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Abstract Chemotherapy is frequently used to treat primary or metastatic cancers,

but intrinsic or acquired drug resistance limits its efficiency. Sphingolipids are

important regulators of various cellular processes including proliferation, apopto-

sis, differentiation, angiogenesis, stress, and inflammatory responses which are

linked to various aspects of cancer, like tumor growth, neoangiogenesis, and

response to chemotherapy. Ceramide, the central molecule of sphingolipid metab-

olism, generally mediates antiproliferative and proapoptotic functions, whereas

sphingosine-1-phosphate and other derivatives have opposing effects. Among

the variety of enzymes that control ceramide generation, acid or neutral
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sphingomyelinases and ceramide synthases are important targets to allow killing of

cancer cells by chemotherapeutic drugs. On the contrary, glucosylceramide

synthase, ceramidase, and sphingosine kinase are other targets driving cancer cell

resistance to chemotherapy. This chapter focuses on ceramide-based mechanisms

leading to cancer therapy sensitization or resistance which could have some impacts

on the development of novel cancer therapeutic strategies.

Keywords chemotherapy • ceramide • sphingomyelinases • ceramide kinase •

sphingosine kinase

1 Introduction

Sphingolipids are ubiquitous components of eukaryotic cell membranes known to

be involved in a variety of cellular processes including proliferation, growth,

differentiation, apoptosis, and membrane structure. Dysregulation of their metabo-

lism is evident in various pathological conditions including metabolic disorders and

cancer. Thus, sphingolipids represent interesting targets for the development of

novel chemotherapy. Studies performed over the past decade demonstrate that

chemotherapy induces the death of cancer cells by apoptosis via two major death

pathways. The first one is called the extrinsic death receptor pathway that begins

with ligation of cell surface death receptors like CD95 by CD95L (Suda et al. 1993)

or via CD95 clustering at the cell surface independently of its ligand (Micheau et al.

1999; Shao et al. 2001). Activation of CD95 death receptor leads to the recruitment

of the protein Fas-associated death domain (FADD) and procaspase-8 to form a

death-inducing signaling complex (DISC). Within the DISC, the procaspase-8 is

transactivated to release mature caspase-8 initiating directly the apoptotic cascade

(Muzio et al. 1996) or indirectly via the cleavage of Bid in t-Bid (truncated Bid) that

consequently activates the mitochondrial death pathway (Li et al. 1998; Luo et al.

1998). The second one is named the intrinsic mitochondrial death pathway

regulated by members of the Bcl-2 family (Green 2000). Most chemotherapeutic

drugs induce disruption of the outer mitochondrial membrane and the release of

proapoptotic molecules such as cytochrome c, Smac/DIABLO, HtrA2/Omi,

apoptosis-inducing factor (AIF), and endonuclease G (Endo G) from the mitochon-

drial intermembrane space (Ravagnan et al. 2002). In the cytosol, cytochrome c

forms a complex with apoptosis protease activating factor-1 (Apaf-1), which

induces via caspase-9 activation of caspase-3 leading to cell death. Since exogenous

treatment with ceramide (Obeid et al. 1993) or endogenous production of ceramide

following many apoptotic stimuli (Hannun 1994; Lin et al. 2006) induces apoptosis,

ceramide is considered as an important mediator in both intrinsic and extrinsic

death pathway. Ceramide levels are significantly decreased in human colon

(Selzner et al. 2001), glial (Riboni et al. 2002), ovarian (Rylova et al. 1998), and

head and neck cancers (Koybasi et al. 2004), and malignant cells with low level of

ceramide are resistant to apoptosis (Chmura et al. 1997). Moreover, absence of

generation of ceramide is associated with chemoresistance (Wang et al. 1999,
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2003). In this context, modulation of ceramide content may favor apoptosis and

targeting altered sphingolipid metabolism in cancer could contribute to potentiate

chemotherapy and counteract chemoresistance. This chapter describes the current

knowledge about sphingolipids and their roles in response to chemotherapy.

2 Sphingolipid Metabolism

Sphingolipids are membrane lipids containing a sphingoid base (sphingosine or

sphinganine) which is in most cases acylated with a fatty acid. The resulting

ceramides can carry hydrophilic headgroups such as phosphorylcholine in

sphingomyelin (SM), carbohydrate residues in glycosphingolipids, and a phosphate

moiety in ceramide-1-phosphate. Sphingolipids (like sphingomyelin or glycosphin-

golipids) with glycerophospholipids and cholesterol are characteristic components

of cell membranes. As structural lipids, they are mainly found in the plasma

membrane and to a lesser extent in intracellular membranes (Van Meer and Hoetzl

2010). Plasma membrane is characterized by the presence of distinct microdomains

enriched in sphingolipids and cholesterol, termed lipid rafts (Brown and London

2000; Simons and Van Meer 1988; Simons and Ikonen 1997). These membrane

domains have the properties to be insoluble in nonionic detergents at 4 �C, of weak
density on sucrose gradient, and destabilized by cholesterol-depleting agents.

Moreover, these structures actively participate to metabolic and signal transduction

processes (Verkleij and Post 2000), especially in the CD95 death receptor pathway

(Hueber et al. 2002) but also in response to chemotherapy (Bezombes et al. 2003;

Dimanche-Boitrel et al. 2005). Then, sphingolipids play a role as mediator lipids

and are involved in the regulation of cellular functions. Their biosynthesis and

catabolism involve a large number of intermediate metabolites with distinct

biological activities (Fig. 1).

Intracellular ceramide can be formed either by de novo synthesis that requires

the action of serine palmitoyltransferase (SPT) (Kang et al. 2010) and/or ceramide

synthase (Bose et al. 1995) or through the SMase-dependent catabolism of SM, in

various separate cellular compartments. In response to chemotherapy, SMase

activation is the predominant pathway to generate ceramide (Rizzieri and Hannun

1998; Pettus et al. 2002; Ogretmen and Hannun 2004) besides the activation of de

novo synthesis (Bose et al. 1995). SMases are phospholipase C-like enzymes that

mediate the hydrolysis of SM to phosphocholine and ceramide. Today, three classes

of SMases have been described: the acid, the neutral, and the alkaline form,

according to their optimum pH, cation dependency, and subcellular location

(Levade and Jaffrézou 1999; Goni and Alonso 2002). Acid sphingomyelinase

(ASMase), a soluble glycoprotein, was the first described. It was originally

identified in the lysosomes with an optimum pH at 4.5–5, but this isoform could

be translocated to the plasma membrane, particularly in lipid rafts after activation

by ligand binding to specific receptor (Gulbins and Grassmé 2002) or chemotherapy

(Lacour et al. 2004; Dimanche-Boitrel et al. 2005; Carpinteiro et al. 2008),
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promoting subsequently receptor clustering. The secretory sphingomyelinase

(SSMase) arises from the ASMase gene through differential protein trafficking of

a common precursor localized either in lysosomes or in Golgi (Schissel et al. 1998).

This protein is activated by physiological concentrations of Zn2+ (Schissel et al.

1996; Spence et al. 1989). Different forms of neutral sphingomyelinases (NSMase)

are characterized with a pH optimum at 7.4: a plasma membrane, Mg2+- or Mn2+-

dependent form and a cytosolic, Mg2+-independent form as well as nuclear and

mitochondrial forms (Goni and Alonso 2002; Birbes et al. 2002; Tomiuk et al.

2000; Wu et al. 2010). Several ceramide synthases (CerS1–6) have been described

(Pewzner-Jung et al. 2006). These enzymes locate in microsomes, are integral

membrane proteins of the endoplasmic reticulum, and synthesize ceramides with

different fatty acid chain lengths (Mizutani et al. 2005). As reported above, many

inductors of apoptosis generate ceramide, suggesting a role of this sphingolipid in

programmed cell death (Pettus et al. 2002). Additionally, increasing the levels of

endogenous ceramide results in apoptosis and growth arrest (Abe et al. 1995;

Bielawska et al. 1996). Most of studies suggest that ceramide levels decrease in

cancers, notably in ovarian, head and neck, colon, and brain tumors. However, this

notion must be seen with caution because it seems that it is the content in

specific ceramides which is important rather than their global level. For example,

only C18-ceramide and no other ceramide species is significantly lower in tumor

tissues of HNSCC patients when compared with controls, which correlates with

lymphovascular invasion and nodal metastasis (Koybasi et al. 2004; Karahatay

et al. 2007), suggesting that this ceramide inhibits tumor growth. By contrast, recent

data suggest that elevated C16-ceramide is associated with a positive lymph node

status in breast cancer patients (Schiffmann et al. 2009).

sphingosine

sphinganine

dihydroceramide

ceramideS1P sphingomyelin

C1P
glucosylceramide

galactosylceramide

SMase

Desaturases

CerS

CDaseSK

GCS GCase
CerK

Fig. 1 Overview of sphingolipids metabolism. Ceramide generation can arise from the de novo

synthesis pathway and/or the hydrolysis of membrane sphingomyelin by various

sphingomyelinases. Ceramide can be transformed in different metabolic intermediates such as

ceramide-1-phosphate, glucosylceramide, galactosylceramide, or sphingosine-1-phosphate.

CDase ceramidase, CerK ceramide kinase, GCS glucosylceramide synthase, GCase glucosyl-

ceramidase, SK sphingosine kinase, SMase sphingomyelinase
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Since a network of specialized and compartmentalized enzymes regulates the

levels of ceramide, ceramide metabolites are produced in distinct localization and

have different functions. For example, an important metabolite of ceramide is

ceramide-1-phosphate (C1P). This metabolite is described as mitogenic and

antiapoptotic. It is formed from ceramide by the action of a specific ceramide

kinase (CerK), which is distinct from the sphingosine kinases (SK1 and SK2) that

synthesize sphingosine-1-phosphate (S1P). CerK is localized in three major

compartments: the Golgi complex, the plasma membrane, and cytoplasmic vesicles

(Bornancin 2011). C1P blocks apoptosis in bone-marrow-derived macrophages

through inhibition of ASMase, thereby reducing ceramide generation (Gómez-

Muñoz et al. 2004). CerK mRNA level is upregulated in estrogen receptor (ER)-

negative breast cancer tumors in comparison with ER-positive ones (Ruckhäberle

et al. 2009). Moreover, CerK is upregulated in several hepatoma cell lines and

knockdown of CerK increases susceptibility to UV-induced apoptosis (Hsieh et al.

2009). Specific inhibition of CerK by NVP-231 in combination with tamoxifen

increases ceramide levels and reduces cell growth (Graf et al. 2008).

Like many products of sphingomyelin, S1P exhibits a wide range of biological

activities. It is a pleiotropic lipid mediator that has been shown to regulate cell

growth, cell survival, cell invasion, vascular maturation, and angiogenesis, pro-

cesses that are important for cancer progression (Olivera and Spiegel 1993;

Cuvillier et al. 1996). However, S1P may have opposing roles depending on

synthesis via SK1 and SK2 and subcellular localization, since SK1 is localized

mainly in the cytosol, whereas SK2 is present in several intracellular compartments

(nucleus, mitochondria, and intracellular membranes). In fact, S1P synthesized by

SK1 is involved in proliferative signaling (Taha et al. 2006), whereas S1P

synthesized by SK2 is described as an antiproliferative and apoptotic mediator

(Maceyka et al. 2005).

In summary, ceramide and sphingosine are very often involved in apoptosis,

cell-cycle arrest, and cell senescence, whereas sphingosine-1-phosphate and cer-

amide-1-phosphate promote cell survival, proliferation, and inflammation. The

balance between these sphingolipids may affect the fate of the cell.

3 Sphingolipids and Sensitivity to Chemotherapy

Ceramide is composed of sphingosine linked to a fatty acyl chain varying in length

from 16 to 26 carbon atoms (Mimeault 2002; Pettus et al. 2002; Ogretmen and

Hannun 2004; Zheng et al. 2006). These distinct ceramides have different role in

apoptosis, differentiation, and cell growth depending on stimulus and cell context.

A number of cytotoxic agents appear to be effective because of their ability to

activate ceramide-mediated pathways in cancer cells. Daunorubicin and 1-beta-D

arabinofuranosylcytosine (Ara-C) are the first two anticancer agents to induce

apoptosis via the generation of ceramide (Bose et al. 1995; Strum et al. 1994;

Jaffrézou et al. 1996). Many other chemotherapeutic drugs are shown to produce
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ceramide: vincristine (Zhang et al. 1996), vinblastine (Cabot et al. 1999), etoposide

(Tepper et al. 1999), paclitaxel (Charles et al. 2001), irinotecan (Suzuki et al. 1997),

mitoxantrone (Bettaieb et al. 1999), and cisplatin (Lacour et al. 2004). And more

recently, it was shown that arsenic trioxide induces accumulation of cytotoxic

levels of ceramide in acute promyelocytic leukemia and adult T-cell leukemia/

lymphoma cells (Dbaibo et al. 2007). As reported in many studies, chemotherapy

can impact ceramide metabolism by promoting ceramide synthesis de novo, by

activating sphingomyelinase, and/or by blocking glucosylceramide formation. In

each case, the result is an increase in ceramide-induced cytotoxic response.

4 Ceramide Synthases

The role of ceramide synthases as targets for chemotherapeutic drugs is currently

emerging. Ceramide synthases (CerS) differ by their specificity for the generation

of endogenous ceramides with distinct fatty acid chain lengths (Spassieva et al.

2006). Particularly, CerS1/4 mainly generates ceramide with a C18-containing fatty

acid chain (C18-ceramide) (Venkataraman et al. 2002), CerS2 rather generates very

long chain ceramides (C24-ceramide) (Laviad et al. 2008; Mizutani et al. 2005),

whereas CerS5/6 preferentially mediates the generation of C16-ceramide and, to a

lesser extent, C12- and C14-ceramides (Riebeling et al. 2003). Myeloid leukemia

cells treated with daunorubicin exhibit ceramide accumulation via activation of

CerS and inhibition of ceramide synthase with fumonisin B1 prevents

daunorubicin-induced apoptosis (Bose et al. 1995). Activation of CerS is also

observed in response to various cytotoxic agents including lymphotoxin, TNF,

camptothecin, doxorubicin, Taxol, oxidative stress, and androgen ablation (Plo

et al. 1999; Xu et al. 1998; Rath et al. 2009; Ueda et al. 2001; Eto et al. 2003).

Expression of CerS1 sensitizes cancer cells to several chemotherapeutic agents

including cisplatin, gemcitabine, doxorubicin, imatinib, and vincristine (Min et al.

2007; Senkal et al. 2007; Baran et al. 2007), and small interfering RNA directed

against CerS1 reduces the effects of these drugs. CerS1 mRNA and enzymatic

activity is increased in HSNNC cells upon treatment with gemcitabine and doxoru-

bicin leading to C18-ceramide generation and cell death (Senkal et al. 2007). In

addition, CerS5 seems to increase the sensitivity of mammalian cells to doxorubicin

and vincristine but not to cisplatin and carboplatin (Min et al. 2007). And

overexpression of CerS6 in resistant cells resensitized them to TRAIL-induced

apoptosis via increased C16-ceramide (White-Gilbertson et al. 2009). Cannabinoids

lead to transcriptional induction of CerS3 and CerS6 and generation of C16, C18,

C24, and C24:1-ceramides inducing cell death in lymphoma cells (Gustafsson et al.

2009), and knockdown of CerS6 expression abolishes activation of CD95 and

significantly reduces toxicity of vorinostat combined with sorafenib in hepatoma

and pancreatic carcinoma cells (Park et al. 2010). On the other hand, CerS2 and

CerS4 levels seem to have no effects on cell response to cytotoxic drugs.
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5 Sphingomyelinases

Several studies indicate a role of ASMase in chemotherapy-induced ceramide

generation (Pettus et al. 2002; Ogretmen and Hannun 2004), particularly after

treatment with gemcitabine, fenretinide, and paclitaxel (Modrak et al. 2004;

Lovat et al. 2004). The hydrolysis of SM by ASMase produces ceramide in specific

membrane domains termed lipid rafts (Liu and Anderson 1995), resulting in the

formation of large ceramide-enriched membrane platforms where membrane

receptors are clustered (Grassmé et al. 2001, 2002). Sub-toxic doses of doxorubicin

result in ASMase activation, release of ceramide, and formation of ceramide-

enriched membrane platforms that facilitate DR5 clustering after treatment with

very low doses of TRAIL in BJAB Burkitt lymphoma cell line and murine

T splenocytes (Dumitru et al. 2007). In addition, ceramide and ASMase are also

important in the induction of apoptosis by other antineoplastic agents such as

rituximab (Bezombes et al. 2004) and TRAIL (Dumitru and Gulbins 2006), and

overexpression of ASMase sensitizes glioma cells to doxorubicin and gemcitabine

(Grammatikos et al. 2007). Similar mechanisms are described after treatment with

cisplatin which can induce a redistribution of CD95 death receptor in lipid rafts of

human colon cancer cells (Lacour et al. 2004). Few minutes after treatment, the

sodium-proton exchanger-1 NHE1 located at the plasma membrane is inhibited,

leading to an intracellular acidification which facilitates the activation of ASMase.

Then, this enzyme hydrolyzes membrane sphingomyelin into ceramide, allowing

the aggregation of lipid rafts into large signaling platforms in which CD95 death

receptors are oligomerized, inducing cell death (Rebillard et al. 2007). Concomi-

tantly, an increase in membrane fluidity is measured early after cisplatin treatment

by electron paramagnetic resonance which could be related to the ability of

ceramide to induce membrane fusion/fission (Cremesti et al. 2002; Dimanche-

Boitrel et al. 2005; Rebillard et al. 2008a). A pretreatment with imipramine, an

inhibitor of ASMase, or reduced expression of ASMase by RNA interference

strongly reduces cisplatin-induced apoptosis in human colon cancer cells,

suggesting a main role of ceramide in cell death. In the same way, cisplatin early

activates ASMase in breast cancer cells, leading to ceramide production (Zeidan

et al. 2008). These data confirm the important involvement of ceramide pathway in

apoptosis induction (Gulbins and Grassmé 2002; Gulbins and Kolesnick 2003;

Gulbins and Li 2006). Moreover, reactive oxygen species (ROS) seem to be

involved in ASMase activation by fenretinide, doxorubicin, and TRAIL (Lovat

et al. 2004; Dumitru and Gulbins 2006; Grammatikos et al. 2007), as demonstrated

by the use of ROS scavengers. Consistent with this, a mechanism implicating ROS

in ASMase activation is characterized in vitro with the oxidation of the cysteine

residue 629 in purified ASMase, leading to activation and dimerization of the

enzyme (Qiu et al. 2003). However, the role of ASMase in response to chemother-

apy has been mainly studied on in vitro cellular models, and the precise

Sphingolipids and Response to Chemotherapy 79



mechanisms of its action in vivo remain not well defined. A recent work points out

that in a Niemann–Pick disease (NPD; type B) patient who developed a marginal

zone lymphoma, rituximab is still acting, suggesting that ASMase is dispensable for

rituximab efficacy (Sabourdy et al. 2011). Further studies are needed to confirm the

role of ASMase in response to chemotherapy in cancer patients. The role of

ASMase is not limited to tumors since this enzyme is also involved in deleterious

effects induced by anticancer drugs in normal tissues. Doxorubicin induces

ASMase-dependent oocyte lethality, which is responsible for sterility (Morita

et al. 2000). In the same way, as irradiation (Paris et al. 2001), cisplatin induces

apoptosis of endothelial cells in small intestine leading to the gastrointestinal (GI)

syndrome which is not observed in ASMase-knockout mice (Rebillard et al.

2008b). Moreover, cisplatin triggers dendritic cells (DC) apoptosis through

increased expression and activation of ASMase, limiting the use of chemoimmu-

notherapy in cancer treatment. However, the ex vivo nitric oxide (NO) donors

treatment protects DC from cisplatin toxicity and enhances tumor regression in B16

mouse melanoma model and animal survival following cisplatin treatment (Perrotta

et al. 2007). As previously described, daunorubicin triggers the release of ceramide

in leukemic cells through the activation of NSMases (Mansat et al. 1997; Mansat-de

Mas et al. 1999) and this activation is mediated by both serine proteases, protein

kinase C, and ROS, resulting in the consecutive activation of Jun-N-terminal

kinases (JNK). Another chemotherapeutic agent, 1-beta-D-arabinofuranosyl-

cytosine (Ara-C), is shown to rapidly enhance NSMases activation in leukemia

cells (Whitman et al. 1997; Strum et al. 1994) by altering the cellular redox status.

Ceramide generation activates the Src-like tyrosine kinase Lyn and JNK to mediate

apoptosis (Bezombes et al. 2001; Grazide et al. 2002). Consistent with the proposed

proapoptotic role of NSMases and NSMase-generated ceramide, NSMase3 expres-

sion is induced upon Adriamycin treatment and its overexpression sensitizes cells

to Adriamycin (Corcoran et al. 2008). Further, daunorubicin transcriptionally

regulates neutral sphingomyelinase 2 in human breast cancer cell lines, leading to

an increased ceramide production and cell death (Ito et al. 2009).

6 Sphingolipid and Chemoresistance

As well known, the main obstacle against cancer therapy is the development of drug

resistance resulting in chemotherapy failure. A possible mechanism to overcome

this drug resistance is modulation of the sphingolipid metabolism.

Among the sphingolipids, S1P seems to be a key regulator of chemoresistance.

As previously described, S1P is generated by the conversion of ceramide to

sphingosine by ceramidase and the subsequent rapid phosphorylation of sphingo-

sine to S1P, which is catalyzed by sphingosine kinase.
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7 Sphingosine Kinases

High expression of sphingosine kinase-1 SK1 and S1P is observed in many types of

cancers such as gastric, lung, colon, breast, uterus, and kidney (Kawamori et al.

2009; Visentin et al. 2006). SK1 activity is increased 2.5-fold in endometrial tumors

compared with healthy sections, and S1P levels are 1.6-fold higher in cancer

tissues. In breast tumors samples, elevated SK1 expression is correlated with poor

prognosis and promotion of metastasis (Ruckhäberle et al. 2008). Moreover, SK1

increases RAS V12-dependent transformation of NIH3T3 fibroblasts to form fibro-

sarcoma cells, demonstrating for the first time the role of SK1 in cancer transfor-

mation (Xia et al. 2000). Targeting SK1 induces apoptosis and suppresses growth of

human glioblastoma cells and xenografts (Kapitonov et al. 2009). S1P and SK1 are

involved in resistance to apoptosis induced by CD95, ceramide, (Bektas et al. 2005)

and a myriad of other stimuli such as camptothecin, gemcitabine, imatinib, and

Taxol. Cancer cell lines that are resistant to chemotherapeutic agents have a high

expression of SK1 and SP1, such as prostate cancer cells that are resistant to

camptothecin (Akao et al. 2006; Pchejetski et al. 2005), pancreatic cancer cells

resistant to gemcitabine (Guillermet-Guibert et al. 2009), and chronic myeloid

leukemia (CML) cells that are resistant to imatinib (Baran et al. 2007). Imatinib-

sensitive CML cells and daunorubicin-sensitive leukemia cells have a higher

ceramide/S1P ratio than their chemotherapeutic resistant counterparts (Baran

et al. 2007; Sobue et al. 2008). The involvement of SK1 in drug resistance is also

established in breast cancer cells. SK1 overexpression causes promotion of cell

proliferation and resistance to tamoxifen-induced apoptosis, and the inhibition of

SK1 by a specific inhibitor induces the resensitization of breast cancer cells to

tamoxifen-induced apoptosis (Sukocheva et al. 2009). In contrast, the role of SK2 is

much less known. Whereas, endogenous SK2 also promotes survival by direct

involvement of S1P (Hait et al. 2009), its enforced overexpression suppresses cell

growth and enhances apoptosis and sensitivity to doxorubicin (Liu et al. 2003;

Sankala et al. 2007). However, colon cancer cells with high SK1 and SK2 expres-

sion were resistant to oxaliplatin (L-OHP), and inhibition of both SK isoenzymes

renders the colon cancer cells sensitive to L-OHP (Nemoto et al. 2009).

8 Ceramidases

Due to their ability to break down ceramide to regulate sphingosine and S1P levels,

acid, neutral, and alkaline ceramidases (Canals et al. 2011) are important regulators

of cell survival (Mao and Obeid 2008). Human acid ceramidase is overexpressed in

prostate cancer (Seelan et al. 2000). Overexpression of acid ceramidase in prostate

cancer cell line DU145 or in fibrosarcoma cell line L929 elevates resistance to

chemotherapy (Saad et al. 2007) or TNF-α (Strelow et al. 2000), respectively. On

the contrary, downregulation of acid ceramidase sensitizes A375 melanoma cells to

dacarbazine (Bedia et al. 2011). Moreover, addition of acid ceramidase inhibitors,
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B13 or N-oleoyl ethanolamine, induces apoptosis in prostate and colon cancer cell

lines and xenografts (Samsel et al. 2004; Holman et al. 2008; Selzner et al. 2001) or

overcomes TNF-α resistance (Strelow et al. 2000), respectively. In the same way,

overexpression of neutral ceramidase confers resistance of primary hepatocytes to

TNF-α and protection against TNF-α-induced liver damage (Osawa et al. 2005).

9 Glucosylceramide Synthase and Gangliosides

Other dysfunctions in ceramide metabolism also contribute to multidrug resistance.

Specifically, ceramide glycosylation by the glucosylceramide synthase (GCS),

which forms the metabolite glucosylceramide, may be an important pathway for

bypassing apoptosis. Tumors from patients who fail to respond to chemotherapy

express elevated glucosylceramide levels (Lucci et al. 1998) as well as a human

ovarian adenocarcinoma cell line established from a patient resistant to doxorubi-

cin, melphalan, and cisplatin. A number of drug-resistant cancer cell lines accumu-

late this noncytotoxic metabolite (Lavie et al. 1996). Drug-resistant breast cancer

cells and cutaneous cancer cells have higher levels of glucosylceramide than their

drug-sensitive counterparts. The level of GCS activity may determine the multidrug

resistance phenotype in cancer cells. The introduction of GCS gene into drug-

sensitive breast cancer cell lines results in an 11-fold higher level of GCS activity,

leading to resistance to doxorubicin, exogenous ceramide (Liu et al. 1999a), and

TNF-α-induced cell death (Liu et al. 1999b). This process seems to be related to

hyperglycosylation of ceramide and not to changes in the levels of P-glycoprotein,

Bcl-2, or TNF receptor-1 expression. However, recent data demonstrated that

knockdown of GCS expression significantly inhibits the expression of MDR1, a

gene encoding for P-glycoprotein (P-gp), and reverses drug resistance (Gouazé

et al. 2005; Gouazé-Andersson et al. 2007). On the contrary, overexpression of GCS

increases P-gp expression and resistance acquisition in breast cancer cells (Gouazé

et al. 2004; Liu et al. 2010). Interestingly, P-gp is proposed as a specific transporter

for glucosylceramide, translocating this molecule across the Golgi to deliver it for

the synthesis of glycosphingolipids (De Rosa et al. 2004). Thus, P-gp and GCS

appear to function in the same pathway of ceramide/GlcCer metabolism, and this

may provide an important link for the function of GCS in drug resistance. These

data are consistent with an earlier study demonstrating that the inhibition of P-gp

prevents GCS activity and alters glucosylceramide levels (Goulding et al. 2000).

Additionally, P-gp overexpressing cells have an increased accumulation of

glucosylceramide (Gouazé et al. 2004; Morjani et al. 2001) which is the precursor

for the generation of complex glycosphingolipids and gangliosides (Futerman and

Hannun 2004). Most gangliosides are known to protect cells from apoptosis (Bektas

and Spiegel 2004). For example, GM1 could prevent cell death in growth factor-

deprived neuronal cells (Ferrari et al. 1995), could enhance S1P production in rat

heart fibroblasts through the activation of sphingosine kinase, and could protect

cells from C2-ceramide or staurosporine-induced cell death (Cavallini et al. 1999).
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Moreover, gangliosides GM2 and GM3 have been associated with multidrug

resistance phenotype in cancer cells (Gouazé-Andersson and Cabot 2006).

10 Conclusion and Future Directions

Experimental evidence suggests that there is an alteration of ceramide contents and

of the expression of enzymes involved in sphingolipid metabolism in several

cancers that contributes to cancer therapy resistance. In fact, the roles of

sphingolipids in the regulation of response to chemotherapy are demonstrated in

various cellular models but need to be further studied in cancer patients. As

described, chemotherapy induces ceramide generation via activation of several

enzymes in different subcellular localizations (plasma membrane, reticulum endo-

plasmic, nuclear membrane, and mitochondria-associated membranes). Moreover,

different ceramide species could be generated with distinct biological properties

showing the complexity of cell response to chemotherapy. Therefore, ceramide

analogues, modulators of sphingolipids metabolism, inhibitors of SK or CerK,

might be exploited for the development of new therapeutic cancer strategies via

the increase in ceramide levels. Such therapeutic strategies based on the modulation

of ceramide level in tumors have already been the subjects of novel patents

(Dimanche-Boitrel et al. 2011). However, further studies are needed to better

understand the role of sphingolipid metabolism in drug resistance in patients and

to elaborate new therapeutic strategies by comparing their toxicity in malignant and

normal tissues using conventional methods of biochemistry and molecular biology

and also more complex approaches such as lipidomics and bioinformatics.
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Bezombes C, Laurent G, Jaffrézou JP (2003) Implication of raft microdomains in drug induced

apoptosis. Curr Med Chem Anticancer Agents 3:263–270

Bezombes C, Plo I, Mansat-De Mas V, Quillet-Mary A, Nègre-Salvayre A, Laurent G, Jaffrézou
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Gouazé V, Yu JY, Bleicher RJ, Han TY, Liu YY,Wang H, GottesmanMM, Bitterman A, Giuliano

AE, Cabot MC (2004) Overexpression of glucosylceramide synthase and P-glycoprotein in

cancer cells selected for resistance to natural product chemotherapy. Mol Cancer Ther

3:633–639
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Ruckhäberle E, Karn T, Rody A, Hanker L, Gätje R, Metzler D, Holtrich U, Kaufmann M (2009)

Gene expression of ceramide kinase, galactosyl ceramide synthase and ganglioside GD3

synthase is associated with prognosis in breast cancer. J Cancer Res Clin Oncol 135:1005–1013
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