Chapter 3
Efficient Range Query Processing
on Complicated Uncertain Data

Andrew Knight, Qi Yu, and Manjeet Rege

Abstract Uncertain data has emerged as a key data type in many applications. New
and efficient query processing techniques need to be developed due to the inherent
complexity of this new type of data. In this paper, we investigate a special type
of query, range queries, on uncertain data. We propose a threshold interval indexing
structure that aims to balance different time consuming factors to achieve an optimal
overall query performance. We also present a more efficient version of our structure
which loads its primary tree into memory for faster processing. Experimental results
are presented to justify the efficiency of the proposed query processing technique.

Introduction

The term uncertain data defines data collected with an inherent and distinctly quan-
tifiable level of uncertainty [2]. Whereas values for certain data are given as exact
constants, values for uncertain data are instead given by probability measures, most
notably by probability distribution functions (PDFs) [1, 10, 11, 25, 27]. Uncertain
data has been increasingly generated from a great variety of applications such as:

* Scientific measurements include margins of error due to limited instruments [2].

* Sensor networks are imprecise due to hardware limits [2].

* GPS is only accurate to within a few meters [11].

* Uncertainty in mobile object tracking can magnify errors in predictive queries
[2,34].

» Forecasting weather or economic data is based heavily upon statistics and
probabilities [3, 25, 30].

* Aggregated demographic data only represent summaries, not actual data [4].
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* Privacy-preserving data mining often introduces jitter to protect individuals [2].
* Lost information creates incompleteness in data [25].

In contrast to certain data whose values are exact constants, uncertain data
take values that are described by probability measures, most notably probability
distribution functions (PDFs). Due to the inherent complexity of uncertain data,
new techniques need to be developed in order to efficiently process queries against
this new type of data. A set of novel indexing structures have been developed to
accelerate query processing. Representative ones include threshold index [10, 26],
the U-tree [30], and 2D mapping techniques [1, 10]. Most of these approaches
assume that disk I/Os are the dominating factor that determines the overall query
performance. Thus, the indexing structures are usually designed to optimize the
number of disk I/Os. However, uncertain data is inherently more complicated
than certain data. Computing a range query on uncertain data usually involves
complicated computations, which incur high CPU cost. This makes disk I/Os no
longer the solely dominating factor that determines the overall query performance.
Therefore, new indexing strategies need to be developed to optimize the overall
performance of range queries on uncertain data.

Uncertain continuous data is usually modeled by PDFs. Some PDFs, like the
uniform PDF, may be very simple to calculate. However, many widely used PDFs
involve complicated computations, such as multimodal probability models for
cluster analysis [33] or computer simulations of cell signaling dynamics for biology
research [21]. Computing a complicated PDF may involve high computational cost.
Numerical approaches, such as Monte Carlo integration, have been exploited to
improve the performance [30]. Riemann sum, however, provides a better strategy
for one-dimensional cases. Even though Riemann sums can be faster than Monte
Carlo integrations, they still incur high computational cost. Especially when a high
computation accuracy is required, probability calculations may take even longer
than disk I/Os. Therefore, the number of probability calculations must also be
considered if the distribution of the uncertain data is complicated. In this case,
the indexing strategy needs to balance between disk I/Os and the CPU cost to
achieve an optimal overall query performance.

In this paper, we present a novel indexing strategy focusing on one-dimensional
uncertain continuous data, called threshold interval indexing. It addresses the lim-
itations of existing indexing structures on uncertain data, particularly for handling
complicated PDFs, by treating uncertain objects as intervals and thereby leveraging
interval tree techniques. The proposed indexing structure is also inspired by the
optimized interval techniques from [7] to build a dynamic primary tree and store
objects in nodes at different levels depending on the objects’ sizes. The notion
of using an interval tree to index uncertain data was suggested by Cheng et al.
in [10] but disregarded in favor of an R-tree with extra probability limits called
x-bounds. We assert that x-bounds can just as easily be applied to interval trees
to index uncertain data with special benefits. We also propose a memory-loaded
threshold interval index, which loads the primary tree into memory for faster
processing.
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The rest of the paper is organized as follows. Section “Background and Motiva-
tion” gives the problem statement and provides an overview of previous research.
Section “Processing Range Queries on Uncertain Data” presents the threshold
interval index. Section “Memory-Loaded Threshold Interval Indexing” introduces
the memory-loaded version of the threshold interval index. Section “Experimental
Results” gives experimental results of our two indexes versus the probability
threshold index. Section “Conclusion” concludes the paper by offering direction
for future research.

Background and Motivation

Existing indexes are inadequate for handling complicated uncertain continuous data.
This section will give the problem statement, describe existing indexing strategies
along with shortcomings, and provide an overview of related work.

Problem Statement

Given a database table T', a query interval [a, b] for an uncertain attribute e of an
object u;, and a threshold probability T, a range query returns all uncertain objects
u; from T for which Pr(u;.e € [a,b]) > t.

Theoretically, an uncertain object could have more than one uncertain attribute.
However, for this paper, we focus on indexing objects based on only one uncertain
attribute.

With no index, a query must calculate a probability for each object to determine
if the object falls within the query interval. Naturally, an efficient index prunes
many uncertain objects from a search to avoid unnecessary probability calculations,
which, given the complexity of the PDFs, could save a lot of time.

External Interval Tree Index

Interval trees [12] are not specifically designed for handling uncertain data, but
one-dimensional uncertain objects may be treated as intervals by using their PDF
endpoints. Arge et al. [6] propose two optimal external interval tree indexes. Both
indexes use a primary tree for layout and secondary structures to store the objects
at each node. The first index’s primary tree is a balanced tree over a set of fixed
endpoints with a branching factor of +/B as the base tree, where B is the block size.
The second index replaces the static interval tree with a weight-balanced B-tree
[6] storing interval endpoints to achieve dynamic interval management. Note that
its primary tree does not store the intervals, it only stores endpoints to control tree
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spread. In both indexes, each internal node v represents an interval /, containing
all of its child nodes’ endpoints. Each interval [, is divided into subintervals called
slabs by the endpoint boundaries on v’s immediate child nodes. When using this
tree to index a set of interval objects 7, an interval i € I is stored at the lowest node
v in the tree such that i is not split across slab boundaries. Each node v stores these
intervals in secondary structures for each slab boundary: B-trees normally or in an
underflow structure if the number of segments is less than B/2 [6, 17]. These lists
hold all intervals that cross the boundary on the left side, on the right side, and as a
multislab. Stabbing queries are used to return results.

Since the endpoints in the first index are fixed, it can become unbalanced and
therefore inefficient due to spread and skew in the input interval set. The second
index, although much more complicated, adapts well to skew and to new inputs.
However, the downfall of both interval indexes, as mentioned in [10], is that if many
uncertainty intervals overlap with the query interval’s endpoints, then few objects
are pruned from the search, and a lot of time is wasted in calculating probabilities.
Furthermore, although this external index is theoretically optimal, it is not always
practical [23].

Probability Threshold Index

The probability threshold index (PTI) [10] allows range queries to prune more
branches from searching than interval indexes allow. The PTI uses a one-
dimensional R-tree as a base tree. Only leaves store uncertain objects. Each internal
node has a minimum bounding rectangle (MBR) that encloses the narrowest
boundaries [L, R] for all child PDFs. Tighter bounds, called x-bounds, are also
calculated for each node. X-bounds are the pair of boundaries (L, R,) such that
the probability an object attribute’s value exists in [L, L] or [Ry, R] is equal to
x [10]. Thus, when performing a range query for objects in [a, b] with probability
threshold 7, if, for a certain node, T > x and [a, b] does not overlap L, or R, at its
right or left ends, then the node and its children may be pruned from the search.

The PTI has many advantages. It is an elegant solution, and it is fairly easy to
implement. The tree is dynamic as well. All boundaries are calculated when objects
are added. Multiple x-bounds can be stored in each node, so queries can choose the
most appropriate bounds for its threshold. Required storage space for internal nodes
is relatively small. Note that the U-tree is very much like a multi-dimensional PTI
with additional pruning techniques [30].

The PTI is not without weaknesses, however. The primary weakness pointed
out by Cheng et al. is that differences in interval sizes will skew the balance of
the tree [10]. Methods involving variance-based clustering are provided in [10] to
solve this problem; however, they only work for PDFs that are variance monotonic.
Furthermore, Cheng et al. do not provide an optimal rectangle layout strategy for
the PTT’s base tree, the R-tree. The best strategy for any R-tree is to make MBRs as
disjoint as possible. When MBRs overlap too much, extra disk I/Os and probability
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calculations must be performed because fewer nodes can be pruned. Adding new
objects, especially objects of vastly different interval lengths, exacerbate overlap, as
shown in Fig. 3.1. Simply put, sloppy R-trees are inefficient, but optimal R-trees are
very difficult to maintain. Strategies such as segment indexes and the SR-tree [18]
address different interval lengths, and interval indexes handle skew very well.

When rectangles overlap, not all objects which fall completely within the query
interval can be immediately accepted. Since MBRs might overlap, every node must
be checked. There is no exclusivity between node intervals. Nodes may not be stored
in any order if their intervals are stretched. Objects might appear in the overlapping
portions of nodes, too. These compounding factors force probability calculations
on all objects in each unpruned node. This wastes lots of time, especially when the
query interval is much larger in size than most uncertainty intervals.

2D Mapping Indexes

Cheng et al. first suggested 2D mapping techniques as an alternative to the PTI for
uniform PDFs [10]. Agarwal et al. then expanded 2D mapping techniques to his-
togram PDFs [1]. Histogram PDFs can easily be transformed into linear piecewise
cumulative distribution functions (CDFs). A CDF F can then be transformed into a
linear piecewise threshold function g, for which g(x) gives the minimum value y
such that F'(y) — F(x) > t for a preset probability threshold t. Threshold functions
are calculated for each uncertain object and turned into a set of line segments. A
range query for an interval [a, b] graphs the point (a, ) and returns all objects whose
line segment threshold functions are below it.

The structures of the indexes presented in [1] manipulate the line segments. The
half-plane range reporting technique partitions the line segments into sets of layers.
Queries visit each layer in order until a layer surpasses the query interval. Fractional
cascading improves visit time. The segment tree, interval tree, and hybrid tree use
the same notions presented in [6] about interval management and slabs to form
optimized index structures.

2D mapping indexes are efficient for uniform and histogram PDFs, but they are
inapplicable for more general PDFs. Furthermore, each index is rigidly based upon
one threshold value; separate indexes must be constructed for additional thresholds.
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This is starkly different from the PTI, which can manage several threshold values in
one structure. However, the application of interval tree techniques presented in [1]
is a novel enhancement over techniques presented in [6].

Related Work

Ranking Queries

A few different types of ranking queries have been proposed for uncertain data,
which use the probabilistic database model. U-Topk queries return the list of k
tuples with the highest probability of being ranked as the top k [25,29, 32]. To
efficiently perform a U-Topk query, a search of possible states is performed, in
which the search is extended only for the tuples of highest probability. A U-kRanks
query return the tuple with the highest probability of being ranked at each position.
This implies that the same tuple could appear in more than one position [25,29,32].
When evaluating a U-kRanks query, only the most probable state for each rank
so far needs to be stored. Independent tuples also exhibit the optimal substructure
property, meaning a dynamic programming solution is possible. The probabilistic
threshold top-k (PT-k) query returns all tuples which have a probability greater than
some threshold probability for being ranked in the top k positions [15, 15, 25].
This captures tuples which might be missed by a U-Topk or U-kRanks query. To
evaluate, the dominant set property is leveraged, which states that whether or not a
tuple is in the result set of the query depends on how many other tuples are ranked
higher. Generation rule compressions and pruning improve query time. Sampling
methods and Poisson approximation methods can improve efficiency in exchange
for accuracy [15].

Joins

A join between tables with uncertain data returns a cross product in which each
paired tuple is associated with a probability p > 0. A probabilistic join query
(PJQ) between two tables returns all pairs of tuples with a non-zero probability
of meeting the join condition. Likewise, a probabilistic threshold join query (PTJQ)
only returns tuples whose probability is greater than some threshold probability t.
A confidence-based top-k join query (PTopkJQ) returns the k tuples with the highest
probability resulting from the join. It is possible to apply various existing join
methods in addition to pruning techniques to optimize query time [11,20]. Three
primary techniques for joining uncertain continuous data are presented in [11]. Joins
on discrete data operate differently. For the similarity join query, [19, 20], each
uncertain object is turned into a vector of its possible attributes. These vectors are
then clustered into groups using the k-means clustering algorithm, and each group
is approximated by calculating its minimum bounding hyper-rectangle.
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Skyline Searches

Skyline analysis of a data set searches for the “best” objects by weighing tradeoffs
between attributes. The most desirable objects constitute the skyline. Performing
skyline searches on uncertain data can also be useful [24]. Pei et al. give the example
of data representing NBA players’ statistics. Reverse skyline searches can also be
applied to uncertain data [22]. A reverse skyline obtains a dynamic skyline based
on query parameters [13]. In a sense, it can find lowers layers of skylines instead of
just the top layer. Reverse skylines are useful, particularly with uncertain data, when
verifying faulty equipment or abnormal data [22]. A monochromatic probabilistic
reverse skyline queries find reverse skylines over one data set, and bichromatic
queries find reverse skylines between two data sets. Pruning can be performed
spatially and probabilistically for both approaches. Offline pre-computation of
pruning spaces can optimize queries further.

Indexing Categorical Data

Categorical (discrete) data has a finite data domain D = {d,..d, }. Each uncertain
attribute within an object is called an uncertain discrete attribute (UDA) u.
A UDA’s value might be any value in the data domain. Therefore, it is represented
by a vector of probabilities u.P = (p;..p,) such that Pr(u = d;) = u.p;.
The probability that two UDAs are equal is given by the dot product of their
probability vectors. Effective indexing strategies make equality queries and ranking
queries more efficient [26,27]. Two strategies are proposed by Singh et al. [27]. The
first is the probabilistic inverted index, and the second strategy is the probabilistic
distribution R-tree (PDR-tree). Testing shows that there is no universal winner
between the two strategies [27].

High Dimensionality

The strategies discussed for continuous and categorical uncertain data focus on
indexing one dimension. Sometimes, however, it makes more sense to think of
uncertainty in more than one dimension. For example, spacial data, like for GPS
or for location-based services [31], has a region of uncertainty, not just values
along one line. The U-tree [30] is a natural extension of the probability threshold
index [10]. Instead of using an R-tree as the base, the U-tree uses an R*-tree,
which is a multidimensional R-tree that optimizes its structure by minimizing area,
margin, overlap, and distance of minimum bounding rectangles [9]. Instead of
using just MBRs, the U-tree uses probabilistically constrained regions (PCRs) to
tighten regions, much like x-bounds for the probability threshold index, based on
probability threshold values, and can be used both to prune and to validate results
without further PDF calculation. A major problem with multidimensional data is
the sparsity problem: distances between pairs of points tend to be too similar to
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garner quality information using standard distance functions [4]. Aggarwal et al.
propose an expected distance function which uses a contrast ratio between means
and standard deviations for a fraction of the uncertain objects [4].

Moving Objects

Indexing moving objects has been well researched [16,34]. An example of indexing
moving objects would be for a city bus route schedule: busses drive along the streets,
and they can be tracked to give real-time feedback on their arrival times. For certain
moving data, a robust indexing structure is the B*-tree [16]. Adding uncertainty to
the data model for moving objects allows for more accurate models [34].

Processing Range Queries on Uncertain Data

We now present the proposed range query process technique for uncertain data. The
cornerstone is the threshold interval index (TII). The TII is in essence a combination
of a dynamic external interval tree and the x-bounds structure used by PTI. This
structure presents two key advantages. The first advantage is that the structure
intrinsically and dynamically maintains balance all the time. The second advantage
is that the interval-based structure makes all uncertain objects which fall entirely
within the query interval easy to find and, therefore, possible to add to the results
set without further calculation. The PTI does not allow this because its MBRs might
overlap. Furthermore, adding x-bound avoids the interval index’s problem for when
many uncertainty intervals overlap the query interval.

TII Structure

The TII has a primary tree to manage interval endpoints. It also has secondary
structures at internal nodes of the primary tree to store objects. When an object is
added to the index, the endpoints of its uncertainty interval are added to the primary
tree. Then, the object itself is added to the secondary structures of the appropriate
tree node. Each object is also assigned a unique id if it does not already have one.
X-bounds are stored for each internal node.

Primary Tree
The primary tree is a weight-balanced B-tree with branching parameter » > 4 and

leaf parameter k > 0. The weight of a node is the number of items (in this case,
endpoints) below it. All leaves are on level 0. All endpoints are stored at the leaves,
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Fig. 3.2 A node v with three child nodes. The dotted lines denote slab boundaries. Note how
objects are only stored within intervals which can completely contain them

and internal nodes hold copied values of endpoints. The weight-balanced B-tree
provides an effective way to dynamically manage intervals and spread. Arge et al.
describe this tree in detail, including time bounds, in [7].

Secondary Structures

Each internal node v represents an interval /,, which spans all interval endpoints
represented by children of v. Thus, the ¢ children of v (for %r < ¢ < 4r) naturally
partition /, into subintervals called slabs [7]. Each slab is denoted by 1,, (for I <
i < c¢), and a contiguous region of slabs, such as I, I,,1,,, is called a multislab [7].
All slab boundaries within /, are stored in v. Note that /,, is the interval for the child
node v;.

An uncertain object is stored at v if its uncertainty interval falls entirely within
I, but overlaps one or more boundaries of any child node’s I,,. (A leaf stores
uncertain objects whose PDF endpoints are contained completely within the leaf’s
interval endpoints.) Each object is stored at exactly one node in the tree, as shown
in Fig.3.2. Let U, denote the set of uncertain objects stored in v. In the external
dynamic interval index, these objects are stored in secondary structures called slab
lists [7], partitioned by the slab boundaries. However, only two secondary structures
are needed per node for the TII because range queries (described later in this section)
work slightly differently than stabbing queries. The left endpoint list stores all
uncertain objects in increasing order of their uncertainty intervals’ left endpoints.
The right endpoint list stores all uncertain objects in increasing order of their
uncertainty intervals’ right endpoints. This is drastically simpler than the optimal
external interval tree, which requires a secondary structure for each multislab [7].
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If the uncertain objects hold extra data or large PDFs, it might be advantageous to
store only uncertainty interval boundary points and object references in the two lists.
The actual objects can be stored in a third structure to avoid duplication.

Applying X-Bounds

X-bounds were introduced as part of the probability threshold index [10] and can
easily be applied to the TII.

Definition 1. An x-bound is a pair of values (L, Ry) for a continuous PDF f(s)
with uncertainty domain [L, R] such that

Ly R
x= | fs)ds = | fs)ds 3.1)
Jron=]

L, is the left x-bound, and R, is the right x-bound. Since the domain of f(s)
is [L, R], L, and R, are unique. Note that x is a probability value, meaning 0 <
x =< 1. For example, if x = 0.25, then there is a 25 % chance that the object’s
value appears in the interval [L, L »5]. Furthermore, there would be a 25 % chance
it appears in [R5, R] and a 50 % chance it appears in [L 25, Ro.25]. Note also that
if x > 0.5, then R, < L,.

The notion of x-bounds can be applied to tree nodes as well as to PDFs, as
seen in Fig.3.3. The left x-bound for a node is the minimum left x-bound of all
child nodes and objects, and the right x-bound is the maximum right x-bound of
all child nodes and objects. Specifically, for a node v, left and right x-bounds are
calculated for 7,. A child node’s x-bounds must be considered when calculating
v’s x-bounds: a child node might have tighter x-bounds than any of the uncertain
objects stored at v. The interval I, accounts for all uncertain objects stored at v and
in any child nodes of v, and so should the x-bounds. The x-bounds for v’s slabs
are given by the x-bounds on v’s child nodes. All of v’s x-bounds are stored in v’s
parent. In this way, the interval 7, is analogous to a minimum bounding rectangle
in an R-tree, and intervals are tightened by x-bounds in the same way as MBRs are
tightened in the PTI [10]. X-bounds for more than one probability x can be stored
as well.
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Range Query Evaluation

Evaluating range queries for objects in [a, b] with a threshold 7 on the TII is like
evaluating stabbing queries on a regular interval tree. Two stabs are executed for
each endpoint of the query interval: a left stab and a right stab. The nature of the
query forces these stabs to be performed slightly differently from how they are
described in [7]. Once the stabs are made, a series of grabs can be performed for all
objects in between. This is called the stab 'n grab search.

The Left Stab

The left stab is the most complicated part of the stab ’n grab search. The search starts
at the root node and continues down one path through child nodes until it hits the
leaf containing the closest x-bound to a within its boundaries. This leaf is called the
left boundary leaf. X-bounds are used to prune this search. If a node’s right x-bound
is less than a or if a node’s left x-bound is greater than b, then the node can be
pruned, because the probability that any of its objects falls within the query interval
must be less than the query’s threshold. Objects are checked at nodes along the stab
to see if they belong to the result set (Fig. 3.4).

Before moving to the next child node, the uncertain objects stored in secondary
structures at the current node must be investigated, because their uncertainty
intervals may overlap the query interval. If they overlap the query interval, then
they might be valid query results. Between the secondary structures, only the right
endpoint list is needed. A quick binary search can be performed to find which
objects fall within the query interval. Any object whose right endpoint is less than a
can be disregarded. Any object whose both endpoints are within the query interval
is added to the result set automatically. Otherwise, a probability calculation must be
performed using the object’s PDF to determine if it meets the threshold probability.
The same strategy applies for the left boundary leaf. All valid objects are added to
the result set.

The Right Stab

The right stab is analogous to the left stab, except it searches with b instead of a.
The leaf found at the bottom of the stab is called the right boundary leaf. X-bound
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Fig. 3.5 A stab 'n grab left stab right stab
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pruning is performed for the rightmost child nodes, not the leftmost. The process
for searching the secondary structures is the same as in the left stab, except “left”
and “right” are switched wherever mentioned. Furthermore, nodes visited during the
left stab can be skipped during the right stab, because the process for investigating
uncertain objects accounts for both endpoints of the uncertainty interval. This is why
references to visited nodes are stored during the left stab.

The Grabs

The two stabs find the two boundary leaves and some uncertain objects in the
result set. The remaining objects to investigate reside in the nodes between the two
boundary leaves. Thankfully, all objects in between can be added to the result set
without any probability calculations. Remember, intervals for nodes on the same
level do not overlap, so all objects stored at nodes between the boundary leaves must
fall entirely within the query. The most effective way to grab all of these uncertain
objects is to perform a post-order tree traversal starting at the left boundary leaf
and ending at the right boundary leaf, skipping each node that has already been
visited. No extra searching needs to be done on the secondary structures. Figure 3.5
illustrates a full stab 'n grab query.

Time Bounds

A range query can be answered within the following time bounds using the stab 'n
grab search:

Theorem 1. Let I be a TII storing N uncertain objects, whose primary tree
has branching parameter r and leaf parameter k. Assume any calculation on an
uncertain object’s PDF takes O(d) time. A range query Q with query interval [a, b]
and threshold © can return all T uncertain objects stored in I which fall within the
query interval with probability p > t in O(kd log,(N/k) + T/ k) time.

Proof. The height of the primary tree is O(log,(N/k)) [7]. If the number of child
nodes of any internal node is O(a), then the total number of nodes in the tree is

O(x %Ny — O(rleerV/k)) = O(N/k). Since the N uncertain objects are
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distributed relatively uniformly over the tree, each node stores O(N/(N/k)) =
O(k) objects. A stab, either right or left, visits O(log,(N/k)) nodes from root to
boundary leaf and must visit all objects stored at a node in the worst case, calculating
probabilities for each. Hence, the stabs are performed in O(kd log,(N/k)) time.
The grabs are performed in O(T/k) time, because extra checking at each node
in between the leaf boundaries is unnecessary. All nodes visited by the grabs are
guaranteed to be valid results, so 7 is used instead of N for the time bound.
Therefore, two stabs and all grabs can be performed in a combined time of
O(kd log,(N/k) + T/k). O

Externalization

The TII can easily be externalized by setting k and r for the primary tree
appropriately, albeit differently than how described in [7]. Let B be the block size;
specifically, the number of data units which can be stored in a block. For the primary
tree, an uncertain object is represented only by its uncertainty interval endpoints,
each of which is one unit of data. Each child node needs two units for endpoints,
one unit for its block pointer, and two units for each set of x-bounds, meaning each
node requires 3 + 2n units, where 7 is the number of x-bounds stored for the tree.
The number of children per node still ranges from %r to 4r. Thus, k = %B and

1
"= 157 B-

Theorem 2. The external TII can be stored using O(N/B) blocks. Range queries
can be answered using O(logg N + T/ B) disk 1/Os and O(B logp N) probability
calculations, and updates can be performed using O(logg N) disk I/Os and O(1)
probability calculations.

Proof. Substitute r = 4(%2’1)3 and k = %B. The bounds from [7] still remain for

disk I/Os. ]

Memory-Loaded Threshold Interval Indexing

Although the TII aptly balances the data, the primary tree uses a lot of storage
space. For every object, the primary tree must also store two endpoints. This can
severely inflate the number of blocks when many objects are indexed externally. In
this section, we introduce the memory-loaded threshold interval index (MTII) as an
alternative external TII to reduce the number of disk I/Os during range queries. Since
the primary tree is significantly smaller, all nodes can be preloaded into memory
before the query runs to improve runtime.

In the TII, every uncertain object’s endpoints are stored in the leaves. However, in
the MTII, only those endpoints which form the slab boundaries, e.g., the minimum
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and maximum values for each leaf’s interval, must be stored. This means that a
leaf stores only two endpoints instead of k endpoints. An internal node stores its
own slab boundaries and pointers to child nodes. It does not need to store the slab
boundaries or x-bounds for its child nodes.

For the primary tree, let ¥ = 2 and let k = %B. There is no reason to change
the leaf parameter k from the value suggested in [6], since k controls the spread
of objects at the bottom level of the tree. The branching parameter should be set to
r = 2 to make the primary tree a binary tree. Since the whole primary tree will
reside in memory, increased fanout is unnecessary.

Storing the primary tree is trickier for the MTII, since one block will hold more
than one nodes. For each node, a node id, left slab boundary, and right slab boundary
must be stored, which requires only three units of data. Blocks store tree nodes in
a top-down, breadth-first fashion: start at the root, and store each successive level
of the tree left, ordering nodes least to greatest for their intervals. The ordering and
slab boundaries will inherently denote parent-child relationships. For example, a
root node may have the interval [0, 1,000]. Its two children might have [0, 400] and
[400, 1,000]. When reading the nodes the jump from a right endpoint of 1,000 to a
left endpoint of 0 denotes a new level in the tree. Since the root contains all nodes
between 0 and 1,000, the 2 nodes read after the root must be its children. Figure 3.6
illustrates the drastic reduction in storage size between the TII and the MTII.

Uncertain objects are stored in the same way as for the TII, using secondary
structures: the left and right endpoint lists are stored externally in blocks. X-bounds
for each primary tree node are stored in a copy tree. For each x-bound x value,
another primary tree structure is created as mentioned above, only instead of storing
slab boundaries, it stores x-bound pairs as if they were slab boundaries. This
x-bound tree is stored the same way as the primary tree. Multiple x-bound trees
can be created, one for each x value. This way, a query can load the appropriate
x-bound tree and not waste disk I/Os on unnecessary x-bound values. A query will
only read blocks for the primary tree and one x-bound tree.

Range queries using the MTII are executed similarly as for the TII. First, the
primary tree and appropriate x-bound tree must be preloaded. Note that these
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structures may remain in memory if multiple queries will be executed. Then the
stab ’n grab search is performed, just like for the TII.

Update methods are simpler for the MTII. Inserting an object is the same: find the
appropriate node based on intervals and store the object in the secondary structures.
The primary tree is not updated because extra endpoints are not stored in the nodes.
Once the secondary structures are too large, meaning they use more than one or two
blocks of data, then the node can be split using standard binary tree procedures.
Intervals and x-bounds must also be updated. Deletion follows similar guidelines as
for the TII.

Experimental Results

This section presents an evaluation of our experimental results. We use the
probability threshold index as a benchmark against which to test both the standard
and memory-loaded threshold interval indexes.

Test Model

The purpose for testing these three indexes is to compare their range query
performance. Performance is measured by three primary metrics:

e Number of disk I/Os
* Number of probability calculations
¢ Runtime (in milliseconds)

Six different performance tests are run. Each test builds the indexes from a
common data set and runs range queries on each index. Descriptions are given
in Table 3.1. Datasets are generated synthetically. Uncertain objects contain two
attributes: an id and a PDF. The PDF interval is determined randomly based on test
parameters, given in Table 3.2. X-bounds are calculated for the probability values
{0.1,0.3,0.5,0.7,0.9} on each index. The block size is 4,096 bytes.

Each test is run with two types of PDFs. Just like for previous tests against
the PTI, one PDF used is a uniform PDF [10]. The second PDF is a multimodal
Gaussian distribution, which is significantly more complicated. Each PDF can
be stored by left and right endpoints and can be stretched to the appropriate
interval length. All probability calculations are performed by using Riemann sums.
Thousand rectangles are used for each Riemann sum to keep the average error
margin around 0.1 %.

Range queries must also be generated. For each test, 100 queries are generated.
Each query interval is random within a given domain. Each query is run against
each index, and results for all queries are tabulated aggregately. Except for the
Threshold test, which varies t, the probability threshold used is t = 0.3.
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Table 3.1 Performance tests

Test Description

Same Object uncertainty intervals have the same length
Different Object uncertainty intervals have different length
Dense Many objects overlap

Sparse Objects are spaced out

Threshold Same as Different, but varies probability threshold
Ratio Varies query interval length versus object interval length

Table 3.2 Test Parameters

Parameter Same Different Dense Sparse Ratio
Num objects 10,000 10,000 10,000 10,000 10,000
Min object value 0 0 0 0 0

Max object value 10,000 10,000 1,000 1,000,000 10,000
Min PDF length 100 50 1 1 10
Max PDF length 100 500 100 10 10

Unfortunately, no optimal minimum bounding rectangle (MBR) strategy is pro-
posed for the PTI [10]. Our PTI sorts all objects by their left endpoints and partitions
them into leaves for bulk loading. This would most likely represent a “perfect” PTI.
However, a more practical PTI goes through insertions and deletions, which will
stretch MBRs. For our tests, we separate ten objects from the dataset and insert
them into random leaves during bulk loading. This more “practical” PTI is used for
comparison testing against the TII and the MTII. Remember, since the TII and MTII
are interval trees, they do not experience the same skew problems as the PTL.

Effect of Object Spread

The Same, Different, Dense, and Sparse tests all test the spread of uncertain
objects. Figure 3.7 gives results for these tests. It is clear that object spread and size
significantly affects performance. All indexes have worse performance for objects
of different lengths and for densely clustered objects. What is interesting is the
difference in performance metrics. The PTI uses fewer disk I/Os than both the
TII and the MTII. Although for objects of the same size the MTII and the PTI
are comparable for uniform PDFs, the TII and MTII generally use about 1.5-2
times as many disk I/Os. The PTI is far surpassed, however, in regards to the
number of probability calculations. Threshold indexes typically use only half to
a third of the number of calculations as the PTI. This number is most staggering for
sparse indexes: the TII and MTII make relatively no calculations. Overall, the total
runtime favors threshold indexes for complicated probability functions, particularly
the MTIL.

The trends between uniform and multimodal PDFs are generally the same for
disk I/Os and probability calculations. This is not too surprising, because PDF shape
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Fig. 3.7 Performance results for Same, Different, Dense, and Sparse tests. (a) Disk
1/Os for uniform PDFs. (b) Disk I/Os for multimodal PDFs. (¢) Uniform PDF calculations.
(d) Multimodal PDF calculations. (e) Runtime for uniform PDFs. (f) Runtime for multimodal PDFs

has only a small affect on index structure. The major difference is in total runtime,
as seen in Fig. 3.7e, f. Since the multimodal PDF is more complicated, calculations
take longer. Thus, the margin by which the TII and MTII outperform the PTI is
much larger for multimodal PDFs than for uniform PDFs.

Effect of Probability Threshold

The Threshold test uses the same test parameters as the Different test,
but it runs the query set on multiple probability thresholds. Figure 3.8 gives the



68 A. Knight et al.

a Threshold Test (Uniform) b Threshold Test (Multimodal)
6000 -
i 6000
8 4000 é —
3 . i
=} a
2000 —e— PTI 2000 - —e— PTI
. LR ] e- Til
o MTIl 5 MTII
T I I I I I T )
0.2 04 0.6 08 0.2 04 06 08
Threshold Threshold
Cc Threshold Test (Uniform) d Threshold Test (Multimodal)
= = 5 N
¢ 150000 £ 150000
= =
o o
3 ] 3 i
8 8
w o
2 50000 ~o— PTI & 50000 —o— PTI
o T e T
0 MTII 0 MTII
] I I I I ] ] ]
0.2 0.4 0.6 0.8 0.2 04 06 08
Threshold Threshold
e Threshold Test (Uniform) f Threshold Test (Multimodal)
5000 { o——0—0- P — — —_—
@ =
£ 3000 | £ P04
g g
€ N = .
¢ —— PTI e —e— PTI
. 10000
1000 T e- Ti
i MTIl o MTII
T T T T T T T T
0.2 0.4 0.6 08 0.2 0.4 0.6 0.8
Threshold Threshold

Fig. 3.8 Performance results for the Threshold test. (a) Disk I/Os for uniform PDFs. (b) Disk
1/Os for multimodal PDFs. (¢) Uniform PDF calculations. (d) Multimodal PDF calculations. (e)
Runtime for uniform PDFs. (f) Runtime for multimodal PDFs

results. Consistently, probability threshold does not have much effect on any of the
indicators of performance, for either PDF.

Effect of Query Interval Size

The Ratio test investigates the effect of query size relative to the objects’ interval
sizes. It runs random queries with a fixed query interval length for different ratios
of query interval length to object interval length. For example, a ratio value of 3
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Fig. 3.9 Performance results for the Rat io test. (a) Disk I/Os for uniform PDFs. (b) Disk I/Os for
multimodal PDFs. (¢) Uniform PDF calculations. (d) Multimodal PDF calculations. (e) Runtime
for uniform PDFs. (f) Runtime for multimodal PDFs

means that the query interval length is 3 times as large as the object interval length.
Each object has a constant interval length of 10 to make ratios consistent. Indexes
are built only once, and 100 queries are constructed for each ratio value.

Figure 3.9 gives the results for the Ratio test. Results are consistent with the
other tests’ results. It is interesting to note what happens as the query interval ratio
is increased. Naturally, the number of disk I/Os for each index increases linearly,
since more objects are fetched for a larger query interval. However, the trend for
probability calculations diverge between the PTI and the TII and MTII. For the PTT,
the number of calculations appears somewhat parabolic: it generally increases until
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the ratio value is approximately 50 for uniform PDFs and 10 for multimodal PDFs,
after which the number decreases. For the TII and MTII, the number of probability
calculations decreases asymptotically towards a very low constant value. This value
is about 10,000 for the TII and about 3,000 for the MTII for both PDFs. The runtimes
level off after a ratio value of 10 for threshold indexes and about 50 for the PTI with
uniform PDFs and about 30 for the PTI with multimodal PDFs. For each index and
PDF, runtime always levels off.

These results imply that threshold indexing is superior when query sizes are
large in respect to the average object size. This benefit is greatest when query sizes
are about ten times as large as object sizes. It also shows again that the MTII is more
efficient than the TII.

Conclusion

In this paper, we present threshold interval indexing, a new strategy for indexing
complicated uncertain continuous data of one dimension. We present two structures:
a standard threshold interval index and a more efficient memory-loaded variant.
The key advantage of threshold interval indexing over existing strategies, such as
the probability threshold index, is that it handles complicated PDFs much more
efficiently because it handles balance better with its intervals.

There are many more opportunities for further research on uncertain data.
Specifically, future research should focus more on exploring the effects of different
types of PDFs on uncertain indexes. PDFs should not be overlooked, because they
are inseparable from what makes the data uncertain. Perhaps certain rectangle
management strategies could improve the performance of the PTI, such as the pri-
ority R-tree [8] or the segment R-tree [18]. Although our paper focuses on range
queries, these indexes could also be used for joins [11, 14]. It is also important
for uncertain data strategies to be incorporated into database management systems
[5,28]. Parallelization should also be explored further.
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