
Chapter 5
Model Checking State Machines Using Object
Diagrams

Thouraya Bouabana-Tebibel

Abstract UML behavioral diagrams are often formalized by transformation into
a state-transition language that sets on a rigorously defined semantics. The state-
transition models are afterwards model-checked to prove the correctness of the
models construction as well as their faithfulness with the user requirements.
The model-checking is performed on a reachability graph, generated from the
behavioral models, whose size depends on the models structure and their initial
marking. The purpose of this paper is twofold. We first propose an approach to
initialize formal models at any time of the system life cycle using UML diagrams.
The formal models are Object Petri nets, OPNs for short, derived from UML state
machines. The OPNs marking is mainly deduced from the sequence diagrams.
Secondly, we propose an approach to specify the association ends on the OPNs
in order to allow their validation by means of OCL invariants. A case study is given
to illustrate the approach throughout the paper.

Introduction

Formalisms integration is a key concept in software engineering. It enhances
the development process quality and ensures its reliability. Often, when complex
systems need to be studied with regard to various aspects, it doesn’t make it easy
to find a unique formalism supporting all the aspect constructs and their related
semantics. One used technique is to integrate two or more formalisms to accurately
specify each aspect. The provided specification is thus constructed by integration,
in a complementary way. It must satisfy completeness and consistency properties.
It also must rely on a well defined semantics allowing a formal verification. On

T. Bouabana-Tebibel (�)
Laboratoire de Communication dans les Systèmes Informatiques - LCSI, Ecole nationale
Supérieure d’Informatique - ESI, Algiers, Algeria
e-mail: ttebibel@ini.dz

T. Özyer et al. (eds.), Information Reuse and Integration in Academia and Industry,
DOI 10.1007/978-3-7091-1538-1 5, © Springer-Verlag Wien 2013

95

mailto:t tebibel@ini.dz

96 T. Bouabana-Tebibel

the other hand, for formalization and verification purposes, informal specifications
are often transformed into specifications whose formalism is chosen according to
the numerous verification mechanisms it supports. We talk here about formalisms
integration per derivation.

The purpose of this paper is to verify UML [27] modeling by deriving the
constructed diagrams into OPNs [21]. In UML, data initialization is provided by
means of object diagrams specifying the object identity, its attribute values as well
as its state at the time of initialization. Objects state can be omitted when, by
default, all data are given for the initial state of the system life cycle. However, in
software engineering, some systems are sometimes studied beginning from a state
that is different from their initial state. Indeed, when a system already exits, and
designers only project to update, restructure or extend some of its functionalities,
just a part of its life cycle needs to be revised or added. In these cases, some of
the system objects will move from their initial state whereas others have already
moved through their life cycle and so are located on states that are different from
the initial one at the moment of the analysis. The object life cycle may be described
by means of a state machine, in case of UML modeling, or by an object Petri net
(OPN) if a formal specification is provided. In the latter case, allowing an OPN
marking at the places translating the appropriate time, not necessarily the initial one,
will better describe the real-world system without need to rework the unchanged
object models. Just the initial marking of those OPNs has to be reset when new
and revised object models are constructed and then connected to the existing OPNs.
The OPNs modular architecture appears to be especially convenient for this kind of
deployment. It makes it easy to execute new systems considering changes only on
the OPNs marking. Another advantage behind starting a system behavior at a time
different from the initial one is to reduce the accessibility graph size which will be
truncated of all the states space preceding the new system starting. Reduction of the
accessibility graph size prevents a combinatory explosion of its states.

The key idea of the present contribution focuses on the relevance of the asso-
ciation ends, specified on the class and object diagrams, regarding the information
they provide to deal with a model analysis. We will show how this information can
be used in the validation process to check the models correctness. So, we firstly
propose to mark the OPNs, derived from state machines, at a specific point in time,
with objects extracted from the object diagram. The association ends specified on
the object diagram will also provide the OPNs with marks representing objects with
specific roles at a given time of the system lifecycle. The marks are composed of
object identities and attribute values. The initial marking approach proposed in this
work provides the possibility of lunching the model checking at different states of
the system life cycle without need to revise the OPNs.

The other results we propose regarding the association ends concern the way
they will be specified on the OPNs in order to allow the checking of OCL invariants
transformed into temporal logics. This specification is derived from link actions
described on the state machine. In fact, as long as OCL navigation expressions are
not used, the association end specification onto the object life cycle is not required.

5 Model Checking State Machines Using Object Diagrams 97

Otherwise, this specification provides after transformation into OPNs a formal basis
for the validation of the OCL invariants.

The remainder of the paper begins with a brief presentation of the state machines
formalization work we published in [8]. We show in section “Background” the
novelty and relevance of this work by comparison with related works. In sec-
tions “Association End Specification” and “Initialization Approach” the proposed
approach is presented and the techniques on which it rests are developed. This
approach is validated in section “Validation of the Approach”. We conclude with
some observations on the obtained results and recommendations for future research
directions.

Related Works

Many works [10, 17, 19, 22, 23, 29, 30] proposed a denotational semantics to the
notation by projecting it in a rigorously defined semantic domain. Some studies have
already addressed the formalization of UML behavioral diagrams by translation
into OPNs semantics domain. The most known are those of Baresi. He proposed
in [4] a textual and graphical formalization of some UML behavioral specifications
using OPNs. He afterwards reinforced his proposal in [3] by defining translation
recommendations. He only achieved the formulation of formal conversion rules for
syntactic models in [5]. The drawback of this work is the constraint of writing the
UML models in a canonical language called LEMMA. More recently, he formalized
in [6] some constructs of the interaction overview diagram using a temporal logic
called TRIO. The proposed semantics was implemented in the Zot tool to prove
some user-defined properties. Contrary to our approach, the properties are written
in a generic manner abstracting the object values.

Bokhari and Poehlman offer in [7] to transform UML state machines in OPNs
in order to analyze them. The model validation resulting from the derivation is
performed on the model checker DesignCPN. No details are however given about
the initialization of the model that deals with identified objects. Similarly, Hsiung
et al. presented in [20] an approach for the formalization of statecharts with colored
Petri nets. For this purpose, they use sequence diagrams to initialize their models
and OCL constraints transformed into temporal logic to validate them. But the
model initialization starts from time zero. Other authors, as Harel, establish a strong
relationship between state machines and sequence diagrams. In [18] Harel et al.
describe a methodology for synthesizing statechart models from scenario-based
requirements. The requirements are given in the language of live sequence charts
(LSCs), and may be played in directly from the GUI. The resulting statecharts are of
the object-oriented variant, as adopted in the UML. Besides its theoretical interest,
this work also has practical implications, since finding good synthesis algorithms
could bring about a major improvement in the reliable development of complex
systems.

98 T. Bouabana-Tebibel

In [16] the basic structure of UML sequence diagrams is first analyzed and then
their formal description using OPNs is given. For reuse, the formal description
of reusable interactions is studied. Next, the authors put forward the mapping
algorithm of UML sequence diagrams into OPNs, which ensures the accuracy,
integrity and simplicity of the results by four steps, including abstraction, merging,
synchronization and reduction. This approach provides a good foundation for
automatic verification except that the only considered starting time is the beginning
of the system life cycle.

Fish and Störrle offer in [13] a number of principles applicable to visual
languages characterized by imprecise semantics in order to analyze and discuss their
quality. Based on this approach, they identify many sources of potential errors in
UML diagrams and propose solutions to these deficiencies.

New approaches of the UML formalization techniques are graph transforma-
tion [19] and more recently, grammar graphs [24]. These techniques give more
precision to the UML diagrams semantics without the use of formal languages.
Holscher et al. propose in [19] to integrate UML diagrams, namely use case, class,
object and statechart diagrams, into a graph transformation system. They afterwards
provide rules to change the system states. To construct the first state, they were faced
with the issue of retrieving the appropriate state of each modeled object. To achieve
this purpose, they constrain the modeler to specify for each object on the object
diagram its current state. The approach we propose removes this constraint by only
using the association ends specification. In [24], a graph grammar is automatically
derived from a state machine to summarize the hierarchy of the states. Based on the
graph grammar, the execution of a set of non-conflict state transitions is interpreted
by a sequence of graph transformations.

More recent works tackle the formalization of the interaction overview diagram
which integrates sequence diagrams, thus providing some data to the behavioral
models. But none focuses on the use of valuated objects to mark the targeted
formalisms. Andrade et al. formalize in [1,2] the interaction overview and sequence
diagrams by means of Time Petri Nets to analyze and verify embedded real-time
systems with energy constraints. The approach resorts to the use of annotations
provided by the MARTE UML profile for verifying qualitative properties as time
and energy savings. To improve the formalization, the transformation needs to be
automated and the models hierarchically structured. In [22] the interaction overview
diagram semantics is formalized by the stochastic process algebra PEPA where the
sequence diagrams are abstracted by colored tokens. This work is completed in [11]
to analyze the modeling. But contrary to ours, the analysis is restricted to generic
models.

Regarding the association ends, no works tackle their integration within state
machines. We can explain this arguing that the UML/OCL association is rarely used
to formally validate the UML models. When done, it is limited to OCL invariants
handling only attribute expressions [32] or OCL pre and postconditions [14, 15].
Generally, the formalized UML models are rather coupled with formalisms for the
expression of system properties.

5 Model Checking State Machines Using Object Diagrams 99

wait()

adr : integer

transmittedInfo

*

1

receivedInfo

connection ()
disconnection()

okConnection()
okDisconnection()

«signal»

Command

dest : integer
info : string

«create» information()
check()

Information

Server

treat()

*

transmittedDisc

dest : integer
info : string

connected Peer

Peer

*

1

1

communicantPeer

Fig. 5.1 Peer to peer class diagram

The work we are presenting in this paper brings a new contribution in the field of
UML formalization. It extends the approach that we proposed in [9] by focusing on
the relationship between sequence diagrams and state machines. It also proposes an
approach to specify the association ends on the OPNs in order to deal later with the
models validation.

Background

We present in this section the main results obtained after transformation of state
machines into OPNs. This approach was developed in [8].

Case Study

To illustrate the transformation mechanisms and those proposed in this paper, we
take a case study on a brokered peer to peer system. The main activity of this system
is the information exchange between the peers after they have been identified by
the server. Identification is established after a connection request confirmed by the
server. Once connected, peers interact by exchanging information. Figure 5.1 shows
the class diagram of the application, illustrating the various system objects and their
actions.

100 T. Bouabana-Tebibel

exit : «call» check()

entry : «send» Connection()

entry : «send» Disconnection()

disconnection

«send» okDisconnection()

entry : «create» Information()
exit : «send» Information()
createLink(transmittedInfo)

connected

connection

reception

transmission

do : wait()

«send» Information()
createLink(receivedInfo)

«send» okConnection()
createLink(connectedPeer)

createLink(transmittedDisc)
destroyLink(connectedPeer)

Fig. 5.2 State machine of a peer

Transforming State Machines to OPNs

A state machine [27], noted SM in the following, formally describes the behavior of
objects of a given class, through states, when they receive or generate events. The
generated events appear either on transitions or at the input or exit of states. They
are noted evt. The received events appear on transitions. They are noted trg. Fig. 5.2
shows the state machine of a peer.

In the OPN approach, classes are represented by subnets that can be instantiated
as many times as needed to describe, in a nominative manner, the objects dynamics.
This instantiation is done using tokens, written in the form of n-tuples, to model
class instances. According to the object-oriented concepts, the subnet encapsulates
the attributes and class methods. The attributes are expressed as components of the
n-tuple. As for the methods, they are specified in a flow of places, transitions and
functions describing the object life cycle. Places are categorized into simple and
super places. The simple places are those defined for ordinary Petri nets [21]. They
include single tokens. The super places generate these tokens. Transitions are also of
two types: simple and super. A simple transition models a single action. The super
transition represents an internal processing described by a set of actions. Transitions
can be guarded.

5 Model Checking State Machines Using Object Diagrams 101

SM OPN # SM OPN

1 5

2
6

3 7

4 8 p
act

actdo : act

/ evt
Linktrg /

t
t

Link

entry:evtp
S

exit : evt

Fig. 5.3 Transformation of
SM constructors into OPNs

OPN

Link

OPN

OPN
DM

Object

Scenario

Fig. 5.4 OPNs
interconnection architecture

Due to UML and OPNs suitability for the object-oriented modelling, we
proposed in [8] to specify the semantics of state machines by means of OPNs. The
mapping results are represented in Fig. 5.3.

Thus, each SM is derived into an object subnet called Dynamic Model or DM,
see Fig. 5.4. To construct the DM, each SM state is converted to a Petri net place and
each SM transition is converted to a Petri net transition related to input and output
arcs. As for do activity, it is translated to a pair of transition-place connected by
arcs, see Fig. 5.3. Only active objects have a behavioral model, a SM for instance.
Passive objects are exchanged messages. They haven’t their own behavior.

Petri nets initial marking is of two types: static and dynamic. The static marking
provides the class instances and their attribute values. These instances are extracted
from the object diagram to initialize the Object place with tokens of object type. The
dynamic marking provides the exchanged messages among the interactive objects.
These messages are extracted from the sequence diagram to initialize the Scenario
place with tokens of event type.

The DM associated to the places Object and Scenario constitutes an Object Petri
net Model that we call OPN. To connect the different OPNs, we use the Link place
through which all the exchanged messages should pass.

Figure 5.5 shows the peer OPN derived from its state machine. The bold
places connectedPeer, transmittedInfo, receivedInfo and transmittedDisc represent
association ends.

102 T. Bouabana-Tebibel

connection

transmission

disconnection

reception

connected

Link

Scenario

Object

wait

t2

t3

t4

t5

t6

t7

t8

t9

do-wait

connectedPeer

receivedInfo

transmittedInfo

transmittedDisc

Fig. 5.5 OPN of a peer

Association End Specification

The used approach to validate OPN models is based on their consistency with the
system properties transcribed in temporal logic. However, the formulation of system
properties in temporal logic can be a hard task for the UML designer unfamiliar with
this class of formalism. To spare him this task, we propose that he expresses the
properties in a familiar language and we take care of transforming the properties in
temporal logic. OCL, Object Constraint Language [26], seems to be the appropriate
formalism. It is a part of the UML notation allowing the expression of constraints
on models while conserving their readability.

OCL is mainly based on the use of operations on collections for specifying object
invariants. Since these collections correspond to association ends, the latter must
appear on Petri net specification so that the translated LTL and CTL properties
(whose expression is essentially made of these constructs) can be verified. This
requires the integration of the association ends onto the state machines in order to
get, after their transformation, the equivalent Petri net constructs. This object flow
modeling is realized by means of the link actions. But the latter are generally omitted
in the behavioural diagrams. Indeed, when constructing his diagrams, the designer

5 Model Checking State Machines Using Object Diagrams 103

does not necessarily think of modeling these concepts which are rather specific to
the link and association end updates. For example, for connecting a peer to the
server, the connection request and connection confirmation actions are naturally and
systematically modeled by the designer, but the addition of the connected peer to the
association end is usually omitted from the modeling, see Figs. 5.2 and 5.5. That is
why we recommend to the designer to specify the link actions on the state machine
so that the OCL invariants can be verified.

UML action semantics was defined in [25] for model execution and trans-
formation. It is a practical framework for formal descriptions. For this work,
we are particularly interested in the create link, and destroy link actions. The
create link action permits the addition of a new end object in the association
end. The destroy link action removes an end object from the association end.
These actions will be represented on the state machine as constraints of the form
linkAction(associationEnd), following the event which provokes the association end
update.

In Fig. 5.2, once the peer is connected (by reception of “send” okCon-
nection) or disconnected (by reception of “send” okDisconnection), it adds
or removes itself from the association end connectedPeer, using respectively,
createLink(connectedPeer) or destroyLink(connectedPeer). It adds a sent or
received information with createLink(transmittedInfo) or create-Link(receivedInfo),
respectively.

The link actions may concern an active or passive end object. The active objects
interact exchanging passive objects. For example, in the peer to peer application, the
Server and Peer objects are active while the Information object is passive.

The object-oriented approach, on which both UML and Petri nets rely, is based
on modularity and encapsulation principles. To deal with modularity, a given
association end should appear and be manipulated in only one state machine. In
Petri nets, the association end is modeled by a place of role type. This place holds
the name of the association end and belongs to the DM translating the state machine.

Furthermore, an association end regrouping active objects must be updated
within the state machine of the class of these objects, in order to comply with the
encapsulation concept. Indeed, since the end object is saved in the role place with its
attributes, these attributes must be accessible when adding the object to or removing
it from the association end. The exchanged objects are usually manipulated by the
active objects and are not specified by dynamic models. So, the association end
representing them could be updated in the state machine of the class that is at the
opposite end. For exchanged objects, the encapsulation constraint is lifted given
that the exchanged object’s attributes are transmitted within the message and so,
accessible by the active objects.

The create link action is semantically equivalent to a Petri net arc going from
the transition with the association end update towards the place specifying the
association end. The destroy link action is semantically equivalent to an arc from the
association end place to the transition corresponding to the link action, see Fig. 5.6.

104 T. Bouabana-Tebibel

State machine constructs OPN constructs

{CreateLink(role)}

{DestroyLink(role)}

role

role

Fig. 5.6 Transformation
of the link actions into OPNs

Initialization Approach

The verification of OPNs models, derived from state machines, requires the
initialization of the specification. Most of the research works [12, 29, 31] undertake
this validation with an initial marking made of anonymous objects. Such marking
is appropriate when one has to evaluate particularly the objects dynamics charac-
teristic. When the interactivity feature is taken into account, the verification with
anonymous objects proves to be insufficient because it inhibits many aspects of
the communication. Indeed, running the verification by considering a single object
as class representative may remove any meaning to inter-classes communication,
especially when anonymity is on the exchanged messages.

To remedy this, we initialize the marking of OPNs models by considering objects
identified by names and attribute values. Thus, the object is identified by the 2-tuple
<obj, attrib> where obj is its identity and attrib, its attribute values. When getting
a role through an association end, it is identified by the 3-tuple <assoc, obj, attrib>

where assoc designates the identity of the object to which it is associated. The
initialization is deduced from object and sequence diagrams.

Object and Sequence Diagrams

The object diagram [27], also called instances diagram, shows the structural links
between class instances at a given time. It thus constitutes the system structural state
at one a precise moment. It is composed of objects, symbolized by rectangles with
two compartments. The first compartment contains the instance name concatenated
to the one of the class as follows: object:Class. The state of the object may be
specified in brackets. It corresponds to the object state on the state machine diagram
at a given time. In the second compartment, the attributes of the object are initialized
with values. The associations between objects show the links between these objects
at a given time, see Fig. 5.7.

Sequence diagrams are a very attractive visual notation, widely used for mod-
eling specific behaviors, related to the system dynamics. These behaviors are
also called scenarios. They describe interactions by providing the sequence of
messages exchanged between objects. Each participant in the interaction (or object)
is represented by a vertical lifeline and is identified by a name appended to the one
of the class as follows: object:Class. Call, send, create and destruct messages are

5 Model Checking State Machines Using Object Diagrams 105

pr1: Peer

adr = 192.168.0.11

m1 : Information

dest = 192.168.0.12
info = Hi

pr3 : Peer

adr = 192.168.0.13

s : Server

adr = 192.168.0.1
maxPeer = 10

pr2 : Peer

adr = 192.168.0.12

transmittedInfo
receivedInfo

: Disconnection

m2 : Information

dest = 192.168.0.11
info = Hello

m1 : Information

dest = 192.168.0.12
info = Hi

connectedPeer

connectedPeer

transmittedDisc

Fig. 5.7 Object diagram of a peer

respectively specified with attribute values of called operation, exchanged objects,
created objects or destroyed objects as follows: “call” operation(attrib), <<send>>

object: Class(attrib), <<create>> Class(attrib) or <<destroy>> Class(attrib)
where attrib D attribute1; : : : ; attributen. These messages are generated by a source
object in direction of a target object. The local operations are modeled by loop
arrows on the object lifeline, see Fig. 5.8.

Distribution of the Objects on the OPN

To allow an OPN simulation starting from any state of the model lifecycle, the
objects (tokens) can’t be put into the OPN Object place. They must be appropriately
distributed into the OPN places. These places correspond to the states of the state
machine from which the OPN derives. The marking of the OPN by means of objects
and association ends is given by the procedure MarkObject(OD, SD, SM).

Procedure MarkObject(OD, SD, SM)

• Let OD be the object diagram, SD the sequence diagram and SM the state
machine modeling the behavior of an object class ;

• For each active object obj on the OD:

– Get the first action to be executed on the corresponding lifeline ; let act this
action ;

– Fetch, on the SM modeling the object behavior, the state(s) including act ;

106 T. Bouabana-Tebibel

m1:Infos : Server pr3:Peerpr1 : Peer pr2 : Peer

«send» Disconnection()

«send» OkDisconnection()

wait()

«send» Connection()

«send» OkConnection()

wait()

treat()«send » m2 : Information

(192.168.0.12, Hello)
wait()

wait()

«call» check()

«send» Disconnection()

«send» OkDisconnection()

wait()

wait()

wait()

wait()

«send» m1 : Information

(192.168.0.11, Hi)

«call» check()

m2:Info

Fig. 5.8 Sequence diagram of the peer to peer system at time t

– Let s be the appropriate state ; if more than one state are found this decision is
made by the designer ;

– Create a token ¡obj, attrib¿ where attrib represents the object attribute values
specified on the OD ;

– Let p be the OPN place derived from the corresponding state s on the SM ;
– Put the token in the place p ;

• For each association end representing an active object specified on the OD, let
asc be this association end :

– For each link specified on the OD such that link D asc :

– Create a token <assoc, obj, attrib>, assoc is the class to which the object
obj is associated and attrib represents the object attribute values specified on
the OD ;

– Let be rol an OPN place representing an association end asc ;
– Put the token in the place rol.

5 Model Checking State Machines Using Object Diagrams 107

To illustrate this concept, we propose the object diagram of Fig. 5.7 where the
server s is already connected to pr1 and pr2 peers. The peer pr3 is not yet connected.
The peer pr1 is in a connected state after it has sent the message m1. The peer pr2
has received the message m1, answered it by the message m2 and then placed itself
in a disconnection state.

After MarkObject(OD,SD,SM) has been executed, the marking of the OPN
derived from the Peer state machine is given in the bold places of Fig. 5.5, as
follows :

Place Object : pr3 W Peer; 192:168:0:13

Place connected : < pr1 W Peer; 192:168:0:11 >

Place disconnection: < pr2 W Peer; 192:168:0:12 >

Place connectedPeer: < pr1 W Peer; 192:168:0:11 > C
< pr2 W Peer; 192:168:0:12 >

We observe that the place Object, which usually contains the initial marking
regarding objects when the used time is zero, only contains, in this case, the
object pr3. We explain this arguing that pr3 has none action on its lifeline. It also
presents none link on the object diagram. So it is at time zero of its life cycle.
The places connected and disconnected are initialized with tokens representing
objects at a time, of their life cycle, which is different from zero. As for the place
peerConnected, it represents an association end and is initialized according to the
used link on the object diagram, namely two links.

Validation of the Approach

To test the proposed approach, we built a tool whose components work as follows.
We first developed a graphic interface to construct the used UML diagrams, namely
state machines, object and sequence diagrams. We afterwards implemented a
translator which derives OPNs from state machines. The derived OPNs were proved
to be well constructed and faithful to the client requirements by means of the model
checker PROD [28].

Verification by model checking as treated in PROD is based on the state space
generation and the verification of safety and liveness system properties on this space.
The properties may be basic, about the correctness of the model construction or
specific written by the modeler to ensure the faithfulness of the system modeling.
For each of these approaches, given a property, a positive or negative reply is
obtained. If the property is not satisfied, it generates a trace showing a case where it
is not verified.

The basic properties are verified according to two ways: the on-the-fly tester
approach and the reachability graph inspection approach. The on-the-fly tester
approach detects deadlock, livelock and reject states. As for the reachability
inspection approach, it permits the verification of some other properties such as
quasiliveness, boundedness or reinitializability. To validate the system faithfulness
with the client requirements, specific properties are written by the designer in OCL,

108 T. Bouabana-Tebibel

automatically translated into Linear Temporal Logic (LTL) and then, verified by
PROD. Three of these properties are expressed below in a paraphrased (textual)
form and then, specified as OCL invariants and translated into LTL properties. To
make easier the comprehension of the properties, refer to the class diagram of the
peer to peer application (Fig. 5.1).

Property 1
The number of connected peers is limited to maxPeer.
Property 1 expression in OCL
context s:Server inv : s:connectedPeersize <D s:maxPeer
Property 1 expression in PROD
For each server s and for each place of its DM* write the property: # verify

henceforth .card.connectedPeer W fieldŒ0� DD sserver/ <D .placeDM � Server W
fieldŒ2�//

where:

• Field[0] designates the first component (assoc) of the connectedPeer tokens,
• Field[2] designates the third component .attrib2 D maxPeer/ of the tokens of the

server DM*.

Property 2 Only connected peers can transmit messages.
Property 2 expression in OCL
Context s:Server inv : s:connectedPeer ! excludes.pr1 W Peer/ implies

pr1:transmittedMessage ! isEmpty()
Property 2 expression in PROD
verify henceforth .connectedPeer W .fieldŒ0� DD sserver&&

fieldŒ1� DD pr1Peer/ DD empty implies
(transmittedMessage: fieldŒ0� DD pr1Peer/ DD empty/

where :

• Connectedpeer: fieldŒ0� DD sserver&&fieldŒ1� DD pr1Peer designate the first and
second components of the connectedPeer tokens,

• Transmittedmessage: fieldŒ0� DD pr1Peer designates the 1st component of the
transmittedMessage tokens.

Property 3 While a peer pr2 is connected, it receives all the information
transmitted from a peer pr1.

Property 3 expression in OCL context s:Server inv : s:connectedPeer !
includes.pr2 W Peer/ and pr1:transmittedInfo ! includes.m1 W Information/

implies will pr2:receivedInfo ! includes.m1 W Information/

Property 3 expression in PROD # verify henceforth ((connectedPeer:
.fieldŒ0� DD sserver&&fieldŒ1� DD pr2Peer/Š D empty/&&.transmittedInfo W
.fieldŒ0� DD pr1Peer&&fieldŒ1� DD m1Information/Š D empty/ implies eventually
.receivedInfo W .fieldŒ0� DD pr2Peer&&fieldŒ1� DD m1Information/Š D empty//I

where:

• Connectedpeer: fieldŒ0� DD sserver&&fieldŒ1� DD pr2Peer designate the 1st and
2nd components of the connectedPeer tokens,

5 Model Checking State Machines Using Object Diagrams 109

• Transmittedinfo : fieldŒ0� DD pr1Peer&&fieldŒ1� DD m1Information designate the
1st and 2nd components of the Transmittedinfo tokens.

• Receivedinfo : fieldŒ0� DD pr2Peer&&fieldŒ1� DD m1Information designate the 1st
and 2nd components of the Receivedinfo tokens.

Once the OPNs generated and then verified at the starting time of the system
life cycle, we used object and sequence diagrams defined at specific times, different
from time zero, to initialize them. This was performed using the implemented algo-
rithm MarkObject(OD, SD, SM). The obtained markings reveal to be conformed to
the object and sequence models.

Conclusion and Perspective

Many research results are published on the formalization of the UML but none so far
on the initialization of the derived formal models, starting from UML diagrams set at
times different from time zero. This paper proposes an approach to validate models,
derived from state machines, at any time of the system life cycle. The initialization
of these models is obtained from object and sequence diagrams. To locate the marks
on the OPNs, the key idea focuses on the relationship between the sequence and
state diagrams.

We also proposed an approach to express the association ends on the OPNs. The
relevance of such an approach is to exploit all OCL capabilities to formally validate
the system properties. These capabilities concern most of the OCL expressions.
The only constraint of the proposed solution concerns the obligation for the user
to specify the link actions on the state machine. However, this constraint is minimal
compared to that of limiting OCL expressions or specifying using formal languages
like temporal logics.

An interesting perspective to this work is to perform OPNs model initialization
without resorting to the use of the first actions of the lifelines to locate the object
states. The use of the association ends, modeled on object diagrams, is a promising
research direction.

References

1. Andrade E, Macie0l P, Callou G, Nogueira B (2008) Mapping UML interaction overview
diagram to time petri net for analysis and verification of embedded real-time systems with
energy constraints. CIMCA 2008, Vienna

2. Andrade E, Maciel P, Callou G, Nogueira B, Araũjo C (2009) Mapping UML sequence
diagram to time petri net for requirement validation of embedded real-time systems with energy
constraints. SAC’2009, Hawaii, pp 377–381

3. Baresi L (2002) Some premilinary hints on formalizing UML with object petri nets. The 6th
world conference on integrated design and process technology, Pasadena

110 T. Bouabana-Tebibel

4. Baresi L, Pezzè M (2001) On formalizing UML with high-level Petri Nets. Concurrent
Object-Oriented Programming and Petri Nets, Advances in Petri Nets Series. LNCS. Springer,
pp 276–304

5. Baresi L, Pezzè M (2005) Formal interpreters for diagram notations. ACM Trans Softw Eng
Methodol 14(1):42–84

6. Baresi L, Morzenti A, Motta A, Rossi M (2011) From interaction overview diagrams to
temporal logic. MODELS’10 Oslo LNCS 6637:90–104

7. Bokhari A, Poehlman WPS (2006) Translation of UML models to object coloured petri nets
with a view to analysis. SEKE 2006, San Francisco, pp 568–571

8. Bouabana-Tebibel T (2007) Object dynamics formalization using object flows within UML
state machines. Enterp Model Inf Syst Archit 2(1):26–39

9. Bouabana-Tebibel T (2011) Language integration for model formalization. The 12th 2011
IEEE international conference on information reuse and integration, Las Vegas

10. Bouabana-Tebibel T, Belmesk M (2007) An object-oriented approach to formally analyze the
UML 2.0 activity partitions. Inf Softw Technol 49(9–10):999–1016

11. Bowles J, Andrews S, Kloul L (2010) Synthesising PEPA nets from IODs for performance
analysis. WOSP/SIPEW ’10, San Jose

12. Delatour J, De Lamotte F (2003) ArgoPN: A CASE tool merging UML and petri nets. The 1st
international workshop on validation and verification of software for enterprise information
systems, Angers

13. Fish A, Störrle H (2007) Visual qualities of the unified modeling language: deficiencies and
improvements. IEEE symposium on visual languages and human-centric computing, Coeur
d’Alène pp 41–49

14. Flake S (2003) UML-based specification of state-oriented real-time properties. PhD thesis,
Faculty of Computer Science, Electrical Engineering and Mathematics, Paderborn University,
Germany

15. Flake S, Mueller W (2004) Past- and future-oriented temporal time-bounded properties with
OCL. 2nd international conferance on software engineering and formal methods, Beijing.
c�IEEE Computer Society, pp 154–163

16. Guangyu Li, Yao S (2009) Research on mapping algorithm of UML sequence diagrams to
object petri nets. WRI Glob Congr Intell Syst 4:285–289

17. Harel D, Maoz S (2006) Assert and negate revisited: modal semantics for UML sequence
diagrams. 5th international workshop on scenarios and state machines: models, algorithms,
and tools. ACM, New York, pp 13–20

18. Harel D, Kugler H, Pnueli A (2005) Synthesis revisited: generating statechart models from
scenario-based requirements. In: Formal methods in software and system modeling. LNCS,
vol 3393. Springer, pp 309–324

19. Holscher K, Ziemann P, Gogolla M (2006) On translating UML models into graph trans-
formation systems. J Vis Lang Comput 17:78–105

20. Hsiung P-A, Lin S-W, Tseng C-H, Lee T-Y, Fu J-M, See W-B (2004) VERTAF: an application
framework for the design and verification of embedded real-time software. IEEE Trans Softw
Eng 30(10):656–674

21. Jensen K (1998) An introduction to the practical use of coloured petri nets. Lectures on Petri
Nets II: Applications. LNCS, vol 1492. Springer, pp 237–292

22. Kloul L, Filipe KJ (2005) From intraction overview diagrams to PEPA nets. The work-shop on
PASTA. Edinburgh

23. Knapp A, Wuttke J (2007) Model checking of UML 2.0 interactions. LNCS, vol 4364.
Springer, pp 42–51

24. Kong K, Zhan K, Dong J, Xu D (2009) Specifying behavioral semantics of UML diagrams
through graph transformations. J Syst Softw 82:292–306

25. Object Management Group (2001) The UML action semantics
26. Object Management Group (2003) UML 2.0 OCL specification
27. Object Management Group (2011) UML 2.4.1 superstructure specification

5 Model Checking State Machines Using Object Diagrams 111

28. PROD 3.4 (2004) An advanced tool for efficient reachability analysis. Laboratory for Theoret-
ical Computer Science, Helsinki University of Technology. Espoo

29. Saldana JA, Shatz SM, Hu Z (2001) Formalization of object behavior and interactions from
UML models. Int J Softw Eng Knowl Eng 11(6):643–673

30. Staines TS (2008) Intuitive mapping of UML 2 activity diagrams into fundamental modeling
concept petri net diagrams and colored petri nets. 15th IEEE inttenational conferance and
workshop on the engineering of computer based systems, Belfast. IEEE Xplore, pp 191–200

31. Störrle H, Hausmann JH (2005) Towards a formal semantics of UML 2.0 activities. Softw Eng
64:117–128

32. Truong N, Souquiéres J (2004) Validation des propriétés d’un scénario UML/OCL à partir de
sa dérivation en B. Approches Formelles dans l’Assitance au Développement de Logiciels,
France

	Chapter
5 Model Checking State Machines Using Object Diagrams
	Introduction
	Related Works
	Background
	Case Study
	Transforming State Machines to OPNs

	Association End Specification
	Initialization Approach
	Object and Sequence Diagrams
	Distribution of the Objects on the OPN

	Validation of the Approach
	Conclusion and Perspective
	References

