq. 7.249 is an eigenvalue

of Kg�1Ke matrix; however, the eigenvectors obtained by Eq. 7.250 need to be

healed by a Kronecker product as

ϕi ¼ Uðej � YiÞ ¼ ðX� IÞðej � YiÞ ¼ Xej � IYi ! ϕi ¼ Xj � Yi (7.222)

where Xj is the eigenvector of corresponding to the jth eigenvalue of the matrix H.

The matrix X is calculated by Eq. 7.240. Finally, if an eigenvalue calculated by

Eq. 7.249 is a simple one, the corresponding eigenvector will be real, but if the

eigenvalue is a multiple root of the characteristic polynomial, the corresponding

eigenvector will be complex. Adding two conjugate eigenvectors will result in the

real eigenvectors for both of them.
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7.9.4 Eigensolution for Free Vibration of Structural Systems
with the BTMCB Form

Using the nodal numbering presented in Sect. 7.3, the elastic stiffness matrix of the

structure shown in Fig. 7.1 is formed, as explained in Sect. 7.2. The corresponding

lumped mass matrix is then generated by classic methods. The matrix corresponding

to this dynamic set will be in the following BTMCB form:

½K� � ω2½M� ¼

A B 0 0 . . . 0 0 Bt

Bt A B 0 . . . 0 0 0

0 Bt A B . . . 0 0 0

0 0 Bt . .
. . .

.
0 0 0

..

. ..
. ..

. . .
.

A B 0 0

0 0 0 0 Bt A B 0

0 0 0 0 0 Bt A B

B 0 0 0 0 0 Bt A

2
666666666664

3
777777777775
: (7.223)

Therefore, the natural frequencies and natural modes can be found by

½K� � ω2½M��� �� ¼ 0: (7.224)

The eigenvalues and eigenvectors are denoted by ωi and φi, respectively.

Applying the BTMCB form to Eq. 7.35 for calculating the eigenvalues and

eigenvectors of the above set is similar to the process mentioned in Sect. 7.5. After

generating the mass matrix of structure, the process of finding the natural

frequencies and natural mode shapes can be performed as follows:

1.8 Extract the submatricesA andB from the mass and stiffness matrices using the

mathematical process presented in Sect. 7.4.

1.9 Generate the H matrix, which depends on the number of repetitive

substructures. Calculating the concerned eigenvalues, λj, depends on the latter
number being odd or even.

1.10 Generate the block matrices BLj from submatrices A and B for both elastic

stiffness and mass matrices of structure.

1.11 Find m eigenvalues for each of n pairs of block matrices ðBLMÞj and BLKeð Þj
calculated in the previous step by solving Eq. 7.254:

BL
Ke � ω2BL

M

�� ��
j
¼ 0 )

[m
i¼1

ωj
2: (7.225)
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1.12 Gather all of the eigenvalues calculated by Eq. 7.254 as in the following

equation:

ζi ¼ ωi
2 ¼

[n
j¼1

[m
i¼1

ωj
2

 !
: (7.226)

1.13 The eigenvector corresponding to each eigenvalue of Eq. 7.255 is obtained as

BLjVi ¼ ζiVi: (7.227)

1.14 Each eigenvalue obtained by Eq. 7.37 is an eigenvalue of total system, but the

eigenvectors obtained by Eq. 7.38 need to be healed by a Kronecker product

as

φi ¼ U ej � Vi

	 
 ¼ ðX� IÞ ej � Vi

	 
 ¼ Xej � IVi ! φi ¼ Xj � Vi (7.228)

whereXj is the eigenvector corresponding to the jth eigenvalue of the H matrix, and

the X matrix is calculated in the way shown in Eq. 7.240. Finally, if the eigenvalue

calculated by Eq. 7.255 is a simple one, the corresponding eigenvector will be real;

however, if the eigenvalue is a multiple root of characteristic polynomial, the

corresponding eigenvector will be complex. Adding two conjugate eigenvectors

will result in real eigenvectors for both of them.

7.9.5 Reducing Computational Efforts by Substructuring
the System

In this section a substructuring method is used for finding the block submatrices A

and B in mass and elastic stiffness matrices. As will be shown, less effort is needed

to generate the corresponding submatrices in geometric stiffness matrix as a

consequence of the aforementioned methodology.

The substructuring process may be performed as follows:

Step A. Generating the submatrices A and B in mass and elastic stiffness matrices:

Using the segmental division introduced in Sect. 7.2, the nodes of the

structure are divided into n subset of nodes. In order to find the required

substructure, the nodes associated with three arbitrarily selected consecutive

segments should be extracted from the set of all the nodes of the structure.

After defining the nodes in substructure, the corresponding elements should

be defined.

Thus, an adjacency submatrix between previously selected nodes should

be specified by which the required submatrices can completely be generated.

This adjacencymatrix comprises all the elements existing in the intermediate

segment as well as elements between the nodes in the intermediate segment
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and the ones in two other segments. Calculating the mass and stiffness

matrices for the aforementioned substructure leads to the formation of

matrices in the following form:

½Msubstructure� ¼
C B 0

Bt A B

0 Bt D

2
4

3
5 and Kelastic

substructure

� � ¼ C B 0

Bt A B

0 Bt D

2
4

3
5: (7.229)

Thus, we need bigger matrices to compute in order to extract the

submatrices A and B from them.

Step B. Solution of the static problem:

As the structure has similar stiffness submatrices in different segments and

the exterior loads applied to the structure are similar in different segments,

the displacements will be identical as well. Since having the displacements

in a segment is sufficient, therefore the solution of static problem merely

for one segment will be adequate if the stiffness matrix of the substructure

is calculated appropriately. The stiffness matrix of a segment is calculated

by the following relationship:

Kelastic
segment ¼ Aþ Bþ Bt: (7.230)

The static problem which should be solved will be as follows:

½Fsegment� ¼ Kelastic
segment

h i
½X�: (7.231)

Solving the above equation results in the displacements of an arbitrarily

substructure in the global coordinate system.

Step C. Generating the submatrices Step A and Step B in the geometric stiffness

matrix:

By calculating the transformation matrix of Sect. 7.2 for each element of

the substructure defined in Step A and by pre-multiplying the aforemen-

tioned transformation matrix into displacements achieved in Step B for

extreme nodes of the cited element, the displacements in local coordinate

system will be calculated.

As the stiffness matrix of each element in its coordinate system is com-

putable by elastic stiffness matrix for a 3D beam element and the displace-

ment of the element in its coordinate system are calculated above by means

of Eq. 7.260, the internal forces for each element can be calculated as

½Finternal� ¼ ½Klocal� ½Xlocal�: (7.232)

Substituting the internal forces in Eq. 7.248 leads to the formation of the

geometric stiffness matrix for each element, and the assembling process of
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the matrices leads to the formation of a geometric stiffness matrix having

the following form:

K
geometric
substructure

h i
¼

C B 0

Bt A B

0 Bt D

2
4

3
5: (7.233)

By the steps A to C of Sect. 7.7, the submatricesA andB of the mass, elastic

and geometric stiffness matrices are calculated, and the process of

eigensolution described in Sects. 7.5 and 7.6 for finding the buckling loads

and natural frequencies of rotationally repetitive structure can be executed

with the least efforts.

7.9.6 Numerical Examples

Examples for finding the first six buckling loads and the first six maximum periods

for both solution methods for four dome structures are presented in this section. The

results are compared to those obtained by considering the entire structure in the

solution without using the symmetry property of the structures.

For all the structures, the density of the material is considered as 78.5 kN/m3, and

the modulus of elasticity is equal to 2e + 8 kN/m2.

Example 7.25: Type 1 configuration Specifications of the first configuration are

as follows:

Span ¼ 145 m, height ¼ 46.2 m, A ¼ sweep angle ¼ 65 (in degrees), number

of cycles ¼ 32 and number of members in a rib ¼ 16.

Element cross-sectional properties consisting of pipes are as follows:

Exterior diameter ¼ 0:3239m; thickness ¼ 0:01m and cross-sectional area

¼ 0:00986m2

The configuration of the dome presented and the selected substructure for

computing the geometric and elastic stiffness matrices of the substructure are

shown in Fig. 7.86. This substructure is selected such that its cyclic repetition

covers the entire structure, and it has minimum number of elements with respect to

this property.

The first six buckling loads and the first six maximum periods of the structure for

both classic and present methods are presented in Table 7.1.

Example 7.26: Type 2 configuration Specifications of the second configuration

are as follows:
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Span ¼ 75m; height ¼ 23 m; A ¼ sweep angle ¼ 63:04 ðin degreesÞ;
number of cycles ¼ 16 and number of members in a rib ¼ 9:

Element cross-sectional properties consisting of pipes are as follows:

Exterior diameter ¼ 0:273m; thickness ¼ 0:0063m and cross-sectional area

¼ 0:00528m2:

The configuration of the dome presented and the selected substructure for

computing the geometric and elastic stiffness matrices of the substructure are

shown in Fig. 7.5. This substructure is selected such that its cyclic repetition covers

the entire structure, and it has minimum number of elements with respect to this

property (Fig. 7.87).

Fig. 7.86 A dome and the selected substructure (Example 7.25)

Table 7.1 Comparison of the results for Example 7.25

Method

First six buckling

loads (kN) Elapsed time (s) First six periods (s) Elapsed time (s)

Present method 67.111171586 1.56 0.054773 0.45

67.363499398 0.054773

67.363499398 0.049093

68.140308485 0.049094

68.140308485 0.045122

69.504374950 0.039380

Classic method 68.143713692 65.46 0.062228 88.46

68.401052322 0.062228

68.401052322 0.050445

69.192595933 0.047125

69.192595933 0.047125

70.580117663 0.042186

Time ratio ¼ time for presentmethod

time for classicmethod

0.024 0.0051
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The first six buckling loads and the first six maximum periods of the structure for

both classic and the present methods are presented in Table 7.2.

Example 7.27: Type 3 configuration Specifications of the example, considered

for first type of configurations are as follows:

Span ¼ 69.28 m, height ¼ 20 m, A ¼ sweep angle ¼ 60 (in degrees), number

of cycles ¼ 16 and number of members in a rib ¼ 8.

Element cross-sectional properties ðpipesÞ : Exterior diameter ¼ 0:273m;

thickness ¼ 0:016 m and cross-sectional area ¼ 0:0129m2:

Fig. 7.87 A dome and the selected substructure (Example 7.26)

Table 7.2 Comparison of the results for Example 7.26

Method

First six buckling

loads (kN) Elapsed time (s) First six periods (s) Elapsed time (s)

Present method 42.626768260 2.71 1.076111 1.86

42.950213071 1.076111

42.950213071 0.327777

44.038557461 0.230387

44.038557461 0.169891

46.324767177 0.169891

Classic method 42.972754775 114 1.053611 138

43.249623685 1.053611

43.370217133 0.322513

44.365376027 0.230462

44.517103987 0.163465

46.694711532 0.152487

Time ratio ¼ time for presentmethod

time for classicmethod

0.024 0.014
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The configuration of the dome presented and the selected substructure for

computing the geometric and elastic stiffness matrices of the substructure are

shown in Fig. 7.88. This substructure is selected such that its cyclic repetition

covers the entire structure, and it has minimum number of elements with respect to

this property (Fig. 7.88).

The first six buckling loads and the first six maximum periods of the structure for

both classic and the present methods are presented in Table 7.3.

Example 7.28: Type 4 configuration Specifications of the example, considered

for first type of configurations are as follows:

Span ¼ 75 m, height ¼ 12.97 m, diameter of gap inside ¼ 45 m, A ¼ sweep

angle ¼ 50 (in degrees), number of cycles ¼ 24, number of members in a rib in

upper layer ¼ 4 and number of members in a rib in lower layer ¼ 3.

Fig. 7.88 A dome and the selected substructure (Example 7.27)

Table 7.3 Comparison of the results for Example 7.27

Method

First six buckling

loads (kN) Elapsed time (s) First six periods (s) Elapsed time (s)

Present method 64.849808347 2.43 0.182603 1.21

65.051354899 0.182603

65.051354899 0.152094

65.592911269 0.152094

65.592911269 0.150714

66.519733355 0.150714

Classic method 66.069444015 145 0.141674 186

66.162547554 0.135081

66.416914783 0.135081

66.802945238 0.127772

67.024791100 0.127772

67.764475434 0.102673

Time ratio ¼ time for presentmethod

time for classicmethod

0.017 0.007
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Element cross-sectional properties ðpipesÞ : Exterior diameter ¼ 0:1778m;

thickness ¼ 0:0063m and cross-sectional area ¼ 3:39e� 3m2:

The configuration of the dome presented and the selected substructure for

computing the geometric and elastic stiffness matrices of the substructure are

shown in Fig. 7.7. This substructure is selected such that its cyclic repetition covers

the entire structure, and it has minimum number of elements with respect to this

property (Fig. 7.89).

The first six buckling loads and the first six maximum periods of the structure for

both classic and the present methods are presented in Table 7.4.

7.9.7 Concluding Remarks

Symmetry in rotationally repetitive structures results in the decomposition of the

systems into smaller subsystems. The matrices corresponding to the detached

Fig. 7.89 A dome and the

selected substructure

(Example 7.28)

Table 7.4 Comparison of the results for Example 7.28

Method

First six buckling

loads (kN) Elapsed time (s) First six periods (s) Elapsed time (s)

Present method 53.150070147 0.89 0.169493 0.36

53.776869149 0.169493

53.776869149 0.164238

55.744596127 0.164238

55.744596126 0.127169

59.338436596 0.127169

Classic method 52.173264063 41.56 0.167541 55.56

52.808894050 0.167541

52.808894051 0.163075

54.802130814 0.163075

54.802130814 0.125557

58.435492680 0.125557

Time ratio ¼ time for present method

time for classic method

0.022 0.007
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subsystems have diminutive dimension in comparison to the dimension of primary

matrices. By the decomposition of the rotationally repetitive structures into

subsystems, large eigenproblems transform into much more smaller eigenproblems.

In fact, for a structure having n rotationally repeating segments, instead of finding

the eigenvalues of an nm� nm matrix, one can n times calculate the eigenvalues of

m� m matrix, where m is equal to the number of active degrees of freedom in a

subsystem.

Besides, by applying the substructuring methodologies for eigensolution, there

is no need to generate the entire mass, elastic stiffness and geometric stiffness

matrices for the main structure. This leads to a drastical reduction in time and

memory needed. Although the structures studied here are domes, the application of

the presented method can easily be extended to other rotationally repetitive civil

engineering structures such as cooling towers and chimneys or structures such as

milling cutters, turbine bladed disks, gears and fan or pump impellers in mechanical

engineering.

The saving in the required time and memory is divided into three parts:

1. Saving in time and memory due to calculating the mass, elastic and geometric

stiffness matrices of subsystem; in fact, instead of generating the entire mass,

elastic and geometric stiffness matrices of the structure, the associated matrices

of the subsystem can be calculated, and the process of eigensolution can be

pursued.

2. Saving in time and memory due to partial static analysis of the structure for

buckling load problem.

3. Saving in time and memory due to calculating n times the eigenvalues and

eigenvectors of a problem in dimensions of active DOFs in a subsystem instead

of calculating the eigenvalues and eigenvector of a structure with an enormous

number of DOFs.
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Chapter 8

Graph Products Applied to the Analysis

of Regular Structures

8.1 Introduction

In spite of considerable advances in computational capability of computers in

recent years, efficient methods for more time-saving solutions of structures are of

great interest. Large problems arise in many scientific and engineering problems.

While the basic mathematical ideas are independent of the size of the matrices, the

numerical determination of the displacement and internal forces becomes more

complicated as the dimensions of matrices increase and their sparsity decreases.

The use of prefabrication in industrialised building construction often results in

structures with regular patterns of elements exhibiting symmetry of various types,

and special methods are beneficial for efficient solution of such problems.

In the first part of this chapter, an efficient method is developed for the analysis

of regular structures. A structure is called regular if its model can be formed by a

graph product. Here, instead of direct solution of the equations corresponding to a

regular structure or finding the inverse of the stiffness matrix directly, modal

analysis is used, and eigenvectors are employed for calculating the displacements

and then internal forces of the structures. For this purpose, first an efficient method

is developed for calculating the eigenvectors of the product graphs, and then a

method is presented for using these eigenvectors for evaluating the displacements

of a structure [1].

In the second part, static analysis of structures with repeated patterns is

presented. These structures are comprised of submodels each having different

repeated pattern. As an example, considering a structure with two different repeated

patterns, the nodal numbering is performed in such a manner that the resulting

stiffness matrix of the structure contains two block-diagonal matrices. Thus, their

inversion can easily be performed using regular matrices requiring smaller amount

of computational time. In the second part, the modal analysis, free vibration and

eigenfrequencies of such structures are studied. Here as well the stiffness and mass

matrices are transformed into two block matrices forms and using dynamic

A. Kaveh, Optimal Analysis of Structures by Concepts of Symmetry and Regularity,
DOI 10.1007/978-3-7091-1565-7_8, © Springer-Verlag Wien 2013
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condensation and the matrix inversion which is involved in this condensation, the

eigensolution is performed on matrices of lower dimensions [2].

The presented examples consist of 2D and 3D structures in which in some

stories, the stiffnesses are changed due to the addition of some members taking

the structures out of regularity. Apart from these, the power transition towers often

having additional bracings in some levels are investigated. Other applications

correspond to calculating the buckling loads and natural frequencies of regular

plates driven to irregular forms by having different support conditions and some

added parts.

In the third part, block circulant matrices and their properties are investigated. It

is shown that a circulant matrix can be considered as the sum of Kronecker products

in which the first components have the commutativity property with respect to

multiplication. The important fact is that the method for block diagonalisation of

these matrices is much simpler than the previously developed methods, and one

does not need to find an additional matrix for orthogonalisation. As it will be shown

not only the matrices corresponding to domes in the form of Cartesian product,

strong Cartesian product and direct product are circulant, but for other structures

such as diamatic domes, pyramid domes, flat double-layer grids and some family of

transmission towers, these matrices are also block circulant [3].

8.2 Analysis of Repetitive Structures

8.2.1 Eigenvectors for Sum of the Kronecker Products

Let us assume M to be as the sum of some Kronecker products, as

M ¼
Xk
i¼1

Ai � Bið Þ (8.1)

Now if the matrix P diagonalises all theAis simultaneously, then it is previously

shown that U ¼ P� I can also block diagonalise the matrix M. The necessary and

sufficient condition for P to exist is that all pairs of Ais commute, that is,

AiAj ¼ AjAi: (8.2)

Then,

λM ¼ [
n

i¼1
eig Mið Þ;Mi ¼

Xk
j¼1

λiðAjÞBj

� �
: (8.3)

In this relation, the dimension of Aj is equal to n and that of Bj is equal to m.
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We assume that the condition of Eq. 8.2 holds. Then both A1 and A2 can be

diagonalised simultaneously with a vector like u. Now considering A1 ¼ I, Eq. 8.3

becomes

λM ¼ [
n

i¼1
eig Mið Þ;Mi ¼ B1 þ λi A2ð ÞB2: (8.4)

Considering μ as the eigenvalue, and v as the eigenvector ofMi ¼ B1 þ λi A2ð ÞB2,

we have

B1 þ λB2ð Þv ¼ μv: (8.5)

In the following, we will show that u� v will be an eigenvector of M. Since

ðA� BÞðC� DÞ ¼ AC� BD; (8.6)

therefore,

A1 � B1 þ A2 � B2ð Þ u� vð Þ ¼ A1uð Þ � B1vð Þ þ A2uð Þ � B2vð Þ: (8.7)

However, we have assumed A1 ¼ I; thus,

A1u ¼ u; A2u ¼ λu: (8.8)

Considering Eqs. 8.5 and 8.8, the Eq. 8.7 becomes

A1 � B1 þ A2 � B2ð Þ u� vð Þ ¼ u� B1vð Þ þ λu� B2vð Þ
¼ u� B1 þ λB2ð Þv ¼ μ u� vð Þ: (8.9)

This relationship shows that u� v is an eigenvector of M.

Now if A1 6¼ I, then the proof will not change. This is because Eq. 8.1 will still

hold, and using the QZ transformation, one can find two matricesQ and Z such that

QA1Z ¼ I; QA2Z ¼ D (8.10)

where D is a diagonal matrix and changes A1 into an I matrix.

Special Case: At this stage, it should be noted that if apart from A1 and A2, the

two matrices B1 and B2 have the commutative property with respect to multiplica-

tion, then we will have

eig
Xn
i¼1

Ai � Bi

 !
¼
Xn
i¼1

eig Ai � Bið Þ: (8.11)
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In this case, v should be such an eigenvector that diagonalises the two matrices

B1 and B2 simultaneously. Now if μ is the corresponding eigenvalue, after using the
QZ transformation and transforming B2 to I, we will have

B2v ¼ v; B1v ¼ μv: (8.12)

In this way, Eq. 8.9 will be simplified as

A1 � B1 þ A2 � B2ð Þ u� vð Þ ¼ u� μvþ λu� v ¼ μþ λð Þ u� vð Þ: (8.13)

Hence, u� v is an eigenvector ofM, with the only difference is that here v is an

eigenvector which simultaneously block diagonalises the matrices B1 and B2, while

v had been previously considered as the eigenvector of Mi ¼ B1 þ λi A2ð ÞB2 . It

should be mentioned that this can be observed in the Laplacian matrix of a

Cartesian product.

Having the eigenvalues, one can find the corresponding eigenvectors by an

iterative approach. However, this is a numerical approach, while in here we will

form the eigenvectors by an analytical approach and not a numerical one.

8.2.2 Solution of Linear Equations via Eigenvalues
and Eigenvectors

In the following, the application of eigenvectors in the solution of a set of linear

equations will be presented and later will be used in the analysis of a regular

structure.

Suppose we want to solve the following set of equations:

Mx ¼ B: (8.14)

Exactly similar to the modal analysis, using a suitable transformation, we

transform x to y. This transformation can be written as

fxgn ¼
Xn
i¼1

φf giyi (8.15)

where φf gi s are the eigenvectors of the matrix M. Obviously these vectors are

orthogonal. Thus, multiplying the two sides of Eq. 8.14 by φf gtj, we will have

φf gtjM φf gjyj ¼ λjyj ¼ φf gtjB: (8.16)

Considering Bj ¼ φf gtjB, we will have
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yj ¼
Bj

λj
) xf gn ¼

Xn
i¼1

φf giyi ¼
Xn
i¼1

φf gi
Bi

λi
¼
Xn
i¼1

φf gi φf gti
λi

B: (8.17)

Therefore, the unknowns of this matrix equation can be obtained without

inverting the matrix. This is done by merely using the eigenvalues and eigenvectors,

the calculation of both of which has been previously explained.

If Ai s and Bi s do not possess the commutativity property with respect to

multiplication, then for the case k ¼ 2, one can use QZ transformation for the

solution. This transformation is introduced in Ref. [4]. Here, one does not need to

calculate the stiffness matrix.

However, one can easily find M�1 having the eigenvalues and eigenvectors of M.

Having the matrixV of eigenvectors and the matrixD of eigenvalues in its diagonal,

then M ¼ VDVt. Since the eigenvalues of M�1 are the inverse of those of M with

identical eigenvectors, therefore,

M�1 ¼ VD�1Vt ¼ V

1
λ1

0
1
λ2

:
:

0 1
λm�n

2
66664

3
77775Vt: (8.18)

In this relation,D�1 can easily be obtained by finding the inverse of the diagonal
entries of D. The eigenvector of such a matrix will be u� v in which u is a vector

that diagonalises the two matrices A1 and A2 simultaneously, and v is the

eigenvector of Mi ¼
Pk
j¼1

λi Aj

� �
Bj

� �
.

For a structure, if we want the stiffness matrix to be in the form of the sum of two

Kronecker products, then for expressing the governing equation, the Cartesian

coordinate system should be altered. This is obvious because a structure which is

obtained by rotation of an element, due to rotational symmetry, the displacements

under a symmetric loading will be in a radial direction, and therefore, these

displacements will not be identical in x and y directions. Thus, for this case, a

cylindrical coordinate will be more suitable. An example of such a case will be

given in the following section.

8.2.3 Kronecker Product of a Path and a Cycle

Suppose we want to study a structure in the form of Pm (X)C Cn. In general, one can

show that the Laplacian matrix can be written as

Mmn ¼ Gn Am;Bm;Amð Þ ¼ In � Fmð1;�1; 2Þ þGnð2;�1; 2Þ � Im (8.19)
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where

Gn Am;Bm;Cmð Þ ¼

Am Bm Bm

Bm Cm :

: : :

: : :

: Cm Bm

Bm Bm Am

2
666666664

3
777777775
n

and Fn Am;Bm;Cmð Þ ¼

Am Bm

Bm Cm :

: : :

: : :

: Cm Bm

Bm Am

2
666666664

3
777777775
n

:

(8.20)

Therefore,

eig Mmnð Þ ¼ [n
i¼1

eig Fmð1;�1; 2Þ þ λi Gnð2;�1; 2Þð ÞIm½ �f g i ¼ 1 : n (8.21)

where

λi Gnð2;�1; 2Þð Þ ¼ 2� 2 cos
2iπ
n

: i ¼ 1 : n: (8.22)

It can be seen that here Fmð1;�1; 2Þ is the Laplacian matrix of Pm and

Gnð2;�1; 2Þ is the Laplacian matrix of Cn. In this way we will have n matrices of

dimension m.

Similarly for the direct product of Pm by Cn, we will have

Mmn ¼ Gn Am;Bm;Cmð Þ
¼ In � 2Fmð1; 0; 2Þ þGnð0;�1; 0Þ � Fmð0; 1; 0Þ: (8.23)

In this relation, we have λi Gnð ð0;�1; 0ÞÞ ¼ �2 cos 2iπ
n

, and therefore,

eig Mmnð Þ ¼ [n
i¼1

eig 2Fmð1; 0; 2Þ � 2 cos
2iπ
n

Fmð0; 1; 0Þ
� �� �

: (8.24)

For strong Cartesian product of Pm by Cn, this matrix will be as
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Mmn ¼ Gn Am;Bm;Cmð Þ
¼ In � 3Fmð2; 0; 3Þ þGnð�1;�1;�1Þ � Fmð1; 1; 1Þ: (8.25)

Here, we have λi Gð nð�1;�1;�1ÞÞ ¼ � 1þ 2 cos
2iπ
n

� 	
, and therefore,

eig Mmnð Þ ¼ [n
i¼1

eig 3Fmð2; 0; 3Þ � 1þ 2 cos
2iπ
n

� 	
Fmð1; 1; 1Þ

� �� �
: (8.26)

However, if we express the stiffness matrix of such a structure in a cylindrical

coordinate system, since in the upper and lower part of the main diagonal block we

obtain blocks which are the transpose of each other, therefore, the stiffness matrix

can be expressed as the sum of three Kronecker products in the following form:

M ¼ A1 � B1 þ A2 � B2 þ A3 � B3;A1 ¼ I;A3 ¼ At
2;B3 ¼ Bt

2 (8.27)

where

A3 ¼ At
2 ¼

0 1 0

0 1

: :
: :

: 1

0 1

1 0

2
666666664

3
777777775
n

: (8.28)

For calculating the eigenvalues of this matrix, after expanding the determinant,

the solution of the corresponding characteristic equation will result in the nth roots

of 1, containing n real and complex values, that is,

det A3 � λIð Þ ¼ 0) λn ¼ 1) λ ¼ 1; e
2πi
n ; e

4πi
n ; . . . ; e

2ðn�1Þπi
n

� �
: (8.29)

In what follows, we will show that all the above ideas can be applied to the

analysis of repetitive structures.

8.2.4 An Illustrative Example

Suppose we want to study a structure in the form of the strong Cartesian product of

P2 by C5. Three-dimensional and two-dimensional configurations of this structure

are shown in Fig. 8.1. In these figures, the geometric properties and loading are

specified. In fact, this structure is formed by two equilateral polygons with five
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edges, where the distance of the five external and internal nodes from their centres

are 3 and 1.5, respectively. The external nodes 2, 4, 6, 8 and 10 are in the height of

1.5 m. All the cross-sectional areas are 5 cm2 and the elastic modulus is taken as

200 kN/mm2. The loads P1 at node 2 is 30 kN and the load P2 at node 6 is 20 kN. It

can be seen that the loading is nonsymmetric.

If we form the stiffness matrix of this structure in the Cartesian coordinate, we

will find out that it does not obey the pattern of the repetitive form (sum of

Kronecker products). However, forming this matrix in the cylindrical coordinate

system, the reduced stiffness matrix will have the following form:

M ¼ A1 � B1 þ A2 � B2 þ A3 � B3;A1 ¼ I;A3 ¼ At
2;B3 ¼ Bt

2

where

B1 ¼ 105
0:6463 0 �0:1867

0 1:2063 0

�0:1867 0 0:3639

2
4

3
5 and B2 ¼ 104

1:9593 2:6967 0

�2:6967 �3:7117 0

0 0 0

2
4

3
5:

The matrices A2 and A3 are given in Eq. 8.28 and the corresponding eigenvalues

are provided by Eq. 8.29. In this example, both matrices have the dimension equal

to five.

eig A2ð Þ ¼ 1; e
2πi
5 ; e

4πi
5 ; e

6πi
5 ; e

8πi
5

n o
¼ 1; 0:3090þ 0:9511i;�0:8090þ 0:5878i;�0:8090� 0:5878i;f

0:3090� 0:9511ig:

The eigenvalues of the matrix M can be found using Eq. 8.15 as follows:

eigðMÞ ¼ [5
i¼1

eig B1 þ λi A2ð ÞB2 þ λi A
t
2

� �
Bt
2


 �� 
:

As an example, the biggest eigenvalue is calculated as λmax ¼ 1:0864e5:

1

2

3

4

5

6

P1

P2

7

8
9

10

2

4

68

10

1

3

57

9

a bFig. 8.1 Three- and two-

dimensional views of a

structure
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The eigenvectors of this matrix are u� v where both u and v are introduced

before. As an example the eigenvectors corresponding to the above-given eigen-

value are as

fφg ¼ 1 1 1 1 1½ �t � 0:4330 0 �0:1119½ �t:

It should be noted that for a structure, the governing equation isKΔ ¼ P. In this

equation, K is the reduced cylindrical stiffness matrix of the structure and P is the

force vector which is expressed in the cylindrical coordinate system. Using

Eq. 8.18, the displacements are found in the cylindrical coordinate system ðρ; θ; zÞas

Δ ¼
ρ
θ
z

0:5330 �0:2351 0:4221
0:0028 0:0924 0:2169
1:0978 �0:1206 0:2166

�0:2549 �0:1770
0:1621 �0:1254
�0:1308 �0:0908

2
4

3
5

and after transformation, the displacements are obtained in the Cartesian coordinate

system ðx; y; zÞ as

Δ ¼
x

y

z

�0:0028 �0:2521 0:4236
0:5330 0:0152 �0:2140
1:0978 �0:1206 0:2166

0:2810 0:2071
0:1110 0:0646
�0:1308 �0:0908

2
4

3
5:

Here, the columns 1–5 contain the displacements of the nodes 2, 4, 6, 8 and 10 in

the specified directions.

8.2.5 Algorithm for the Analysis

The analysis of a repetitive structure can be summarised as follows. It should be

noted that the loading of the structure can be nonsymmetric.

Step 1. Form the stiffness matrix in the cylindrical coordinate system and express

it in the form

M ¼
Xm
i¼1

Ai � Bi:

Step 2. Determine the eigenvalues of the matrix M using the relationship

eigðMÞ ¼ [k
j¼1

eig
Xm
i¼1

λj Aið ÞBi

( )" #
;

where k is the dimension of the matrix Ai.
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Step 3.Determine the vector uwhich digonalises the matricesAi simultaneously.

Step 4. Determine the vector v which is the eigenvector of the matrix

Mi ¼
Xm
i¼1

λj Aið ÞBi


 �
:

If the two matrices B1 and B2 also commute with respect to multiplication, then

it is only sufficient to determine v such that it diagonalises these two matrices

simultaneously.

Step 5. Determine the eigenvector of M which is the Kronecker product of the

two vectors determined in Step 3 and Step 4, that is, φ=u� v.

Step 6. Determine the displacements in the cylindrical coordinate system using

the following relationship and change the results into the Cartesian coordinate

system:

fΔgn =
Xn
i¼1

fφgifφgti
λi

P:

8.2.6 Numerical Examples

In this section, three examples corresponding to different types of structures are

studied using the present method.

Example 8.1. A double-layer dome is considered as shown in Fig. 8.2. The top

layer is C26 (X)C P15 and the bottom layer is C26 (X)C P14. Each node at the bottom

layer is connected to four adjacent nodes in the top layer. The stiffness matrix of

this structure has the following form:

Fig. 8.2 A double-layer

dome
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Kmk ¼

Em Hm �Im 0

Ht
m Emþ 2Im Ht

m �Im
�Im Hm Emþ 3Im Hm :

�Im Ht
m : : :
: : : : :

: : : : :
Emþ 3Im Hm �Im

Ht
m Emþ 2Im Ht

m

0 �Im Hm Em

2
6666666666664

3
7777777777775
k�k

This is a penta-diagonal block matrix and in the two diagonals adjacent to the

main diagonal,Ht
m andHm are alternately changed. Thus, the stiffness matrix can be

expressed as

Kmk ¼ Ik � Em þ Ck �Hm þ Ct
k �Ht

m þ Dk � Im ¼
X4
i¼1

Ai � Bi

where

Ck ¼

0 1

0 0 0

1 0 1

0 0 0

1 : :

: : :

: : :

: :

: :

2
66666666666666664

3
77777777777777775
k

; Dk ¼

0 0 �1
0 2 0 :

�1 0 3 : :

: : : : :

: : : : :

: : : : :

: : 3 0 �1
: 0 2 0

�1 0 0

2
66666666666666664

3
77777777777777775
k

Em ¼Gmð5;�1;5Þ; Hm ¼

�1 0 �1
�1 �1 0

: : :

: : :

: : :

: : :

: : :

: �1 0

0 �1 �1

2
66666666666666664

3
77777777777777775
m

:

Here, under an arbitrary loading, with the bottom nodes being fixed, instead of

inverting a matrix of dimension 26 � 28 � 3 ¼ 2,184, we need to calculate the
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eigenvalues (step 2) and the eigenvectors (step 4) of a matrix of dimension

28 � 3 ¼ 84, where 3 is the DOFs of each node. Then, the vector u is calculated

which diagonalises the matrices Ai (after i ¼ 26) simultaneously (step 3) and after

finding the Kronecker product of these two vectors (step 5), using the relationship

of step 6, all the displacements can be calculated. For calculating the eigenvalues,

we use the following approach.

Here, K is the sum of four Kronecker products. First we control Ais and Bis

for commutative property. Here, Bis have this property. Since two matrices M ¼P
i

Ai � Bið Þ and N ¼P
i

Bi � Aið Þ are similar, we interchange Ais and Bis. Since

the eigenvalue does not change, therefore, we can write

eig Kmkð Þ ¼ eig
X4
i¼1

Ai � Bið Þ ¼ eig
X4
i¼1

Bi � Ai

 !

Therefore,

eig Kmkð Þ ¼ [m
j¼1

eig
X4
i¼1

λj Bið ÞAiÞ
( )" #

Example 8.2. The model of a space structure is considered as the lexicographic

product of G(X)LGH with G ¼ C7(X)C P4 and H ¼ P2, Fig. 8.3. All the nodes at the

bottom layer are constrained against movement, and the loading is nonsymmetric as

illustrated in the figure.

For this example, instead of inverting a matrix of dimension 2 � 14 � 3 ¼ 84,

we need to calculate the eigenvalues (step 2) and the eigenvectors (step 4) of a

matrix of dimension 4 � 3 ¼ 12, where 3 is the DOFs of each node. Then, the

vector u is calculated which diagonalises the matrices Ai (after i ¼ 7)

P1

P2

P3

Fig. 8.3 A space structure

with lexicographic model

G(X)LGH
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simultaneously (step 3) and after finding the Kronecker product of these two vectors

(step 5), using the relationship of step 6, all the displacements can be calculated.

Example 8.3. Consider a simply supported rectangular plate under a uniform load

of intensity P0, as shown in Fig. 8.4. We want to calculate the deflection and the

moment at different points of this plate. This example is included to show the

applicability of the present method for non-repetitive models.

Here, we use finite difference method, since the form of the corresponding

coefficient matrix is such that it can be expressed as the sum of Kronecker products.

The subdivision of the plate is shown in Fig. 8.4.

The theoretical solution of this problem can be obtained from the following

governing equation:

r4w ¼ @4w

@x4
þ 2

@4w

@x2@y2
þ @4w

@y4
¼ P

D
:

The solution of this equation using the finite difference results in a penta-

diagonal block matrix, the solution of which is already discussed in Example 8.1.

The above equation can be transformed into the following two equations of lower

order [5]:

r2M ¼ @2M

@x2
þ @2M

@y2
¼ �P; r2w ¼ @2w

@x2
þ @2w

@y2
¼ �M

D
:

Since we want to change the governing equation into its finite difference form,

therefore, it is much simpler to use the above two equations which have lower order.

From one equation, we should find one of the bending moments in terms of the

external force, and in the next equation, this moment should be entered as the

solution in order to calculate the deflection. The transformation of these equations

into finite difference form is performed as follows:

0 1 2 m

L2

L1
(n,m)

1

2

n

3

2

4

1

a

b i

Fig. 8.4 A simply supported

rectangular plate
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M1 þM2 þM3 þM4 � 4Mið Þ ¼ �Pia2;
w1 þ w2 þ w3 þ w4 � 4wið Þ ¼ �Mia

2:

Which is written for the ith node and as it can be seen from Fig. 8.4, the nodes

1–4 are the nodes adjacent to this node. The length of the subdivisions in both

directions are considered to be identical and equal to a, that is, ðb ¼ aÞ.
The important point in using these two relationships is that the form of the

coefficient matrices for both should be identical, and it is enough to be calculated

once. Considering the external load as P0 and subdividing the plate in two direction

with m and n nodes, the Laplacian matrix r2 will be obtained as

r2 ¼ In � Fmð�4; 1;�4Þ þ Fnð0; 1; 0Þ � Im ¼ A1 � B1 þ A2 � B2 ¼ C:

An important point in the above matrix is that both A1 and A2, and B1 and B2

have the commutative property with respect to multiplication, and therefore, the

eigenvalues and eigenvectors can be calculated much simpler.

The two equations of this problem can be expressed as follows:

r2M ¼ �P) In � Fmð�4; 1;�4Þ þ Fnð0; 1; 0Þ � Im½ �fMg ¼ � P0f g ) ½C�fMg
¼ � P0f ga2

r2w ¼ �M

D
) In � Fmð�4; 1;�4Þ þ Fnð0; 1; 0Þ � Im½ �fwg¼ � M

D

� �
) ½C�fwg

¼ � M

D

� �
a2:

The solution of the first equation, using Eq. 8.18, will be as follows:

fMg ¼ �P0a2
X
i

φf gi φf gti
λi

:

Therefore, only the calculation of λi and φf gi is needed. In this case, one can use
Eq. 8.11 for calculating the eigenvalues and eigenvectors; the matrix C can be

diagonalised. Thus, we will have

eigðCÞ ¼ eig In � Fmð�4; 1;�4Þ þ Fnð0; 1; 0Þ � Imf g
¼ eig In � Fmð�4; 1;�4Þð Þ þ eig Fnð0; 1; 0Þ � Imð Þ

On the other hand, we know that the eigenvalues of a matrix in the form of Fn

are as follows:
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eig Fnða; b; aÞð Þ ¼ aþ 2b cos
iπ

nþ 1

� 	
; i ¼ 1 : n:

The eigenvectors are as follows:

φf gkj¼ sin
kjπ
nþ 1

� 	
; φf gk1¼ sin

kπ
nþ 1

� 	
; j ¼ 1 : n:

Since we have eigðC� DÞ ¼ eigðCÞeigðDÞ, therefore,

λ ¼ eigðCÞ ¼ eig Fmð�4; 1;�4Þð Þ þ eig Fnð0; 1; 0Þð Þ

¼ �4þ 2 cos
iπ

nþ 1
þ 2 cos

jπ
mþ 1

i ¼ 1 : n; j ¼ 1 : m:

Since in this case both A1 and A2, and B1 and B2 have the commutative property

with respect to multiplication, therefore, u and v are the eigenvectors which

diagonalise these pair of matrices simultaneously. The Kronecker product of

these eigenvectors is the eigenvector of C, and we have

φf g ¼ sin
kjπ
nþ 1

� 	
� sin

k
0
j
0
π

mþ 1

 !
; j ¼ 1 : n; j

0 ¼ 1 : m:

Therefore, the eigenvalues and eigenvectors can be calculated with two simple

relationships, and one does not need to perform lengthy matrix operations. This is

because the matrix has become diagonal and not block diagonal.

After this simple calculation, we use a similar approach for the second equation.

Having the solution of the first equation (moments in each node), the deflections can

be obtained by the following equation:

fwg ¼ � 1

D
a2
X
i

φf gi φf gti
λi

fMg:

In order to clarify the problem, we consider a numerical example. Suppose we

have a square plate with edge length of L and the number of subdivisions is six in

each direction. Then, the number of nodes will be five in each direction and using

the above relationships, the eigenvalues will be as

λ ¼ eigðCÞ ¼ �4þ 2 cos
iπ
6
þ 2 cos

jπ
6

i ¼ 1 : 5; j ¼ 1 : 5

λ ¼ f�7:4641;�6:7321; . . . ;�1:2679;�0:5359g

The corresponding eigenvectors can easily be obtained. As an example, the first

eigenvector is obtained as
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fφg1 ¼ sin
jπ
6

� 	
� sin

0j0π
6

� 	
; j= 1 : 5; j

0
= 1 : 5

fφg1 ¼ 0:5;

ffiffiffi
3
p

2
; 1;

ffiffiffi
3
p

2
; 0:5

� �
� 0:5;

ffiffiffi
3
p

2
; 1;

ffiffiffi
3
p

2
; 0:5

� �

¼ 0:25;

ffiffiffi
3
p

4
; . . . ;

ffiffiffi
3
p

4
; 0:25

� �

Therefore,

fMg ¼ �P0 L

6

� 	2X
i

fφgifφgti
λi

; a5
L

6

fMg ¼ f0:0264; 0:390; 0:427; 0:390; . . . ; 0:0264gP0L2:

Now, all these values are put in the right-hand side of the deflection equation in

the form of a vector. As it was mentioned, for the solution of the second equation,

the eigenvalues and eigenvectors are similar to those of the previous case. Thus,

fwg ¼ � 1

D
a2
X
i

fφgifφgti
λi

fMg ¼ f0:0011; 0:0019; 0:0021; . . . ; 0:0011g P0L
4

D
:

As an example, the deflection at the central node will be 0:00405P0L
4

D
. This deflection

can be calculated by analytical methods as 0:00406P0L
4

D
. Considering n ¼ 5 , we

will have a small error in the fifth digit. It should be mentioned that this error belongs

to the finite difference formulation and not the method being used. Even if the

number of subdivisions is increased, a similar performance will be observed. It can

be seen that using the present method requires no inversion or direct solution of

equations, and only the eigenvalues and eigenvectors of generators should be

calculated. This calculation appeared in the form of simple relationships because

of the simplicity of the forms of the generators.

The remaining operation can easily be performed. As an example, for υ ¼ 0:3,
the bending moments at the centre of the plate will be

Mx ¼ My ¼ ð1þ υÞMm

2
¼ 0:046875P0L

2

It should be noted that for a nonsymmetric loading, the solution process does not

change and the eigenvalues and eigenvectors will be the same and only the solution

vector will be different.

The method presented in this chapter simplifies the analysis of the regular

structures to a great extend. This method avoids the direct solution of equations
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corresponding to the stiffness matrix, and analysis of large-scale structures requires

the formation of much smaller matrices. Thus, using this method, much bigger

structures can be solved with a higher speed.

The application of this method is not confined to regular structures. It can be

used in the solution of the problems where the corresponding solution matrix can be

written in the form of the sum of some Kronecker products. In Example 8.3, a finite

difference solution of a plate has been included in this chapter to illustrate this point

of view.

When the structures contain cut-outs or some modifications are performed on

their regular models, the problem can still be dealt with incorporating the results of

the recent developments [6, 7].

8.3 Static and Modal Analyses of Structures with Different

Repeated Patterns

Now suppose a number of nodes or members are added to a model. One of the

iterative methods for such a problem is condensation in which some DOFs are

eliminated and some others are maintained. As a well-known approach of this kind,

one can refer to the Guyan’s method. This method is a static condensation approach

in which the DOFs of the inertia terms are ignored. After that, for reducing the error

in the static condensation, in the solution of dynamic problems, other amendments

are performed by the researcher. One such an amendment is that of Paz, which can

be considered as the generalisation of the static condensation. Other methods are

also introduced, where the inverse of the stiffness matrix is obtained using the

Taylor’s series expansion. Recent approach can be found in Refs. [8–10].

Pellegrino and Calladine [11, 12] have avoided the inversion of the stiffness matrix

using the SVD of the equilibrium matrix of the structure.

In the present section, some concepts of the force method are utilised; however,

unlike the standard force method where the selected primary structure is determi-

nate, here it is indeterminate and constitutes the regular part of the structure, and the

internal forces of the additional members which make the structure irregular are

selected as redundants. Here, the primary structure can be analysed using concepts

of graph theory and/or group theory.

In this section, the main aim is to perform static and modal analysis of those

structures which have different repeated patterns. These types of structures have

regularity and irregularities in their model. Using a suitable nodal numbering, we

transform the stiffness and mass matrices into two block-diagonal forms, the inverse

of the stiffness matrix of the corresponding regular part becomes available, and the

static, dynamic, free vibration and natural frequencies of the structure can be obtained.

First a brief introduction is provided to the previously developed methods on

eigensolution of regular structures. This section is organised in three parts

consisting of eigenvalues, eigenvectors and solution of a set of linear equations.
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8.3.1 Static Analysis of Structures with Repeated Patterns

In this section, the present method is described with the help of an example.

Suppose we want to perform a static analysis of the structure shown in Fig. 8.5,

using the stiffness method. It can be seen that in this structure, two different types of

repetitions are involved. One part has a regular form which fulfils the conditions of

Eq. 8.2 and for which the eigenvalues, eigenvectors and the inverse of the stiffness

matrix can easily be obtained. For this purpose, as it can be seen in the figure, first

the irregular nodes (nodes 1–30) are numbered (identified in red colour), followed

by numbering the internal nodes (nodes 31–80) which belong to the regular

submodel. After assembling the stiffness matrix and forming the reduced stiffness

matrix K, we have

K ¼ Kmm Kms

Kms Kss

� �
(8.30)

where the subscript m corresponds to the nodes numbered from 1 to 30 and the

subscript s belongs to the nodes numbered from 31 to 80. The matrix K in this

example have dimension 192.

Showing the inverse of the matrix K by D, we have [13]

K�1 ¼ D ¼ Dmm Dms

Dt
ms Dss

� �
Γ ¼ Kmm �KmsK

�1
ss K

t
ms

Dmm ¼ Γ�1

Dms ¼ �Γ�1KmsK
�1
ss

Dss ¼ K�1ss �K�1ss K
t
msD

t
ms ð8:31Þ

Fig. 8.5 A plane frame with repeated submodels and its nodal ordering
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The above process indicates that for finding the inverse of a matrix of dimension

192, using this method, the inverse of two matricesKss andΓ of dimensions 120 and

72 should be found. But the matrix Kss is a block matrix of the following form:

Kss ¼

A 0 0 : : 0

0 A B 0

0 Bt A : :
: 0 : : : 0

: : : : B 0

0 Bt A B

0 0 Bt A

2
666666664

3
777777775
: (8.32)

The Kss matrix is a block matrix of dimension 10 with each block having

dimension 12. Separating the matrix A as an independent block, one can show

that the matrix Kss has the following form:

Kss ¼ A 0

0 R9 A;B;Btð Þ
� �

(8.33)

where the form R is defined as

Rn A;B;Btð Þ ¼

A B 0 0 : : 0

Bt A B 0

0 Bt A : :
: 0 : : : 0

: : : : B 0

0 Bt A B

0 0 Bt A

2
666666664

3
777777775
: (8.34)

This form is exactly identical to the matrix arising from the finite element

analysis of repeated structures. Considering the block-diagonal nature of the matrix

Kss, its inverse can be found as follows:

K�1ss ¼ A�1 0

0 R�19 A;B;Btð Þ
� �

: (8.35)

Therefore, we need to find the inverse of R.

For calculating the eigenvalues and eigenvectors of a block circulant matrices,

there are very simple relationships [14]. If the matrix R contains two blocks of B

and Bt at its corners, we will obtain such a matrix. Therefore, we express R in the

following form:
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R¼K0 þK00 )

A B 0 0 : : 0

Bt A B 0

0 Bt A B

0 0 Bt A

: :

: : B

0 Bt A

2
666666666664

3
777777777775
9�9

¼

A B 0 0 : : Bt

Bt A B 0

0 Bt A B

0 0 Bt A

: :

: : B

B Bt A

2
666666666664

3
777777777775
9�9

þ

0 0 0 0 : : �Bt

0 0 0 0

0 0 0 0

0 0 0 0

: :

: : 0

�B 0 0

2
666666666664

3
777777777775
9�9

:

(8.36)

Showing the inverse of the matrix K0 by E, we will have

R�1 ¼ K0 þK00½ ��1 ¼ K0 IþK00�1K00
n on o�1

¼ Iþ EK00½ ��1E: (8.37)

Interchanging the position of the rows and columns corresponding to block 9

with those of block 2 from matrices K00 and E, the corresponding matrices will

change to a form with two blocks as

K00 ¼

0 �Bt 0 0

�B 0 0

: : :

: : :

: : :

: : :

: : :

: 0 0

0 0 0

2
66666666666666664

3
77777777777777775
9�9

¼ K1 0

0 0

� �

K1 ¼ �R2 0;Bt;Bð Þ ð8:38Þ

whereK00 is the same asK00 after interchanging the last row with the second row and

the last column with the second column.
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Now, considering the method presented in [3] and Eq. 8.23, we obtain the

following:

Iþ EK00½ ��1E ¼ I 0

0 I

� �
þ E11 E12

E21 E22

� �
K1 0

0 0

� �� 	�1
E

¼ Iþ E11K1 0

E21K1 I

� ��1
E ¼ Iþ E11K1ð Þ�1 0

�E21K1 Iþ E11K1ð Þ�1 I

" #
E ð8:39Þ

The inverse of K0 can be obtained using its eigenvalues, since

K0 ¼ I� AþH� BþHt � Bt ¼
X3
i¼1

Ai � Bi (8.40)

where H is a circulant matrix of the following form:

H ¼

0 1 0 0 : : 0

0 0 1 0

0 0 0 1

0 0 0 0

: :
: : 1

1 0 0

2
666666664

3
777777775
9�9

: (8.41)

H is an orthogonal matrix, and the two matrices H and Ht commute with respect

to multiplication, that is,

HHt ¼ HtH ¼ I: (8.42)

Therefore, considering Eqs. 8.3 and 8.26, the eigenvalues ofK0 will be obtained
as follows:

eig K0ð Þ ¼ [n
i¼1

eig K0ið Þ; K0i ¼ λi A1ð ÞB1 þ λi A2ð ÞB2 þ λi A3ð ÞB3: (8.43)

After calculating the eigenvalues and using Eqs. 8.19 and 8.23, the inverse ofK0

is obtained. As it can be seen, in this method, instead of finding the inverse of R of

dimension 108, we need the inverse of two regular matrices K0 and Iþ E11K1

(Eq. 8.39). The relationships corresponding to finding the inverse of the matrix R

can also be obtained simpler as
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R A;B;Btð Þ )

A B 0 0 : : 0

Bt A B 0

0 Bt A B

0 0 Bt A

: :

: : B

0 Bt A

2
666666666664

3
777777777775
¼

Bt 0

0 0

0 0

0 0

: :

0 B

2
666666666664

3
777777777775

0 0 0 0 : : I

I 0 0 0 : : 0

� �
¼ K0 � UV

) R�1 A;B;Btð Þ ¼ K0 � UVð Þ�1

¼ K0�1 þK0�1U I� VK0�1U
� ��1

VK0�1: ð8:44Þ

As it can be seen from the above relationship, in this type of formulation, in order

to find R, we should invert two matrices. One is the inverse of I� VK0�1Uwhich is

the same as Iþ E11K1, and in this example, it is a matrix with two blocks each being

of dimension 12. The other one isK0 which is the sum of three Kronecker products

and its eigenvalues, and thus, its inverse can easily be found. Finally, the inversion

of a matrix of dimension 192 is changed to calculating eigenvalues of 10 matrices

of dimension 12, one inverse of a matrix of dimension 24 and one inverse of a

matrix of dimension 72.

In summary, here, matrices with repeated patterns do not satisfy Eq. 8.2, and by

employing some matrix operations, their inversion is altered to the inversion of de-

composable block matrices. In this way, a simple relationship is found for the inversion

of structural matrices of finite element models with repeated patterns using an analyti-

cal method. Finally, it should briefly be mentioned that the method of nodal ordering is

performed in the present approach. In general, the connectivity of the regular part of the

structural model follows a fixed pattern. As an example, in Fig. 8.6, the nodes which are

Fig. 8.6 A structural model with a repeated submodels
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encircled in rectangles (identified in red) have a repeated pattern which is different with

the remaining part. In the present method, these patterns are identified and the

corresponding nodes are numbered, followed by numbering the nodes of the remaining

part of the model. The important point is that these repeated parts can situate in

different positions in the model. As it can be seen from Fig. 8.6, the structure is braced

in different forms; however, there exists eight fixed repeated submodels.

8.4 Free Vibration Analysis of Irregular Structure Comprising

of Regular Parts

Now, suppose we want to perform the modal analysis of the structure shown in

Fig. 8.7 and find its natural eigenfrequencies. Here, we use dynamic condensation

for calculating the eigenfrequencies. Similar to static analysis, first we perform a

suitable nodal ordering to form the reduced stiffness matrix in the form of Eq. 8.16

andKss in the form of Eq. 8.18. In a similar way, the mass matrix is obtained in the

following form:

M ¼ Mmm Mms

Mt
ms Mss

� �
(8.45)

where the subscript m corresponds to the nodes 1–30 and the subscript s corresponds
to nodes 31–80. The aim is to solve the following eigenvalue problem:

K� λiMð ÞΦi ¼ 0; i ¼ 1 : n (8.46)

Fig. 8.7 A plate with nodal

numbering for finite

difference method
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where n ¼ 192. One can express the above equation as

Kmm Kms

Kt
ms Kss

� �
� λ

Mmm Mms

Mt
ms Mss

� �� 	
Φm

Φs

� 	
¼ 0

0

� 	
: (8.47)

Using the improved dynamic condensation of [15], instead of solving the above

problem, the problem of corresponding eigenvalues is defined as the following, and

iteration is performed on it.

K0 � λ0rM
0

� �
Φ0

r ¼ 0; r ¼ 1 : m (8.48)

where m ¼ 72, and K0 and M0 are as follows:

K0 ¼ Kmm �KmsK
�1
ss K

t
ms (8.49)

M0 ¼Mmm �MmsK
�1
ss K

t
ma �KmsK

�1
ss K

t
ms þKmsK

�1
ss MssK

�1
ss K

t
ms: (8.50)

According to the existing relationships for iteration in dynamic condensation, λ0

andΦ0 obtained from Eq. 8.34 are modified until the eigenvectors are obtained with

the required accuracy.

As it can be seen, using this method, instead of solving an eigenvalue problem of

dimension 192, in this example, it is sufficient to find the inverse of Kss of

dimension 120 and solve an eigenvalue problem common to K0 and M0 which is

of dimension 72.

The closed-form solution of the inverse of Kss can be obtained using Eqs. 8.27,

8.28, and 8.29 utilising the eigenvalues of 10 matrices of dimension 12 and the

inverse of a matrix of dimension 24. The eigenvalue problem of dimension 72 is

solved by an iterative dynamic condensation. It should be mentioned that the

advantage of using dynamic condensation is that it does not need additional

inversion and merely requires some matrix multiplication.

8.4.1 Illustrative Examples

Example 8.4. In this example, the aim is to calculate the buckling load and

eigenfrequencies of a simple-fixed beam. Here, the central finite difference method

is utilised. The equation of buckling and vibration of this beam are as follows:

d4w

dx4
þ N

EI

d2w

dx2
¼ 0; λ ¼ N

EI
h2
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d4w

dx4
� β4w ¼ 0; β ¼ ρω2

EI
; λ ¼ ðβhÞ4:

It is obvious that the two end nodes of the beam are different because of having

different boundary conditions while the intermediate nodes are similar. Selecting

n ¼ 10 for the calculation, first the two end nodes (m ¼ 2) and then the intermediate

nodes (s ¼ 8) should be numbered.

Using the finite difference equations, the final equations to be solved are as

follows:

A� λiBð ÞΦi ¼ 0) Amm Ams

At
ms Ass

� �
� λ

Bmm Bms

Bt
ms Bss

� �� 	
Φm

Φs

� 	
¼ 0

0

� 	

where

Amm ¼ 7 0

0 5

� �
; Ass ¼ F8ð6;�4;6;1Þ; Ams ¼ �4 1 0 0 0 0 0 0

0 0 0 0 0 0 1 �4
� �

:

Also the matrix B for buckling will be as follows:

Bmm ¼ 2I2; Bss ¼ F8ð2;�1; 2Þ; Bms ¼ �1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 �1
� �

;

and for the problem of vibration, we have B ¼ I10.

The matrix Ass has dimension 8 and it is penta-diagonal. Thus, it can be written

as

Ass ¼ F8ð6;�4; 6; 1Þ ¼
X3
i¼1

Ai � Bið Þ:

Since t1 ¼ ai�ci
di

and t2 ¼ ai�ciþdi
bi

for three matrices Ai are identical, therefore,

AiAj ¼ AjAi . Thus, Ass is decomposed into eight numerical blocks. Therefore, in

this example, one needs only to solve an eigenvalue problem of dimension m ¼ 2.

Example 8.5. In this example, the aim is to calculate the buckling load of a plate

with some additional part. Here, first the internal nodes are numbered for which the

eigenvalues can be calculated. We have the subgraph S with s ¼ 9 nodes and the

remaining nodes for the subgraphMwith m ¼ 6 nodes. It should be mentioned that

the number of nodes is purposely chosen low for a better illustration of the

approach. The nodal numbering is illustrated in Fig. 8.7.

The governing differential equation of the problem for the case when the loading

is in x-direction will be as follows:

r4wþ Nx

D

@2w

@x2
¼ 0:

8.4 Free Vibration Analysis of Irregular Structure Comprising of Regular Parts 289



Using the finite difference method, a similar set of equations to that of the

previous example should be solved with the only difference that we have

Ass ¼
E F I

F Eþ I F

I F E

2
4

3
5; E ¼

19 �8 1

�8 19 �8
1 �8 19

2
4

3
5; F ¼

�8 2 0

2 �8 2

0 2 �8

2
4

3
5:

In general, Ass is a penta-diagonal block matrix, and since the nodes are chosen

from the regular part of the model satisfying the condition AiAj ¼ AjAi, thus, the

eigenvalues and its inverse can easily be found using the relationships (8.16). Also

we have

Bss ¼
2I �I 0

�I 2I �I
0 �I 2I

2
4

3
5:

Therefore, here, finding the eigenvalues of a matrix of dimension n ¼ 15 is

changed to the calculation of the eigenvalues of three matrices of dimension 3 and

one matrix of dimension 6. The smallest eigenvalue is obtained as λ ¼ 1:7673 in

four iterations, while the exact value is λ ¼ 1:7597.

Example 8.6. In this example, the aim is to find the buckling load of a square plate

with side length a. The supports at two edges are simple and the other two sides

fixed. The load is applied in x-direction. The plate is divided into eight segments in

each side. Obviously the entries of the corresponding matrix will be different for

internal nodes and external nodes. Thus, here, s ¼ 25 and the remaining nodes

belong to the subgraph M withm ¼ 24 nodes. The nodal numbering is illustrated in

Fig. 8.8.

Here, the matrix Ass will be as

Ass ¼ F5ðE;F;E; IÞ; E ¼ F5ð20;�8; 20; 1Þ; F ¼ F5ð�8; 2;�8Þ:

Also we have

Bss ¼ I5 � F5ð2;�1; 2Þ:

The rest of the calculation is similar to that of the previous example.

Example 8.7. This example is taken from Ref. [16]. A mass–spring system is

considered as shown in Fig. 8.9. Here, the numbering is altered and first the two end

nodes are numbered ðm ¼ 2Þ followed by the numbering of the remaining interme-

diate nodes ðs ¼ 28Þ.
With this numbering, the matrices K and M will have the following forms:
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K ¼ Kmm Kms

Kt
ms Kss

� �
; M ¼ Mmm Mms

Mt
ms Mss

� �

where

Kmm ¼ 4kI2; Kss ¼ kF28ð2;�1; 2Þ; Kms ¼ k
�1 0 : : 0 0

0 0 : : 0 �1
� �

2�28

Mmm ¼ 5mI2; Mss ¼ mI28; Mms ¼ mZ2�28

where Z is a matrix with all zero entries. The eigenvalues of Kss are given in the

form of a simple relationship in [17].

eig Kssð Þ ¼ eig Fsð2;�1; 2Þð Þ ¼ 2� 2 cos
kπ

sþ 1
; k ¼ 1 : s:

Fig. 8.9 A system of mass–spring and its numbering

Fig. 8.8 A plate with different boundary conditions and its nodal numbering
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Therefore, one needs to solve an eigenvalue problem of dimension m ¼ 2

compared to the need for solution of an eigenvalue problem of dimension 12 in

Ref. [16].

The smallest eigenvalue obtained from an exact method is λ ¼ 0:0112k=m, and

using the present method after only four iterations, λ ¼ 0:0106k=m is achieved.

Example 8.8. In this example, we want to find the eigenfrequencies of a 120-

storey shear frame shown in Fig. 8.10. Here, the stiffness of the first storey is

different with the remaining stories.

This example is taken from Ref. [16]. Here, first the nodes of the first and the last

stories are numbered ðm ¼ 2Þ followed by those of the other stories ðs ¼ 118Þ. The
K and M matrices will have the following forms:

Level 120 

Level 119 

Level 3 

Level 2

Level 1

m

m

m

m

m

k

k

k

0.42k

Fig. 8.10 A one-bay 120-

storey shear frame
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Kmm ¼ k
1:42 0

0 1

� �
; Kss ¼ kF118ð2;�1; 2Þ;

Kms ¼ k
�1 0 : : 0 0

0 0 : : 0 �1
� �

2�118

Mmm ¼ mI2; Mss ¼ mI118; Mms ¼ mZ2�118

The calculations will be identical to the previous example. Thus, only an

eigenvalue problem of dimensionm ¼ 2 should be solved, compared to the method

in [16] which requires the solution of a problem of dimension 16.

The smallest eigenvalue obtained from an exact method is ω ¼ 01�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:6610 k

m

q
,

and using the present method after only six iterations, the exact value is achieved.

Example 8.9. Figure 8.11 shows a 30-storey frame and in each storey it contains

42 columns and 78 beams. The supports of the structure are fixed in both directions.

The physical and mechanical properties of the 3D frame for bending and truss

elements are as follows:

E ¼ 2:1e11N=m2; ρ ¼ 78500N=m3; Ix ¼ 6:572e� 5m4; Iy ¼ 3:301e� 6m4;

A ¼ 4:265e� 3m2:

This means that the cross sections and physical properties of beams and bracings

in all the stories are identical, 22 truss elements are added to the outer faces of the

structure in stories 1, 11 and 26 to increase the stiffness of the structure. These

elements take the structure out for regularity and make it an irregular one. Here,

Fig. 8.11 The 3D model

of a 30-storey frame and its

elevation
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applying the present method, the problem can efficiently be analysed. The suitable

nodal numbering decomposes the stiffness and mass matrices into two parts, and

these parts can separately be analysed.

For the free vibration analysis of this 3D frame, suitable nodal numbering is

performed by ordering the nodes of the stories 1, 10, 11, 25, 26 and 30 first,

followed by ordering the remaining nodes starting from lower stories and carrying

on to the upper ones.

In this structure, each storey contains 42 free nodes and each node has six DOFs.

Therefore, the reduced stiffness matrix is of dimension 7560� 7560 . As it is

mentioned in dynamic condensation, the stiffness and mass matrices will be

decomposed into two blocks of dimension m and s. The subscript m in this example

corresponds to the nodes 1–42, 379–462, 1008–1092 and 1218–1260, and subscript

belongs to the remaining nodes. It should be mentioned that the numbering starts

from the first storey since the nodes of the structure at ground level are all fixed and

are deleted from the overall stiffness matrix.

In this method, instead of solving a direct eigenvalue problem of dimension

7560� 7560, we need to find the inverse of a matrix of dimension 6048� 6048

corresponding toKss and solve an eigenvalue problem of a dimension 1512� 1512.

However, as it will be observed, the inverse of Kss can be found simpler using its

eigenvalues. The pattern of Kss matrix for this example is as follows:

Kss ¼
R8 A;B;Btð Þ 0 0

0 R13 A0;B0;B0t
� �

0

0 0 R3 A;B;Btð Þ

2
4

3
5

where the matricesA and B have dimension252� 252. It is obvious that the inverse

of the matrix Kss can be expressed in the following form:

Kss ¼
R�18 A;B;Btð Þ 0 0

0 R�113 A0;B0;B0t
� �

0

0 0 R�13 A;B;Btð Þ

2
4

3
5

and for finding the inverse of the matrix R, Eq. 8.30 will be utilised.

For the tower of this example, instead of solving a direct eigenvalue problem of

dimension 7560� 7560 , we need to find the eigenvalues for 13 matrices of

dimension 252, inverse of 3 matrices of dimension 504 and an eigenvalue problem

of a common matrix of dimension 1512� 1512.

After analysis of the structure with aforementioned properties, the angular

frequency of this example is obtained as ω ¼ 1:417rad=s and the period is obtained
as T ¼ 4:435s:

Example 8.10. Consider the tower shown in Fig. 8.12. This tower consists of bar

elements, wherein the stories 1, 7, 13, 14, 20 have additional bracings and in the

remaining stories, it has only one element. The supports of the structure in both
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Fig. 8.12 The 3D model and

elevation of a tower
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directions are pin-jointed. The physical and mechanical properties of the 3D truss

structure are as follows:

E ¼ 2:1e11N=m2; ρ ¼ 78500N=m3; A ¼ 4:265e� 3m2:

This means the cross section and physical properties of the truss elements are

identical in all the stories. In the stories 1, 7, 13, 14 and 20, two bar elements are

added in order to increase the stiffness of the structure. These elements change the

regular structure to an irregular one. Using the method of this chapter, employing a

suitable nodal numbering, the stiffness and mass matrices are decomposed into two

parts and each can separately be analysed.

For free vibration analysis of this 3D truss, first the nodes in the ceilings of the

stories 1, 7, 13, 14 and 20 are numbered and then the remaining stories are numbered

starting from the bottom storey moving to the top stories (Figs. 8.12 and 8.13).

This structure has four free nodes in each storey and each node has three

translational DOFs. The structure has 20 stories, and therefore, its reduced stiffness

matrix is of dimension 240� 240. The stiffness and mass matrices are subdivided

into two blocks of dimensions m and s. In this example, the subscript m corresponds

to the nodes 1–4, 24–28, 48–56 and 76–80, and the subscript s corresponds to the

remaining nodes.

For this example, instead of solving a direct eigenvalue problem of dimension

240� 240, we need the inverse of a matrix of dimension 180� 180 corresponding

Kss and solve an eigenvalue problem of dimension 60� 60. The matrix Kss in this

example has the following form:

Kss ¼
R5 A;B;Btð Þ 0 0

0 R5 A0;B0;B0t
� �

0

0 0 R5 A;B;Btð Þ

2
4

3
5

where each matrix A and B have dimension 12� 12. The inverse of this matrix is as

follows:

Kss ¼
R�15 A;B;Btð Þ 0 0

0 R�15 A0;B0;B0t
� �

0

0 0 R�15 A;B;Btð Þ

2
4

3
5:

In order to find the inverse of R, the Eq. 8.30 is utilised.

Fig. 8.13 (a) Plan of the

stories 1, 7, 13, 14 and 20;

(b) plan of the stories 2–7 and

15–19; (c) plan of the stories

8–12

296 8 Graph Products Applied to the Analysis of Regular Structures



For this example, instead of solving a direct eigenvalue problem of dimension

240� 240, we need to find the eigenvalues for 10 matrices of dimension 12, inverse

of 2 matrices of dimension 24 and an eigenvalue problem of a common matrix of

dimension 60� 60.

After analysis of the structure with aforementioned properties, the angular

frequency of this example is obtained asω ¼ 2:2116rad=s and the period is obtained
as T ¼ 2:969s. Obviously by increasing the number of stories of the structure, the

power of the present method will become more apparent.

8.4.2 Discussion

In this chapter, structures are studied which have some kind of repeated patterns;

however, they cannot be considered as regular structures. Even we can have models

that can be regular, but the theorems previously proven for product graphs are not

applicable, one example of which is the strong Kronecker products.

In this chapter, wherever we have the problem of inverting a matrix, a closed-

form solution is utilised. For calculating the eigenvalues, a dynamic condensation

method is employed. Though this method has an iterative nature, however, the

corresponding operations are addition and multiplication. For analysis, we need to

find the inverse of the matrix corresponding to the regular structure only once for

which a closed-form solution is employed.

For the case when the aim is the static analysis, for inversion a closed-form

solution is used. Choosing part of the model for which decomposition is applicable,

one can utilise the dynamic condensation. This is because this method requires only

the inversion of the matrix for the part that can easily be performed. Though this

method is considered as an iterative approach, however, the inversion is performed

only once, and the iterative part consists of only simple matrix additions and

multiplications. This inversion corresponds to the regular part of the structure for

which closed-form solution is available.

When we face an irregular structure which contains some regular parts, first we

number the nodes corresponding to irregular part and show the blocks of the

stiffness and mass matrices of this part with subscript m. According to the dynamic

condensation, one should solve an eigenvalue problem of size equal to the dimen-

sion of this matrix. We should also find the inverse of a matrix of dimension equal

to the nodes contained in the regular part of the structure. In solving the inverse of

the matrices, we will have matrices of the form Rn A;B;Btð Þ, and if these matrices

have n blocks and each block is of dimension l, then for the inversion, we should

perform n time eigenvalue problem of dimension l and once the inverse of Iþ E11K1

or I� VK0�1U with dimension 2l will be needed.
In order to compare the present method with the direct approach, the computa-

tion time and the number of different operations are provided in Table 8.1 for the

last two examples. The considerable difference of the computational time shows the

superiority of the present approach.
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8.5 Block Circulant Matrices and Applications in Free

Vibration Analysis of Cyclically Repetitive Structures

In this part, block circulant matrices and their properties are investigated. Circulant

matrix can be considered as the sum of Kronecker products in which the first

components have the commutativity property with respect to multiplication. The

important fact is that the method for block diagonalisation of these matrices is much

simpler than the previously developed methods, and one does not need to find an

orthogonaliser matrix. As it will be shown that only the matrices corresponding to

domes in the form of Cartesian product, strong Cartesian product and direct product

are circulant, but for other structures such as diamatic domes, pyramid domes, flat

double-layer grids and some family of transmission towers, these matrices are also

block circulant.

8.5.1 Some Basic Definitions and Concepts of Block Circulant
Matrices

In general, a block circulant matrix can be written as

C ¼

A1 A2 : : An�1 An

An A1 : : An�2 An�1
: : : : : :
: : : : : :
A3 A4 : : A1 A2

A2 A3 : : An A1

2
6666664

3
7777775
: (8.51)

The entries of a block circulant matrix can also be numbers. Then, the matrix is

known as a circulant matrix. The following circulant matrix is a good example of

such a matrix:

4

P4 ¼

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

2
66666666666664

3
77777777777775
:

(8.52)
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This matrix also fulfils the definition of a permutation matrix, since each row and

column contains only one entry as 1 and the remaining entries are zeros. The index

4 shows that the non-zero entry starts at column 4 and in each subsequent row

moves one column ahead. With this definition, obviously we will have P1 ¼ I ,

where I is a unit matrix. Now, one can easily show that for two n-dimensional

circulant matrices A and B, we have AB ¼ BA. This is because if the entries of A

and B are a and b, respectively, then the ijth entry of AB and BA will be

ABð Þij ¼
Xn
k¼1

anþ1�iþkbj�kþ1; BAð Þij ¼
Xn
k¼1

bnþ1�iþkaj�kþ1: (8.53)

Since for a circulant matrix C we have cnþk ¼ ck, therefore, the equality of the

two expressions in Eq. 8.2 becomes obvious.

We want to define C in terms of the permeation matrices of type Pi. Therefore,

some properties of these matrices are provided in the subsequent section.

8.5.2 Some Properties of Permutation Matrices

In this section, some of the properties of the permutation matrices are discussed.

1. Since the permutation matrices are special cases of circulant matrices, therefore,

we have

PiPj ¼ PjPi (8.54)

2. Calculation of different powers of Pi:

It can easily be shown that different powers of a permutation matrix are

permutation matrices, that is,

Pm
i ¼ Pj; (8.55)

and in the special case if Pi has dimension n, then

Pn
i ¼ P1 ¼ I; inv Pið Þ ¼ Pt

i ¼ Pn�1
i : (8.56)

3. The eigenvalues of the matrix Pi:

First we calculate the eigenvalues of

P2 ¼

0 1

0 1

: :

: 1

0 1

1 0

2
666666664

3
777777775
:

(8.57)
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The characteristic equation of this matrix is formed as follows:

Poly P2ð Þ ¼ det P2 � λIð Þ ¼ λn � 1 ¼ 0) λ ¼ n
ffiffiffi
1
p
¼ e

2πi
n

� �k
¼ ωk;

i ¼
ffiffiffiffiffiffiffi
�1
p

; k ¼ 0 : n� 1:

(8.58)

It is obvious that for calculating the eigenvalues of Pi, the same equation should

be written. Therefore, the eigenvalues of Pi will be obtained from the same

relationship, with i 6¼ 1. In this way, Pi and Pj are similar, that is, these have

identical eigenvalues.

4. The eigenvectors of Pi:

If we assume

v ¼ 1;ω;ω2; . . . ;ωðn�1Þ
n ot

(8.59)

where ω ¼ e
2πi
n is defined according to Eq. 8.58, then

P2v ¼ ω;ω2; . . . ;ωðn�1Þ; 1
n ot

¼ ωv: (8.60)

This means that v is an eigenvector ofP2. With a simple calculation similar to the

above case, it can be observed that vk, which is the generalised form of v, is also

an eigenvector of P2, where

vk ¼ 1;ωk;ω2k; . . . ;ωðn�1Þk
n ot

: (8.61)

The eigenvectors corresponding to Pi can similarly be obtained.

5. The block diagonaliser matrix of Pi:

Using Eq. 8.61 and consideringω ¼ e2πi=n, it can be seen that the inner product of

two vectors vi and vj is as follows:

vi; vj
� � ¼Xn�1

k¼0
ωði�jÞk ¼ 0 i 6¼ j

n i ¼ j

�
: (8.62)

This means that the following vector will be a base vector.

e ¼ 1ffiffiffi
n
p v0; v1; . . . ; vn�1f g: (8.63)

Therefore, the unity matrix E defined in the following form diagonalises the

matrix Pi:
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E ¼ 1ffiffiffi
n
p

1 1 1 : 1

1 ω ω2 : ωn�1

1 ω2 ω4 : ω2ðn�1Þ

: : : : :
1 ωn�1 ω2ðn�1Þ : ωðn�1Þðn�1Þ

2
66664

3
77775: (8.64)

In this way, we will have

DPi ¼ E�PiE ¼

1 0

ω
ω2

:
:

0 ωn�1

2
6666664

3
7777775
: (8.65)

This is a diagonal matrix, and the symbol * is used for the conjugate

transposition.

8.5.3 Some Properties of Block Circulant Matrices

Considering the above definition, the block circulant matrix C of Eq. 8.60 can be

expressed as

C ¼ P1 � A1 þ P2 � A2 þ . . .þ Pn � An ¼
Xn
i¼1

Pi � Aið Þ: (8.66)

Similar to the characteristic equation of rotation matrix with numerical entries,

we define the matrix function HðxÞ in the following form:

H : C! C2

HðxÞ ¼Pn
i¼1

xi�1 � Ai

� �
8<
: : (8.67)

Here, in general, C contains a set of complex numbers. Obviously, if x is a

number, then one can omit the symbol � . In any case, the output of this function is

a matrix.

With this definition and with the help of Eq. 8.55, we will have

C ¼ HðP2Þ: (8.68)

Since the eigenvalues of the matrix Pi are obtained as ωk, one can see that the

eigenvalues of C will be the union of the eigenvalues of the matrices HðωkÞ.
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Using Eq. 8.64, we define the matrix F as

F ¼ E� I (8.69)

Now, we show that F�CF is block diagonal.

ðA� BÞðC� DÞ ¼ AC� BD; ðA� BÞt ¼ At � Bt: (8.70)

Therefore,

F�CF ¼ Et � Itð Þ
Xn
i¼1
ðPi � AiÞ

( )
ðE� IÞ ¼

Xn
i¼1

E�Pi � Aið ÞðE� IÞ

¼
Xn
i¼1

E�PiE� Aið Þ: (8.71)

As it was mentioned before, the unitary matrix E diagonalises Pi, and therefore,

F�CF ¼
Xn
i¼1

DPi � Aið Þ (8.72)

This shows that the matrix is a block-diagonal one. The important point is that

using Eq. 8.65 and the definition of HðxÞ in Eq. 8.67, we will have

F�CF ¼
Xn
i¼1

DPi � Aið Þ ¼

Hð1Þ 0

HðωÞ
H ω2ð Þ

:
:

0 H ωn�1ð Þ

2
6666664

3
7777775
: (8.73)

Therefore, we should obtain the union of the eigenvalues of the diagonal block

matrices. An important result of this equation is that

detðCÞ ¼
Yn�1
i¼0

det H ωi
� �
 �

: (8.74)

For calculating the eigenvectors of C , we assume u to be the eigenvectors

corresponding to each submatrix ofH ωi
� �

. In that case, using Eq. 8.59, we form the

vector v.

Now, we show that v� u is an eigenvector of C. Using Eq. 8.70, we have
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Xn
i¼1

Pi � Aið Þ
( )

ðv� uÞ ¼
Xn
i¼1

Piv� Aiuð Þ ¼
Xn
i¼1

ωi�1v� Aiu
� �

¼
Xn
i¼1

ωi�1 � Ai

� �( )
ðv� uÞ: (8.75)

Considering Eq. 8.67, we have

H ωi
� � ¼Xn

i¼1
ωi�1 � Ai

� �
: (8.76)

Therefore,

Xn
i¼1

Pi � Aið Þ
( )

ðv� uÞ ¼ H ωi
� �ðv� uÞ: (8.77)

This shows thatH ωi
� �

are eigenvalues ofC, and alsov� u are the corresponding

eigenvectors.

For clarification, we present a simple example. Suppose we want to calculate the

eigenvalues and eigenvectors of the following block circulant matrix:

C ¼

M 0 N R 0

0 M 0 N R

R 0 M 0 N

N R 0 M 0

0 N R 0 M

2
66664

3
77775:

Then, HðxÞ will be in the following form:

HðxÞ ¼ x0 �Mþ x2 � Nþ x3 � R:

We have also

ωk ¼ e
2πi
n

� �k
¼ 1; 0:3090� 0:9511�i;�0:8090� 0:5878�if g; k ¼ 0 : 4:

Therefore, five eigenvalues are obtained. Now, we should substitute each one in

HðxÞ and then calculate the eigenvalues of each submatrices. As an example, for

x ¼ 0:3090þ 0:9511�i, we will have

K ¼ Hð0:3090þ 0:9511�iÞ
¼Mþ ð0:3090þ 0:9511�iÞ2Nþ ð0:3090þ 0:9511�iÞ3R:
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It can be observed that the process is very simple. It should be mentioned that

using the previously developed method, we had to calculate C ¼Pn
i¼1

Pi � Aið Þ and
considering the pair-wise commutativity property of Pi with respect to multiplica-

tion, we had to form an orthogonal matrix which simultaneously diagonalises all the

Pis. This was a lengthy process which is avoided in the present method.

For calculating the eigenvectors, we should formu andv. Using Eq. 8.59, we will

have

v ¼ f1; 0:3090þ 0:9511�i;�0:8090þ 0:5878�i;�0:8090� 0:5878�i;
0:3090� 0:9511�igt:

Also we should calculate u for each submatrix H ωi
� �

. As an example, for the

submatrix K which we discussed in the above, one can obtain k eigenvectors,

with k being the dimension of the matrixM. Finally v� u eigenvectors ofCwill be

constructed.

8.5.4 The Complete Study of a Simple Example

In this section, the above steps are applied to the eigensolution of a simple structure.

One of the well-known domes is called diamatic dome, as shown in Fig. 8.14a.

Unlike many other domes in this structure, the number of nodes in each horizontal

ring is not constant, and in each ring, some number of nodes is added. Therefore, one

cannot easily formulate the corresponding problem as the sum of Kronecker products.

A similar problem arises in pyramids, shown in Fig. 8.14b. As an example of these

two domes, the view and plan of a diamatic and a pyramid domes are shown in

Fig. 8.14a, b, respectively. Both domes have 7 faces, 882 edges and 316 nodes.

In order to be able to provide the details of the problem, a smaller structure is

considered, as shown in Fig. 8.15. In this dome, we have 4 faces, 60 edges and 25

nodes, with nodes being numbered as illustrated in Fig. 8.15b. First we consider the

model as a graph, and then we find the eigenvalues of its Laplacian matrix. In

Example 8.11 of the next section, the natural eigenfrequencies of the same pyramid,

as a space structure, will be calculated.

The pattern of the Laplacian matrix of this graph will be as follows:

Lmnþk ¼

Am Bm 0 Bt
m Pmk

Bt
m Am Bm 0 Pmk

0 Bt
m Am Bm Pmk

Bm 0 Bt
m Am Pmk

Pt
mk Pt

mk Pt
mk Pt

mk Rk

2
66664

3
77775

where m ¼ 6, n ¼ 4 and k ¼ 1. Using the method of Ref. [18], we can perform the

following transformation:
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L4ðmþkÞ ¼

A P B P 0 P Bt P

16P
t

4
R
4

Pt

4
R
4

Pt

4
R
4

Pt

4
R
4

Bt P A P B P 0 P
Pt

4
R
4

Pt

4
R
4

Pt

4
R
4

Pt

4
R
4

0 P Bt P A P B P

Pt

4
R
4

Pt

4
R
4

Pt

4
R
4

Pt

4
R
4

B P 0 P Bt P A P

Pt

4
R
4

Pt

4
R
4

Pt

4
R
4

Pt

4
R
4

2
66666666666664

3
77777777777775

¼
M N W S

S M N W

W S M N

N W S M

2
664

3
775:

a b

Fig. 8.14 View and plane of two dome structures. (a) A diamatic dome (b) A pyramid dome

a b
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Fig. 8.15 A diamatic dome

and the corresponding nodal

numbering. (a) A three-

dimensional view of a dome

(b) Nodal numbering
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It can be seen that this matrix is also a circulant matrix, and we can therefore

easily calculate its eigenvalues. Here, the HðxÞ matrix can be written as

HðxÞ ¼ x0 �Mþ x1 � Nþ x2 �Wþ x3 � S:

Also we have

ωk ¼ e
2πi
4

� �k
¼ f�1;�ig; k ¼ 0 : 3:

Thus, as an example, for x ¼ �i, we will have

Hð�iÞ ¼M� iN�Wþ i�S

¼

6 �1 0 0 �1� i 0 0

�1 6 �1 �1 �1� i �i 0

0 �1 3 �1 0 �i 0

0 �1 �1 4 �1 �1 0

�1þ i �1þ i 0 �1 6 �1 0

0 i i �1 �1 4 0

0 0 0 0 0 0 0

2
666666664

3
777777775
:

The eigenvalues of this matrix are as follows:

eig Hð�iÞð Þ ¼ f0; 0:7790; 3:2321; 4:3397; 5:4909; 7:3844; 7:7739g:

In a similar manner for other x’s, we obtain the submatrices and their

eigenvalues. It should be noted that as it is explained in [18], here we will have

three additional zeros among the answers which should be deleted from the final set

of eigenvalues.

Here as well if we want to use the previously developed methods, the

corresponding matrix will be expressed as the sum of four Kronecker products,

and we should find an orthogonal matrix which simultaneously diagonalises the first

components of the four parts of this sum. While in here, we could obtain four

submatrices for four values of x. It should be noted that all the dome structures

consisting of Cartesian, strong Cartesian and direct products investigated previ-

ously in [19] will have circulant matrices.

8.6 Complementary Examples

Example 8.11. In this example, a structure is considered as shown in Fig. 8.16. We

want to calculate the frequencies and the natural modes of this structure under its

8.6 Complementary Examples 307



self-weight. The area for all the cross sections are considered as 5 cm2, the elastic

modulus is taken as 200 kN/mm2 (MPa). For all the elements, ρ ¼ 78:5 kN=m3.

Similar to Ref. [19], first the stiffness and mass matrices are constructed in a

cylindrical coordinate system. Here, the stiffness and mass matrices will have a

similar pattern to that of the Laplacian matrix of the previous example, with the

only difference that the dimensions will be threefold bigger. These matrices have

the following patterns:

K ¼

Am Bm 0 Bt
m Pmk

Bt
m Am Bm 0 Pmk

0 Bt
m Am Bm Pmk

Bm 0 Bt
m Am Pmk

Pt
mk Pt

mk Pt
mk Pt

mk Rk

2
66664

3
77775; M ¼

Am Bm 0 Bt
m Pmk

Bt
m Am Bm 0 Pmk

0 Bt
m Am Bm Pmk

Bm 0 Bt
m Am Pmk

Pt
mk Pt

mk Pt
mk Pt

mk Rk

2
66664

3
77775

where m ¼ 18, n ¼ 4 and k ¼ 3. It can be observed that here the last block column

has three numerical columns in place of a single one. Therefore, in performing the

algorithm for decomposing this block column to other blocks, we consider three

additional zero columns next to each block matrix. In this case, the stiffness and

mass matrices will have the following form after deleting the rows and columns

corresponding to the support nodes.

It can be seen that the mass matrix is not diagonal, and one cannot calculate the

eigenvalue for the free vibration merely by considering the stiffness matrix. Thus,

the K�Mω2 matrix is constructed as

0

5

10

10

15

15

20

20

25

25

30

30

35

35
40

400 5
nz = 383

Fig. 8.16 The patterns of the

stiffness and mass matrices of

Example 8.11
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K�Mω2 ¼
MK �MMω2 NK � NMω2 WK �WMω2 SK � SMω2

SK � SMω2 MK �MMω2 NK � NMω2 WK �WMω2

WK �WMω2 SK � SMω2 MK �MMω2 NK � NMω2

NK � NMω2 WK �WMω2 SK � SMω2 MK �MMω2

2
664

3
775:

This is also a circulant matrix. Therefore, HðxÞ can be written as

HðxÞ ¼x0 � MK �MMω2
� �þ x1 � NK � NMω2

� �þ x2 � WK �WMω2
� �

þ x3 � SK � SMω2
� �

:

We also have

ωk ¼ e
2πi
4

� �k
¼ f�1;�ig; k ¼ 0 : 3:

For all values of x, the submatricesHðxÞ are obtained in terms ofω, and equating
them to zero, the corresponding eigenvalues are calculated. The largest period of

this structure is obtained as T1 ¼ 0:0826. For the construction of the eigenvectors,

as we mentioned before, u and v should be calculated. Then using Eq. 8.59, we

obtain

ω ¼ e
2πi
4 ¼ i) v ¼ 1;ω;ω2; . . . ;ωðn�1Þ

n ot

¼ f1; i;�1; igt:

For all values of u, the submatricesH ωi
� �

are calculated, and finally the vibrating

modes v� u are obtained. As an example, for the 6th period T6 ¼ 0:0456ð Þ, the 6th
natural mode is shown in Fig. 8.17.

Example 8.12. A flat double-layer grid is considered as shown in Fig. 8.18. The

support nodes are illustrated in darker points. As it can be seen, we have also an

additional support at the middle of the structure. Similar to the previous example,

all the cross sections are considered as 5 cm2, the elastic modulus is taken as

200 kN/mm2 (MPa). For all the elements, ρ ¼ 78:5 kN=m3 . One can consider

this structure as eight triangular-shaped substructures (segments) with eight com-

mon boundaries (interfaces).

A nodal numbering similar to that of Fig. 8.15b is performed in here. The

numbering starts with the interface of two segments followed by numbering the

internal node of this segment except the middle node. The other interface of this

Fig. 8.17 The sixth natural

mode of the structure in

Example 8.11
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segment is numbered followed by the internal nodes of the second segment. This

process is cyclically repeated until all the nodes except the middle node are num-

bered. The middle node is numbered last. Here as well the stiffness and mass matrices

are formed in a cylindrical coordinate system. These matrices are also circulant and

eight blocks submatrices are obtained. In this example, the first period is calculated as

T1 ¼ 0:0113 and the third period is obtained as T3 ¼ 0:0102. As an example, the

vibrating mode corresponding to the 3rd period is illustrated in Fig. 8.19.

Example 8.13. In this example, a transmission tower, shown in Fig. 8.20, is

investigated. The height of this tower is 58 m, and its plan is a square of length

6 m at the bottom which is reduced to 2 m at the top. The height is divided into 29

panels of 2 m. Here as well we obtain the stiffness and mass matrices in a

cylindrical coordinate system, and then we form K�Mω2 as

Fig. 8.18 A flat double-layer

grid

Fig. 8.19 The third vibrating

mode of a flat double-layer

grid
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K�Mω2 ¼
AK � AMω2 BK � BMω2 0 CK � CMω2

CK � CMω2 AK � AMω2 BK � BMω2 0

0 CK � CMω2 AK � AMω2 BK � BMω2

BK � BMω2 0 CK � CMω2 AK � AMω2

2
664

3
775

which is a circulant matrix. Thus, HðxÞ will be in the following form:

Fig. 8.20 A transmission

tower and one of its views
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HðxÞ ¼ x0 � AK � AMω2
� �þ x1 � BK � BMω2

� �þ x3 � CK � CMω2
� �

:

Also we have

ωk ¼ e
2πi
4

� �k
¼ f�1;�ig; k ¼ 0 : 3:

For all values of x, the submatricesHðxÞ are obtained in terms ofω, and equating
them to zero, the corresponding eigenvalues are calculated. It should be noted that if

we want to model them as trusses, then for analysis, all the nodes together with their

incident members which are situated on a plane should be connected to the ground

by an artificial member; otherwise, we will have local instability and the determi-

nant of the reduced stiffness matrix will also be zero.

Example 8.14. The main aim of this example is to use the eigenvectors for optimal

nodal numbering of structures. Consider the graph model of the Example 8.12.

After the formation of its Laplacian matrix and calculating the second eigenvalue,

the corresponding eigenvector, known as the Fiedler vector, is constructed and its

entries are ordered for reducing the profile of the stiffness matrix. Here, the

Laplacian matrix is a circulant matrix and one can easily calculate the eigenvalues

and eigenvectors using the present method. For this example, the second eigenvalue

is obtained as λ2 ¼ 0:1070. The result of ordering is compared to that of the reverse

Cuthill–McKee method. The profile and bandwidth by the Fiedler vector are B ¼ 60;

P ¼ 7755 and those of the reverse Cuthill–McKee are B ¼ 52; P ¼ 10332. The

patterns of both cases are illustrated in Fig. 8.21.

In this chapter, the block circulant matrices are introduced, and their properties

are employed in an efficient free vibration analysis of cyclically repetitive

structures. These properties are applied to dome structures, cyclic double-layer

grids and transmission towers. The method is also applied to nodal numbering of

structures for profile reduction of stiffness matrices. The presented approach is

highly efficient and results in a considerable reduction of the dimension of

eigenproblems. This method can also be employed in the forced vibration using

the approach developed in [20].

a b
0 0

50 50

100 100

150 150

200 200

250 250

300 300

50 100 150 200 250 3000 50 100 150 200 250 3000

nz = 2736 nz = 2736

Fig. 8.21 Forms of the

Laplacian matrices after

reordering the nodes of the

graph model. (a) Ordered by

Fiedler vector (b) Ordered by

the reverse Cuthill–McKee
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Chapter 9

Graph Products Applied to the Locally Modified

Regular Structures Using Direct Methods

9.1 Introduction

In the first part of this chapter, a method is presented for eigensolution of a non-

regular model. First, the nodes of the non-regular part of such model are ordered

followed by ordering the nodes of the regular part. With this ordering, the graph

matrices will be separated into two blocks. The eigensolution of the non-regular

part can be performed by an iterative method, and those of the regular part can

easily be calculated using decomposition approaches studied in the previous

chapters. Some numerical examples are included to illustrate the efficiency of the

new method [1].

In the second part, structures transformable to regular forms are studied. Here,

two cases are investigated. In the first case, the effect of different boundary

conditions on these structures is explored, and in the second case, the effect of

adding or removing members and nodes is studied. In some structures, the graph

model is regular and different boundary conditions change the corresponding block

matrices into non-regular ones. In some other structures, the addition or removal of

nodes and/or members changes the structure into a regular one. Here, an efficient

method is presented for dealing with the above-mentioned irregularities [2].

9.2 Analysis of Non-regular Graphs Using the Results

of Regular Models via an Iterative Method

In this part, an efficient method is presented for the analysis of non-regular graphs

and structures which contain regular submodels. Efficient decomposition methods

are presented for some classes of regular models in the previous parts. For non-

regular structures, iterative methods are often used.

In the present method, for a non-regular model, first the nodes of the non-regular

part are ordered followed by numbering the nodes of the regular part. With this

A. Kaveh, Optimal Analysis of Structures by Concepts of Symmetry and Regularity,
DOI 10.1007/978-3-7091-1565-7_9, © Springer-Verlag Wien 2013
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ordering, the graph and structural matrices are separated into two blocks. The

eigensolution of the regular part is easily calculated using the decomposition

approaches and that of non-regular part is performed by an iterative method.

Some numerical examples are included to illustrate the efficiency of the new

method [1].

9.2.1 Main Method

In this method, with transforming the matrices of graphs and structures into block

form and employing dynamic condensation, the eigenvalues are calculated. For

simplicity, a graph for which the eigenvalues can be calculated using the above-

mentioned method (or any other method) is denoted by S. The dimension of the

matrices of this graph is denoted by s which corresponds to the DOFs which is

supposed to be omitted. We also assume that the primary matrices have dimension

equal to n.

In general, we aim at solving the following eigenvalue problem:

ðA� λiBÞΦi ¼ 0 ; i ¼ 1 : n (9.1)

This matrix can be decomposed into two parts having dimensions of m and s,

where n ¼ mþ s. It is obvious s corresponds to the part for which the inverse can be
found using the previously developed methods.

Amm Ams

At
ms Ass

� �
� λ Bmm Bms

Bt
ms Bss

� �� �
Φm

Φs

� �
¼ 0

0

� �
(9.2)

According to [3], the calculation can be summarised as follows:

First, we obtain A0 and B0 using the following relationships:

A0 ¼ Amm � AmsA
�1
ss A

t
ms (9.3)

B0 ¼ Bmm � BmsA
�1
ss A

t
ms � AmsA

�1
ss B

t
ms þ AmsA

�1
ss BssA

�1
ss A

t
ms: (9.4)

Therefore, up to here, we need an inversion of a matrix of dimension s.

Now, the magnitudes of λ0 and Φ0 are found from the following eigensolution:

ðA0 � λ0rB
0ÞΦ0

r ¼ 0; r ¼ 1 : m (9.5)

It is obvious that the dimension of the calculation is m which is equal to the

number of additional nodes contained in the corresponding structural graph with

respect to the graph S.
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Now for calculating the rth eigenvalue, we will have

λð0Þr ¼ λ0r and Φð0Þr ¼ Φ0
r ; r ¼ 1 : m (9.6)

t
ð0Þ
d ¼ A�1ss ðBt

ms þ BsstGÞ and tG ¼ �A�1ss A
t
ms (9.7)

These values are the preliminary values, and the iteration should be performed

until convergence is achieved. These operations for the k th iteration are as follows:

t
ðkÞ
d ¼ A�1ss ðBt

ms þ BsstGÞ þ λðk�1Þr A�1ss Bsst
ðk�1Þ
d

ΔBðkÞ ¼ λðk�1Þr ðBms þ ttGBssÞtðkÞd

BðkÞ ¼ B0 þ ΔBðkÞ

λðkÞr ¼ λ0r
Φ0

r

� �t
Bð0ÞΦðk�1Þr

Φ0
r

� �t
BðkÞΦðk�1Þr

ΦðkÞr ¼ λðkÞr

Xm
i¼1

Φ0
r Φ0

i

� �t
λ0i � λðkÞr

ΔBðkÞΦðk�1Þr

λðkÞr ¼ λ0r
Φ0

r

� �t
B0ΦðkÞr

Φ0
r

� �t
BðkÞΦðkÞr

: ð9:8Þ

This iteration for the r th eigenvalue will be continued until the following

condition is fulfilled:

λðkÞr � λðk�1Þr

�� ��=λðkÞr � ε: (9.9)

As it can be seen from Eqs. 9.3 ,9.4, and 9.5, all the calculations consist of only

the inversion of a matrix Ass and finding the eigenvalues of two matrices of

dimension m only once and substituting in Eq. 9.8, and no additional matrix

operations are needed.

It should be noted that in structural problems, the smallest eigenvalues and, in

the graph Laplacian matrices, the second eigenvalues are of importance.

It can be recognised that in the present method, ordering plays an important role.

According to the above explanations, first a subgraphSof the graph is selected. This

part is selected such that the inverse of the corresponding matrix can be calculated.

The remaining part of the model is denoted asM. For nodal ordering, first the nodes

of M and then the nodes of S are numbered.

Here, applications of this method in graph and structural problems are described.

One of these applications is the calculation of the eigenvalues of the Laplacian

matrices of direct and strong Cartesian graph products. For these products, the

Laplacian matrices can be expressed as the sum of two Kronecker products. We

define the following penta-diagonal block matrix:
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FnðA;B;C;DÞ ¼

A B D

B C B D

D B C B

D : : :
: : :

: : : D

B C B D

D B C B

D B A

2
6666666666664

3
7777777777775
n�n

: (9.10)

In this matrix, the blocks A, B, C and D are m � m submatrices. It should be

mentioned that when this matrix is used with three arguments, then we will haveD ¼ 0.

In this way, for the direct product, we will have

Mef ¼ Ffð0; 1; 0Þ � Feð0;�1; 0Þ þ Ffð1; 0; 2Þ � Feð1; 0; 2Þ; (9.11)

and for strong Cartesian product, we have

Mef ¼ Ffð1; 1; 1Þ � Feð�1;�1;�1Þ þ Ffð2; 0; 3Þ � Feð2; 0; 3Þ (9.12)

Here, both terms are in the form A1 � B1 þ A2 � B2. However, in both terms,

A1A2 6¼ A2A1. Thus, one cannot block diagonalise using the given form.

In Sect. 6.7, members were added to the four edges of the graph to perform the

calculations. This changes A2 and B2 in the direct product to 2I , and in strong

Cartesian product, it changes to 3I to provide the decomposability condition.

However, it is shown that one does not need to alter B2 and changes on A2 is

sufficient for block diagonalisation.

Since the addition of members to all four edges of the graph is unnecessary and two

opposite edges are sufficient (e.g. upper and lower edges), thus Mef can be written as

Mef ¼ If � ðAþ BÞe þ Ffð1;�1; 2Þ � ð�BÞe (9.13)

Since in this case IfTf ¼ TfIf ; therefore, Mef can be diagonalised and we have

eigðMefÞ ¼ [
f

i¼1
feig½Ae � ð1þ 2 cos

iπ
f
ÞBe�g (9.14)

Due to the change on the primary graph, the magnitude of λ2 will have some

approximation. In order to improve this approximation, one can use Rayleigh’s

method. In this method, there is no need to add member to the edges of the model.

Details of this approach will be illustrated in Example 9.1. Using a suitable numbering

scheme and decomposing the Laplacian matrix of the graphs which are not similar to

the product graphs, one can calculate the eigenvalues, as shown in Example 9.2. In this
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example, utilising the Fiedler’s vector obtained from the second eigenvalue of the

Laplacian matrix of the model, suitable nodal ordering is obtained.

Another application of the present method is finding the eigenvalues of two

graphs connected to each other, as illustrated in Example 9.3. In this example, using

the Fiedler’s vector, the graph can be bisected.

Another example of this application is the study of the graphs which become a

standard product graph after the addition of some members, Example 9.4.

In relation with structures, the buckling load and vibration frequencies of beams

and plates are investigated. The considered beam contains different supports such

that the corresponding matrix does not match with previously developed canonical

forms, and hence, the existing relationships cannot be directly used, Example 9.5.

The plates are selected such that they have either an additional part with respect to

regular model (Example 9.6), or it has different boundary conditions (Example 9.7).

Apart from these, the vibration frequency of a mass–spring system is studied

(Example 9.8), and a shear structure having masses at some nodes having different

stiffnesses (Example 9.9) is investigated. As it will be seen, a variety of problems

can be solved using the present method. This application can also be extended to

some problems in other fields of engineering.

9.2.2 Numerical Examples

Example 9.1. In this example, the aim is to find the eigenvalues of the Laplacian

matrix of a graph in the form of strong Cartesian product. The strong Cartesian

product P4 (X)SC P5 is shown in Fig. 9.1. The main problem is that the upper and

lower nodes are not identical to the intermediate nodes and if only the intermediate

nodes are considered, then one can find the eigenvalues followed by the inverse of

the corresponding matrix. Therefore, for nodal ordering, first the upper and lower

nodes are labelled followed by the numbering of the intermediate nodes.

Considering the above nodal ordering, the Laplacian matrix is decomposed into two

blocks as follows:

L ¼ Lmm Lms

Lt
ms Lss

� �

Here, m ¼ 8 and s ¼ 12. Therefore, instead of calculating the eigenvalues of a

matrix of dimension 20, only a matrix of dimension 12 is inversed together with an

eigensolution of dimension 8. The Lss matrix is in the following form:

Lss¼
A B 0

B A B

0 B A

2
4

3
5¼F3ðA;B;AÞ¼ I3�F4ð5;�1;8ÞþF3ð0;1;0Þ�F4ð�1;�1;�1Þ
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The important point is that for inverting Lss , there is no need for direct calcul-

ations since in this matrixA1A2 ¼ A2A1, and eigenvalues can easily be obtained by

λM ¼ [
n

i¼1
eigðMiÞ; Mi ¼

Pk
j¼1
ðλiðAjÞBjÞ, and the inversion is performed employing

Eq. 9.1. Thus, we have

λL ¼ [
3

i¼1
λiðI3ÞF4ð5;�1; 8Þ þ λiðF3ð0; 1; 0ÞF4ð�1;�1;�1Þ½ �

In this way, instead of solving an eigenvalue problem of dimension 20, the

eigenvalues of three matrices of dimension 4 and one of dimension 8 should be

calculated.

Example 9.2. In Fig. 9.2a, a graph is shown which is similar to strong Cartesian

product, and the only difference is that the crossing points are considered as nodes

belonging the subgraph S. The remaining nodes are contained in the subgraph M.

Using the aforementioned numbering, the matrix Lss will be equal to 4I6, where I is

a unit matrix. Therefore, L�1ss ¼
1

4
I6, and it is sufficient to calculate the eigenvalues

of a matrix of dimension m ¼ 12. It should be mentioned that for calculating the

eigenvalues of this matrix similar to the previous example, one can decompose the

graph into two subgraphs with m ¼ 6 and s ¼ 6. For this example, the second

eigenvalue of the Laplacian matrix is obtained as λ2 ¼ 0:7226.
As an application, the eigenvector of this eigenvalue, known as the Fiedler vector, is

obtained for Fig. 9.2a, and the nodal ordering is performed for reducing the profile

of the stiffness matrix. The Fiedler vector is as

Fig. 9.1 The strong

Cartesian product P5 (X)SC P4
and its nodal numbering
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v2 ¼ f0:3156; 0:3074; 0:3156; 0:1375; 0:1365; 0:1375;�0:1375;�0:1365;
� 0:1375;�0:1356;�0:3074;
� 0:3156; 0:2737; 0:2737; 0; 0;�0:2737;�0:2737g

Ordering the nodes according to this vector, the new nodal numbers are obtained as

illustrated in Fig. 9.2b.

Example 9.3. In this example, we want to calculate the eigenvalues of graph

obtained by connecting two subgraphs. An example of such a graph is illustrated

Fig. 9.2 (a) The graph introduced in Example 8.12, (b) nodal ordering using Fiedler’s vector

Fig. 9.3 (a) Two graphs connected to each other and the nodal numbering, (b) partitioning of the

graph
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in Fig. 9.3a. One subgraph is the product graph P7 (X)SC P4, and the other one is the

product graph P3 (X)C P3. In nodal numbering, one should pay special attention to

the block which should be inverted, and its eigenvalues should be calculable.

Similar to the previous example, the intermediate part of the strong Cartesian

product is considered and numbered, and the remaining nodes are numbered next.

Therefore, for this graph, we have

L ¼ Lmm Lms

Lt
ms Lss

� �

Here, we have m ¼ 17 and s ¼ 20. With this numbering and inverting a matrix of

dimension 20, we will face an eigenvalue problem of dimension 17. In the matrix

Lss, we have the following form:

Lss ¼ F5ðA;B;AÞ ¼ I5 �
6 �1 0 0

�1 8 �1 0

0 �1 8 �1
0 0 �1 5

2
664

3
775þ F5ð0; 1; 0Þ � F4ð�1;�1;�1Þ

In this way, instead of inverting a matrix of dimension 20, one should find the

eigensolution of five matrices of dimension 4 to be employed in

M�1 ¼ VD�1Vt ¼ V

1=λ1 0

1=λ2
:

:
0 1=λm�n

2
66664

3
77775Vt

In this problem, the relationships (8.58) are used twice, andλ2 ¼ 0:3078 is obtained,
while the exact answer is λ2 ¼ 0:3101. As an application, this eigenvalue is used to
find the Fiedler’s vector. Ordering the entries of this vector, the model can be

bisected such that the two obtained subgraphs have identical number of members

and the number of members connecting the two subgraphs is minimum. Figure 9.3b

shows these two subgraphs. This approach is extensively employed in parallel

computing.

Example 9.4. We want to study a graph obtained by addition of two members to

the product graph P5 (X)SC C4. The Laplacian matrix of this graph will have the

following form, and its eigenvalues can be calculated as follows:

Lmn ¼ FnðAm;Bm;CmÞ

Am ¼ Gmð5;�1; 5Þ; Bm ¼ Gmð�1;�1;�1Þ and Cm ¼ Gmð8;�1; 8Þ
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Since

Am ¼ 6Im þ Bm; Cm ¼ 9Im þ Bm;

therefore,

Lmn ¼ Fð6Im þ Bm;Bm; 9Im þ BmÞ ¼ 3Fnð2; 0; 3Þ � Im þ Fnð1; 1; 1Þ � Bm

We know that

eigðBmÞ ¼ �ð1þ 2 cos
2kπ
m
Þ k ¼ 1 : m

using

eigð
X
ðAi � BiÞÞ ¼ eigð

X
ðBi � AiÞÞ

We have

eig ðLmnÞ ¼ eigfIm � 3Fnð2; 0; 3Þ þ Bm � Fnð1; 1; 1Þg

since both Im and Bm commute in the multiplication; thus, we have

eig ðLmnÞ ¼ [
m

k¼1
½eigf3Fnð2; 0; 3Þ � ð1þ 2 cos

2kπ
m
ÞFnð1; 1; 1Þg�

As it can be observed from Fig. 9.4, we have m ¼ 12 and s ¼ 8. Here, the matrix

Lss has the following form:

Lss ¼ G4ðA;B;AÞ; A ¼ 8 �1
�1 8

� �
; B ¼ �I4

where

GnðAm;Bm;CmÞ ¼

Am Bm Bm

Bm Cm Bm

Bm Cm Bm

: : :
: : :

: : :
Bm Cm Bm

Bm Cm Bm

Bm Bm Am

2
6666666666664

3
7777777777775
n

:
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For this matrix, A1A2 ¼ A2A1, and therefore, the calculation of the eigenvalues

and the inverse of the matrix become feasible. In this example, repeating the

relationships (9.8), one obtains λ2 ¼ 1:1001, while the exact answer is λ2 ¼ 1:1027
.

Example 9.5. In this example, we want to calculate the buckling load and the

natural frequency of a fixed-simple ended bending beam. The calculation is

performed using the finite difference approach. The buckling and vibration equa-

tion of this beam can be expressed as

d4w

dx4
þ N

EI

d2w

dx2
¼ 0; λ ¼ N

EI
h2

d4w

dx4
� β4w ¼ 0; β ¼ ρω2

EI
; λ ¼ ðβhÞ4

It is obvious that the nodes of the two sides are different because of having

different boundary conditions; however, the internal nodes have identical

conditions. Choosing n ¼ 10 for the calculation, first we should number the two

sides (m ¼ 2) followed by the internal nodes (s ¼ 8).

Using the finite difference method, the following equations should be solved:

ðA� λiBÞΦi ¼ 0) Amm Ams

At
ms Ass

� �
� λ Bmm Bms

Bt
ms Bss

� �� �
Φm

Φs

� �
¼ 0

0

� �

Fig. 9.4 The product graph

P5 (X)SC C4 with two deleted

members
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where

Amm ¼ 7 0

0 5

� �
; Ass ¼ F8ð6;�4;6;1Þ; Ams ¼ �4 1 0 0 0 0 0 0

0 0 0 0 0 0 1 �4
� �

The matrix B for buckling will have the following form:

Bmm ¼ 2I2; Bss ¼ F8ð2;�1; 2Þ; Bms ¼ �1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 �1
� �

And for vibration problem, we will have B ¼ I10.

The matrix Ass has dimension equal to 8, and it is a penta-diagonal matrix.

Therefore, we can express it as

Ass ¼ F8ð6;�4; 6; 1Þ ¼
X3
i¼1
ðAi � BiÞ

Since the values of t1 ¼ ai � ci

di
and t2 ¼ ai � ci þ di

bi
are identical for all three

matrices Ai , therefore AiAj ¼ AjAi . Thus, Ass can be decomposed into eight

numerical blocks [3]. Hence, in this example, only an eigenvalue problem of

dimension m ¼ 2 should be solved.

Example 9.6. In this example, the aim is to calculate the buckling load of a plate

with some additional part. Here, first the internal nodes are numbered for which the

eigenvalues can be calculated. We have the subgraph S with s ¼ 9 nodes and

the remaining nodes for the subgraphM with m ¼ 6 nodes. It should be mentioned

that the number of nodes is purposely chosen low for a better illustration of the

approach. The nodal numbering is illustrated in Fig. 9.5.

The governing differential equation of the problem for the case when the loading

is in x-direction will be as follows:

r4wþ Nx

D

@2w

@x2
¼ 0

Using the finite difference method, a similar set of equations to that of the

previous example should be solved with the only difference that we have:

Ass ¼
E F I

F Eþ I F

I F E

2
4

3
5; E ¼

19 �8 1

�8 19 �8
1 �8 19

2
4

3
5; F ¼

�8 2 0

2 �8 2

0 2 �8

2
4

3
5

In general, Ass is a penta-diagonal block matrix, and since the nodes are chosen

from the regular part of the model satisfying the condition AiAj ¼ AjAi, thus, the
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eigenvalues and its inverse can easily be found using the relationships (8.58). Also

we have

Bss ¼
2I �I 0

�I 2I �I
0 �I 2I

2
4

3
5

Therefore, here, finding the eigenvalues of a matrix of dimension n ¼ 15 is

changed to the calculation of the eigenvalues of three matrices of dimension 3 and

one matrix of dimension 6. The smallest eigenvalue is obtained as λ ¼ 1:7673 in

four iterations, while the exact value is λ ¼ 1:7597:

Example 9.7. In this example, the aim is to find the buckling load of a square plate

with side lengtha. The supports at two edges are simple and the other two sides fixed.

The load is applied in x-direction. The plate is divided into eight segments in each

side. Obviously, the entries of the corresponding matrix will be different for internal

nodes and external nodes. Thus, here, s ¼ 25, and the remaining nodes belong to the

subgraph M with m ¼ 24 nodes. The nodal numbering is illustrated in Fig. 9.6.

Here, the matrix Ass will be as

Ass ¼ F5ðE;F;E; IÞ; E ¼ F5ð20;�8; 20; 1Þ; F ¼ F5ð�8; 2;�8Þ

Also we have

Bss ¼ I5 � F5ð2;�1; 2Þ

The rest of the calculation is similar to that of the previous example.

Fig. 9.5 A plate with nodal

numbering for finite

difference method
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Example 9.8. This example is taken from Ref. [4]. A mass–spring system is

considered as shown in Fig. 9.7. Here, the numbering is altered, and first the two

end nodes are numbered (m ¼ 2 ) followed by the numbering of the remaining

intermediate nodes (s ¼ 28).

With this numbering, the matrices K and M will have the following forms:

K ¼ Kmm Kms

Kt
ms Kss

� �
; M ¼ Mmm Mms

Mt
ms Mss

� �

where

Kmm ¼ 4kI2; Kss ¼ kF28ð2;�1; 2Þ; Kms ¼ k
�1 0 : : 0 0

0 0 : : 0 �1
� �

2�28

Mmm ¼ 5mI2; Mss ¼ mI28; Mms ¼ mZ2�28

Fig. 9.6 A plate with different boundary conditions and its nodal numbering

Fig. 9.7 A system of mass–spring and its numbering
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where Z is a matrix with all zero entries. The eigenvalues of Kss are given in the

form of a simple relationship in [5].

eigðKssÞ ¼ eigðFsð2;�1; 2ÞÞ ¼ 2� 2 cos
kπ

sþ 1
; k ¼ 1 : s

Therefore, one needs to solve an eigenvalue problem of dimension m ¼ 2

compared to the need for solution of an eigenvalue problem of dimension 12 in

Ref. [4].

The smallest eigenvalue obtained from an exact method is λ ¼ 0:0112
k

m
, and

using the present method after only four iterations, λ ¼ 0:0106
k

m
is achieved.

Example 9.9. This example is taken from Ref. [4]. Here, first the nodes of the

first and the last stories are numbered (m ¼ 2) followed by those of the other stories

(s ¼ 118). The K and M matrices will have the following forms:

Kmm ¼ k
1:42 0

0 1

� �
; Kss ¼ kF118ð2;�1; 2Þ;

Kms ¼ k
�1 0 : : 0 0

0 0 : : 0 �1
� �

2�118

Mmm ¼ mI2; Mss ¼ mI118; Mms ¼ mZ2�118

The calculations will be identical to the previous example. Thus, only an

eigenvalue problem of dimensionm ¼ 2 should be solved, compared to the method

in [4] which requires the solution of a problem of dimension 16.

The smallest eigenvalue obtained from an exact method is ω ¼ 10�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:6610 k

m

q
,

and using the present method after only six iterations, the exact value is achieved.

9.2.3 Discussion

In this chapter, the analysis of those graphs and non-regular structures is studied

from which a regular model can be extracted, and inversion is performed using the

previously developed methods.

The method developed in this chapter is an iterative approach, and its important

feature is that it performs the inversion and eigensolution on matrices’ smaller

dimension than the matrix of the original model only once. This means that in the

iterations of this method, we have only numerical calculations and not matrix

calculation. It is seen that after decomposition, the dimensions of the matrices are

reduced. The examples contain both graph and structural ones. In the graph examples,
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we have studied the problems which have models obtained from product graphs with

addition of some members. This means non-regular graph products are obtained by

adding some members. Connecting two graphs is also investigated. In relation with

structures, the buckling load and vibration frequencies of the beam and plates are

studied. Examples are selected from those having either additional parts compared to

a regular model, or different boundary conditions are involved in the structure.

9.3 Application of Kronecker Product to the Analysis

of Modified Regular Structures

The problem of inverting matrices associated with modified regular structures can

be treated more efficiently using an approach that takes into account the solutions of

well-formed matrices of the main regular structures. Here, a well-formed matrix is

defined as a matrix with a canonical form for which the inversion is carried out

using much simpler formulations. Using such an approach, one may consider

various types of modifications. For example, different boundary conditions can be

treated using this method. Also in the analysis of some structures such as plates with

irregular boundaries using the FD method, the present approach can efficiently be

used, employing the solution of the plate with regular configuration.

In what follows, first the method for calculating the inverse of block matrices is

discussed and then a method is presented for finding the inverse of those matrices

which are transformable to regular ones. Finally, the application of this method is

illustrated through some examples [2].

9.3.1 Inversion of Block Matrices

First, we should note that in matrix algebra, the inverse of a block matrix can be

obtained in terms of the inverse of its blocks by a special formulation. However,

such an operation requires the inversion of the blocks involved. Here, we will

observe that considering the eigenvalues and eigenvectors of block matrices, such

calculation can be simplified.

Suppose the form of the matrix to be investigated be as follows:

Mmn ¼ A1 � B1 þ A2 � B2 (9.15)

where n is the dimension of the matrices A1 and A2, and m is the dimension of the

matrices B1 and B2. We consider two cases. In the first case, A1A2 ¼ A2A1, then

using the eigenvalues, the inverse of M can easily be obtained. In the second case,

A1A2 6¼ A2A1, and we should use QZ factorisation.
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In the first case, the two matrices A1 and A2 commute with respect to

multiplication, and one can find the eigenvalues using the following relationship:

λM ¼ [
n

i¼1
eigðMiÞ; Mi ¼ λiðA1ÞB1 þ λiðA2ÞB2 (9.16)

It is obvious that if V, the matrix containing the eigenvectors and D, is a diagonal

matrix containing the eigenvalues of a symmetric matrixM, then we haveM ¼ VDVt.

Since the eigenvalues ofM�1 are the inverse of those ofM, and the eigenvectors are

identical, therefore,

M�1 ¼ VD�1Vt ¼ V

1=λ1 0

1=λ2
:

:
0 1=λm�n

2
66664

3
77775Vt (9.17)

where D�1 can easily be obtained by inverting the diagonal entries of D . The

eigenvector of such a matrix will be in the form of u� v in which u is a vector that

diagonalises both matricesA1 andA2 simultaneously and vwhich is an eigenvector

of Mi ¼ λiðA1ÞB1 þ λiðA2ÞB2 as discussed in the previous chapters.

In the second case, if A1 and A2 do not commute with respect to multiplication,

then QZ decomposition should be used. This decomposition is introduced previ-

ously, and here only the inverting process is reintroduced.

In this case, consider y ¼ Mx, where M has the form of Eq. 9.15. Natural

approach will lead to x ¼ M�1y. Here, one can use QZ decomposition. However,

instead of inversion, we consider appropriate transformations to makeM a diagonal

matrix and inversion can then be achieved by inverting the diagonal entries. For this

purpose, decomposition should be performed such that instead of T, we end up with

a diagonal D. We use QZ decomposition as

TA ¼ QAZ

TB ¼ QBZ



α ¼ diagðTAÞ ; β ¼ diagðTBÞ (9.18)

α and β are the entries on the main diagonal of TA and TB, respectively.

Substitute U ¼ K�1 with the following:

Kð:; iÞ ¼ AVð:; iÞ αij j � βij j
BVð:; iÞ elsewhere



ðV ¼ ZtÞ (9.19)

Then unlike the previous case, we have V ¼ Zt , but U 6¼ Qt , and UAV is a

diagonal matrix:

y ¼ ðA1 � B1 þ A2 � B2Þx (9.20)
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Considering

UAA1VA ¼ D1 ; UAA2VA ¼ D2 ; UBB1VB ¼ D3 ; UBB2VB ¼ D4; (9.21)

we have

ðUA � UBÞy ¼ ðUA � UBÞðA1 � B1 þ A2 � B2Þx (9.22)

Substituting

x ¼ ðVA � VBÞ�x; �y ¼ ðUA � UBÞy; (9.23)

we have

�y ¼ ðD1 � D3 þ D2 � D4Þ�x (9.24)

Having y, �y can be calculated, and since the matrix in prentices is diagonal, �x and
then x can be calculated. It should be noted that in using these transformations, the

calculations are performed onA1,A2,B1 andB2 having dimensions similar to that of

the repetitive blocks. Thus, the amount of calculations is reduced considerably.

9.3.2 Proposed Method

Most of the research results presented in the past were concentrated on structural

forms having support conditions for which the structural matrices could be

expressed as the sum of some Kronecker products. In such cases, using the

corresponding theorems, one can simplify the calculations using the block matrices.

In general, a structure can have supports leading to non-regular forms which make

these calculations impossible. The structure can also have a geometry which can be

transformed into regular models by adding some members and nodes. The main aim

of this chapter is to study such cases, and as an example, the calculations will be

performed on the matrices corresponding to FD solutions.

9.3.2.1 The Effect of Different Boundary Conditions

In order to clarify the problem, suppose that we want to calculate the maximum

deflection of the plate shown in Fig. 9.8. This plate is uniformly loaded, and it is

simply supported in three edges and clamed in the other edge.

The governing equation for this problem is as follows [6]:

r4w ¼ @4w

@x4
þ 2

@4w

@x2@y2
þ @4w

@y4
¼ p

D
) D ¼ Et3

12ð1� υ2Þ (9.25)
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If the length of the subdivisions in both directions are taken as h, for a typical

joint (i,j), we will have

20wði; jÞ � 8 wði; j� 1Þ þ wðiþ 1; jÞ þ wði; jþ 1Þ þ wði� 1; jÞ½ �
þ 2 wði� 1; j� 1Þ þ wðiþ 1; j� 1Þ þ wðiþ 1; jþ 1Þ þ wði� 1; jþ 1Þ½ �

þ wði; j� 2Þ þ wðiþ 2; jÞ þ wði; jþ 2Þ þ wði� 2; jÞ½ � ¼ ph4

D
ð9:26Þ

It should be noted that the nodal numbering is performed such that the nodes

corresponding to the claimed supports and the corresponding nodes in the other side

of the plate are first numbered, followed by the numbering of the remaining nodes.

As an example, if we consider the numbers of subdivisions in the X and Y

directions as 7 and 6, respectively, the nodal numbering should be performed as

illustrated in Fig. 9.9. In this way, writing the FD equations and imposing the

boundary conditions, we will obtain the following matrix:

½C�fwg ¼ �fpg h
4

D

) C11 C12

C21 C22

� �
w1

w2


 �
¼ � h4

D

p1

p2


 �
; C21 ¼ Ct

12

(9.27)

where the decomposed submatrices are as follows:

C11 ¼ F5ðA2;B2;A2 þ I2; I2Þ; A2 ¼ 20 0

0 18

� �
; B2 ¼ �8� I2

C22 ¼ F5ðA4;B4;A4 þ I4; I4Þ; A4 ¼ F4ð19;�8; 19; 1Þ;
B4 ¼ F4ð�8; 2;�8Þ

C12 ¼ F5ðA4�2;B4�2;A4�2Þ ; A4�2 ¼ �8 1 0 0

0 0 1 �8
� �

; B4�2 ¼ 2 0 0 0

0 0 0 2

� �

Fig. 9.8 A plate with simple

supports in three edges and

clapped in one edge under a

uniform loading
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where I is a unit matrix and

FmðA;B;C;DÞ ¼

A B D 0

B C B :
D B : : :

: : : B D

: B C B

0 D B A

2
6666664

3
7777775
m

(9.29)

If the fourth argument of F is not present, then the above matrix becomes a block

tri-diagonal matrix.

Considering the different boundary conditions and using the above-mentioned

nodal numbering, one can observe repetitive block forms in all the submatrices

(even in the submatrix C21 ¼ Ct
12 which is a rectangular matrix).

Therefore, solving Eq. 9.17 in block form, we will have

fw2g ¼ � h4

D
C�122 ½fp2g þ C21fw1g�

fw1g ¼ � h4

D
½C11 � C12C

�1
22 C21��1½fp1g � C12C

�1
22 fp2g�

8>><
>>: (9.30)

It can be seen that in these relationships, we do not need to find the inverse of

C11 � C12C
�1
22 C21 andC22. The important point is that, as we will see, the inverse of

Fig. 9.9 Nodal numbering of the plate for the FD method
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C11 andC22 can easily be found, and we need only to invertC11 � C12C
�1
22 C21 which

is a matrix with identical dimension to that of C11. Since in most of the numerical

methods like FD, the number of subdivisions is generally high, therefore, the

dimension of the matrix C11 is less than that of C22, and from the second row, the

matrix w2 should be calculated; otherwise, we should first calculate w1.

Now, we consider the inversion of C11 and C22 matrices. These matrices are

block five-diagonal matrices. As an example, the inverse ofC22 can be expressed as

C22 ¼ FðA;B;Aþ I; IÞ ¼ I� Aþ Fð0; 1; 0Þ � Bþ Fð0; 0; 1; 1Þ � I

¼
X3
i¼1

Ai � Bi (9.31)

Since we have three Kronecker products, therefore, one cannot use QZ transfor-

mation of inversion. However, since AiAj ¼ AjAi, therefore, we first use Eq. 9.16

and obtain

λC22
¼ [5

i¼1
eigðMiÞ;Mi ¼ Aþ λiðFð0; 1; 0ÞÞBþ λiðFð0; 0; 1; 1ÞÞI (9.32)

The vector u which diagonalises the three matrices I5, Fð0; 1; 0Þ and Fð0; 0; 1; 1Þ
simultaneously will then be calculated followed by the vector v , that is, the

eigenvector of Mi ¼ Aþ λiðFð0; 1; 0ÞÞBþ λiðFð0; 0; 1; 1ÞÞI. The columns of the

matrix V are equal to u� v. In this way, using Eq. 9.17, the C�122 will be obtained.

In relation withC22, it is important to note that this matrix is exactly the same as

the matrix we had for the plate with four edges being simply supported. In fact the

role of different support conditions is reflected in C11 and C21 ¼ Ct
12.

For inverting the submatrix C11, a similar calculations can be carried out. If we

only want to calculate the moments, we have to adopt a similar process. In this case,

we will have block tri-diagonal matrix which can be expressed as the sum of two

Kronecker products and the process of calculation will not be different.

9.3.2.2 Structures Transformable to Regular Forms

In the following, we study the analysis of plates. In general, one needs to calculate

the moments and deflection of the plates where its geometry can be changed into

regular figures by adding or deleting some parts. Then using the FD method and

after writing the corresponding equations for the regular plate, the results of the

main plate are obtained.

As an example, we want to calculate the moments and deflection of the plate in

Fig. 9.10a. This plate is pinned at its boundary nodes. For solution, FD method is

employed. As it can be seen for simplicity and because of the irregularity of the
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plate, nine nodes are selected. Obviously for more irregularity, the distance between

the nodes should be reduced by increasing the number of subdivisions.

First, we transform the plate into a complete plate as shown in Fig. 9.10b, and

with new numbering, the inverse of the matrix of the FD equations of this plate can

be calculated.

The governing relationships for this problem are as follows:

½CðbÞ�fMg ¼ �fPga2 ) fMg ¼ �½H�fPga2 ) ½H� ¼ ½CðbÞ��1 (9.33)

By partitioning this matrix, we have

M1

M2


 �
¼ � H11 H12

H21 H22

� �
P1a

2

P2a
2


 �
(9.34)

which can be expressed as

M01
0


 �
¼ � H11 H12

H21 H22

� �
P1a

2

P02a
2


 �
(9.35)

Here,H22 corresponds to the added nodes (three nodes), andH11 corresponds to

the remaining nodes. Thus,

M01 ¼ �½H11P1 þH12P
0
2�a2; P02 ¼ �H�122 H21P1 (9.36)

Combining these two equations leads to

M01 ¼ �½H11 �H12H
�1
22 H21�P1a

2 ) C�1ðaÞ ¼ H11 �H12H
�1
22 H21 (9.37)

Ultimately, the deflection of the plate is obtained as

Fig. 9.10 Completion of (a) as (b) for having a regular block matrix
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½CðaÞ�fW0g ¼ �M01
D

a2 ) fW0g ¼ �½H11 �H12H
�1
22 H21�M

0
1

D
a2 (9.38)

where D ¼ Et3=12ð1� v2Þ.
In Example 9.10, it can be seen that the selected grid for discretisation of the

plate for FD analysis has certain extra parts than a standard graph product.

The point is that in some plates, it is easier to consider it in the form of a sector of

a circle in place of considering it as a rectangular model. Example 9.11 investigates

a plate using this approach.

In any case, we should know that a rectangular or a sector of a circle can be

inscribed in a circle or can be circumscribed in it, in both cases of which the

calculations lead to the inversion of a matrix with dimension equal to the number of

nodes added or deleted. As an example, in Fig. 9.11 for both irregular plates, in

analysis by FD method, both cases of the plates inscribed in a circle or circumscribe

it are illustrated.

9.3.3 Numerical Examples

Example 9.10. In this problem, a plate discretised as shown in Fig. 9.12 for FD

analysis contains parts more than that of a standard product graph. In the previous

section, we studied a plate smaller than its circumferential bigger plate, while in

here, we create a regular product graph which is inside the plate. Partitioning the

stiffness matrix of this plate into two parts and having the inverse of the created

product graph, the solution of the problem becomes feasible.

Here, the equations are written for Fig. 9.12a, and ultimately, the results are

obtained for Fig. 9.12b. The governing relationship here is as follows:

½CðaÞ�fMg ¼ �fPga2 ) C11 C12

C21 C22

� �
M1

M2


 �
¼ � P1a

2

P2a
2


 �

Fig. 9.11 Transformation of

two non-regular plates to

regular rectangular- and

sector of a circle-shaped

plates
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Therefore,

fM1g ¼ C�111 ½fP1ga2 � C12fM2g�
fM2g ¼ ½C22 � C21C

�1
11 C12��1½fP2g � C21C

�1
11 fP1g�a2

(

SubstitutingM2 inM1, and due to the ease of inverting C11, it is enough to find the

inverse of a matrix having dimension equal to that of C22 , that is, we calculate

½C22 � C21C
�1
11 C12��1.

Now, we calculate the deflection as follows:

C11 C12

C21 C22

� �
W1

W2


 �
¼ � 1

D

M1

M2


 �

Thus,

fW1g ¼ C�111 �
M1

D
� C12fW2g

� �

fW2g ¼ ½C22 � C21C
�1
11 C12��1 C21C

�1
11

M1

D
�M2

D

� �
8>><
>>:

In this way, the inverse of the same matrix ½C22 � C21C
�1
11 C12� which resulted the

bending moments is obtained for calculating the deflections.

Example 9.11. Here, we study a plate which is convertible to the sector of a circle.

As it can be seen from Fig. 9.13a, this plate can be converted into the quarter of a

circle by adding some parts, and writing the finite difference equations in the polar

coordinate system as developed in [7], it has become complete as shown in

Fig. 9.13b. It should be noted that all the supports are pinned around the edges.

The finite difference matrix for the plate with hole in Fig. 9.13a is a 5-by-5 non-

rectangular one. Adding three nodes, the plate changes into a quarter of a circle

Fig. 9.12 Reduction of (b) to obtain (a) for having a regular block matrix
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having eight nodes, and the corresponding FD matrix takes the form F which can

easily be inverted using Eq. 9.17:

CðbÞ ¼ F4ðA2;B2;A2Þ ¼ I4 � A2 þ F4ð0; 1; 0Þ � B2

A2 ¼
2ð1þ 25

π2Þ 5
4

5
6

2ð1þ 100
9π2Þ

" #
) B2 ¼

25
π2 0

0 100
9π2

" #

In this way, using the relationships of Example 9.10, one needs to invert only a

matrix of dimension 3 corresponding to the added nodes.

9.3.4 Concluding Remarks

The method presented in this chapter extends the applications of the previous

methods developed for the analysis of regular structures based on the stiffness

method and some concepts from graph products. In some of the examples previ-

ously investigated, adding or removing some nodes and/or members changes the

models into non-regular ones, or similarly, the use of different support conditions

may alter the repetitive nature of the corresponding block matrices. In such cases,

first the matrices are partitioned in such a way that the effect of the support

conditions and the remaining part of the structure are separated, and the analysis

is performed using the regularity property. Thus, the support conditions do not need

to be regular, and different supports can be present in the structure. For the most

recent work on this topic the read may refer to Kaveh et al. [8].

Fig. 9.13 Completion of (a) to obtain (b) for having regular block matrix in polar coordinate

system
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Chapter 10

Graph Products Applied to the Regular

and Locally Modified Regular Structures

Using Iterative Methods

10.1 Introduction

In this chapter, graph products are employed to study various kinds of regular

structural patterns. The emphasis is on the eigensolution of the finite element

models associated with such structures. However, the methods developed here

can also be used for static and dynamic analysis as well. In Sect. 10.2, various

symmetric and regular structural patterns and their corresponding canonical matrix

forms are investigated. It is demonstrated that using the idea of matrix decomposi-

tion, one can simplify the eigenproblem associated with the regular model under

consideration. In Sect. 10.3, we extend our investigation to structural models with a

dominant regular pattern, which need to be slightly perturbed or modified in order

to be considered as purely regular. There are plenty of such examples in structural

mechanics applications; we can refer to the local refinement of a regularly meshed

finite element model, small cut-outs extracted from a structural model and non-

regular constraints imposed on a regular model as a few examples. The idea of

matrix decomposition is further extended in order to develop numerical methods to

deal with such cases. The concept of modification seems also to be attractive in

dealing with nonconforming matrix forms, such as those associated with transla-

tional regular patterns. Using this concept in conjunction with substructuring

techniques, an approximate method is presented in Sect. 10.4 for efficient solution

of the corresponding eigenproblem.

10.2 Eigensolution of Symmetric and Regular Structures

Using Canonical Forms

A fundamental approach towards exploiting symmetry and regularity in structural

mechanics problems is through the decomposition of the structural matrices. In this

regard, theory of groups and their representations has been extensively used as a

A. Kaveh, Optimal Analysis of Structures by Concepts of Symmetry and Regularity,
DOI 10.1007/978-3-7091-1565-7_10, © Springer-Verlag Wien 2013
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standard tool. Group theory is known as the mathematical language of symmetry

[1]. However, the concepts of group theory may appear to be complicated for an

unfamiliar user, and this may be a non-appealing feature from the viewpoint of an

engineer compared to a mathematician. An engineer considers the symmetry as a

simplifying property of a structure and also expects the method for exploiting this

property to be simple enough. Matrix canonical forms are developed as an alterna-

tive to represent the underlying mathematical operations more conveniently.

Canonical forms were originated from eigenproblems associated with symmetric

graphs and then were extended to graph products. Using the method of canonical

forms, one considers directly the patterns of the stiffness and mass matrices, instead

of using projection operators in group theoretic methods, to construct invariant

subspaces. A local symmetry-adapted coordinate system is employed in which the

matrices assume the desired forms. Then, the invariant subspaces are constructed

using the properties of the established matrix patterns. This method has several

advantages. Firstly, it is simple and easy to understand. Secondly, the full matrices

need not be constructed at all, and it is adequate to determine a small portion of the

matrix, that is, its repeating blocks. Thirdly, the final decomposed matrices (block-

diagonal forms) can be presented in a closed-form solution.

The generalised eigenproblem associated with a regular structure may be

expressed as follows:

KΦ ¼ ω2 MΦ (10.1)

where K and M of order N are the stiffness and mass matrices, ω is the natural

frequency and Φ is the matrix of eigenvectors. Matrices associated with regular

structure may be represented in special block forms known as canonical forms.

Different kinds of canonical forms can be decomposed by transforming the matri-

ces into block-diagonal forms using a suitable orthogonal matrix T. The

transformed stiffness and mass matrices are

KðBDÞ ¼ TtKT and MðBDÞ ¼ TtMT (10.2)

where KðBDÞ and MðBDÞ each have the same block-diagonal form. Using the

transformation (10.2), the eigenproblem of the regular model is reduced to several

smaller decoupled eigenproblems, which produces dramatic simplification and

saving in the computations.

In this section, the most common matrix canonical forms are reviewed, and those

symmetric and regular structural configurations that can be explained through such

forms are investigated. The invariant subspaces are formulated, and the closed-form

solution for the block-diagonalised matrix is provided for each case. Here, only the

stiffness matrix is considered, since the pattern of the mass matrix is the same.
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10.2.1 Canonical Form II

This is the simplest matrix form that can be associated with structural models

having a bilateral symmetry. Consider the pin-jointed truss shown in Fig. 10.1 as

a simple example. Using a symmetry-adapted local coordinate system as depicted

in this figure, the stiffness matrix can be written in the following form:

K ¼
A B

B A

2
4

3
5 (10.3)

where A and B are m � m matrices.

Let q denote the matrix of eigenvectors for the adjacency matrix of a two-node

path graph

q ¼ 1ffiffiffi
2
p 1 1

�1 1

� �
: (10.4)

Then, we define the block-orthonormal matrix Q as follows:

Q ¼ q� Im ¼ 1ffiffiffi
2
p Im

�Im
Im
Im

� �
; (10.5)

where Im denotes the identity matrix of order m. Using matrix Q as defined in

Eq. 10.5, one can transform K into block-diagonal form

~K ¼ QtKQ ¼ A� B 0

0 Aþ B

" #
: (10.6)

Fig. 10.1 Bilateral symmetry
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10.2.2 Canonical Form III

The basic Form III is written as follows:

L ¼
A

B

Pt

B

A

Pt

P

P

C

2
4

3
5; (10.7)

where we assume that A and B are m � m matrices and C is a k � k matrix.

This form can be associated with graph models having bilateral symmetry, in

which some nodes lie on the axis (plane) of symmetry. For example, consider the

graph shown in Fig. 10.2. The Laplacian matrix of this graph is given by

L ¼

3 �1 0 0 �1 �1
�1 2 0 0 0 �1
0 0 3 �1 �1 �1
0 0 �1 2 0 �1
�1 0 �1 0 3 �1
�1 �1 �1 �1 �1 5

2
66666666664

3
77777777775
:

One can easily verify that Q in block form Eq. 10.8 is the right choice for an

orthonormal basis

Q ¼ q� Im 0

0 Ik

" #
; (10.8)

where q is defined in Eq. 10.4. Now performing the transformation on Form III

(matrix L in Eq. 10.7), we arrive at

~L ¼ QtLQ ¼
A� B 0 0

0 Aþ B
ffiffiffi
2
p

P

0
ffiffiffi
2
p

Pt C

2
64

3
75: (10.9)

Fig. 10.2 Bilateral symmetry

with a kernel
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Form III can be extended to structural models with bilateral symmetry in which

some nodal points are located on the plane of symmetry. We use the term ‘kernel’

for the points falling on the symmetry plane. As a simple example, consider the pin-

jointed truss in Fig. 10.3. Let us partition the set of DOFs corresponding to kernel

points into ‘stationary’ and ‘reversing’ DOFs according to the behaviour of a DOF

with respect to the reflection across the symmetry plane. For example, in Fig. 10.3,

DOF numbers 5 and 6 are the set of ‘stationary’ and ‘reversing’ DOFs, respectively.

Partitioning the set of DOFs in this way, the stiffness matrix takes the following

form:

K ¼
A B P S

B A P �S
Pt Pt Cs 0

St �St 0 Cr

2
664

3
775: (10.10)

The orthonormal basis for the two invariant subspaces of K is constructed as

follows:

Q ¼
q1 � Im 0 q2 � Im 0

0
0s
Ir

� �
0

Is
0r

� �
2
64

3
75; (10.11)

where q1 and q2 are the columns of q as defined in Eq. 10.4. Using the above basis,

matrix K in Eq. 10.10 is decomposed as follows:

~K ¼ QtKQ ¼

A� B � ffiffiffi
2
p

S 0 0

� ffiffiffi
2
p

St Cr 0 0

0 0 Aþ B
ffiffiffi
2
p

P

0 0
ffiffiffi
2
p

Pt Cs

2
66664

3
77775: (10.12)

Fig. 10.3 Bilateral

symmetric structure with

a kernel
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As a numerical example, consider the frame structure shown in Fig. 10.4.

The frame is composed of beam elements with elastic modulus E and moment of

inertia I. Numbering the DOFs as demonstrated in this figure, the stiffness matrix

takes the form Eq. 10.10, with the following submatrices:

A¼EI

2:734 0:44 0:057
0:44 3:348 0:32
0:057 0:32 4:622

2
4

3
5; Cs¼EI 1:95½ �B¼EI

1 0 0

0 �0:372 �0:186
0 �0:186 0:907

2
4

3
5;

Cr¼EI
1:95 0:268
0:268 2:962

� �
; S¼EI

�0:975 �0:134
�0:439 0:134
0:134 �1:347

2
4

3
5P¼EI

�0:439
�0:975
�0:134

2
4

3
5;

and the decomposed matrix ~K in Eq. 10.12 is formed as

~K¼EI

1:734 0:439 0:057 1:378 0:189

3:720 0:506 0:621 �0:189
3:715 �0:189 1:905 0

sym 1:950 0:267

2:962

3:738 0:439 0:057 �0:621
0 2:975 0:134 �0:378

5:529 �0:1892
sym 1:950

2
666666666666666666664

3
777777777777777777775

Fig. 10.4 A bilateral

symmetric frame with kernel
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10.2.3 Nested Form II

This form is a generalisation of Form II, where the blocks inside Form II have a Form

II themselves. This form can be associated with structures having two perpendicular

planes of symmetry. The general pattern of nested Form II can be represented as

K ¼

A B1 B2 B3

B1 A B3 B2

B2 B3 A B1

B3 B2 B1 A

2
66664

3
77775; (10.13)

where each block of the matrix is m � m.
As an example, consider the pin-jointed truss shown in Fig. 10.5. The elastic

modulus and cross-sectional area for each member are E and a, respectively. With a

proper selection and numbering of local coordinates as depicted in this figure, the

stiffness matrix takes the form Eq. 10.13 with the following submatrices:

A ¼ Ea
4:422 0:349
0:349 2:886

� �
; B1 ¼ Ea

1 0

0 0

� �
; B2 ¼ Ea

0 0

0 2

� �
;

B3 ¼ Ea
0:716 �0:358
�0:358 0:179

� �
:

Matrix Q is constructed as follows:

Q ¼ Q1Q2; (10.14)

where

Q1 ¼ q� I2m; and Q2 ¼
q� Im 0

0 q� Im

� �
; (10.15)

where q is the matrix defined in Eq. 10.4.

Fig. 10.5 A structure with two bilateral symmetries
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Using the basis of Eq. 10.14, one can decompose the stiffness matrix into the

following form:

~K¼QtKQ

¼
A�B1�B2þB3 0 0 0

0 AþB1�B2þB3 0 0

0 0 A�B1þB2þB3 0

0 0 0 AþB1þB2þB3

2
664

3
775:

(10.16)

The numerical values for the example considered are as follows:

~K¼

4:138 �0:0084
�0:0084 1:065

4:707 0:707 0

0:707 0:707
2:707 0:707
0:707 4:707

0 6:138 �0:0084
�0:0084 5:065

2
66666666664

3
77777777775

10.2.4 Nested Form III

This form may be composed of a Form II nested by Form III blocks, or otherwise, it

may consist of a Form III nested by Form II blocks, and in a general setting, it may

be composed of a Form III nested by Form III blocks. This form is associated with

structures having two perpendicular planes of symmetry in which one or both of the

planes pass through some of the structural nodes. As an example, consider the frame

structure shown in Fig. 10.6. Each element of the frame has a unit length, a moment

of inertia equal to I and the elastic modulus E. Numbering the nodal DOFs as

depicted in this figure, the stiffness matrix takes the following form:

K ¼

A B1 P S B2

B1 A P �S B2

Pt Pt Cs 0 Bs

St �St 0 Cr Br

B2 A B1 P S

B2 B1 A P �S
Bs Pt Pt Cs 0

Br St �St 0 Cr

2
6666666666664

3
7777777777775
: (10.17)
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This is a Form II nested by Form III blocks. The numerical values of the

submatrices for this example are as follows:

B1¼ 03; B2¼EI

�0:372 0 �0:186
0 1 0

�0:186 0 0:907

2
64

3
75; A¼EI

2:059 �0:313 0:054

�0:313 2:059 0:054

0:054 0:054 3:279

2
64

3
75;

P¼EI

0

�0:372
�0:186

2
64

3
75; S¼EI

�1 0

0 0:186

0 �0:907

2
64

3
75Cs¼EI 2:745½ �; Cr¼EI

2:745 0

0 4:373

� �
;

Construction of matrixQ is straightforward using the successive transformations

as follows:

Q ¼ Q1Q2;

Q1 ¼ q� I2mþk; and Q2 ¼ QðIIIÞ 0

0 QðIIIÞ

� �
; ð10:18Þ

where

QðIIIÞ ¼
q1 � Im 0 q2 � Im 0

0 0s
Ir

h i
0 Is

0r

h i2
4

3
5 (10.19)

Fig. 10.6 Bilateral symmetric frame structure with kernel nodes
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Using the basis of Eq. 10.18, the decomposed stiffness matrix is obtained as

~K ¼

A� B1 � B2 � ffiffiffi
2
p

S

� ffiffiffi
2
p

St Cr � Br

Aþ B1 � B2

ffiffiffi
2
p

P 0ffiffiffi
2
p

Pt Cr � Br

A� B1 þ B2 � ffiffiffi
2
p

S

� ffiffiffi
2
p

St Cr þ Br

Aþ B1 þ B2

ffiffiffi
2
p

Pffiffiffi
2
p

Pt Cs þ Bs

2
66666666664

3
77777777775

(10.20)

10.2.5 Generalised Form II

Canonical Form II can be generalised into the following pattern:

L ¼

A B

B A B

. .
. . .

. . .
.

B A B

B A

2
66664

3
77775
mn�mn

; (10.21)

where each block is of order m and there are n blocks on the diagonal of the matrix.

Let λj ( j¼1, . . ., n) and V ¼ [v1, v2,. . ., vn] be the eigenvalues and the associated
normalised eigenvectors of a path graph Pn, respectively. Then,

Q ¼ V� Im; (10.22)

is the desired block-orthonormal matrix to decompose generalised Form II. The

decomposed matrix is obtained as follows:

~L ¼ QtLQ ¼

Aþ λ1B
Aþ λ2B 0

. .
.

0 Aþ λn�1B
Aþ λnB

0
BBBBB@

1
CCCCCA: (10.23)

Generalised Form II may appear in certain structural models exhibiting transla-

tional regularity. Translational regular structure (TRS) is defined as a regular model

where at least one of its generators is a path. This type of regularity is more

frequently encountered in engineering structures such as frames, trusses, shells

and other types of structural and mechanical models. Unfortunately, very limited

number of translational regular structures can be categorised as those possessing
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generalised Form II matrix pattern. Examples are limited to systems with 1 degree

of freedom per node such as the spring–mass systems (Fig. 10.7 also known as

linear periodic systems), prestressed nets (Fig. 10.8) and frames with just rotational

degrees of freedom (Fig. 10.9).

The problem is that for a general TRS such as the two-dimensional truss shown

in Fig. 10.10, the block matrix B cannot be made symmetric, and hence, the

stiffness matrix will look like

Fig. 10.7 A translational regular mass–spring system

Fig. 10.8 A translational regular cable net

Fig. 10.9 A translational regular frame
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KðTRÞ ¼

A B

Bt A B

. .
. . .

. . .
.

Bt A B

Bt A

2
66664

3
77775
mn�mn

: (10.24)

A more prevalent form of a TRS is the state of relaxed boundary conditions at

two extremes, as for a 3D truss shown in Fig. 10.11. In this case, the corner blocks

of (10.24) are altered such that the form

KðTRÞ ¼

C B

Bt A B

. .
. . .

. . .
.

Bt A B

Bt D

2
66664

3
77775
mn�mn

: (10.25)

becomes even more sophisticated to be handled through the decomposition. The

general idea is that such forms may not be explicitly decomposed into n decoupled

diagonal blocks; however, efficient methods may be devised in order to relate these

forms or the corresponding mechanical systems to more convenient forms or

systems. The author and his coworkers have an ongoing research on this area and

have employed different techniques to exploit the potential of matrix canonical

forms in the analysis of nonconforming cases similar to this one [2–4]. In Sect. 10.4,

a method is presented for efficient handling of regular structures exhibiting matrix

patterns similar to Eq. 10.25. The method is based on a physical interpretation of the

problem, in which the regular structure is represented as a rotationally regular

fabrication using the substructuring technique. Such a method provides a sound

basis for efficient utilisation of decomposable matrix forms in the analysis of

nonconforming matrix patterns.

Fig. 10.10 A translational

regular 2D truss

Fig. 10.11 A translational

regular 3D truss
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10.2.6 Block Circulant Form

The common block circulant form is

A B Bt

Bt A B

. .
. . .

. . .
.

Bt A B

B Bt A

2
66664

3
77775
mn�mn

; (10.26)

where each block is m � m and there are n blocks on the diagonal.

This form is associated with ‘rotationally regular’ structures or structures having

Cn symmetry. This form can be decomposed using a complex transformation matrix

given by

Q ¼ V� Im; (10.27)

where V is the matrix of complex eigenvectors of an n-circuit, whose columns are

obtained from

vk ¼
ξ1

ξ2

..

.

ξn

0
BBB@

1
CCCA; (10.28)

where ξ ¼ eð2πk=nÞ is the nth root of unity.

When submatrix B is symmetric, a ‘reciprocal block circulant’ (RBC) form is

obtained:

A B B

B A B

. .
. . .

. . .
.

B A B

B B A

2
66664

3
77775
mn�mn

: (10.29)

This form is more attractive due to the fact that it can be decomposed using a real

transformation. One can incorporate the real eigenvectors of a Cn into V in

Eq. 10.27 to construct the transformation matrix Q for the corresponding RBC

form. This form is associated with rotationally regular graph models that possess

additional reflection symmetry between two successive subgraphs or equivalently

the graph models with Cnv symmetry group.

For structural models that possess this type of symmetry, the situation is differ-

ent, since the submatrix B cannot be made symmetric. However, as will be

10.2 Eigensolution of Symmetric and Regular Structures Using Canonical Forms 353



illustrated by numerous examples, with proper alignment and partitioning of local

nodal coordinates, the same real invariant subspaces can be employed in the

construction of the transformation matrix Q.

To illustrate the method for constructing invariant subspaces, let us consider the

simple example of a pin-jointed truss depicted in Fig. 10.12. Each bar element has a

unit length. The elastic modulus and cross-sectional area for each member are E and

a, respectively.
A symmetry-adapted local coordinate system is selected such that the stiffness

matrix takes the form

K ¼ Ea

A B Bt

Bt A B

B Bt A

2
4

3
5: (10.30)

Partitioning the coordinate variables of each node into radial and tangent

directions, or more specifically into nodal coordinates which are symmetric

between the two consecutive nodes and those which are antisymmetric or reversing,

the blocks of the matrix can further be partitioned as follows:

A ¼ As

Ar

� �
; B ¼ B1 B3

�Bt
3 B2

� �
; and Bt ¼ B1 �B3

Bt
3 B2

� �
: (10.31)

The numerical values of the above submatrices for the example considered are

presented below:

Fig. 10.12 Pin-jointed truss

with C3v symmetry
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A ¼ 1:5 0

0 2:5

� �
; B ¼ 0:75 0:433

�0:433 �0:25
� �

:

The eigenvalues of the C3 are {�1, �1, 2}. Let [v1, v2, v3] denote three

eigenvectors associated with these eigenvalues, respectively. We construct invari-

ant subspaces associated with repeated eigenvalue �1 as follows:

Q1 ¼ v1 � 1

0

� �
v2 � 0

1

� �� �
;

and

Q2 ¼ v2 � 1

0

� �
v1 � 0

1

� �� �
:

For the simple eigenvalue 2, the invariant subspace is constructed as

Q3 ¼ v3 � I2½ �;

and the matrix consisting of the complete set of invariant subspaces is

Q ¼ Q1jQ2jQ3½ �:

The above formulation is generalised to an RBC form of order mn, where each

block is partitioned according to Eq. 10.31; hence, m ¼ ms + mr. Let λk be a

repeated eigenvalue of Cn. Let vk and vk+1 denote the eigenvectors associated with

this eigenvalue. The invariant subspaces associated with repeated eigenvalue λk are
constructed as follows:

Qk ¼ vk � Im
0

� �����vkþ1 � 0

Imr

� �� �
; (10.32)

and

Qkþ1 ¼ vkþ1 � Ims

0

� �����vk � 0

Imr

� �� �
: (10.33)

For the simple eigenvalue λk and the associated eigenvector vk, the invariant

subspace is constructed as

Qk ¼ Vk � Im½ �; (10.34)

and the matrix of all invariant subspaces is constructed as
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Q ¼ Q1j� � �jQn½ �: (10.35)

Now, using the transformation matrix of Eq. 10.35 one can obtain the

decomposed form of the matrix as

~K ¼ QtKQ ¼ Ea

~
K1

. .
.

~
Kn

2
64

3
75: (10.36)

Each diagonal block in ~K can be obtained directly from the following

formulations, without the need to perform the complete transformation (10.36).

~Kk ¼ As þ λkB1 �γkB3

�γkBt
3 Arþ λkB2

� �
; k ¼ 1; . . . ; n: (10.37)

In this relation, γk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� λ2k

q
:

Referring back to the example considered in Fig. 10.12, Eq. 10.37 yields the

following decomposition:

~K1 ¼ As � B1

ffiffiffi
3
p

B3ffiffiffi
3
p

Bt
3 Ar � B2

� �
; ~K2 ¼ As � B1 � ffiffiffi

3
p

B3

� ffiffiffi
3
p

Bt
3 Ar � B2

� �
and

~K3 ¼ As þ 2B1 0

0 Ar þ 2B2

� �

For another example, consider the frame structure with C6v symmetry as

shown in Fig. 10.13. Each element of the frame has a unit length, a moment

of inertia equal to I and the elastic modulus E. The numerical value of the

cross-sectional area is taken as a ¼ 20 � I. Using the local symmetry-

adapted coordinates as depicted in this figure, the stiffness matrix takes the

following form:

K ¼ EI

A B Bt

Bt A B

Bt A B

Bt A B

Bt A B

B Bt A

2
6666664

3
7777775

Each block of the stiffness matrix above is partitioned with regard to ‘stationary’

and ‘reversing’ coordinates as follows:
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A ¼ As

Ar

� �
¼

30:559 0 0

0 30:559 0

0 0 3:280

2
64

3
75;

and

B ¼ B1 B3

�Bt
3 B2

� �
¼

4:720 8:821 �0:161
�8:821 �14:907 �0:093
0:161 �0:093 �0:907

2
4

3
5:

The eigenvalues of the C6 are {�2, �1, �1, 1, 1, 2}. The invariant subspaces

associated with repeated eigenvalues are constructed as follows:

Qk ¼ vk �
1

0

0

2
4

3
5 vkþ1 �

0 0

1 0

0 1

2
4

3
5

2
4

3
5;

Qkþ1 ¼ vkþ1 �
1

0

0

2
4

3
5 vk �

0 0

1 0

0 1

2
4

3
5

2
4

3
5

where vk and vkþ1 are the eigenvectors of C6 associated with a repeated eigenvalue.

5
4

6

2 1

3

17

16
18

14
15

13

11
10

12

98

7

Fig. 10.13 A frame with C6v

symmetry
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For the simple eigenvalues, the invariant subspace is constructed as

Qk ¼ vk � I3½ �

where vk is the eigenvector of C6 associated with a simple eigenvalue.

And the complete set of invariant subspaces is

Q ¼ Q1j� � �jQ6½ �:

The diagonal blocks of ~K are obtained using Eq. 10.37 for k ¼ 1,. . ., 6. The
results are as follows:

~K1¼
As�2B1 0

0 Ar�2B2

� �
; ~K2¼ As�B1

ffiffiffi
3
p

B3ffiffiffi
3
p

Bt
3 Ar�B2

" #

~K3¼ As�B1 �
ffiffiffi
3
p

B3

� ffiffiffi
3
p

Bt
3 Ar�B2

" #
; ~K4¼ AsþB1

ffiffiffi
3
p

B3ffiffiffi
3
p

Bt
3 ArþB2

" #
; ~K5¼ AsþB1 �

ffiffiffi
3
p

B3

0 ArþB2

" #

~K6¼
Asþ2B1 0

0 Arþ2B2

� �

As the final example for RBC form, consider the pin-jointed one-layer dome

with C8v symmetry as shown in Fig. 10.14a. Each node of the structure has three

translational degrees of freedom. The local symmetry-adapted coordinates are

shown in Fig. 10.14b. Radial and vertical degrees of freedom are the ‘stationary’

DOFs, while the tangent DOFs are regarded as ‘reversing’. The stiffness matrix

takes the following form:

K ¼

A B Bt

Bt A . .
.

. .
. . .

.
B

B Bt A

2
6664

3
7775
72�72

;

Fig. 10.14 A single-layer

space truss of P3 by C8 strong

Cartesian product
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where each block is 9 � 9 and there are eight blocks on the diagonal. Each block of

the stiffness matrix is given in the partitioned form as

A ¼ As

Ar

� �
; B ¼ B1 B3

�Bt
3 B2

� �
; and Bt ¼ B1 B3

Bt
3 B2

� �
;

where As is 6 � 6 associated with radial and vertical degrees of freedom (DOFs)

and Ar is 3 � 3 associated with tangential DOFs.

The eigenvalues of the C8 are f�2;�
ffiffiffi
2
p

;� ffiffiffi
2
p

; 0:0; 0:0;� ffiffiffi
2
p

;� ffiffiffi
2
p

; 2g. The
invariant subspaces are computed using the Eqs. 10.32, 10.33, 10.34, and 10.35, and

the diagonal blocks of ~K are obtained from the closed-form solution (10.37), for

k ¼ 1,. . ., 8. The results are

~K1 ¼
As � 2B1 0

0 Ar � 2B2

� �
; ~K2 ¼ As �

ffiffiffi
2
p

B1 � ffiffiffi
2
p

B3

� ffiffiffi
2
p

Bt
3 Ar �

ffiffiffi
2
p

B2

" #

~K3 ¼ As � B1

ffiffiffi
2
p

B3

�2Bt
3 Ar �

ffiffiffi
2
p

B2

" #
; ~K4 ¼

As 2B3

2Bt
3 Ar

� �
;

~K5 ¼
As �2B3

�2Bt
3 Ar

� �
; ~K6 ¼ As þ

ffiffiffi
2
p

B1 � ffiffiffi
2
p

B3

� ffiffiffi
2
p

Bt
3 Ar þ

ffiffiffi
2
p

B2

" #

~K7 ¼ As þ
ffiffiffi
2
p

B1

ffiffiffi
2
p

B3ffiffiffi
2
p

Bt
3 Ar þ

ffiffiffi
2
p

B2

" #
; ~K8 ¼

As þ 2B1 0

0 Ar þ 2B2

� �

These results can be verified with those of a direct transformation of K as

follows:

~K ¼ QtKQ ¼
~K1

. .
.

~K8

2
64

3
75:

10.2.7 Augmented Block Circulant (ABC) Form

This form is obtained from a block circulant form augmented by a kernel block. The

kernel block is linked to all other blocks through the same bridging block. The form

looks like
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Lmnþk ¼

A B . .
.

B P

B A B 0 P

. .
.

B . .
. . .

. . .
. ..

.

0 . .
.

A B P

B . .
.

B A P

Pt Pt � � � Pt Pt C

0
BBBBBBBBB@

1
CCCCCCCCCA
; (10.38)

where C is the kernel block of order k, P the bridging block, and 0 is zero matrix of

order m.
This form is associated with rotationally regular product graphs with a kernel

component, or from the viewpoint of symmetry, those graph models with Cnv

symmetry where the axis of rotation passes through some nodes of the graph. The

form is easily decomposed using the following procedure:

Letλjðj ¼ 1; . . . ; nÞbe the eigenvalues of the Cn sorted in an ascending order. Let

V ¼ [v1, v2,. . ., vn] be the orthogonal matrix of the normalised eigenvectors

associated with the eigenvalues λj. Clearly λn ¼ 2, and

vn ¼ 1ffiffiffi
n
p 1; 1; . . . ; 1½ �tn: (10.39)

Now, define the block-orthonormal matrix Q as

Q ¼ V� Im 0

0 Ik

� �
: (10.40)

Choosing matrixQ in this way, it is easily verified that matrix L of Eq. 10.38 can

be transformed into

~L ¼ QtLQ ¼

~L1
~L2

. .
.

~Ln

2
6664

3
7775; (10.41)

where

~Lj ¼ Aþ λjB; j ¼ 1; . . . ; n� 1ð Þ; (10.42)

and

~Ln ¼ Aþ 2B
ffiffiffi
n
p

Pffiffiffi
n
p

Pt C

� �
: (10.43)
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Rotationally regular structures with a kernel component fall in the category of

ABC forms; however, the formmay be slightly different from Eq. 10.38. A kernel is

one or more structural nodes which are located on the axis of rotation symmetry. As

an example, consider a single-layer pin-jointed dome depicted in Fig. 10.15a.

Its model consists of a strong Cartesian product of P3 by C12. The kernel is

composed of a single node at the apex. The local symmetry-adapted coordinates

are shown in Fig. 10.15b. Local coordinates for the kernel are aligned arbitrarily.

Let us partition the set of kernel DOFs into ‘stationary’ and ‘rotating’ DOFs

according to the behaviour of a DOF with respect to the rotation around the axis of

rotation symmetry. For example, the vertical component of displacement is the

‘stationary’ DOF, and the two horizontal components comprise the ‘rotating’ set.

With such a partitioning, the ABC form of stiffness matrix for rotationally regular

structures with a kernel looks like

KðABCÞ ¼

A B Bt P S

Bt A B Z P STθ

Bt . .
. . .

.
P STθ

Z . .
.

A B ..
. ..

.

Bt A P STðn�1Þθ
Pt Pt Pt � � � Pt Cs 0

St Tt
θS

t Tt
θS

t � � � Tt
ðn�1ÞθS

t 0 Cr

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: (10.44)

where A and B can be partitioned according to Eq. 10.31. The bridging matrices P

and S can be partitioned accordingly into

P ¼ Ps

Pr

� �
and S ¼ Ss

Sr

� �
: (10.45)

The kernel matrix C is partitioned into diagonal blocks Cs and Cr of order cs and
cr, respectively (k ¼ cs + cr). Tjθ is the rotation matrix of radius jθ j ¼ 1 : n� 1ð Þ,
where θ ¼ 2π

n
.

Now, we construct the invariant subspaces as follows: As before, let

λj j ¼ 1; . . . ; nð Þ be the eigenvalues of the Cn sorted in an ascending order, and let

V ¼ [v1, v2,. . ., vn] be the matrix of the corresponding normalised eigenvectors.

Fig. 10.15 A single-layer

space truss of P3 by C12 strong

Cartesian product having a

kernel node
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The invariant subspaces Q1; Q2; . . . ; Qn½ � are computed using the relations (10.32,

10.33, 10.34, and 10.35) for single and repeating eigenvalues. Then, the set is

augmented as follows to get the required Q matrix:

Q ¼
Q1 Q2 � � � Qn�1

� 	
0 Qn 0

0 0
Icr

h i
0 Ics

0

� 	
2
4

3
5: (10.46)

The decomposed form of the stiffness matrix is then obtained as

~K ¼ QtKðABCÞQ ¼
~K1

. .
.

~Kn�1

2
64

3
75; (10.47)

where the diagonal blocks ~Kj are obtained directly from the relations

~Kj ¼
As þ λjB1 �γjB3

�γjBT
3 Ar þ λjB2

� �
j ¼ 1; . . . ; n� 3ð Þ; (10.48)

and

~Kn�2 ¼

As þ λn�2B1 γn�2B3 ηSs
γn�2B

t
3 Ar þ λn�2B2 ηSrE

As þ λn�2B1 �γn�2B3 ηSsE
�γn�2Bt

3 Ar þ λn�2B2 ηSr
ηSts ηEt

sS
t
r ηEtStr ηStr Cr

2
66664

3
77775;

(10.49)

where λn�2 ¼ λn�1 ¼ 2 cos 2π
n


 �
is the second largest eigenvalue of Cn,

γj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� λ2j

q
, η ¼ ffiffi

n
2

p
, and E is a block-diagonal matrix of order cr with 2 � 2

diagonal blocks:

�E ¼ 0 1

�1 0

� �
: (10.50)

The last diagonal block of ~K is obtained from

~Kn�1 ¼
As þ 2B1 0

ffiffiffi
n
p

Ps

0 Ar þ 2B2

ffiffiffi
n
p

Prffiffiffi
n
p

Pt
s

ffiffiffi
n
p

Pt
r Cs

2
4

3
5 : (10.51)

For example, let us formulate the decomposed stiffness matrix for the single-

layer dome of Fig. 10.15a. The eigenvalues of the C12 are
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�2;� ffiffiffi
3
p

;� ffiffiffi
3
p

;�1;�1; 0; 0; 1; 1; ffiffiffi
3
p

;
ffiffiffi
3
p

; 2
� 

, and using (10.48, 10.49, and

10.51), we obtain

~K1 ¼
As � 2B1

Ar � 2B2

� �
;

~K2; ~K3 ¼ As �
ffiffiffi
3
p

B1 �B3

�Bt
3 Ar �

ffiffiffi
3
p

B2

" #
;

~K4; ~K5 ¼ As � B1 � ffiffiffi
3
p

B3

� ffiffiffi
3
p

Bt
3 Ar � B2

" #
;

~K6; ~K7 ¼
As �2B3

�2Bt
3 Ar

� �
;

~K8; ~K9 ¼ As þ B1 � ffiffiffi
3
p

B3

� ffiffiffi
3
p

Bt
3 Ar þ B2

" #
;

~K10 ¼

As þ
ffiffiffi
3
p

B1 B3

ffiffiffi
6
p

Ss

Bt
3 Ar þ

ffiffiffi
3
p

B2

ffiffiffi
6
p

SrE

As þ
ffiffiffi
3
p

B1 �B3

ffiffiffi
6
p

SsE

�Bt
3 Ar þ

ffiffiffi
3
p

B2

ffiffiffi
6
p

Srffiffiffi
6
p

Sts
ffiffiffi
6
p

EtSts
ffiffiffi
6
p

EtSts
ffiffiffi
6
p

Sts Cr

2
6666664

3
7777775

~K11 ¼
As þ 2B1

ffiffiffiffiffi
12
p

Ps

Ar þ 2B2

ffiffiffiffiffi
12
p

Prffiffiffiffiffi
12
p

Pt
s

ffiffiffiffiffi
12
p

Pt
r Cs

2
64

3
75

10.3 Eigensolution of Locally Modified Regular Structures

Using Iterative Methods

In this section, we present two numerical methods for the efficient eigensolution of

the modified regular structural models. We refer to the unmodified purely regular

structure as the base model. The fundamental assumption of this section is that the

matrices associated with the base models possess canonical forms which could be

decomposed using one of the formulations given in Sect. 10.2. This is a great

computational advantage that could be exploited efficiently in developing numeri-

cal algorithms for the eigensolution of the modified regular models.

The generalised eigenvalue problem for free vibration of a modified regular

structure without damping may be expressed as follows:

Kþ EΔ k Etð Þu ¼ λ Mþ EΔ m Etð Þu; (10.52)
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whereK andM of order N are the stiffness and mass matrices of the base model,Δk
and Δm of order m are the modification parts and λ is the natural frequency squared.
E is a Boolean matrix of association between the set of m modified DOFs and N
base DOFs.

In Sect. 10.3.1, an algorithm is presented based on single vector iterations by

employing the complete set of modal information from the base model. The

eigenproblem is transformed from the Cartesian coordinates into generalised

coordinates, and the transformed problem is solved for a few frequencies and

mode shapes using the shifted inverse iteration method.

In Sect. 10.3.2, we present a numerical method for the approximate

eigensolution of the modified regular structures based on a free interface

substructuring technique. The proposed method has the advantage that it does not

rely on the complete eigensolution of the base model and instead uses a few

eigenvalues and eigenvectors together with higher-order approximations from the

base model. This information is used to reduce the governing eigenproblem while

preserving the sparsity of the matrices.

10.3.1 Eigensolution of Locally Modified Regular Structures
Using Shifted Inverse Iteration Method

Let Φ denote the orthonormal matrix of eigenvectors corresponding to the base

model. The following relations hold:

ΦtKΦ ¼ Λ; (10.53)

and

ΦtM Φ ¼ I; (10.54)

where I is the identity matrix and Λ denotes the diagonal matrix of the squared

frequencies.

Let us transform the displacement vector u to generalised coordinates as

u ¼ Φq; (10.55)

Then, the eigenproblem of the modified regular structure (Eq. 10.52) is

transformed to

Λþ ψΔk ψtð Þq ¼ λ Iþ ψΔ m ψtð Þq; (10.56)

where ψ ¼ ΦtE.
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Suppose that we are interested in those eigenvaluesλclose to a specified valueλ0.
We shift the origin to λ0 in Eq. 10.56 as follows:

Λþ ψΔk ψt � λ0 Iþ ψΔ m ψtð Þ½ � q ¼ λ� λ0ð Þ Iþ ψΔ m ψtð Þq: (10.57)

Rearranging Eq. 10.57 yields

Λs þ ψ Δk� λ0Δ mð Þ ψt½ � q ¼ λ� λ0ð Þ Iþ ψΔ m ψtð Þq; (10.58)

where Λs ¼ Λ� λ0 I:.
Let us write

�Λs ¼ Λs þ ψ Δk� λ0Δ mð Þψt½ � : (10.59)

Multiplying Eq. 10.58 by the inverse of �Λs and setting θ ¼ 1
λ�λ0ð Þ , we obtain

θ q ¼ �Λ�1s Iþ ψ Δm ψtð Þq : (10.60)

The inversion �Λs
�1

is calculated using the well-known Sherman–Morrison–
Woodbury formula

�Λ�1s ¼ Λs
�1 � Λs

�1ψC�1s ψtΛ�1s


 �
; (10.61)

where

Cs ¼ Δk-λ0Δmð Þ�1 þ ψtΛ�1s ψ
� �

: (10.62)

If the inversion Δk� λ0 Δmð Þ�1 does not exist (and it is often the case), then

Eqs. 10.61 and 10.62 should be revised as follows:

�Λ�1s ¼ Λ�1s � Λ�1s ψC�1s Δk-λ0Δmð Þ ψtΛ�1s


 �
; (10.63)

where

Cs ¼ Im þ Δk� λ0Δmð ÞψtΛ�1s ψ

 �

: (10.64)

Equation 10.60 is in the form of a standard eigenvalue problem that can be

solved for a few largest eigenvalues θ and the corresponding eigenvectors using the
power method. These eigenvalues correspond to the values of λ closest to λ0. The
only tough term in Eqs. 10.61 or 10.63 is the inversionC�1s . This term changes every

time we apply a different shift λ0 to the origin. However, the number of modified

DOFs is of much smaller order m. In our implementation, this inversion is more
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efficiently conducted by LU decomposition with partial pivoting instead of full

matrix inversion.

In the following, the necessary matrix vector operations for one step of vector

iterations are demonstrated through a subroutine. Let qk and qk+1 be the successive

vectors in the kth iteration step. LetΛdenote the vector of diagonal entries ofΛs, and let

the operator ./(point divide) denote the array division between two vectors. If a matrix

is point divided by a vector, its columns will array-wise be divided by that vector.

Subroutine 1.

U ¼ Ψ:=Λ
η1 ¼ qk þ ΨΔmΨtqk

η2 ¼ η1:=Λ
η3 ¼ Ψtη2
η3 ¼ Δk� λ0 Δmð Þη3
Solve for η4 from ðIm þ Δk� λ0 Δmð ÞΨtUÞη4 ¼ η3
qkþ1 ¼ η2 � Uη4

qkþ1 ¼
qkþ1

qkþ1
�� ��

2
þ qtkþ1ΨΔmΨtqkþ1

10.3.1.1 Initialisation, Shift and Deflation

Any non-zero vector q0 perpendicular to the subspace spanned by the previously

calculated eigenvectors can be used as the initial or starting vector. The starting

vector is normalised using the following normalisation operation:

q0 ¼
q0

q0k k2 þ qt0ΨΔmΨtq0:
(10.65)

The eigenvalue estimated from normalised vector q is calculated as

λ ¼ qt Λþ ψ Δk ψtð Þq: (10.66)

The convergence of the algorithm depends to a great extent on the choice of

appropriate shifts. Equation 10.67 demonstrates the rate of convergence towards the

eigenvalue λ1 which is closest to the selected shift λ0 (see, e.g. [5]). Also in this

equation, λ2 is the second closest eigenvalue to λ0. Although introducing a new shift

λ0 requires some matrices to be modified, the extra matrix calculations are

compensated for by a remarkable reduction in the number of iterations:
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λk � λ1
�� �� ¼ O

λ1 � λ0
λ2 � λ0

� �k

: (10.67)

In the experiments of this chapter, we use a multiple of the eigenvalue obtained

in the previous step, as the shift value for the current step. The coefficient is taken as

0.98. For the first shift, a small number close to zero ðε ¼ 1e� 4Þ is assumed.

Another feature incorporated into the algorithm is that the speed of convergence

is monitored and once it drops below a certain level, then the shift value is changed

to the current estimate of the eigenvalue, and the calculations continue after the new

shift is applied. This happens when there exist two eigenvalues very close to each

other and the shift used is not close enough to one of them, such that the ratio in the

right-hand side of Eq. 10.67 is very close to unity. As mentioned before, application

of a new shift involves extra matrix computations, but these are compensated by the

improved rate of convergence towards the eigenpair sought.

For computing the eigenpairs one by one, it is necessary to prevent the algorithm

from converging to previously obtained quantities or technically deflate for the

previous information. Deflation is carried out by restricting the current vector to

the complementary subspace of the already computed eigenvectors. Let Q denote

the set of j computed orthonormal eigenvectors. The projection operator that

orthogonolises (j + 1)th eigenvector against the computed eigenvectors is defined

by

P ¼ I�QQt Iþ ψ Δm ψtð Þ (10.68)

The projected vector is normalised using Eq. 10.65 and then used in the iteration

process. During the iterations, it is necessary to frequently orthogonalise the current

vector against the existing vectors in order to prevent convergence to an unwanted

eigenvector. If we define the dominant eigenvector as an already computed eigen-

vector with the closest eigenvalue to the current shift, then the frequency of re-

orthogonalisation can be determined by examining the component of the current

vector which is in the direction of the dominant eigenvector. If this component

exceeds the specified limit, then the orthogonalisation is carried out.

10.3.1.2 The Algorithm

In the following, necessary steps towards the calculation of a few frequencies and

eigenmodes of a modified regular structure are presented in an algorithm to facili-

tate a quick review of the proposed method:

(1) Obtain the eigensolution of the base model employing a block-diagonalisation

technique (i.e. Φ and Λ from Eq. 10.53).

(2) Set λ0 ¼ ε ¼ 1e� 4ð Þ, k ¼ 0; qk ¼ e1 and tol ¼ l0�12.
(3) Repeat for the number of requested eigenpairs:
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1. Repeat until convergence:

1.1 Update q through subroutine 1.

1.2 If Q is not empty, then replace q with its projection into Q? using the

operator P in Eq. 10.68.

1.3 If the rate of convergence is not improved more than 5 % between two

successive iterations, then change the shift λ0 to the current estimate of

the eigenvalue (Eq. 10.66). Update matrices using the new shift.

1.4 Check for convergence.

2. Calculate λ from Eq. 10.66; add q to Q and λ to the set of requested

eigenvalues.

3. Set k ¼ 0; initialise qk with a vector perpendicular to Q.

4. Select a new shift λ0 and update the matrices.

(4) Calculate the requested mode shapes from Eq. 10.55.

10.3.1.3 Numerical Experiments

Example 10.1. Consider the planar, pin-jointed truss depicted in Fig. 10.16. The

structure is composed of six identical elastic bars, each having the stiffness EA,

length L and a uniform mass m per unit length. The model possesses symmetry

properties and serves as our base structure. The structure has six DOFs, and hence,

the mass and stiffness matrices are each 6 � 6. The nodal degrees of freedom are

expressed in a local symmetry-adapted coordinate system as depicted for each node

in Fig. 10.16. With this convention, the stiffness matrix takes the form

Fig. 10.16 A pin-jointed

planar truss
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K ¼
K1 K2 Kt

2

Kt
2 K1 K2

K2 Kt
2 K1

2
4

3
5

with the following submatrices:

K1 ¼ EA

4L

� �
10 0

0 2

� �
;

and

K2 ¼ EA

4L

� �
3

ffiffiffi
3
p

� ffiffiffi
3
p �1

� �
:

The consistent mass matrix has the form

M ¼
M1 M2 Mt

2

Mt
2 M1 M2

M2 Mt
2 M1

2
4

3
5;

with the following components:

M1 ¼ mL

12

� �
12 0

0 12

� �
;

and

M2 ¼ mL

12

� �
�1 � ffiffiffi

3
pffiffiffi

3
p �1

� �
:

Let us define the Kronecker product:

H ¼

ffiffi
3
p
3

� ffiffi
3
p

6�0:5i
� ffiffi

3
p

6þ0:5iffiffi
3
p
3

ffiffi
3
p
3

ffiffi
3
p
3ffiffi

3
p
3

� ffiffi
3
p

6þ0:5i
� ffiffi

3
p

6�0:5i

2
6664

3
7775� I2;

where I2 is the identity matrix of order two, and i ¼ ffiffiffiffiffiffiffi�1p
.

Using the above unitary matrix H, the stiffness and mass matrices are

transformed into block-diagonal matrices:
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H�KH¼Diag �Kið Þi¼1:3

¼
K1þK

ðþÞ
2

K1� 0:5K
ðþÞ
2 þ i

ffiffiffi
3
p

=2K
ð�Þ
2

K1� 0:5K
ðþÞ
2 � i

ffiffiffi
3
p

=2K
ð�Þ
2

2
64

3
75

and

H�KH¼Diag �Mið Þi¼1:3

¼
M1þM

ðþÞ
2

M1�0:5M
ðþÞ
2 þ i

ffiffiffi
3
p

=2M
ð�Þ
2

M1�0:5M
ðþÞ
2 � i

ffiffiffi
3
p

=2M
ð�Þ
2

2
64

3
75

where (.)* denotes the conjugate transpose, and we have

K
ðþÞ
2 ¼ K2 þKt

2; and K
ð�Þ
2 ¼ K2 �Kt

2;

and

M
ðþÞ
2 ¼M2 þMt

2; and M
ð�Þ
2 ¼M2 �Mt

2:

Each decomposed system �Ki; �Miði ¼ 1 : 3Þ is solved to obtain�Vi;�Λiði ¼ 1 : 3Þ
such that

�V
�
i
�Ki
�Vi ¼�Λi; and V�iMiVi ¼ I; ði ¼ 1 : 3Þ:

Putting them together, we have

V�H�KHV ¼ Λ; and V�H�MHV ¼ I;

where

V ¼ Diag �Við Þi¼1:3;Λ ¼ Diag �Λi


 �
i¼1:3:

Hence, the orthonormal matrix Φ in Eq. 10.53 is obtained as

Φ ¼ HV:

Φ is the requested matrix of modal vectors for the base structure, and Λ is the

diagonal matrix of the natural frequencies squared. Our calculations lead to

Λ ¼ 3EA=mL2

 �

Diagð0; 0:0898; 0:898; 0:8352; 0:8352; 1:6Þ:
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and

Φ ¼

0 0:101 �0:002 0:105 0:181 0:182
�0:182 0:003 0:180 �0:127 0:073 0

0 �0:049 0:088 0:105 �0:181 0:182
�0:182 �0:158 �0:088 0:127 0:073 0

0 �0:052 �0:087 �0:209 0 0:182
�0:182 0:155 �0:093 0 �0:147 0

2
6666664

3
7777775
:

Now, suppose that we are going to modify the base structure by changing the

cross-sectional area of member 4 to 2A and consequently its distributed mass to 2m.
The necessary modification matrices are

Δk ¼ EA

4L

� �
4 0

0 0

� �
; and Δm ¼ mL

12

� �
12 0

0 12

� �
;

and the associate matrix E is

Et ¼ 1 0 0 0 0 0

0 1 0 0 0 0

� �
:

Hence, matrix Ψ in Eq. 10.56 reads

Ψt ¼ EtΦ ¼ 0 0:101 �0:002 0:105 0:181 0:182
�0:182 0:003 0:180 �0:127 0:073 0

� �
;

and we have necessary information to go through the iterations and obtain the

modified frequencies

ω2 ¼ 3EA

mL2

� �
f0,0:0699,0:1121,0:6542,0:7325,1:3971g

Example 10.2. Figure 10.17a depicts a single-layer dome composed of pin-jointed

bar elements. The model is a strong Cartesian product C30 � P9 augmented by a

node at the apex. Each node of the structure has three translational DOFs. The

Fig. 10.17 A double-layer

dome (a), the modified

structure (b)
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bottom nodes of the dome are all constrained in three directions. This leads to a

total of 720 DOFs for the entire structure. The diameter of the dome is 32 m, and

its height is 13.6 m. The bar elements have a uniform cross-sectional area of

a ¼ 6.41 cm2, and the Young’s modulus is considered to be E ¼ 2.1 � 1011 N/m2.

For simplicity, a concentrated mass of 80 kg in each node is assumed.

The free vibration analysis of the base structure depicted in Fig. 10.17a is

performed using a procedure for decomposition of stiffness and mass matrices.

The prerequisite to this is to transform the stiffness and mass matrices from the

global coordinates to a local symmetry-adapted coordinate system as discussed in

the previous example. With such a transformation, the stiffness and mass matrices

would take the augmented block circulant form as illustrated in Sect. 10.2.7. All the

frequencies and mode shapes of the base structure are calculated using the

formulations presented in the aforementioned section. Table 10.1 shows a few

lower frequencies and the corresponding periods obtained from the decomposition

method.

Now, suppose that we are interested in the effects of eliminating some diagonal

elements on the vibration behaviour of the base structure. As an example, consider

the modified structure obtained by eliminating six diagonal bars as depicted in

Fig. 10.17b. A total number of six nodes are affected by this modification, and

hence, the modification matrices Δk and Δm in Eq. 10.52 are 18 by 18 each. The

first 12 eigenfrequencies and mode shapes of the modified structure are obtained

using the proposed method and the direct inverse iteration method. The results

obtained from the two methods are in good agreement with each other. Table 10.2

summarises the frequencies and corresponding periods of the modified structure.

The total time required by the proposed method to complete the iterations together

with the solution of the base structure was 0.285 s. The direct inverse iterations

required 7.68 s to complete the solution for 12 eigenpairs, indicating that the

proposed method performed 27 times faster in the case of this example.

Table 10.1 Some natural

frequencies and periods of the

base structure

Mode no. Frequency (rad/s) Period (sec)

1 55.212314958242 0.113800432239

2 57.412197701472 0.109439902298

3 57.412197701563 0.109439902298

4 64.249800343827 0.097793071318

5 64.249800343980 0.097793071318

6 75.862375410463 0.082823471756

7 75.862375410605 0.082823471756

8 91.832588278479 0.068419995831

9 91.832588278676 0.068419995831

10 110.911771332569 0.056650301692

11 110.911771332718 0.056650301692

12 131.101366502565 0.047926161830
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10.3.2 Approximate Eigensolution of Locally Modified Regular
Structures Using a Substructuring Technique

With a closer look at problem (10.52), its connection with two other extensively

investigated eigenproblems in structural mechanics is realised. The first one is

structural dynamic reanalysis problem, which deals with efficient use of natural

frequencies and modes obtained from a previous analysis to derive the response of

the new modified structure, without extensive additional computations. Approxi-

mate methods for eigenvalue reanalysis based on Taylor’s series expansion have

been proposed [6, 7]. However, these methods are not suitable for significant

modifications. Rank-one modification of the eigenproblem has been the subject of

research for quite some time [8, 9]. However, these methods rely on the complete

eigensolution of the original system, which is prohibitively expensive for large-

scale systems. Carey et al. [10] proposed a block Lanczos method to calculate a few

lowest eigenvalues based on the information obtained in the solution of a few

eigenvalues for the original system. They employed a clever idea of using starting

Lanczos vectors which span the column space of the matrix E in Eq. 10.52. The

modification problem that we are going to address in this chapter however differs

from the reanalysis problem due to the block-diagonalisable structure of K and M,

as mentioned before. This is an occasion that offers great opportunities in

eigensolution and linear solution of the corresponding equations and will be

efficiently employed in the proposed method of this chapter. Nevertheless, the

method developed here is directly applicable to reanalysis problems as well.

Another problem of structural mechanics related to the subject matter is the

dynamic substructuring [11]. There are basically two methods available in literature

for the eigenvalue problem of substructuring. Kron’s method is one of them, where

the problem reduces to solving a non-linear eigenvalue problem involving the

Kron’s matrix [12, 13]. Sehmi [14] applied the Lanczos algorithm to Kron’s method

and showed that operation count decreases dramatically compared to the classic

solutions of Kron’s scalar equation. However, a remarkable drawback of Kron’s

Table 10.2 The 12 lowest

natural frequencies and the

periods of the modified
structure

Mode no. Frequency (rad/s) Period (sec)

1 43.059838267156 0.145917531510

2 45.126505414274 0.139234918581

3 45.994210412664 0.136608178525

4 52.618417941081 0.119410380491

5 52.958200044459 0.118644238322

6 62.757775486842 0.100118037302

7 63.028029548635 0.099688747247

8 76.447643302369 0.082189391795

9 77.938683888095 0.080617031155

10 94.133449645646 0.066747636795

11 95.074919920548 0.066086674724

12 116.686047209274 0.053846929067
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substructuring is the need to calculate all eigenpairs of each substructure primarily.

This is very time consuming, since only the first a few eigensolutions are generally

of interest for most applications. Weng et al. [15] improved the Kron’s

substructuring method using modal truncation approximation. They incorporated

the first-order and the second-order residual flexibility approximations of the higher

modes. The other well-known method of dynamic substructuring is the component

mode synthesis (CMS), where a non-linear eigenvalue problem is avoided by

restricting the solution to a certain subspace [16, 17]. CMS methods are classified

as free interface, fixed interface and hybrid methods. MacNeal introduced the

residual flexibility to include the static effects of higher normal modes [18].

Rozenblum applied an associated isostatic subset method to calculate the residual

modes for positive semi-definite stiffness matrices [19]. Rixen proposed a dual

Craig–Bampton formulation of the CMS method [20].

Most of the structural applications require just a few lower eigenfrequencies and

their corresponding modal vectors. This information can be obtained much more

easily and quickly for the base model due to block-diagonalisable structure of its

matrices. Hence, it is natural to express the dynamic behaviour of a modified model

in terms of eigenmodes of its base model. Higher eigenmodes can be estimated by

static modes deduced from residual flexibility of the base model. Again, the

decomposable structure of the matrices associated with the base model is of central

importance in constructing such approximations. In this section, we provide a

substructure-assembled formulation of problem (10.52) and describe how a

truncated modal basis together with static modes deduced from residual flexibility

of the base model can be used to reduce the governing eigenproblem into a much

smaller problem while maintaining the sparsity.

10.3.2.1 Free Interface Substructure Formulation for the Modified

Regular Structure

Let us assume that, with respect to eigenvalue problem (10.52), the perturbations

Δk and Δm correspond to a substructure interacting with the base model of K and

M. This substructure is not required to be a meaningful substructure as illustrated in

Example 4. Partitioning the model into these two components and using internal

forces f on the interface DOFs between the two substructures, the linear dynamic

behaviour of each part is governed by the local eigenequations

Ku� λMuþ Ef ¼ 0; (10.69)

and

Δkv� λΔmv� f ¼ 0: (10.70)
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The compatibility between the two substructures is enforced by

Etu� v ¼ 0: (10.71)

Putting them together, Eqs. 10.69, 10.70, and 10.71 can be written in block form

K 0 E

0 Δk �I
Et �I 0

2
4

3
5 u

v

f

2
4

3
5� λ

M

Δm
0

2
4

3
5 u

v

f

2
4

3
5 ¼ 0: (10.72)

Vector f is also known as Lagrange multipliers. The assembled system (10.72) is

of order N + 2 m and has for general solution N eigenvalues λ.

10.3.2.2 Modal Truncation

Let Φ be the matrix of M-orthonormal eigenvectors and Λ the diagonal matrix of

eigenvalues associated with the eigenproblem of the base model. Hence, the

following relations hold:

ΦtKΦ ¼ Λ and ΦtMΦ ¼ I: (10.73)

Let us define a cut-off eigenvalue λc and suppose that we are interested in those

eigenvalues λ of Eq. 10.52 that

λ << λc: (10.74)

Now, partitionΛ into lower and higher eigenvalues based on the cut-off value λc
as

Λ ¼ Λ1

Λh

� �
: (10.75)

Let the corresponding partitioning of Φ be

Φ ¼ Φ1 Φh �:½ (10.76)

Using modal coordinates q defined by

u ¼ Φlql þΦhqh: (10.77)

and premultiplying the problem (10.69) by Φt
h, it can be deduced that

Λhqh � λqh þΦt
hEf ¼ 0: (10.78)

10.3 Eigensolution of Locally Modified Regular Structures Using Iterative Methods 375



Premultiplying Eq. 10.78 byΛh
�1 and putting λΛh

�1 	 0 due to the assumption

(10.74), we arrive at

qh ¼ �Λ�1h Φt
hEf: (10.79)

Substituting Eq. 10.79 into Eq. 10.77, we obtain the following approximation for

vector u:

u 	 Φ1q1 �GresEf; (10.80)

where

Gres ¼ ΦhΛh
�1Φh

t (10.81)

is the residual flexibility of the base model.

In summary, we construct the following approximation of the coordinate vectors

and Lagrange multipliers for the reduction of the eigenproblem (10.72):

u

v

f

2
4

3
5 	 T

q1
v

f

2
4

3
5 	 Φ1 0 �GresE

0 I 0

0 0 I

2
4

3
5 q1

v

f

2
4

3
5; (10.82)

10.3.2.3 The Reduced Eigenproblem

Using the approximation (10.82), we will reduce the assembled system (10.72).

First, notice the following properties of the residual flexibility matrix

Gt
res ¼ Gres; GresKGres ¼ Gres

Φt
1KGres ¼ 0; Φt

1MGres ¼ 0:
(10.83)

The reduced eigenproblem of the modified regular structure is then obtained by

using the transformation (10.82) as follows:

~K
ql
v

f

2
4

3
5� λ ~M

ql
v

f

2
4

3
5 ¼ 0; (10.84)
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with the reduced matrices

~K ¼
Λ1 0 Φt

1E

0 Δk �I
EtΦl �I Fres

2
4

3
5 and ~M ¼

I 0

Δm
0 Mres

2
4

3
5; (10.85)

where

Fres ¼ �EtGresE; Mres ¼ EtGresMGresE: (10.86)

Λl and Φl correspond to the calculated eigenvalues and eigenmodes of the base

structure also called the master modes. They include zero eigenvalue and the

corresponding rigid-body modes of the base model if available. However, the

calculations differ in constructing the residual flexibility matrix, with or without

the rigid-body modes.

10.3.2.4 Evaluation of the Residual Flexibility Matrix

In general case, stiffness matrixK of the base model may be positive semi-definite.

First, we discuss the evaluation of Gres when K is positive definite.

Positive-Definite Stiffness Matrix

In this case, K is nonsingular, and using the following result:

K�1 ¼ ΦΛ�1Φt ¼ Φ1Λ�11 Φt
1 þΦhΛ�1h Φt

h: (10.87)

we conclude that

Gres ¼ K�1 �Φ1Λ�11 Φt
1: (10.88)

The inversion K�1 is constructed using the block-diagonal transform of K

(Eq. 10.2) as

K�1 ¼ T½KðBDÞ��1Tt: (10.89)

Positive Semi-Definite Stiffness Matrix

In this case, there are rigid-body modes present in the calculated modal matrix Φl,

and they should be suppressed first to obtain the elastic part of the response, from

which the residual flexibility is then calculated.

Let us partition the M-orthonormal modal matrix Φ as follows:
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Φ ¼ Φl;Φh½ � ¼ Φr;Φa;Φh½ � ¼ Φr;Φe½ �; (10.90)

where Φr is the matrix of the rigid-body modes, Φa the matrix of calculated

eigenvectors of non-zero eigenvalues and Φe ¼ Φa;Φh½ � the elastic eigenvectors.
The response of the following system:

Kx ¼ F0 (10.91)

is composed of the rigid-body response xr and an elastic response xe. The elastic

response can be expressed in terms of eigenvalues and eigenmodes as

xe ¼ ΦeΛ�1e Φt
e

� 	
F0 ¼ ΦaΛ�1a Φt

a þΦhΛ�1h Φt
h

� 	
F0 ¼ GeF0: (10.92)

Hence, the residual flexibility matrixGres can be obtained, provided that we have

already calculated the elastic flexibility matrix Ge. The relation is

Gres ¼ Ge �ΦaΛ�1a Φt
a: (10.93)

The elastic flexibility matrix Ge is calculated using an inertia relief procedure to

remove the rigid-body modes. Let R be the orthogonal projector onto the comple-

ment space of Φr, defined by

R ¼ ðI�ΦrΦt
rMÞ: (10.94)

It can be shown [18, 19] that

Ge ¼ RGeR
t; (10.95)

where �Ge is the elastic flexibility matrix relative to a set of imposed constraints. �Ge

may be obtained by taking the stiffness matrix K which is singular, deleting rows

and columns corresponding to constrained DOFs, inverting the resulting matrix and

expanding back to the original size by adding zeros. If we use the block-diagonal

transform K(BD) of (10.2) instead of K for inversion, then we will have

Ge ¼ RTGe
ðBDÞ

TtRt; (10.96)

whereGe
ðBDÞ is obtained from K(BD) in an analogous way to that of Ge . It should be

noted that in the actual implementations, the inverse matrices are not computed

explicitly, and the calculations are performed much more efficiently using LU

decomposition with partial pivoting.

378 10 Graph Products Applied to the Regular and Locally Modified Regular. . .



10.3.2.5 Numerical Experiments

Example 10.3. Consider the mass–spring system depicted in Fig. 10.18a. The

system is composed of 30 point masses connected together with identical springs

of stiffness k. Two end points are connected to the ground with springs of stiffness

3k. Each point has a single degree of freedom in the x-direction with a concentrated

mass m, except for the two end points with mass 5m.
The system is decomposed into a regular model in Fig. 10.18b which serves as our

base model and a small modification part as shown in Fig. 10.18c. The interface

forces f acting between the two subsystems are also depicted in these figures.

The mass matrix of the base system is a diagonal matrix with entries equal tom. The
stiffness has the form

K ¼ k

2 �1 0 . . . 0

�1 2 �1
0 : : : 0

�1 2 �1
0 . . . 0 �1 2

2
66664

3
77775

This is a matrix of Toeplitz type, and its eigenvalues and eigenvectors can be given by

λj ¼ k 2� 2 cos
jπ
31

� �� �
and φj ¼

sin
1jπ
31

� �

sin
2jπ
31

� �

sin
3jπ
31

� �
..
.

sin
30jπ
31

� �

2
66666666666664

3
77777777777775
; ðfor j ¼ 1; 2; . . . ; 30Þ

Fig. 10.18 (a) Mass–spring system, (b) the base system, (c) modification part
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Stiffness, mass and association matrices corresponding to modification subsystem

are as follows:

Δk ¼ k
2 0

0 2

� �
; Δm ¼ m

4 0

0 4

� �
; and Et ¼ 1 0 . . . 0 0

0 0 . . . 0 1

� �
2�30

Utilising only eight eigenvalues and eigenmodes from the base system, that is,

Λ1 ¼

λ1
:

:
:

λ8

2
66664

3
77775 and Φ1 ¼ φ1 . . . φ8½ �;

we calculate the residual modes, GresE, using an LU decomposition of K. Next, we

use this information to construct the reduced eigenproblem (10.84). In our case,

matrices ~K and ~M are 12 by 12 each. The reduced problem in turn is solved using a

sparse eigensolver of MATLAB software to obtain the first six eigenvalues as

shown in Table 10.3. The system eigenvalues are also obtained using a direct

method that solves the eigenproblem (10.52) of the modified system without

reducing the problem size. The results are compared in Table 10.3 to see how

much accuracy can be obtained in estimating the lower eigenvalues of the original

system using the proposed method.

Table 10.3 Comparison of the results for Example 10.3

Index

λ/ k
m


 �
Relative error (%)Present method Direct method

1 0.011196179375082 0.011196152245938 0.000242308

2 0.04456671315552 0.044565589843171 0.002520582

3 0.09943251737941 0.099414548792035 0.018074404

4 0.174489925521154 0.1744322737405 0.033051097

5 0.267571530235334 0.267309789748227 0.097916536

6 0.373992592569361 0.373760051611776 0.062216643

Table 10.4 Comparison of the natural periods and mode shapes – Example 10.4

Index

T(sec)

Relative error (%) Mode shape errorPresent method Direct method

1 2.437620492749 2.437629071982 0.00035195 6.9E-07

2 0.812544240652 0.812569812820 0.00314707 6.9E-07

3 0.487529859089 0.487574215574 0.00909738 1.8E-06

4 0.348241329684 0.348302251895 0.01749119 5.6E-06

5 0.270853657868 0.270938450909 0.03129605 1.4E-05

6 0.221614561259 0.221715019183 0.04530948 6.9E-07
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It can be seen from the Table 10.3 that lower eigenvalues are estimated more

accurately, and the relative error increases with the index of eigenvalues. Note that

the relative error of an estimated eigenvalue is proportional to the ratio of that

eigenvalue to the cut-off value. The cut-off value is the lower eigenvalue in the set

Λh. In this example, the cut-off value is the 9th eigenvalue of the base system

(λ9 ¼ 0.775788034904674), because we used only eight of them as master

eigenvalues. Hence, the eigenvalues that are well below this value are

approximated more accurately. With reference to Table 10.3, it is realised that

the maximum relative error is less than 0.1% which is a sufficient accuracy for usual

engineering applications.

Example 10.4. This example demonstrates that the modification part need not be a

meaningful substructure. Consider a 120-storey shear building depicted in

Fig. 10.19a. Each floor has a total mass m concentrated at the floor level. The

2nd-last stories are identical, each of lateral stiffness k. The first storey has a lateral

stiffness 0.42k.

Fig. 10.19 A shear building (a), the base structure (b), the modification part (c)
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In Fig. 10.19b, necessary springs are attached to the building at the first and the

last floor levels in order to create a base structure with a regular stiffness matrix of

order 120 � 120. The mass matrix is a diagonal matrix with diagonal elements m.
Figure 10.19c shows the modification part. It is observed that springs with negative

stiffness are introduced. Although a negative stiffness spring is not a meaningful

substructure, it does not affect the algorithm because the formulations are devel-

oped based on the algebraic equilibrium equations partitioned using the Lagrange

multipliers and no further assumptions are made regarding the modification

matrices.

Table 10.4 presents the first six natural periods of the structure obtained using the

present method and a direct method, assuming m ¼ 5 t, and k ¼ 200 � 103 kN/m.

Only 16 modes of the base structure are employed in the calculations using the

proposed method. The corresponding cut-off value is (T17 ¼ 0.071757536).

The lower modes obtained here have periods well over the cut-off value, and

hence, the relative errors in Table 10.4 are very small. Also presented in this

table are the mode shape errors. The mode shape error is a measure of the angle

between two vectors. It is calculated using the following relations:

cos2θ ¼ ~utuj j2
~ut~uð Þ utuð Þ ; (10.97)

and

Mode shape error ¼ 1� cos2θ: (10.98)

In these relations, u and ~u are the mode shapes calculated using the direct method

and the proposed method, respectively, and θ is the angle between the two modes.

With reference to Table 10.4, one can deduce that the obtained mode shapes are

very satisfactory.

Example 10.5. Consider a double-layer dome as shown in Fig. 10.20a. The top

layer is the Cartesian product CnðXÞCPm, and the bottom layer is the Cartesian

product CnðXÞCPm�1. Each node of the bottom layer is connected to four adjacent

Fig. 10.20 A double-layer dome
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nodes in the top layer. Here n ¼ 18, and m ¼ 13. Figure 10.20b shows a cross

section of the dome in elevation and some dimensions in metric units. The top and

bottom arcs are divided into equal length segments by cross members. The

structure is built of pin-jointed bar elements having cross-sectional area a ¼ 6.41

cm2, and elastic modulus is E ¼ 2.1 � 1011 N/m2. For simplicity, a concentrated

mass of 80 kg in each node is assumed. Each node of the structures has three

translational DOFs.

The eigenproblem associated with free vibration of the base model is

transformed from global Cartesian coordinates into a local symmetry-adapted

coordinate system in which stiffness and mass matrices become block

diagonalisable and are easily solved to obtain the first 60 eigenfrequencies and

eigenmodes constituting the master modes of the base structure. Table 10.5 presents

the results for the first 16 non-zero natural frequencies (the six zero frequencies

associated with rigid-body modes are discarded) and the corresponding natural

periods. Calculations are performed at double-precision arithmetic and on a com-

puter with Intel® Core ™2 Duo CPU 2.33 GHz and 2 GB of RAM, which was

running Microsoft Windows XP Professional Service Pack 3.

Now consider the addition of some supports to the base structure as shown in

Fig. 10.21. We use the penalty method to impose the constraints. In the penalty

Table 10.5 Some natural

frequencies and periods

of the base structure

Index Frequency (rad/s) Period (sec)

1 23.431111403210 0.268155667013

2 23.431111403210 0.268155667013

3 55.640554754627 0.112924562576

4 55.640554754627 0.112924562576

5 75.374657678647 0.083359387634

6 75.374657678647 0.083359387634

7 88.464767135800 0.071024719904

8 93.539922378078 0.067171162296

9 93.539922378078 0.067171162296

10 97.325211855081 0.064558660469

11 97.325211855081 0.064558660469

12 104.411745166515 0.060176997302

13 104.411745166515 0.060176997302

14 127.183813251247 0.049402397574

15 133.506590117543 0.047062735268

16 133.506590117543 0.047062735268

Fig. 10.21 The dome with

supports
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method, matrix K is updated to Kþ EΔkEt , with Δk being a diagonal matrix of

penalty numbers. The penalty numbers are taken as 106 times the largest diagonal

coefficient in the structure stiffness matrix. The results of the analysis using the

proposed method with 60 master modes and also a direct sparse eigensolver of the

MATLAB software are presented in Table 10.6 for the first 16 natural frequencies

and the corresponding natural periods. Note that the supported structure has no

rigid-body modes due to sufficient restraining of the structure.

Comparing the results in Tables 10.5 and 10.6, it can be verified that the

fundamental period of the supported structure is decreased compared to that of

the base structure, due to contribution of the supports to total structural stiffness.

With reference to Table 10.6, one can observe that relative errors range from a

negligible to 0.1 % for the last estimated natural period, indicating that the accuracy

of the obtained results is satisfactory. The mode shapes are verified by the angles

between them using Eq. 10.98. For simple eigenvalues, Eq. 10.97 is used to

measure the angle between the corresponding mode shapes. For multiple

eigenvalues, it is possible for the algorithm to calculate a different basis for the

associated eigenspace. Hence, the subspaces spanned by the set of orthonormal

eigenvectors associated with the multiple eigenvalue should be tested against each

other. For this purpose, the angle between two equi-dimensional subspaces with

orthonormal bases ~U and U is calculated from the following equation [21]:

Table 10.6 Comparison of the result for the supported structure

Index

Present method Direct method

Relative error

(%)

Mode shape

error

Total run time: 0.085 Total run time: 14.45

Frequency

(rad/s)

Period

(sec)

Frequency

(rad/s)

Period

(sec)

1 37.642300 0.166918 37.641876 0.166920 0.001124 2.9E-08

2 37.642304 0.166918 37.641877 0.166920 0.001134 2.9E-08

3 44.171008 0.142247 44.169672 0.142251 0.003023 1.1E-07

4 55.887582 0.112425 55.883364 0.112434 0.007546 3.5E-07

5 55.888028 0.112425 55.883364 0.112434 0.008344 3.5E-07

6 66.621251 0.094312 66.608203 0.094331 0.019585 6.5E-07

7 74.902147 0.083885 74.893256 0.083895 0.011870 1.2E-06

8 74.902249 0.083885 74.893256 0.083895 0.012006 1.2E-06

9 88.104846 0.071315 88.101864 0.071317 0.003385 1.6E-06

10 94.670128 0.066369 94.635720 0.066393 0.036345 2.0E-06

11 94.673700 0.066367 94.635720 0.066393 0.040117 2.0E-06

12 103.415690 0.060757 103.384328 0.060775 0.030326 3.6E-06

13 108.461801 0.057930 108.403330 0.057961 0.053910 3.9E-06

14 108.466249 0.057928 108.403330 0.057961 0.058009 3.9E-06

15 114.514228 0.054868 114.484645 0.054882 0.025833 1.1E-05

16 126.344589 0.049731 126.213492 0.049782 0.103761 1.2E-05

384 10 Graph Products Applied to the Regular and Locally Modified Regular. . .



cos2θ ¼ det2ðMÞ: (10.99)

where

M ¼ ~UtU: (10.100)

In these relations, cos2θ 	 1 is an indication of similarity between the two

eigenspaces. Referring to Table 10.6, it can be deduced that the mode shapes are

obtained with reasonable approximations.

Comparing the run times for the two methods, it is obvious that in the case of this

example (1,350 DOFs), the proposed method presents a 169-fold reduction in the

workload.

In order to further investigate the efficiency of the proposed method in the

analysis of large-scale structural models, more test cases are considered here for

comparison. The base models are similar to Fig. 10.20a in general configurations

but are different in the number of DOFs and dimensions. The support conditions are

similar to those configured in Fig. 10.21.

Table 10.7 summarises all the cases considered here for calculation of the first 16

frequencies and mode shapes. Also presented in this table are the results for the two

extreme natural periods of the obtained sequence calculated using the proposed

method and the direct method. The proposed method was implemented using 60

master modes from the base models. Again, relative errors indicate that the

estimated natural periods are within the acceptable tolerance. Figure 10.22

demonstrates CPU times required to accomplish the calculations, using the

proposed method and the direct method. Referring to this figure, it can be argued

that it is in average 63 times faster to use the proposed method to estimate a few

frequencies and mode shapes of locally modified regular structures, if the results are

considered acceptable within a 0.1 % tolerance.

10.4 Substructure Representation for Efficient Eigensolution

of Regular Structures

An extensively investigated canonical form, for which decomposition methods both

for graph and structural models are readily available now, is the block circulant

form as discussed in Sect. 10.2.6. This form may be associated with rotational
regular (RR) models. Structural and mechanical models having this type of

regularity are also called rotational periodic or cyclic repeated structures. Different

types of domes, space structures, cooling towers, pipes, blades and many others fall

in this category. The general pattern of the matrices associated with a rotational
regular structure (RRS) can be represented by (10.26). Yet, for another type of

widespread regularity pattern observed in structural models, that is, the transla-
tional regularity, there has not been reported any general method of decomposition
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in the literature. Translational regular structures (TRS), also well known as linear

periodic, are more frequently encountered in engineering structures such as frames,

trusses, shells and other types of structural and mechanical models. Decomposition

of the matrices associated with such models is entangled due to non-commuting

pattern and the occurrence of inconsistent corner blocks at the corresponding

canonical forms. This problem was discussed in Sect. 10.2.5 under the title

“Generalised Form II”. The general pattern of the matrices associated with a TRS

can be given by Eq. 10.25.

It would be promising to try to relate the behaviour of a translational regular

system to that of a rotational regular one, in order to take the computational

advantages offered by the decomposable structure of the latter. For this purpose,

the TRS can be represented as RRS using the established substructuring techniques.

One such representation has been proposed by Garvey and Penny [22]. In this

reference, a TRS is represented as an RRS by identifying the first and the last bay

with each other and hence reducing the size of the model by the size of one bay.

Table 10.7 Test cases considered

N number

of DOFs

T1(sec) T16(sec)

Present

method

Direct

method

Relative

error (%)

Present

method

Direct

method

Relative

error (%)

405 0.089649413 0.08965344 0.004492 0.034740328 0.034746611 0.018084

900 0.148331364 0.148334766 0.002293 0.045631364 0.045714109 0.181004

1,350 0.166918203 0.166920087 0.001129 0.049730545 0.0497822 0.103761

1,998 0.218556893 0.218558488 0.000730 0.06150333 0.061557176 0.087474

2,646 0.322415076 0.322416958 0.000584 0.07302754 0.073081879 0.074353

3,834 0.419528925 0.419530885 0.000467 0.092386593 0.092445018 0.063200

3,960 0.431754283 0.431755896 0.000374 0.094488851 0.094539638 0.053720

5,112 0.543525801 0.543527426 0.000299 0.113638535 0.113690448 0.045662

Fig. 10.22 Run time comparison for calculation of the first 16 eigenpairs
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Two classes of substructuring, that is, Kron’s method [12] and Hurty method [16],

have been employed for the solution of the resulting problem.

The representation provided by Garvey and Penny has two major shortcomings,

so that it becomes inappropriate for the regular models considered in this chapter.

First, the two ends of a TRS are identified (connected together) at nodal points, and

in order for the representation to be correct, no overlapping of elements or nodal

masses should be created in the identification process. The regular models studied

here may not lead to an RRS, if represented in this way. Second, the substructure

representation method proposed by Garvey and Penny does not reduce the resulting

matrices, and hence, it is not obvious how much saving can be achieved in

computational effort by using this method. Most of the structural applications

require just a few lower eigenfrequencies and their corresponding modal vectors.

Hence, it is essential for a substructuring technique to be able to reduce the size of

the problem using suitable approximations, so that the required frequencies and

mode shapes can be computed more efficiently and with acceptable accuracy.

In this section, a different substructure representation for TRS is proposed using

a dual formulation. The dual formulation of general substructuring problem is due

to Rixen [20]. Instead of using displacement constraints to identify the two ends of a

TRS, the Lagrange multipliers or equivalently the interface forces are used to

represent a TRS as a modification of its RR counterpart. The Lagrange multipliers

are introduced as balancing forces to eliminate the effects of the imposed

modifications. Using a dual description for substructure representation of TRS

has the advantage that the response of the corresponding RRS including its natural

modes and static response could be directly incorporated into a reduction basis.

This basis is then used to reduce the dual system. The reduction is a key step in

substructuring process and determines the efficiency of the proposed method.

10.4.1 Substructure Representation of TRS

The generalised eigenvalue problem for free vibration of a translational regular

structure may be expressed as follows:

KTRu� λMTRu ¼ 0; (10.101)

where u is the mode shape vector, λ the natural frequency squared and KTR and

MTR of order mn are the stiffness and mass matrices, each having a block pattern

similar to (10.25). This matrix pattern is associated with a TRS consisting of n

sequential blocks each having m DOFs. As an example, consider a 2D truss shown

in Fig 10.23a. In this example, m ¼ 4 and n ¼ 5. Now, to construct an RR

representation, let us introduce artificial members as depicted in dashed lines in

Fig. 10.23b to connect the nodes of the first and the last blocks. This manipulation is

tantamount to modification of stiffness and mass matrices as follows:
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KRR ¼ KTR þ EΔ k Et; MRR ¼MTR þ EΔ m Et: (10.102)

The artificial modifications are performed in such a way that the resulting KRR

and MRR matrices represent an RRS, having block patterns similar to (10.26). Δk
and Δm are of order 2m. E of order mn by 2m is a Boolean matrix of association

between the set of 2m modified DOFs and mn base DOFs

Et ¼ Im 0 0 . . . 0

0 . . . 0 0 Im

� �
2m�mn

: (10.103)

Dynamic Equation (10.101) can still be satisfied with the modified matrices

(10.102), introducing the vector of Lagrange multipliers f as follows:

KRRu� λMRRu� Ef ¼ 0: (10.104)

f is a 2m by 1 vector of the Lagrange multipliers or equivalently interface forces

introduced at the modified nodes to balance the effects of the imposed

modifications. Note that the eigenpairs (λ, u) are the response parameters of the

free vibrating TRS, and the fabricated RRS is forced by vector f to exhibit such a

response. Hence, vector f is determined solely by the artificial modification

imposed on the TRS. This can be demonstrated by the equation

Δkv� λΔmvþ f ¼ 0: (10.105)

Compatibility is satisfied by

Et �I2n
� 	 u

v

� �
¼ 0: (10.106)

Putting the set of Eqs. 10.104, 10.105, and 10.106 altogether, the system

equation can be assembled in the following block form:

KRR 0 E

0 �Δk �I
Et �I 0

2
4

3
5 u

v

f

2
4

3
5 � λ

MRR 0

�Δm
0 0

2
4

3
5 u

v

f

2
4

3
5 ¼ 0: (10.107)

2 4 6 8 10

1 3 5 7 9

2 4 6 8 10

1 3 5 7 9 1

f8
f7 f3

f4

f6
f5

f2
f1

2
a b

Fig. 10.23 (a) A TR structural model, (b) the RR representation
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The order of the assembled system (10.107) is mn + 4m and has for general

solution mn eigenvalues λ , discarding 4m infinite eigenvalues introduced due to

redundancy of the system equations. The order of the system should be reduced

using appropriate approximations, to facilitate efficient calculation of a few

requested lower eigenpairs.

10.4.2 Modal Truncation

As mentioned before, matrices associated with an RRS can be decomposed by

transforming them into block-diagonal forms. Decomposition procedure involves

the construction of an orthogonal matrix T, such that

KðBDÞ ¼ TtKRRT and MðBDÞ ¼ TtMRRT; (10.108)

each have the same block-diagonal form.

Using such a transformation, the analysis of an RRS can be reduced to several

smaller decoupled subproblems. The response of the system is then obtained much

more easily and quickly by solving the reduced subsystems.

The procedure for reducing the eigenproblem (10.107) associated with a TRS

is much the same as the one employed in the previous section for the modified

regular structures. LetΦ denote the matrix of MRR-orthonormal eigenvectors and

Λ be the diagonal matrix of eigenvalues of the RRS. Hence, the following

relations hold:

ΦtKRRΦ ¼ Λ and ΦtMRRΦ ¼ I: (10.109)

Let us define a cut-off eigenvalue λc and suppose that we are interested in those

eigenvalues λ of Eq. 10.101 or the equivalent assemblage (10.107), such that

λ << λc: (10.110)

Now, partitionΛ into the lower and higher eigenvalues based on the cut-off value

λc as

Λ ¼ Λl

Λh

� �
; (10.111)

whereΛl is the set of eigenvalues less than λc andΛh is the set of eigenvalues greater

than or equal to λc. Let the corresponding partitioning of Φ be

Φ ¼ Φl Φh½ �: (10.112)
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Using modal coordinates q defined by

u ¼ Φlql þΦhqh; (10.113)

and premultiplying Eq. 10.104 by Φt
h, it follows:

Λhqh � λqh þΦt
hEf ¼ 0: (10.114)

Premultiplying Eq. 10.114 by Λ�1h and putting λΛ�1h 	 0 due to the assumption

(10.110), we arrive at

qh ffi �Λh
�1 Φt

h E f: (10.115)

Substituting into Eq. 10.113 from Eq. 10.115, we obtain the following approxi-

mation for vector u:

u ffi Φlql �GresEf; (10.116)

where

Gres ¼ ΦhΛ�1h Φt
h (10.117)

is the residual flexibility of the RR model.

In summary, we construct the following approximation of the coordinate vectors

and the Lagrange multipliers for the reduction of eigenproblem (10.107):

u

v

f

2
4

3
5 ffi Tdual

ql
v

f

2
4

3
5 ¼ Φl 0 �GresE

0 I 0

0 0 I

2
4

3
5 ql

v

f

2
4

3
5: (10.118)

10.4.3 Reduced Eigenproblem

Using the approximation (10.118), we will reduce the assembled system (10.107).

First, notice the following properties of the residual flexibility matrix:

Gt
res ¼ Gres; GresKRRGres ¼ Gres;

Φt
lKRRGres ¼ 0; Φt

lMRRGres ¼ 0: ð10:119Þ

The reduced eigenproblem of the modified regular structure is then obtained by

using transformation (10.118) as
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~K
ql
v

f

2
4

3
5� λ ~M

ql
v

f

2
4

3
5 ¼ 0; (10.120)

with the reduced matrices

~K ¼
Λl 0 Φt

lE

0 �Δk �I
EtΦl �I Fres

2
4

3
5 and M ¼

I 0

�Δm
0 Mres

2
4

3
5; (10.121)

where

Fres ¼ �EtGresE; Mres ¼ EtGresMRRGresE: (10.122)

Λl andΦl correspond to the calculated eigenvalues and eigenmodes of the RRS.

Φl is also called the master modes. These include rigid-body modes of the RRS if

they are present. Hence, Λl may contain zero eigenvalues corresponding to rigid-

body modes. The calculations differ in constructing the residual flexibility matrix,

with or without the presence of rigid-body modes.

10.4.4 Evaluation of the Residual Flexibility Matrix

In general case, stiffness matrix KRR of the rotational regular model may be

positive semi-definite. The residual flexibility Gres may be evaluated for positive-

definite and positive semi-definite KRR using a procedure similar to that outlined in

Sect. 10.3.2.4.

10.4.5 Numerical Experiments

Example 10.6. Consider the regular graph model shown in Fig. 10.24a. The

Laplacian matrix of this graph has the following block form:

LTR ¼

C B

Bt A B

. .
. . .

. . .
.

Bt A B

Bt D

2
66664

3
77775
20�20

:
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It consists of 10 diagonal 2-by-2 blocks with the following submatrices:

A ¼ 4 �1
�1 4

� �
; B ¼ �1 0

�1 �1
� �

; C ¼ 2 �1
�1 3

� �
; D ¼ 3 �1

�1 2

� �
:

The aim is to estimate the first non-zero eigenvalue of the Laplacian matrix using

the proposed method and compare the accuracy of the result with a direct method of

solution. In Fig. 10.24b, a rotationally regular representation of the graph model is

constructed by adding some artificial elements depicted in dashed lines. The

corresponding modification to Laplacian LTR is defined by

LRR ¼ LTR þ EΔLEt;

with the following submatrix:

ΔL ¼ A� C Bt

B A� D

� �
:

The first step of solution by the proposed method is to obtain necessary infor-

mation from the rotational regular model, taking the advantage of its block-

diagonalised Laplacian matrix. This information includes a few eigenvalues and

eigenvectors together with a linear solution to get GresE using the procedure

discussed in Sect. 10.4.4. In Table 10.8, some of the eigenvalues obtained from

the RR model are presented.

The next step is to solve the reduced eigenproblem (10.120) with the following

matrices:

Fig. 10.24 (a) A TR graph

model, (b) the RR

representation
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~K ¼
Λl 0 Φt

1E

0 �ΔL �I
EtΦl �I �EGresE

2
4

3
5 and ~M ¼

I 0

0

0 EtGresGresE

2
4

3
5;

in order to estimate the requested eigenvalues for the TR model. This problem is

solved using different number of eigenpairs Λl andΦl from the RR model, and the

first non-zero eigenvalue (λ2) is obtained as shown in Table 10.9. It is observed that
the accuracy of the result is improved by increasing the number of contributing

master modes.

Note that the relative error of an estimated eigenvalue is proportional to the ratio

of that eigenvalue to the cut-off value [22]. The cut-off value is the lower eigen-

value in the set Λh. In this example, λ2 is estimated with about 0.25 % error, using

seven master modes. The cut-off value for this case is the 7th eigenvalue of the RR

model (3.442463, from Table 10.8). Hence, the relative error is proportional to

0.122312/3.442463 ¼ 0.0355. The accuracy may be considered as satisfactory;

however, better approximations can be obtained for large-scale problems as

demonstrated in the following examples.

Example 10.7. A translational regular model of a two-dimensional truss is consid-

ered for free vibration analysis, as shown in Fig. 10.25. The structure is composed

of pin-jointed steel bar elements having cross-sectional area a ¼ 16.01 cm2. The
elastic modulus is E ¼ 2.1 � 1011 N/m2. Horizontal elements are 1 m in length,

and vertical elements have a length of 1.2 m. The structure is clamped at the two

ends. For simplicity, the mass of the structure is assumed to be concentrated at the

nodal points, with a magnitude of 800 kg at each node. Each node of the structure

has two translational DOFs, and hence, the total degree of freedom for the structure

is 72.

Table 10.8 Some eigenvalues of the RR model – Example 10.6

Index Eingenvalue

1 0.000000

2 0.479853

3 0.479853

4 1.763932

5 1.763932

6 3.442463

7 3.442463

Table 10.9 Comparison of the results for Example 10.6

Number of master modes

λ2
Relative error (%)Present method Direct method

3 0.123795 0.122312 1.212135

5 0.122830 0.122312 0.422924

7 0.122612 0.122312 0.245107
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The stiffness matrix can be written in the following canonical form:

KTR ¼

A B

Bt A B

. .
. . .

. . .
.

Bt A B

Bt A

2
66664

3
77775
72�72

The blocks of the matrix are 6 by 6 each, and there are a total of 12 blocks on the

diagonal. The necessary modification to the stiffness matrix in order to represent an

RR model is given by

Δk ¼ 0 Bt

B 0

� �
12�12

:

The mass matrix is diagonal and does not require any modification. The resulting

stiffness matrix associated with RR representation, has the following pattern:

KRR ¼

A B Bt

Bt A B

. .
. . .

. . .
.

Bt A B

B Bt A

2
66664

3
77775
72�72

:

The eigenproblem associated with free vibration of the RR model is easily

solved using matrix decomposition to obtain different numbers of required

eigenvectors as the master modes of RR structure. The associated isostatic modes

are also obtained using the procedure discussed in Sect. 10.4.4. Then, this informa-

tion is utilised to form the reduced matrices in Eq. 10.121 using different number of

master modes. The reduced problem in Eq. 10.120 is solved in each case to obtain

four natural periods and mode shapes of the initial TR structure. The natural mode

shapes are shown in Fig. 10.26.

The results of the analysis by the proposed method employing 7, 12 and 16

master modes are compared with a direct sparse eigensolver of the MATLAB

software in Table 10.10. It is demonstrated in Fig. 10.27 that very satisfactory

results can be obtained using adequate number of master modes. According to this

Fig. 10.25 A TR truss model
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graph, using 12 and 16 master modes, all the four natural periods are estimated with

a relative error well below 0.1 %, which is a sufficient accuracy for usual engineer-

ing applications.

The mode shape errors are also reported in Table 10.10. It is concluded that the

obtained mode shapes are very satisfactory.

Example 10.8. Consider a square prismatic truss structure, shown in Fig. 10.28a.

Horizontal and vertical members are 1 m and 0.5 m long, respectively. Members

are made of steel with a mass density of ρ ¼ 8.7 � 103 kg/m3 and the modulus

of elasticity E ¼ 2.0 � 1011 Pa. Each member has a cross-sectional area:

A ¼ 9.14 cm2. Total height of structure is 10.5 m. Each node of the structure

Fig. 10.26 Natural modes of the TRS, (a) first, (b) second, (c) third and (d) fourth mode

Table 10.10 Comparison of the natural periods and mode shapes – Example 10.7

Mode number

1 2 3 4

Direct method T(sec) 0.123632941 0.059508732 0.040227673 0.037383425

Present method with

seven master

modes

T(sec) 0.123632008 0.059499666 0.039706865 0.037339264

Relative

error (%)

0.000754 0.015235 1.294650 0.118130

Mode shape

error

3.9E-06 1.1E-05 1.8E-05 1.2E-05

Present method with

12 master modes

T(sec) 0.123632645 0.059501690 0.040219806 0.037376774

Relative

error (%)

0.000239 0.011835 0.019555 0.017791

Mode shape

error

1.2E-06 1.6E-06 3.6E-06 2.0E-06

Present method with

16 master modes

T(sec) 0.123632874 0.059507609 0.040219806 0.037382283

Relative

error (%)

0.000054 0.001887 0.019555 0.003053

Mode shape

error

2.9E-08 1.1E-07 6.5E-07 3.5E-07
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has three translational DOFs, and the total number of DOFs for the structure

amounts to 252. The structure vibrates under its own mass. Three natural periods

and mode shapes of the structure are sought. A lumped mass approach is taken

for evaluation of the mass matrix. Stiffness and mass matrices have the following

canonical forms:

Fig. 10.27 Relative errors of estimated natural periods

Fig. 10.28 (a) A translationally regular truss, (b) first, (c) second and (d) third natural modes of

vibration
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KTR ¼

A B

Bt A B

. .
. . .

. . .
.

Bt A B

Bt C

2
6666664

3
7777775
252�252

; MTR ¼

m

m

. .
. . .

. . .
.

m

�m

2
6666664

3
7777775
252�252

The block submatrices are 12 by 12 each, and 21 such blocks are present on the

diagonals of each stiffness and mass matrix.

Necessary modifications to stiffness and mass matrices are imposed by using the

following submatrices:

Δk ¼ 0 Bt

B A� C

� �
24�24

; Δm ¼ 0 0

0 m� �m

� �
24�24

;

in order to turn the TRS into an RRS which has associated stiffness and mass

matrices with the following patterns:

KRR ¼

A B Bt

Bt A B

. .
. . .

. . .
.

Bt A B

B Bt A

2
6666664

3
7777775
252�252

; MRR ¼

m

m

. .
. . .

. . .
.

m

m

2
6666664

3
7777775
252�252

Table 10.11 summarises the results for the three natural periods obtained from

the direct method and the proposed method with 7, 12 and 16 master modes form the

RRS. The accuracy of the mode shapes is also examined using Eq. 10.98. These mode

shapes are depicted in Fig. 10.28b–d. Calculations are performed at double-precision

arithmetic and on a computer with Intel® Core ™2 Duo CPU 2.33 GHz and 2 GB

of RAM, which was running Microsoft Windows XP Professional Service Pack 3.

With reference to Table 10.11, it is observed that satisfactory approximations are

obtained for both natural periods and mode shapes of the TRS using the proposed

method. One can conclude that using 16 master modes (about five times the

required number of natural modes), the periods are estimated with less than

0.01 % error, indicating that the accuracy of the obtained results is very satisfactory.

The CPU times required to accomplish the calculations using the proposed

method and the direct method using a sparse eigensolver of MATLAB software

are also presented in this table. The time spent by the present method is slightly

increased with the incorporation of more master modes. However, the time savings

are remarkable compared with the direct method. It can be argued that the present

method in the worst case performs nearly 40 times faster than the direct method to

estimate a few natural periods and mode shapes of the regular structure, with an

acceptable approximation.
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Chapter 11

Group Theory and Applications in Structural

Mechanics

11.1 Introduction

Group theory is known as the mathematical language of the symmetry, and the

representation theory is the powerful means of group theory in analysis of physical

problems. Methods are available for studying symmetry in science and engineering

using the theory of groups, Stiefel and Fässler [1] and Boardman et al. [2]. Methods

for symmetry analysis of physical systems are developed in crystallogy and quan-

tum mechanics for decomposing the problems of complicated symmetric systems.

Although in structural mechanics, such techniques have not been introduced as

much as in other fields of science, the method has been successfully utilised

in different cases. Zingoni [3, 4] has studied the application of group theory in

bifurcation problems, dynamic problems and in finite element method. Application

of the group theory in the force method of structural analysis can be found in the

joint work of Zingoni et al. [5]. Healy and Treacy [6] have developed innovative

methods by combination of symmetry properties of structures with repeated

substructures and the group theoretic method. Kaveh and Nikbakht have

implemented methods based on group theory for decomposition of the problems

of topological graphs [7], vibration analysis of simple dynamic systems [8] and the

stability analysis of symmetric frames with simple forms of symmetry [9, 10].

This chapter consists of the following two parts:

In the first part basic concepts of symmetry, regularity, symmetry groups and

representation theory are provided.

In the second part, the properties of structures having symmetry forms are

studied. Physical interpretation for the mathematical subproblems resulted in the

process of decomposition is found. This enables one to examine the new physical

systems in order to find a potential for further decomposition. For this purpose, first

a swift review of the methods developed in previous works is presented and then the

extension of such techniques for more complicated problems is studied. The

problems with subsystems having new symmetric properties are considered, and a

method for finding such new symmetry properties in these systems is presented.

A. Kaveh, Optimal Analysis of Structures by Concepts of Symmetry and Regularity,
DOI 10.1007/978-3-7091-1565-7_11, © Springer-Verlag Wien 2013
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In the third part, a methodology is developed for efficient calculation of buckling

loads for frame structures having high-order symmetry properties in order to reduce

the size of their associated eigenvalue problems. This is achieved by decomposing

the second-order stiffness matrix of a symmetric model into submatrices using

representation of its symmetry group, via a step-by-step approach. The physical

interpretation of the resulted submatrices is shown as substructures (factors), and

the possibility of further decomposition is then investigated for each of the

constructed submodels. Due to the similarity transformation, the constructed

submatrices contain the eigenvalues of the main structural matrix. The buckling

load of the entire structure is obtained by calculating the buckling loads of its

factors. The methods of the present chapter provide a mathematical foundation and

a logical means to deal with symmetry, in place of looking for various boundary

conditions to be imposed for symmetric structures, as in the traditional methods.

Examples are provided to illustrate the simplicity and efficiency of the present

method [10].

11.2 Basic Concepts of Symmetry Groups and Representation

Theory

11.2.1 Definition of a Group

A group is a set G together with a multiplication on G which satisfies three axioms:

1. The multiplication is associative, that is to say (xy)z ¼ x(yz) for any three

(not necessarily distinct) elements from G.

2. There is an element e in G, called an identity element, such that xe ¼ x ¼ ex for

every x in G.

3. Each element x of G has an (so-called) inverse x�1 which belongs to the set G

and satisfies x�1x ¼ e ¼ xx�1.

The order of G is the number of its elements; element ‘e’ in the above definition

is called identity element, and x�1 is said to be the inverse of element x. If xy ¼ yx

for any two elements x and y of the group G, then G is called an abelian group.
A subgroup of a group G is a subset of G, which itself forms a group under the

multiplication of G.

11.2.2 Classes of a Group

If x and g are two elements of a group G, then g�1xg will definitely be a member of

G. Let us call this element as y. Thus, y ¼ g�1xg.
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This relation is expressed in the words by saying that y is a similarity transfor-
mation of x by g. It is also said that x and y are conjugate. Conjugate elements have

a number of important properties: every element is conjugate with itself; if x is

conjugate with y, then y is conjugate with x; if x is conjugate with y and z, then y

and z will be conjugate with each other. A complete set of elements that are

conjugate with each other is called a class of the group.

11.2.3 Symmetry and Symmetry Operations

The symmetry of a body is described by introducing the set of all those

transformations which preserve the distance between all pairs of points of the

body and maps the body into coincidence with itself; either the result of the

transformation is equivalent or it is identical with the primary arrangement. Each

of these transformations is called a symmetry operation of the body, which can be in
one of the following forms:

1. Proper rotation about an axis of symmetry ðCnÞ, in which the angle of rotation is
θ ¼ 2π

n
. If there is more than one axis of symmetry for the object, the axis

associated with the largest value of n – or the smallest value of θ – is called

principal axis.
2. Reflection in planes of symmetry ðσlÞ, in which l connotes to the type of

symmetry plane:

– If the plane is perpendicular to the principal axis, it is called horizontal plane
ðσhÞ.

– If the plane encompasses the principal axis, it is called vertical plane ðσvÞ.
– If the plane consists of principal axis and passes through the bisector of the

angle between two C2 axes perpendicular to the principal axis, it is called

dihedral plane ðσdÞ.
3. Rotation reflection or improper rotation, which is denoted by Sn, represents a

rotation through an angle 2π
n
about an improper axis, followed by a reflection in

the plane perpendicular to the axis of rotation. It is pointed out that this operation

is significant when each of the rotation and reflection are not individually among

the symmetry operations of the object.

4. Inversion through the centre of symmetry which is a special case of Sn with

n ¼ 2, is denoted by (i).

5. Identical symmetry (e), which maps an arbitrary object into itself, is one of the

symmetry operations of any given object, either symmetric or asymmetric.

A number of symmetric skeletal structures and their symmetry operators are

depicted in Fig. 11.1. The interpretation of principal axis is simply shown in the grid

of Fig. 11.1a, where there are two C2 axes and one C4 axis. Based on the above

definitions, the latter will be the principal axis of the structure. The symmetry centre
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of this grid is joint ‘i’. The concept of different kinds of symmetry planes can be

recognised from the planar frames of Fig. 11.1b and the three-dimensional frame of

Fig. 11.1c.

11.2.4 Symmetry Group

Symmetry operations of an object under the combination of transformation

operations comprise a group, which is called a symmetry group. Symmetry groups

are classified based on symmetry operations which make a group up. Figure 11.2

shows some symmetric structures and their symmetry groups. The symmetry group

of a finite body is sometimes referred to as the point group. There are several

methods for categorising the point groups. In Fig. 11.2, the point groups are named

based on Schoenflies method – which is more conventional than the other

approaches. The procedure of this method can be widely found in literature

[11, 12]. This method will be utilised in this chapter.

11.2.5 Representation Theory

If a group T of linear operators T
_

gi in a space Rn is homomorphic to finite group G

with elements g1, g2, . . ., gm (i.e. to each gi, there correspond a number of operators

C2  

C2  
i

P

 C4  
(Principal Axis)

PrincipalAxis(C2 )

60°

60°

σh

σd

σd

σd

σh

σh

σv

σv σv

(3-D view)

Principal Axis(C2)

σv

(Plan)

Principal Axis (C3  )
a b

c

Fig. 11.1 Symmetric skeletal structures and their symmetry operators. (a) A grid. (b) Planar

frames. (c) A 3-D frame
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ðT_giÞ but to each operator T
_

gi, there corresponds only one definite element gi, and

moreover, this correspondence is preserved under group multiplication), then the

group T is said to form a representation of G. The effect of any operator T
_

gi on each

of the unit vectors e of the space Rn can be shown as follows:

T̂gi:e ¼
Xn
r¼1

DrkðgiÞ : er (11.1)

It is clear that to each element gi of the group G, a matrixDðgiÞ can be assigned.
The unit element of the group is associated with the unit matrix I, and the inverse

elements are associated with inverse matrices. It can be easily shown that

DðgiÞ :DðgjÞ ¼ DðgigjÞ (11.2)

Therefore, it is possible to say that the matrices DðgiÞ form a representation of

order n of the group G. The trace of the matrixDðgiÞ is known as the character of gi,
denoted by χðgiÞ. The space Rn is the representation space, and the basis of this

space is the basis of the representation. It is clear that the set of matrices D is a

function of the selected basis of the representation. Suppose the vector e be the basis

of space Rn. If the basis is transformed by a linear transformation:

e0 ¼ Q:e (11.3a)

in whichQ is the n � n transformation matrix, then the representation matrices will

undergo a similarity transformation as follows:

D0 ¼ Q�1:D:Q (11.3b)

Suppose that a representation D of the group G is given in a space Rn. If in

the space Rn there is a subspace Rkðk < nÞ which is invariant under all the

transformations D (i.e. for any x 2 Rk, we have D:x 2 Rk), the representation is

a

C1v
a

a

C1v

a

D4d

P

C3v Td

C3v

Fig. 11.2 Symmetry groups associated with some symmetrical structures
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called a reducible representation (redrep). On the other hand, if we cannot define

an invariant subspace Rk in space Rn, the representation will be named an irreduc-
ible representation (irrep).

Let us take the first k unit vectors in the space Rn as the unit vectors of the

subspace Rk. The representation matrix will then have the following form:

D ¼

D11 D12 . . . D1;k D1;kþ1 . . . D1;n

D21 D22 . . . D2;k D2;kþ1 . . . D2;n

..

. ..
.

. . . ..
. ..

. ..
.

Dk;1 Dk;2 . . . Dk;k Dk;kþ1 . . . Dk;n

0 0 . . . 0 Dkþ1;kþ1 . . . Dkþ1;n
..
. ..

.
. . . ..

. ..
.

. . . ..
.

0 0 . . . 0 Dn;kþ1 . . . Dn;n

2
6666666666666664

3
7777777777777775

It can be shown that if a redrep D is unitary, then the orthogonal component of

the subspace Rk, denoted by Rn�k, is also invariant under the transformations D

[13]. Now, if the unit vectors of the subspace Rk are taken as the first k unit vectors

and the remaining n�k unit vectors are taken as the unit vectors of the subspace

Rn�k, the representation matrix will have the following block-diagonal form:

D ¼

D11 D12 . . . D1;k 0 . . . 0

D21 D22 . . . D2;k 0 . . . 0

..

. ..
.

. . . ..
. ..

. ..
.

Dk;1 Dk;2 . . . Dk;k 0 . . . 0

0 0 . . . 0 Dkþ1;kþ1 . . . Dkþ1;n

..

. ..
.

. . . ..
. ..

.
. . . ..

.

0 0 . . . 0 Dn;kþ1 . . . Dn;n

2
666666666666666664

3
777777777777777775

If the space R can be resolved into invariant subspaces, in each of which an irrep

is realised, then the representation D is fully reducible. With a suitable choice of

unit vectors of the space, the matrix of this representation will have the following

block-diagonal form, where α is the total number of classes of group G:
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D ¼

Dð1Þ 0 � � � 0 0

0 Dð2Þ � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 . . . Dðα�1Þ 0

0 0 � � � 0 DðαÞ

2
66666666666664

3
77777777777775

(11.4)

Any representation of a finite group is always equivalent to a unitary represen-

tation, and based on the foregoing discussion, it will always be either irreducible or

fully reducible. For the second case, we can reduce all the matrices of the represen-

tation to block-factored matrices with the same pattern of diagonal blocks by going

over the new system of unit vectors for the space.

Any symmetry group has α irreps, the details of which are presented in a table

called character table. Comprehensive lists of character tables for common sym-

metry groups are available [12, 13, 14, 15]. It is conventional to show irreps with

γðμÞ and redreps with Γ μð Þ.
The reduction process of a reducible representation into irreps would corre-

spondingly divide the vector space Rn into a number of group-invariant subspaces

VðμÞ, such that none of these subspaces can be divided into further group-invariant

subspaces of smaller dimension. In representation theory for symmetry groups,

idempotents are defined as the projection operators which nullify all vectors of a

given vector space other than those which belong to a particular subspace

associated with a specific symmetry type. Thus, these operators can be used to

transform the normal variables of a problem (spanning the vector space Rn) into

orthogonal sets, each spanning a subspace VðμÞ of the vector space Rn. The

idempotent operator PðμÞ , which is defined associated to the subspace VðμÞ and its

range is VðμÞ, can be found via the Eq. 11.2 in which mμ denotes the dimension of

γðμÞ, Ref. [6]:

PðμÞ � mμ

m

� �Xm
i¼1

χ γi
ðμÞ

� �
Γi

h i
(11.5)

The dimension of VðμÞ is given as

nμ � mμ

m

� �Xm
i¼1

χ γi
ðμÞ

� �
χ Γið Þ

h i
(11.6)

If γðμÞ is absolutely irreducible and mμ > 1, then VðμÞ can be further decomposed

into mutually orthogonal subspaces
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VðμÞ ¼
Xmμ

i¼1
�VðμiÞ (11.7)

It can be shown that the set of basis vectors for each subspace

VðμiÞ i ¼ 1; 2 . . . nμ
� �

are physically indistinguishable from each other, which

means that a solution for any required physical properties based on subspace Vðμ1Þ

must be identical to that based on any subspaces VðμiÞ. Thus, only one of subspaces
VðμiÞ actually needs to be considered, whereas suchVðμÞ subspaces (in whichmμ > 1)

are always associated with the same set of eigenvalues (which in the conventional

sense, constitutemultiple roots of the problem). Decomposition of subspaceVðμÞ into
subspacesVðμiÞ i ¼ 1; 2; . . . ; nμ

� �
, and derivation of the associated basis vectors for a

given problem, may be achieved directly by splitting idempotent PðμÞ into

components PðμiÞ i ¼ 1; 2; . . . ; nμ
� �

defined as below [6]:

PðμiÞ � mμ

m

� �Xm
j¼1

γðμÞj

h i
i1
Γj (11.8)

in which γðμÞj

h i
i1
denotes the i1-th entry of the matrix γðμÞj .

For more information on the representations and other properties of symmetry

groups, one should refer to Refs. [11, 12, 13, 14, 15].

11.3 Stability Analysis of Hyper Symmetric Skeletal Structures

Using Group Theory

11.3.1 A Review of the Present Method Through a Simple
Example

In order to illustrate the method for decomposition of the buckling analysis of a

symmetric system, with the aid of group theory, a simple example is studied in this

section. In this section, formulas and equations which are widely used throughout

the chapter are presented.

A symmetric, non-sway planar rigid frame is considered, as shown in Fig. 11.3.

The step-by-step method, which leads to the decomposition of such a problem

using group theory, is described in the following. This method is described thor-

oughly in Ref. [7].

Step 1. Recognition of point group of the structure. The symmetry of a body is

described by introducing the set of all those transformations which preserve the
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distance between all pairs of points of the body and map the body into coincidence

with itself. The result of the transformation is either equivalent or it is identical to

the primary arrangement. Each of these transformations is called a symmetry
operation of the body. A symmetry operator such as an axis or a plane of

symmetry induces additional properties to the system corresponding to which a

symmetry operation is defined. Symmetry operators and their associated symmetry

operations are identified with the same notations. As an example, associated with a

symmetry axis C4 (symmetry operator), two different operations can be defined: C4

(rotation about the axis, with the angle of rotation θ ¼ 2π
4
) and C4

�1 (rotation about

the same axis, with the angle of rotation θ ¼ 2π
4
). For finite objects (bodies of finite

extension), symmetry operations can be classified as follows: proper rotation about

an axis ðCnÞ ; reflection in the planes of symmetry σlð Þ ; rotation, reflection or

improper rotation (Sn is a Cn rotation followed by a reflection in a plane normal

vector of which is the axis of rotation); inversion through the centre of symmetry

(i), and identical symmetry (e) which maps any arbitrary object into itself and is one

of the symmetry operations of any given object, either symmetric or asymmetric.

If there is more than one axis of symmetry for the object, the axis associated with

the largest value of n – or the smallest value of θ – is called the principal axis.
It should be noted that if a plane is perpendicular to the principal axis, it is called

horizontal plane σhð Þ ; if the plane encompasses the principal axis, it is called

vertical plane σvð Þ; and if the plane consists of principal axis and passes through the
bisector of the angle between two C2 axes, perpendicular to the principal axis, it is

called dihedral plane σdð Þ. More detailed illustrations of symmetry operators and

symmetry operations can be found in Refs. [7, 12].

The set of all symmetry operations of a finite body under the combination of

transformation operations comprise an abstract group, which is called symmetry
group or point group. Symmetry groups are classified based on symmetry

operations which make up a group. The Schöenflies method is utilised in this

chapter for naming the symmetry groups. This method has been described thor-

oughly in Refs. [11, 12].

The first step in solving a problem is finding the main symmetry operators and

then the point group of the symmetric system. For the present problem, it is possible

P

E,IL

P

E,I

E ,I1

L1

2 4

31

vFig. 11.3 Symmetric, non-

sway planar frame with four

DOFs
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to distinguish only one vertical plane of symmetry – which has been shown as σv in
Fig. 11.3. Based on the Schöenflies method, such a symmetry group is known as

C1v, which consists of two elements: {e, σv}. Once the point group of a structure is

recognised, it is possible to find the properties of the group – such as its symmetry

classes and irreducible representations – which are collected in a table which is

called the characteristic table. As an example, Table 11.1 shows the characteristic

table of the group C1v.

Step 2. Selecting a basis for n-dimensional vector space of the problem. Such a

basis can be any set of algebraic functions or vectors which span the vector space Rn

of the problem. In stability analysis of a structure, the dimension of the problem is

equal to the number of DOFs of the system. Therefore, in this chapter, the

displacement vector of the structure is used as the basis of n-dimensional space of

problems associated with a structure having n DOFs. It should be noted that in the

formulation of structural matrices in this chapter, the degrees of freedom

corresponding to the shear and axial deformations are neglected for the beam

elements. The former assumption is due to the existence of rigid diaphragm in

frame structures which constraints the horizontal translations of different nodes of a

plan relative to each other. The latter assumption, on the other hand, has the

meaning of neglecting shear stiffness compared to the flexural stiffness of the

beam, which is a common assumption in most of the analyses. It should be noted

that the method presented here is general and is independent of these simplifying

assumptions.

If we show the generalised displacement (either translational or rotational) at

each DOF (i) of the structure as ui, the displacement vector of the problem will be as

follows:

u ¼ u1; u2; u3; u4ð Þt:

Step 3. Forming the redreps (reducible representation) table of the point group
on space Rn. As it was mentioned before, each symmetry operation of a symmetry

group can be introduced as a transformation, with respect to an arbitrary basis in the

vector space Rn. The matrix representing such a transformation, then will be called

a reducible representation (redrep) and is shown with Γi for the i-th symmetry

operation of the group. For discrete systems, it is possible to construct the Γi

(the reducible representation) implicitly as follows:

If u is an arbitrary displacement field, then each Γi is defined so that its action on

the vector field Γiuð Þ ‘mimics’ one of the symmetry operations in group G [6]. Thus,

in this chapter, Γiu will be directly obtained by affecting each symmetry operation

of group G to the basis of Rn (selected in step 2), and χ Γið Þ (trace of the matrix Γi)

Table 11.1 Character table

of the group C1v

C1v e σv
γð1Þ 1 1

γð2Þ 1 �1
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will be the number of DOFs which remain unchanged under this transformation.

For the current example, Table 11.2 shows the redreps of the point group C1v.

Step 4. Finding the dimension of each subspace VðμÞ. Having the character table
and the redreps of the symmetry group, it is now possible to find the dimension of

each subspace (i.e. the scale of each decomposed subproblem which should be

solved) using Eq. 11.7.

n1 ¼ 1

2
1� 4ð Þ þ 1� 0ð Þ½ � ¼ 2 and n2 ¼ 1

2
1� 4ð Þ þ �1� 0ð Þ½ � ¼ 2

It means that a problem with four DOFs will be substituted with two problems,

each of which is of dimension 2.

Step 5. Recognition of subspaces corresponded to multiple roots. If the dimen-

sion of an absolutely irreducible representation mμ
� �

is greater than ‘1’, it can be

further decomposed into mutually orthogonal subspaces. In this step, such

subspaces are specified. The dimension of an irrep (irreducible representation)

can be found from the character table of the group. Information on the representa-

tion theory of the groups and definitions of irrep, redrep and the character table can

be found in the Sect 11.2. The character of element ‘e’ – the identical symmetry– in

each representation is always equal to the dimension of that representation. Thus,

from Table 11.1, it can be seen that both of the irreps of the group C1v are of

dimension 1 and step 5 does not include this group.

Step 6. Finding idempotents associated with each subspace. Idempotents are

defined as operators associated with different group-invariant subspaces. Each

subspace is the range of its associated idempotent when operating on the space of

the main problem. The idempotent of subspaces with mμ ¼ 1 is calculated using

Eq. 11.5, and the idempotents corresponding to the subspaces recognised in step 5

can be calculated from

Pð1Þ ¼ 1

2
1� Γ1ð Þ þ 1� Γ2ð Þ½ � ¼ Γ1 þ Γ2

2
and Pð2Þ ¼ 1

2
1� Γ1ð Þ þ �1� Γ2ð Þ½ �

¼ Γ1 � Γ2

2

It should be noted that the idempotent operators of a group are among the

properties of that group, and once the idempotents are found for a specific symme-

try group, they can be used for similar problems having the same symmetry group.

Step 7. Decomposition of basis of vector space Rn and finding the basis of each
subspace. This can be achieved by the means of affecting idempotent operators to

Table 11.2 Representation

of C1v on R4
Element Γi Γi:u χðΓiÞ
e Γ1 u1; u2; u3; u4ð Þt 4

σv Γ2 �u3;�u4;�u1;�u2ð Þt 0
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the basis of Rn. Subspace VðμÞ is the range of the idempotent PðμÞ. Thus, each PðμÞu
results in a combination of vectors which totally span the subspace VðμÞ . Though
there is no unique choice for the vectors spanning each subspace, different sets of

bases result in the same eigenvalues for the subspace. In this chapter, spanning

vectors of the subspace VðμÞ are derived from the result of PðμÞu and are then

normalised in order to become unit vectors. These unit basis vectors are denoted by

ψðμÞi i ¼ 1; 2 . . . nμ
� �

and are known as the symmetry modes of the system.

Subspace V(1) ¼ Range P(1); Pð1Þ:u ¼ Γ1þΓ2

2
:u:

With the aid of Table 11.2, this equation yields Γ1þΓ2

2
:u ¼ α; β;�α;�βð Þt:

where α ¼ u1�u3
2

; β ¼ u2�u4
2

:

Hence, the unit vectors spanning V(1) are as follows:

ψð1Þ1 ¼
1ffiffiffi
2
p 1; 0;�1,0ð Þt and ψð1Þ2 ¼

1ffiffiffi
2
p 0,1,0;�1ð Þt:

Similarly, subspace V(2) ¼ Range P(2); Pð2Þ:u ¼ Γ1�Γ2

2
:u yields the symmetry

modes as

ψð2Þ1 ¼
1ffiffiffi
2
p 1; 0,1,0ð Þt and ψð2Þ2 ¼

1ffiffiffi
2
p 0,1,0,1ð Þt:

It is possible to illustrate different symmetry modes ψðμÞi

� �
of the structure

corresponding to different group-invariant subspaces. Each representation gives

rise to a specific symmetry class and generally, the subspaces VðμÞ partition distinct
classes of subsymmetry of the original structure [6]. This is apparent from Fig. 11.4.

Up to this stage, the general space of the problem has been decomposed into the

subspaces which are called group-invariant subspaces. Now, it is the time to study

the special case of buckling analysis of the structure.

ðKO � P:KGÞ : φ ¼ 0: (11.9)

Consider the well-known generalised eigenvalue problem associated with the

buckling equation of a structural system. Here,KO is the n � n first-order (linear or

elastic) stiffness matrix which shows the bending effects, KG is the n � n geomet-

ric (initial stress) stiffness matrix which results from the presence of axial load in a

member, P is an eigenvalue which shows a buckling load of the system and φ is the

corresponding buckling mode shape. If the structural system related to Eq. 11.9 is

involved in a symmetry group (say G), then group representation theory can be used

to construct an n � n orthogonal matrix T such that similarity transformations of

KO andKG matrices by T result in block factorisation of those matrices in a similar

pattern, that is,
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~KO � Tt: KO:T and ~KG � Tt: KG: T (11.10)

in which both ~KO and ~KG have the same block-diagonal form. Of course, this

reduces (11.10) to a number of smaller uncoupled eigenvalue problems. Therefore,

we should now form the orthogonal matrix T.

Step 8. Assembling of matrix T and block diagonalisation of the matrices KO and
KG. Orthogonal matrix T in Eq. 11.10 has the normal basis vectors of subspaces

(symmetry modes) as its columns, that is,

T ¼ Tð1Þ Tð2Þ . . . TðαÞ
h i

(11.11)

in which

TðμÞ ¼ ΨðμÞ1 ΨðμÞ2 � � � ΨðμÞnμ

h i
(11.12)

This is the matrix corresponding to similarity transformation under which the

block factorisation of the matrices KO and KG is performed. Thus,

T ¼ 1ffiffiffi
2
p

1 0 1 0

0 1 0 1

�1 0 1 0

0 �1 0 1

2
664

3
775:

The stiffness matrix of the structure can be written as

K ¼ EI

L3

4þ 4α 2 2α 0

2 4 0 0

2α 0 4þ 4α 2

0 0 2 4

2
6664

3
7775� P

L

2
15

� 1
30

0 0

� 1
30

2
15

0 0

0 0 2
15

� 1
30

0 0 � 1
30

2
15

2
666664

3
777775

where α ¼ I1L
3

IL1
3 :

Therefore, the similarity transformation of stiffness matrix under the transfor-

mation matrix T can now be performed:

Ψ1

(1)
Ψ2

(1)
Ψ1

(2)
Ψ2

(2)

a b

Fig. 11.4 Symmetry modes of the planar frame. (a) Subspace V(1): symmetric. (b) Subspace V(2):

antisymmetric
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Tt: K : T ¼ EI

L3

4þ 2α 2 0 0

2 4 0 0

0 0 4þ 6α 2

0 0 2 4

2
6664

3
7775� P

L

2
15

� 1
30

0 0

� 1
30

2
15

0 0

0 0 2
15

� 1
30

0 0 � 1
30

2
15

2
66664

3
77775:

This shows that the problem has been decomposed into two subproblems, each

of which is associated with one of the diagonal blocks.

Step 9. Solving characteristic value problem in each subspace and finding
buckling loads. Now it is possible to solve Eq. 11.9 and find the eigenvalues in

each of the subspaces V(1) and V(2) separately, for which the Eq. 11.9 changes into

K
ðμÞ
O � P:K

ðμÞ
O

� �
: φðμÞ ¼ 0: (11.13)

It should be noted that the eigenvalues (buckling loads) obtained from the

individual subspaces V(1) and V(2) are the actual eigenvalues of the original

problem, because a similarity transformation on a matrix preserves its eigenvalues.

For example, if we suppose that α ¼ 1 in our problem, the buckling loads will be

found as follows:

Subspace Vð1Þ; det
6� 2

15
λ 6þ 1

30
λ

2þ 1
30
λ 4� 2

15
λ

" #
0 ) λ1ð1Þ ¼ 71:1293; λ2ð1Þ ¼ 16:8707

Subspace Vð2Þ; det
6� 2

15
λ 6þ 1

30
λ

2þ 1
30
λ 4� 2

15
λ

" #
¼ 0 ) λ1ð2Þ ¼ 97:9473; λ2ð2Þ ¼ 22:0527

where λ ¼ PL2

EI
. Thus, the critical load of the frame will be Pcr ¼ 16:8707 EI

L2 : The

actual value of critical load of this structure is Pcr ¼ 12:8881 EI
L2 . It is possible to

improve the result by dividing the members of the structure into more elements. If

this happens, the number of DOFs and the scale of the problem will consequently

increase. As an example, if we divide each column into two elements as shown in

Fig. 11.5, the structure will have eight generalised DOFs and the stiffness matrix

will be an 8� 8matrix, which leads to a critical load as Pcr ¼ 14:3547 EI
L2 :A similar

step-by-step approach in this case results in the orthogonal matrix T as follows:

T ¼ I4�4 I4�4
�I4�4 I4�4

� �
in which I4�4 ¼

1

1

1

1

2
664

3
775:
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This matrix can decompose the 8� 8 stiffness matrix into two submatrices of

dimension 4. Finding the eigenvalues of the latter is much easier than calculating

the eigenvalues of the original matrices of dimension 8.

The efficiency of the above method becomes more apparent for large-scale

problems with finer discretised elements. Another case, where the application of

the group theoretical method becomes beneficial and leads to considerable reduc-

tion, is the case of structures with more complicated forms of symmetry. This is the

main focus of the present chapter and will be studied thoroughly in the following

sections.

11.3.2 More Complicated Forms of Symmetry

The previous section was a short review on what has been presented before in

Ref. [9]. As mentioned in the previous section, although the method is systematic

and exact, its efficiency can be more obvious in problems including matrices of

large dimensions or problems with complex symmetrical properties. Such problems

can be categorised as follows:

– Problems of super structures with numerous degrees of freedom such as large-

scale space structures.

– Problems with fine mesh discretisations.

– Problems of structures having a number of symmetry properties, referred to as

hyper symmetric structures in this chapter. It should be noted that the term

‘hyper symmetry’ is adopted here for symmetric problems of finite groups

with high orders (i.e. structures with geometries having numbers of symmetry

operations), and it should not be taken identical to hyper symmetry used in

theoretical physics. We are still dealing with ordinary finite groups, but they are

of higher orders compared to symmetry groups associated with simple symmet-

ric problems such as the one studied in the previous section.

The methodology of solving the first category of problems is exactly the same as

what was mentioned in Sect. 11.2. Exactly the same steps should be taken, and

similar results will be concluded. Problems of the second category have been

studied to some extent in Ref. [9], and for fine mesh discretisations, the general

P P
3 7

51

v

2 64 8

Fig. 11.5 Modelling each

column with two elements
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method is applicable. On the other hand, the last category consisting of problems

with hyper symmetry should be under special attention, and in this chapter, we

study such problems in two separate parts. In Ref. [9], four cases have been reported

in each of which, one plane of symmetry bisects one or more beams or passes

through one or more points of beams. In order to enter to the subject of hyper

symmetry, it is necessary to complete these cases by considering the situation in

which a plane of symmetry bisects a column element.

11.4 Finding the Factors of a Symmetric Column Element

A symmetric column with two rotational DOFs, under axial force P, having bending

stiffness E I and length L is shown in Fig. 11.6a. The symmetry axis is perpendicu-

lar to the axis of the column. For such a symmetry, the shear DOFs are not active.

The stiffness matrix of such a column is as follows:

K ¼ EI

L3

4 2

2 4

� �
� P

L

2
15

1
30

1
30

2
15

" #
:

If the method described in Sect. 11.2 is utilised, this matrix will be block-

factorised as below:

K ¼ EI

L3

6 0

0 2

" #
� P

L

1
10

0

0 1
6

" #
:

Therefore, the factors of such a problem will be two substructures, denoted by C

and D, with the following stiffness matrices:

Factor C : KO ¼ EI

L3
6½ � and KG ¼ 1

L

1

10

� �

E,I

P

L
L E,I

P4/5

/2 L E,3I

P34/

2/

a bFig. 11.6 A column element

and its factors. (a) Column

element. (b) Factors C and D
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P
1

P
2

Lb

L

Eb ,Ib  

E,I E,I

P

K C =
6EbIb   

 L3
b

P

KD   = 
2EbIb 

 L3
b

E,IL E,I

L

P
1

3
2

E,I

P P

KE =
6EbIb 
 L3

b

P

KD  =
2EbIb 

 L3
b

L

L E,I

P
1

P
3

P
2

L

E,I L

1

L

P P
3

L

L

2
P

P

L

1

LL

E,I

P

E,I

3 2
P

4

L

L

P
1

1

L

3

P

L

P
2

4

a

b

c

d

3

Fig. 11.7 Different cases of symmetric, planar frames and their factors. (a) Non-sway frame with

odd number of spans. (b) Sway frame with odd number of spans. (c) Non-sway frame with even

number of spans. (d) Sway frame with even number of spans
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Factor D : KO ¼ EI

L3
2½ � and KG ¼ 1

L

1

6

� �

Such sets of linear and geometric stiffness matrices are associated with two

substructures C and D, as shown in Fig. 11.6b. Thus, from now on, we can

substitute each column which has a plane of symmetry, with two columns C and

D, each of which has one DOF.

We can now summarise the result of decomposition of different cases having

symmetry, based on previous works [9] and the later result. In Fig. 11.7, the results

previously obtained have been presented. In this figure, a virtual column element

and a directed beam element are introduced (Fig. 11.7b, c, respectively). The

stiffness matrices of such virtual elements which are used to form the mechanical

representation of the factors are as follows:

==

– ––

–

For more information on the cases shown in Fig. 11.7, see Ref. [9].

11.4.1 Hyper Symmetry

The problems of hyper symmetry – as introduced in the previous section – will be

studied in this part as two different categories.

11.5 Symmetric Frames Having Numerous Symmetry

Operators

When a structure has several symmetry operators, its symmetry group will have a

higher order (order of a finite group is defined as the total number of its

components). Such groups have more symmetry classes and consequently, more

irreducible representations. Point groups such as C2, C2v, C3v, C4v and C6v, which

are conventional among the symmetric planar structures, are the examples of such

symmetry groups. As mentioned, in such problems, there are more symmetry

classes which means that more symmetry modes are distinguishable for the struc-

ture and more group-invariant subspaces will be produced during the process of
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decomposing the vector space of the problem. Also in such point groups, usually

there are irreducible representations of dimensions greater than one. As it is

mentioned in step 5, in such cases, there is the possibility of further decomposition

of group-invariant subspace, which can be considerably beneficial in reducing the

number of operations.

Example 11.1. As the first example of this category of problems, the triangular,

planar frame shown in Fig. 11.8 is considered.

Step 1. As it is shown in Fig. 11.8, this structure has three vertical planes of

symmetry, namely σv; σ0v, and σ00v as its symmetry operators. This set of symmetry

operators introduces the symmetry group C3v. The complete set of symmetry

operations associated with this point group is as follows:

e; C3; C3
�1; σv; σ0v; σ00v

	 

:

Table 11.3 shows the characteristic table of this group. The first column of this

table shows the names of the irreducible representations presented in different rows,

in the nomenclature proposed by Mulliken, and rather common in the modern

literature. Such symbols are called Mulliken symbols and are in the general forms

of Ai, Bi, Ei, Ti (or Fi), A
0
i;A

00, etc. For more details on this system of classification,

one can refer to [12].

Step 2. Having three rotational DOFs, the displacement vector of this structure

will be

u ¼ u1; u2; u3ð Þt

Step 3. Applying each of the symmetry operations of the group on the basis

vector u, the reducible representation of the group C3v, on space R3 are resulted as

presented in Table 11.4.

Step 4. By the aid of Tables 11.3 and 11.4, the dimensions of subspaces are

found as

n1 ¼ 3þ ð�1Þ þ ð�1Þ þ ð�1Þ
6

¼ 0; n2 ¼ 3þ ð�1Þ � ð�1Þ þ ð�1Þ þ ð�1Þ½ �
6

¼ 1;

n3 ¼ 2

6
ð2� 3Þ ¼ 2� 1:

3

P

P

1

2

P EI , L : cte

Fig. 11.8 Symmetric frame

of group C3v
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Step 5.As it is seen in Table 11.3, the third irrep of the group C3v is of dimension

2. Thus, the third group-invariant subspace V(3) can further be decomposed into two

identical subspaces V(31) and V(32), and calculation of eigenvalue for one of them is

sufficient.

Step 6. Eq. 11.5 is used to find the idempotent operator associated with subspace

V(2):

Pð2Þ ¼ Γ1 þ Γ2 þ Γ3 � Γ4 � Γ5 � Γ6ð Þ
6

Idempotent of the subspace V(31) is found via Eq. 11.8 as follows:

Pð31Þ ¼ 2Γ1 � Γ2 � Γ3 � Γ4 � Γ5 þ 2Γ6ð Þ
6

:

It should be noted that for calculating the idempotent P(31), the two-dimensional

irrep E is considered as shown in Table 11.5.

Step 7. When each of the idempotent operations found in the previous step is

applied to the basis u, the following results are obtained:

Pð2Þ:u ¼ α; α; αð Þt and Pð31Þ:u ¼ β; 0;�βð Þt:

From which, the basis vectors of subspaces are extracted as

ψð2Þ1 ¼
1ffiffiffi
3
p 1; 1,1ð Þt and ψð31Þ1 ¼ 1ffiffiffi

2
p 1; 0;�1ð Þt:

Such basis vectors (symmetry modes of the structure) are depicted in Fig. 11.9.

For this purpose, counterclockwise rotation is assumed to be positive.

Table 11.3 Character table

of group C3v

C3V e 2C3 3 σv
A1 1 1 1

A2 1 1 �1
E 2 �1 0

Table 11.4 Representation

of C3v on R3
Element Γi Γi:u χðΓiÞ
E Γ1 u 3

C3 Γ2 u3; u1; u2ð Þt 0

C3
�1 Γ3 u2; u3; u1ð Þt 0

σv Γ4 �u1;�u3;�u2ð Þt �1
σ0v Γ5 �u2;�u1;�u3ð Þt �1
σ00v Γ6 �u3;�u2;�u1ð Þt �1
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Step 8. The orthogonal matrix T is formed as follows:

T ¼
1ffiffi
3
p 1ffiffi

2
p

1ffiffi
3
p 0
1ffiffi
3
p � 1ffiffi

2
p

2
64

3
75:

Similarity transformation of stiffness matrix of the structure under matrix T

ultimately leads to decomposition of the problem, and the stiffness matrices of

subspaces are then resulted in the form of diagonal blocks as follows:

K ¼ EI

L3

8 2 2

2 8 2

2 2 8

2
4

3
5� P

L

0:154 �0:019 �0:019
�0:019 0:154 �0:019
�0:019 �0:019 0:154

2
4

3
5

leading to

Tt: K : T ¼ EI

L3

12 0

0 6

" #
� P

L

0:1155 0

0 0:1732

" #

As it is seen, a 3� 3 stiffness matrix is decomposed into two one-dimensional

submatrices. The submatrix of subspace V(31) is a double-repeating root, and the

buckling load which is calculated associated to this submatrix should be repeated

twice in order to complete the set of all the three buckling loads of the system.

Step 9. The buckling load of the symmetrical frame is associated with its

smallest eigenvalue. Therefore, from subspace V(31), it is concluded that Pcr ¼ 34:

642 EI
L2 .

Discussion: In the Example 11.1, there was a group-invariant subspace with

repeating roots. As it was mentioned before, this case occurs when the subspace is

associated with an irrep of dimension two or more, and such subspaces can further

Table 11.5 The third irreducible representation of C3v

Element E C3 C3
�1 σv σ0v σ00v

E 1 0

0 1

� �
�1

2
�

ffiffi
3
p
2ffiffi

3
p
2

�1
2

" #
�1

2

ffiffi
3
p
2ffiffi

3
p
2

1
2

" #
�1

2

ffiffi
3
p
2ffiffi

3
p
2

1
2

" #
�1

2
�

ffiffi
3
p
2ffiffi

3
p
2

1
2

" #
1 0

0 �1
� �

Ψ1
(2) (31)

Ψ1

a bFig. 11.9 Symmetry modes

of the structure. (a) Subspace

V(1). (b) Subspace V(2)
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be decomposed. Here, we want to show that subspaces V(31) and V(32) are physi-

cally identical to each other.

Idempotent operation P(32) can be calculated from Eq. 11.3a, using Table 11.5 as

Pð32Þ ¼
ffiffiffi
3
p

6
�Γ2 þ Γ3 þ Γ4 � Γ5ð Þ:

By applying this operator on basis vector u, we find out that

Pð32Þ:U ¼ γ; 0;�γð Þt

in which

γ ¼
ffiffiffi
3
p

6
�u1 þ 2u2 � u3ð Þ:

It is seen that the basis vector of subspace V(32) is the same as V(31). Thus, they

are associated with the same symmetry modes.

Example 11.2. The previous example was a frame with only three DOFs and

during the decomposition process, one of its subspaces was unused (subspace V(1)).

This means that one can suppose some additional symmetry modes could be

supposed for a larger problem of group C3v, which are missed here due to the

small dimension of the problem.

In the second example, a frame of higher dimension is studied. Figure 11.10

shows a planar, symmetric, non-sway frame with 14 DOFs. Both elastic and

geometry stiffness matrices are 14� 14.

Step 1. The structure has a C2 axis as its principal axis and two vertical planes of

symmetry. The symmetry group of such a symmetrical shape is C2v. This group has

four irreps of dimension 1. The character table of group C2v is presented in

Table 11.6.

Step 2. By collecting all of the rotational DOFs of the structure in the displace-

ment vector, we have

u ¼ u1; u2; u3; u4; . . . ; u12; u13; u14ð Þt:

Step 3. The representation table of the structure on R14 is presented in

Table 11.7.

Step 4. From Table 11.7, it is found that n1 ¼ n3 ¼ 3 and n2 ¼ n4 ¼ 4, which

means that the problem with 14 DOFs will be decomposed into two subproblems of

dimension 3 and 2 subproblems of dimension 4.

Step 5. As it is seen in its characteristic table, group C2v does not have any irreps

of dimension two or more. Thus, all of the group-invariant subspaces are non-

decomposable.

Step 6. The idempotent operators of group C2v are found as follows:
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Pð1Þ ¼ Γ1 þ Γ2 þ Γ3 þ Γ4

4
; Pð2Þ ¼ Γ1 þ Γ2 � Γ3 � Γ4

4
;

Pð3Þ ¼ Γ1 � Γ2 þ Γ3 � Γ4

4
; Pð4Þ ¼ Γ1 � Γ2 � Γ3 þ Γ4

4
:

Steps 7 and 8. When the idempotents found in step 6 are applied on the

displacement vector of the structure and the results are separated and normalised,

the symmetry modes of the system are found as the columns of the matrix T. In this

matrix, each partition shows the set of basis vectors of one subspace.

8 9

46 53 721

10 14 13 12 11

P P P P P P P

P PP PPP P

Constant
L,EI

σv

σv

Fig. 11.10 Symmetric frame of group C2v

Table 11.6 Character table

of group C2v

C2v E C2 σv σ0v
A1 1 1 1 1

A2 1 1 �1 �1
B1 1 �1 1 �1
B2 1 �1 �1 1

Table 11.7 Representation of C2v on R14

Element Γi Γi:u χðΓiÞ
e Γ1 u1; u2; u3; u4; . . . ; u12; u13; u14

� �t 14

C2 Γ2 u11; u12; u13; u8;u9; . . . ; u2; u3; u7
� �t 0

σv Γ3 �u4;�u5;�u6;�u1; � u2; . . . ;�u9;�u10;�u14
� �t �2

σ0v Γ4 �u8;�u9;�u10;�u11;�u12; . . . ;�u4;�u5;�u6;�u7ð Þt 0
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T¼

1 0 0 1 0 0 0 1 0 0 1 0 0 0

0 1 0 0 1 0 0 0 1 0 0 1 0 0

0 0 1 0 0 1 0 0 0 1 0 0 1 0

�1 0 0 1 0 0 0 �1 0 0 1 0 0 0

0 �1 0 0 1 0 0 0 �1 0 0 1 0 0

0 0 �1 0 0 1 0 0 0 �1 0 0 1 0

0 0 0 0 0 0
ffiffiffi
2
p

0 0 0 0 0 0
ffiffiffi
2
p

�1 0 0 1 0 0 0 1 0 0 �1 0 0 0

0 �1 0 0 1 0 0 0 1 0 0 �1 0 0

0 0 �1 0 0 1 0 0 0 1 0 0 �1 0

1 0 0 1 0 0 0 �1 0 0 �1 0 0 0

0 1 0 0 1 0 0 0 �1 0 0 �1 0 0
0 0 1 0 0 1 0 0 0 �1 0 0 �1 0

0 0 0 0 0 0
ffiffiffi
2
p

0 0 0 0 0 0 � ffiffiffi
2
p

2
66666666666666666666666664

3
77777777777777777777777775

:

Step 9. The final result of decomposition of the stiffness matrix of the system is

found from similarity transformation of this matrix under matrix T. This, results in

a block-factored matrix with four diagonal blocks as follows:

Tt:K:T¼ EI

L3

24 8 0

8 40 8

0 8 40

40 8 0 0

8 56 8 0

0 8 56 8
ffiffiffi
2
p

0 0 8
ffiffiffi
2
p

56
40 8 0

8 56 8

0 8 56

24 8 0 0

8 40 8 0

0 8 40 8
ffiffiffi
2
p

0 0 8
ffiffiffi
2
p

40

2
666666666666666666666666666664

3
777777777777777777777777777775
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�P
L

0:66 0 0

0 0:66 0

0 0 0:66

0:399 0 0 0

0 0:399 0 0

0 0 0:399 0

0 0 0 0:399

0:399 0 0

0 0:399 0

0 0 0:399

0:66 0 0 0

0 0:66 0 0

0 0 0:66 0

0 0 0 0:66

2
66666666666666666666666666664

3
77777777777777777777777777775

Step 10. Subspace V(4) includes the smallest eigenvalue, and therefore, the

critical load of the structure is calculated as follows:

Kð4Þ ¼ EI

L3

24 8 0 0

8 40 8 0

0 8 40 8
ffiffiffi
2
p

0 0 8
ffiffiffi
2
p

40

2
6664

3
7775� P

L

0:66 0 0 0

0 0:66 0 0

0 0 0:66 0

0 0 0 0:66

2
6664

3
7775

DetðKÞ ¼ 0) Pcr ¼ 29:8018
EI

L2

P P P P

P

P

P

P

PPPP

P

P

P

P1 3
7

5

2

4 8

6

14
16

12
10

9

11 15

13

Y

σX

σ2 σ1

Fig. 11.11 Symmetric frame

of group C4v
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It is seen that solving a problem of dimension 14 is replaced with small problems

of dimensions 3 and 4.

Example 11.3. This example shows the efficiency of the method, when a rather

large-scale problem is involved in a group of higher order. Figure 11.11 shows a

symmetrical frame with 16 rotational DOFs and symmetrical loading. Having a C2

axis as the principal axis, two vertical planes σx and σy, and two dihedral planes σ1
and σ2, the symmetry group of the structure is C4v. This group has eight elements

consisting of e; C4; C4
�1; C2; σx; σy; σ1; σ2

	 

. These elements are categorised

in five symmetry classes. The symmetry classes and the irreps are shown in

characteristic table of the group (Table 11.8).

It is seen that the fifth irrep of the group is of dimension 2. Therefore, in this

problem, again there is a subspace with two sets of identical answers (doubly

repeated roots). If the step-by-step method is used for the decomposition of this

problem, the real space R16 of the problem will be decomposed into five subspaces:

two subspaces of dimension 1 (V(1) and V(4)), two subspaces of dimension 3 (V(2)

and V(3)) and a subspace of dimension 8 (V(5)). The latter is associated with doubly

repeated roots and can be further decomposed into four-dimensional subspaces

V(51) and V(52), one of which is enough to be solved.

Table 11.8 Character table

of group C4v

C4V e 2C4 C2 2 σv 2 σd
A1 1 1 1 1 1

A2 1 1 1 �1 �1
B1 1 �1 1 1 �1
B2 1 �1 1 �1 1

E 2 0 �2 0 0

Table 11.9 Final results of Example 11.3

Subspace

Linear stiffness matrix

(KO)

Geometric stiffness matrix

(KG)

Eigenvalues � L2

EI

� �

V(1) EI
L3 ½10� 1

L
13
30

� �
23; 0771f g

V(2)

EI
L3

8 2
ffiffiffi
2
p

0

2
ffiffiffi
2
p

14 2
ffiffiffi
2
p

0 2
ffiffiffi
2
p

20

2
4

3
5 1

L

4
15

�
ffiffi
2
p
30

0

�
ffiffi
2
p
30

11
30

�
ffiffi
2
p
30

0 �
ffiffi
2
p
30

14
30

2
64

3
75

20; 38:183; 60:002f g

V(3)

EI
L3

8 2
ffiffiffi
2
p

0

2
ffiffiffi
2
p

10 2
ffiffiffi
2
p

0 2
ffiffiffi
2
p

12

2
4

3
5 1

L

4
15

�
ffiffi
2
p
30

0

�
ffiffi
2
p
30

13
30

�
ffiffi
2
p
30

0 �
ffiffi
2
p
30

6
10

2
64

3
75 f11:00; 23:077;

42:858g

V(4) EI
L3 ½14� 1

L
11
30

� �
38:182f g

V(51) or

V(52)
EI
L3

8 2 2 0

2 10 0 2

2 0 14 2

0 2 2 16

2
664

3
775 1

L

4
15

� 1
30
� 1

30
0

� 1
30

13
30

0 � 1
30� 1

30
0 11

30
� 1

30

0 � 1
30
� 1

30
16
30

2
664

3
775 f15:287; 30; 30;

51:863g
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Final results of decomposition of this problem with group theoretical method are

presented in Table 11.9. The critical load of the structure is in subspace V(3) and is

equal to Pcr ¼ 12:0002 EI
L2 . The results of this example show the strong ability of the

method in reducing the dimension of a large problem with rather advanced

symmetric properties. Here, problems of dimensions 1, 3 and 4 are solved instead

of a 16 dimensional problem.

11.5.1 Frames with Symmetrical Factors

The general solution of the examples presented up to now is based on finding the

symmetry group of the symmetric structure and using the representation theory in

order to find a similarity transformation which can block diagonalise the mechani-

cal matrices of the system. This is more or less the basis of most of the methods

which use group theory in structural mechanics. The output of most of these

methods is a number of submatrices of lower dimensions. Now in this section, we

want to work on these submatrices in order to present a physical interpretation for

them. Then, we examine such physical models associated with the submatrices in

order to find if further decomposition is feasible. It should be noted at this stage that

frequently some additional symmetry properties are present after factorisation of a

symmetric configuration, but a review on literature of group theoretic methods in

structural mechanics shows that almost none of them take these new properties into

account. This is due to the fact that the new symmetries can hardly be recognised

from the matrices which arise in group theoretic methods. A physical interpretation

on the output matrices is necessary in order to find their new symmetry operations.

Here, such an interpretation will be presented.

In Sect. 11.3, the factors resulting from decomposition of different cases of

symmetric frames were introduced and illustrated in Fig. 11.7. Such factors are the

mechanical models of decomposed submatrices mentioned above. Thus, it is

possible now to study either the mathematical or the mechanical model of a

symmetrical system and its factors. In the following, some examples are studied

to clarify the procedure.

1 2 3 4 5

P P P P P

Constant
L,EI

6   L

L

Fig. 11.12 Symmetric, planar, non-sway frame of group C1v
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Example 11.4. As a very simple example, the non-sway, planar frame of

Fig. 11.12 is studied. This structure has five rotational DOFs and one vertical

plane of symmetry. The general stiffness matrix of this structure is formed as

K ¼ EI

L3

12 2 0 0 0

2 12 2 0 0

0 2 12 2 0

0 0 2 12 2

0 0 0 2 12

2
66664

3
77775�

P

L

�

0:1333 0 0 0 0

0 0:1333 0 0 0

0 0 0:1333 0 0

0 0 0 0:1333 0

0 0 0 0 0:1333

2
66664

3
77775:

The solution of the problem by means of the group theoretic method consists of

the following steps:

Step 1. The symmetry group of the structure is C1v, which we had before in the

illustrative example of Sect. 11.2.

Step 2. We choose the displacement vector u ¼ u1; u2; u3; u4; u5ð Þt as the

basis of vector space R5.

Step 3. Representation of group C1v with respect to the basis u is shown in

Table 11.10.

Step 4. The dimensions of subspaces are calculated as follows:

n1 ¼ 1

2
ð1� 5Þ þ 1� ð�1Þð Þ½ � ¼ 2 and n2 ¼ 1

2
ð1� 5Þ þ �1� ð�1Þð Þ½ � ¼ 3:

This means that this five-dimensional problem can be reduced to a two-dimen-

sional and a three-dimensional problem.

Step 5. Both of the irreps of group C1v are one-dimensional.

Step 6. The idempotents of group C1v are calculated as before.

Step 7. Application of the idempotents on the basis vector u is as follows:

Pð1Þ:u ¼ Γ1 þ Γ2

2
:u ¼ α1; β1; 0;�β1;�α1ð Þt and Pð1Þ:u ¼ Γ1 � Γ2

2
:u

¼ α2; β2; γ2; β2; α2ð Þt:

Table 11.10 Representation

of C1v on R5
Element Γi Γi:u χðΓiÞ
e Γ1 u1; u2; u3; u4; u5ð Þt 5

σv Γ2 � u5; u4; u3; u2; u1ð Þt �1
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Step 8. The symmetry modes, which result for this problem, are collected in

matrix T:

T ¼ 1ffiffiffi
2
p

1 0 1 0 0

0 1 0 1 0

0 0 0 0
ffiffiffi
2
p

0 �1 0 1 0

�1 0 1 0 0

2
666664

3
777775:

Step 9. Finally, the block diagonalisation is resulted as

Tt:K:T ¼ EI

L3

12 2

2 12

12 2 0

2 12 2
ffiffiffi
2
p

0 2
ffiffiffi
2
p

12

2
666664

3
777775�

P

L

�

0:1333 0

0 0:1333

0:1333 0 0

0 0:1333 0

0 0 0:1333

2
666664

3
777775:

Now the eigenvalues in each subspace can be found and the solution will be

terminated. On the other hand, by the aid of Fig. 11.7, we can illustrate the physical

model of each set of arisen diagonal blocks, as shown in Fig. 11.13. As can be seen

from this figure, the subproblem of subspace V(1) has a new symmetry operator, a

vertical plane which determines the symmetry group C1v for this subsystem. Thus,

it is possible to perform the step-by-step method for the subsystem V(2) and perform

further decomposition.

By numbering the DOFs of factor V(1) as shown in Fig. 11.13a, the results of the

further decomposition are as follows:

1 2
P P

L

3  L

1 2 3

P P P

L

3  L

a bFig. 11.13 Mechanical

model of factors of Example

11.4. (a) Subspace V(1).

(b) Subspace V(2)
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7 8

1
P

2
2P

3 4 5
2P

6
P

E,2I

E,2I

E,I

E,3I

E,2I 

E,I E,I E,I

E,I E,I E,I E,IE,2I

5  L

L

L

4

1.5P

1

P

2
2P

3
P

E,2I

E,2I

E,I E,I

E,I E,I

K= 2EI

9L3

1
P

2
2P

3
P

E,2I

E,I E,I

E,I E,IE,2I

4

1.5PK= 2EI
3L3

P P

a

b

Fig. 11.14 A symmetric

structure and its symmetrical

factors. (a) Symmetric

structure. (b) Factors of the

structure

Table 11.11 The results of Example 11.5

Subspace V(1)

K ¼ EI
L3

8 2 0 0

2 24 2 4

0 2 8 0

0 4 0 8:222

2
664

3
775� P

L

0:1333 0 0 0

0 0:4667 0 �0:05
0 0 0:1333 0

0 �0:05 0 0:2

2
664

3
775

Subspace V(1–1) Subspace V(1–2)

K ¼ EI
L3 ½16� � P

L
½0:2667�

K ¼ EI
L3

16 5:66 0

5:66 48 8

0 8 16:44

2
4

3
5� P

L

0:267 0 0

0 0:93 �0:1
0 �0:1 0:4

2
4

3
5

Subspace V(2)

K ¼ EI
L3

8 2 0 0

2 24 2 4

0 2 8 0

0 4 0 8:667

2
664

3
775� P

L

0:1333 0 0 0

0 0:4667 0 �0:05
0 0 0:1333 0

0 �0:05 0 0:2

2
664

3
775

Subspace V(2–1) Subspace V(2–2)

K ¼ EI
L3 ½16� � P

L
½0:2667�

K ¼ EI
L3

16 5:66 0

5:66 48 8

0 8 17:33

2
4

3
5� P

L

0:267 0 0

0 0:93 �0:1
0 �0:1 0:4

2
4

3
5
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Tð1Þ ¼ 1ffiffiffi
2
p 1 1

�1 1

� �
) Tð1Þ

t

:Kð1Þ:Tð1Þ

¼ EI

L3

10 0

0 14

" #
� P

L

0:1333 0

0 0:1333

" #

Example 11.5. As another simple example, the structure shown in Fig. 11.14a is

considered. The group theoretical method decomposes the eight-dimensional matri-

ces of this structure into two factors, each of which is of dimension 4. These factors

are shown in Fig. 11.14b. As it can be seen, both of the factors are again structures

with symmetry group C1v. Therefore, they can be decomposed in turn. The mathe-

matical results of such decompositions are summarised in Table 11.11. It is

concluded from this table that the one-dimensional subproblems resulted from

decomposition of both of the subspaces V(1) and V(2) are identical and only one

of them is enough to be solved.

It should be noted that there is a basic difference between two categories of the

problems of hyper symmetry (the structures studied in Sect. 4.1 and the problems

studied in Sect. 4.2). The first category consists of the systems which have a number

of symmetry operators and exhibits all of their symmetrical properties in the

original structure. In this case, group theory is able to recognise all of the symmetry

modes of the structure immediately and can perform the decomposition of different

modes simultaneously. But the second category includes the structures with some

hidden symmetrical properties that group theory cannot recognise directly. In such

problems, it is necessary to have a physical interpretation of the outputs to find the

extra symmetrical properties of the structure. Therefore, it is recommended to

perform both procedures in all of the problems simultaneously – especially the

problems of complicated symmetry forms – in order to profit from all the symmet-

rical potentials of the system.

11.5.2 Discussions

The decomposition method for symmetric problems of canonical forms presented

in the previous chapters is extended to the problems with symmetry groups having

higher orders. The factorisation of the symmetric structures has the following

advantages:

1. The DOFs of the problem are reduced.

2. The computational time and effort are decreased.
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Chapter 12

Graph–Group Method for the Analysis

of Symmetric-Regular Structures

12.1 Introduction

In this chapter, a combined graph–group method is presented for eigensolution of

special graphs. The study of symmetric graphs with regularity is the main objective

of this study. Many structural models are regular and usually have symmetric

configurations. Here, the proposed method operates symmetry analysis of the entire

structure utilising the symmetry properties of its simple generators. The model of a

structure is considered as a product graph, and the Laplacian matrix, as one of the

most important matrices associated with a graph, is studied. Characteristic problem

of this matrix is investigated using symmetry analysis via group theory enriched by

graph theory. The decomposition of Laplacian matrix of such graphs is performed

in a step-by-step manner, based on the presented method. This method focuses on

simple paths which generate large networks and finds the eigenvalues of the

network using the analysis of the simple generators. Group theory is utilised as

the main tool, improved by some concepts of graph products. As an application of

the method, a benchmark problem of group theory from structural mechanics is

studied. Vibration of cable nets is analysed and the frequencies of the networks are

calculated using a hybrid graph–group method [1].

12.2 Symmetry Groups of Graph Products

Symmetry groups and representation theory were presented in the previous chapter.

Based on the definition, two groups G and G0 are isomorphic if there is a

bijection φ from G to G0 which satisfies

φðxyÞ ¼ φðxÞφðyÞ for all x; y 2 G: (12.1)

A. Kaveh, Optimal Analysis of Structures by Concepts of Symmetry and Regularity,
DOI 10.1007/978-3-7091-1565-7_12, © Springer-Verlag Wien 2013
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The function φ is called an isomorphism between G and G0. When groups G and

G0 are said to be isomorphic, there will be a one-by-one correspondence between

their elements and these elements combine in the same manner. That is, if x!x0,
and y!y0, then xy!x0y0, in which x; y 2 G, and x0; y0 2 G0.

Symmetry of the graphs which can be expressed as product of two paths is

studied in this section, via group theory. This is illustrated through simple

examples. Weighted graphs are selected here in order to show the symmetric

(or asymmetric) properties of the generators and resulted graph. It should also be

noted that application of graph theory in structural analysis mostly includes the use

of the weighted graphs as the structural models [2]. The weights are assigned just to

the elements for brevity.

Example 12.1. Two simple paths S(1) and S(2), each of which consists of two nodes
and one element are shown in Fig. 12.1a. Such paths are called P2. Different

products of these generators, introduced in Sect. 12.2, are shown in Fig. 12.1b–d.

Attention to different products of these generators and also other generators shows

that the symmetry types of all three products for two given generators are the same.

Therefore, we focus on Cartesian product of the graphs. Obviously, the discussion

can easily be applied to the two other forms of the graph products.

Let us study the symmetry group of the generators first. Each of the P2 paths of

Fig. 12.1a has only a vertical plane of symmetry as the symmetry operator, which

defines a symmetry operation σv. Such a symmetry group is called C1v, the elements

of which are {e, σv}. One can write the symmetry groups of these graphs as follows:

Sð1Þ : C1V ¼ e; σxf g; Sð2Þ : C01V ¼ e; σy
� �

: (12.2)

a

b

σx

σy

a a

b

S(1) S(2)

a a

b
c

c c
c

a b

c d

Fig. 12.1 Two weighted P2

graphs and their products.

(a) Two simple P2 graphs.

(b) The Cartesian product.

(c) The strong Cartesian

product. (d) The direct

product
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Cartesian product of these two subgraphs (Fig. 12.1b) has two vertical planes of

symmetry (σx and σy), plus an axis of symmetry which is perpendicular to the plane

of the graph and is the intersection of the vertical planes of symmetry. A C2

operation is defined associated to this axis, which is the rotation with an angle of

θ ¼ π . The symmetry group of such a configuration is called C2V, including the

symmetry operations: {e, C2, σv, σ
0
v}. Here, the operators σv and σ0v are σx and σy,

respectively. This means that the Cartesian product of two graphs with symmetry

group C1v results in a symmetric graph of symmetry group C2V.

S : C2V ¼ e;C2; σx; σy
� �

: (12.3)

Now, if we construct the direct product of symmetry groups C1v and C01v in

Eq. 12.2, based on the rule described in Sect. 11.5, we will have

C1v � C01v ¼ e; σxf g � e; σy
� � ¼ e; eð Þ; σx; eð Þ; e; σy

� �
; σx; σy
� �� �

: (12.4)

Although this set does not seem similar to a symmetry group in the sense that we

know, an isomorphism can be discovered between this and a well-known symmetry

group. The following theorem is implemented in this regard.

Theorem. If H and K are subgroups of G for which HK ¼ G (i.e. every element of
G can be expressed as a product of xy, for some x 2 H and y 2 K), if they have only
the identity element in common, and if every element of H commutes with every
element of K, then G is isomorphic to H � K [3].

For the present example, a comparison between Eqs. 12.2 and 12.3 shows that

both symmetry groups C1v and C01v are the subgroups of symmetry group C2v.

It can also be shown that all of the elements of C2v are expressible as the product of

elements of C1v and C01v. This is shown in Table 12.1.

The equivalence of σx � σy and C2 (the last row of Table 12.1) is illustrated in

Fig. 12.2.

On the other hand, C1v and C01v merely have the identity element in common:

C1v \ C01v ¼ ef g:

Finally, it is seen that the elements of C1v and C01v are commutative to each

other. Thus, C1v and C01v have all of the conditions mentioned in the theorem, and

based on this theorem, it is possible to say that C1v � C01v is isomorphic to C2v.

It is possible to show the one-by-one correspondence between the elements of

C1v � C01v and those of C2v as follows:

e; eð Þ !ffi e; σx; eð Þ !ffi σx; e; σy
� � !ffi σy; σx; σy

� � !ffi C2:

The above discussion shows that when two symmetric paths S(1) and S(2) with
symmetry groups G(1) and G(2) are composed together by the Cartesian product, they
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generate a symmetric graph S having symmetry group G, where G ffi Gð1Þ � Gð2Þ .
Here, ‘ffi ’ is the symbol of isomorphism. In the product of two symmetric paths, G(1)

and G(2) are usually the point group C1v, and their Cartesian product will result in a

symmetric graph of group C2v. Figure 12.3 shows another example of this case.

Example 12.2. The Cartesian product of a symmetric weighted path and an asym-

metric weighted path is studied in this example. Two paths are shown in Fig. 12.4: a

symmetric path P4 with symmetry group C1v and an asymmetric path P3. As

mentioned before, the identical symmetry is one of the symmetry operations of all

bodies, either symmetric or asymmetric. Thus, even the asymmetric graph S(2) has
one symmetry operation {e} and belongs to the symmetry group which is called C1.

Table 12.1 Element of C2v

C2v C1v C01v
e ¼ e . e

σx ¼ σx . e

σy ¼ e . σy
C2 ¼ σx . σy

σx σy

C2

1 2

4 3

4 3

1 2

3 4

2 1

3 4

2 1

π
2

Fig. 12.2 Illustration of σx � σy being identical to C2

aσx
c

b

b
d d c

aσx

σy

c

b

b

d d c

a

b

b

a

b

b

a

b

b

a

b

b
c d d c

c d d c

c d d c
σy

a b

Fig. 12.3 Cartesian product of symmetric paths P3 and P4. (a) P3 and P4 paths with symmetry group

C1v. (b) Cartesian product of symmetric P3 and P4, with symmetry group C2v ffi C1v � C01v
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If these graphs are composed by the Cartesian product, they generate a new graph

(say graph S). Let us predict the symmetry group of this graph from the symmetry groups

of its generators. The direct product of the groups of generators will be as follows:

Sð1Þ;C1v ¼ e; σxf g and Sð2Þ; C1 ¼ ef g:

Therefore,

S ¼ Sð1Þ � Sð2Þ; C1v � C1 ¼ e; σxf g � ef g ¼ ðe; eÞ; ðσx; eÞf g

where

ðe; eÞ !ffi e; ðσx; eÞ !ffi σx:

This shows isomorphism with the set {e, σx}, which is the set of symmetry

elements of group C1v. Therefore, the product of graphs S
(1) and S(2) will just have a

vertical plane of symmetry (σx) and belongs to the symmetry group C1v. Figure 12.5

approves accuracy of this prediction.

12.3 Symmetry Analysis of Product Graphs

Examples presented in the previous section show that in regular graphs which can

be expressed as the product of two paths, symmetry properties of both of the

repeating and binding generators define the symmetry of the product. It was

shown that the symmetry group of the product graph is isomorphic to direct product

of the symmetry groups of the generators.

a
σx

c

b

b

d

S(1) S(2)

Fig. 12.4 Generators S(1) and
S(2) (symmetric path P4 and

asymmetric path P2)

aσx

c

b

b

a

b

b

a

d

b

c d

c d

c

b

d

Fig. 12.5 Graph S: Cartesian
product of generators S(1)

and S(2)
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Now, we are going to show that the transformation matrix which decomposes

any matrix associated to a symmetric-regular graph can be built using the

generators of the graph. In order to highlight the improvement arisen by the method

of the present section, a short review on conventional group theoretic method for

decomposition of such graphs is presented first. This method has been developed

before by Kaveh and Nikbakht [4] for decomposition of Laplacian matrix of a

symmetric graph, and one can refer to this reference for further illustrations.

The method is described here briefly via the simple example of graph G1, which

is the Cartesian product of two paths P3 and P4, and was shown in Fig. 12.6.

Symmetry operators of this graph are illustrated in Fig. 12.6a, with its symmetry

operations in Fig. 12.6b–d.

Laplacian matrix of graph G1 can be written as

L ¼

2 �1 0 �1
�1 3 �1 0 �1
0 �1 2 0 0 �1 0

�1 0 0 3 �1 0 �1
�1 0 �1 4 �1 0 �1

�1 0 �1 3 0 0 �1
�1 0 0 3 �1 0 �1

�1 0 �1 4 �1 0 �1
�1 0 �1 3 0 0 �1

0 �1 0 0 2 �1 0

�1 0 �1 3 �1
�1 0 �1 2

2
6666666666666666664

3
7777777777777777775

:

(12.5)

1 4 7 10

2 5 8 11

3 6 9 12

σV =σy

σ V=σx

12
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1

258

10

11

12

7

9

4

6

1

3

2
58

3

2

1

6

4

9

7

12

10

11
85

a

c d

b

Fig. 12.6 Graph G1¼P3 ðXÞC P4 and its transformations under operators of the symmetry group

C2v. (a) Graph P3 ðXÞC P4 and symmetry operation e. (b) Symmetry operation C2. (c) I symmetry

operation σy. (d) I symmetry operation σx
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Symmetry group of graph G1 is C2v. Figure 12.6 shows this graph under the

effect of each of the four symmetry operations of this group.σy andσx, as the vertical
planes of symmetry, are generally shown by σv and σ0v in notation of the

representation theory.

Graph G1 includes 12 nodes, and its Laplacian is a 12� 12 matrix, having 12

eigenvalues. This matrix can be decomposed into mutually independent

submatrices of lower orders. In other words, we correlate all the nodes of the

graph into a limited number of nodes, in each symmetry mode. Let us consider

vector u as a basis vector, collecting all the nodes of the graph as its entries. This is

the basis on which the Laplacian matrix of Eq. 12.5 was written.

u ¼ u1; u2; u3; . . . ; u11; u12f gt:

Effect of each symmetry operation on this basis can be written using Fig. 12.6.

When nodes are rearranged under each of the symmetry operations as shown in

Fig. 12.6b, the vector u will be converted to a new vector (let us denote this by u0).
In this sense, symmetry operations can be considered as transformation operations,

which transform u into u0s.
Following this procedure for all of the symmetry operations of the symmetry

group on the basis of vector u, a set of transformation operations will arise, known as

the representation of that group. In this example, using vector u (a 12-dimensional

vector) results in a set of operations each of which is a 12-dimensional matrix. This

set is called a reducible representation (redrep) of the group, conventionally shown

by Γ . Complete set of representations Γ:u ’s are shown in Table 12.2. Such a

representation can be reduced in dimension. It can be shown from representation

theory that changing selected basis vector may arise in sets of matrices of lower

dimensions. Each of these new sets will be another representation of the symmetry

group, which is reduced in size. This process can be continued, and the dimension of

resulted representations can be reduced more and more. As soon as there is no new

basis, which can result in new representation of a lower dimension, the representation

will be called an irreducible representation (irrep) of that symmetry group, shown by

letter γ. It is possible to classify irreps of a symmetry group by means of characters.

This is known as the character table of the group. Classes of the group form the

columns of this table, while the rows are associated with different irreps. In this sense,

each entry of the table shows the character of a class of the group in an irreducible

representation. Comprehensive lists of such tables are widely available in different

references [3, 5]. Table 12.3 is the character table of group C2v.

Table 12.2 Reducible representation of C2v on R12

Element Γi Γifug χðΓiÞ
E Γ1 u1; u2; u3; u4; u5; u6; u7; u8; u9; u10; u11; u12

� �t 12

C2 Γ2 u12; u11; u10; u9; u8; u7; u6; u5; u4; u3; u2; u1
� �t 0

σvðσyÞ Γ3 u10; u11; u12; u7; u8; u9; u4; u5; u6; u1; u2; u3
� �t 0

σ0vðσxÞ Γ4 u3; u2; u1; u6; u5; u4; u9; u8; u7; u12; u11; u10
� �t 4
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In the last column of Table 12.2, the characters of different representations can be

found. These are calculated from those nodes that have been transformed into a

coefficient of themselves under the symmetry operation. The character is the algebraic

summation of these coefficients. In order to give an example, χðσyÞ is calculated below:

Γ4:u ¼ u3; u2
"
; u1; u6; u5

"
; u4; u9; u8

"
; u7; u12; u11

"
; u10

� �t

χ Γ4ð Þ ¼ þ1þ 1þ 1þ 1ð Þ ¼ 4:

Equation 12.12 provides the dimension of decomposed subgraphs. In this equa-

tion,m is the order of the point group, and γðμÞi s (i ¼ 1,2,. . .,m) aremμ � mμ matrices

of redrep of the group. nμ denotes the dimension of V(μ) (the subspace associated with

the μth subsystem), and χ(M) is the character (trace) for any given square matrix M.

nμ ¼ mμ

m

Xm
1

χ γðμÞi

� 	
χ Γið Þ

h i
: (12.6)

Based on the above equation, and using Tables 12.2 and 12.3, one can easily find

n1¼n4¼4 and n2¼n3¼2. This indicates that the symmetric graph G1 can be

decomposed into four independent subgraphs, and consequently, 12� 12Laplacian

matrix of Eq. 12.5 is transformed into a block-diagonal matrix with two diagonal

factors of dimension 4, and two diagonal factors of dimension 2. Each block is

associated with one symmetry mode of the graph. A possible way to find these

modes is using idempotent operators from the following equation [6]:

p μð Þ ¼ mμ

m

Xm
1

χ γ μð Þ
i

� 	
: Γi

h i
(12.7)

where pðμÞ is the idempotent associated with the subspace of the μ in the subgraph;

V(μ):

pð1Þ ¼ 1

4
� Γ1 þ Γ2 þ Γ3 þ Γ4½ �; pð2Þ ¼ 1

4
� Γ1 þ Γ2 � Γ3 � Γ4½ �;

pð3Þ ¼ 1

4
� Γ1 � Γ2 þ Γ3 � Γ4½ �; pð4Þ ¼ 1

4
� Γ1 � Γ2 � Γ3 þ Γ4½ �:

Table 12.3 Character table

of group C2v

C2v e C2 σV σ0v
γð1Þ 1 1 1 1

γð2Þ 1 1 �1 �1
γð3Þ 1 �1 1 �1
γð4Þ 1 �1 �1 1
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One can easily find the basis of each subspace V(μ) as the range of idempotent

P(μ). It is enough to multiply the idempotent by the basis of the original vector space

V and recognise independent sets that form the result. For example, for subspace

V(1), we have

pð1Þ:u ¼ Γ1 þ Γ2 þ Γ3 þ Γ4

4
:u ¼ α; β; α; γ; θ; γ; γ; θ; γ; α; β; αf gt

in which

α ¼ u1 þ u3 þ u10 þ u12
4

; β ¼ u2 þ u11
2

; γ ¼ u4 þ u6 þ u7 þ u9
4

; θ ¼ u5 þ u8
2

:

From the above result, independent unit basis vectors of subspace V(1) can easily

be extracted as follows:

ψ1
ð1Þ ¼ 1

2
1; 0; 1; 0; 0; 0; 0; 0; 0; 1; 0; 1f gt;

ψ2
ð1Þ ¼ 1ffiffiffi

2
p 0; 1; 0; 0; 0; 0; 0; 0; 0; 0; 1; 0f gt;

ψ3
ð1Þ ¼ 1

2
0; 0; 0; 1; 0; 1; 1; 0; 1; 0; 0; 0f gt;

ψ4
ð1Þ ¼ 1ffiffiffi

2
p 0; 0; 0; 0; 1; 0; 0; 1; 0; 0; 0; 0f gt:

Any set of theψ i
ðμÞs, known as the symmetry modes, for a constant μ is associated

to one symmetry type of the graph. This is shown in Fig. 12.7. In this figure, nodes,

which contribute to a symmetry mode with positive sign, are shown in black points,

and those which participate in the symmetry mode with negative sign are shown by

the white points. It is found from this figure that the first subspace corresponds to a

symmetric graph with respect to bothσx andσy planes. In the second subspace, graph
is antisymmetric with respect to both σx and σy, while in each of the third and fourth
subspaces, the graph is symmetric with respect to one of the planes and antisym-

metric with respect to the other one.

As it was shown before [4], the set of all symmetry modes with the same

symmetry type (i.e. the symmetry modes of one subspace) can form the transfor-

mation matrix which can block diagonalise matrices of the graph. In other words, if

we collect all of theψ i
ðμÞs for a given μ, in an nμ � nμ matrixTðμÞ, then we will have

LðμÞ ¼ TðμÞt:L:TðμÞ; (12.8)

in whichLðμÞ is the given μth diagonal block of the block-factored Laplacian matrix

L. Therefore, Laplacian matrix L is decomposed into h submatrices, each of which
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is associated with one of the subspaces. H is the number of classes of the symmetry

group.

Instead of the above operations, it is possible to collect T(1) to T(h) together in an

n� n matrix T and perform the procedures for all of the subspaces in one step as

follows:

�L ¼ Tt:L:T (12.9)

in which �L is the block-diagonal Laplacian matrix of the graph.

T¼ 1

2

1 0 0 0 1 0 1 0 1 0 0 0

0
ffiffiffi
2
p

0 0 0 0 0 0 0
ffiffiffi
2
p

0 0

1 0 0 0 �1 0 �1 0 1 0 0 0

0 0 1 0 0 1 0 1 0 0 1 0

0 0 0
ffiffiffi
2
p

0 0 0 0 0 0 0
ffiffiffi
2
p

0 0 1 0 0 �1 0 �1 0 0 1 0
0 0 1 0 0 �1 0 1 0 0 �1 0

0 0 0
ffiffiffi
2
p

0 0 0 0 0 0 0 � ffiffiffi
2
p

0 0 1 0 0 1 0 �1 0 0 �1 0

1 0 0 0 �1 0 1 0 �1 0 0 0

0
ffiffiffi
2
p

0 0 0 0 0 0 0 � ffiffiffi
2
p

0 0
1 0 0 0 1 0 �1 0 �1 0 0 0

2
6666666666666666664

3
7777777777777777775

: (12.10)

1Ψ
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(4)

4Ψ
(4)

2Ψ
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b

Fig. 12.7 Symmetry modes of Graph G1¼P3 ðXÞC P4 . (a) Subspace V(1). (b) Subspace V(2).
(c) I subspace V(3). (d) I subspace V(4)
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It is proven in linear algebra that similarity transformation does not change the

eigenvalues of a matrix. Therefore, it is possible to calculate the eigenvalues of two

2� 2 and two 4� 4 matrices instead of a 12� 12 matrix.

Lð1Þ ¼
1 � ffiffiffi

2
p �1 0

3 0 �1
2 � ffiffiffi

2
p

Sym: 3

2
664

3
775; Lð2Þ ¼ 2 �1

Sym: 4

� �
;

Lð3Þ ¼ 2 �1
Sym: 2

� �
; Lð4Þ ¼

2 � ffiffiffi
2
p �1 0

3 0 �1
4 � ffiffiffi

2
p

Sym: 5

2
664

3
775:

• Graph–Group Method: Procedure described above is the general group theoretic

method for decomposition of symmetric graphs. However, when graph is regular

(in the sense described before), graph product can enhance the method and reduce

the volume of calculations. As it was seen, symmetry modes of regular graphs are

combinations of symmetry modes of the generators. A method will be presented in

this section based on finding symmetric and asymmetric modes of the factors and

then combining these modes based on the character table of the product group.

Steps of this method are described for this example in the following.

Step 1: Finding symmetry group of the product graph: When a graph is recognised

as the product of two paths Pm and Pn, its symmetry group can be predicted as

the direct product of the symmetry groups of the factors. This is proven in the

previous section. Therefore, for this example, symmetry group of graph G1 will

be C2v, which is the direct product of groups C1v.

Step 2: Finding symmetric and antisymmetric modes of the factors: it can be possible
to find symmetric and antisymmetric modes for a given path, with respect to its

plane of symmetry (if available). These modes for each of the generatorsP3 and P4

of graph G1 are shown in Fig. 12.8, based on the convention described for

Fig. 12.7. These modes can be presented in matrix format as follows:

TP3;Sym ¼
1 0

0 1

1 0

2
64

3
75; TP3;Anti�Sym ¼

1

0

�1

2
64

3
75; TP4;Sym ¼

1 0

0 1

0 1

1 0

2
6664

3
7775 and

TP4;Anti�Sym ¼

1 0

0 1

0 �1
�1 0

2
6664

3
7775:
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The entries of these matrices show independent nodes of associated path that are

necessary for spanning the entire path in each of the symmetric and antisymmetric

modes. These matrices will be called as the mode matrices.

Step 3: Combining the mode matrices: In order to reach to the symmetry modes of

the product graph, different modes of the factors should be combined based on a

specific order. For each subspace, character table of symmetry group of the

product graph (found in step 1) governs this order.

For graph G1, the character table of group C2v, has been given previously in

Table 12.3. For each subspace, mode matrices of the two factors contribute in

either symmetric or antisymmetric form, based on the character of its symmetry

operation in the irrep associated to that subspace. For example, in graph G1,

repeating factor (P3) is associated with symmetry operation σxðσ0vÞ. Characters
of this operation in irreducible representations of group C2v are as follows: +1,

�1, �1 and +1. This means that subspaces V(1) and V(4) are symmetric, and

subspaces V(2) and V(3) are antisymmetric with respect to the symmetry operation

σx . Therefore, mode matrix of the repeating factor should contribute in its

symmetric form in the first and the last subspace, and in its antisymmetric form,

in the second and the third subspaces.

Combination of mode matrices of the factors should be based on the same rules

of combination of their symmetry groups. Kronecker product (introduced in

Sect. 12.3) is used for this purpose. Binding factor is the factor which controls the

pattern of repeating, and therefore, its associated matrices should dictate the pattern

of product matrix. Therefore, the mode matrix of the binding factor comes first in

the Kronecker product. This can be described as follows:

TðμÞ ¼ Tbinding � Trepeating (12.11)

In order to more highlight the procedure, calculations for different subspaces are

presented below:

Symmetric Anti-Symmetric Symmetric Anti-Symmetric

a b

Fig. 12.8 Symmetric and antisymmetric modes of paths P3 and P4. (a) Repeating factor P3.

(b) Binding factor P4
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Tð1Þ ¼TP4;Sym�TP3;Sym¼
1 0

0 1

0 1

1 0

2
664

3
775�

1 0

0 1

1 0

2
4

3
5¼

1 0

0 1

1 0

2
4

3
5

1 0

0 1

1 0

2
4

3
5

1 0

0 1

1 0

2
4

3
5

1 0

0 1

1 0

2
4

3
5

2
6666666666666666664

3
7777777777777777775

¼

1 0 0 0

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

0 0 1 0

0 0 1 0

0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 0

1 0 0 0

2
6666666666666666664

3
7777777777777777775

Tð2Þ ¼ TP4;Anti�Sym � TP3;Anti�Sym ¼
1 0

0 1

0 �1
�1 0

2
664

3
775�

1

0

�1

2
4

3
5

¼

1

0

�1

2
4

3
5

1

0

�1

2
4

3
5

�1�
1

0

�1

2
4

3
5

�1�
1

0

�1

2
4

3
5

2
6666666666666666664

3
7777777777777777775

¼

1 0

0 0

�1 0

0 1

0 0

0 �1
0 �1
0 0

0 1

�1 0

0 0

1 0

2
6666666666666666664

3
7777777777777777775
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Tð3Þ ¼ TP4;Sym � TP3;Anti�Sym ¼
1 0

0 1

0 1

1 0

2
664

3
775�

1

0

�1

2
4

3
5 ¼

1

0

�1

2
4

3
5

1

0

�1

2
4

3
5

1

0

�1

2
4

3
5

1

0

�1

2
4

3
5

2
6666666666666666664

3
7777777777777777775

¼

1 0

0 0

�1 0

0 1

0 0

0 �1
0 1

0 0

0 �1
1 0

0 0

�1 0

2
6666666666666666664

3
7777777777777777775

Tð4Þ ¼ TP4;Anti�Sym � TP3;Sym ¼
1 0

0 1

0 �1
�1 0

2
664

3
775�

1 0

0 1

1 0

2
4

3
5

¼

1 0

0 1

1 0

2
4

3
5

1 0

0 1

1 0

2
4

3
5

�1�
1 0

0 1

1 0

2
4

3
5

�1�
1 0

0 1

1 0

2
4

3
5

2
6666666666666666664

3
7777777777777777775

¼

1 0 0 0

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

0 0 1 0

0 0 �1 0

0 0 0 �1
0 0 �1 0

�1 0 0 0

0 �1 0 0

�1 0 0 0

2
6666666666666666664

3
7777777777777777775

:
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Now it is enough to normalise the columns of T(μ)s. The results are as follows.

Comparison of Eq. 12.18 and the blocks of matrix T (Eq. 12.10) verifies the

accuracy of the method.

Tð1Þ ¼ 1

2

1 0 1 0 0 0 0 0 0 1 0 1

0
ffiffiffi
2
p

0 0 0 0 0 0 0 0
ffiffiffi
2
p

0

0 0 0 1 0 1 1 0 1 0 0 0

0 0 0 0
ffiffiffi
2
p

0 0
ffiffiffi
2
p

0 0 0 0

2
664

3
775
t

(12.12a)

Tð2Þ ¼ 1

2

1 0 �1 0 0 0 0 0 0 �1 0 1

0 0 0 1 0 �1 �1 0 1 0 0 0

� �t
(12.12b)

Tð3Þ ¼ 1

2

1 0 �1 0 0 0 0 0 0 1 0 �1
0 0 0 1 0 �1 1 0 �1 0 0 0

� �t
(12.12c)

Tð4Þ ¼ 1

2

1 0 1 0 0 0 0 0 0 �1 0 �1
0

ffiffiffi
2
p

0 0 0 0 0 0 0 0 � ffiffiffi
2
p

0

0 0 0 1 0 1 �1 0 �1 0 0 0

0 0 0 0
ffiffiffi
2
p

0 0 � ffiffiffi
2
p

0 0 0 0

2
664

3
775
t

:

(12.12d)

Step 4:Decomposition of the matrices:Matrices associated to the product graph can

now be decomposed based on Eq. 12.8, using transformation matrices T(μ).

Strong Cartesian product of the factors P3 and P4 is shown in Fig. 12.9. This is

another example of a symmetric-regular structure. It is seen that symmetry

properties of this graph are exactly the same as those of graph G1. These two graphs

belong to the same symmetry group, and the same matrices T(μ) can be used to

decompose the matrices of these two graphs. Laplacian matrix of graph G2 is

L ¼

3 �1 0 �1 �1
�1 5 �1 �1 �1 �1
0 �1 3 0 �1 �1 0 0

�1 �1 0 5 �1 0 �1 �1
�1 �1 �1 �1 8 �1 �1 �1 �1

�1 �1 0 �1 5 0 �1 �1 0

0 �1 �1 0 5 �1 0 �1 �1
�1 �1 �1 �1 8 �1 �1 �1 �1

�1 �1 0 �1 5 0 �1 �1
0 0 �1 �1 0 3 �1 0

�1 �1 �1 �1 5 �1
�1 �1 0 �1 3

2
6666666666666666664

3
7777777777777777775

:
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This matrix can be decomposed into four submatrices, using Eq. 12.9, and

transformation matrices T(1) to T
(4) in Eq. 12.18:

Lð1Þ ¼

3 � ffiffiffi
2
p �1 � ffiffiffi

2
p

5 � ffiffiffi
2
p �1

Sym 4 �2 ffiffiffi
2
p

7

2
6664

3
7775; Lð2Þ ¼ 3 �1

�1 6

� �
; Lð3Þ ¼ 3 �1

�1 4

� �
and

Lð4Þ ¼

3 � ffiffiffi
2
p �1 � ffiffiffi

2
p

5 � ffiffiffi
2
p �1

Sym 6 0

9

2
6664

3
7775:

Direct product of two paths P3 and P4 is another graph of symmetry group C2v,

Fig. 12.10a. Having 12 nodes, matrices T(μ) of Eq. 12.18 can be again used to

decompose the 12� 12 Laplacian matrix of the graph into diagonal blocks of

dimensions two and four, similar to what was shown for graphs G1 and G2.

It should be noted that graph G3 is composed of two independent graphs, which

are shown in Fig. 12.10b. Since these graphs are identical to each other, one can just

solve one of them and then repeat each of the eigenvalues twice to form the

complete set of eigenvalues of the system. Therefore, half of the nodes are enough

to be studied. This reduces the dimension of the problem to 6� 6. Each of the new

graphs has only one vertical plane of symmetry, and symmetry group of them is

C1v. Although this is a group of order two, with just two classes, the reduction of a

12� 12 matrix to 6� 6 is beneficial enough to considerably lower the computa-

tional time and effort.

Note: It is noted here that decomposition of Laplacian matrix of direct product

and strong Cartesian product of two paths is not possible in graph theory by this

time, without adding extra elements to the graph [7, 8]. Thus, for these cases, using

a symmetry analysis in the way described seems inevitable.

1 4 7 10

2 5 8 11

3

6 9

12

Fig. 12.9 Graph

G2 ¼ P3 ðXÞSC P4
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12.4 Application in Analysis of Prestressed Cable Nets

In this section, vibration of prestressed cable nets is studied as a direct mechanical

application of the proposed method. Analysis of cable networks which carry loads

perpendicular to their plane has been interesting in structural mechanics, and

especially for group theorists in this field. Such problems can be considered

among benchmark problems of application of group theory in structural mechanics

[9–11]. Here, we are going to use the method developed in the previous section for

finding frequencies of such networks. For this purpose, first, a graph which is called

Net Graph is mapped to the network, and then the natural frequencies are found as

the eigenvalues of the Laplacian matrix of this graph. This leads to a considerable

reduction in calculation efforts, and the dimension of matrices involved in the

process of symmetry analysis.

• Net graph for vibration of a cable network: Fig. 12.11 shows one module of a

cable network, which is formed from crossing of two perpendicular cables and

comprises five nodes. Magnitude of pre tension forces in horizontal and vertical

cables are assumed equal to Tx and Ty respectively. The net is supposed to

support vertical loads at its nodes. Vertical load applied on node (i,j) is shown

as Pi,j. A deformed position of the five-node module during free vibration of the

net is shown in Fig. 12.11. Equilibrium of applied loads on this module in

vertical direction results in

X
Fz ¼ 0;

Tx sin αi�1 � sin αiþ1ð Þ þ Ty sin αj�1 � sivαjþ1
� �� Pi;j ¼ 0

Tx
a

2wi;j � wi�1;j � wiþ1;j
� �þ Ty

b
2wi;j � wi;j�1 � wi;jþ1
� � ¼ Pi;j: ð12:13Þ

If we violate the equilibrium of the node (i, j) by imposing a negligible displace-

ment ui,j, vibration equation of the node can be found, using the following

assumptions and simplifications:

1 4 7 10

2 5 8 11

3 6 9 12

4 10

2

5

8

11

3

6

9

12

a bFig. 12.10 Graph G3, direct

product of P3 and P4.

(a) G3 ¼ P3 ðXÞD P4.

(b) G3 as two disjoint graphs
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1. Magnitudes of a and b stay constant during the vibration.

2. Cable segments stay straight between any two adjacent nodes and no local curve

happens.

3. Prestressing forces in the cables are constant during the vibration of the net.

Based on these assumptions, dynamic equilibrium can be written for each node

as follows:

Tx
a

2 wi;j þ ui;j
� �� wi�1;j þ ui�1;j

� �� wiþ1;j þ uiþ1;j
� � �

þ Ty
b

2 wi;j þ ui;j
� �� wi;j�1 þ ui;j�1

� �� wi;jþ1 þ ui;jþ1
� � �� Pi;j þ mi;j:€ui;j ¼ 0:

Finally, this leads to the vibration equation of the node, as Eq. 12.14.

Tx
a
ð2ui;j � ui�1;j � uiþ1;jÞ þ Ty

b
ð2ui;j � ui;j�1 � ui;jþ1Þ þ mi;j:€ui;j ¼ 0: (12.14)

For a module with four extra nodes and totally eight cable segments, shown in

Fig. 12.12, Eq. 12.13 can be modified by adding the following term to it:

T0

c
4ui;j � ui�1;j�1 � uiþ1;j�1 � ui�1;jþ1 � uiþ1;jþ1
� �

: (12.15)

Pi,j

αj-1

αi+1

αj+1

αi-1

T y

T
x

T y

Tx

x

y
z

wi+1,j

wi,j+1

wi-1,j

wi,j+1

w i,j

a a

b

b

Fig. 12.11 One module of

the cable net, comprising

five nodes and four cable

segments
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Here, a graph model is introduced for each cable net, by the means of which, it is

possible to map the stiffness matrix of the system to the Laplacian matrix of the

graph. Such transformation from the mechanical problem of vibrating prestressed

cable nets to a mathematical problem in graph theory helps us to utilise the

graph–group technique and develop it to the vibration analysis of such nets.

In the proposed graph model, each node of the cable net is shown as a vertex and

each cable segment between two nodes is modelled as a weighted edge of the net

graph. Figure 12.13 shows the net graph for a simple cable net consisting of three

cables with prestressing forces T1 to T3. As illustrated in this figure, weight of an

element associated to a cable segment of length li, with prestressing force Ti, equals
to Ti/li. Each restrained node (support) is modelled as a null node in the net graph.

Laplacian matrix of the net graph is exactly the same as the stiffness matrix of

the cable net. It should be noted here that although it is easily possible to introduce

another graph associated to the mass matrix of the cable net, such a definition does

not seem necessary. It is due to the fact that the mass matrices of such systems are

always diagonal matrices – see Eq. 12.14 – and can easily be handled during

decomposition process.

Example 12.3. Figure 12.14a shows a rectangular cable net with 15 nodes.

Prestressing forces in all of the tendons are equal to T. Net graph of this network

is presented in Fig. 12.14b, and factors of the net graph are shown in Fig. 12.14b.

Laplacian matrix of graph NG1 is the stiffness matrix of net N1. This matrix is as

Pi,jx
yz

T'

T'

T'

T'

Fig. 12.12 A module of the cable net, composed of nine nodes and eight cable segments

T2 T3

T

a a a3

T2

b1

T2

b2

T3

b1

T3

b2

T1 T1
a3

T1
a2

T2 T3

T1 T1

a1 a2

b2

b1

a1

a b

Fig. 12.13 A simple cable net and its associated net graph. (a) A net comprising of three cables.

(b) Associated net graph
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shown in Eq. 12.16. Frequencies of the cable net are calculated as the eigenvalues

of this matrix through the step-by-step method described in Sect. 12.5.

Step 1: Symmetry group of the repeating factor is C1v, while the binding factor does

not have any symmetry operation except the identical symmetry (e), which
defines symmetry group C1. Symmetry group of net graph NG1 is the direct

product of these two symmetry groups:

C1 � C1v ffi C1v:

Character table of this symmetry group is shown in Table 12.4.

T T

T T

T T

c a b
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T

T

T T

T T

T T
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'
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c
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a
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b
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T
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T
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T
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T
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T
a'

T
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T
cT

a
T
c

a

b c

Fig. 12.14 A cable net with associated net graph and its factors. (a) Prestressed network N1.

(b) Net graph NG1. (c) Factors of the net graph

Table 12.4 Character table of group C1v

C2v e σV

γð1Þ 1 1

γð2Þ 1 �1
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L¼T�

α � 1
a0 0 0 0 �1

a

α � 1
a0 0 0 0 �1

a

α � 1
a0 0 0 0 �1

a

α � 1
a0 0 0 0 �1

a

α 0 0 0 0 �1
a

β � 1
a0 0 0 0 �1

b

β � 1
a0 0 0 0 �1

b

β � 1
a0 0 0 0 �1

b

β � 1
a0 0 0 0 �1

b

β 0 0 0 0 �1
b

SYM: γ � 1
a0 0 0 0

γ � 1
a0 0 0

γ � 1
a0 0

γ � 1
a0

γ

2
66666666666666666666666666666664

3
77777777777777777777777777777775
(12.16)

in which

α ¼ 1

a
þ 1

c
þ 2

a0

β ¼ 1

a
þ 1

b
þ 2

a0

γ ¼ 1

b
þ 1

c
þ 2

a0

:

Step 2: Symmetric and antisymmetric deflections of repeating factor P5 are shown

in Fig. 12.14a, b. Binding factor P3 in this example does not have any symmetry

operation except the identical symmetry. Therefore, in any deflection shape of

this factor, each node has its independent value. Mode matrix of a path Pn with

such conditions will be In, in which one non-zero entry is associated to each

node of the path independently. Therefore, we will have

TP5;Sym ¼

1

1

1

1

1

2
66664

3
77775; TP5;Anti�Sym ¼

1

1

0

�1
�1

2
66664

3
77775; TP3;ASym ¼

1

1

1

2
4

3
5:
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Step 3: Symmetry modes of the factors can now easily be combined based on

Table 12.4

Tð1Þ ¼TP5;Sym�TP3;ASym ¼

1

1

1

1

1

2
66664

3
77775�

1

1

1

2
4

3
5¼ 1

2

I3�3
I3�3

2I3�3
I3�3

I3�3

2
66664

3
77775

Tð2Þ ¼TP5;AntiSym�TP3;ASym ¼

1

1

0

�1
�1

2
66664

3
77775�

1

1

1

2
4

3
5¼ 1

2

I3�3
I3�3
03�3
�I3�3

�I3�3

2
66664

3
77775:

Step 4: Stiffness matrix of the system is decomposed based on Eq. 12.9, using

transformation matrices T(1) and T(2):

Kð1Þ ¼Lð1Þ ¼Tð1Þ
t �L�Tð1Þ

¼ T

4
�

ε � 2
a0 0 0 0 � 1

a0 � 1
a 0 �2

b 0

ε � 2
a0 0 0 0 �2

a 0 �2
b

ε � 1
a0 � 1

b 0 0 0 �2
a 0

ξ � 1
a0 � 1

a 0 0 0 � 2
a0 � 2

a
ε � 1

a0 � 1
b 0 0 0

η � 2
a0 � 2

b 0 0

SYM: ς � 4
a0 0

ς � 4
a0
ς

2
6666666666664

3
7777777777775

Kð2Þ ¼Lð2Þ ¼Tð2Þ
t �L�Tð2Þ ¼ T�

ε � 2
a0 0 0 0 � 1

a0 � 1
a

ε � 2
a0 0 0 0

ε � 1
a0 � 1

b 0 0

ξ � 1
a0 þ 1

a 0

SYM: ε � 1
a0 þ 1

b
η

2
6666664

3
7777775
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in which

ε ¼ 4

a0
þ 1

a
þ 1

b
þ 2

c

η ¼ 4

a0
þ 1

a
þ 2

b
þ 1

c

ξ ¼ 4

a0
þ 2

a
þ 1

b
þ 1

c

ς ¼ 8

a0
þ 4

a
þ 4

b
:

Matrices L
(1) and L

(2) are similar to matrix L. Therefore, the eigenvalues of

stiffness matrix of the net will be the union of eigenvalues of matrices L(1) and L(2).

Natural frequencies of the net, which are the generalised eigenvalues of stiffness

and mass matrices, can easily be calculated by just having the eigenvalues of the

stiffness matrix. This is due to the fact that the mass matrix is diagonal:

detðK� ω2:MÞ ¼ detðK� mω2:IÞ ¼ detðK� λ:IÞ

λ ¼ mω2 ) ω ¼
ffiffiffiffi
λ

m

r
(12.17)

in which λ is the eigenvalue of the stiffness matrix (or the Laplacian matrix of the

net graph) and ω is the corresponding frequency of the cable net.

Example 12.4. Prestressed network N2 shown in Fig. 12.15a is analysed as the

second example. This problem has been formerly studied by Zingoni [10, 11] and

solved through the conventional group theoretic method. Now we are going to use

combined graph–group method. Stiffness matrix of the network is calculated as the

Laplacian matrix of the net graph NG2 which is illustrated in Fig. 12.15b:

K ¼ L ¼

2ðTa þ T0
b Þ � T0

b 0 � T
a

� T0
b 2ðTa þ T0

b Þ � T0
b 0 � T

a

0 � T0
b 2ðTa þ T0

b Þ 0 0 � T
a

� T
a 0 0 2ðTa þ T0

b Þ � T0
b 0 � T

a

� T
a 0 � T0

b 2ðTa þ T0
b Þ � T0

b 0 � T
a

� T
a 0 � T0

b 2ðTa þ T0
b Þ 0 0 � T

a

� T
a 0 0 2ðTa þ T0

b Þ � T0
b 0 � T

a

� T
a 0 � T0

b 2ðTa þ T0
b Þ � T0

b 0 � T
a

� T
a 0 � T0

b 2ðTa þ T0
b Þ 0 0 � T

a

� T
a 0 0 2ðTa þ T0

b Þ � T0
b 0

� T
a 0 � T0

b 2ðTa þ T0
b Þ � T0

b

� T
a 0 � T0

b 2ðTa þ T0
b Þ

2
66666666666666666666666666666666664

3
77777777777777777777777777777777775

:

Net graph NG2 is the direct product of two paths P3 and P4. Such a product was

studied formerly as graph G1 in Chap. 5, and its transformation matrices T(1) to T(4)

were presented in Eq. 12.12. These matrices can be used to decompose stiffness
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matrix of network N2. If the magnitudes of the tension in horizontal and vertical

cables are the same (T 0 ¼ T), the results will be as follows:

Kð1Þ ¼ T

ab

2 aþ bð Þ � ffiffiffi
2
p

a �b 0

2ðaþ bÞ 0 �b
2 aþ bð Þ � ffiffiffi

2
p

a
Sym: 2 aþ bð Þ

2
664

3
775

Kð2Þ ¼ T

ab

2 aþ bð Þ �b
Sym: 2aþ 3b

� �
; Kð3Þ ¼ T

ab

2 aþ bð Þ �b
Sym: 2aþ b

� �

5×a

4×
b

T T T T

T T T T

T

T

T

T

T

T1 4 7

2 5 8 11

3 6 9 12

10

T
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b

T
b

T
b

T
b

T
b

T
b
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b

T
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T
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T
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T
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T
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T
b

T
b

T
b

T
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T
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T
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T
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T
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T
a

T
a
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b

Fig. 12.15 Rectangular cable net N2 and its associated net graph. (a) Rectangular network N2.

(b) Net graph NG2, associated to net N2
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Kð4Þ ¼ T

ab

2 aþ bð Þ � ffiffiffi
2
p

a �b 0

2 aþ bð Þ 0 �b
2aþ 3b � ffiffiffi

2
p

a
Sym: 2aþ 3b

2
664

3
775:

In presented examples, it was shown that instead of solving the characteristic

equation for matrices of higher dimensions, some factors of lower dimensions are

studied, resulting in a considerable saving in time and memory storage. In the first

example, instead of analysing a 15� 15 matrix, matrices of dimensions 9 and 6 are

studied. This is the achievement of group theory. However, combination of group

and graph product causes dealing with simple paths during the symmetry analysis.

In other words, instead of working with a 15� 15 matrix, 5� 2 and 5� 3 matrices

are involved in a simple way in the group theoretic analysis. In the second example,

working with 3� 2, 3� 1 and 4� 2 matrices leads to decomposition of a 3� 2

matrix to matrices of dimensions 4 and 2. Improvement which arises in symmetry

analysis of structures by group theory, using the proposed method can be more

highlighted in problems of larger scales. One example of such problems is

presented as the last.

Example 12.5. Prestressed network N3 shown in Fig. 12.16 is composed of 13

horizontal and 15 vertical cables tied to each other by means of the crossed cables.

This network contains 195 nodes, which make the scale of stiffness and mass

matrices of the system 195� 195. Due to the symmetry of the system, group theory

can be used to decompose it into independent subsystems of lower dimensions.

However, existence of 195 nodes makes the symmetry analysis complicated as

well.

Net graph of this network is the strong Cartesian product of two paths P13 and

P15. Therefore, the presented combined method can successfully be used to develop

the symmetry analysis of the system. Symmetric and antisymmetric modes of the

factors can easily be recognised and combined to form the symmetry transforma-

tion matrix of the whole system. In this example, instead of working with195� 195

matrices of the structure, 13� 6, 13� 7, 15� 7 and 15� 8matrices associated with

factors are involved in the process of analysis, which is a considerable achievement.

x
yz

16×a

14
×a

Fig. 12.16 Prestressed cable network N3
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12.5 Discussion

A newmethod is presented in this chapter for symmetry analysis of regular structures.

This is a combined method which uses the concept of graph products to improve the

conventional group theoretic method for decomposition of symmetric graphs. The

method is completely described for topological graphs, and then its mechanical

application is presented. In this method, instead of studying the entire structure, its

simple factors are studied, and transformation matrix which decomposes the structure

is found as a combination of matrices of the factors. It is proved that symmetry group

of such structures is always isomorphic to the direct product of symmetry groups of

its generators. Therefore, after finding symmetric and antisymmetric modes of the

factors, these are combined by direct (Kronecker) product, based on the character

table of the product group (which is associated to the symmetry group of the original

structure).
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Block diagonalization, 102–107, 117–119,

252, 413

Block Lanczos method, 373

Block penta-diagonal matrix, 106
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Boundary conditions, 331–334
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Buckling load, 165–182, 252–254, 324–326
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Cable net, 451

Canonical penta-diagonal form, 226–230

Canonical Form I, 70
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Cartesian product, 38–40, 437
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table, 407, 410, 439
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CMS. See Component mode synthesis (CMS)

Co-cycle, 19
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Co-divisor subspace, 241
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Commutating condition, 108–109
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Complete bipartite graph, 22

Complete graph, 21

Complex conjugate eigenvectors, 118–119

Complex roots, 111
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Form B, 197–199

Form II symmetry, 157–159

Form III symmetry, 159–161

Form IV symmetry, 76–78

Free vibration, 287–298

G

Generalized form II, 350–352

Generalized form III, 101–102, 161–164

Generalized form IV, 81–82

Generators, 6, 38, 132

Geometric stiffness matrix, 257

Gerschgorin, 124

circles, 125

theorem, 125

Gram–Schmidt method, 113

Graphs, 16

associated with matrices, 24–25

group method, 433–458

partitioning, 115–128

products, 37–67, 265–312, 315–338,

341–398

representation, 97–98, 206–207

theory, 15
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Group, 402

invariant subspaces, 407

theory, 4, 401–431

H

Healing, 88, 166, 172–181

Hermitian, 104

Homomorphic, 404

Horizontal plane, 409

I

Idempotents, 407, 411

Identical symmetry, 403

Identity, 402

Incidence (Inc), 16, 17, 50

Incidence matrix, 27, 28

In-core, 93

Internal graph, 97

Intersection, 17

Inversion, 329–331, 402, 403

Irreducible representation (irrep), 406, 439

Irregular structure, 287–298

Isometry, 3

Isomorphism, 18, 433, 434

Iterative methods, 315–329, 341–398

K

Kernel component, 361

Königsberg Bridge problem, 34

Kronecker product, 42, 103, 132, 329–338

Kron’s method, 373

L

Labelled graph, 38

Lagrange multipliers, 388

Lanczos algorithm, 373

Laplacian, 119–123

Laplacian matrix, 27, 86, 134, 142, 319

Lexicographic product, 43–45

Linear equations, 268–269

Link, 19

beams, 166

matrix, 158

members, 87

spring, 154

Locally modified, 363–385

Locally modified regular structures, 315–338,

341–398

Loop, 16

M

Mass graph, 200

Mass matrix, 154

Mass–spring, 154–165

Mass–spring system, 156–157, 327, 379

Master modes, 377, 391

MATLAB functions, 124

Member list, 32–33

Members, 16

Mixed models, 96–97

Modal truncation, 375–376, 389–390

Modified regular structures, 329–338

Mulliken symbols, 419

Multiple members, 16

Multiple roots, 411

N

Natural frequency, 324

Nested form II, 347–348

Nested form III, 348–350

Neutral node, 95

New column, 182

New element, 171

Nodal ordering, 115–128, 140–141

Nodes, 16

Non-regular graphs, 315–329

Non-sway frames, 165, 175

Null graph, 21

Nullity, 22

O

Odd number of spans, 165–175

Optimal, 10

Optimal structural analysis, 10

Order, 2, 402

Ordering, 131–151

Out-of-core, 93

P

Partial pivoting, 378

Path, 18

Path graph, 21

Penta-diagonal, 325

Permutation matrices, 300–302

Perron–Frobenius theorem, 124

Planar graphs, 26–27

Planar trusses, 195–216

Plane of symmetry, 2

Plate, 325

Point group, 409
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Positive-definite, 377

Positive semi-definite, 377

Prestressed cable nets, 449–457

Principal axis, 409

Principal factor, 97

Principal submatrices, 77

Profile, 116

R

Rank, 23

Recognition of subspaces, 411

Rectangular plate, 277

Reduced eigenproblem, 376–377, 390–391

Reducible representation (redrep), 405–406,

410, 439

Reflective matrix, 77

Regular, 6, 132, 136

Regular structures, 265–312

Repeated patterns, 282–287

Repetitive, 5

Repetitive structures, 266–281

Representation, 405

Representation theory, 404–408

Residual flexibility matrix, 391

Rigid-body modes, 378

Ring sum, 17

Rotationally regular structures, 361

Rotationally repetitive, 249–263

Rotational regular (RR), 385

Rotational spring, 166

Rotation reflection, 403

RR. See Rotational regular (RR)

S

Schöenflies method, 404, 409, 410

Second eigenvalue, 136

Shape matrix, 158

Sherman–Morrison–Woodbury formula, 365

Shifted inverse, 364–373

Shortest path, 18

Shortest route tree (SRT), 19

Sign convention, 236–237

Similar, 117

Similarity transformation, 117, 403

Simple graph, 16

Singular value decomposition (SVD), 107

Skeleton graph, 132

Space structures, 249–263

Spanning tree, 19

Spectral graph theory, 15

Spectral method, 136–137, 140–141

Spectrum, 86, 117

Square plate, 326

SRT. See Shortest route tree (SRT)
Stability analysis, 408–416

Static analysis, 282–287

Stiffness graph, 200

Stiffness matrix, 174, 206–207, 246, 247

Strain–displacement matrix, 240

Strong Cartesian product, 40–41

Structural mechanics, 153–263

Subgraph, 17

Subgroup, 402

Subspaces of divisor, 237

Substructuring technique, 373–385

Sum of Kronecker products, 266–268

Sum of three Kronecker products, 107–108,

230–235

SVD. See Singular value decomposition (SVD)

Sway frames, 171, 179

Symmetry, 1, 199, 403–404

analysis, 437–449

axis, 2

centre, 2

column element, 416–418

core, 93

factors, 427–431

of Form I, 86–87

of Form II, 87–88

of Form III, 88

frames, 165–182, 418–431

group, 404

models, 441

operations, 403–404, 409

operator, 409

planar frames, 182–194

regular, 433–458

structure, 3

weighted path, 436

T

Three-diagonal form, 142

Topological symmetry, 69

Trail, 18

Translational regular structure (TRS), 387–389

Transmission tower, 310

Tree, 19

Tri-diagonal, 217

Tri-diagonal matrix, 218–225

TRS. See Translational regular structure (TRS)
Truss and frame elements, 236–249

Truss element, 237–243

Type 1 configuration, 258

Type 2 configuration, 258

Type 3 configuration, 260

Type 4 configuration, 261

Type I directed graph products, 46–47
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Type II directed graph products, 47–48

Type III directed graph products, 48–49

Type IV directed graph products, 49–50

U

Union, 17

Unsymmetric matrix, 110

V

Vector space, 22, 410

Vertical plane, 409

Vibrating cores, 154–165

Vibrating systems, 154–165

Vibration analysis, 299–307

W

Walk, 18

Weighted Cartesian direct graph products,

52–53

Weighted circular Cartesian, 57

Weighted circular Cartesian direct, 60

Weighted circular direct graph product, 58–60

Weighted circular graph product, 56–60

Weighted circular strong Cartesian, 57–58

Weighted covered cut-out semistrong

Cartesian, 66–67

Weighted covered cut-out strong Cartesian, 66

Weighted cut-outs, 60–63

Cartesian direct, 61–62

in Cartesian, 61

semistrong Cartesian, 62–63

strong Cartesian, 62

Weighted direct new product, 52

Weighted graph symmetry, 195–216

Weighted strong Cartesian product, 51–52

Weighted triangular, 50–53

graph products, 53–56

semistrong Cartesian, 55–56

strong Cartesian, 55

Well-structured, 82

Wheel graph, 21

Index 463


	Foreword
	Preface
	Contents
	Chapter 1: Introduction to Symmetry and Regularity
	1.1 Symmetric Structures
	1.1.1 Definition of Symmetry
	1.1.2 History of the Developments of Symmetry in Structural Engineering

	1.2 Regular Structures
	1.2.1 Repetitive and Cyclic Structures
	1.2.2 Definition of Regularity

	1.3 Examples of Symmetric and Regular Structural Models
	1.4 Optimal Analysis of Structures
	References

	Chapter 2: Introduction to Graph Theory and Algebraic Graph Theory
	2.1 Introduction
	2.2 Basic Concepts and Definitions of Graph Theory
	2.2.1 Definition of a Graph
	2.2.2 Adjacency and Incidence
	2.2.3 Graph Operations
	2.2.4 Walks, Trails and Paths
	2.2.5 Cycles and Cutsets
	2.2.6 Trees, Spanning Trees and Shortest Route Trees
	2.2.7 Directed Graphs
	2.2.8 Different Types of Graphs

	2.3 Vector Spaces Associated with a Graph
	2.3.1 Cycle Space
	2.3.2 Cutset Space
	2.3.3 Cycle Bases Matrices
	2.3.4 Cutset Bases Matrices

	2.4 Graphs Associated with Matrices
	2.5 Planar Graphs: Euler´s Polyhedron Formula
	2.5.1 Planar Graphs

	2.6 Definitions from Algebraic Graph Theory
	2.6.1 Incidence, Adjacency and Laplacian Matrices of a Graph
	2.6.2 Incidence and Adjacency Matrices of a Directed Graph
	2.6.3 Adjacency and Laplacian Matrices of a Weighted Graph
	2.6.4 Eigenvalues and Eigenvectors of an Adjacency Matrix
	2.6.5 Eigenvalues and Eigenvectors of a Laplacian Matrix
	2.6.6 Additional Properties of a Laplacian Matrix

	2.7 Matrix Representation of a Graph in Computer
	2.8 Historical Problem of Graph Theory
	References

	Chapter 3: Graph Products and Configuration Processing
	3.1 Introduction
	3.2 Definitions of Different Graph Products
	3.2.1 Boolean Operation on Graphs
	3.2.2 Cartesian Product of Two Graphs
	3.2.3 Strong Cartesian Product of Two Graphs
	3.2.4 Direct Product of Two Graphs
	3.2.5 Lexicographic Product of Two Graphs

	3.3 Directed Graph Products
	3.3.1 Type I Directed Graph Products
	3.3.2 Type II Directed Graph Products
	3.3.3 Type III Directed Graph Products
	3.3.4 Type IV Directed Graph Products

	3.4 Weighted Triangular and Circular Graph Products for Configuration Processing
	3.4.1 Extension of Classic Graph Products
	3.4.2 Formulation of Weighted Strong Cartesian Product
	3.4.3 Formulation of Weighted Direct New Product
	3.4.4 Weighted Cartesian Direct Graph Products

	3.5 Definition of Weighted Triangular Graph Products
	3.5.1 Weights Assigned to Nodes of the Generators and Product Graphs
	3.5.2 Weighted Triangular Strong Cartesian Graph Product
	3.5.3 Weighted Triangular Semistrong Cartesian Graph Product

	3.6 Definition of a Weighted Circular Graph Product
	3.6.1 Weighted Circular Cartesian Graph Products
	3.6.2 Weighted Circular Strong Cartesian Graph Product
	3.6.3 Weighted Circular Direct Graph Product
	3.6.4 Weighted Circular Cartesian Direct Graph Product

	3.7 Weighted Cut-Out in Graph Products
	3.7.1 Weighted Cut-Outs in Cartesian Graph Product Models
	3.7.2 Weighted Cut-Out Cartesian Direct Graph Product
	3.7.3 Weighted Cut-Out Strong Cartesian Graph Product
	3.7.4 Weighted Cut-Out Semistrong Cartesian Graph Product

	3.8 Covered Graph Products
	3.8.1 Covered Cut-Out Cartesian Graph Product
	3.8.2 Covered Cut-Out Strong Cartesian Graph Product
	3.8.3 Weighted Covered Cut-Out Strong Cartesian Graph Product
	3.8.4 Weighted Covered Cut-Out Semistrong Cartesian Graph Product

	References

	Chapter 4: Canonical Forms, Basic Definitions and Properties
	4.1 Introduction
	4.2 Decomposition of Matrices to Special Forms
	4.2.1 Canonical Form I
	4.2.2 Canonical Form II
	4.2.3 Canonical Form III
	4.2.4 Transformation of Form III into Form II
	4.2.5 Form IV Symmetry
	4.2.6 Method for the Formation of e1 and e2 Matrices

	4.3 Generalization of Form IV to Higher-Order Matrices
	4.4 Special Pattern Form IV Matrices
	4.5 Eig[M] Operator
	4.6 Laplacian Matrices for Different Forms
	4.6.1 Symmetry and Laplacian of Graphs
	4.6.2 Factorisation of Symmetric Graphs
	4.6.3 Form III as an Augmented Form II
	4.6.4 Mixed Models

	4.7 Graph Representation of Form IV Symmetry
	4.7.1 Graph Representation
	4.7.2 Examples

	4.8 Generalised Form III Matrix
	4.9 Block Diagonalization of Compound Matrices
	4.10 Matrices as the Sum of Three Kronecker Products
	4.11 The Commutating Condition
	4.12 A Block Tri-diagonal Matrix with Corner Blocks and Its Block Diagonalisation
	References

	Chapter 5: Canonical Forms for Combinatorial Optimisation, Nodal Ordering and Graph Partitioning
	5.1 Introduction
	5.2 Preliminary Definitions
	5.3 Algebraic Graph Theory for Ordering and Partitioning
	5.4 Eigenvalue Problems and Similarity Transformation
	5.5 A Special Canonical Form and Its Block Diagonalisation
	5.6 Adjacency and Laplacian Matrices for Models of Different Topologies
	5.6.1 Configuration of Type 1
	5.6.2 Configurations of Type 2, Type 3 and Type 4

	5.7 Examples from Structural Models
	References

	Chapter 6: Graph Products for Ordering and Domain Decomposition
	6.1 Introduction
	6.2 Graph Models of Finite Element Meshes
	6.3 Eigenvalues of Graph Matrices for Cartesian Product
	6.3.1 Properties of Kronecker Product
	6.3.2 Theorem
	6.3.3 Eigenvalues of Graph Matrices for Cycle and Path Graphs
	6.3.4 Example

	6.4 Spectral Method for Bisection
	6.4.1 Computing lambda2 for Laplacian of Regular Models
	6.4.2 Algorithm

	6.5 Numerical Results
	6.6 Spectral Method for Nodal Ordering
	6.7 Spectral Method for Different Product Graphs: An Approximate Method
	6.7.1 Main Theorem
	6.7.2 Eigensolution in Cartesian Product of Two Graphs
	6.7.3 Eigensolution in Direct Product of Two Graphs
	6.7.4 Eigensolution in Strong Cartesian Product of Two Graphs
	6.7.5 Examples

	6.8 Numerical Examples
	References

	Chapter 7: Canonical Forms Applied to Structural Mechanics
	7.1 Introduction
	7.2 Vibrating Cores for a Mass-Spring Vibrating System
	7.2.1 The Graph Model of a Mass-Spring System
	7.2.2 Vibrating Systems with Form II Symmetry
	7.2.3 Vibrating Systems with Form III Symmetry
	7.2.4 Generalized Form III and Vibrating System
	7.2.5 Discussion

	7.3 Buckling Load of Symmetric Frames
	7.3.1 Buckling Load for Symmetric Frames with Odd Number of Spans per Storey
	7.3.1.1 Decomposition and Healing Process

	7.3.2 Buckling Load for Symmetric Frames with an Even Number of Spans per Storey
	7.3.2.1 Decomposition and Healing
	Sway Frames

	7.3.2.2 Decomposition and Healing

	7.3.3 Discussion

	7.4 Eigenfrequencies of Symmetric Planar Frame
	7.4.1 Eigenfrequencies of Planar Symmetric Frames with Odd Number of Spans
	7.4.1.1 Definitions

	7.4.2 Decomposition of Symmetric Planar Frames with Even Number of Spans
	7.4.3 Discussion

	7.5 Eigenfrequencies of Symmetric Planar Trusses via Weighted Graph Symmetry and New Canonical Forms
	7.5.1 Modified Symmetry Forms
	7.5.1.1 Symmetry of Form A (Modified Form II Symmetry)
	7.5.1.2 Symmetry of Form B (Modified Form III Symmetry)
	7.5.1.3 Definitions: Stiffness and Mass Graphs

	7.5.2 Numerical Results
	7.5.2.1 Symmetry Property of the Graph Representation of the Stiffness Matrix
	7.5.2.2 Formation of the Subgraphs

	7.5.3 Discussion

	7.6 General Canonical Forms for Analytical Solution of Problems in Structural Mechanics
	7.6.1 Definitions
	7.6.2 Decomposition of a Tri-diagonal Matrix
	7.6.2.1 Canonical Form I
	7.6.2.2 Applications

	7.6.3 A New Form for Efficient Solution of Eigenproblem
	7.6.3.1 A General Block Diagonal Tri-diagonal Matrix

	7.6.4 Canonical Penta-diagonal Form
	7.6.4.1 Formulation
	7.6.4.2 Derivation of the Exact Solution


	7.7 Numerical Examples for the Matrices as the Sum of Three Kronecker Products
	7.8 Symmetric Finite Element Formulation Using Canonical Forms: Truss and Frame Elements
	7.8.1 Sign Convention
	7.8.2 Truss Element
	7.8.3 Beam Element
	7.8.4 Discussion

	7.9 Eigensolution of Rotationally Repetitive Space Structures
	7.9.1 Basic Formulation of the Used Stiffness Matrix
	7.9.2 A Canonical Form Associated with Rotationally Repetitive Structures
	7.9.3 Eigensolution for Finding Buckling Load of Structure with the BTMCB Form
	7.9.4 Eigensolution for Free Vibration of Structural Systems with the BTMCB Form
	7.9.5 Reducing Computational Efforts by Substructuring the System
	7.9.6 Numerical Examples
	7.9.7 Concluding Remarks

	References

	Chapter 8: Graph Products Applied to the Analysis of Regular Structures
	8.1 Introduction
	8.2 Analysis of Repetitive Structures
	8.2.1 Eigenvectors for Sum of the Kronecker Products
	8.2.2 Solution of Linear Equations via Eigenvalues and Eigenvectors
	8.2.3 Kronecker Product of a Path and a Cycle
	8.2.4 An Illustrative Example
	8.2.5 Algorithm for the Analysis
	8.2.6 Numerical Examples

	8.3 Static and Modal Analyses of Structures with Different Repeated Patterns
	8.3.1 Static Analysis of Structures with Repeated Patterns

	8.4 Free Vibration Analysis of Irregular Structure Comprising of Regular Parts
	8.4.1 Illustrative Examples
	8.4.2 Discussion

	8.5 Block Circulant Matrices and Applications in Free Vibration Analysis of Cyclically Repetitive Structures
	8.5.1 Some Basic Definitions and Concepts of Block Circulant Matrices
	8.5.2 Some Properties of Permutation Matrices
	8.5.3 Some Properties of Block Circulant Matrices
	8.5.4 The Complete Study of a Simple Example

	8.6 Complementary Examples
	References

	Chapter 9: Graph Products Applied to the Locally Modified Regular Structures Using Direct Methods
	9.1 Introduction
	9.2 Analysis of Non-regular Graphs Using the Results of Regular Models via an Iterative Method
	9.2.1 Main Method
	9.2.2 Numerical Examples
	9.2.3 Discussion

	9.3 Application of Kronecker Product to the Analysis of Modified Regular Structures
	9.3.1 Inversion of Block Matrices
	9.3.2 Proposed Method
	9.3.2.1 The Effect of Different Boundary Conditions
	9.3.2.2 Structures Transformable to Regular Forms

	9.3.3 Numerical Examples
	9.3.4 Concluding Remarks

	References

	Chapter 10: Graph Products Applied to the Regular and Locally Modified Regular Structures Using Iterative Methods
	10.1 Introduction
	10.2 Eigensolution of Symmetric and Regular Structures Using Canonical Forms
	10.2.1 Canonical Form II
	10.2.2 Canonical Form III
	10.2.3 Nested Form II
	10.2.4 Nested Form III
	10.2.5 Generalised Form II
	10.2.6 Block Circulant Form
	10.2.7 Augmented Block Circulant (ABC) Form

	10.3 Eigensolution of Locally Modified Regular Structures Using Iterative Methods
	10.3.1 Eigensolution of Locally Modified Regular Structures Using Shifted Inverse Iteration Method
	10.3.1.1 Initialisation, Shift and Deflation
	10.3.1.2 The Algorithm
	10.3.1.3 Numerical Experiments

	10.3.2 Approximate Eigensolution of Locally Modified Regular Structures Using a Substructuring Technique
	10.3.2.1 Free Interface Substructure Formulation for the Modified Regular Structure
	10.3.2.2 Modal Truncation
	10.3.2.3 The Reduced Eigenproblem
	10.3.2.4 Evaluation of the Residual Flexibility Matrix
	Positive-Definite Stiffness Matrix
	Positive Semi-Definite Stiffness Matrix

	10.3.2.5 Numerical Experiments


	10.4 Substructure Representation for Efficient Eigensolution of Regular Structures
	10.4.1 Substructure Representation of TRS
	10.4.2 Modal Truncation
	10.4.3 Reduced Eigenproblem
	10.4.4 Evaluation of the Residual Flexibility Matrix
	10.4.5 Numerical Experiments

	References

	Chapter 11: Group Theory and Applications in Structural Mechanics
	11.1 Introduction
	11.2 Basic Concepts of Symmetry Groups and Representation Theory
	11.2.1 Definition of a Group
	11.2.2 Classes of a Group
	11.2.3 Symmetry and Symmetry Operations
	11.2.4 Symmetry Group
	11.2.5 Representation Theory

	11.3 Stability Analysis of Hyper Symmetric Skeletal Structures Using Group Theory
	11.3.1 A Review of the Present Method Through a Simple Example
	11.3.2 More Complicated Forms of Symmetry

	11.4 Finding the Factors of a Symmetric Column Element
	11.4.1 Hyper Symmetry

	11.5 Symmetric Frames Having Numerous Symmetry Operators
	11.5.1 Frames with Symmetrical Factors
	11.5.2 Discussions

	References

	Chapter 12: Graph-Group Method for the Analysis of Symmetric-Regular Structures
	12.1 Introduction
	12.2 Symmetry Groups of Graph Products
	12.3 Symmetry Analysis of Product Graphs
	12.4 Application in Analysis of Prestressed Cable Nets
	12.5 Discussion
	References

	Index

