
Chapter 7
Analysis and Design: Towards Large-Scale
Reuse and Integration of Web User Interface
Components

Hao Han, Peng Gao, Yinxing Xue, Chuanqi Tao, and Keizo Oyama

Abstract With the trend for Web information/functionality integration, application
integration at the presentation and logic layers is becoming a popular issue. In the
absence of open Web service application programming interfaces, the integration of
conventional Web applications is usually based on the reuse of user interface (UI)
components, which partially represent the interactive functionalities of applications.

In this paper, we describe some common problems of the current Web-UI-
component-based reuse and integration and propose a solution: a security-enhanced
“component retrieval and integration description” method. We also discuss the
related technologies such as testing, maintenance and copyright. Our purpose is to
construct a reliable large-scale reuse and integration system for Web applications.

H. Han (�)
Kanagawa University, Kanagawa, Japan
e-mail: han@kanagawa-u.ac.jp

P. Gao
Tokyo Institute of Technology, Tokyo, Japan
e-mail: gao@tt.cs.titech.ac.jp

Y. Xue
National University of Singapore, Singapore
e-mail: yinxing@comp.nus.edu.sg

C. Tao
Southeast University, Nanjing, Jiangsu, China
e-mail: taochuanqi@seu.edu.cn

K. Oyama
National Institute of Informatics, Tokyo, Japan

The Graduate University for Advanced Studies (SOKENDAI), Tokyo, Japan
e-mail: oyama@nii.ac.jp

T. Özyer et al. (eds.), Information Reuse and Integration in Academia and Industry,
DOI 10.1007/978-3-7091-1538-1 7, © Springer-Verlag Wien 2013

133

mailto:han@kanagawa-u.ac.jp
mailto:gao@tt.cs.titech.ac.jp
mailto:yinxing@comp.nus.edu.sg
mailto:taochuanqi@seu.edu.cn
mailto:oyama@nii.ac.jp

134 H. Han et al.

Introduction

More and more information/data is available on the World Wide Web as a result
of the development of the Internet, but it is not always in forms that support end-
users’ needs. Mashup implies easy and fast integration of information to enable
users to view diverse Web content in an integrated manner. However, there is no
uniform interface used to access the data, computations (application logic) and user
interfaces provided by different kinds of Web content. Although there are widely
popular and successful Web services such as the Google Maps API [15], most
existing websites unfortunately do not provide Web services. Web applications are
still the main information distribution methods. Compared with Web services and
Web feeds, it is difficult to integrate Web applications with other Web content
because open APIs are not provided. For example, the famous global news site
CNN1 provides an online news search function at the site side for general users.
However, this news search function cannot be integrated into other systems because
CNN has not opened its search function as a Web service. Similarly, BBC Country
Profiles2 does not provide the Web service APIs, so it is difficult for developers to
integrate it with other Web services.

Beyond the limitation of open APIs, the integration of Web application con-
tent and functionalities at the presentation and logic layers based on the reuse
of UI components is becoming an important issue. Here, the Web application
functionality indicates part of a Web application/page, and it works as a mechanism
for dynamically generating content in response to an end-user request. These
functionalities are usually achieved by server-side logic processing or client-side
scripting, as shown in Fig. 7.1, and the end-users use the UI components (e.g., the
drop-down list in the form in Fig. 7.2 or text input field in Fig. 7.3) to complete
the request/response message exchange. Some approaches and systems have been
proposed for integrating general Web applications by reusing UI components or
emulating the functionality (and content extraction).

However, all of these current technologies and approaches face some common
problems such as UI component retrieval in a large-scale Web resource. They
are usually limited to a small-scale Web resource, such as frequently used Web
applications and websites, or only applicable to some specific domains considering
the possible security or copyright issues. The developed mashup applications are
weak and have a short lifespan because there are no corresponding systematic
testing and maintenance methods.

Moreover, with the development of Rich Internet Application (RIA) technolo-
gies, more and more Web content is being generated dynamically by client-side
scripts or plug-ins. Originally, the Web browser’s role was just to render and display
static content. But now to support interacting components (data and code) from

1http://www.cnn.com
2http://news.bbc.co.uk/2/hi/country profiles/

http://www.cnn.com
http://news.bbc.co.uk/2/hi/country_profiles/

7 Analysis and Design: Towards Large-Scale Reuse and Integration of Web . . . 135

Web
Page

Template
Engine

Database

Request

Response

HTML

Script

CSS

… …
… …
… …

Web
Templates

Client Side Server Side

Logic
processing

Fig. 7.1 Functionality of Web application

Fig. 7.2 Example: option list

136 H. Han et al.

Fig. 7.3 Example: text input field

multiple parties together and execute them within the Web user’s browser, it is clear
that at least we need certain security mechanism to be enforced.

In this paper, we describe the main problems with current component reuse
in detail and propose our solutions: component retrieval, integration description,
systematic testing, and maintenance. We also state the current reliability and security
issues, and present our solutions, which involve leveraging some standardized
mechanisms, and also present an access control policy (here, the issue of privacy
leakage risk of the server-side composition [55] is out of our scope).

Our purpose is to construct a reliable system and develop the corresponding
testing and maintenance technologies for large-scale reuse and integration of Web
applications. Our research emphasis is on the reuse and integration of existing Web
applications by general Web users at the client side instead of the component or
portlet-based development by application developers.

The rest of this paper is organized as follows. In section “Current Problems and
Research”, we describe the current problems and research about UI component
reuse and integration. In section “Our Solution”, we explain our solution in
detail. We discuss and evaluate the implementation and related technologies in
section “Discussion”. Finally, we give our conclusions and mention future work
in section “Conclusion”.

7 Analysis and Design: Towards Large-Scale Reuse and Integration of Web . . . 137

Current Problems and Research

Most Web mashup technologies are based on the combination of Web services or
Web feeds. Yahoo Pipes [51] and Microsoft Popfly [30] are composition tools for
the aggregation, manipulation, and mashup of Web services or Web feeds from
different websites via a graphical user interface. Mixup [53] is a development
and runtime environment for UI integration [10]. It can quickly build complex
user interfaces for easy integration by using available Web service APIs. Mashup
Feeds [42] and WMSL [38] support integrated Web services as continuous queries.
They create new services by connecting Web services by using join, select, and map
operations. Like these methods, Google Mashup Editor [16], IBM QEDWiki (IBM
Mashup Center) [22], and some other service-based methods [29, 48, 54] are also
limited to the combination of existing Web services, Web feeds, or generated Web
components.

In this paper, we focus on general Web applications. For the reuse and integration
of parts from Web applications that do not have open APIs, the partial Web page
clipping method is widely used. The user clips a selected part of a Web page, and
pastes it into a personal Web page. Internet Scrapbook [26] is a tool that allows
users to interactively extract components of multiple Web pages by clipping, and it
assembles them into a single personal Web page. However, the extracted information
is part of a static HTML (HyperText Markup Language) document and the users
cannot change the layout of the extracted parts. C3W [13] provides an interface for
automating data flows. It enables users to clip elements from Web pages to wrap an
application and connect wrapped applications using spreadsheet-like formulas and
it also enables them to clone the interface elements so that several sets of parameters
and results may be handled in parallel. However, it does not appear to be easy
for the C3W method to make the interaction between different Web applications
(like Safari Web Clip Widgets [6]) and this method also requires a C3W-only Web
browser. Extracting data from multiple Web pages by end-user programming [18] is
more suitable for generating mashup applications at the client side. Marmite [49],
implemented as a Firefox plug-in using JavaScript and XUL, uses a basic screen-
scraping operator to extract content from Web pages and integrate it with other
data sources. The operator uses a simple XPath pattern matcher, and the data
is processed in a manner similar to Unix pipes. Intel MashMaker [12] is a tool
for editing, querying, manipulating and visualizing continuously updated semi-
structured data. It allows users to create their own mashups on the basis of data
and queries produced by other users and by remote sites. However, these methods
need professional Web programming ability [9] or have other limitations (e.g.,
these methods need components produced by portlets [25] or Web Services for
Remote Portlets (WSRP) [47]) and they face the following common problems like
Mashroom [44] and Dapper [11].

• “How to find the most suitable UI component from large-scale Web resources?”.
Users currently need to find functionalities from websites by using search engines

138 H. Han et al.

Search
Engine

Query

Search
Result
Page 1

Check
Component

Suitable ?

OK Suitable

NG

No
Component

or
Unsuitable

Search
Result
Page 2

Search
Result
Page 3

Search
Result
Page 4

Search
Result
Page N

Suitable

No
Component

Unsuitable

Suitable

Compare
Manually

Most
Suitable

One

1 2

?

3

Fig. 7.4 Conventional Web functionality/component retrieval method

(e.g., Google,3 Bing4) or by using a library of predefined UI components, which
is also manually constructed and limited to a small scale. As shown in Fig. 7.4, if
they use search engines, users must check the search results through the following
steps.

1. The user sends the query request (keywords) to the search engine and gets the
response page, which contains a list of Uniform Resource Locators (URLs)
linked to search result pages.

2. The user checks each result page to determine whether the page contains the
suitable Web functionality (UI component) or not (i.e., unsuitable component
or no component).

3. The user compares the suitable components and selects one as the most
suitable component (for further reuse and integration).

The conventional Web functionality retrieval method is inefficient (even
ineffective) because current general Web search engines mainly use a content-
oriented search mechanism and information about functionality is beyond the
analysis range. Moreover, the search result ranking method of these non-
functionality-oriented search engines cannot satisfy the requirements of our func-
tionality retrieval and leads to time-consuming manual checking and comparison.

3http://www.google.com/
4http://www.bing.com/

http://www.google.com/
http://www.bing.com/

7 Analysis and Design: Towards Large-Scale Reuse and Integration of Web . . . 139

User A

Web Application

A

Web Application

B

a

b

Integrate
ab

Web Application

C c

Integrate
abc

User B
ab User C abcd

Fig. 7.5 Users need to share and reuse developed parts

In our past experiments and implementations, we had to spend more than 1 h
finding and selecting each suitable component on average.

• “How to share and reuse the developed parts of a mashup application with
other users/developers?”. Users can currently select and integrate desired parts
(functionality or content) from different applications to develop the mashup
applications. However, it is still difficult to share parts of a developed mashup
application if they do not know detailed information about the parts such as the
interface or parameters. For example, as shown in Fig. 7.5, User A integrates
a and b from Web applications A and B, respectively, and generates ab; then,
c of Web application C is integrated and finally abc is generated. However, if
User B wants to reuse ab, or if User C wants to integrate abc with other content
such as d of Web application D, they must know the detailed internal structures
and interface of abc. It is difficult for general users to share the developed parts
for further reuse easily because there is not a uniform interface or structure for
different Web resources and for mashup development.

• “How to enhance the new integrated software in a stable and seamless com-
position of UI components from heterogeneous sources?”. Unlike in the case
of general Web-service-based Web applications, many UI components (one
kind of service) searched by our approach are not registered in online service
repositories. Thus, these UI components may be more unstable than ones in
a service repository. The more unstable they are, the higher the probability of
service evolution is. Overall, these UI components may evolve in terms of their
interfaces or functionality from time to time, or they may even vanish or collapse.
Apart from evolutions imposed on UI components, access by different users

140 H. Han et al.

means that various behaviors can be expected from the same UI components.
Specifically, to achieve the goal of stable and seamless composition of the UI
components, we need to resolve problems related to two aspects:

– Availability of UI components: No matter how these services were discovered
initially, some of them may later become unavailable from time to time.
Compared with the public services provided by the major service vendors,
UI components are more vulnerable to the changes arising from websites. We
need to find a solution that prevents the sudden loss of UI components.

– Adaptability of UI components: These UI components may be used in
multiple contexts by users who may have varying requirements regarding their
functionality [28]. These differences in requirements for UI components may
not be known in advance, but may instead arise from new users when such a
service based on certain UI components is already in use.

• “How to achieve flexible integration of various Web applications?”. The most
widely used mode of integrating Web applications is currently “emulating
a request submission functionality and getting the response page and then
extracting partial information from the response page for further reuse and
integration”. It is the simplest mode and may fail to treat the following possible
situations.

– Between the page for submitting a request and the page containing the target
partial information, there is more than one page transition.

– For a request, there is more than one possible response. For example, the string
comparison is often used in the emulation of optionlist-based page transitions,
and the number of corresponding options is not always one.

– Errors or exceptions are generated and thrown during the implementation of
mashup applications.

To further achieve flexible integration of UI components, a tradeoff analysis
of the service granularity is required. The service granularity generally refers
to the size of a service. In our approach, it means how big a new service
integrated from several UI components should be. The fact that services should
be large-sized or coarse-grained is often postulated as a fundamental design
principle of applications based on SOA [17]. Some studies on this topic have been
conducted [27, 36]. Acquiring a balance between granularity and maintenance
efforts will facilitate the sharing and reuse of the developed new service with
other users/developers.

• “How to interoperate components from different origins reliably and securely?”.
Currently, Web developers routinely use sophisticated scripting languages and
other active client-side technologies to provide users with powerful and fasci-
nating experiences that approximate the performance of desktop applications.
However, all extracted UI components execute their functionality directly on the
client-side platform, which is usually a Web browser and most Web browsers
look like monolithic architectures to mashups at the operating-system level.

7 Analysis and Design: Towards Large-Scale Reuse and Integration of Web . . . 141

– From the standpoint of reliability, allocating all functionalities in the same
address space and offering weak isolation between them will allow the
functionalities to interfere with each other in undesirable ways.

– From a security viewpoint, all components run in a single protected domain,
allowing malicious code to exploit unpatched vulnerabilities to compromise
the entire mashup.

Concerning the application level, the Web browser provides only a single prin-
cipal trust model based on the Same-Origin Policy (SOP) [24] as a base security
mechanism to regulate cross-origin interaction among different web content [3].
The specifications of SOP state that content of one origin can access only other
content from its own origin: access to resources of other origins is forbidden.
This causes either component-component separation with controlled interaction
or component-server communication to be impossible. However, the nature of the
information/functionality integration and reuse involves interoperation between
content of multiple parties’ to provide extra-value. Consequently, a contradiction
arises: when components of different origins are incorporated, there is either no
trust or full trust. Therefore, in a lot of cases, the composers are forced to abandon
security in order to get greater functionality, which incurs high security risks
because the confidentially and integrity of a component from one site could be
completely controlled by components from a malicious site.

On the basis of our analysis of the abovementioned questions, we assert that the
current approaches cannot achieve the various types of complicated integration sys-
tematically. In our past research, we also developed solutions based on the end-user
programming method [18] or non-programming description system DEEP [20] and
WIKE [19]. However, those systems were also unable to solve the abovementioned
problems well.

Our Solution

To achieve the integration of large-scale Web resources through component reuse, it
is necessary to construct a UI component retrieval system and propose a description
approach to describing the integration process. Here, we propose our solution, which
is being developed to solve the current problems including retrieval, description,
reliability and security, maintenance, and access control.

Component Retrieval

The component-oriented search mechanism is used in the UI component retrieval
system. As shown in Fig. 7.6, the Web functionality search engine designed for
component retrieval works as follows.

142 H. Han et al.

Functionality
Search
Engine

Page Crawler
Component

-analysis
Extraction

Classification
Representation

Research
Result

Functionality

Research
Result

Functionality 2

Research
Result

Functionality N

End-userQuery

Response

Web Functionality Search Engine Client SideWeb Resources applications, pages

Web site

Template
Engine

Logic
Processing

Database

HTML page

Script

OK

Contents

UI component
e.g. text input field, drop down list

Web functionality

 client-side scripting)

Web
Functionality

Reuse

(e.g. server-side logic processing,

(

(

)

)

1

Fig. 7.6 Web functionality search engine

1. A crawler is used to collect Web pages. For each page, the following related infor-
mation is extracted to judge whether the page contains Web functionalities.

• Page

– URL
– Title
– Meta data names and values

• Form

– ID (ID attribute)
– Name (name attribute)
– Method (HTTP method used to submit form)
– Action (Server-side form handler)
– Event (e.g., defined events trigger JavaScript functions)
– Other related information (e.g., hidden values inside the form)
– Path (XPath containing the tag names and ID values of ancestor tags)

• Component (See Table 7.1)

– Type (tag name)
– Name (name attribute)
– ID (ID attribute)
– Value (e.g. current content of text input field)
– Alt (alternative text for user agents not rendering the normal content)
– Title (advisory title)
– Event (e.g., defined events trigger JavaScript functions)
– Other related information (e.g., text immediately preceding the text input

field, text contained within the option element)
– Structure (e.g., a single text input field, a list of links)

7 Analysis and Design: Towards Large-Scale Reuse and Integration of Web . . . 143

Table 7.1 Information extraction from component (�: extracted, �: not extracted)

Component Type Name ID Value Alt Title Event Other

Input text � � � � � � � Previous sibling text
Input password � � � � � � � �
Input checkbox � � � � � � � Next sibling text
Input radio � � � � � � � Next sibling text
Input file � � � � � � � Previous sibling text

acceptable file type
Input submit � � � � � � � �
Input button � � � � � � � �
Input image � � � � � � � �
Button � � � � � � � �
Select option � � � � � � � Optionlist text
Applet � � � � � � � Class file
Object � � � � � � � Code type and URI

2. The extracted information is split into a word list using whitespace, punctuation
mark and numeric character as the delimiter. We remove articles, prepositions,
and conjunctions from this word list. Finally, these words are analyzed and
classified to generate the recognition pattern of each Web functionality and the
index information is then created for component retrieval.

Here, the component type is the type of request-input element, such as InputBox
(text input field), OptionList (drop-down option list in the selection box), and
LinkList (anchor list), in the page where the end user’s request was submitted. The
users search for the components by giving the component type and other search
keywords.

Description and Emulation

After the desired components have been found, they are described in an annotation
method for the integration. Here, we define the uniform format shown in Fig. 7.7 for
the following basic entities, which describe reuse and integration based on the page
transition (Fig. 7.12 in section “Discussion” gives examples).

• Flow: a flow represents the data flow or work flow of an integration. It works like
the main function of an executive program and receives parameters from users as
the request.

• Page: a page is a basic information container in a Web application. It contains the
desired partial information such as the component or content, which is extracted
in the manner designated by the users.

• Component: a component is used to emulate the functionality and get the
response (page) according to the request.

• Collection: a collection contains polymorphic algorithms that operate on collec-
tions such as sort, reverse, and swap.

144 H. Han et al.

<Entity>
<name></name>
<comment></comment>
<input>

<source></source>
<element>

<name></name>
<path></path>
<property></property>
<type></type>
<matcher></matcher>

</element>
</input>
<output>

<element>
<name></name>

</element>
</output>
<exception>

<message></message>
</exception>

</Entity>

Fig. 7.7 Format of entity

• Checker: a checker is used to check whether the extracted data is valid.
• Convertor: a convertor is used to convert the data into another format.
• Pattern: a pattern is used for comparing strings, searching strings, extracting

substrings, and performing other string-based operations as a selective option.

The format contains five main parts: name, comment, input, output and excep-
tion. These items reflect the end-user operations (e.g., users find the text input field,
input the keywords, submit the request, and search for the target content in the
response page) and give the description of the target Web content type/property.

• Name: a name is a simple description of the entity and comments contain the
keywords, which reflect the entity’s specifications.

• Input:

– Source: the source of the input is the URL, link, or object output from other
entities.

– Path: a path is used to locate a piece of target content. The value of path is the
XPath expression of the target part in the HTML document of the Web page.
In the tree structure of an HTML document, each path represents a root node
of a subtree and each subtree represents part of a Web page. The response Web
pages usually have the same layout or similar layouts if the requests are sent to
the same request-submit function. During the node search, if a node cannot be
found by a path, similar paths will be used to search for the node. Two paths
are similar to each other if they have the same forms, ignoring the difference
in node order among sibling nodes when the difference in node order is within
a given deviation range.

– Property: property means text or an image, link, object, or component. Text is
a character string in a Web page such as an article. Image is one instance of
a graph. Link is a reference in a hypertext document to another document

7 Analysis and Design: Towards Large-Scale Reuse and Integration of Web . . . 145

or resource. Object is one instance of a video or other multimedia file.
Component is the type of request-input element.

– Type: type contains single, list, or table. Single means a part without similar
parts such as the title of an article. List means a list of parts with similar path
values such as result list in the search result page. Table means a group of parts
arranged in two-dimensional rows and columns such as the result records in a
Google Image Search result page.

– Matcher: a matcher performs matching operations on a string by interpreting
a pattern entity.

• Output: output gives the names of output elements and the exception defines the
error message generated when an exception occurs.

Compared with the Web services, it is not as easy to access and integrate
Web applications because they are designed for browsing by users rather than for
parsing by a computer program. The Web pages of Web applications, usually in
the HTML or XHTML formats, are used to display the data in a formatted way,
not to share the structured data across different information systems. Without an
interface like Simple Object Access Protocol (SOAP) [40] or Representational State
Transfer (REST) [37], we have to use extraction and emulation technologies to
interact with Web applications. Extraction is used to reach the target content and
extract it from Web pages. Emulation is used to achieve the processes of sending
a request and receiving the response. For request submission, there are the POST
and GET methods, and some websites use encrypted code or randomly generated
code. In order to get the response Web pages from Web applications of all kinds
automatically, we use HtmlUnit5 to emulate the submission operation instead of
using a URL templating mechanism. The emulation is based on the event trigger, as
shown in the following examples.

• In the case of InputBox (enter the query keywords into a form-input field from
the keyboard and click the submit button by using a mouse or trackpad to send the
query), the text input field is found according to the path and the query keywords
are input. Then the submit button’s click event is triggered to send the request
and get the response Web page.

• In the case of LinkList (clicking a link in the link list on a Web page to go to
the target Web page), the text contained inside each link tag along the path is
compared with the keyword by matcher until a matching one is found. The link’s
click event is then triggered to get the target Web page.

• In the case of OptionList (click an option in the drop-down list of the selectbox
in a Web page to view a new Web page), the text of each option within path
is compared with keyword by matcher until a matching one is found. Then the
select event of option is triggered to get the target Web page.

5http://htmlunit.sourceforge.net/

http://htmlunit.sourceforge.net/

146 H. Han et al.

Maintainability of Integrated Application

The essence of our approach is to broaden the scope of reusable UI components
and further distill useful ones from the massive amount of Web resources. With the
advantage of more reuse opportunities, however, our approach compromises in the
maintainability of the new integrated applications.

First, the availability and stability of these UI components are an important
issue that we must address. In our approach, many Web resources, such as some
static Web pages that are officially not qualified to be “so-called” services, will
be considered as potential candidates for extraction targets. Compared with Web
applications based on Web services, these services are usually all provided by third-
party service providers. For example, an system based on Google Office Service [14]
and Amazon Storage Service [1] is usually stable because the leading IT companies
have a team of engineers maintain their service. But what if office services and
storage services were based on UI components from unknown websites, rather
than from those major service vendors? Thus, these components are subjected to
evolution, and they are more unpredictable. To overcome this problem, we propose
to empower the mashup application in looking up the backup UI components in
case of an emergency such as some existing components being unavailable or
suddenly changed. For example, in our own implemented news release system, we
usually extract the desired news from CNN6 or the BBC7 according to some tags
or keywords. If CNN and BBC were to be unavailable for a while, our mashup
application would detect the sudden loss of the corresponding UI components and
immediately substitute new ones from the New York Times8 or ABC News9 for
the lost ones. We propose to design a ranking algorithm to rate components when
multiple UI components with the same or similar functionality are available. The
rating strategy can be based on service recommendations based on users’ client-side
performance [43].

Second, the maintenance of such an integrated application is bound to be
complicated when the desired UI components are gathered together to implement a
new application. Instead of being treated as a single independent service, our new
integrated application logically has external coupling with many other websites
from which the internal UI components are extracted. As a recent empirical
study [34] pointed out, intra-service coupling (in our case, intra-service coupling
refers to the coupling between UI components) can potentially have a smaller effect
on maintainability (i.e. analyzability, changeability, stability, and testability) than
indirect and direct extra-service coupling (in our case, intra-service coupling refers
to the coupling between a UI component and other components from other website).

6http://www.cnn.com
7http://www.bbc.co.uk
8http://www.nytimes.com/
9http://abcnews.go.com/

http://www.cnn.com
http://www.bbc.co.uk
http://www.nytimes.com/
http://abcnews.go.com/

7 Analysis and Design: Towards Large-Scale Reuse and Integration of Web . . . 147

Overall, our integrated application has high cohesion and also a certain degree of
external coupling. As an aspect of security reasons, the UI component isolation
principle (see details in section “Reliability and Security”) is advocated in our
design. It is this principle that makes the UI components (intra-service) have high
cohesion and low coupling. However, the drawback is that with more isolated
UI components from more external websites, the external coupling between our
integrated application and the other websites will correspondingly increase. In our
solution, a case-by-case tradeoff analysis between external coupling and finer-
grained isolation of components for the different integrated applications will be
beneficial to the maintenance.

Third, we are concerned with the adaptability of the UI components in our
approach. A multi-tenant architecture allows many tenants (users) to share the same
application (or service) instance [28]. Supporting service variability in the scope
of a one-fits-all service creates extra challenges. The existing approaches allow
users to adapt workflows via configuration options with only weak provisions for
service adaptability [32, 39]. The high variability of multi-tenant services usually
translates into higher maintenance costs. Relaxing the single-instance requirement,
Model-Driven Development has been applied to produce custom services in the
ERP domain [41]. Our approach to service variability may contribute to multi-
tenant services (dynamic reconfiguration), and the situation where custom instances
of a service are generated for users. The Software Product Line (SPL) approach to
reuse [5] exploits commonalities and variability in a domain to improve productivity
of developing and maintaining many similar yet different applications. The variabil-
ity management techniques used in SPL [35, 52] are relevant to handling service
variability [31], which is exactly the direction we plan to explore in the further
studies.

To sum up, if the problems with the availability and stability of these UI
components are overcome, mashup applications will be enhanced to prevent the
sudden loss of their UI components and to rate the candidate UI components. To
achieve a balanced design between external coupling and finer-grained isolation of
components, we will use some metrics [34] to calculate the external coupling and
reduce it to a manageable degree. Finally, we will also customize and encapsulate
the internal UI components to satisfy the diverse requirements of customers by
applying SPL techniques.

Reliability and Security

The trend of RIA technologies is accelerating the development of rich client solu-
tions. For example, many websites use DHTML (Dynamic HTML) or Document
Object Model (DOM) scripting to create interactive Web pages. They contain
HTML, client-side scripts (such as JavaScript), DOM, etc. The scripts change
variables (including elements outside the target parts such as hidden values) in a
programmed manner in an HTML document, and affect the look and function of

148 H. Han et al.

static content. The trend shows that there has been a dramatic increase in the number
of active programs over the past few years, and these applications are larger and
more complex than before. When arbitrarily mixed on the client side, such active
content will lead to problems with reliability and security. For example, if a bug
crashes one functionality, it may crash all the others being executed within the
browser; if a functionality has an SQL injection vulnerability, it has the potential
to leak private data of other functionalities. In this situation, to integrate and
reuse components reliably and securely within our approach, we give four specific
requirements.

• UI Component Isolation: UI components from different origins should be
isolated from others by sandboxing. The mechanism should be in the system
layer, which can prevent memory leaks.

• Script Separation: A functionality that contains script code needs to be separated
from other functionalities. Even when scripts are from the same origin, the DOM
tree and scripts must not be modifiable in an unauthorized manner by other
functionalities.

• Functionality Interaction: Each functionality should have the ability to interact
with other functionalities and the integrator. The restriction is that an entity that
contains critical information should not be read or rewritten by others without
authorization. Another aspect is that functionalities should be able to perform
cross-domain communication. Then a functionality can communicate not only
with others from its own origin but also with those from other origins in a
controlled manner.

• Usage Control: The author of reusable components should be able to decide
whether or not the specific functionality can be accessed by other components,
which can bring merits about the copyright and risk declaration.

On the basis of the requirements presented above we firstly leverage the multiple
processes of the operating system (OS) to isolate cross-origin components to resolve
the reliability problems for UI-component-based mashup applications. And we
present a security policy for separating JavaScript code from the same origin.
Then concerning practicality and extensibility, it is meaningful to leverage existing
standardized technologies to solve the functionality-interoperating and cross-origin
communication issues in the application layer. Finally, we present a functionality
access interface in order to enforce the usage control on components.

The solutions are illustrated with the scenario in Fig. 7.8: functionality N1 from
website N, which refer to scripts Xai from origin X, is integrated into the integrator
page A, which also contains functionality A1 from website A. As a result, the
integrator contains two parts: functionality A1 and functionality N1, which are from
different origins. Each functionality may contain both static (HTML) content and
active (Script) content.

• The iframe [23] separates one inclusion of site N (N1.html) from site A with
no interaction under the SOP restriction. The architecture of our solution for
component isolation makes each UI-component-based mashup application into

7 Analysis and Design: Towards Large-Scale Reuse and Integration of Web . . . 149

Integrator A1

Functionality N1 (Process_2)

Communication

Functionality A1
(Process_1)

Static Contents (Ns1)

Active Contents (Na1)

Active Contents (Nai)

<iframe src=“N1.html”>

<script src=“N1.js”> Interaction

FULL Separation

NO Separation

Web Site A

Database

Logic
Processing

Web Site N

Database

Logic
Processing

As1+Aa1

Interaction

Fig. 7.8 Example of interoperation model (An arrowed dashed line implies that interaction or
communication is restricted by the SOP)

a separate OS process. UI components from different origins (A, B ,. . . , N) are
isolated from each other in different processes (shadowed region on the client
side). For the included page A and each functionality that the mashup contains, a
new rendering process will be created; it draws HTML pages and runs JavaScript
code. The included page is rendered by one process while UI components from
different origins are rendered by different processes. The process creation policy
is that for each UI component in a mashup, if a process for that origin has not
already been created, then a new rendering process is launched.

• The component isolation targets UI components from different origins. However,
as shown in Fig. 7.9, we still need to consider an appropriate security mechanism
for separating JavaScripts from same origin because third-party JavaScript
references are commonly used in Web applications/pages, such as Xai in Fig. 7.8,
which might be malicious. If access to the JavaScript context is fully allowed,
then code in a malicious user’s JavaScript references could override the original
functions and other objects with malicious ones. In that case, when a trusted
script calls the “original” function, the malicious code will be executed. To handle
this case, we propose an access control policy, as shown in Table 7.2, for the
JavaScripts from the same origin within a process where the read operation is
to read the value or property of an object; the write operation is to create a new

150 H. Han et al.

Static Contents (Ns1)

Active Contents
(Na1) Active Contents (Nai)

Security
Policy

Functionality N1

Fig. 7.9 Separation of JavaScripts from the same origin

Table 7.2 Access control policy for JavaScript objects

Access direction Read Write Execute

Origin trust to Allow Allow Allow
destination trust
Origin trust to Audit Allow Allow
destination distrust
Origin distrust to Disallow Disallow Audit
destination trust

object, assign a value to an existing object, or define or redefine a function object;
the execute operation is to invoke a JavaScript function.

• The iframe tag separates one inclusion of site N (N1.html) from site A and
even from its own scripts with no interaction under the SOP restriction. The
postMessage [21] is a popular browser API extension that provides principal
interaction between frames and iframes. It provides the postMessage() operation
on a DOM window and iframes object. Combining the postMessage with
iframes, which offers restricted interaction and separation, is an efficient method.
The XMLHttpRequest object of JavaScript is not allowed to make cross-origin
requests. If component N1 needs to communicate with integrator A1’s remote
Web server, Cross-Origin Resource Sharing (CORS) [8] is an efficient and widely
supported extension of HTTP to provide cross-origin requests. It allows the
remote Web server to indicate whether or not a functionality of another origin
has the rights to access its resources.

• As shown in Fig. 7.10, our framework has an interface for inserting a new
item called “access” into the format of entity. The access tag that assigns
permissions to the UI components in an application and specifies an usage policy
to protect its resources. It uses the “public” or “private” attribute to declare the
copyrightType, which indicates whether the entity can be accessed by the normal
public flow or only used privately in order to protect the copyright of a special
component. Moreover, it can specify the applications/pages of which origin can

7 Analysis and Design: Towards Large-Scale Reuse and Integration of Web . . . 151

<access>
<name></name>
<comment></comment>
<copyrightType></copyrightType>
<permissionOrigin></permissionOrigin>
<permissionDestination></permissionDestination>
<accessLevel></accessLevel>

</access>

Fig. 7.10 Access item

have access by means of the permissionOrigin and permissionDestionation tags.
Furthermore, given the type of UI component, such as InputBox or OptionList,
the access item uses accessLevel tag, which contains “normal”, “dangerous”,
“specific” attribute, to indicate the system’s security level, which should be
brought to the composer’s notice, and the tag should grant permission to a
functionality requesting it.

– Normal: Low risk access level. The functionality has only a fixed value or
it does not access any other functionalities. For example, the OptionList and
LinkList belong to this level.

– Dangerous: High risk access level. The functionality has the ability to receive
input or has the right to access private data (e.g., SQL Injection). For example,
the InputBox belongs to this level.

– Specific: An access level specified manually by the composer. This option is
used for certain special situations and should be set with great care, as any
possible composition could be done without regulation.

Discussion

We consider different performance measures to evaluate our approach and to discuss
related topics in actual integration.

Retrieval and Description

The construction of the functionality/component search engine solves the compo-
nent retrieval problem described in section “Current Problems and Research”, and
the uniform format of the basic entities provides a solution to the problems of
flexible description and integration, as shown in the following example.

As shown in Fig. 7.11, we describe the function of country information search
by the entities. We search for the select-option at the top page of BBC Country

152 H. Han et al.

Page
(start)

Component
(optionlist)

Page
(counry info)

Collection
(map, link to

timeline page)

Page
(tineline page) Collection

(event)
Checker
(isSingle)

Convertor
(date format)

Pattern
(StartWith,

IgnoreCase)

Exception
(no country

found)

Exception
(more than one
Country found)

Exception
(no event

found)

Pattern
(StartWith,

IgnoreCase)

Country
Name

“japan”

Month
“2011/03”

“2011 March”

Flow 1 Flow 2

Flow

Fig. 7.11 Example of page transition and entity definition

Profiles10 and submit the request to get the target country page. We extract the
map of the country and the URL of the timeline page from the country page. We
search for key events using the given month and extract them from the timeline page.
The definitions of Page (Start) and Component (optionlist) are given in Fig. 7.12 as
examples. We use Firebug11 to get the XPath of the target part via the Graphical User
Interface (GUI) and avoid manual analysis of the HTML document. The entities are
combined with each other, and finally the whole flow is generated. The matcher,
pattern, and checker are used to keep the correct process, and exception messages
are generated if errors occur. Moreover, the convertor and collection create the event
searching function by extracting the corresponding information from a simple static
Web page. As a part of the Flow, the Flow 1 or Flow 2 can be reused by other users,
who do not need to know the detailed internal structures of these sub flows because
their formats are the same.

We achieve component-based reuse and integration of Web content with com-
ponent retrieval and entity description. Similarly, Web Service Definition Language
(WSDL) [46] and Web Application Description Language (WADL) [45] are used to
describe a series of Web services in detail such as abstract types, abstract interfaces,

10http://news.bbc.co.uk/2/hi/country profiles/
11http://getfirebug.com/

http://news.bbc.co.uk/2/hi/country_profiles/
http://getfirebug.com/

7 Analysis and Design: Towards Large-Scale Reuse and Integration of Web . . . 153

<Entity:Page>
<name>BBC_Country_Profiles_Page</name>
<comment>BBC, country profile, search</comment>
<input>

<source>URL:http://news.bbc.co.uk/2/hi/country_profiles/default.stm</source>
<element>

<name>CountrySelection</name>
<path>/html/body/div/div/div[2]/table/tbody/tr/td[2]</path>
<property>Component:OptionList</property>
<type>Table</type>
<matcher></matcher>

</element>
</input>
<output>

<element>
<name>Component:CountrySelection</name>

</element>
</output>
<exception>

<message></message>
</exception>

</Entity:Page>

<Entity:Component>
<name>Country_Name_Selector</name>
<comment>BBC, country profile, search, optionlist</comment>
<input>

<source>Page:BBC_Country_Profiles_Page/Component:CountrySelection</source>
<element>

<name>CountryName</name>
<path></path>
<property>String</property>
<type>Single</type>
<matcher>Pattern:{StartWith,IgnoreCase}
</matcher>

</element>
</input>
<output>

<element>
<name>Page:CountryInfo</name>

</element>
</output>
<exception>

<message>no country found</message>
</exception>

</Entity:Component>

Fig. 7.12 Start page and optionlist components

and concrete binding. We could not believe that all the tasks could be completed
in a fully automated way by handing WSDL or WADL files to WSDL2Java or
WADL2Java [2]. Compared with the WSDL and WADL, our entities can use a
shorter and simpler description format and are applicable to the description of
general Web applications. It is easier to read, write, reuse, and update any part
of a mashup Web application than to use end-user programming methods. Our
annotation approach makes it possible for users with no or little programming
experience to implement Web content integration from various Web applications.
Any content from any kind of Web applications can be handled.

154 H. Han et al.

Layout Personalization

Different content extracted from different websites has its own different layout, such
as size, font, color and other view styles. Except the components and the objects
generated by client-side scripts, both the Web service response and the partial
information extracted from Web applications are in XML format. During the
integration, we need a personalizable template processor to transform XML data
into HTML or XHTML documents. Our approach provides an XSL Transformation
(XSLT) [50] library, which contains the following two types of XSLT files.

• We created an XSLT file (automatch.xslt), which automatically transforms the
XML format into HTML format by using the type/property. It is applicable to
the basic types including text, images, links and objects. For example, it uses the
 tag to embed an image and set the extracted URL as the attribute value
of “src”. The transformed result is a simple list/table of Web content, and the
optional attributes (font, size and etc.) are left unset. This file is a recommended
default template for the transformation of extracted results.

• We designed a number of XSLT files to create XSLT library, and users can select
suitable XSLT files for the target Web content. These XSLT files are applicable to
often-used structures of partial information of Web applications (list, table, etc.)
after some manual modifications.

Users can select our predefined XSLT files as the stylesheet transformations or
modify them to get customized visual effects. Moreover, the fully original XSLT
files created by users are valid in our approach.

Reliable and Secure Composition

Currently, the only browser that supports multiple-processes is Google Chrome.12

However, our experimental results show that it still cannot deal with the
UI-component-based mashups. For instance, in the case of the example shown
in Fig. 7.11, which we introduced above, all application content including the
select-option and the country page are executing together; here, where a reliability
problem can occur if one functionality that is CPU-bound can prevent the CPU from
interacting with the other functionalities. In our proposed architecture, each process
runs in a separating address space. Therefore, crashes caused by one origin will not
affect the content of other origins. The OS has a process scheduling mechanism,
so expensive computations and the freezing of function calls from one origin will
not starve the system of resources from other origins. The OS also supports the
killing of any process that becomes unresponsive because of memory leakage.

12http://www.google.com/chrome/

http://www.google.com/chrome/

7 Analysis and Design: Towards Large-Scale Reuse and Integration of Web . . . 155

Map Functionality Bank Functionality

GPS

Search
InputBox

Login InputBox

Account_bank
Password_bankDirection

Recommendation
Functionality

Third - party
Advertisement

Location InputBox

Location Order

Account_order
Password_order

Fig. 7.13 Example of a travel mashup application

In terms of performance, processes are efficient because the time overhead for
process startup and work is lower compared with page rendering and JavaScript
execution times. The memory overhead is higher than in the conventional method
because an HTML rendering engine must be loaded in many processes. Regarding
backwards compatibility, because our approach places pages from different origins
in different processes, it can support effective isolation without breaking the current
architecture of Web pages, it does not bring communication boundaries among
pages through the shared memory.

The aim of the example shown in Fig. 7.11 which contains almost all static
content from one origin, is to address the workflow of our approach. However,
we still emphasize that the reliably and security issues cannot be ignored because
the active content such as the JavaScript code is widely used within attractive and
complex Web applications and pages. To perceive the security requirement more
directly, we start our discussion from the practical scenario shown in Fig. 7.13:
you (a Web user) composite a travel mashup application into your smart phone
by reusing and integrating several functionalities from existing popular Web
applications. The travel application extracts a component of a map application with
Global Positioning System (GPS) location and transportation query functionality,
an online payment functionality from the credit card authentication component of
your bank, and a functionality from a tourism agency component for getting tour or
shopping recommendations. The functionalities from the map and recommendation

156 H. Han et al.

applications need to interact in order to provide relevant tour and shopping guidance
based on your current location at the time of your request. The recommendation
functionality needs to communicate with the server of the bank functionality to
make a reservation or purchase and may also contain a third-party advertisement
part for generating extra revenue.

In this scenario, we can use the following techniques, which have been intro-
duced above, to meet the security requirements: The map, bank, and recom-
mendation functionalities are isolated as single OS processes within the same
functionalities and interoperation of static content and active content is enabled
through the combination of the iframe and the postMessage; however, we propose
to use object access control to ensure that the third-party advertisements cannot
request private information such as the credit card password and GPS location
history. The accessLevel of the InputBox from each functionality should be defined
as “dangerous” because a Web application could be created by a malicious user
intentionally with some vulnerabilities such as SQL injection or XSS attack (user
privacy accessed by the malicious functionality could be leaked). The recommen-
dation functionality will expose an interface to the public and its interface can be
used by the bank and third-party advertisement. The map and recommendation
functionalities can communicate with their servers using the conventional XHR
method. For communication with the other functionalities, the recommendation
functionality can use CORS to make the remote server allow requests coming from
other origins.

Integration Testing

When developing a Web-UI-component-based mashup application, we test each UI
component individually. Clearly, components may have been developed separately,
written in diverse programming language, and executed in different Web platforms.
Therefore, integration testing is necessary to ensure that communication between
components is correct. Some interaction-related faults are likely to be overlooked
during unit-level testing. These faults can be classified into programming-related
faults, which are inter-component faults, and non-programming-related faults,
which are interoperability faults.

Conventional integration testing of component-based applications is based on the
function decomposition, which includes the big-bang, top-down, bottom-up, and
sandwich approach. Function decomposition approaches, which do not consider the
internal structure of the individual components, are based on the specification of the
system.

Owing to the heterogeneity and implementation transparency of Web-UI-
component-based applications, we propose a model-based approach to integration
testing. The core model here is the Component Interaction Graph (CIG), and the
testing method is UML-based state testing. Here, CIG addresses the relationships
that include message-communication, usage, etc. CIG can be defined to model

7 Analysis and Design: Towards Large-Scale Reuse and Integration of Web . . . 157

interactions between UI components by depicting interaction scenario. CIG can
be used to develop a family of test adequacy criteria, such as all nodes and all
links coverage. In a component-based application, a component may interact with
other components directly through an invocation of the interfaces exposed by those
components, an exception, or a user action that triggers an event. A component
may also interact with other components indirectly through a sequence of events.
Interface and event testing ensure that every interaction between two UI components
is exercised. UML provides high-level information for the internal behavior of
components, which can be processed efficiently and used effectively during testing.
In UML, collaboration diagrams and sequence diagrams are used to represent
interactions between different objects in a component. A state diagram can be
used to characterize the internal behaviors of objects in a component. Object
Constraint Language (OCL) can be used to formally specify the behavior and
constraints of a UI component. UML collaboration diagrams and sequence diagrams
focus on interactions among various objects within a use case (say a component
for simplicity here). If a UI component covers multiple use cases, we need to
develop a consolidated collaboration diagram. If a use case includes more than
one component, we need to develop a subset of the collaboration diagram. In
UML sequence diagrams, interactions are ordered by time, while in collaboration
diagrams, the same information is presented with the interactions ordered by the
numeric message sequence.

With collaboration diagrams, we can obtain all possible sequences that could
be invoked to model how interfaces and events interact with each other. The
behavior of a Web UI component can be modeled more precisely by combining the
collaboration diagram with statechart diagrams. By using the statechart diagram, we
can further refine the interactions between interfaces and events. Given a statechart
diagram, context-dependence relationships include not only all possible sequences
in a collaboration diagram, but all possible combinations of the sequences that are
shown in the statechart diagram as well.

Service Granularity

Insofar our approach has not achieved automatic and flexible composition of the
intra-services (the UI components) based on the optimization of service granularity
for better sharing and reuse. At the current stage of our prototype, we are focusing on
addressing the maintenance and security issues discussed in section “Our Solution”.
Since the optimization of service granularity is such an advanced issue, it should
be considered mainly after the desired UI components have been extracted from
external websites and integrated by the mashup application as the intra-services.

Service granularity has never been stated as a purely technical issue [4,17,27,36].
More specifically, Haesen et al. proposed that the decision about service granularity
should be made according to the following types of granularity [17]:

158 H. Han et al.

• Functionality granularity referring to the size and scope of functions offered by
a service. In our integrated application, if two UI components are often used
together, we can wrap these two components as one bigger service and further
share and reuse this service with other applications. For example, in a travel
mashup application, the users want to use the GPS location components provided
by Google Maps to find the path to a destination; meanwhile, users are also
concerned about the weather situation at the destination and the traffic situation
on the way to the destination. Thus, we integrate the UI components for GPS
search from Google, the weather enquiry from Yahoo, and the traffic situation
enquiry from some real-time traffic monitoring system. These UI components are
encapsulated as a bigger service from this viewpoint of functionality granularity.

• Data granularity reflecting the amount of data that is exchanged. In our appli-
cation, if two UI components have their own data dependency from external
websites, it will be difficult to compose these two components as a bigger one.
Nevertheless, in the travel mashup application, the UI components from a bank
website require login and authentication, and the UI components from an on-
line hotel reservation website also require registration and login. Consequently,
it is inconvenient to compose these two components, as they have their own
authorization operations. Actually, the data granularities are attributed to the
coupling, cohesion, and statelessness [33] of the intra-services.

• Business value granularity of a service indicating to what extent the service
provides added business value. This aspect actually does not affect the design
of the service granularity in our solution. Business value granularity is about
attaining cost effectiveness from the business viewpoint. To maximize the profits
from these services, the service vendors will provide a coarse-grained service to
general customers and a finer-grained service to some special customers. As our
application is to build open and reusable services from existing UI components,
the business motivation may not be our major concern.

Kulkarni et al. [27] also argued that a tradeoff decision should take into
consideration non-functional requirements, particularly performance issue. Except
performance, Steghuis [4] reported that designers must make tradeoffs about service
granularity in and between the following areas: flexibility in business processes
and reusability. Thus, service granularity is actually relevant to every aspect of the
system. Further exploration on this topic is included in our plans for future work.

Copyright

We have to face up to the problem of copyright in information reuse and integration.
Copyright is the right of the owner to reproduce or permit someone else to reproduce
copyrighted works. Websites usually own the copyright of content that they publish,
so we need permission from the websites before we can reuse it.

7 Analysis and Design: Towards Large-Scale Reuse and Integration of Web . . . 159

Many websites or services give a clear declaration about the copyright. Public
domain, such as the works of Shakespeare and Beethoven, means publicly available
and covered by “No rights reserved”. The most common type of copyright is “All
rights reserved”. In this case, if we use an image on our website that we did not
create ourselves, we must get permission from the owner. It is also common for the
text, HTML, and Script elements of a Web page to be taken and reused. If we have
not obtained permission, we have violated the owner’s copyright. Between these two
copyright policies, there is a more flexible copyright model: “Some rights reserved”.
Wikipedia is provided under the terms of the Creative Commons [7] public license,
which is devoted to expanding the range of creative works available for others to
build upon legally and share.

Open Web service APIs are provided by some websites. The websites usually
give a detailed policy of copyright for users. Information reuse based on open APIs
has to obey the copyright policy defined by websites. Compared with open APIs,
general Web applications do not provide clear end-user-programming-oriented
interfaces. The legal and practical reuse of content extracted from Web applications
cannot be left out of the consideration.

Here, we classify the content of Web applications into two categories as follows.

• No rights reserved content. Copyright does not protect facts, ideas, systems, or
methods of operation. For example, facts like the population or national flag of
a country may be freely reused without permission. Moreover, there are some
special permissions. For example, reuse of the titles (not body) of Web news
articles, book introduction headlines, and other brief descriptions is permitted
without copyright. Furthermore, some social services/applications, such as the
micro-blog Twitter, permit general Web users to share and reuse their content.

• All rights reserved content. Typically, most of the intellectually created content is
protected by copyright. For example, photographs, Web news/blog content, and
map information. For content of these types, reuse is forbidden without copyright
permission. So, we need to declare the copyright information if we want to reuse
the content. If others use our description and definition of component-based
reuse, the declaration (copyrightType) should and must be inherited.

Conclusion

In this paper, we described current problems of Web-UI-component-based large-
scale Web application reuse and integration and presented a UI component retrieval
system that achieves quick and effective component searching. We also proposed a
description method to define the basic entities in application reuse and integration.
Moreover, we analyzed the contradictions between the conventional security mech-
anism SOP and the nature of mashup interoperation. We then presented our security
requirements and solutions. Finally, we presented a systematic maintenance method
and discussed personalization, testing, and copyright. Our retrieval and description

160 H. Han et al.

system enables typical Web users to construct mashup Web applications easily and
quickly.

As future work, we plan to conduct a more comprehensive analysis of current
problems and modify our approach as follows.

• We will combine and develop various techniques/tools and propose a friendly
GUI for users to generate the entity description file more easily and completely
automatically.

• We will explore more flexible ways of integration and construct an open
community for sharing various mashup components. The technologies of the
Semantic Web and RDF will be used to centralize various Web applications, Web
services, and other Web content.

• We will propose a quantitative and qualitative analysis as the evaluation standard
for components (e.g., speed, stability and reuse range).

• We will develop a fine-grained access mechanism that can trace the information
flow in the functionalities.

• We will propose a more stable extraction method to solve the problems of
frequently changing content formats.

Acknowledgements This work was supported by a Grant-in-Aid for Scientific Research A
(No.22240007) from the Japan Society for the Promotion of Science (JSPS).

References

1. Amazon Web Services. http://aws.amazon.com/. Accessed on 2011
2. Axis. http://ws.apache.org/axis/java/. Accessed on 2011
3. Barth A, Jackson C, Reis C (2008) Security architecture of the chromium browser. Stanford

technical report
4. Claudia S (2006) Service granularity in SOA-projects: a trade-off analysis. Master’s thesis,

Electrical Engineering, Mathematics and Computer Science, University of Twente
5. Clements P, Northrop L (2002) Software product lines: practices and patterns. Addison-

Wesley, Boston
6. Creating Web Clip Widgets. http://www.apple.com/pro/tips/webclip.html. Accessed on 2011
7. Creative Commons. http://creativecommons.org/. Accessed on 2011
8. Cross-Origin Resource Sharing. http://www.w3.org/TR/cors/. Accessed on 2011
9. Daniel F, Matera M (2009) Turning Web applications into mashup components: issues, models,

and solutions. In: The proceedings of the 9th international conference on web engineering, San
Sebastián, pp 45–60

10. Daniel F, Yu J, Benatallah B, Casati F, Matera M, Saint-Paul R (2007) Understanding
UI integration: a survey of problems, technologies, and opportunities. Internet Comput
11(3):59–66

11. Dapper. http://www.dapper.net. Accessed on 2011
12. Ennals R, Garofalakis M (2007) MashMaker: mashups for the masses. In: The proceedings of

the 33th SIGMOD international conference on management of data, Beijing, pp 1116–1118
13. Fujima J, Lunzer A, Hornbaek K, Tanaka Y (2004) C3W: clipping, connecting and cloning for

the Web. In: The proceedings of the 13th international world wide web conference, Manhattan,
pp 444–445

http://aws.amazon.com/
http://ws.apache.org/axis/java/
http://www.apple.com/pro/tips/webclip.html
http://creativecommons.org/
http://www.w3.org/TR/cors/
http://www.dapper.net

7 Analysis and Design: Towards Large-Scale Reuse and Integration of Web . . . 161

14. Google Docs. http://docs.google.com/. Accessed on 2011
15. Google Maps API. http://code.google.com/apis/maps/. Accessed on 2011
16. Google Mashup Editor. http://editor.googlemashups.com. Accessed on 2011
17. Haesen R, Snoeck M, Lemahieu W, Poelmans S (2008) On the definition of service granularity

and its architectural impact. In: The proceedings of the 20th international conference on
advanced information systems engineering, Montpellier

18. Han H, Tokuda T (2008) A method for integration of Web applications based on information
extraction. In: The proceedings of the 8th international conference on web engineering,
Yorktown Heights, pp 189–195

19. Han H, Tokuda T (2008) WIKE: a Web information/knowledge extraction system for Web
service generation. In: The proceedings of the 8th international conference on web engineering,
Yorktown Heights, pp 354–357

20. Han H, Guo J, Tokuda T (2010) Deep mashup: a description-based framework for lightweight
integration of Web contents. In: The proceedings of the 19th international conference on world
wide web, Raleigh, pp 1109–1110

21. Hickson I, Hyatt D Html 5 working draft – cross-document messaging. http://www.w3.org/
TR/html5/comms.html. Accessed on 2011

22. IBM Mashup Center. http://www-01.ibm.com/software/info/mashup-center/. Accessed on
2011

23. iframe. http://www.w3.org/TR/html4/present/frames.html. Accessed on 2011
24. Jackson C, Bortz A, Boneh D, Mitchell JC (2006) Protecting browser state from Web

privacy attacks. In: The proceedings of the 15th international conference on world wide web,
Edinburgh, pp 737–744

25. Java Portlet. http://www.jcp.org/en/jsr/detail?id=286. Accessed on 2011
26. Koseki Y, Sugiura A (1998) Internet scrapbook: automating Web browsing tasks by

demonstration. In: The proceedings of the 11th annual symposium on user interface software
and technology, San Francisco, pp 9–18

27. Kulkarni N, Dwivedi V (2008) The role of service granularity in a successful SOA realization
a case study. In: The proceedings of the 2008 IEEE congress on services, Honolulu

28. Kwok T, Nguyen T, Lam L (2008) A software as a service with multi-tenancy support
for an electronic contract management application. In: The proceedings of the 2008 IEEE
international conference on services computing, Honolulu

29. Maximilien EM, Wilkinson H, Desai N, Tai S (2007) A domain-specific language for Web
APIs and services mashups. In: The proceedings of the 5th international conference on service-
oriented computing, Vienna, pp 13–26

30. Microsoft Popfly. http://www.popfly.com. Accessed on 2011
31. Mietzner R, Metzger A, Leymann F, Pohl K (2009) Variability modeling to support

customization and deployment of multi-tenant-aware software as a service applications. In:
The proceedings of the 2009 ICSE workshop on principles of engineering service oriented
systems, Vancouver, pp 18–25

32. Nitu (2009) Configurability in SaaS (software as a service) applications. In: The proceedings
of the 2nd India software engineering conference, Pune

33. Papazoglou MP, van den Heuvel W-J (2006) Service-oriented design and development
methodology. Int J Web Eng Technol 2(4):412–442

34. Perepletchikov M, Ryan C (2011) A controlled experiment for evaluating the impact
of coupling on the maintainability of service-oriented software. IEEE Trans Softw Eng
37(4):449–465

35. Pettersson U, Jarzabek S (2005) Industrial experience with building a Web portal product line
using a lightweight, reactive approach. In: The proceedings of the 10th European software
engineering conference held jointly with 13th ACM SIGSOFT international symposium on
foundations of software engineering, Lisbon, pp 326–335

36. Reldin P, Sundling P (2007) Explaining SOA service granularity: how IT-strategy shapes
services. Master’s thesis, Department of Management and Engineering Industrial Economics,
Institute of Technology, Linkoping University

http://docs.google.com/
http://code.google.com/apis/maps/
http://editor.googlemashups.com
http://www.w3.org/TR/html5/comms.html
http://www.w3.org/TR/html5/comms.html
http://www-01.ibm.com/software/info/mashup-center/
http://www.w3.org/TR/html4/present/frames.html
http://www.jcp.org/en/jsr/detail?id=286
http://www.popfly.com

162 H. Han et al.

37. Representational State Transfer. http://www.ics.uci.edu/�fielding/pubs/dissertation/rest arch
style.htm. Accessed on 2011

38. Sabbouh M, Higginson J, Semy S, Gagne D (2007) Web mashup scripting language. In: The
proceedings of the 16th international conference on world wide web, Banff, pp 1035–1036

39. Sengupta B, Roychoudhury A (2011) Engineering multi-tenant software-as-a-service systems.
In: The proceedings of the 3rd international workshop on principles of engineering service-
oriented systems, Waikiki, Honolulu, Hawaii

40. Simple Object Access Protocol. http://www.w3.org/TR/soap/. Accessed on 2011
41. Stollberg M, Muth M (2009) Service customization by variability modeling. In: The

proceedings of the 2009 international conference on service-oriented computing, Stockholm
42. Tatemura J, Sawires A, Po O, Chen S, Candan KS, Agrawal D, Goveas M (2007) Mashup

feeds: continuous queries over Web services. In: The proceedings of the 33th SIGMOD
international conference on management of data, Beijing, pp 1128–1130

43. Thio N, Karunasekera S (2007) Web service recommendation based on client-side performance
estimation. In: The proceedings of the 18th Australian software engineering conference,
Melbourne, pp 81–89

44. Wang G, Yang S, Han Y (2009) Mashroom: end-user mashup programming using nested
tables. In: The proceedings of the 18th international conference on world wide web, Madrid,
pp 861–870

45. Web Application Description Language. https://wadl.dev.java.net/. Accessed on 2011
46. Web Service Definition Language. http://www.w3.org/TR/wsdl. Accessed on 2011
47. Web Services for Remote Portlets. http://www.oasis-open.org/committees/wsrp/. Accessed on

2011
48. Wohlstadter E, Li P, Cannon B (2009) Web service mashup middleware with partitioning of

XML pipelines. In: The proceedings of 7th international conference on web services, Los
Angeles, pp 91–98

49. Wong J, Hong JI (2007) Making mashups with marmite: towards end-user programming for the
Web. In: The proceedings of the SIGCHI conference on human factors in computing systems,
San Jose, pp 1435–1444

50. XSL Transformations. http://www.w3.org/TR/xslt20/. Accessed on 2011
51. Yahoo Pipes. http://pipes.yahoo.com/pipes/. Accessed on 2011
52. Ye P, Peng X, Xue Y, Jarzabek S (2009) A case study of variation mechanism in an industrial

product line. In: The proceedings of the 11th international conference on software reuse: formal
foundations of reuse and domain engineering, Falls Church, pp 126–136

53. Yu J, Benatallah B, Saint-Paul R, Casati F, Daniel F, Matera M (2007) A framework for
rapid integration of presentation components. In: The proceedings of the 16th international
conference on world wide web, Banff, pp 923–932

54. Zhao Q, Huang G, Huang J, Liu X, Mei H (2008) A Web-based mashup environment for
on-the-fly service composition. In: The proceedings of 4th international symposium on service-
oriented system engineering, Jhongli, pp 32–37

55. Zibuschka J, Herbert M, Rossnagel H (2010) Towards privacy-enhancing identity management
in mashup-providing platforms. In: The proceedings of the 24th annual IFIP WG 11.3 working
conference on data and applications security and privacy, Rome, pp 273–286

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.w3.org/TR/soap/
https://wadl.dev.java.net/
http://www.w3.org/TR/wsdl
http://www.oasis-open.org/committees/wsrp/
http://www.w3.org/TR/xslt20/
http://pipes.yahoo.com/pipes/

	Chapter
7 Analysis and Design: Towards Large-Scale Reuse and Integration of Web User Interface Components
	Introduction
	Current Problems and Research
	Our Solution
	Component Retrieval
	Description and Emulation
	Maintainability of Integrated Application
	Reliability and Security

	Discussion
	Retrieval and Description
	Layout Personalization
	Reliable and Secure Composition
	Integration Testing
	Service Granularity
	Copyright

	Conclusion
	References

