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Towards Collaborative Forensics

Mike Mabey and Gail-Joon Ahn

Abstract Digital forensic analysis techniques have been significantly improved and
evolved in past decade but we still face a lack of effective forensic analysis tools to
tackle diverse incidents caused by emerging technologies and the advances in cyber
crime. In this paper, we propose a comprehensive framework to address the effica-
cious deficiencies of current practices in digital forensics. Our framework, called
Collaborative Forensic Framework (CUFF), provides scalable forensic services for
practitioners who are from different organizations and have diverse forensic skills.
In other words, our framework helps forensic practitioners collaborate with each
other, instead of learning and struggling with new forensic techniques. In addition,
we describe fundamental building blocks for our framework and corresponding
system requirements.

Introduction

Computer crime has swiftly evolved into organized, and in some cases state
sponsored, cyber warfare. The tools digital forensic examiners currently use are too
limited to take on the challenges that are rapidly approaching their forensic cases.
Before long, fundamental changes in the industry will make many of the forensic
techniques used today obsolete [15]. Although many contributing elements can be
identified, the heart of the problem is that current digital forensic examinations are
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too time-inefficient. The three principal causes of this inefficiency are summarized
as follows:

Software Limitations: Single workstation computers have served as the primary
tool of our society’s computing needs for a long time. With the evidence data sets
being as large as they are, a single computer simply does not have the resources
to deliver sophisticated analysis results in a timely manner.
Size of Evidence Data: Today a 1 TB hard drive can be purchased for about
US$60 and the average hard drive cost per GB is less than US$0.10 [6].
Such low cost makes terabyte-sized systems commonplace among even non-
tech-savvy consumers. With such a proliferation of huge storage systems filled
with user data, examiners are confronted with a mountain of stored data to
work through [31]. The problem is compounded when the situation involves a
redundant array of independent disks (RAID) [34] or network attached storage
(NAS) unit shared among individuals or employees.
Increased Examiner Workload: As if insufficient tools and large datasets were
not enough, digital crime continues to increase in popularity [17, 24, 25], nat-
urally resulting in more investigations. Furthermore, state-sponsored cyberwar
promotes the development of increasingly sophisticated software. Simply trying
to keep up with the latest methods of penetration, exfiltration, and attack is
insufficient to accommodate the pace of digital crime.

In addition, when cases become backlogged, only those designated as more
urgent are worked on, potentially leaving suspects’ co-conspirators at large and
capable of making more victims out of innocent people.

Motivation

The challenges above can be greatly reduced by a secure and robust infrastructure
that facilitates collaborative forensics [18, 27], which we define as the willful
cooperation between two or more forensic examiners during any step in the forensics
process, for the benefit of sharing specialized knowledge, insight, experience, or
tools. By this we mean to indicate a process and system through which multiple
examiners perform their work, using a common interface that provides the means for
carrying out all steps of the examination process as well as providing mechanisms
for collaboration between the users.

Two advantages of collaboration are of particular interest to us. First, collabora-
tion allows people to draw from others’ expertise, which is invaluable when working
on problems of a diverse nature or when the problem set of a job constantly changes.
Second, collaboration is a method of spreading a workload, which results in less
time needed for the job to be completed.

Consider the following hypothetical scenario which illustrates a need for a better
method of collaboration. While investigating a case with multiple computational and
storage devices that are uncommon, Bob, who is the lead examiner, determines that
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by soliciting the aid of two subject matter experts that he trusts, the devices could
be successfully examined for evidence of interest. However, when Bob makes the
request to his supervisor to obtain assistance from these experts, she informs him
that the compensation expenses of the experts’ consultation fees plus travel costs
is too great to justify with the current budget. Bob must find a way to either make
do with only one of the experts or to eliminate the travel expenses. Bob needs an
effective means of collaborating with these experts remotely.

Similar to the above scenario, it is already quite common for evidence seizure
to yield a variety of digital evidence, such as a mix of Windows, Linux, and
Mac computers, as well as cell phones, GPS devices, gaming consoles, etc. Since
examiners must be certified to work on a particular type of evidence (depending
on the investigating agency), such a workload must be split up among personnel.
Since there is no tool which can accommodate all evidence types, the evidence
presentation lacks uniformity in format and structure.

While many generic collaboration solutions exist today, none of them have
been crafted specifically for the needs of the digital forensics industry. To be truly
effective, a collaborative forensics infrastructure should maintain the strict privacy
and integrity principles the discipline demands, while also giving examiners the
flexibility to communicate however is best for the situation. This demands a level of
robustness that is simply not offered by collaboration tools at present.

Beyond just communication, collaboration also implies a sharing of resources.
For a proper exchange of data (whether it be files needing to be analyzed or the
results of an analysis), there must first be a uniform representation of that data,
and then a common storage space solution where all collaborators can keep their
resources secure. This will require the establishment of standards to ensure that all
parties can access and interpret the data. Means to efficiently manage resources will
also be needed.

If examiners are to collaborate on a large scale, it will also be crucial for
this infrastructure to provide vast amounts of computing power, which is best
accomplished through some distributed processing method. Ideally, a distributed
processing solution would also include scalable resources. Because there is not a
single technological solution that will properly meet this need for all organizations,
there must be a generic way to interface for such processing resources.

To best facilitate collaboration among examiners, a collaborative forensics
solution should not be limited to supporting its use on a small number of operating
systems. This would hinder the collaboration process and may exclude experts who
could offer potentially crucial insight.

The rest of this paper is organized as follows. We first discuss the progress
made by others in related fields in section “Related Work”. In section “CUFF:
Collaborative Forensic Framework” we provide the architecture of our solution,
which is an abstraction of the most essential components. We then introduce all
other necessary components and provide details on how to realize our framework
in section “Realization of CUFF”. Section “Conclusion” concludes this paper by
summarizing our contributions and discussing our future work.
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Related Work

The nature of our work is such that it brings together aspects of other, previously
completed works which we discuss here by topic.

General Digital Forensics: Two challenging types of evidence that forensics
examiners need to be able to analyze at times are Redundant Array of Independent
Disks (RAID) storage systems and drives protected with encryption. In [34], Urias
and Liebrock attempted to use a parallel analysis system on RAID storage systems,
and documented the issues and challenges they faced with that approach. Similarly,
multiple methods of properly handling the challenges presented by encrypted drives
have been presented by Casey and Stellatos in [5] and by Altheide et al. in [2].

Distributed Processing for Forensics: With distributed processing in use so
much today and in so many distinct settings, it is natural to think of using it to
divide the workload of digital forensics processing. Several years ago, when the
use of distributed processing was not yet as common as it is today, Roussev and
Richard proposed a method for moving away from single workstation processing for
forensic examination to a distributed environment [31]. A few years later, Liebrock
et al. proposed improvements upon Roussev and Richard’s system in [21], which
introduced a decoupled front-end to a parallel analysis machine.

In [32], Scanlon and Kechadi introduced a method for remotely acquiring
forensic copies of suspect evidence which transfers the contents of a drive over a
secure Internet connection to a central evidence server. While this effort is a step
for the better in terms of making evidence centrally accessible, it is difficult to see
the direct utility of such an approach without accompanying software or analysis
techniques to take advantage of storing the evidence on a server. Furthermore,
the presented approach relies on either using the suspect’s Internet connection to
upload the image or images, or the use of a mobile broadband connection. Given
the relatively abysmal upload speeds for current mobile broadband when dealing
with data sets that are hundreds of gigabytes or even a few terabytes large, this
approach will continue to be prohibitively inadequate.

Forensics Standardizations: Garfinkel has made great efforts to create stan-
dards to improve the overall digital forensic examination process. Garfinkel et al.
presented the details of a forensic corpora in [16] with the purpose of giving
researchers a systematic way to measure and test their tools. Garfinkel took this
a step further in [13] with his work to represent file system metadata with XML.
Finally, in [15] Garfinkel put forth a challenge to researchers and developers
everywhere to take note of the current industry trends and take them head on with
innovative forensic solutions that match the properties of emerging technologies.

Storage: Since our realization of our framework is built upon a cloud, we also
consider work done by researchers to address some of the issues related to shared
storage in a cloud. Du et al. proposed an availability prediction scheme for sharable
objects, such as data files or software components, for multi-tenanted systems
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in [8]. In [36], Wang et al. introduced a middleware solution to improve shared
IO performance with Amazon Web Services [3]. Increasing the security of the data
stored in a cloud has been improved upon by Liu et al. in [22] and by Zhao et al.
in [38].

In addition to the above subject areas, there also appears to be a trend toward
supporting collaboration mechanisms in digital forensics tools such as FTK 3 [11].
But, to the best of our knowledge, there has yet to be a single system which can
satisfy all the functionalities set forth in section “Introduction” in a truly robust
manner.

CUFF: Collaborative Forensic Framework

Based on the features and requirements necessary to achieve collaborative forensics
as enumerated in section “Introduction” and the work presented in [23], this section
describes our framework, called Collaborative Forensic Framework (CUFF), and
elaborates what mechanisms are needed to facilitate these features. As illustrated
in Fig. 12.1, our framework consists of four core components (i) to mediate
communication between components in the system, (ii) to coordinate the distributed
analysis processing, (iii) to maintain the shared storage space, and (iv) to provide a
basic interface to the system for the user interface. While a precise set of APIs for
these four components may vary for the deployment setting, they should always
fulfill specific foundational operations and always have the same basic interactions
with the other components. We now discuss these two points in context of each
component:

Analysis Block: This component is the workhorse of the system, and in truth
all other components are simply in place to either provide an interface to it, or
to facilitate its proper function. The Analysis Block is composed of a controller
as well as all processing resources. Ideally, the processing resources would be
quite substantial and capable of handling a continuous inflow of analysis jobs of
significant size. The controller will receive a large number of analysis requests,
and is expected to enqueue and dequeue each job request in an organized and
efficient manner, which should also be fault-tolerant and maintain a high level
of responsiveness. Because it is in charge of maintaining the queue of jobs, the
controller oversees the processing resources and ensures that they are used properly
according to a selected method of prioritizing the jobs.

Storage: This component keeps track of all acquired disk images, the analyses
of their contents, comments and notes from users, and related information all need
to be kept for performing forensic tasks. To do this, it must accept incoming data
streams of acquired disk images, and strictly maintain the integrity of the data
through validation of the original checksums. Requests for getting and putting
data to and from the storage component will come at a high rate, particularly
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Fig. 12.1 Each of the
components in CUFF fulfill
one of the four main
objectives of the system. All
inter-system communication
passes through the Cuff Link,
and the end user only
interacts with the user
interface component

from the processing resources in the Analysis Block, so the storage component’s
response time needs to be controlled. To maximize reusability, a generic method
of transferring data to and from the storage unit should be used such that distinct
data types (such as analysis results, user comments, and communications between
users) will not need any specialization made to the system. In coordination with
whatever access control mechanism is implemented, the storage component also
maintains strict confidentiality of the data it stores. The storage component must
also be flexible enough to allow temporary and/or limited access to case data for
subject matter experts conducting consultation work, allowing them to collaborate
with those directly responsible for the case.

User Interface: This is the access portal through which all the system’s
features are made available. More specifically, the user interface supports evidence
acquisition, allows users to view the structure and contents of files, accepts requests
for specific analyses to be performed on files or groups of files, and provides a means
for users to communicate and share data and information with each other.

Cuff Link: This component mediates communication between all other com-
ponents in the system. It validates parameter input and stores location information
for each of the other components. Also, since it is the component that manages
the forensic process, it is responsible for assigning examiners jobs and notifying
supervisors when the work on a case has been completed. The Cuff Link maintains
order in the system by dictating the available APIs for each of the other components.
It also simplifies the implementation of other components by reducing the number
of connections they must make down to one.

Realization of CUFF

In this section, we describe how to realize the CUFF framework using commercial
off-the-shelf (COTS) software and open source tools. For each component, we
address the desired functionality, some of the challenges associated with achieving
such functionality, and what tools and software meet these challenges and why.

It is highly desirable for an implementation of CUFF to be easily accessible by
the users that will collaborate through it, to have scalable resources, and to have
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built-in redundancy for fault-tolerance. While it would be possible to implement
CUFF as a set of desktop applications that communicate with other remote instal-
lations through a peer-to-peer networking architecture, such an approach would be
difficult to monitor and assure that all connected parties strictly abide by the rules
of evidence.

To achieve the system-wide features we desire, we have selected to build
upon a cloud-based infrastructure, deploying each of the components as virtual
machine (VM) instances. Using a cloud architecture has many obvious advantages.
One advantage is that VM instances can be spawned quite easily, improving the
scalability as well as the reliability and recovery time of all the components of the
system. A second advantage is derived from the fact that each of CUFF’s features
are made accessible through various web services, including a web interface that can
be accessed and used by all authenticated users. Although most of the web services
in the system are only accessible internally, the use of web standards increases the
composability of the system.

While several cloud architectures exist, OpenStack [29] stands out as one built
for a high level of flexibility and scalability while also exporting an API compatible
with Amazon EC2 and S3 services [3], hence allowing the use of the widely-used
euca2ools [10] set of cloud administration tools.

We now elaborate on our implementation of each of CUFF’s components.
Although much of this section is dedicated to discussing a messaging protocol
(section “Scheduling Analysis Jobs”), we would propose that efficient collaboration
among forensic examiners depends heavily on the intelligent appropriation of the
analysis resources, which begins with the scheduling of their use. Hence, this is
a core component to address properly as we work towards our goal of facilitating
collaboration.

Cuff Link

As stated earlier, the Cuff Link provides a couple of key functions for the overall
system. It mediates communication, manages the forensics examination flow,
validates input, and exposes an API for the other components.

One thing that must be taken into consideration is that not all communication
types used in CUFF have the same behavior. Some types of Internet traffic are
difficult to stop and process before sending it on to its intended destination, such
as uploading or downloading files. However, with other types of traffic there is no
difficulty in intercepting, processing, and then forwarding the messages being sent,
such as requests for certain evidence files to be analyzed.

With this in mind, it would not be wise to impose a single method of handling
communication. Rather, the Cuff Link uses multiple technologies appropriate for
the type of messages being handled. Because of this, it was necessary to divide
the functionality of the Cuff Link such that it acts as a layer of abstraction in
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Fig. 12.2 Inter-component
communication passes
through the Cuff Link, which
is deployed in multiple
locations to provide the layer
of abstraction necessary for
the various components

multiple locations. This is illustrated in Fig. 12.2 where an element of the Cuff Link
is running on the Storage component.

To accommodate the communication types that cannot be interrupted (which is
limited to traffic to and from the Storage component), the Cuff Link first provides
a domain resolution through Domain Name System (DNS) server, which translates
URLs into IP addresses. This makes it easy for other CUFF components to send
traffic to a destination without knowing its exact location. The component making
a request only needs to specify the generic name for the destination server, such as
http://cuff.storage.example. The Cuff Link DNS server can then resolve the name to
the appropriate server.

Typically, this kind of action would require that the URL http://cuff.storage.
example be registered with some authoritative entity that stores all official URLs.
However, because we have configured the Cuff Link as a primary master name
server for the domains used within CUFF and specified that the system’s compo-
nents should query the Cuff Link before any other servers, such URLs are resolved
within the system without making an external DNS query. This does require that
any CUFF components that need to be accessed by this means have their IP address
associated with their appropriate domain by the Cuff Link. Once this has been
done, however, the DNS server can also potentially perform some level of load
balancing among available servers by rotating which server’s IP address it uses as
the resolution of the URL.

The second thing the Cuff Link does to accommodate communication with the
Storage component is to leverage a Representational State Transfer (REST) web
service on the Storage component. REST web services allow for certain actions
(in this case uploading and downloading files) to be specified in the URL of the web
request, using the type of web request (POST, GET, DELETE, etc.) as one factor for
interpreting what action should be taken. For example, a GET request in the form

http://cuff.storage.example
http://cuff.storage.example
http://cuff.storage.example
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http://cuff.storage.example/listing/2398-56-1-9125 is interpreted by first removing
the base URL, leaving listing/2398-56-1-9125, which is a request for the evidence
listing for the case number 2398-56-1-9125.

Each different type of web request is interpreted in a specific way. Within
the logic of these web services, we are able to perform the input validation and
mediation necessary for other components to access storage resources. Additionally,
by adding the appropriate filters, we can manage the forensics examination flow by
noting when certain events take place and taking action. For example, when a new
device image is being uploaded, the Cuff Link can easily recognize this event and
perform a predefined action, such as notify the appropriate supervisor that the new
case needs to be assigned to an examiner.

The communication in CUFF that is of the type that can be easily interrupted
before reaching its destination is typically being sent to or from the Analysis Block
(traffic of this type are discussed in more detail in section “Scheduling Analysis
Jobs”). As messages are sent to the Analysis Block, they are first sent to the
Cuff Link and checked to ensure that the analysis request is well-formed and that
the specified Analysis Block is within a reachable domain. This would be the
mechanism whereby multiple deployments of CUFF could share analysis resources.

Storage

Similar to the communication in the system, there are two types of storage needs in
CUFF. First, because it is built on a cloud, there is a need for some way to store the
VM images that run in the system. This storage need is distinct because VM images
are large, rarely change, but also may be needed to start up an instance very quickly.

Second, because cloud instances cannot store any persistent data within the
image itself, all data must be stored in a container suited for the particular purpose
of being temporarily attached to an instance and storing any data that needs to
be preserved. Examples of this type of data includes evidence images, evidence
analysis results, and database files. Evidence images will need to always be accessed
in a read-only mode to preserve their integrity. Furthermore, the rules of evidence
dictate that the system have a means of conducting logging and auditing on the
access of any stored data in the system.

To accommodate these features, we take advantage of the two storage facilities
available from the OpenStack architecture. As shown in Fig. 12.3, these facilities are
distinct, but together they satisfy the needs of our framework. The first is Swift, an
object storage component that, when used in connection with Glance OpenStack’s
image service, can provide discovery, registration, and delivery services for virtual
disk images through a REST web interface. As such, Glance will act as the image
registry for the system.

The second storage facility we use is volumes, which are similar in functionality
to Amazon’s Elastic Block Storage [3]. Each volume is labelled with a universally

http://cuff.storage.example/listing/2398-56-1-9125
http://listing/2398-56-1-9125
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Fig. 12.3 The Analysis Block and Storage components are composed of multiple parts, each
filling a separate role

unique identifier (UUID)1 that distinguishes it from other volumes. The primary use
of these volumes will be to store evidence images and analysis results. Typically,
a separate volume will be created for each device uploaded to the system. If a
hard drive is seized that contains multiple partitions, each partition may also be
stored on a separate volume, to be determined by the examiner when uploading the
evidence to the system. Analysis results will be stored on volumes separate from
the evidence to which they pertain, but will store the UUID of the corresponding
evidence volume to keep the two connected.

In order to maintain the integrity of evidence images stored in volumes, a
snapshot is taken of each volume immediately after the upload is complete. This
essentially makes the original volume read-only because, although changes are
technically allowed to the volume, all write operations are saved in a “child volume”
that is separate from the original and can be easily discarded when the volume is no
longer being accessed by an instance.

One challenge that arises from doing automated, distributed analysis is finding
an efficient means of referring to and transferring portions of evidence images (e.g.
files or file segments). This is inherently a storage issue, because it is the Storage
component that provides access to this data. And while it is true that because we
have made snapshots of the evidence image volumes, we can technically attach
the root volume to multiple instances in a read-only fashion, this still requires that

1UUIDs are 128-bit numbers that are used in distributed systems to uniquely identify information.
The assurance that a UUID is in fact unique is derived from the number of theoretically possible
numbers, which is about 3 � 1038. Because of this, UUIDs are used to identify the volumes in the
system.
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Fig. 12.4 This portion of a DFXML file shows how a single file object is stored with all its
metadata. In the case where a file is fragmented in the disk image, multiple <run> tags will
be contained under the <byte runs> section

the instance have access to the entire image. An approach that allows for concise
data transfer and thorough data representation would be better.

Garfinkel’s Digital Forensics XML (DFXML) representation for file system
metadata [13, 14] is just such an approach. We employ DFXML in CUFF to aid
in improving the efficiency and standardization of how CUFF stores and transmits
data. DFXML provides a standard way of representing and accessing the contents
of an imaged drive by using an XML file to store the offsets and lengths of all “byte
runs” (file fragments) on the disk, thereby acting as an index for the image. Using
this DFXML file, an entity can access specific files by simply specifying the byte
runs of the file and concatenating the returned results. An example of how a file’s
information is stored in a DFXML file is shown in Fig. 12.4.

One issue we discovered in working with DFXML is that Garfinkel’s tool [12]
for creating DFXML files from acquired disk images was that the tool currently
only produces a simple Document Type Definition (DTD) specification for each
DFXML document, which doesn’t allow for type validation. To help encourage the
adoption of DFXML as a standard, we have created an XML schema detailing tag
hierarchy and complex data types. Using this schema to validate an image’s file
system representation, any digital forensic tool can reliably use this standard in its
interactions with the disk image. We believe such a schema will help developers of
forensic tools to be more willing to adopt this data format as a standard, because
they have the assurance of precise data types with any DFXML file.
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Analysis Block

As stated previously and as depicted in Fig. 12.3, there are two types of components
that make up the Analysis Block, the Controller and the Nodes. The Analysis Nodes
act as a network of VM instances that can be used in two different ways. First,
nodes can be used as a means to perform distributed, automated analysis. In this
case, a node is sent files to be analyzed, and the tool is executed from the command
line, performing the requested analysis in an automated fashion. Because analysis
node images are virtual machines, they can be configured to run a wide selection of
operating systems, maximizing platform compatibility.

The other way of using the nodes is to manually interact with them and exercise
fine-grained control over the work performed. A node is sent the files and the
specified program begins execution, but the node does not indicate to the program
to begin analyzing the files. Instead, the node enters a waiting state until the user
accesses it remotely from the system’s dashboard. At this point, the user is in
complete control of the node and can perform whatever functions are necessary.

Since it is required that all inter-component communication in the system go
through the Cuff Link, communication is to be standardized and regulated through
the use of agents which run on all nodes in the system. While all node agents will be
programmed with a standard set of communication protocols, each distinct analysis
node’s agent will be customized to the analysis programs being hosted on that
image. This allows the agent to store whatever parameters necessary to interface
with the programs as well as retrieve the analysis results. Because much of the
implementation for these nodes will be the same for all node types, this improves the
ability to flexibly support new file systems, operating systems, analysis algorithms,
and so forth.

Forensic Flow

The most important feature of the entire system is the fact that it accommodates the
main tasks of any digital forensic investigation. Since most of these tasks involve the
Analysis Block in some way, we discuss the connection of each task to the Analysis
Block.

1. Acquisition: When a user is uploading a new evidence image to the system,
the destination volume for that image is mounted to a VM instance crafted
specifically for handling this task. During the upload, the instance generates
checksums of the image, which are validated against the checksums of the
original device, and then stored for later use during evidence validation after
operations are performed on the image. Finally, the instance takes a snapshot of
the volume to effectively seal it from further changes.

2. Validation: In order to guarantee the integrity of images and files in the system,
Analysis Nodes are utilized to calculate and validate the checksums before and
after every data transmission.
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3. Discrimination: By creating a VM image that can use sets of checksums of
known good files (such as the Reference Data Set provided by the National
Institute of Standards and Technology [28]), the system can highlight those files
which are unknown for the examiner, effectively eliminating an extensive number
of files they need to look at.

To support such an event-based forensic workflow and accommodate relevant
workflow management features in CUFF, we consider existing approaches on a
web-based workflow systems [7,20,26]. Especially, we believe workflow modeling
approaches [9, 33] would help design and govern forensic flow and related tasks
in CUFF. In addition, BPEL (business process execution language) would be
another candidate to articulate a particular forensic flow for facilitating web-based
events [19].

Scheduling Analysis Jobs

One of the merits of the Analysis Block’s design is that it not only provides
a collection of resources for analyzing evidence, but also does so in a very
generic fashion, making it very reusable. The Analysis Block Controller (ABC) is
indifferent to both the nature of the analyses to be performed as well as what the
requirements are for the operating system or software used to perform the work.

While constructing a generic controller, we realized that the system had a great
need for scheduling automated analysis jobs, so we created a set of utilities suited to
accommodate this need. Our scheduling utilities have three specific purposes. The
first purpose is to package information regarding analysis jobs for the entities in the
system that will carry out the work. The information packaged includes the type of
analysis to be carried out, the location of the subject of the analysis (i.e. the files
to be analyzed), and some sort of ordering or priority information for the analysis
subject.

The second purpose of the utilities is to create a channel by which the information
described above can travel from the user who inputs it to its end destination, meaning
the Analysis Node that will perform the analysis specified in the job information.
Creating this channel implies that there is a path defined for the job that passes
through multiple components of the CUFF system.

The third and final purpose of the utilities is to queue jobs according to the
ordering or priority specified in the job information, and then to distribute jobs to
available nodes upon receipt of an assignment request.

A few significant properties of these objectives emerge upon examination that
should be highlighted. As job information is packaged, a data encapsulation method
must be chosen that is standard and efficient. The efficiency of both passing the
data along the defined path through the system and interpreting it is important
for preventing the utilities from becoming a bottleneck, especially since there is
a one-to-many relationship between the Analysis Block Controller and the Analysis
Nodes. No upper bound is imposed on the number of nodes in the system, nor is
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there any restriction on the configurations of the nodes, which again emphasizes
the importance of using standard data formats. Since the nodes submit requests for
job assignments, the scheduling utilities do not preempt the work of nodes. Finally,
as the utilities distribute jobs, care must be taken to prevent starvation of jobs with
lower ordering or prioritization.

Multiple approaches for ordering or prioritizing can be adopted depending on
what is most important for the deployment domain. One approach would be to
calculate the resource demands of each job on the system using the order of
complexity for each of the available analysis tools, an estimated turnaround time
for a small baseline job, and the size proportion difference between the baseline
job and that of a queued job request. With these values, CUFF could prioritize jobs
so that those jobs with a significant workload on the system are either spread out
among jobs with a lesser demand or are delayed until off-peak hours.

A second approach would be to assign priority based on the importance of the
case of which it is a part. At times, one investigation will be more pressing than
all others currently being worked on. In such a scenario, the case that has a higher
level of criticality should be given priority over other analysis work being done in
the system. By giving the user the ability to specify what criticality level a certain
case has been given, jobs related to that case can be allotted more time for being
analyzed by the system resources.

In our deployment of CUFF, we have implemented the second prioritization
approach. We reiterate that this scheduling scheme is specifically for automated
analysis. In other words, it is purposed for when users submit batches of requests to
analyze data segments which will then be carried out without any further input from
users. We anticipate examiners will interact more closely with VM instances in the
cloud on occasion, but that is a use case distinct from the one we address here.

To begin describing the behavior of the utilities, we first identify how we have
satisfied the purposes of the utilities as set forth earlier. First, the container format
used for all messages is JavaScript Object Notation (JSON), which is both easily
transmitted and easily interpreted from this notation to programming objects and
vice versa. Second, to satisfy the needs for a path through the system components,
a queuing mechanism, and a distribution method, we use RabbitMQ [30], an imple-
mentation of the Advanced Message Queuing Protocol (AMQP) [1]. RabbitMQ is
a messaging broker, which allows for a common yet generic method for passing
messages between components by creating queues for messages, producers that put
messages into queues, and consumers that take messages out of the queues.

Figure 12.5 shows the sequence of how messages travel through CUFF using
RabbitMQ. The process is initiated at step 1, when the user submits a batch of
analysis requests to be done for a case. In step 2, each request is processed by the
web server and is reformed to the format understood by RabbitMQ, such that the
list of files for a single analysis request is stored in the body of the message, as are
the criticality of the request and the tool or algorithm to be used on the files. If the
tool or algorithm needs specific command line parameters, these are also stored in
the body of the message. After the message has been properly crafted, it is passed
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Fig. 12.5 The path of job request messages being passed through CUFF. Single-headed arrows
indicate a message being sent to the broker, and double-headed arrows indicate a message being
retrieved from the broker. Components with the RabbitMQ logo in the top right corner are running
the messaging server

to the Analysis Request Producer. From this point on the message is in the care of
the broker until it is delivered to an Analysis Node.

In step 3, the message is sent to the Cuff Link that is running a forwarder utility.
In a deployment of CUFF that does not interact with other deployments, this utility
is fairly insignificant because it simply passes messages on to the Analysis Block
Controller. However, for deployments that interact with each other and allow jobs
from one organization to be analyzed on another deployment, this is the mechanism
that would be responsible for directing messages to the other deployment’s Cuff
Link. The forwarding of messages in this manner would depend on the name server
of the first deployment knowing how to resolve the domain names of any connected
deployments.

After a message has been received by the appropriate Cuff Link, it is forwarded
to the Analysis Block Controller in step 4. In step 5 each message is put into a
queue with messages that have both an equivalent criticality level as well as the
same analysis type. Messages remain in these queues until retrieved by an Analysis
Node Agent.

Before we proceed, it is appropriate that we discuss the behavior of Analysis
Node Agents. As illustrated in Fig. 12.6, each Analysis Node follows a specific set
of state transitions which are governed by the agent running on the node. During
most of a node’s time running in the cloud, it will be working on an analysis task
for a job that it has been assigned. When the job is done, the agent sends the results
to the Storage component and submits a job assignment request. An assignment
indicates to the agent from which queue to take a job. Upon requesting a job from
a particular queue, the agent will either be informed the queue is empty, in which
case a subsequent assignment request would be made, or it will have the necessary
information to retrieve the files from the Storage component and begin the analysis.
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Fig. 12.6 The state transitions for Analysis Node Agents

In step 6, the Analysis Request Client segment of the node agent sends a job
request message to the Analysis Request Server on the ABC. During a course of
step 7, all assignment request messages are stored in a queue and are processed in
the order they were received. The Analysis Request Server then utilizes a read-only
interface to the job queues to evaluate the best candidate for the node in step 8.

Next, in step 9, the Analysis Request Server puts this information into the
callback queue that was specified as part of the message body from step 6. It is
noted that although it technically fulfills the purpose of a queue, we have designed
our use of the callback queue to store at most one element. The reason for this is
that job description messages sent to it will only be in response to an assignment
request message, which will only be sent to the ABC when the node has completed
a previous analysis job, at which point it takes step 10 and consumes the contents of
the callback queue. Hence, the callback queue is only used because it is required by
the broker.

Finally, having received an assignment, the node agent takes one of the jobs
from a queue in step 11. At this point, the agent can get the files from the Storage
component and begin the analysis.

In addition, for handling the assignment request messages, each message con-
tains the necessary information for the ABC to make an appropriate job assignment,
namely, the types of analyses the node can perform as well as the desired level
of criticality. This turns out to be quite a critical element in this scheme, because
it is the node agent that requests what criticality level the job should have that is
assigned to it. This means that the anti-starvation requirement is satisfied in the
implementation of the node agent, which keeps track of the quantities of jobs
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completed for each distinct criticality level. Then, before the agent submits an
assignment request, it first compares the ratios of completed jobs for each criticality
level with the ratio specified by the system administrator and selects the most
outlying level to include in the request.

Evaluation of Scheduling Utilities

The overall viability of CUFF as a digital forensics analysis framework depends
on its ability to distribute the work of analyzing evidence by scheduling nodes
to be responsible for smaller atomic portions of the analysis work. Therefore, to
demonstrate that our method of scheduling jobs is also viable, and to support our
claim that the Analysis Block Controller functions efficiently and is scalable enough
to facilitate collaboration between examiners, we present our set of tests which
simulate real analysis jobs being assigned to nodes and executed.

In terms of execution profile, the procedure of accepting and separating job
request messages (steps 1–5 in Fig. 12.5) is remarkably different from the procedure
of assigning jobs to nodes (steps 6–11 in Fig. 12.5). The former will occur in bursts
of batches as practitioners submit groups of jobs to the system and will not have a
continual inflow. The latter will be a steady disbursement of jobs one at a time to
nodes as they become ready. Because of such a difference, it is less important that
the separation procedure be time-efficient and more important that it provide reliable
delivery of every single message to the Analysis Block, whereas the assignment
procedure should be likewise reliable but also expeditious to manage queued jobs
and respond to each assignment request from nodes so as to minimize their wait
time between analyses for the greatest possible throughput.

One challenge in evaluating the performance of the scheduling utilities is the
fact that processes are running on completely separate VM instances in the cloud
and hence have separate system clocks. For the separation procedure, this proved
to make it prohibitively difficult to produce reliable travel times since the path of a
single message is linear and does not return to its origin. Even with a Network Time
Protocol (NTP) service running on the Cuff Link to try to keep all the components’
times synchronized, impossible (i.e. negative) travel times continued to plague our
results which are on the order of thousandths of seconds.

The assignment procedure is different, however, because the Analysis Node initi-
ates the request and is the final destination, allowing for very reliable measurements
that are obtained from the same system clock. Because of this, we will only present
the empirical results of the assignment process.

To test how well the assignment process facilitates collaboration, we will equate
certain actions of practitioners to the process of automatically retrieving, analyzing,
and sharing the analysis results of a task as they are carried out by an Analysis
Node. We affirm that this comparison is acceptable for the reason that, whenever
the occasion calls for it, practitioners will manually perform these same operations
by taking control of an Analysis Node. One difference between the two scenarios is
that nodes only retrieve and work on one analysis task at a time. To accommodate
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Fig. 12.7 The minimum, maximum, and median values for sets of averages where each set
contains average execution times for a number of concurrently running nodes

Table 12.1 Precise numbers for the evaluations illustrated in Fig. 12.7. Numbers are
given in milliseconds

Consumers in group Minimum average Median average Maximum average

3 3.8295 4.31941 5.0408
6 4.5067 5.24674 7.6002
9 5.1649 6.19420 7.9581
12 6.1907 7.89824 12.4222
15 7.0317 9.24481 15.2574
18 8.8711 11.55450 20.1397

this difference, we consider the behavior of groups of nodes that may be coupled
with an organization or team of practitioners. In this way, the nodes are not limited
in their capacity to collaborate since they can logically pool their resources and
results.

To help make the nodes’ behavior more realistic, each of the job analysis
messages has been given between 5 and 15 fake file descriptors. When an Analysis
Node retrieves a job, it simulates the load of processing each file by sleeping for
5 ms per file before continuing with its normal execution.

In our test, we created groups of Analysis Node consumers in multiples of
three. Timing mechanisms were implemented to measure the completion of steps
6–11 from Fig. 12.5, which we call a “request cycle.” Each consumer made 2,000
synchronous requests2 with an average cycle time calculated for each set of 100
requests. Minimum, maximum, and median values of all nodes in the group were
then calculated as illustrated in Fig. 12.7 and as detailed in Table 12.1.

2Here we mean that each node made synchronous calls while all the nodes ran asynchronously.
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We recognize that the evaluations we have presented here focus on a single
component in a complex system comprised of many other elements that could have
a significant effect on the scalability of our framework. However, with many of
these other elements of CUFF still in development, we chose to demonstrate that the
most fundamental of all the components is an appropriate method that will facilitate
other components’ with a high level of reliability and reuse. In doing so, we believe
CUFF’s abilities can be further extended to take on increasingly realistic analysis
tasks.

User Interface

The main purpose of the user interface is to provide a means for the users to
take advantage of all of CUFF’s features. These features fall into three main
categories: evidence browsing and communication, analysis management, and
storage management.

Evidence browsing (extraction) is the task that takes more of an examiner’s time
during the forensic process than any other task. During this stage of work, the
examiner looks through the file system of the acquired evidence, identifies files to
be analyzed, studies the results of analyses, and makes decisions based on those
results. This is the phase when collaborating with colleagues and subject matter
experts is the most beneficial, so it is logical to combine the browsing tools with the
collaboration tools into one interface.

We have created a simple web interface with the Google Web Toolkit that
demonstrates one way in which these tools can be combined. As depicted in
Fig. 12.8, the left pane provides means for navigating evidence, the user’s contacts,
and the communication files connected with the case that is currently open. The
evidence navigation section is populated by deriving the original file system
structure from the DFXML file of the evidence image.

The right side of the interface shows the contents of the selected file, a detailed
listing of the currently selected directory, and a space for adding comments about
the evidence. At this time, this approach of adding comments is the primary means
of collaboration that we have implemented into our system. These comments are
stored with the case metadata and analysis results.

We initially considered implementing a more sophisticated, near-real-time com-
munication mechanism by adopting the Google Wave Operational Transformation
algorithm [35]. However, due to the complexity of implementing this algorithm
outside its intended use for a deployment of “Wave in a Box” [37] and because
of its recent transitory state to become an Apache incubation project [4], that
implementation effort still needs further investigation.

During the extraction phase, examiners also need a way to specify what forensic
analysis needs to be performed on which files. To do this, the examiner needs access
to something that presents the available analysis tools and algorithms for the files
that have been selected. Figure 12.9 is gives an idea of what such an interface would
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Fig. 12.8 This simple web interface allows users to browse the contents of evidence and
communicate with each other

Fig. 12.9 Using this simple tool in CUFF, users will be able to specify evidence to be analyzed
and check on its progress
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Fig. 12.10 A screen shot of the OpenStack dashboard immediately after connecting a volume to
a running instance as /dev/vdc

look like. In the dialog presented to the examiner, the files that have been previously
been marked to be analyzed in the evidence browsing window are listed. From this
list the examiner can manually select files, select all the files, deselect all the files,
select by file type, or select by a regular expression filter. Once the desired files have
been selected, the examiner can then click on “Set Analysis for Selected Files” to
choose from a list of available analysis algorithms and tools, after which the analysis
jobs will be queued into the system.

Because storage volumes are needed for new evidence images and evidence
analysis results, there must be some way for the user to execute the operations of
creating volumes and attaching them to instances, at least until such processes can
be fully automated by the system. One simple solution to performing these tasks is
to utilize the web dashboard provided by OpenStack, which is shown in Fig. 12.10.
While using this dashboard for all volume operations will be a bit tedious for jobs
of any substantial size, it does provide the needed functionality.

Conclusion

In this paper we have discussed the trends of computer crime and the tools to
combat those crimes. From these trends we have determined that collaboration
among examiners through a secure and robust system would give them a significant
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advantage to successfully identify both inculpatory and exculpatory evidence in a
timely manner. We set forth our requirements for such a system in a framework
based on principles of scalability and interoperability. We then provided details
for an implementation of the framework and the additional components that are
necessary for the basic operations of a live deployment of CUFF.

For this extended work, we have implemented CUFF on the OpenStack cloud
architecture, which provides many needed functions for the system. We also
described in detail how the Cuff Link mediates communication between com-
ponents and how the Storage component leverages the strengths of OpenStack’s
storage features. We also presented a potential use of the DFXML data representa-
tion format and introduced our XML schema for DFXML to enhance reliability
of data types within a DFXML file. In addition, we proposed our approach
to scheduling the use of the system’s resources through an efficient messaging
protocol.

As we continue to improve upon our implementation of all the components in
CUFF, we will perform evaluations and usability testing on our system. As part
of this effort, we are currently in correspondence with law enforcement agents in
multiple locations to ensure that our research is in alignment with the needs and
specifications of those for whom these tools are intended.

Another aspect we will consider as we continue our work on this framework is
issues dealing with multi-cloud scenarios. We will be exploring means of securely
connecting multiple deployments together so as to allow for sharing of resources and
analysis tools to a much higher level without compromising the system’s compliance
with the rules of evidence.
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