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Abstract Boundary layer noise concerns the generation of acous-
tic waves as an effect of the interaction of a fluid with a moving
surface. Several issues are related to the noise generation mecha-
nisms in such a configuration. In the present description we focalize
mainly onto the case of an infinite flat plate and two main distinct
situations are considered. The first one deals with the prediction of
the far field noise as accomplished from the classical integral the-
ories, and the main formulations, including Curle’s approach, are
briefly reviewed. A novel approach based on the computation of the
surface transpiration velocity is also presented. The second aspect
concerns the interior noise problem and it is treated from the view
point of the fluid dynamic effects rather than from that of the struc-
tural dynamics. Attention is focused on the statistical properties
of the wall pressure fluctuations and a review of the most effective
theoretical models predicting statistical quantities is given. The
discussion is completed by a short review of the pressure behavior
in realistic situations, including the separated boundary layers in
incompressible and compressible conditions and the effect of shock
waves at transonic Mach numbers.

1 Introduction

Aerodynamic noise from a turbulent boundary layer is a fundamental topic
in flow-induced noise and is of interest for both fundamental studies and
applied research. The action of the pressure fluctuations indeed provides
the driving force to excite surface vibrations and produce acoustic radia-
tion. Many engineering problems are connected with this topic. Fatigue
loading on panels of an aircraft fuselage and the vibrational generation of
acoustic radiation into an aircraft cabin enclosed by the boundary surface,

R. Camussi (Ed.), Noise Sources in Turbulent Shear Flows: Fundamentals and Applications, 
CISM International Centre for Mechanical Sciences, DOI 10.1007/978-3-7091-1458-2_6, 
© CISM, Udine 2013 



346 R. Camussi and A. Di Marco

are two examples among many. Generally speaking, in high speed trans-
port technology, the understanding of the physical mechanisms underlying
the generation of pressure fluctuations at the wall, has received increasing
attention in view of the use of lightweight and flexible structures. In the
field of aerospace launch vehicles design, this problem is of great relevance
since vibrations induced in the interior can cause costly damages to the
payload while panel vibrations of the external surface must be avoided to
prevent fatigue problems and structural damages. In the context of ma-
rine transportation, this topic has become quite important in the case e.g.
of high-speed ships for passenger transportation where requirements of on
board comfort have to be satisfied. This concern has become of great im-
portance for ground transportation as well, notably for high speed trains
design. In this case, the effect of pressure fluctuations induced by flow sep-
arations (e.g. due to the pantograph cavity) becomes the dominant noise
producing mechanism, this situation being of relevance in the automotive
industry in general, since large flow separations are unavoidable on cars.

The vibration of a panel induced by a random pressure load leads to
acoustic radiation into the flow as well. Also this problem is of relevance
for many engineering applications including, for example, the generation of
noise from piping systems or the transmission of pressure waves by under-
water vehicles, the so–called acoustic–signature.

Due to its importance, since the early 1960s, researchers have been study-
ing this subject using different approaches including experimental investi-
gations, numerical simulations and theoretical speculations.

When a solid surface is overflown by a turbulent boundary layer, several
relevant mechanisms contributing to the generation of sound waves, can be
identified. To simplify the description, consider the case of a panel subject
to a flow on one side. The pressure field on the surface flow side consists of
the sum of the turbulence pressures which would be observed on a rigid wall
and the acoustic pressures which would be generated by the plane motion
in the absence of turbulence. At a first approximation, these two effects
can be studied separately. This idea represents the so-called weak coupling
approximation and can be derived from an acoustic analogy analysis of
the problem [see e.g. Dowling (1983) and Howe (1992)]. The hypothesis
that the basic turbulence structure is unaffected by the acoustic motions
is indeed the basis of the acoustic analogies and can be accepted if the
acoustic velocities are small in comparison with the turbulence velocities.
This position, even though not always satisfied, has become accepted as a
standard method even at supersonic flow speed [see also Graham (1997)].
The main reason for this is that fully coupled computations are, at present,
prohibitive for any length scale of practical relevance even with the most
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powerful computer resources. On the other hand, the engineering design
still nowadays requires simple models which allows fast understanding and
rapid computations.

In view of such considerations, in the following discussions the wall can
be considered as a rigid plate and the panel vibrations considered apart.

The problem of the boundary layer noise can then be treated consider-
ing two different aspects, namely the so-called community noise and the
interior noise. The first term applies to the effect of the acoustic waves
generated by the wall turbulence and evolving in the far field from the flow
side of the surface. The second one pertains with the transmission of noise
at the side of the surface in still air. In both cases, the attempt to predict
the noise emission is based on the correct representation, in a statistical
sense, of the random load acting on the surface. For this reason, most of
the discussions that follow are concerned with the clarification of the prop-
erties of the wall pressure field and the predictability of its main statistical
properties. In Figure 1 an overall view of the mechanisms generating sound
waves including the definitions adopted therein is reported. Figure 2 evi-
dences the topics faced in the present chapter. The problem related to the
interior noise is treated in more details in the second part of this chapter
where the theoretical background regarding the noise transmission trough
solid structures is presented.

2 The community noise problem

With the term ‘Community noise’ we mean the far field noise generated at
the flow side of a plate moving in a still fluid. Even though very difficult,
several theoretical studies have been carried out with the aim of predicting
the features of the pressure field radiated by a plane turbulent boundary
layer. This topic was first investigated by Curle (1955) and Powell (1960a)
using Lighthill’s analogy [Lighthill (1952)]. In the following, the integral
formulations underlying those original approaches are briefly reviewed along
with order of magnitude considerations to establish the importance of the
radiative effects.

2.1 Integral formulations

The prediction of the propagation of acoustic waves in the far-field can
be attained through an acoustic analogy approach and the search for a
solution of the propagation equation derived therein. The reference theory
is that of Lighthill (1952) that is based on the rearrangement of the Navier-
Stokes equations to form an exact, inhomogeneous, wave equation, whose
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Figure 1. A scheme of the overall mechanisms generating sound waves from
a turbulent boundary layer overflowing an elastic flat plate.

Figure 2. A scheme of the theoretical problems faced in the present chapter.
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source terms are significant in the neighborhood of vortical regions of the
flow. As pointed out above, the sound is supposed to be a sufficiently small
component of the whole motion that its effect on the main flow can be
neglected. This hypothesis can be accepted in low Mach number (M) flows
as well as in the absence of resonating systems and multiphase flows.

Detailed discussion about such an approach, elucidating also the appli-
cability limits, are given in other chapters of the present book. Here we
limit ourselves to recall the final form of Lighthill’s equation that can be
written as:

∂2ρ

∂t2
− c2∇2ρ =

∂2Tij
∂xi∂xj

(1)

where Tij represents the Lighthill stress tensor that, neglecting the viscous
terms, is denoted as follows:

Tij = ρuiuj + (p− ρc2)δij (2)

Here, c is the speed of sound, ρ and p are density and pressure perturbations,
u the fluid velocity, x the spatial coordinate and t the time. This equation
is valid within and without a source region. Where linear acoustics is valid,
the acoustic pressure can be found from the relation p = c2ρ.

In the presence of solid boundaries, an integral solution of Eq. 1 is
based on the introduction of a closed control surface S that may coincide
with the surface of a moving body or mark a convenient interface between
fluid regions of widely differing mean properties. When S coincides with
the solid boundary, the solution of the equation is carried out by imposing
suitable boundary conditions on it. The oldest strategy proposed to solve
the propagation equation relies on the use of a proper Green’s function
obtained as a solution of Eq. 1 when the source term is replaced by the
impulse point source. The most general representation of this kind is due to
Ffowcs Williams & Hawkings (1969), and is applicable to a control surface
in arbitrary motion. This equation is obtained by deriving a wave type
equation similar to that by Lighthill for a region made up of two subregions
bounded by the control surface S. The region inside S contains fluid and/or
solid boundaries, the region outside contains only fluid.

Without entering into the details, the integral form of the FfowcsWilliams
and Hawkings equation can be obtained again making use of the free space
Green’s function, leading to the outgoing wave solution. To the purpose
of the present discussion, we can consider the case of a stationary control
surface, leading the FWH equation to reduce to a simpler formula [see also
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Howe (1998)] that was given previously by Curle (1955) and that we report
in the following1:

p(x, t) =
∂2

∂xi∂xj

∫
V

Tij
d3y

4π |x− y|
− ∂

∂xi

∫ ∫
S

(ρuiuj + pδij − σij)
dSj(y)

4π |x− y| (3)

+
∂

∂t

∫ ∫
S

(ρuj)
dSj(y)

4π |x− y|
As indicated by Howe (1998), Curle’s equation written for a rigid surface

can be used to determine the order of magnitude of the sound generated
by an acoustically compact body within a turbulent flow (e.g. a cylinder
or an airfoil moving in an incompressible flow). This analysis applies also
for non-compact bodies when turbulence interacts with compact structural
elements, such as surface discontinuities, edges, corners.

The contribution from the quadrupole volume integral in Eq. 3 to the
acoustic power Π radiated in the far field, can be estimated to be

Π ∝ v3M5 (4)

The quadrupole effect predicted by Eq. 4 is the same as in the absence of the
body (it is the famous Lighthill’s ‘eight power’ law). On the other hand,
at low M , the total power radiated by the dipole term (the first surface
integral of equation 3) can be estimated to be:

Π ∝ v3M3 (5)

thus exceeding the quadrupole power by a factor ∼ 1/M2 >> 1. The
conclusion is that at low M the dipole term is largely dominant. This is the
reason why surfaces with disconuities (such as sharp edges, steps, cavities)
are much more noisy than smooth walls.

A different conclusion can be driven in the case of non-compact struc-
tures, that is, for objects whose size is not small compared to the acoustic
wavelength, as is the case of an infinite rigid plate. Curle’s approach can
again be used, and the presence of the infinite surface can be taken into
account by introducing image vortices [Powell (1960b)]. Powell suggests

1The notation evidencing the retarded time is not reported for clarity. Interested readers

can find a more detailed presentation of this equation and of its theoretical framework

in Chapters 1 and 2.
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to use a Green’s function that is basically obtained by superimposing the
free-space G with its image. In this way Powell shows that the pressure
exerted on a plane boundary is the result of reflections of the quadrupole
generators of the flow itself. In other words it is demonstrated that the
surface integral is not a true dipole source but it represents the effect of
image quadrupoles. Therefore, as concluded by Howe [Howe (1998)], the
apparently strong contribution from the surface pressure dipoles actually
reduces to a term of quadrupole strength, thus much less efficient, at low
M , in terms of radiated pressure power. In the airframe noise context, if the
effect of panel vibrations is not accounted for, it is reasonable to ignore the
pure quadrupole radiation from the boundary layers, in comparison with
that from edges and other inhomogeinities, such as wing trailing edge, flap
side-edges, undercarriage gears and cavities. This is proven even for aircraft
of large dimensions. As an example, the noise from the fuselage is expected
to be more than 10dB below the level of the trailing edge noise.

However [Hubbard (1991)] the far field acoustic radiation due to panel
vibrations might be a significant source of airframe noise in real (full-scale)
aircraft. Furthermore [Howe (1998)] the presence of roughness breaks the
Powell cancellation mechanism thus leading the dipole contribution to be-
come relevant.

It should be pointed out that some recent numerical experiments [Hu,
Morfey & Sandham (2002), Hu, Morfey & Sandham (2003) and Shariff &
Wang (2005)] have focused on the role of the wall shear stress, rather than
pressure, as sound source. They have shown that unsteady shear stresses
can be an efficient sound source of dipole type that can be dominant at low
Mach numbers and at very low frequencies.

We refer the reader to classical textbooks [such as Howe (1998)] and to
the notes of the other authors included in this book, for further details on
the integral approaches.

2.2 Prediction of the far field pressure spectrum: a novel ap-
proach

In a recent paper Morino, Leotardi & Camussi (2010) proposed a novel
approach for estimating the far field pressure Power Spectrum (PSD) by the
knowledge of the PSD of the pressure on the boundary surface, provided
that the region where the flow is rotational and/or nonlinear is adequately
thin. In order to accomplish this, the PSD of the pressure at any given point
(either in the field or on the boundary) is evaluated in terms of the Power
Spectral Density (PSD) of the transpiration velocity over the boundary
surface. This contribution is denoted as given by equivalent sources χB .
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The approach briefly described therein is based upon a formulation that
falls within the general class of potential–vorticity decompositions for the
velocity field of the type

v = ∇ϕ+w, (6)

where w is any particular solution of the equation

∇×w = ζ. (7)

with ζ := ∇× v denoting the vorticity field.

The decomposition given in Eq. 6 is valid for any vector field and Eq.
7 is a necessary and sufficient condition for the validity of Eq. 6. Here, we
assume w to be defined so as to have

w = 0 (8)

outside of the vortical region, Vζ , which is defined as the region where the
vorticity ζ is not negligible.

For incompressible flows, the continuity equation reads

∇ · v = 0 (9)

Combining with v = ∇ϕ+w, one obtains

∇2ϕ = σ, where σ = −∇ ·w (10)

In order to complete the problem, the boundary conditions have to be con-
sidered. For viscous flows, the boundary condition over SB is the no–slip
condition:

v = vB

(
x ∈ SB

)
(11)

For simplicity, we introduce an additional boundary condition

w · n = 0
(
x ∈ SB

)
(12)

Similarly, on the wake mid–surface SW , we impose

Δ
(
w · n) = 0

(
x ∈ SW

)
(13)

Combining Eqs. 6, 11 and 12, we have, on the body surface SB ,

∂ϕ

∂n
= χ, where χ := vB · n (

x ∈ SB

)
(14)
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Similarly, combining Eqs. 6 and 13, we have, on the wake mid–surface SW ,

Δ

(
∂ϕ

∂n

)
= 0

(
x ∈ SW

)
(15)

In addition, in a frame of reference connected with the undisturbed air, we
have

ϕ = O
(‖x‖−1

)
, at infinity. (16)

Finally, at the trailing edge, we have (from the Joukowski smooth–flow
assumption, akin to quasi–potential flows)

lim
xW→xTE

Δϕ(xW ) = lim
x2→xTE

ϕ(x2)− lim
x1→xTE

ϕ(x1), (17)

where 1 and 2 here denote the sides of the wing surface corresponding to
the sides 1 and 2 of the wake mid–surface, respectively.

Using Eqs. 15 and 16, the boundary integral representation for the
Poisson’s equation, Eq. 10, is:

E(x, t)ϕ(x, t) =

∮
SB

(
∂ϕ

∂n
G− ϕ

∂G

∂n

)
dS(y)

−
∫
SW

Δϕ
∂G

∂n
dS(y) +

∫
Vζ

σGdV (y) (18)

where G = −1/4π‖x − y‖. If the vortical region, Vζ (boundary layer and
wake), is sufficiently thin, we can ‘compress’ the volume integral into a
source layer over SB and SW , to yield

E(x, t)ϕ(x, t) =

∮
SB

(
(χ+ χB)G− ϕ

∂G

∂n

)
dS(y)

+

∫
SW

(
χW G−Δϕ

∂G

∂n

)
dS(y) (19)

Equation 19 is the key to the approach presented here since it allows one
to evaluate ϕ anywhere in the field, if ϕ and χ+χB over SB , as well as Δϕ
and χW over SW are known.

The linearized Bernoulli’s theorem reads:

p− p∞ = −ρ
(
ϕ̇+ U∞

∂ϕ

∂x

)
(20)

The numerical formulation of the above equations can be determined
both in the physical and in the Fourier domain but it is not reported here for



354 R. Camussi and A. Di Marco

the sake of brevity. We just point out that, after discretization using piece–
wise constant approximation and Fourier transform, the following linear
relationship can be achieved:

p̂F = H p̂B . (21)

the symbol ·̂ denotes the Fourier transform of the discretized counterpart of
the pressure and the equation represents the desired relationship between
the field pressure (subscript F ) and the boundary pressure (subscript B).

By using classical Wiener-Khintchine relationships, the above equation
can be expressed in terms of the PSD matrix Sv. Thus, using Eq. 21, we
have

SpF
= H∗ SpB

HT (22)

which is the desired relationship between the PSD matrix SpF
of the pressure

at NV arbitrary points in the region �3\W and the PSD matrix SpB
of the

pressure at NB points on SB .
The expression in Eq. 22 allows one to evaluate the field–pressure PSD

from the boundary–pressure PSD, thereby providing a link between two sets
of experimental data (PSD of field pressure and PSD of surface pressure),
often considered independent.

3 The wall pressure statistics

The random forces resulting from pressure fluctuations in the turbulent
boundary layer over structural surfaces cause vibration. This surface motion
becomes a source of noise which must be considered in the design of a vehicle.
Therefore, the development of methods aimed at predicting interior noise
levels, pressure fluctuations, and structural loading has become important
in the design for instance of commercial aircraft, payload–carrying aerospace
launchers, high speed trains. As pointed out by Graham (1996), in order
to take into account this aspect in the design phase, there is a need for
simple models capable of enhancing our physical understanding of the noise
generation process and to provide relatively simple predictive formula to be
utilized in the design process.

The methods of modeling and predicting sound and vibrations from a
structure subject to a random pressure load, presume that the forcing func-
tion for the surface has been estimated. It can be shown [see e.g. Blake
(1986) and Graham (1997)] that the excitation term is directly related to
the boundary layer wavenumber-frequency spectrum that, therefore, has
become the subject of many investigations. In the present discussion, we
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do not enter into the details of the structural aspects, but we limit our-
selves to reviewing the main features concerning the wavenumber-frequency
spectrum analysis, modeling and prediction.

3.1 Relevant properties of the turbulent boundary layer

A short review of the main parameters characterizing the turbulent
boundary layer and used for the scaling of the wall pressure spectra is given
in the following. Extensive discussions can be found in several textbooks
[see e.g. Schlichting (1979)]; therefore we limit ourselves to reviewing some
relevant parameters that influence the overall statistical properties of the
wall pressure fluctuations field.

At the wall, the boundary layer exerts a shear stress τw, and there is
a strong connection between this shearing and the behavior of the flow in
the immediate vicinity of the wall. As the distance from the wall increases,
the influence of the wall shear on the fluid motion diminishes and the flow
properties may be described in terms of the local free stream velocity U∞
and the thickness of the boundary layer δ, this symbol denoting the so-called
Blasius thickness. In this region, the flow behavior is usually called wake−
like. Thus, depending upon the distance from the wall, two important
flow regions can be identified. A layer close to the wall, where the velocity
depends upon the fluid viscosity and the local wall shear, and an outer layer,
where the velocity depends on the external properties of the flow (i.e. U∞, δ
and the upstream history of the layer). In the near wall region, the velocity
increases linearly for increasing distance from the wall. In the outer layer
the velocity defect evolves according to the well–known logarithmic law. Of
course, due to the turbulent nature of the velocity field, the two regions
boundaries can be defined only statistically.

In the linear region, the velocity gradient is independent of the distance
from the wall. This assumption yields the following relationship:

U1 =
τwy

μ
(23)

where the subscript 1 denote the velocity component on the streamwise (x)
direction and μ is the dynamic viscosity of the fluid.

In the logarithmic region the turbulence activity is the greatest and the
velocity gradients are proportional to the distance from the wall. This gives
rise to the logarithmic velocity profile described by the following equation:

U1

Uτ
=

1

k
ln

(
yUτ

ν

)
+B (24)
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where ln(·) is the natural logarithm of ·. The quantity Uτ is called the
friction velocity and it is defined as

Uτ =

√
τw
ρ

(25)

being ρ the fluid density at ambient temperature. The coefficient k in Eq.
24 is the so–called Von Kàrmàn constant, equal to approximately 0.4 for any
type of wall. B is a coefficient that depends only on the degree of surface
roughness. The notation commonly used to represent the dimensionless
quantities, is the following:

U+ =
U1

Uτ
, y+ =

yUτ

ν
(26)

In Figure 3 a simplified scheme of the turbulent boundary layer is re-
ported for completeness.

Figure 3. A scheme of the main parts of a turbulent boundary layer

Throughout the major portion of the fully developed turbulent boundary
layer, the mean velocity profile over both smooth and rough walls satisfies
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a defect law of the following form:

Ue − U1

Uτ
=

1

k
ln
(y
δ

)
+ 1.38

[
2−W

(y
δ

)]
(27)

where Ue is the external velocity, outside the boundary layer. The function
W (y/δ) has been introduced by Coles (1956) and it is given by:

W
(y
δ

)
= 1 + sin

[(
y

δ
− 1

2

)
π

]
(28)

It is well know that the definition of the Blasius thickness δ is not suitable
for turbulent boundary layers. It is better to introduce more objective
definitions. Very briefly we remind the definition of displacement thickness
δ∗ based on a mass balance in the boundary layer and given by the following
expression:

δ∗ =

∫ ∞

0

[
Ue − U1(y)

Ue

]
dy (29)

Of course also δ∗ is an outer scale because its magnitude is of the order of
the depth of the viscous sublayer. Typically, δ∗ is approximately equal to
a fraction of δ, from 1/8 to 1/5, depending on the surface roughness and
the pressure gradient. Similarly, another length scale can be defined on the
basis of the momentum balance. It is called the momentum thickness θ and
it is given by the following expression:

θ =

∫ ∞

0

U1(y)

Ue

[
Ue − U1(y)

Ue

]
dy (30)

The ratio of the two length scales is called the shape factor:

H =
δ∗

θ
(31)

According to the laws of the wall described above, it is possible to determine
explicit relationships among set of boundary layer thickness and the friction
factor. We refer to more specific textbooks for the details [e.g. Schlichting
(1979)].

By integrating along y, between 0 and δ, the momentum balance equa-
tion written on x, it is possible to determine an equation relating integral
quantities characterizing the turbulent boundary layer. This relationship,
often denoted as the Von Kàrmàn integral equation, reads:

Cf

2
=
dθ

dx
− θ

2

(
2 +H
1
2ρU

2∞

)
dP

dx
(32)
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Cf is the wall friction coefficient, given by:

Cf =
τw

1
2ρU

2∞
(33)

Equation 32 gives the growth of the boundary layer in terms of θ as a
function of the local wall shear stress coefficient and the static pressure
gradient.

For a given Reynolds number Rex = xU∞/ν it is possible to determine
the momentum thickness by using empirical relationships. A commonly
used expression, valid for smooth infinite flat plates, is the following:

Cf = 0.0592 Re
− 1

5
x for Rex ≥ 108 (34)

combining with Eq. 32, one obtains:

θ

x
= 0.037 Re

− 1
5

x (35)

This equation is valid provided that

Cf

θ
� −(2 +H)

Cp

dx
(36)

being Cp the static pressure coefficient.
Empirical relationships are used also to determine the inner properties of

the turbulent boundary layer once the outer scales are known either exper-
imentally or numerically. In this case, by the knowledge of θ, it is possible
to empirically determine Cf and then Uτ . This approach is of common use
since the estimation of Uτ by the direct measurement or computation of τw
might be very difficult in practice.

We finally remind that the velocity profile at high Reynolds numbers
can be described by a power law of the following form [Schlichting (1979)]:

U1

Uτ
=
(y1
δ

) 1
n

(37)

where typically n ∼ 7 for smooth walls and 4 for rough walls. By considering
the thickness definitions, the following relations are obtained:

δ∗

δ
=

1

n+ 1
(38)

and

δ∗

θ
=
n+ 2

n
(39)

For n = 7 it is obtained δ∗/δ = 1/8. Also Eqs. 37, 38 and 39 can be used
for a qualitative estimation of the boundary layer integral properties.
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3.2 Statistical properties of the wall pressure spectrum: corre-
lations and wavenumber–frequency spectra

According to the ‘weak coupling approximation’ introduced above, in the
present approach we consider a boundary layer developing on an infinitely
extended rigid flat plate in a low Mach number flow without mean pressure
gradients. In this framework, taking into account that the boundary layer
thickness increases slowly in the streamwise direction, it is possible to con-
sider the pressure field statistically homogeneous on the plane of the plate
and statistically stationary in time. The homogeneous plane is described by
the Cartesian axes that, for the sake of clarity, are defined as x1, x2, being
x1 aligned with the free stream velocity. The frame of reference adopted is
depicted in Figure 4.

Figure 4. Frame of reference adopted to describe the statistics of pressure
fluctuations.

Considering the fluctuating component of the pressure field p(x1, x2, t),
the space time correlation can be written as:

Rpp(ξ1, ξ2, τ) =
1

σ2
p

E[p(x1, x2, t)p(x1 + ξ1, x2 + ξ2, t+ τ)] (40)

where σ2
p is the pressure variance and the symbol E[·] denotes the expected

value. When the ergodic hypothesis holds, time averages can be used. This
is an important hypothesis when pointwise pressure measurements are per-
formed. In this case the pressure is a function of time only and the cross-
correlation is given by a much simpler expression:

Rpp(τ) =
1

σ2
p

< p(t)p(t+ τ) >t (41)

where the symbol < · >t now denotes the time average. Taking the Fourier
transform of Eqs. 40 and 41 one obtain the wavenumber-frequency spectrum
ΦP (k1, k2, ω) and the frequency spectrum Φp(ω). In this notation ω is
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the radian frequency and k1, k2 are the components of a two dimensional
wavevector. By taking the frequency Fourier transform of Eq. 40 it is
possible to obtain the cross-spectrum Γp(ξ1, ξ2, ω) that is defined in the
space–frequency domain. The experimental determination not being very
difficult, Γp represents a key ingredient for the theoretical models that are
presented below.

In the framework of the statistical modeling, a relevant role is played
by the phase velocity ω/k, being k the magnitude of the wavevector, whose
magnitude spans from the order of the flow speed to sonic or supersonic
values.

3.3 The wave–number frequency spectrum

In this section the main characteristics of the wall pressure spectrum are
briefly reviewed. First, the scaling properties of the frequency spectra are
discussed taking into account the most relevant experimental investigations
conducted in the last 50 years. Then, illustrative examples of statistical
models of the wavenumber-frequency spectrum are revised starting from
the early Corcos’ idea up to the most recent developments.

Scaling of the frequency spectra Due to the complex structure of the
turbulent boundary layer, it is not possible to obtain a single scaling that
leads to a satisfactory collapse of experimental or numerical frequency spec-
tra ΦP (ω). As will be clarified below, it is possible to normalize the spectra
using inner or outer variables, and a universal collapse can be obtained in
various regions of the pressure spectra separately [see, among many, the
early work by Willmarth (1975) and the papers by Keith, Hurdis & Abra-
ham (1992), Farabee & Caserella (1991) and Goody et al. (1998)]. This is
due to the fact that the wall pressure is influenced by velocity fluctuations
from all parts of the boundary layer and because the convection velocity
depends strongly upon the distance from the wall, as a result of the non-
uniform mean velocity distribution.

For an incompressible flow, the wall pressure can be written in the form
of a Poisson’s equation,

∇2 p(�x, t) = q(�x, t) (42)

where q(�x, t) represents the source terms. As suggested by Farabee &
Caserella (1991), the analysis of the solution of the above equation in the
Fourier domain, shows that the contributions to the high-frequency portion
of the spectrum has mainly to be attributed to turbulence activity located
in the near wall region while contributions to the lower-frequency portion
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can originate from activities throughout the boundary layer. Following this
physical picture, and the conjectures suggested by Bradshaw (1967) and
Bull (1979), it is possible to divide Φp(ω) into three main regions, depend-
ing on the frequency magnitude. At low frequencies, Φp(ω) scales on outer
layer variables; at high frequencies, Φp(ω) is influenced by the fluid viscosity
and thus it scales on inner variables; at intermediate frequencies, the shape
of the spectrum is scale independent and an universal power law decay of
the type ω−1 is expected.

Measurements of the cross-spectral densities [e.g. Bull (1967) and Farabee
& Caserella (1991)] confirm that the pressure field can be divided into two
distinct families, one associated with the motion in the outer layer and the
other with motion in the inner layer. This separation occurs at the frequency
where the auto-spectrum exhibit its maximum value. This frequency sepa-
rates the non-universal from the universal scaling regimes of the frequency
spectrum.

More precisely, in the low frequency region, different outer scalings have
been identified. Keith, Hurdis & Abraham (1992) suggests to scale the fre-
quency using U (the free stream velocity) and δ∗, whereas the amplitude of
the pressure spectrum can be scaled through the free stream based dynamic
pressure q. Other authors [including Farabee & Caserella (1991)] recom-
mend a more effective scaling using τw instead of q. They suggest to scale
the frequency upon U/δ and the dimensionless spectrum to be of the form
ΦP (ω)U/τ

2
wδ.

In the high frequency region, there is a more general consensus on the
most effective scaling that is achieved through the variables Uτ , ν and τw.
This implies that the dimensionless frequency is ων/U2

τ and the dimension-
less spectrum should be ΦP (ω)U

2
τ /τ

2
w.

The universal region can be interpreted as an overlap of the two regions
described above. In this part of the spectrum it is assumed ωΦP (ω)U/τ

2
w =

constant, thus leading to the ω−1 scaling. A precise definition of the ampli-
tude of the frequencies bounding the universal region can be found in Bull
(1979) and Farabee & Caserella (1991).

An additional range at very low frequencies has been also identified
by some authors. Farabee & Caserella (1991) determine this region at
ωδ∗/U ≤ 0.03 and they collapsed the spectrum using the normalization
ΦP (ω)U/q

2δ∗. In the very low frequency region they observed the spectrum
to scale as ω2. This form of scaling is in agreement with the prediction given
by the Kraichnan-Phillips theorem [Kraichnan (1956) and Phillips (1956)]
which suggests that the wavenumber spectrum should scale like k2 as k → 0.
According to the theoretical developments of e.g. Lilley & Hodgson (1960),
this conclusion can be extended to the frequency spectrum under the hy-
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pothesis of low Mach number flow conditions.
In Figure 5 a scheme summarizing the expected scalings is reported.

Figure 5. Sketch clarifying the expected scaling regions of a typical wall
pressure auto–spectrum.

We refer to the literature [in particular Farabee & Caserella (1991) and
Bull (1996)] for further discussions on the above topics and considerations
about the scaling of the pressure variance.

Modeling the wavenumber-frequency spectrum According to the
above discussion, several models have been proposed in the literature to
reproduce the shape of the frequency auto-spectrum using suitable fits of
experimental data. Here we only cite some of them as illustrative examples
of common approaches. We refer to the literature for comprehensive reviews.

An early and widely used model was proposed by Corcos (1964). He
gives the following representation of the frequency auto-spectrum:

Φp(ω) =

⎧⎨
⎩

C for ω ≤ Ue

δ∗

C Ue

ωδ∗ for ω > U
δ∗

(43)
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The quantity C is a dimensionless constant and U is the external velocity.
Note that for ω > Uc

δ∗ the model correctly predicts the power law decay of
the spectrum of the form ω−1.

An example, among many, explaining the way the Corcos’ early model
has been successively modified, is given by Cousin (1999). This more general
approach leads to the following expression:

Φp(ω) =

⎧⎨
⎩

2.14× 10−5B for ωδ∗/Ue ≤ 0.25

7.56× 10−6B (ωδ∗/U)
−0.75

for 0.25 < ωδ∗/Ue ≤ 3.5

1.27× 10−4B (ωδ∗/U)
−3

for ωδ∗/Ue > 3.5

(44)

where B = q2δ∗/U .
Other formulations worth mentioning are those by Efimtsov (1986) and

Chase (1987, 1991). We refer to the literature for the details.
As pointed out above, the knowledge of the frequency spectrum is not

sufficient to determine the modal excitation term of a plate subject to the
turbulence induced pressure filed. This quantity is directly related to the
shape of the complete wavenumber-frequency spectrum of the wall pressure
field. The knowledge of ΦP (k1, k2, ω) is therefore fundamental to compute
the response of a surface panel subject to the action of the random pressure
load.

As pointed out by Bull (1996), the highest spectral levels of the pres-
sure fluctuations are associated to the mean flow convection and, in the
wavenumber spectrum, are centered on a wavenumber k1 = ω/Uc, k1 along
the free stream velocity. This part of the spectrum is often referred to
as the convective ridge. For k1 � ω/Uc the spectrum is expected to be
independent of the wavenumber. Another important aspect is related to
the so-called sonic wavenumber k0 = ω/c. According to Blake (1986), for
k = k0 an apparent singularity is present in the spectrum. However, in
real flows, the wavenumber-frequency spectrum is expected to have a local
finite peak in the vicinity of k0. These are among the main features that
an analytical model attempting to predict the Φp(k1, k2, ω) shape, have to
reproduce correctly.

One of the most reliable model developed in literature is again the early
approach proposed by Corcos (1964) and based on the Fourier transform
of a curve fit of measured narrow band pressure correlations. According to
extensive experimental measurements [namely Willmarth (1975) and Bull
(1967)], the cross-spectral density Γp(ξ1, ξ2, ω) can be represented as:

Γp(ξ1, ξ2, ω) = Φp(ω)A(ωξ1/Uc)B(ωξ2/Uc) e
iωξ1/Uc (45)

where

A(ωξ1/Uc) = e−α1|ωξ1|/Uc and B(ωξ2/Uc) = e−α2|ωξ2|/Uc
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Figure 6. A scheme representing the wavenumber-frequency spectrum as a
function of wavenumber, at constant frequency (scheme adapted from Blake
(1986)).

Figure 7. A scheme representing the wavenumber-frequency spectrum as a
function of frequency, at constant wavenumber (scheme adapted from Blake
(1986)).
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whereas Uc is the convection velocity and α1 and α2 are parameters chosen
to yield the best agreement with experiments. Various values are given in
the literature. The typical range of the values is α1 = 0.11 ÷ 0.12 and
α2 = 0.7÷ 1.2 for smooth rigid walls.

Unfortunately, only few experimental or numerical data concerning di-
rect measurements of the wavenumber–frequency spectrum are available
in the literature [Abraham (1998), Choi & Moin (1990), Panton & Robert
(1994), Farabee & Geib (1991), Hwang & Maidanik (1990), Manoha (1996)].
However, it appears evident that a big spread is present in the low wavenum-
ber range and that the Corcos model overpredicts levels at wavenumbers
below the convective peak. This point is crucial for many applications, in
particular in the case of underwater and surface marine vehicles and for
aeronautical structures above the aerodynamic coincidence frequency [see
also Ciappi et al. (2009)]. Later workers used analytical or quasi analyti-
cal approaches, or revised versions of the Corcos approach, in attempts to
describe this region more accurately [see e.g. Graham (1997) for details].

Most of the models proposed continued to follow the philosophy of the
Corcos approach that can be generalized as follows. A first common feature
of those empirical models is the separation of variables approach to repre-
sent the correlation function dependence on the streamwise separation ξ1
and the crossflow separation ξ2. This is known as the ‘multiplication hy-
pothesis’ in which the coherence of the cross-spectral density for an arbitrary
separation direction is formed by the product of the cross-spectral densities
for streamwise and spanwise separations, respectively. The axisymmetry of
the geometry and of the flow is usually not explicit in those formulations
but it is accounted for through the adjustable coefficients. According to the
Corcos idea given in Eq. 45, most of the models suggest to take exponential
decaying form of the functions A and B,

A(ω, ξ1) = e
− |ξ1|

L1(ω) and B(ω, ξ2) = e
− |ξ2|

L2(ω) (46)

where L1 and L2 are the so-called coherence lengths in the streamwise and
spanwise direction respectively.

The main advantage of adopting the expression given in Eqs. 45 and
46 is that the auto-spectrum part is decoupled from the cross-spectrum
part. That implies that any choice for modeling the function Φp(ω), as
those described above, can be addressed independently of any choice for
representing the functions L1 and L2.

As for auto-spectra, Cousin modified the Corcos model yielding the fol-
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lowing expressions of the coherence lengths:

L1 = Uc

ωα1

{
1 +
(

Uc

ωbMδ

)2}−1/2

L2 = Uc

ωα2

{
1 +
(

Uc

ωbT δ

)2}−1/2 (47)

where Uc = 0.75U , bM = 0.756, bT = 0.378. α1 = 0.115 for smooth walls
and 0.32 for rough walls, whereas α2 = 0.32 in all cases.

A similar model, not reported here for brevity, has been proposed by
Cockburn & Robertson (1974). Wu & Maestrello (1995) proposed a model
where the flow is assumed semi-frozen and decaying in space and time at a
constant velocity Uc. After performing a comprehensive set of experimental
results of wind tunnel testing, they defined an ensemble average of the
cross correlation for the pressure fluctuation due to the turbulent boundary
layer in which the effects of the Reynolds number and the boundary layer
thickness were included.

Other models proposed by Chase (1980), Efimtsov (1982), Ffowcs Williams
(1982), Chase (1987) and Smol’yakov & Tkachenko (1991) are compared
in Graham (1997) and a plot reporting the spectra predicted by different
models is given in Figure 8. It is shown that even at the convective peak,
a relevant scattering among the model predictions is evident. Even larger
scattering is observed in the estimation of the radiated sound as reported
in the same paper.

The best model for high speed aircraft is, according to Graham, the one
which provides an accurate description of the convective peak. Efimtsov’s
model, an extension of Corcos model, is cited as a suitable candidate. For
the sake of completeness, we report in the following the Efimtsov idea:

L1 = δ

[(
a1Stτ
Uc/Uτ

)2
+

a2
2

St2τ+(a2/a3)2

]−1/2

for 0.41 < M < 2.1

L2 = δ

[(
a4Stτ
Uc/Uτ

)2
+

a2
5

St2τ+(a5/a6)2

]−1/2

for M < 0.75

L2 = δ

[(
a4Stτ
Uc/Uτ

)2
+ a27

]−1/2

for M > 0.9

(48)

In this model Uc = 0.75Ue and Stτ = ωδ/Uτ is a Strouhal number
defined on the friction velocity. Averaged values of the empirical constants
are a1 = 0.1, a2 = 72.8, a3 = 1.54, a4 = 0.77, a5 = 548, a6 = 13.5, a7 =
5.66. It can be shown that at high frequencies, these expressions correspond
to a Corcos model with α1 = 0.1 and α2 = 0.7. Even though the number of
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empirical constants is relevant, the model is extensively used thanks to the
introduction of the Mach number as a relevant parameter.

Figure 8. Wavenumber frequency spectra computed at a fixed frequency as
reported in Graham (1997). The spectra are computed as functions of the
longitudinal wavenumber non-dimensionalized on the convective wavenum-
ber ω/UC (courtesy of JSV).

More recently, Singer (1996a) and Singer (1996b) performed a Large-
Eddy Simulation (LES) of a turbulent boundary layer at relatively high
Reynolds number and proposed a model that overcomes the ‘multiplication
hypothesis’ that is the basis of all the models based on the Corcos’ phi-
losophy. His approach is based on an accurate fit of the two-dimensional
coherence and therefore is particularly efficient for the determination of the
off-axis coherences.

To the best of our knowledge, the most recent model proposed in liter-
ature is the one presented by Finneveden et al. (2005). They suggested
a modified version of the Corcos and of the Chase model, thus going back
to the ‘multiplication hypothesis’. They demonstrated that it is possible
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to find for both models a complete set of free parameters that provide a
fair agreement with experimental data. The key point was to modify the
Corcos model by introducing a frequency and flow speed dependence in the
parameters and to introduce two new parameters in the Chase model to
better fit the spanwise coherence to measurements.

3.4 Coherent structures and wall pressure fluctuations

As pointed out above, it is possible to establish a connection between
the wall pressure wavenumber spectra and physical quantities describing the
turbulent boundary layer. In particular, the high wavenumber components
should be attributed to fluid dynamic structures in the near wall region
while the low wavenumber domain is influenced by the large scale struc-
tures in the outer layer. However, the detailed features of organized events
that occur in the boundary layer are lost by the unconditional averaging
techniques used in obtaining spectral estimates of the pressure field. This is
an important issue from the practical viewpoint since a deeper knowledge
of the fluid dynamic structures underlying the observed pressure properties
may be helpful to address suitable control strategies aimed at manipulating
the flow structures and modifying the wall pressure behavior.

Numerical simulations of simplified configurations attempted to clarify
the connection between wall pressure fields and near wall vortical structures
whose topology was selected a-priori according to classical conceptual mod-
els of the turbulent boundary layer. For example, Dhanak & Dowling (1995)
and Dhanak, Dowling & Si (1997), following the conceptual model of the
boundary layer proposed by Orlandi & Jimenez (1994), were able to clarify
the effect of near wall quasi-streamwise structures upon the wall pressure
field. More recently, Ahn, Graham & Rizzi (2004) and Ahn, Graham &
Rizzi (2010) reproduced correlations and spectra at the wall. In order to
estimate the wall pressure distribution, they reproduced hairpin vortex dy-
namics on the basis of the so called attached eddy model proposed by Perry
& Chong (1982).

Only a few experiments have been focused on these aspects, since the
correlation between wall pressure and coherent structures is rather difficult
to interpret due to the chaotic nature of the pressure field. Among the
existing studies, the work by Johansson, Her & Haritonidis (1987) can be
mentioned: they carried out simultaneous pressure–velocity measurements
and suggested physical mechanisms for the underlying generation of positive
or negative pressure peaks at the wall. However, they did not clarify the
connection between the educed structures and the wall pressure spectral
quantities.
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In a recent paper, Camussi, Robert & Jacob (2008) applied non conven-
tional time-frequency post-processing tools to analyze wall pressure experi-
mental data. The application of multi-variate wavelet transform permitted
them to establish a connection between sweep/ejections events and large
pressure coherence. More specifically, using a conditional sampling tech-
nique, they observed that averaged pressure signatures due to hydrodynamic
effects were composed of a large negative pressure drop coupled to a weaker
positive bump. This behavior was ascribed to accelerated-decelerated mo-
tions within the turbulent boundary layer.

The presence of a positive pressure bump coupled with a stronger neg-
ative pressure drop was also observed by Dhanak & Dowling (1995) who
simulated numerically the pressure field induced at the wall by streamwise
vortices. Similarly, in an experiment performed by Johansson, Her & Hari-
tonidis (1987) negative–positive pressure jumps were also observed and were
identified as burst−sweep events. The conditional results of Johansson, Her
& Haritonidis (1987) were obtained by correlating pressure negative peaks
with velocity events found in the buffer region of the boundary layer through
the so–called VITA technique [see e.g. Blackwelder & Kaplan (1976)].

Analogous conclusions were driven by Jayasundera, Casarella & Russell
(1996) through the investigation of experimental wall pressure and inflow
velocity data and the application of coherent structures identification tech-
niques. They showed that the organized structures present within the tur-
bulent boundary layer contain both ejection and sweep motions inducing
positive and negative pressure events respectively.

More recently, Kim, Choi & Sung (2002) attempted to correlate the wall
pressure fluctuations with the streamwise vortices of a numerically simulated
turbulent boundary layer. They suggest that the high negative wall pressure
fluctuations are due to outward motion in the vicinity of the wall correlated
to the presence of streamwise vortices.

3.5 Effect of adverse pressure gradient and separation

An overall effect of adverse pressure gradients onto the wall pressure field
statistics is an increase of the wall pressure fluctuations and a reduction of
the convection velocity. This behavior was first observed by Schloemer
(1967) through an experimental study devoted to the investigation of the
influence of a mild adverse pressure gradient on wall pressure fluctuations.
Owing to changes in the streamwise turbulent intensity, Schloemer also
noticed an increase in the wall pressure spectral densities at low-frequencies
(in outer scaling), whereas little effect was observed in the high-frequency
range. This result has been later confirmed [see e.g. Lim (1971)] and seems
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to suggest that the pressure gradient influences the outer layer region which,
as described above, is directly correlated to the mid and low frequency range
of the wall pressure frequency spectra.

Na & Moin (1998) performed a Direct Numerical Simulation (DNS) of
a turbulent boundary layer developing over a flat plate, under both mild
and strong imposed adverse pressure gradient. In the latter case (involving
extensive separation) the frequency spectra in the separation bubble were
found to exhibit a ω−4 decay, whereas a ω−2 behavior at high frequencies
was observed for the spectra downstream of the reattachment position. The
analysis of two-point correlations of wall pressure fluctuations also revealed
strong coherence in the spanwise direction, that was attributed to the oc-
currence of large two-dimensional roller-type vortical structures. These au-
thors also showed that the presence of flow separations, re-circulations and
re-attachments lead to the generation of wall pressure fluctuations whose
overall level might be significantly larger (up to 30dB) than that observed
in equilibrium turbulent boundary layer with no separations.

Measurements of surface pressure fluctuations for a separated turbulent
boundary layer under adverse pressure gradient were reported by Simpson,
Ghodbane & McGrath (1987). Those authors found that pressure fluctua-
tions increase monotonically through the adverse pressure gradient region,
and showed that the maximum turbulent shear stress in the wall-normal
direction can be used as a scaling variable since it yields good collapse of
the normalized spectra at various streamwise stations.

Several studies have been conducted to characterize the fluid dynamic
structure of flows whose separation is induced by a surface discontinuity.
Detailed results have been obtained for several geometries, including back-
ward facing steps [see Simpson (1989), and the literature cited therein for
a comprehensive review in the field], sharp edges [as in Kiya, Sasaki & Arie
(1982), Kiya & Sasaki (1985), and Hudy, Naguib & Humphreys (2003)],
inclined surfaces [e.g. Song, DeGraaff & Eaton (2000)] and surface bumps
[e.g. Kim & Sung (2006)]. Most of these studies have shown that the wall
pressure fluctuations are driven by a low frequency excitation linked to the
expansion and contraction of the separation bubble, a phenomenon usually
designated as flapping motion. Besides, the vortical structures within the
shear layer have been identified as the source of higher frequency peaks
normally observed close to the reattachment position.

Stüer, Gyr & Kinzelbach (1999) analyzed the separation bubble up-
stream of a Forward Facing Step (FFS) in laminar flow conditions through
flow visualizations and particle tracking velocimetry measurements. They
demonstrated that the laminar re-circulating region upstream of the step
is an open separation bubble characterized by spanwise quasi-periodic un-
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steadiness. The flow topology and the pressure field upstream and down-
stream of an FFS at much higher Reynolds numbers have been recently stud-
ied by Largeau & Moriniere (2007). The effect of the relevant length-scales
has been underlined in this work and the influence of the flapping motion
upon the pressure field at the reattachment point has been demonstrated
by means of pressure-velocity cross-correlations obtained from simultaneous
wall microphones and hot wire anemometry measurements. Fourier pres-
sure spectra upstream and downstream of a FFS have been presented also
by Efimtzov et al. (1999) who showed that the region downstream of the
step is the most significant in terms of pressure level. On the other hand,
Leclercq et al. (2001) considered the acoustic field induced by a forward-
backward step sequence and suggested that the most effective region in
terms of noise emission is located just upstream of the FFS. The exper-
imental results reported in Leclercq et al. (2001) have been successfully
reproduced in a large eddy simulation performed by the same group, Addad
et al. (2003). It was confirmed that the largest acoustic source is located
in the separated region upstream of the wall discontinuity. Camussi, Guj
& Ragni (2006) and Camussi et al. (2006) measured the pressure fluctua-
tions at the wall of a shallow cavity representing a backward-forward step
sequence. The authors again showed that the region close to the FFS is the
most effective in terms of wall pressure fluctuations level even though the
origin of the observed acoustic field was not clarified. In a recent study of
the incompressible flow past a forward-facing step, Camussi et al. (2008)
also observed the increase of energy at low-frequencies and a decrease at
higher ones.

A flow separation can be induced also by the effect of a shockwave inter-
acting with the boundary layer, a situation that can typically be encountered
in transonic flow conditions. The prediction of pressure fluctuations in the
transonic regime is particularly important in the vibro-acoustic design of
aerospace launch vehicles. As a matter of fact, vibrations induced in the
interior of the vehicle can exceed design specifications, and cause payload
damage, as well as structural damage due to fatigue problems.

The presence of a shockwave and the consequent separation, causes an
adverse pressure gradient that modifies significantly the boundary layer dy-
namics and causes substantial modification of the wall pressure signature.
The Mach number effect in attached boundary layers has been taken into
account in a few literature models [see e.g. the one proposed by Efimtsov
(1982) and cited above]. On the other hand, the effect of the shockwave
induced separation on the wavenumber-frequency spectrum is the subject
of quite a few literature papers. We remind the numerical studies con-
ducted by Pirozzoli and co-workers [Pirozzoli, Bernardini & Grasso (2010)
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and Bernardini, Pirozzoli & Grasso (2011)] based on a DNS approach used
to simulate the shockwave induced separation on a flat plate at a transonic
Mach number (M = 1.3). They show that the shape of the frequency wall
pressure spectra is qualitatively modified by the interaction with the shock
wave. In the region with zero pressure gradient, the shape of the spectra
is similar to that observed in low-speed boundary layers. When the pres-
sure gradient is relevant, the low-frequency components of the spectrum
are enhanced while the higher ones are attenuated. This observation is in
agreement with results obtained in low-speed boundary layers in adverse
pressure gradient and it is the signature of the greater importance of large-
scale, low-frequency dynamics past the interacting shock, with respect to
the fine scale effects. According to observations in low speed flows upstream
an FFS by Camussi et al. (2008), in the separated region downstream of
the shock, a self-similar structure of the pressure spectra is observed ex-
hibiting the -7/3 inertial scaling at intermediate frequencies and a -5 decay
law at high frequencies.

Similar scalings were observed in transonic and supersonic flow condi-
tions by Camussi et al. (2007). They analyzed the statistics of the wall
pressure fluctuations on a scaled model of an aerospace launcher that has
been investigated in transonic and supersonic wind tunnels. Even though
qualitatively, the -1 and -7/3 scalings were documented at several stations
along the surface of the model.

The determination of a general predictive model for the wavenumber–
frequency spectrum in the presence of shockwaves is however still far and,
to the authors’ opinion, this topic merits to be the task for future extensive
research.

3.6 Concluding remarks

A brief overview of the studies made in the field of boundary layer noise
in the last 60 years, has been reported, with particular emphasis on the
interior noise problem and the mechanisms underlying the generation of
the wall pressure fluctuations responsible for the panel vibrations and the
transmission of noise.

The problem of the acoustic radiation due to the interaction of a turbu-
lent boundary layer with a solid surface, has been treated only qualitatively.
The prediction of the far field noise can be achieved by integral formulations
and the main feature outlined in the present notes consisted in an order of
magnitude estimation of the terms representing the far field pressure solu-
tion. The practical consequences of those results have been discussed in the
framework of the airframe noise problem.
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More emphasis has been given on the description of the wall pressure
statistics mainly in terms of their spectral content estimated in the Fourier
domain. The scaling parameters of the frequency spectra have been dis-
cussed in connection with the properties of the near wall and the outer–
layer regions of the turbulent boundary layer. The main properties of the
wavenumber-frequency spectra have been also reviewed and discussed along
with the main statistical models proposed in literature to predict the auto–
and cross–spectra behaviors.

More practical aspects have been treated by considering the case of sep-
arated flows and the complex behavior arising by the interaction of the
boundary layer with shockwaves.

Bibliography

B.M. Abraham, Direct measurements of the turbulent boundary layer wall
pressure wavenumber–frequency spectra, Journal of Fluids Engineering
120, pages 29–39, 1998.

Y. Addad, D. Laurence, C. Talotte and M.C. Jacob, Large eddy simula-
tion of a forward-backward facing step for acoustic source identification,
International Journal of Heat and Fluid Flow 24, pages 562–571, 2003.

B-K. Ahn, W.R. Graham and S.A. Rizzi, Modelling unsteady wall pres-
sures beneath turbolent boundary layers, 10th CEAS/AIAA Aeroacous-
tics Conference, 10-12 May 2004, Manchester, UK, 2004.

B-K. Ahn, W.R. Graham and S.A. Rizzi, A structure-based model for
turbulent-boundary-layer wall pressures, Journal of Fluid Mechanics 650,
pages 443–478, 2010.

R.F. Blackwelder and R.E. Kaplan, On the wall structure of the turbulent
boundary layer, Journal of Fluid Mechanics 76, pages 89–112, 1976.

W.K. Blake, Mechanics of flow-induced sound and vibration. Volume II:
Complex flow-structure interactions, Academic Press, 1986.

P. Bradshaw, ‘Inactive’ motion and pressure fluctuations in turbulent bound-
ary layers, Journal of Fluid Mechanics 30, pages 241-258, 1967.

M.K. Bull, Wall pressure fluctuations associated with subsonic turbulent
boundary layer flow, Journal of Fluid Mechanics 28, pages 719–754,
1967.

M.K. Bull, On the form of the wall-pressure spectrum in a turbulent bound-
ary layer in relation to noise generation by boundary layer-surface inter-
actions, Mechanics of Sound Generation in Flows, IUTAM Conference,
Springer-Verlag, Berlin, pages 210–216, 1979.

M.K. Bull, Wall-pressure fluctuations beneath turbulent boundary layers:
some reflections of forty years of research, Journal of Sound and Vibra-
tion 190(3), pages 299–315, 1996.



374 R. Camussi and A. Di Marco

R. Camussi, G. Guj and A. Ragni, Wall pressure fluctuations induced by
turbulent boundary layers over surface discontinuities, Journal of Sound
and Vibration 294, pages 177–204, 2006.

R. Camussi, G. Guj, A. Di Marco and A. Ragni, Propagation of wall pres-
sure perturbations in a large aspect-ratio shallow cavity, Experiments in
Fluids 40, pages 612–621, 2006.

R. Camussi, G. Guj, B. Imperatore, A. Pizzicaroli and D. Perigo, Wall
pressure fluctuations induced by transonic boundary layers on a launcher
model, Aerospace Science and Technology 11, pages 349–359, 2007.

R. Camussi, G. Robert and M.C. Jacob, Cross–wavelet analysis of wall
pressure fluctuations beneath incompressible turbulent boundary layers,
Journal of Fluid Mechanics 617, pages 11–30, 2008.

R. Camussi, M. Felli, F. Pereira, G. Aloisio and A. Di Marco, Statisti-
cal properties of wall pressure fluctuations over a forward-facing step,
Physics of Fluids 20, pages 075113-1 – 075113-13, 2008.

D. Chase, Modelling the wavevector-frequency spectrum of turbulent bound-
ary layer wall pressure, Journal of Sound and Vibration 70, pages 29–67,
1980.

D.M. Chase, The character of the turbulent wall pressure spectrum at sub-
convective wavenumbers and a suggested comprehensive model, Journal
of Sound and Vibration 112, pages 125–147, 1987.

D.M. Chase, Fluctuations in wall-shear stress and pressure at low stream-
wise wavenumbers in turbulent boundary-layer flow, Journal of Fluid
Mechanics 225, pages 545–556, 1991.

H. Choi and P. Moin On the space–time characteristics of wall pressure
fluctuations, Physics of Fluids A 2, pages 1450–1460, 1990.

E. Ciappi, F. Mangionesi, S. De Rosa and F. Franco, Hydrodynamic and
hydroelastic analyses of a plate excited by the turbulent boundary layer,
Journal of Fluids and Structures 258, pages 321–342, 2009.

J.A. Cockburn and J.E. Robertson, Vibration response of spacecraft shrouds
to in-flight fluctuating pressures, Journal of Sound and Vibration 33,
pages 399–425, 1974.

D. Coles, The law of the wake in the turbulent boundary layer, Journal of
Fluid Mechanics 1, pages 191-226, 1956.

G.M. Corcos, The structure of the turbulent pressure field in boundary-layer
flows, Journal of Fluid Mechanics 18(3), pages 353–378, 1964.

G. Cousin, Sound from TBL induced vibrations, PhD Thesis, KTH Marcus
Wallenberg Laboratory for Sound and Vibration Research, Stockholm,
1999.

N. Curle, The influence of solid boundaries upon aerodynamic sound, Pro-
ceedings of the Royal Society of London A231, pages 505–514, 1955.



Boundary Layer Noise - 1: Generation Mechanisms 375

M.R. Dhanak and A.P. Dowling, On the pressure fluctuations induced by
coherent cortex motion near a surface, Proc. 26th AIAA Fluid Dynamics
Conference, June 1995, Paper No. 95-2240, 1995.

M.R. Dhanak, A.P. Dowling and C. Si, Coherent vortex model for surface
pressure fluctuations induced by the wall region of a turbulent boundary
layer, Physics of Fluids A 9, pages 2716–2731, 1997.

A.P. Dowling, Flow-acoustic interaction near a flexible wall, Journal of
Fluid Mechanics 128, pages 181–198, 1983.

B.M. Efimtsov, Characteristics of the field of turbulent wall pressure fluctu-
ations at large Reynolds numbers, Soviet Physics - Acoustics 28, pages
289–292, 1982.

B.M. Efimtsov, Vibrations of a cylindrical panel in a field of turbulent pres-
sure fluctuations, Soviet Physics - Acoustics 32(4), pages 336–337, 1986.

M. Efimtsov, N.M. Kozlov, S.V. Kravchenko and A.O. Anderson, Wall pres-
sure fluctuation spectra at small forward-facing step, Proceedings of the
Fifth AIAA/CEAS Aeroacoustics Conference, Bellevue WA, AIAA Pa-
per No. 99-1964, 1999.

T. M. Farabee and M. J. Casarella, Spectral features of wall pressure fluc-
tuations beneath turbulent boundary layers, Physics of Fluids A 3(10),
pages 2410–2420, 1991.

T.M. Farabee and F.E. Geib, Measurements of boundary layer pressure fluc-
tuations at low wavenumbers on smooth and rough walls, ASME Sym-
posium on Flow Noise Modelling, Measurement and Control, NCA-vol.
11, FED-vol. 130, pages 55–68, 1991.

J.E. Ffowcs Williams, Boundary-layer pressures and the Corcos model: a de-
velopment to incorporate low wavenumber constraints, Journal of Fluid
Mechanics 125, pages 9–25, 1982.

J.E. Ffowcs Williams and D.L. Hawkings, Sound Generated by Turbulence
and Surfaces in Arbitrary Motion, Philosophical Transactions of the
Royal Society A264, pages 321–342, 1969.

S. Finnveden, F. Birgersson, U. Ross and T. Kremer, A model of wall pres-
sure correlation for prediction of turbulence–induced vibration, Journal
of Fluids and Structures 20, pages 1127-1143, 2005.

M.C. Goody, R.L. Simpson, M. Engel, C.J. Chesnakas and W.J. Devenport,
Mean velocity and pressure and velocity spectral measurements within a
separated flow around a prolate spheroid at incidence, AIAA Paper 98-
0630, 1998.

W.R. Graham, Boundary layer induced noise in aircraft. Part I: The flat
plate model, Journal of Sound and Vibration 192, pages 101–120, 1996.

W.R. Graham, A comparison of models for the wavenumber-frequency spec-
trum of turbolent boundary layer pressures, Journal of Sound and Vi-
bration 206(4), pages 541–565, 1997.



376 R. Camussi and A. Di Marco

M.S. Howe, The wall-pressure spectrum in turbulent flow over a randomly
inhomogeneous elastic solid, Journal of the Acoustical Society of Amer-
ica 91(1), pages 91–98, 1992.

M.S. Howe, Acoustics of Fluid: Structure Interactions, Cambridge Univer-
sity Press, London, 1998.

Z. Hu, C.L. Morfey and N.D. Sandham, Aeroacoustics of wall-bounded tur-
bulent flows, AIAA Journal 40, pages 465–473, 2002.

Z. Hu, C.L. Morfey and N.D. Sandham, Sound radiation in turbulent chan-
nel flows, Journal of Fluid Mechanics 475, pages 269–302, 2003.

H. Hubbard, Aerodynamic noise and the plane boundary, Aeroacoustics of
flight vehicles: theory and practice, volume 1: noise sources (D. Crighton:
‘Airframe noise’, pp. 391-447), NASA RP-1258, 1991.

M. Hudy, A.M. Naguib and W.M. Humphreys Jr., Wall-pressure array mea-
surements beneath a separating/reattaching flow region, Physics of Fluids
15, pages 706–717, 2003.

Y.F. Hwang and G. Maidanik, A wavenumber analysis of the coupling of a
structural mode and flow turbulence, Journal of Sound and Vibration
142, pages 135–152, 1990.

S. Jayasundera, M.J. Casarella and S.J. Russell, Identification of coher-
ent motions using wall-pressure signatures, Tech. Rep. 19960918-036,
Catholic Univ. of America, Washington DC, 1996.

A.V. Johansson, J.-Y. Her and J.H. Haritonidis, On the generation of high-
amplitude wall-pressure peaks in turbulent boundary layers and spots,
Journal of Fluid Mechanics 175, pages 119–142, 1987.

W.L. Keith, D.A. Hurdis and B.M. Abraham, A comparison of turbulent
boundary layer wall-pressure spectra, Journal of Fluids Engineering 114,
pages 338–347, 1992.

J. Kim, J.-I. Choi and H.J. Sung, Relationship between wall pressure fluc-
tuations and streamwise vortices in a turbulent boundary layer, Physics
of Fluids 14, pages 898–901, 2002.

J. Kim and H.J. Sung, Wall pressure fluctuations and flow induced noise
in a turbulent boundary layer over a bump, Journal of Fluid Mechanics
558, pages 79–102, 2006.

A. Kiya, K. Sasaki and M. Arie, Discrete-vortex simulation of a turbulent
separation bubble, Journal of Fluid Mechanics 120, pages 219–244, 1983.

A. Kiya and K. Sasaki, Structure of large-scale vortices and unsteady reverse
flow in the reattaching zone of a turbulent separation bubble, Journal of
Fluid Mechanics 154, pages 463–491, 1985.

R.H. Kraichnan, Pressure fluctuations in turbulent flow over a flat plate,
The Journal of the Acoustical Society of America 28, pages 278–390,
1956.



Boundary Layer Noise - 1: Generation Mechanisms 377

J. Largeau and V. Moriniere, Wall pressure fluctuations and topology in
separated flows over a forward-facing step, Experiments in Fluids 42(1),
pages 21–40, 2007.

D.J.J. Leclercq, M.C. Jacob, A. Louisot and C. Talotte, Forward–backward
facing step pair: Aerodynamic flow, wall pressure and acoustic char-
acterization, Proceedings of the Seventh AIAA/CEAS Aeroacoustics
Conference, Maastricht, The Netherland, AIAA Paper No. 2001-1249,
2001.

M.J. Lighthill, On sound generated aerodinamically. Part I: General Theory,
Proceedings of the Royal Society of London A211, pages 564–587, 1952.

G.M. Lilley and T.H. Hodgson, On surface pressure fluctuations in turbulent
boundary layers, AGARD Report No. 276, 1960.

K.B. Lim, A study of pressure fluctuations in turbulent shear flows under
the effects of mean pressure gradients, PhD thesis, Department of Me-
chanical Engineering, University of Adelaide, 1971.

E. Manoha, The wavenumber-frequency spectrum of the wall pressure fluctu-
ations beneath a turbulent boundary layer, Proceedings of AIAA/CEAS
Aeroacoustics Conf., May 6-8, State College, PA, AIAA paper 96-1758,
1996.

L. Morino, C. Leotardi and R. Camussi, Power spectral density trans-
fer function from boundary-pressure to field-pressure, Proc. 16th
AIAA/CEAS Aeroacoustics Conference, Stockholm (Swe), AIAA paper
2010–3993, 2010.

Y. Na and P. Moin, The structure of wall-pressure fluctuations in turbulent
boundary layers with adverse pressure gradient and separation, Journal
of Fluid Mechanics 377, pages 347–373, 1998.

P. Orlandi and J. Jimenez, On the generation of turbulent wall friction,
Physics of Fluids 6, pages 634–641, 1994.

R.L. Panton and G. Robert, The wavenumber-phase velocity representation
for the turbulent wall-pressure spectrum, Journal of Fluid Engineering
116, page 447, 1994.

A.E. Perry and M.S. Chong, On the mechanism of wall turbulence, Journal
of Fluid Mechanics 119, pages 173–217, 1982.

O.M. Phillips, On the aerodynamic surface sound from a plane turbulent
boundary layer, Proceedings of the Royal Society of London, Series A,
Vol. 234, pages 327–335, 1956.

S. Pirozzoli, M. Bernardini and F. Grasso, Direct numerical simulation of
transonic shock/boundary layer interaction under conditions of incipient
separation, Journal of Fluid Mechanics 657, pages 361–393, 2010.

M. Bernardini, S. Pirozzoli and F. Grasso, The wall pressure signature of
transonic shock/boundary layer interaction, Journal of Fluid Mechanics
671, pages 288–312, 2011.



378 R. Camussi and A. Di Marco

A. Powell, The influence of solid boundaries upon aerodynamic sound, Pro-
ceedings of the Royal Society of London A231, pages 962–990, 1960.

A. Powell, Aerodynamic noise and the plane boundary, Journal of the
Acoustical Society of America 32, pages 982–990, 1960.

H. Schlichting, Boundary-Layer Theory, McGraw-Hill, New York, 1979.
H.H. Schloemer, Effects of pressure gradient on turbulent-boundary-layer

wall-pressure fluctuations, Journal of the Acoustical Society of America
42(1), pages 93–113, 1967.

K. Shariff and M. Wang, A numerical experiment to determine whether
surface shear-stress fluctuations are a true sound source, Physics of
Fluids 17, pages 107105-1–107105-11, 2005.

R.L. Simpson, M. Ghodbane and B.E. McGrath, Surface pressure fluctu-
ations in a separating turbulent boundary layer, Journal of Fluid Me-
chanics 177, pages 167–186, 1987.

R.L. Simpson Turbulent boundary-layer separation, Annual Review of Fluid
Mechanics 21, pages 205–234, 1989.

B.A. Singer, Turbulent wall-pressure fluctuations: new model for off-axis
cross-spectral density, NASA Contractor Report 198297, 1996.

B.A. Singer, Large-eddy simulation of turbulent wall-pressure fluctuations,
NASA Contractor Report 198276, NASA, 1996.

A.V. Smol’yakov and V.M. Tkachenko, Model of a field of pseudosonic tur-
bulent wall pressures and experimental data, Soviet Physics - Acoustics
37(6), pages 627–631, 1991.

S. Song, D.B. DeGraaff and J.K. Eaton, Experimental study of a separat-
ing, reattaching, and redeveloping flow over a smoothly contoured ramp,
International Journal of Heat and Fluid Flow 21, pages 512–519, 2000.
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