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1 Introduction

Aeroacoustic analysis is concerned with the problem of sound source mech-
anism identification. Let us consider for a moment what we mean by this,
because, depending on the context, the same terminology can be interpreted
differently. Two different contexts for the analysis of an aeroacoustic sys-
tem, or indeed a fluid flow system in general, are: (1) the kinematic context;
and, (2) the dynamic context.

When we are interested in kinematics, we are concerned with description
of the space-time structure of a fluid flow, and perhaps with phenomeno-
logical explanations vis-à-vis our observation of that structure: this vortical
structure interacted with that one to produce this or that result. Such kine-
matic descriptions will very often be with regard to some observable; in
aeroacoustics that observable is the radiated sound field: this vortical struc-
ture interacted with that one to produce this or that property of the sound
field.

Aeroacoustic theory was constructed from such a kinematic standpoint.
Lighthill (1952) states on the second page of his seminal paper that he
wishes to provide “...a general procedure for estimating the intensity of the
sound produced in terms of the details of the fluid flow...”. He makes it clear
that the search for sound source mechanisms, as he intends it, “is concerned
with uncovering the mechanism of conversion of energy between...the kinetic
energy of fluctuating shearing motions and the acoustic energy of fluctuating
longitudinal motions.”. The “details of the fluid flow”, the “fluctuating
shearing motions”, are considered as given.

However, if we are to consider more broadly the problem of source mech-
anism identification, we realise that, in order to be able to speak clearly
about source mechanisms we need to be able to speak clearly about fluid
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dynamics mechanisms, and it is difficult to do so without placing ourselves
in the context of dynamics: we would like to be able to explain why this
vortical structure interacted with that one to produce this or that property of
the sound field ; i.e. we wish to discern the dynamic law that underpins the
observed interactions, where sound production is concerned. Of course there
is one very simple, correct, but not terribly useful, reply to such an inquiry:
the Navier-Stokes equations constitute the underlying dynamic law, both of
the “fluctuating shearing motions” of the turbulence and the “fluctuating
longitudinal motions” of the sound field. But for high Reynolds number
turbulence this law, and the space-time flow structure that it engenders,
are—from the point of view of perspicacious phenomenological description,
flow-state prediction, or design guidance—invariably too complex to be use-
ful; we are thus forced to seek simplified models.

Lighthill (1952) provided us with a tool that allows the “fluctuating
longitudinal motions” of the sound field to be modelled more simply, and
then connected to the “fluctuating shearing motions” of the turbulence; but
the same tool does not provide an analogous clarification with regard to how
the latter should be modelled. His theory and its descendants are probably
best thought of as means by which the connection between the two kinds
of motion can be modelled; and by virtue of this connection-model, some
insight can be provided regarding the kinematic structure of the underlying
flow motions. However, these theories cannot inform with regard to the
dynamic law of the “fluctuating shearing motions” that underpin sound
radiation.

These lectures are concerned with the exposition of an analysis method-
ology which, while it uses aeroacoustic theory as a central tool, attempts
to take the problem of source mechanism identification beyond the kine-
matic limits imposed by that theory. The methodology, whose objective
is source mechanism identification on both kinematic and dynamic levels
(implicit is assumption is that the Navier-Stokes dynamics can be mod-
elled in a simplified manner, that simplification being specifically tailored
with respect to the acoustic observable), is largely an exercise in system re-
duction, and relies both on theoretical considerations and signal-processing
tools. The document has therefore been organised as follows. In the next
section, §2, an overview of aeroacoustic theory is provided; we focus on the
earliest (Lighthill (1952)) and most recent theoretical developments (Gold-
stein (2003), Goldstein (2005), Sinayoko et al. (2011)). This is followed by
a discussion, in section §3, of the source modelling problem, the bulk of the
attention being focused on ‘coherent structures’. It is in this section that
the analysis methodology evoked above is outlined. Example implementa-
tions of the methodology are presented in section §4, where two specific case
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studies are considered. The various signal processing tools used to support
the analysis methodology, and which are implemented in section §4 without
detailed explanation, form the basis of section §5. Finally, a brief outline of
two reduced-order dynamical modelling approaches is given in section §6.
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2 Aeroacoustic theory

In this section we provide a brief presentation of the basic mathematical
constructs necessary for an understanding of aeroacoustic theory: the wave
equation and its integral solution by means of the free-space Green’s func-
tion. This is followed by a detailed exposition of the theory of Lighthill
(1952), where its dimensional, statistical and instantaneous representations
are used to illustrate some aspects of the relationship between turbulence
and sound. The first theoretical evolutions of Lighthill’s theory, due to
Phillips (1960) and Lilley (1974), are then evoked, more briefly, followed by
a presentation of the most recent theoretical developments, due to Gold-
stein (2003) and Goldstein (2005), and which amount to a generalisation
of the earlier acoustic analogies. Our exposition of Goldstein’s generalised
theory follows the slightly modified formulation proposed by Sinayoko et al.
(2011), and we use a model problem computed by these authors in order to
illustrate some of the essential aspects of aeroacoustic theory as it pertains
to subsonic jets.

2.1 The wave equation

The motion of a viscous, compressible, heat-conducting fluid continuum
is governed by the equations of mass, momentum and energy conservation,
and the equation of state, which are, respectively:

∂ρ

∂t
+∇ · (ρu) = m (1)

∂ρu

∂t
+∇ · ρuu+∇ · P = f (2)

ρT
(∂s
∂t

+ u · ∇s) = −∇ · q + τ : ∇u (3)

dp = c2dρ+
(∂p
∂s

)
ρ
ds, (4)

where
P = pI − τ (5)

represents fluid stresses associated with the thermodynamic pressure, p,
and the viscous stresses, τ ; q is the heat flux due to conduction, given by
Fourier’s law, q = −K∇T ; T is the temperature, s is the entropy, and

c2 =
(∂p
∂ρ

)
s
. (6)

Taken together, these equations constitute a closed system of differential
equations that governs all classes of motion of a fluid continuum. The
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mechanisms that underpin the generation of propagative acoustic energy
are contained within this system. However, due to the non-linear nature of
the equations, general solutions are not available; and, furthermore, in the
general case it is not clear how to: (1) classify motions as turbulent, thermal
and acoustic—this classification being possible only in certain limited cases,
as shown by Chu and Kovásznay (1958); and, (2) identify clear relationships
of cause and effect between different regions of a fluid in motion, or between
different kinds of fluctuation of that motion (between velocity and pressure
for example).

In acoustics, the situation is considerably simplified, as we focus on one
particular class of fluid motion: that which is characterised by small am-
plitude fluctuations of a potential nature. In this case it is legitimate to
linearise the equations of motion, which reduce, in the case of a quiescent
fluid medium, and in the absence of external sources of mass or momentum,
to

∂ρ′

∂t
+ ρo∇ · u′ = 0 (7)

ρo
∂u′

∂t
+∇p′ = 0 (8)

∂s′

∂t
= 0 (9)

p′ = c2oρ
′. (10)

The velocity perturbation, u′, can be eliminated by subtracting the time
derivative of the mass conservation equation from the divergence of the
momentum conservation equation, giving:

∂2ρ′

∂t2
−Δp′ = 0. (11)

p′ and/or ρ′ can then be eliminated, by means of the constitutive equation
p′ = c2oρ

′, to give wave equations in either the density or the pressure:

∂2p′

∂t2
− c2oΔp

′ = 0

∂2ρ′

∂t2
− c2oΔρ

′ = 0. (12)

2.2 Green’s functions

So, what do these wave equations represent? Well, simply stated: they
describe propagative wave-like fluctuations of the density or pressure in a
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quiescent fluid medium1. Such wave-like motion will only be sustained by
the medium for space-time scales that satisfy the balance expressed by the
equation. A Fourier transform of the wave equation can help illustrate this:

ω2p′ = c2o|κ|2p′,
ωp′ = co|κ|p′. (13)

This is known as the dispersion relation for the wave equation, and what
it states is that for propagation to be supported in the quiescent, homoge-
neous fluid medium considered, the time scales of the motion, ω−1, must be
matched with the space scales, κ−1, by the speed of sound, co. When such
a system is excited by a disturbance that does not satisfy this criterion, the
associated motions will not be supported as a propagating wave, and will
tend, rather, to evanescence (very rapid decay). This concept is central to
understanding the mechanisms by which a given source structure 2 gener-
ates a propagative energy flux, and these mechanisms can be most clearly
seen by looking at integral solutions of the wave equation, which can be
obtained by means of an appropriate Green’s function.

The Green’s function, G(x, t|y, τ), describes the wave-like response (as
described by the wave equation) of the quiescent fluid medium to an im-
pulse localised at x = y and at time t = τ . Where the free-field Green’s
function is concerned, a single clap of your hands in a large open space is
an approximate equivalent of this. Mathematically, this can be expressed
as:

∂2G

∂t2
− c2oΔG = δ(x− y)δ(t− τ). (14)

Once we have found the Green’s function we are equipped with a filter which,
when convolved with a given source, will extract the space-time scales of
the source structure that match the balance expressed by the propagation

operator (∂
2p′

∂t2 = c2oΔp
′), and which are therefore capable of producing a

propagating wave. For example, consider the physical problem described
by

∂2p′

∂t2
− c2oΔp

′ = q(x, t), (15)

where q(x, t) is some (known) source (this could be an unsteady, spatially-
distributed force field, or an unsteady, spatially-distributed, addition of

1In fact the wave equation can, alternatively, be expressed in terms of a velocity poten-

tial, φ, from which density (ρ = 1
c2o

∂φ
∂t

), pressure (p = ∂φ
∂t

) and velocity (u = �∇φ) can

all be derived.
2In what follows we will see that the flow equations can be manipulated such that this

source represents the turbulent jet.
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mass), that drives sound waves in a quiescent medium. Multiplying equa-
tion 14 by p′, equation 15 by G, integrating in both space and time (ne-
glecting the effect of initial conditions), and subtracting the former from
the latter, we get, provided there are no solid boundaries, and after a little
manipulation

p′(x, t) =
∫ t

to

∫
V

q(y, τ)G(x, t|y, τ)dydτ. (16)

The right hand side of this equation describes the filtering of q(y, τ) by
G(x, t|y, τ): G(x, t|y, τ) allows us to extract, from the heart of what might
be an extremely complex, and largely (acoustically) ineffective, source struc-
ture, q(y, τ), only those scales that are acoustically-matched.

This is the key to analysing and understanding aeroacoustic systems,
experimentally, numerically or theoretically. It is necessary to identify the
space-time scales (or flow behaviour that leads to the generation of such
scales) that are actually efficient in the generation of sound waves—the vast
majority are not. In the context of Lighthill’s acoustic analogy the problem
is exactly that described here, insofar as the wave equation used has the
same form as 15. For the more sophisticated acoustic analogies, while the
wave equations and source descriptions change, conceptually we are dealing
with the same scenario: the dispersion-relations and Green’s functions will
change, and this will modify the criterion by which we identify the pertinent
space-time scales of the ‘source’ quantity (which it is then necessary to relate
to the turbulence characteristics of the jet). Further discussion on this point
is provided in the next section.

2.3 Lighthill’s acoustic analogy

Lighthill’s acoustic analogy is a peculiar kind of object: it amounts to a
model representation of the jet-noise problem, but one which is described
by an exact fluid dynamics equation (nothing less than the Navier-Stokes
equations is stated). This dual quality constitutes both the elegance of,
and the crux of the interpretational difficulties associated with, the acoustic
analogy formulations in general.

Lighthill sought to rearrange the equations of mass and momentum
conservation—taken in their full, non-linear form—such that the wave op-
erator would appear. In order to do so, he followed the same basic steps
used in the derivation of the wave equation, but without performing the
linearisation. Taking the time derivative of the mass conservation equation,
the divergence of the momentum conservation equation, and combined the
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two gives, after a little manipulation, 3

∂2ρ′

∂t2
− c2oΔρ

′ = ∇ · ∇ · (ρuu− τ + (p′ − c2oρ
′)I). (17)

In terms of p′, the equation becomes

1

c20

∂2p′

∂t2
−Δp′ = ∇ · ∇ · (ρuu− τ ) +

1

c20

∂2

∂t2
(p′ − c2oρ

′). (18)

These inhomogeneous wave equations can be interpreted in terms of a source
term (the right hand side) that drives density or pressure fluctuations, as
described by the left hand side.

We can now examine integral solutions to Lighthill’s equation, and it is
at this point that we make a first connection between radiated sound energy
and the flow characteristics of a turbulent jet.

These solutions can be considered on three levels: that of (1) elementary
dimensional analysis; (2) time-averaged (second and higher order) statistics;
and, (3) space-time analysis. The third of these gives us the most direct
insight, in so far as it allows a local (in space and time) grasp of the sound
production mechanisms; it is most useful for highly organised flows, and/or
for understanding the organised component of high Reynolds number flows
(‘coherent structures’). In the second approach, detailed understanding is
hampered by time-averaging, and we are obliged to consider the connection
between the radiated sound power and the jet flow via the second and
higher order statistical moments of the unsteady flow; this kind of approach
is most useful for the more random components of the flow unsteadiness.
The first of the approaches is the most elementary of the three, where very
little physical insight is provided regarding the underlying mechanisms. In
section §3 we will revisit these representations when we discuss the role
played by coherent structures in the generation of sound.

Integral solutions to equations 17 and 18 can be obtained using the
Green’s function formalism outlined earlier. Henceforth we will change to
tensor notation, we will only consider the equation expressed in terms of p′,
and we will consider the simplified source quantity

∂2ρuiuj
∂yi∂yj

(y, t) : (19)

the term associated with viscous effects τ can be neglected for most flows of
interest, and the third term on the right hand side of equation 18 is believed

3See Lighthill (1952) for full details.
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to correspond to the effect of temperature fluctuations (this is often referred
to as the entropy source term). This is probably an oversimplification, as in
high Mach number flows there is evidence to suggest that the first and third
terms on the right hand side of equation 18 are correlated (cf. Bodony and
Lele (2005)). However, as our objective in this lecture is to make as clear
as possible, and in as simple a manner as possible, the essential workings
of acoustic analogies, we will continue to use this simplified scenario. Once
the reasoning has been clearly understood in terms of the simplified source
term, it is conceptually straightforward to extend to more complex source
terms.

The free-field Green’s function is Go = δ
4π|x−y| , and so solution to

Lighthill’s equation can be written as follows:

p′(x, t) =
∫ ∞

∞

∫
Vy

∂2ρuiuj
∂yi∂yj

(y, t)δ
(
t− τ − |x− y|

co

) dVydτ

4π|x− y|

=

∫
Vy

∂2ρuiuj
∂yi∂yj

(
y, t− |x− y|

co

) dVy
4π|x− y| . (20)

From equation 20 we can proceed in two ways: (1) we can do the most basic
kind of dimensional analysis, which will lead to the simplest expressions of
the relationship between radiated sound power and flow characteristics; or,
(2) we can take things from the statistical standpoint. We will here do both.

First, however, we introduce two simplifications that are frequently used.
The first exploits the reciprocity property of the Green’s function, which
means that source and observer can be interchanged. This allows the double
divergence in equation 20, which is in terms of the source coordinates y, to
be expressed in terms of the observer coordinates, x, at which point it can
be taken outside the volume integral:

p′(x, t) =
1

4π

∂2

∂xi∂xj

∫
Vy

ρuiuj

(
y, t− |x− y|

co

) dVy
|x− y| . (21)

Now that differentiation is being performed in the observer frame (assumed
to be in the farfield), where fluctuations are entirely acoustic, the spatial
derivatives are related to temporal derivatives through

∂

∂xi
= − xi

|x|
1

co

∂

∂t
, (22)

because we are dealing with a non-dispersive wavefield: if you want to
know the spatial gradient of the waveform, rather than walk along the wave
and measuring the slope as you go, you can simply stay put, letting the
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wavefield pass you by, at the speed of sound; by then measuring its temporal
rate of change, knowing it’s propagation speed and considering that the
sound waves are locally plane, you immediately have access to the spatial
derivative. The solution can thus be written, because we are in the farfield
(|x− y| ≈ |x|), in the following simplified form:

p′(x, t) =
xixj

4πc2o|x|3
∂2

∂t2

∫
Vy

ρuiuj

(
y, t− |x|

co

)
dVy. (23)

Dimensional analysis Let us consider the problem of the subsonic propul-
sive jet, which is the system that Lighthill’s analogy was first used to as-
sess. If we consider that a characteristic eddy dimension in the turbulent
jet plume is of the order of the jet diameter, D, which corresponds, ap-
proximately, to the vorticity thickness of the mixing-layer at the end of the
potential core of a subsonic jet4, a characteristic frequency is f = Uo/D,
where Uo is the exit velocity of the jet, and Df/co = Uo/co =M , where M
is the Mach number (a measure of compressibility). This means that

p′ ∼ f2

c2o
ρoU

2
o

D3

|x| (24)

∼ ρoU
2
o

f2

c2o

M2c2o
f2

D

|x| (25)

∼ ρoU
2
oM

2 D

|x| , (26)

and so the acoustic intensity, I = 〈p′2〉
ρoco

, should scale as

I =∼ ρU3
oM

5
( D
|x|
)2

∼ U8
o . (27)

This very simple analysis immediately shows the very strong dependence of
the sound power radiated on the velocity and Mach number of a jet. This
was the first major result of Lighthill’s theory. In terms of jet noise control,
if we are to judge an analysis in terms of the impact it has had on the design
of the application, it remains the most significant result to date: it was clear
from this analysis that the jet velocity and Mach number would need to be
reduced, and that moderate reductions could lead to significant reductions

4This region is now known to be one of the most important in terms of sound production,

but was not known at the time of Lighthill’s first estimates of the sound power radiated

by a flow
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in sound power. In order to do so, without losing thrust, larger diameter
jets would be required: the introduction, and subsequent optimisation of,
the (low and high) by-pass jet engine led, between 1950 and 2000, to a 20dB
reduction in the sound power radiated by jets exhausts at take-off.

Statistical analysis We now consider the second way in which it is pos-
sible to relate radiated sound power to flow/source characteristics. Us-
ing equation 23, expressions for the autocorrelation of the farfield pressure
(which is related to the power spectrum of the pressure by a Fourier trans-
form) can be obtained; this can then be related to the turbulence through
the term ρuiuj . Assuming constant density in the source term (ρ = ρo),
the autocorrelation function of the farfield pressure fluctuation is given by

C(x, τ) = 〈p′(x, t)p′(x, t+ τ)〉

= ρo
xixjxkxl
16π2c4o|x|6

∫
Vy′′

∫
Vy′

〈∂2uiuj
∂t2

(
y′, t− |x− y′|

co

)
∂2ukul
∂t2

(
y′′, t− |x− y′′|

co
+ τ
)〉

dy′dy′′. (28)

And, if the turbulence is considered to be statistically stationary, the equa-
tion can be rewritten as

C(x, τ) = ρo
xixjxkxl
16π2c4o|x|6

∫
Vy′′

∫
Vy′

∂4

∂τ4

〈
uiuj

(
y′, t− |x− y′|

co

)

ukul

(
y′′, t− |x− y′′|

co
+ τ
)〉

dy′dy′′. (29)

By virtue of this equation we now have a far more detailed description of
how the sound power radiated by a jet flow is related to that flow: for
a single observer in the farfield, at x, the sound power, as a function of
frequency,5 is given by a volume integral, over the entire extent of the jet,
of the two-point, two-time correlation of the Reynolds stress field.

Instantaneous analysis The two approaches presented above, both of
which involve considerable data compression when compared to the full
space-time fields from which they begin (and where mechanisms show them-
selves most exactly), necessarily hide a certain amount of information.6

5The power spectrum is given by taking the Fourier transform
6In 1952 measurement and computational capabilities were such that it was not possible

to access full-field data; the two-point correlations were about the best that could be

achieved.
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Some kind of compression is of course indispensable: the formidable com-
plexity of the full space-time structure of turbulence is such that useful
assimilation and description is only possible at the expense of some such
information loss. However, the ever-increasing capabilities of numerical
simulation, experimental data acquisition and data post-processing, mean
that new kinds of analysis and modelling methodologies, which deal more
directly with the local space-time details of flow mechanisms, can be con-
sidered. Such methodologies and tools, which are outline sections §3, §5
and §6, are essential from the point of view of real-time, closed-loop con-
trol, towards which fluid dynamics research is headed. It is therefore useful
to consider the space-time-local representation of the solution to Lighthill’s
equation 20.

As outlined above, the physical system described by an inhomogeneous
wave equation, such as Lighthill’s, involves a coupling between a source
term—which in this sub-section we will simply refer to as q(x, t)—and some
base-flow medium that can sustain propagative, wavelike perturbations in
accordance with the balance expressed by the wave equation. In the context
of Lighthill’s formulation, the mechanism by which a propagative wave is
set up, in the quiescent medium, by the source, amounts to the acoustic
matching described earlier. In order therefore to have access to what is
happening in real time, we need to examine the integral solution in its most
primitive form

p(x, t) =
1

4π

∫
V

q(y, t− |x−y|
c )

|x− y| d3y. (30)

What this equation tells us is that if we consider the excitation field in a

distorted space-time reference frame, q(y, t − |x−y|
c ), the farfield pressure

is given by simply summing all the points of that distorted field. If the
source field is considered in undistorted space-time, additional time-delays,
corresponding to wave-propagation times, weight the summation. Physi-
cally, this summation corresponds to the time-delayed constructive and de-
structive interference phenomena that underpin, respectively, loud or quiet
source activity. We will discuss this in the next section when we consider
the antenna-like wavepacket radiation associated with ‘coherent structures’.

2.4 Acoustic analogies of Phillips and Lilley

A difficulty with the Lighthill analogy, for the problem of jet noise, is that
the wave equation describes propagation through a medium at rest. While
this model is approximately correct outside the region of turbulent flow, it
is not so within the turbulent jet. Two subsequent developments, due to
Phillips (1960) and Lilley (1974), were aimed at improving this aspect of
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the model. Both were motivated by the desire to explicitly describe effects
associated with interactions between the sound field and the jet.

Phillips (1960) proposed an alternative rearrangement of the Navier-
Stokes equations, leading to:

d 2π

dt2
− ∂

∂xi

(
c2
∂π

∂xj

)
=
∂ui
∂xj

∂uj
∂xi

− ∂

∂xi

(1
ρ

∂τij
∂xj

)
+

d

dt

( 1

Cp

ds

dt

)
, (31)

where π = log(p). This equation comprises, explicitly, in the wave operator,
some effects of the mean velocity (via the material derivative), in addition
to the effects of variable speed of sound that can occur due to temperature
or Mach number gradients. The right hand side, which again is considered
a source term, comprises, as did Lighthill’s source term, terms associated
with non-linear momentum fluctuations, viscous stresses and a term due to
entropy unsteadiness.

The modification due to Lilley (1974) comes about from recognising
that if we linearise Phillips’ equation about some mean flow, and we con-
sider the fluctuation to be entirely acoustic, the source contains a term
associated with flow-acoustic interaction in the form of refraction of the
small-amplitude acoustic disturbances by mean shear. To see this, consider
acoustic disturbances propagation in two-dimensional shear-flow with mean
velocity profile U(y) ·�x. Linearising Phillip’s equation about this mean flow,
and neglecting thermal and viscous effects, the LHS reduces to

1

c2o

d2p

dt2
− ∂2p

∂x2i
, (32)

while the RHS reduces to

2ρo
∂v

∂x

dU(y)

dy
. (33)

When it is possible to verify that the perturbation about the mean flow is
indeed an acoustic disturbance, this term describes the refraction of sound
by the mean flow, and one can argue that it should appear on the LHS, in
the wave operator.

With this in mind, Lilley took the material derivative of Phillips’ equa-
tion:

d

dt

[d2π
dt2

− ∂

∂xi

(
c2
∂π

∂xj

)]
+ 2

∂vj
∂xi

∂

∂xj

(
c2
∂π

∂xi

)
= −2

∂vj
∂xi

∂vk
∂xj

∂vi
∂xk

+Ψ,

(34)
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where

Ψ = 2
∂vj
∂xi

∂

∂xj

(1
ρ

∂τij
∂xk

)
− d

∂t

[ ∂
∂xi

(1
ρ

∂τij
∂xj

)]
+

d2

dt2

[ 1
cp

ds

dt

]
, (35)

and we see that by linearising this equation about a base-flow comprising
mean shear, we obtain a wave operator that describes acoustic propagation
in that shear-flow. It is important to point out however, that a Reynolds
decomposition of the velocity field (into U+u), does not correspond to a split
into hydrodynamic and acoustic disturbances, and so it is not clear that the
linear term so obtained does indeed correspond to a refraction effect in the
case of a turbulent jet, where the fluctuation about the time-averaged mean,
within the jet, is largely hydrodynamic. This problem of decomposing a flow
into acoustic and non-acoustic components lies at the heart of much of the
controversy that surrounds acoustic analogy approaches for the description
and study of aeroacoustic systems. The most recent attempt to address this
difficulty has been proposed by Goldstein (2003) and Goldstein (2005).

2.5 The generalised acoustic analogy

Goldstein (2003, 2005) has shown how the formulations typified by the
efforts of Phillips (1960) and Lilley (1974) amount to particular cases in
a more general framework. In what follows we provide, firstly, a compact
exposition of this generalised formulation, in order to facilitate description
and interpretation. We then proceed to give a more complete presentation,
following the work of Sinayoko et al. (2011). We end with an overview of a
model problem, proposed by these authors, which serves as an instructive
illustration of the differences between different acoustic analogy formula-
tions.

In a nutshell Consider the Navier-Stokes equations, expressed in the
compact form

N (q) = 0, (36)

where q is here a vector containing all of the dependent flow variables, and
N represents the Navier-Stokes operator. Goldstein’s generalisation of the
acoustic analogy proceeds as follows.

The full solution is first decomposed into a (possibly unsteady) base-flow
and a perturbation:

q = qD + qA, (37)

the subscript D indicating non-linear fluid dynamics, as opposed to lin-
ear acoustic dynamics, which are denoted by the subscript A. From this
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decomposition an equation of the following form can be written

LqD
(qA) = s(qD), (38)

where LqD
is a linear operator describing the evolution of qA, a disturbance

generated and carried by qD. Let us consider this equation for a moment,
as it has certain uses, but also some limitations.

A first difficulty associated with an equation constructed in this manner
is that, if we are to interpret it in terms of a non-acoustic, causal, source,
s(qD), that drives an acoustic effect, qA, we need to be sure that the full flow
solution has been decomposed into acoustic and non-acoustic, or radiating
and non-radiating, components: there is presently no consensus as to how
such a decomposition might be unambiguously effected.

A second difficulty becomes apparent when we consider what has been
gained by identifying s(qD) in this way. If we consider equation 38 to be
physically pertinent—in other words we believe that we have successfully
decomposed the flow solution into acoustic and non-acoustic components—
at best we can consider the decomposition of equation 37 to provide us with
the kinematic structure of the flow, qD, that underpins sound radiation.
However, as we will see in the following example, qD is almost identical
to q, the full flow solution, as one would expect given the large amplitude
disparity between hydrodynamic and acoustic fluctuations at the heart of
the flow; and so the question that arises is the following: in what way does
the information provided by decomposition 37 and equation 38 enlighten us
with regard to the physical flow mechanisms associated with sound produc-
tion? The answer appears to be: it constitutes a powerful means by which
the radiating flow structure can be visualised and probed. For instance, by
superposing s(qD) and qD, and studying, simultaneously, the space-time
(or frequency-wavenumber) structure of the two, it may be possible to gain
some insight regarding what it was about the flow motions qD that led
to the radiating source structure s(qD): this structure (∈ qD) interacted
with that structure (∈ qD) to produce this or that aspect of the source field
(∈ s(qD)).

However, having clarified the kinematics in this way, it is then necessary
to address the question of the dynamics, as the flow motions associated
with the generation of sound can only be fully understood in the context
of their underlying dynamic law. In the context of high Reynolds number
turbulent jets, qD will be no less complex than q, and thus the dynamic law
of the source is approximately the Navier-Stokes operator; in which case we
arrive at the conclusion that the sound-source mechanism is the turbulence!
The point on which we insist is the same evoked in the introduction: while
the acoustic analogies can provide simplified models for the propagation
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and connection-to-turbulence parts of the problem, they do not directly
provide any such simplification where the “fluctuating shearing motions”
are concerned. These points will be further discussed in section §3.

Full derivation The following derivation, taken from Sinayoko et al.
(2011), shows, in detail, how a generalised acoustic analogy, such as that
evoked more compactly above, can be formulated for a homentropic fluid
medium. The derivation is followed by the presentation and discussion of a
model problem chosen by those authors; the problem considered constitutes
a useful illustration of the differences between this and more conventional
acoustic analogies; it also serves to illustrate the limitations of acoustic
analogies in general.

Unsteady, non-radiating base-flow

The flow equations are written as:

∂ρ

∂t
+

∂

∂xj
ρvj = 0 (39)

∂

∂t
ρvi +

∂

∂xj
ρvivj +

∂p

∂xi
=

∂

∂xj
σij (40)

∂p

∂t
+ vj

∂p

∂xj
+ γp

∂vj
∂xj

= 0. (41)

Using a modified pressure variable π = p1/γ , the momentum and energy
equations can be rewritten as

∂

∂t
ρvi +

∂

∂xj
ρvivj +

∂

∂xi
πγ = 0 (42)

∂π

∂t
+

∂

∂xj
πvj = 0. (43)

Note that the pressure equation now appears in conservative form.
For the moment consider that a filter capable of extracting acoustic, or

radiating, disturbances, q′, from the full flow variable, q, exists: L′ = I−L.
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Application of this filter to the conservation equations gives:

∂ρ′

∂t
+

∂

∂xj
(ρvj)

′ = 0 (44)

∂

∂t
(ρvi)

′ +
∂

∂xj
(ρvivj)

′ +
∂

∂xi
(πγ)′ = 0 (45)

∂(π)′

∂t
+

∂

∂xj
(πvj)

′ = 0. (46)

The non-linear momentum flux term can be expanded as

ρvivj = ρṽiṽj + ṽj(ρvi)
′ + ṽi(ρvj)

′ − ṽiṽjρ
′ +O(ρ′2), (47)

where

ṽi =
(ρvi)

ρ
. (48)

O(ρ′2) terms, being quadratic in the radiating (acoustic variables), are
several orders of magnitude smaller than radiating components, and can be
neglected. Thus, application of the filter L′ to the expanded momentum
flux term gives

(ρvivj)
′ ≈ (ρṽiṽj)

′︸ ︷︷ ︸
A

+(ṽj(ρvi)
′ + ṽi(ρvj)

′ − ṽiṽjρ
′)′︸ ︷︷ ︸

B

. (49)

Term A is the acoustically-matched part of the non-linear momentum flux
term, i.e. it comprises only those components of the triple correlation
ρṽiṽj that present radiation-capable space-time scales, and that can thereby
couple with the sound field. The second group of terms, B, corresponds
to acoustically-matched components of hydrodynamic-acoustic interaction
terms: refraction, scattering, convective transport, etc.

Similarly the modified pressure term, which is also non-linear, can be
expanded and filtered:

πγ = (π + π′)γ = πγ + γπγ−1π′ +O(π′2), (50)

(πγ)′ = (πγ)′︸ ︷︷ ︸
A

+(γπγ−1π′)′︸ ︷︷ ︸
B

. (51)

On account of the homentropic character of the fluid medium, it can be
shown (see Sinayoko et al. (2011) for details) that the radiating component
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arising due to the non-linearity of the non-radiating pressure term, A, is
equal to zero:

(πγ)′ =
π∞
ρ∞

(ργ)′ =
(
ρ∞
π∞

)γ−1

(p)′ = 0. (52)

Similarly, the energy flux term, (πvj)
′, can be decomposed as follows

(πvj)
′ ≈ (πṽj)

′︸ ︷︷ ︸
A

+(
π

ρ
(ρvj)

′ + ṽjπ
′ − π

ρ
ṽjρ

′)′︸ ︷︷ ︸
B

, (53)

and the radiating component of the non-linear part shown also to be equal
to zero:

(πṽj)
′ =

π∞
ρ∞

(ρṽj)
′ =

π∞
ρ∞

(ρvj)
′ = 0. (54)

The filtered Navier Stokes equations can now be re-written, placing all of
the non-zero sound source terms, A (which comprise radiating components
of non-linear interactions of non-radiating components) on the right hand
side, and the flow-acoustic interaction terms, B, on the left:

∂ρ′

∂t
+

∂

∂xj
(ρvj)

′ = 0, (55)

∂

∂t
(ρvi)

′ +
∂

∂xj
(ṽj(ρvi)

′ + ṽi(ρvj)
′ − ṽiṽjρ

′)′

+γ
∂

∂xi
(πγ−1π′)′ = − ∂

∂xj
(ρ ṽiṽj)

′, (56)

∂π′

∂t
+

∂

∂xj

(π
ρ
((ρvj)

′ − ṽjρ
′) + ṽjπ

′)′ = 0. (57)

This is a generalised acoustic analogy, the source and propagator compo-
nents of which depend on how the filter, L′ is defined.

Time-averaged base-flow

In order to compare the above formulation with more conventional ap-
proaches, Sinayoko et al. (2011) repeat the same derivation where the de-
composition into base-flow and perturbation follows a simple Reynolds de-
composition. The result leads to a formulation synonymous with the Lin-
earised Euler Equations.
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Base flow and perturbation are thus defined by

q = q0 + q′′, (58)

where q0 and q′′ denote, respectively, the steady (time-averaged) and un-
steady part of q. Following the previous procedure leads to

∂ρ′′

∂t
+
∂(ρvj)

′′

∂xj
= 0, (59)

∂(ρvi)
′′

∂t
+
∂(ρvivj)

′′

∂xj
+ p∞

∂(πγ)′′

∂xi
= 0, (60)

∂π′′

∂t
+ γ

∂(πvj)
′′

∂xj
= 0. (61)

The term ρvivj can be decomposed as

ρvivj =
ρvi ρvj
ρ

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a) ρ0v̂iv̂j+

(b) v̂j(ρvi)
′′ + v̂i(ρvj)

′′ − v̂iv̂jρ
′′+

(c)
1

ρ0
(ρvi)

′′ (ρvj)′′ − v̂j
ρ0

(ρvi)
′′ρ′′ − v̂i

ρ0
(ρvj)

′′ρ′′ +
v̂i v̂j
ρ0

ρ′′2 +O(ρ′′3),

(62)

where

v̂i =
(ρvi)0
ρ0

, (63)

which is analogous to ṽi but uses a steady base flow rather than a non-
radiating base flow.

Term (a) is steady and so cannot contribute to sound production or
propagation; term (b) is an interaction term, between the time-averaged
mean flow and the fluctuation, although it is clearly incorrect to speak of
flow-acoustic interaction, the fluctuation in this case being dominated by
hydrodynamic unsteadiness (turbulence). Term (c) contains quadratic and
higher order non-linearities dominated by hydrodynamic unsteadiness. It is
terms of this kind that are referred to as ‘source’ in acoustic analogies that
involve time-averaged base-flows, or Linearised Euler formulations.

The term (πγ)′′ is decomposed as:

πγ = (π0 + π′′)γ = πγ
0 + γπγ−1

0 π′′ +
1

2
γ(γ − 1)πγ−2

0 π′′2 +O(π′′3) (64)

(πγ)′′ ≈ γπγ−1
0 π′′ +

1

2
γ(γ − 1)πγ−2

0 (π′′2)′′. (65)
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Finally, the term πvj is decomposed as follows:

πvj =
πρvj
ρ

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(a)
π0
ρ0

(ρvj)0

(b)
π0
ρ0

(ρvj)
′′ + v̂jπ

′′ − π0
ρ0
v̂jρ

′′

(c)
1

ρ0
π′′(ρvj)′′ − v̂j

ρ0
ρ′′π′′ − π0

ρ20
ρ′′(ρvj)′′ +

π0v̂j
ρ20

ρ′′2 +O(ρ′′3),

(66)
where (a) has no unsteady part, (b) corresponds to interaction terms and
(c) to source terms; however, Sinayoko et al. show that term (c) can be
shown to be equal to zero.

Equations (59–61) are now re-written, the quadratic non-linear terms
being placed on the right hand side, the interaction terms, between the
mean-flow and the perturbation, being retained as ‘propagation terms’ on
the left hand side:

∂ρ′′

∂t
+

∂

∂xj
(ρvj)

′′ = 0, (67)

∂

∂t
(ρvi)

′′ +
∂

∂xj
(v̂j(ρvi)

′′ + v̂i(ρvj)
′′ − v̂iv̂jρ

′′) + γ
∂

∂xi
πγ−1
0 π′′ = f2i, (68)

∂π′′

∂t
+

∂

∂xj

(
π0
ρ0

(ρvj)
′′ + v̂jπ

′′ − π0
ρ0
v̂jρ

′′
)

= 0, (69)

where the momentum equation source term f2i is defined as

f2i ≡ − ∂

∂xj

(
1

ρ0
(ρvi)

′′ (ρvj)′′ − v̂j
ρ0

(ρvi)
′′ρ′′ − v̂i

ρ0
(ρvj)

′′ρ′′ +
v̂i v̂j
ρ0

ρ′′2
)
(70)

−1

2
γ(γ − 1)

∂

∂xi
(πγ−2

0 (π)”2)′′.

Application of the two foregoing formulations to a model flow, where the
flow is manipulated in such away that the sound-production mechanisms are
clear, will help to more fully appreciate what the two formulations involve.

Application to a model problem We here provide a brief exposition of
the model problem and main results. For more complete details the reader
should refer to Sinayoko et al. (2011).

A Direct Numerical Simulation is performed wherein a laminar, axisym-
metric jet is driven at the inflow by two different frequencies. The response
of the jet comprises the growth of two hydrodynamic instabilities; these
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Figure 1. Top center: full flow solution; Left and right columns show, from
top to bottom: base flow, perturbation and sound source corresponding to
the two flow decompositions; left column :q0 + q′′; right column: qD + qA.

undergo a non-linear interaction which results in a difference wave, and it
is this difference wave that dominates the generation of sound waves. The
instability waves each couple directly with the sound field, but this linear
mechanism is weaker than that of the non-linear interaction.

The full solution of the model problem is shown in figure 1. The filtering
operation used to separate ‘radiating’ and ‘non-radiating’ components of
the flow is based on the free-space Green’s function, and in this particular
implementation the ‘perturbation’ is defined as the radiating component of
the flow at the dominant radiation frequency only. It is for this reason that
some radiating components remain in the base flow, qD.

The considerable differences between what is referred to as ‘base flow’,
‘perturbation’ and, consequently, ‘source’ are illustrative of the degree to
which different acoustic analogies will yield different interpretational frame-
works: the mechanisms that we infer from the equations can differ as widely
as the decompositions, base-flows, perturbations and sources with which
they are associated. Much contemporary debate regarding the true physics
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of sound production is fueled by this lack of universality.
We here draw attention to one importance difference in particular. In the

case of the time-averaged base flow (which is what is used in Lilley or Lin-
earised Euler formulations), the fluctuation is largely dominated, as stated
earlier, by hydrodynamic unsteadiness, whereas the radiating fluctuation
obtained by means of an acoustic filter is mainly acoustic. The difference in
both amplitude and space-time structure between the two attests to this.
As seen in figure 1, when a time-averaged base-flow is considered, the per-
turbation within the jet is dominated by hydrodynamic, convective scales.
When the radiating/non-radiating decomposition is used, the perturbation
shows an acoustic (radiating) scale throughout the jet. A corresponding
difference in amplitude between the two perturbations (not shown in the
figure, where colour scales are saturated) is also observed. This illustrates
the extent to which it is incorrect to think of interactions terms of the
kind q0q

′′ as corresponding to mean-flow/acoustic interaction; the correct
interpretation is that these terms are dominated by mean-flow/turbulence
interactions, as is the interpretation attributed to such terms by students of
incompressible turbulence (cf. George et al. (1984)), where such terms are
referred to as slow-pressure terms.

Finally, Sinayoko et al. (2011) verify that when the time-averaged base
flow is driven by the two source terms, the correct result is obtained in the
acoustic field. Figure 2 shows this.

2.6 Conclusion

Two things are worth pointing out with regard to the results of the model
problem considered above. The first is the difference between the two source
terms; it clearly cannot be correct to refer to both of these as the ‘source of
sound’. Furthermore, because in this model problem the flow has been care-
fully manipulated so that the fluid dynamics and acoustic mechanisms are
clear, we know that the dominant source mechanism comprises a non-linear
interaction between two hydrodynamic instabilities; this interaction creates
an acoustically-matched difference wave. The source identified by the for-
mulation based on the decomposition into a predominantly non-radiating
unsteady base-flow and a monochromatic, purely radiating disturbance re-
sembles such a difference wave. The source obtained using a time-averaged
base flow and corresponding disturbance does not. The former system does
therefore appear to constitute a more physically pertinent description of
the problem than the latter. The causal reading of the problem, as a one
way transmission of fluctuation energy from ‘source’ to ‘sound’, also ap-
pears to be more justified by the former formulation. As evoked earlier,
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Figure 2. Result of driving the time-averaged base flow by both sources.
Result is compared with the DNS result at the peak acoustic frequency.
While the source term constructed from the non-radiating, unsteady base
flow elicits a purely acoustic response, the source term associated with the
time-averaged base flow causes the mean-flow to respond with both hy-
drodynamic and acoustic components. Both give the correct result in the
acoustic field.

this improved consistency is also manifest in the response of the base-flow
to excitation by the two sources; in the former case the response is purely
acoustic, consistent with what has been denoted ‘perturbation’, whereas in
the latter case the response is dominated, within the flow, by hydrodynam-
ics: we therefore have a case in the latter situation where the cause is part
of the effect and vice versa; this is clearly problematic. It should also be
noted, however, that in both cases the correct solution is obtained in the
sound field. This shows, as has been borne out over the past 10 years or so
by means of numerical simulation, that all acoustic analogies are capable
of providing a link between turbulence and sound; however, the differences
illustrated by the foregoing study shows that we need to be careful with
regard to the physical interpretations that we infer from analysis based on
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acoustic analogies.

Where the question of the relationship between qD and s(qD) is con-
cerned, further visualisation and analysis will always be necessary. The
same is true with regard to the question of the dynamic law that underpins
qD. These observations constitute useful departure points for the experi-
mental approach, and the remainder of these lectures will be concerned with
outlining methodologies and tools that can be useful in this regard.
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3 The modelling challenge

3.1 Introduction

As outlined in the previous section, estimation of the sound radiation
from a turbulent flow, using an acoustic analogy, requires the solution of
a propagation equation given a corresponding source term. If the source
is not known exactly (such exact knowledge implies knowledge of the full
Navier Stokes solution) it must be modelled, and the question of how best
to construct this model arises.

Regardless of the acoustic analogy used, the source is a function of the
flow turbulence, and so the question of source modelling is inseparable from
that of turbulence modelling. In this section we consider the turbulent
jet, and the link between this and sound sources. The way turbulence is
perceived and modelled has changed considerably in the last fifty years, as
has, correspondingly, our understanding of the jet as a source of sound.
We therefore briefly trace out these evolutions, providing examples of some
recent developments where the source modelling question is concerned.

3.2 A systematic approach to modelling

Analysis of aeroacoustic systems is, like that of most of complex fluid
systems, largely an exercise in system reduction. We are interested in dis-
cerning the essential aspects of the fluid system with regard to the quantity
(observable) that interests us (the radiated sound in the present case), our
end objective being to come up with a simplified model of the flow (both
kinematically and dynamically). And, of course, it is a prerequisite that this
simplified model provide as accurate as possible a prediction of the radiated
sound field: how best to model the flow turbulence as a sound source. The
acoustic analogy can be useful as an aid, but, as we saw in the previous
section, used in isolation it is not sufficient.

The information neglected in a simplified model of an aeroacoustic sys-
tem can be seen as an error, and the success or failure of that model will be
reflected by the degree to which the acoustic analogy considered is sensitive
to that error. Note, however, that such errors can arise, or be perceived,
in two quite different contexts. The errors might be due to there being
incomplete flow information available to us. Or, alternatively, the ‘error’
might be something that we intentionally introduce, through the removal of
flow information that we consider non-essential where the sound production
problem is concerned. In the latter case, the missing information is some-
thing that we are required to consider and choose carefully. An analysis
methodology is outlined in this section, concerned with such a considered
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removal of non-essential information: we intentionally introduce considered
and calculated ‘errors’.

The sensitivity issue has been studied in an ad hoc manner by Samanta
et al. (2006) with the former idea in mind: how sensitive are acoustic
analogies to unwanted errors? The authors considered a DNS of a two-
dimensional mixing layer, which they used in conjunction with a number
of acoustic analogy formulations (Lighthill-like and Lilley-like formulations
were assessed); the sound fields computed by all analogies showed good
agreement with the DNS, consistent with the results of the model problem
considered in the previous section. The full solution of the DNS was then
artificially modified so as to introduce an error, which we here denote δs(q).
This error was produced through a manipulation of the coefficients of the
POD modes 7 of the full solution. The sound field was then recomputed, by
means of the different acoustic analogies, using the contaminated flow data,
and the error in the sound field so computed was assessed in each case.

Different kinds of source error were explored: effects analogous to low-
pass filtering, and the reduction of energy in narrow frequency bands, are
two examples. In many cases the resultant error in the sound field was
found to be similar for all of the acoustic analogies considered. For one par-
ticular case, however, where the error corresponds to a division of the first
POD mode coefficient by 2 (this amounts to a significant reduction of the
low frequency fluctuation energy of the flow), the Lighthill-like formulation
showed greater sensitivity than the other formulations.

The problem can be thought about as follows. Consider an acoustic
analogy, written in the general form Lp = s(q). The parameter space of the
source, s(q), can be expressed in terms of an orthonormal basis, to which
there corresponds an inner product; such is the case, for instance, for the
POD basis of Samanta et al. (2006). If we now consider the eventual impact
of the introduction of a small disturbance (which simulates a modelling
error) to the source, δs(q) (as per Samanta et al. (2006)), we are interested
in the impact that this will have on the acoustic field, i.e. δp. The problem
comes down to the following situation: if δs(q) ‖ ∇L then the sound field
will be sensitive to small perturbations in the source, δs(q). δs(q) is in this
case aligned with the direction of maximum sensitivity of the propagation
operator L in the parameter space considered. If, on the other hand, δs(q) ⊥
∇L, then changes in s(q) will have no impact on the sound field, p. 8

This way of viewing the aeroacoustic problem means that the modelling

7see section 5 for an exposition of POD
8This shows that the arbitrary introduction of disturbances to, and subsequent com-

parison of, two different analogies cannot provide an unambiguous assessment, in an

absolute sense, of the relative robustness of the two formulations. For, if the gradients
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problem can be formulated in the following way: beginning with full flow
information q, from a numerical simulation for example, we are required
to find the directions (in a suitably chosen parameter space) of the flow
solution that can be eliminated without adversely affecting the quality of
sound prediction. We must identify the ‘errors’ δq, such that we obtain a
simplified flow field, q̂ = q − δq; the source computed from this simplified
flow field, s(q̂), has an associated error, and this error must be such that
the component of s(q̂) aligned with the propagation operator is unaffected.

The following analysis methodology, based on the above reasoning, is
intended as a guide for the analysis of complex aeroacoustic systems, from
the point of view of source mechanism identification and the design of sim-
plified models (from both kinematic and dynamic standpoints).

Analysis methodology

1. Obtain full or partial information associated with the complete flow
solution, q (whose dynamic law we know: the Navier-Stokes operator,
N (q) = 0); this data could be provided by experimental measurements
or from a numerical simulation;

2. Identify and extract, from q, the observable of interest: the radiated
sound in our case, qA;

3. Construct an observable-based filter, FqA
, which, applied to the full

solution removes information not associated with sound production,
and thereby provides a reduced-complexity sound-producing flow skele-
ton (kinematics), q̂D = FqA

(q);
4. Analyse q̂D with a view to postulating a simplified ansatz for the

source, s(q̂D);
5. Using an acoustic analogy, compute q̂A = L−1s(q̂D), and verify that

min||qA − q̂A||;
6. Determine a reduced-complexity dynamic law, N̂ (q̂D) = 0, that gov-

erns the evolution of q̂D.

Let us consider step 3 for a moment, as the observable-based filter, FqA
,

can be defined with varying degrees of rigour. The following are some pos-
sible scenarios. (i) In some situations the application of FqA

might be quite
heuristic, e.g. no more than the simple observation of the flow—we see
with relative ease that this structure interacted with that to produce this
aspect of the sound field, whence we propose a model. (ii) Alternatively,

∇L1 and ∇L2 (where the subscripts 1 and 2 indicate the two analogies) have different

directions in the parameter space, one will always be able to find a perturbation that

causes one operator to appear less robust than the other.
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it could comprise a more sophisticated flow visualisation, or perhaps a se-
ries of measurements giving quantitative access to the flow solution, from
which a simplified model might be proposed, provided the essential mecha-
nisms show themselves clearly in this data. However, in the context of high
Reynolds number turbulent flows, it is frequently necessary to approach the
design of FqA

in a more rigorous, methodological and objective, manner.
Two further avenues can be pursued in this regard: (iii) it may be possible,
using a purely theoretical deduction, to identify flow (or source) information
that can be safely removed (examples are provided in what follows); and,
(iv) signal processing tools can be used to decompose the complex system
into more easily manageable ‘building blocks’, whose relative importance
for sound production can then be tested.

Early analysis in aeroacoustics (1950s-1980s) was largely undertaken in
contexts (i) and (iii), due to the limited capabilities of measurement and
signal-processing. With the progressive improvement of the two latter dis-
ciplines, analysis in contexts (ii) and (iv) has become more common. In
what follows we will show how a complete analysis will generally involve a
combination of (i)-(iv).

In the following, we provide a short historical sketch (contexts (i) and
(iii) are preponderant) outlining how the complexity of the turbulent jet
was observed, considered, discerned and finally modelled with respect to
both its internal turbulence mechanisms and the associated sound sources.

3.3 Turbulence: as a space-time chaos

When Lighthill first provided us with a theoretical foundation from which
to model, study and understand jet noise, turbulence, both generally and
in the specific case of the round jet, was considered to comprise a space-
time chaos, devoid of any underlying order. The standard at that time for
the kinematic description of turbulence structure could be found in turbu-
lence theories such as that of Batchelor (1953): attempts to understand
and model turbulence were based on the Reynolds Averaged Navier-Stokes
(RANS) equations, where the only conceptual constructs invoked, aside
from those expressed in the conservation equations, are those required for
closure (Boussinesq’s notion of eddy viscosity, for instance) on one hand,
and, on the other, the flow entities supposed to participate in the physical
processes associated with the various terms that appear in the RANS equa-
tions: fluctuation energy is ‘produced’, ‘transported’, ‘dissipated’ by virtue
of interactions between stochastic flow ‘scales’ or ‘eddies’.

Figure 3(a), which shows a schlieren photograph of a turbulent jet, gives
a visual sense of this stochastic character. Source terms in acoustic analogies
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were constructed in accordance with this conceptual picture of turbulence.
Lighthill (1952) assumed a statistical distribution of uncorrelated eddies
throughout the source region, and this led to the well known U8 power law
for the isothermal turbulent jet. However, predictions based on Lighthill’s
analogy, using such kinematic models for the turbulence, do not explain all
of the features of subsonic jet noise: at low emission angles (with respect to
the downstream jet axis), for example, the U8 power law does not hold, and
the narrower spectral shape is generally not well predicted. Something is
missing from this combination of acoustic-analogy formulation and source
representation.

(a) (b)

Figure 3. Different visualisation techniques of jets at similar Reynolds
number, taken from Crow and Champagne (1971). (a) Schlieren photogra-
phy; Re = 1.06 × 105; (b) CO2 fog visualisation using sheet illumination;
Re = 7.5× 104.

3.4 Turbulence and ‘coherent structures’

Soon after the first attempts by Lighthill and his successors to predict the
sound radiated by turbulent jets a change occurred in the way turbulence
is perceived. Turbulent flows were observed to be more ordered than had
previously been believed, and a new conceptual flow entity was born, some-
times referred to as a ‘coherent structure’, or, alternatively, a ‘wave-packet’.
Mollo-Christensen (1967) was one of the first to report such order in the
case of the round jet: “...although the velocity signal is random, one should
expect to see intermittently a rather regular spatial structure in the shear
layer.”. A series of papers followed, confirming these observations and pos-
tulating on the nature of this order (Crow and Champagne (1971), Brown
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Figure 4. Flash Schlieren images of jets (Re = 5× 105; M = 0.83), taken
from Moore (1977). Left: random ensemble average; middle: conditional av-
erage using axisymmetric nearfield pressure signature as trigger; right: con-
ditional average using a single nearfield microphone as trigger (this educes
the antisymmetric organisation).

and Roshko (1974) and Moore (1977) to cite just a few). Figure 3(b), taken
from Crow and Champagne (1971), provides a visual sense of this under-
lying order: by changing visualisation technique, using sheet illumination
and carbon dioxide fog, rather than the fine grained patterns revealed by
the schlieren technique, an axially-aligned waveform with wavelength of the
order of the jet diameter is observed.

A further illustration of the underlying organisation present in high
Reynolds number jets is shown in figure 4, which shows the difference be-
tween time-averaged and conditionally-averaged images of round jets at high
Reynolds and Mach numbers. We will discuss conditional averaging tech-
niques later in more detail.

Order in chaos

The following series of citations gives a sense of the impression that this
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discovery made on researchers working in the field of both turbulence and
aeroacoustics.

“The apparently intimate connexion between jet stability and noise gen-
eration appears worthy of further investigation” – Mollo-Christensen and
Narasimha (1960)

“[jet noise] is of interest as a problem in fluid dynamics in the class of
problems which involve the interaction between instability, turbulence and
wave emission” – Mollo-Christensen (1963)

“There appear to be at least two distinguishable types of emitted sound,
one dominating at very low frequencies and another dominating at high
frequencies. A relation which gives a smooth interpolation between these
asymptotic ranges would prove useful, if one could be invented.” – Mollo-
Christensen (1963)

“The data suggest that one may perhaps represent the fluctuating [hy-
drodynamic] pressure field in terms of rather simple functions. For example,
one may consider the jet as a...semi-infinite antenna for sound...” – Mollo-
Christensen (1967)

“...although the velocity signal is random, one should expect to see in-
termittently a rather regular spatial structure in the shear layer.” – Mollo-
Christensen (1967)

“We therefore decided to stress measurements near and in the jets, hop-
ing to discern some of the simpler features of the turbulent field. We also
did measure for field pressures, and intended to see if we could not connect
the two sets of observations somehow, using the equations of sound propa-
gation.” – Mollo-Christensen (1967)

“It is suggested that turbulence, at least as far as some of the lower order
statistical measures are concerned, may be more regular than we may think
it is, if we could only find a new way of looking at it.” – Mollo-Christensen
(1967)

“The mechanics of turbulence remains obscure, so that it comes as a
matter of some relief to find that the motions which now interest us are co-
herent on a large scale...Such large eddies might be readily recognisable as
a coherent transverse motion more in the category of a complicated laminar
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flow than chaotic turbulence. In any event the eddies generating the noise
seem to be much bigger than those eddies which have been the subject of in-
tense turbulence study. They are very likely those large eddies which derive
their energy from an instability of the mean motion...” – Bishop et al. (1971)

“These [measurements] suggest that hidden in the apparently random
fluctuations in the mixing layer region is perhaps a very regular and or-
dered pattern of flow which has not been detected yet” – Fuchs (1972)

“Whether one views these structures as waves or vortices is, to some
extent, a matter of viewpoint.” – Brown and Roshko (1974)

“All this evidence suggests that the turbulence in the mixing layer of the
jet behaves like a train similar to the hydrodynamic stability waves propa-
gating in the shear flow.” – Chan (1974)

“The dominant role of the dynamics and interaction of the large struc-
ture in the overall mechanism that eventually brings the two fluids into in-
timate contact becomes apparent. It is clear that any theoretical attempts
to model the complex mixing process in the shear layer must take this ubiq-
uitous large structure into account.” – Dimotakis and Brown (1976)

“Turbulence research has advanced rapidly in the last decade with the
widespread recognition of orderly large-scale structure in many kinds of tur-
bulent shear flows...some measure of agreement seems to have been reached
among investigators on the general properties of the coherent motions.” –
Crighton and Gaster (1976)

“...the turbulence establishes an equivalent laminar flow profile as far as
large-scale modes are concerned.” – Crighton and Gaster (1976)

“In the last years our understanding of turbulence, especially in jets,
has changed rather dramatically. The reason is that jet turbulence has been
found to be more regular than had been thought before.” – Michalke (1977)

“This ‘new-look’ in shear-flow turbulence, contrary to the classical notion
of essentially complete chaos and randomness, has engendered an unusually
high contemporary interest in the large-scale structures.” – Hussain and
Zaman (1981)

“The last twenty years of research on turbulence have seen a growing
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realisation that the transport properties of most turbulence shear flows are
dominated by large-scale vortex motions that are not random.” – Cantwell
(1981)

“Suddenly it was feasible and reasonable to draw a picture of turbulence!
The hand, the eye, and the mind were brought into a new relationship that
had never quite existed before; cartooning became an integral part of the
study of turbulence.” – Cantwell (1981)

As we see from many of the above citations, stability theory is frequently
evoked as a possible theoretical framework for the dynamical modelling of
the flow behaviour described above. However, a full treatment of hydrody-
namic stability is beyond the scope of this lecture, and so we will simply
list, briefly, a few of the different kinds of stability frameworks that are
sometimes used to model the organised component of turbulent shear flows.
We would also point out that the application of stability theory to turbu-
lent flows, where the stability of a time-averaged mean-flow is considered, is
not entirely rigorous (hydrodynamic stability analysis is self-consistent only
when applied to laminar flows), involving a number of assumptions: one of
these is that there exists a scale-separation between a large-scale organised
component of the flow and a finer-grained, stochastic, ‘background’ compo-
nent; the latter establishes a mean-flow profile that can sustain large-scale
instabilities, and acts, furthermore, as a kind of eddy viscosity that damps
the large-scale instabilities.

The first stability calculations with respect to the round jet were per-
formed by Batchelor and Gill (1962) who studied the temporal stability
problem for a plug flow. Michalke and Timme (1967) looked at the temporal
instability of a finite-thickness, two-dimensional shear layer, while Michalke
(1971) considered the spatial instability of a finite thickness axisymmetric
shear-layer. Crighton & Gaster (1976) took account of the slow axial varia-
tion of the shear-layer thickness. Mankbadi and Liu (1984) made an attempt
to include the effect of non-linearities. Tam and Morris (1980) used matched
asymptotic expansions to obtain the acoustic field of a two-dimensional com-
pressible mixing-layer; Tam and Burton (1984) then extending this effort to
the case of a round jet. More recent approaches have been based on linear
and non-linear Parabolised Stability Equations, as used by Colonius et al.
(2010) for example, and Global Stability approaches, applied for instance
to the problem of heated jets by Lesshafft et al. (2010).
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3.5 Coherent structures as a sound source

We now turn our attention to the mechanisms by which such coherent
structures may be active as sound sources. We will work in the context of
Lighthill’s acoustic analogy, whence by means of theoretical considerations
it will be possible to gain some insight regarding pertinent simplifications.
We are, therefore, in what follows, working in the context of steps 3, 4 and 5
of the analysis methodology outlined earlier; and with regard to the filtering
operation, FqA

, we are in context (iii).

The wavepacket source ansatz Mollo-Christensen (1967) appears to
have been first to propose a mechanism by which coherent structures might
be active as a source of sound. Observing that the nearfield pressure sig-
nature of the subsonic jet presents a surprising degree of organisation in
the (y1, τ) plane, he suggested that such organisation could result in the jet
behaving as a ‘semi-infinite antenna for sound’. Where this kind of sound
production is concerned, a convected wavepacket constitutes a pertinent
model for the organised component of the flow. Such a model, first ex-
plored by Michalke (1971) and Crow (1972), continues to be widely used by
researchers today, even if there is probably some disagreement with regard
to the salient sound-producing features and dynamic law of such wavepack-
ets.

Our presentation of the wavepacket sound source is organised as follows:

• We begin by introducing the basic wavepacket source ansatz, as pro-
posed by Michalke (1971), Crow (1972) (see also Crighton (1975)),

• We then outline some of the arguments used to justify its simple line-
source form: the elimination of the radial dimension is a good example
of observable-based simplification,

• We next present a comparison of experimentally obtained acoustic
data with the sound field characteristics of the wavepacket model,

• We then discuss, in greater detail, the radiation mechanism associated
with wavepackets, exploring a number of different kinds of behaviour
which lead to its being enhanced:
1. Spatial modulation,

2. Temporal modulation,

3. Temporally-localised wavepacket truncation,

4. Space-time ‘jitter’.
• Finally, we present, in section §4, two case studies, in which a num-
ber of numerical databases (obtained both by Large Eddy Simula-
tion and by Direct Numerical Simulation) are analysed, following the
methodology outlined earlier, and the salient sound-producing fea-
tures of wavepackets thereby educed.
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The basic wavepacket model First attempts to explore the wavepacket
ansatz as a kinematic model for the organised component of the jet were
made by Michalke (1971), Crow (1972) (see also Crighton (1975)). The
physical problem considered is that of small amplitude acoustic disturbances
propagating through a quiescent, homogeneous medium, as a result of an
externally-imposed source term:

1

c2o

∂2p(x, t)

∂t2
−∇p(x, t) = s(y, t), (71)

where the source takes the following form:

s(y, t) =
∂2

∂y21
2ρ0Uũ

πD2

4
δ(y2)δ(y3)e

(ωt−κyy1)e(−y2
1/l

2). (72)

The solution of the spherical wave equation to an externally-imposed exci-
tation of this kind is:

p(x, t) = −ρ0UũM
2
c (kD)2L

√
π cos2 θ

8|x| e−
L2k2(1−Mc cos θ)2

4 eiω(t−
|x|
c ), (73)

where Mc is the Mach number based on the phase velocity of the convected
wave, Uc.

Figure 5. Effect of axial compactness parameter, kL, on directivity.

As outlined in section §2, equation 73 results from a convolution of the
source ansatz with the free-space Green’s function, this operation identify-
ing the source characteristics to which the radiated sound field is sensitive.
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One of these characteristics, visible in the solution, is the source compact-
ness, kL. Figure 5 shows how for small values of kL the source is com-
pact, while for larger values it becomes non-compact, exhibiting numerous
oscillations over its spatial extent. The corresponding dependence of the
sound field directivity is shown in the right-hand figure: the less compact
the source, the more the sound field is ‘beamed’, due to an antenna ef-
fect, to shallow axial angles. For kL = 6 the directivity pattern is close
to exponential; sources exhibiting such exponential directivity are termed
superdirective (Crighton and Huerre (1990)).

It can be seen in equation 72 that the source is concentrated on a line
(by δ(y2)δ(y3)). This may seem strange considering that the turbulent re-
gion of a propulsive jet fills a volume that is approximately bounded by a
conical surface. This simplification can be justified, however, by appeal-
ing to the radiation efficiency of different azimuthal modes of a cylindrical
source (which is a slightly better approximation to the real dimensions of
a jet, particularly when one considers the regions of maximal turbulence
intensity: these lie on such a cylindrical surface). In the following section
we outline this justification; this is an exercise in system reduction based
purely on theoretical arguments: we use the Lighthill acoustic analogy for-
mulation to demonstrate how certain ‘directions’ of the source system can
be disregarded: the conclusion that we come to is that equation 72 is a rea-
sonable approximation for the coherent structures where low-angle sound
emission is concerned.

Radiation efficiency of azimuthal modes The following is taken from
Cavalieri et al. (2010b) and Cavalieri et al. (2011a), similar analysis being
found in Michalke (1970). Consider a source term of the form

T11(y, τ) = ρ0UũRδ(r −R)ei(ωτ−ky1)e−
y2
1

L2 Cmeimφ. (74)

Where m denotes azimuthal Fourier mode number, and Cm the correspond-
ing Fourier coefficient. The corresponding solution of the wave equation can
be written

p(x, t) =
ρ0UũR

2

4πc2|x|
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ei[ω(t−

|x−y|
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1

L2 Cmeimφdφdy1. (75)

We assume, without loss of generality, that the observer is at Φ = 0 and
x2 = 0 in cartesian coordinates, where Φ = tan−1(x2/x3). The distance can
be expressed, with a far-field assumption, as,

|x− y| ≈ |x| − y1 cos θ −R cosφ sin θ, (76)
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where θ is the angle of x to the jet axis. The solution thus becomes
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which can be rearranged as
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Evaluation of the azimuthal integral

I1 =

∫ 2π

0

ei(mφ−ωR cosφ sin θ
c )dφ, (79)

which can be expressed as

I1 =

∫ 2π

0

ei(mφ)e(−iπStM cosφ sin θ)dφ, (80)

indicates the radiation efficiency of azimuthal mode m; i.e. the capacity of
that azimuthal source mode to couple with the acoustic field.9 This integral
can be expressed in terms of Bessel functions Jm,

Jm(x) =
1

2πim

∫ 2π

0

eix cosφeimφdφ, (81)

giving
I1 = (−i)m2πJm(πStM sin θ). (82)

For StM sin θ = 0 the I1 integral yields 2π for m = 0, and 0 for all other
values of m. This means that, if we neglect retarded time differences along
the azimuthal direction, which is justified if this direction is acoustically
compact (i.e., the acoustic wavelength is much larger than the azimuthal
wavenumber, which being always smaller than the jet diameter, D, allows

9Or, stated otherwise, the extent to which that mode is aligned with the propagation

operator. If we find that certain modes are not so aligned, this will be an indication

that there neglect constitutes a pertinent modelling simplification.
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Figure 6. Results for the I1 integral

the compactness criterion to be expressed in terms of the jet diameter:
D/λ = StM) only axisymmetric wave-packets can radiate. In other words,
if the wave-packet diameter D is compact, or, if the observation angle θ is
small, only the axisymmetric wave-packet has significant radiation. This
is always true for θ = 0 and θ = π, i.e. for an observer on the jet axis
(Michalke (1970); Michalke and Fuchs (1975); Michel (2009)).

Figure 6 shows the I1 integral, divided by (−i)m so as to yield a real
quantity. We see that the integral of m = 0 decays from its compact value
of 2π, eventually goes to zero, and then oscillates. The integrals for the
higher azimuthal modes are zero at the compact limit, as expected from
the properties of the Bessel functions; they go from zero to a certain value,
which is of the same order of the m = 0 integral, and then oscillate.

In order to appreciate the implications for a realistic jet flow, consider
the sound radiation to low axial angles from a high Mach number subsonic
jet. Taking θ = π/6, M = 0.9 and St = 0.4, we have StM sin θ = 0.18, and
in this case, as seen in fig. 6, we can, if we have similar amplitudes Cm for
the different m values, neglect all modes m > 0 and consider the compact
limit (I1 = 2π for m = 0) as a first approximation; the I1 integral for m = 1
yields a sound intensity 10dB lower than that for m = 0, the integrals for
higherm modes being lower still. Suzuki and Colonius (2006) have provided
experimental evidence showing that the peak amplitudes, Cm, for azimuthal
modes m = 0 and m = 1 are similar, the amplitudes of mode m = 2 being
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somewhat lower.
If we retain only the axisymmetric wave-packet and approximate I1 as

2π, we have
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and integration gives

p(x, t) = −C0
ρ0UũM
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which is the same result obtained using the line source in equations 71, 72
and 73. This means that for small values of the parameter StM sin θ, the
use of a wave-packet concentrated on a line leads to the same result as a
surface wave-packet, justifying therefore the use of a line distribution for
T11, whose amplitude is that of the azimuthal mean of the u fluctuation on
the jet lipline. We will see, later, the extent to which this considerably sim-
plified source model, and variants thereof, can mimic the sound-producing
behaviour of a turbulent jet. In particular, we will be interested in some
important additional modifications, identified thanks to the application of
the analysis methodology outlined earlier, which are necessary in order that
the ansatz be capable of producing quantitative agreement with the sound
field radiated by the turbulent jet. First, however, let us examine some ex-
perimental data, comparing, qualitatively, with the basic wavepacket ansatz
outlined above.

Experimental evidence of wavepacket radiation The following re-
sults are taken from Cavalieri et al. (2011b). The experiments were per-
formed at the Bruit & Vent jet-noise facility of the Pprime Institute. The
setup is shown in figure 7. The exit diameter of the jet is D = 0.05m,
the flow is isothermal, and the exit velocity is varied over the Mach num-
ber range 0.3 < M < 06; the corresponding Reynolds number range is
3.7×105 < Re < 5.7×105, and the boundary layer is tripped in all cases so
as to ensure that at the outlet it is fully turbulent. Acoustic measurements
are performed by means of an azimuthal distribution of six microphones
at a radial distance of 35D, and the axial position of the ring array was
variable. In this way the directivity of the sound field, decomposed into
azimuthal Fourier modes, can be studied. These measurements can then be
compared with the sound field of the wavepacket ansatz discussed above;
in particular we focus on the axisymmetric component. Figure 7(b) shows
the directivity in terms of both the overall SPL and the contributions from
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(a) (b)

Figure 7. (a) Jet noise experiment assessing azimuthal structure of the
acoustic field radiated by moderate Mach number jets; 0.3 < M < 06,
< Re <. Red arrow shows direction of jet; red circles indicate the positions
of the 6 azimuthally-distributed microphones; (b) OASPL: squares: total;
contributions from azimuthal modes m=0, m=1 & m=2 indicated in figure.
Note dominance of axisymmetric mode in downstream radiation.

each of the first three azimuthal Fourier modes, m = 0, m = 1 and m = 2.
The axisymmetric component, m = 0, dominates the downstream radiation,
sideline radiation comprising larger contributions from modes m = 1 and
m = 2.

The dominance of the low-angle radiation by the axisymmetric mode is
consistent with the foregoing analysis of the efficiency of azimuthal source
modes, suggesting the existence of wavepacket radiation. By continuing to
interrogate the experimental data with respect to the wavepacket model
characteristics, we can evaluate the extent to which this model is pertinent.

Concentrating now on the lower emission angles, assessing the power
spectral density as a function of emission angle and azimuthal Fourier mode,
we obtain the result shown in figure 8. As we move from 40◦ to 20◦ we
observe the progressive emergence of the axisymmetric component of the
power spectrum, and we note that this emergence occurs over a relatively
narrow spectral range, with peak frequency StD = 0.2. The energy of the
axisymmetric component of the sound field finds itself concentrated at low
angles (highly directive) and across a relatively narrow range of frequency.
At the lowest emission angles the peak of the overall spectrum is almost
entirely axisymmetric, the energy of mode m = 0 being 10dB (that is one
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Figure 8. Power spectra of azimuthal modes 0, 1 & 2 at low emission
angles.

Figure 9. Narrowband-filtered (at StD = 0.2) directivity of azimuthal
modes and comparison of axisymmetric mode with wavepacket ansatz. Ax-
isymmetric component of experimentally obtained sound field is superdirec-
tive (exponential polar decay) in agreement with the wavepacket model
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Figure 10. Azimuthal mode directivities as a function of Mach num-
ber. Axisymmetric mode is superdirective for all Mach numbers; indicates
wavepacket radiation even at low Mach number

order of magnitude) greater than the next most energetic azimuthal mode,
m = 1. The narrowband character of the emergence of the axismmetric
mode, whose energy is concentrated at StD = 0.2, justifies an assessment
of the directivity of the SPL in a narrow frequency range centered at this
frequency. The result is shown in figure 9(a), where the downstream direc-
tivity of the axisymmetric component at this frequency is even more marked.
Comparison can now be made with the directivity factor of the wavepacket
ansatz, (1 −Mc cos θ)

2; this is done in figure 9(b). The exponential char-
acter of the axisymmetric component of the sound field, when plotted as a
function of this wavepacket directivity factor again suggests that the asso-
ciated underlying source mechanism is associated with an axially extended
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wavepacket of the kind modelled by equation 72. The term superdirectivity
was coined by Crighton and Huerre (1990) to describe such directivity.

It is now of interest to study two further aspects of the experimental
sound field: the Mach number dependence and the spectral scaling; both
will allow further insight with regard to the possibility that the downstream
radiation is underpinned by these relatively simply wavepacket source func-
tions. Figure 10 shows the OASPL and narrowband-filtered SPL as a func-
tion of emission angle for the different azimuthal Fourier modes of the sound
field, as a function of jet Mach number. The result shows that precisely
the same behaviour observed at Mach 0.6 is also observed at lower Mach
number, suggesting that wavepacket radiation is a dominant mechanism for
low-angle emission, even at low Mach number.

Finally, we assess the scaling of spectra for the modes m0 and m1, as
a function of Mach number, for emission angle θ = 30◦. The result is
shown in figure 11, where both Strouhal (StD = fD/Uj) and Helmholtz
(He = D/λ) numbers are assessed. For the axisymmetric component of the
sound field we find that Helmholtz scaling best collapses the sound spectra.
As the Helmholtz number is the ratio of a characteristic flow scale to a
characteristic scale of the sound field, the fact that this parameter collapses
the axisymmetric component of the sound field suggests that the associated
source is non-compact, as it suggests that this component of the sound field
is sensitive to the ratio between flow scales and acoustic scales; this would
not be so for a compact source, where a clear scale separation exists between
acoustic waves and flow eddies.

By comparing the experimental data with the details of the wavepacket
ansatz, it is possible to make a quantitative estimate of the wavepacket
compacntess parameter, kL, which can be written as

Lk =
2π

Mc
He

L

D
. (85)

Considering the jet at M = 0.6, we have, Mc = 0.36, He = 0.12 and
D = 0.05. For the same jet the directivity of the axismmetric mode is char-
acterised by a decrease of 15.6dB over the angular range 20◦ < θ < 45◦,
which allows us to estimate that the compactness parameter, Lk = 6.5.
Comparison with figure 5, gives a sense of the corresponding wavepacket
structure; this value, which suggests that the wavepacket extends over an
axial region of about 6D, is consistent with the analysis of Hussain and
Zaman (1981), who educed coherent structures from low Mach number tur-
bulent jets by means of conditional averaging of hotwire measurements.
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Figure 11. Scaling of azimuthal modes 0 and 1. Axisymmetric mode scales
best with Helmholtz number, He = D/λ, suggesting that it is associated
with a non-compact source. Substituting the experimental parameters into
the wavepacket model we can deduce that Lk = 6.5; comparison with
figure5 shows that this implies wavepacket with a spatial structure com-
prising about three oscillations, extended over approximately 6D, i.e. from
the jet exit to beyond the end of the potential core.

The radiation mechanism Let us now consider the details of the mecha-
nism by which sound sources, and in particular, ‘coherent structures’, excite
acoustic modes in turbulent flows. The mechanism can be understood by
considering the acoustic analogy, written down either as a partial differen-
tial equation, or expressed in terms of its integral solution; time-domain,
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frequency-domain and linear alebräıc formulations of both the inhomoge-
neous PDE and its integral solution can be helpful in understanding the
essentials: the sound production mechanism can be thought about in three
different ways; we can say that:

1. Space-time inhomogeneity of the source field is such that cancellation
(in time-delayed coordinates) between regions of positive and negative
stresses is incomplete; the fluid medium thus finds itself subjected
to compressions and rarefactions that engender a propagative energy
flux,

2. The propagation operator has an acoustic response to only those com-
ponents of the source field that are acoustically-matched: those that
satisfy the dispersion relation ω2 = c20|κ|2; in terms of the integral
solution we can say that the Green’s function filters out, from the full
range of source scales, only those that satisfy that dispersion relation,

3. In terms of linear algebra we can say that the propagator maps to
the farfield those components of the source with which it is aligned:
L ‖ s(q).

In the case of the wavepacket, these different scenarios can be represented
schematically as in figure 12.

Let us now consider a number of different kinds of physical wavepacket
behaviour that can lead to such radiation, before going on to explore data
from turbulent jets. The following is taken from Cavalieri et al. (2011a) and
Cavalieri et al. (2010b).

Spatial modulation The wavepacket characteristic most often referred
to in the literature as important for the production of radiating sound en-
ergy is its spatial modulation. A subsonically-convected spatial sinusoid of
constant amplitude and infinite spatial extent contains only non-radiating
scales, because ω < kxc. However, any truncation or spatial modulation of
the amplitude of that wavepacket will cause its axial wavenumber spectrum
to broaden, and in this way some of the wavepacket energy will find itself in
the acoustically-matched region of the spectrum. Figure 12 illustrates this:
(a) shows non-radiating and radiating space-time structures; (b) shows the
frequency-wavenumber spectrum of a radiating wavepacket—the tail of the
spectrum that finds itself in the radiating sector causes sound radiation.

Temporal modulation A further feature of the unsteadiness associated
with the orderly part of a turbulent jet is its intermittency. The earlier cita-
tions from Mollo-Christensen recognise this. A further citation from Crow
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(a) (b) (c)

Figure 12. Different ways of thinking about the wavepacket radiation
mechanism: (a) Space-time representation: amplitude inhomogeneities lead
to incomplete cancellation, and associated compressions and rarefactions;
(b) frequency-wavenumber representation; mechanism can be thought of as
a filter that only passes the source components that satisfy ω2 = c20|κ|2; (c)
Representation in terms of linear algebra: mapping to the farfield of source
by propagation operator: directions of the source, s(q), that are parallel to
the propagator, L, get mapped to the farfield.

and Champagne (1971) is also relevant; they observed, by means of flow
visualisation, the appearance of a train of coherent ‘puffs’ of turbulence.
These were characterised by an average Strouhal number of 0.3, but the
authors noted how “three or four puffs form and induct themselves down-
stream, an interval of confused flow ensues, several more puffs form, and so
on”.

The effect of such intermittency can considered in a number of ways.
Ffowcs Williams and Kempton (1978) were the first to consider a kinematic
model for such behaviour; this took the form of a random variation of the
phase velocity of the convected wavepacket, as shown in equation 86. In
this case the wave envelope remains time-invariant.

s(y, τ) =
∂2

∂y21
2ρ0Uũ

πD2

4
δ(y2)δ(y3)

[1 + ε(t− y1/U)]

U
e(ωt−κyy1)e(−y2

1/l
2).

(86)
Figure 13, which shows data taken from the DNS of Freund (2001) and the
experimental measurements of Tinney and Jordan (2008), illustrates how
intermittency is also manifest in an unsteadiness of the wavepacket envelope:
a pattern of convected waves is observed from x ≈ D to x ≈ 6D. These are
characterised by some average frequency, but they undergo a modulation
which is both spatial and temporal: the maximum amplitude of the wave
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Figure 13. Left: axisymmetric axial velocity fluctuation at r/D = 0.5,
from DNS of Freund (2001); Re = 3600. Right: nearfield pressure signature
of jet at Re = 5.106, from measurements of Tinney and Jordan (2008).
Note in both cases the time variation of wavepacket amplitudes and spatial
extension.

changes in time, as does the position where it breaks down. A model for
the former effect is

T11(y, τ) = 2ρ0Uũ
πD2

4
δ(y2)δ(y3)e

i(ωτ−ky1)e−
y2
1

L2 e
− τ2

τ2
c . (87)

Examples of this kind of space and time modulation are shown in figure 14
and this leads to a radiated sound pressure:

p(x, t) =
ρ0UũD

2 cos2 θ

8c2|x|
∂2

∂t2

∫ ∞

−∞

{
ei(ωτ−ky1)e−

y2
1

L2 e
− τ2

τ2
c

}
τ=t− |x−y|

c

dy1,

(88)
where c is the speed of sound in the undisturbed fluid and θ is the angle of
x to the jet axis. Use of the far-field approximation |x− y| ≈ |x| − y1 cos θ
leads to

p(x, t) =
ρ0UũD

2 cos2 θ

8c2|x|
∂2

∂t2

⎧⎨
⎩e

iω(t− |x|
c )− (t− |x|

c )
2

τ2
c

∫ ∞

−∞
f(y1)dy1

⎫⎬
⎭ (89)
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Figure 14. Space- and time-modulated wavepackets.

with

f(y1) = ei(
ωy1 cos θ

c −ky1)e
− y2

1
L2 − (y1 cos θ)2

c2τ2
c e

− 2y1 cos θ(t− |x|
c )

cτ2
c , (90)

where c is the speed of sound in the undisturbed fluid and θ is the angle of
x to the jet axis.

Evaluation of the integral of equation 90 leads to an analytical expression
for the pressure in the far field:

p(x, t) = PQe
iωtr− t2r

τ2
c
− L2

4τ2
c γ2 [(ck−ω cos θ)τ2

c−2itr cos θ]
2

(91)

with

tr = t− |x|
c
, (92)
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P =
ρ0UũD

2τccL
√
π cos2 θ

4c2|x|γ , (93)

Q =

{[
iω − 2

tr
τ2c

+
iL2 cos θ

τ2c γ
2

[
(ck − ω cos θ)τ2c − 2itr cos θ

]]2 − 2c2

γ2

}
,

(94)
and

γ =
√
τ2c c

2 + L2 cos2 θ. (95)

If we calculate the limit with τc → ∞ of eqs. (91)–(95), we have

γ → τcc (96)

and

P → ρ0UũD
2L

√
π cos2 θ

4c2|x| , (97)

which, after substitution in eq. (91), leads, as expected, to the earlier result
for a purely spatially modulated wavepacket,

p(x, t) = −ρ0UũM
2
c (kD)2L

√
π cos2 θ

8|x| e−
L2k2(1−Mc cos θ)2

4 eiω(t−
|x|
c ), (98)

where Mc is the convective Mach number given by ω/(kc).
We can define a source efficiency as the ratio between the acoustic energy,

EA =

∫ ∞

0

∫
Ω

p2

ρ0c
dS(x)dt, (99)

with the surface integral calculated over a spherical surface Ω in the far
field, and the turbulent kinetic energy, or “source” energy, given by

ES =
1

T

∫ ∞

0

∫
VS

ρ0u
2

2
dydτ . (100)

This allows an evaluation of the impact of changes in the space and time
scales of the wavepacket envelope on the acoustic efficiency. Figure 15
shows this dependence. Note that the colour scale is logarithmic: at high
Mach number small reductions in either the spatial or temporal extent of
the wavepacket can lead to considerably enhanced radiation efficiency; the
space-time localisation of a wavepacket is thus an important source param-
eter: such behaviour in a jet comprises a flow ‘direction’ to which the wave
operator is highly sensitive.
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Figure 15. Wavepacket efficiency, as a function of space- and time-envelope
scales, for different Mach numbers.

Temporally-localised envelope truncation In order to provide tem-
poral changes in the spatial extent of the envelope function, in an effort to
better model the wavepacket characteristics observed in figure 13, we can
model T11 as

T11(y, τ) = 2ρ0Uũ
πD2

4
δ(y2)δ(y3)e

i(ωτ−ky1)e
− y2

1
L2(τ) . (101)

With this expression the peak amplitude of the convected wave is kept
constant, but the characteristic length of the envelope, L, changes with
time. We model the changes in L as

L(τ) = L0 − κe
− (τ−τ0)2

τ2
L , (102)

where L0 is an initial envelope width and κ is the maximum envelope reduc-
tion, which happens at τ = τ0. This reduction of the envelope occurs over
an interval characterised by the temporal scale τL, and is modelled by a
Gaussian function. Examples of this source behaviour are shown in fig. 16.
The sound radiation is obtained in this case by numerical integration using
this line source. A sample result is shown in figure 16: we note that the
envelope truncation also leads to an enhancement of the sound radiation,
again suggesting that this kind of unsteadiness, observed in the numerical
and experimental data, may underpin the emission of high-amplitude acous-
tic perturbations to the far field of turbulent jets: again, in the spirit of the
system reduction at the heart of the analysis methodology evoked earlier,
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Figure 16. Space- and time-modulated wavepackets.

the propagation operator is sensitive to this kind of flow behaviour, and so
such flow ‘directions’ should, again, be retained, i.e. explicitly modelled.

We now consider a final model, which takes us closer again to the be-
haviour we observe in the data shown in figure 13. We wish to mimic the
space-time ‘jitter’ manifest in the data, we must therefore capture the time
variation of the wavepacket envelope in terms of both its peak amplitude and
its axial extent. This final model combines the effects modelled individually
in the two previous models.

Space-time ‘jitter’ T11 is now modelled as

T11(y, τ) = 2ρ0Uũ
πD2

4
δ(y2)δ(y3)A(τ)e

i(ωτ−ky1)e
− y2

1
L2(τ) , (103)

where we allow temporal variations of the amplitude A, and also tempo-
ral changes in L. This expression, used in conjunction with the far-field
assumption, leads to:

p(x, t) =
ρ0UũD

2 cos2 θ

8c2|x|
∂2

∂t2

∫ ∞

−∞
A

(
t− |x| − y1 cos θ

c

)

e
i
[
ω
(
t− |x|−y1 cos θ

c

)
−ky1

]
e
− y2

1

L2
(
t− |x|−y1 cos θ

c

)
dy1. (104)

If the amplitude A and the characteristic length of the envelope, L,
change slowly when evaluated at retarded-time differences (y1 cos θ/c) along
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the wave-packet, we can consider axial compactness for these functions in
the integration, such that

A

(
t− |x| − y1 cos θ

c

)
≈ A

(
t− |x|

c

)
(105)

and

L

(
t− |x| − y1 cos θ

c

)
≈ L

(
t− |x|

c

)
. (106)

If ∗ is used to denote a function evaluated at the retarded time t − |x|
c ,

we have

p(x, t) =
ρ0UũD

2 cos2 θ

8c2|x|
∂2

∂t2

{
A∗
∫

e
i
[
ω
(
t− |x|−y1 cos θ

c

)
−ky1

]
e
− y2

1
(L∗)2 dy1

}
.(107)

Evaluation of this integral, considering that the temporal changes in L and
in A are slower than those related to the harmonic oscillation in ω, leads to

p(x, t) = −A∗ ρ0UũM
2
c (kD)2L∗√π cos2 θ

8|x| e−
(L∗)2k2(1−Mc cos θ)2

4 eiω(t−
|x|
c ).(108)

This means that for sufficiently slow temporal changes in A and in L,
the radiated sound field at a given time t is that of a wave-packet whose
amplitude and envelope corresponds to the values A∗ and L∗, that is, to the
wave-packet at the retarded time t− |x|/c (compare with eq. (98)).

In the spirit of the analysis methodology outlined earlier the models
considered here will be used, in conjunction with an ensemble of data-
processing/reduction techniques (outlined in section §5), to analyse data
obtained using Large Eddy Simulation and Direct Numerical Simulation.

3.6 Conclusion

In this section we have considered the source modelling problem from
the perspective of ‘coherent structures’. It has been shown how consider-
able simplifications can be justified where the associated sound production
mechanisms are concerned, these simplifications being for the most part de-
rived from theoretical reasoning based on Lighthill’s acoustic analogy. In
what follows we will explore some numerical databases, from which we will
endeavour to extract and evaluate the salient source features through the
application of a number of different analysis tools. These analyses closely
follow the methodology outlined at the beginning of this section; and a de-
tailed exposition of the various analysis tools implemented are described in
section §5.
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4 Two case studies

In this section we provide two examples of applications of the analysis
methodology outlined earlier, focusing on the organised component of the
turbulent jet discussed in the previous section; we also make use of the
wavepacket sound source models of that section.

Let us begin by briefly recalling the analysis methodology: (1) we equip
ourselves with complete or partial data from full Navier-Stokes solution10;
(2) we then identify the acoustic observable, qA, and design a correspond-
ing filter, FqA

11, used to extract the radiating flow skeleton, q̂D; (3) we
construct a simplified kinematic source model, s(q̂D) (based on the models
developed in section §3), and verify that solution of Lq̂A = s(q̂D) is such
that |qA− q̂A| be acceptably small. The final stage of the analysis method-
ology involves identifying the associated dynamic law; this aspect will be
outlined briefly in section §6.

We use three different databases for the analysis, two LES and one DNS.
The two LES use different numerical schemes, leading to one having higher
space-time scale resolution than the other. We will refer to these as LESMD

and LESHR, the subscripts denoting, respectively, moderate and high reso-
lution. The DNS and LESMR therefore constitute databases where coher-
ent structures are relatively easy to identify, on account, respectively, of the
low Reynolds number and the moderate scale resolution. LESHR is more
challenging, as it contains a broader range of turbulence scales, making the
coherent structures more difficult to educe. In this case we are required to
construct a filter based on Linear Stochastic Estimation (LSE).12

4.1 Case study 1. Moderate-resolution LES and DNS

We begin by performing a Large Eddy Simulation of a Mach 0.9, isother-
mal jet, with nominal Reynolds number, Re = 400000. The details of the
computation can be found in Cavalieri et al. (2010a). An image of the flow
solution is shown in figure 17, where the first stage in the analysis method-
ology is illustrated. We, of course, verify that the simulation shows good
agreement with experimental results: at peak sound radiation frequencies

10It is true that the LES does not provide a full Navier Stokes solution, being based on

filtered equations; we nonetheless consider that it provides a relatively complete rep-

resentation of the behaviour of the larger structures, which are those we are interested

in here.
11In the first study this filter is rather heuristic, being based simply on flow visualisation

following the application of Fourier and wavelet transforms; in the second, the filter

has a rigorous mathematical definition.
12A detalied presentation of LSE is provided in section §5.
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the LES is within 2dB of experimentally observed values.

Figure 17. First stage of analysis: obtain Navier Stokes solution, q, which
contains the acoustic observable, qA.

The next stage is to analyse the observable, qA. To do so we imple-
ment the following signal processing: azimuthal Fourier decomposition is
performed on the acoustic data on a cylindrical surface of radius, r = 9D,
and which extends from x/D = 0 to x/D = 20; wavelet transforms are
applied in the time direction, for each azimuthal Fourier mode. The rea-
sons for this choice of data-processing can be found in the previous section:
we saw in the experiment that the sound field is dominated by only three
azimuthal Fourier modes; this being the case, it is legitimate and useful
to break the sound field down into these building blocks. This will allow
us to simplify the analysis. Also, we saw that coherent structures in jets
display intermittency, and in peak radiation directions much of the overall
sound energy arrives in temporally localised bursts. This suggests a link
between the intermittency of coherent structures and peak sound radiation,
and the models developed in the previous section illustrate how such source
behaviour can indeed enhance the sound radiation efficiency of organised
flow structures.

We can see in figure 18 that the downstream direction is, in agreement
with what was observed experimentally, dominated by axisymmetric sound
radiation. We will therefore focus on this component of the sound field, and
see if we can ascertain the associated flow kinematics. Note the procedure
that is being followed here: we are gradually eliminating flow information,
thereby homing in progressively on the dominant aspects of the flow with
regard to the acoustic observable. By doing so we simplify the task of
analysing and later modelling the jet as a source of sound.

We now consider the temporal structure of the axisymmetric component
of the sound field. Application of a wavelet transform13 to the time history

13The wavelet transform is presented in section §5.
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Figure 18. Left: instantaneous image of the jet, taken in a cross-section at
x/D = 7; note the azimuthal organisation of the radiating pressure wave.
Right: jet directivity as a function of azimuthal Fourier mode; note, con-
sistent with image on the left, dominance of the axisymmetric mode in the
downstream direction.

of the axisymmetric mode of the sound field at each axial station provides a
corresponding scalogram. Figure 19 shows an example for the axial station,
x/D = 17 (i.e. at low emission angle, θ ≈ 30◦). A series of high-amplitude
events, labelled A - H, stand out. By setting a threshold the scalogram can
be filtered and the time signal reconstructed such that only the said events
are retained. In what follows we concentrate on the first high-amplitude
event. This filtering procedure is applied to the sensors at all axial stations
and the result is shown in figure 20. We have here isolated one particular
piece of the observable, qA(m = 0 ; 19 < tc0/D < 30), and from this filtered
information we will now work our way back into the flow, qD, in order to
analyse and understand the flow events that caused the high-amplitude
sound pressure fluctuation.

Figure 21 shows the flow at four consecutive times during the pro-
duction of the said fluctuation. The following behaviour is observed. At
t = 8.576 (top left) we see an axisymmetric wavepacket extending out to
about x/D = 5, downstream of which the structures are tilted into some-
thing closer to mode 1. As far as the axisymmetric component of the flow is
concerned we therefore have a truncated wavepacket. We saw in section §3
how such behaviour can lead to enhanced acoustic efficiency, and, indeed,
consistent with this, a high-amplitude depression is emitted from the flow
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Figure 19. Scalogram computed from the time history of the axisymmetric
acoustic mode at r/D = 9, x/D = 17

at this time. This propagating wave is the same observed in figure 20 at
(tc0/D ≈ 20 ; 15 < x/D < 20). After the emission of this wavefront the
axisymmetric wavepacket extends axially, as seen in figure 21 at t = 9.514,
and then undergoes a second truncation, at both the upstream and down-
stream ends (t = 12.596), at which point a second wavefront is released
from the flow: this corresponds to the second depression observed, after
wavelet transform, in figure 20, at (tc0/D ≈ 25 ; 15 < x/D < 20). Finally,
the axisymmetric wavepacket increases in both intensity and axial extent,
as seen in figure 21 at t = 16.48, before collapsing a third time (not shown)
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Figure 20. Left: space-time structure of axisymmetric component of sound
field on cylindrical surface with r/D = 9. Right: same filed after application
of wavelet filtering; this serves to isolate high amplitude bursts.

and thereby releasing the third wavefront observed in figure 20.
The flow kinematics associated with the high-amplitude axisymmetric

acoustic wavepacket is thus seen to comprise a drifting of the flow in and
out of axially-extended axisymmetry; i.e. we have space-time modulation,
or ‘jitter’ of an axisymmetric wavepacket. This behaviour is reminiscent of
the observation of Crow and Champagne (1971) cited earlier: “three or four
puffs form and induct themselves downstream, an interval of confused flow
ensues, several more puffs form, and so on”. The third wavepacket ansatz
proposed in section §3 would therefore appear to be appropriate. We recall
the source model

T11(y, τ) = 2ρ0Uũ
πD2

4
δ(y2)δ(y3)A(τ)e

i(ωτ−ky1)e
− y2

1
L2(τ) . (109)

By application of a short-time Fourier series (figure 22), followed by the
fitting of a Gaussian envelope function (figure 23), values of A(τ) and L(τ)
are obtained. Inserting these into equation 109 and then solving the wave
equation with this as source allows us to assess to what degree our kinematic
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Figure 21. Visualisation of the hydrodynamic pressure within the jet at
times corresponding to the acoustic wavepacket identified by wavelet trans-
form in figure 20

source model, s(q̂D), reproduces a result, q̂A, which is close to the acoustic
observable qA. The result is shown in figure 24 , where the result of the
model is compared with both the OASPL of the axisymmetric mode of
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Figure 22. Left: space-time structure of axisymmetric component of axial
velocity fluctuation at r/D = 0.5; right: short-time Fourier transform of
the data in figure on the left.

Figure 23. Gaussian functions are fitted to the result of projecting the flow
data on the short-time Fourier series. In this way, values for the instanta-
neous wavepacket envelope amplitude, A(τ) and length scale, L(τ) can be
obtained.

the LES, and a result obtained using a wavepacket ansatz where the time-
averaged values of the A(τ) and L(τ) are used, i.e. a wavepacket that does
not jitter. Whereas the non-jittering wavepacket shows a 12dB discrepancy
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Figure 24. Comparison of the DNS and LES sound fields, left and right,
respectively, with those obtained using simplified, jittering source models.

with the LES, showing it to be clearly incorrect, the jittering wavepacket
is within 1.5dB, suggesting that this kinematic description is physically
pertinent: this confirms that this behaviour comprises flow directions that
are aligned with the propagation operator. The same procedure applied to
the DNS database produced similar agreement, as can be seen in figure 24.

The next stage in the analysis methodology, which is work in progress,
is to repeat the above analysis with respect to the other azimuthal Fourier
modes of the sound field, in that way building up a composite, simplified
kinematic description of the jet as a sound source, at which point it will be
possible to address the question of the associated simplified dynamic law.
Tools for reduced order dynamical modelling are outlined briefly in section
§6.

4.2 Case study 2. High-resolution LES

The foregoing case study was considerably simplified by the relatively
organised character of the flow solutions obtained using DNS and LESMR.
In this case study (taken from Kerhervé et al. (2010)) we consider a Large
Eddy Simulation (Bogey et al. (2003)) with a higher order numerical scheme,
which provides a flow solution with a broader range of turbulence scales in
the noise producing region of the flow. This flow thus presents a greater
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challenge in terms of flow feature eduction, and is in this respect a step
closer to the high-Reynolds number experimental context.

Figure 25. Large Eddy Simulation solution of Bogey et al. (2003), as used
by Kerhervé et al. (2010). Zones A: linear acoustic region; zone B: nearfield,
transition from non-linear hydrodynamics to linear acoustics; zone C: non-
linear turbulent region.

A two-dimensional slice of the flow solution is shown in figure 25. Again,
in the spirit of the analysis methodology outlined in section §3, we consider,
separately, the acoustic region, where we define what is to be our observ-
able, qA, and the flow region, where we are interested in reducing qD down
to q̂D. As seen in figure 25, the flow zone has been further split into zones
B and C; the reason for this is that these zones present quite different be-
haviour. In zone C the flow is turbulent, non-linear, dominated by confused
vortical motion, whereas in zone B fluctuations are predominantly irrota-
tional, and a transition is observed, as we move radially through this region,
the flow motions going from being dominated by hydrodynamics to being
dominated by acoustics. It is often in this region of the flow, particularly in
high Reynolds number experimental contexts, as the short historical note in
section §3 outlined, that the signature of coherent structures is most easily
observed.
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Because of the greater complexity of both the flow and sound fields
computed by this LES, we refine our definition of qA by filtering the sound
field so as to only retain fluctuations associated with low-angle emission,
which is believed to be predominantly contributed to by coherent structures.
A frequency-wavenumber transform and subsequent filtering allows this to
be achieved. The procedure works as follows. For each y− position in zone
A, the pressure field is Fourier transformed from (x, t) to (κx, ω):

p̃(kx, y, ω) =

∫∫
p(x, y, t)e−j(ωt+kxx) dt dx. (110)

A bandpass filter is then applied, which, for a given frequency, retains
wavenumbers in the range ω/c(θ1) < kx < ω/c(θ2) where c(θi)=co/cos(θi)
and θi denotes a given radiation direction. The bandpass filter is defined as

Ω(ω, kx) =

{
1 if kx < ω/c(θi)

exp
[
− (kx−|ω|/c(θi))4

α4

]
otherwise

. (111)

The filtered pressure is then recovered by inverse Fourier transform after
application of the frequency-wavenumber filter,

pf (x, y, t) =

∫∫
p̃(kx, y, ω)Ω(ω, kx)e

j(ωt−kxx) dω dkx. (112)

The results of the filtering are shown in figure 26. On the left the en-
tire propagating field is shown in both frequency-wavenumber and physical
space. The middle and right figures show, respectively, sound radiation in
the angular sectors 0◦ < θ < 60◦ and 60◦ < θ < 120◦. The space-time
field corresponding to the middle image is considered the acoustic observ-
able, qA, and we now use this to construct a filter, FqA

, by which we can
eliminate, from the full flow solution, any information not directly associ-
ated with sound production. What remains is then considered the sound
producing flow skeleton, which we can subsequently proceed to analyse and
model.

Linear Stochastic Estimation The method used in order to perform
the said filtering is based on Linear Stochastic Estimation, which provides
a means by which an approximation of a conditional average

q̂(x, t) =< q(x, t)|qA(x, t+ τ) > (113)

can be obtained. For the specific case considered in this study, q will be
either the hydrodynamic pressure or the turbulent velocity, associated with
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Figure 26. Top row: segments of frequency-wavenumber spectrum corre-
sponding to radiation in different angular ranges; bottom row: correspond-
ing instantaneous fields. Left column: 0◦ < θ < 180◦; middle columne:
0◦ < θ < 60◦; right columne: 60◦ < θ < 120◦

the full LES solution, in zones B and C; qA is the acoustic pressure, filtered
so as to only retain components radiating in the angular range, 0 < θ < 60.
The approach is used to determine, independently, conditional averages
(which are here a function of space and of time) of the turbulent velocity
and the pressure in zones B and C14:

û(x, t) =< u(x, t)|pA(y, t+ τ(x|y)) > (114)

p̂(x, t) =< p(x, t)|pA(y, t+ τ(x|y)) >, (115)

where the time delay τ(x|y) corresponds to the propagation time between
each flow point and each observer (obtained by means of ray-tracing).

As LSE is comprehensively dealt with in section §5 we here simply re-
call the main result, which is that the above conditional average can be

14where the pressure is concerned it is, in zone C, predominantly hydrodynamic, while in

zone B it contains a increasing proportion of acoustic fluctuation as we move radially

away from the jet through zone B
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approximated as

q̂(x, t) =

N∑
i=1

a(x,yi)pA(yi, t+ τ(x|yi)); (116)

i.e. the value of the the filtered (conditional) flow variable, q̂(x, t), is ob-
tained as the weighted linear combination of the values of the acoustic pres-
sure, pA(yi, t + τ(x|yi)); the acoustic domain, y is discretised into an en-
semble of discrete sensors. The coefficients a(x,yi) are obtained by solving
a linear system of equations of the form Q = P ·A where,

Q =

⎡
⎢⎣ q(x, t)pA(y1, t+ τ(x|y1))

...

q(x, t)pA(yN , t+ τ(x|yN))

⎤
⎥⎦ A =

⎡
⎢⎣ a(x,y1)

...
a(x,yN)

⎤
⎥⎦ (117)

P =

[ pA(y1, t)pA(y1, t) . . .
...

. . .

pA(y1, t)pA(yN, t+ τ(x|yN)− τ(x|y1)) . . .

. . . pA(yN, t)pA(y1, t+ τ(x|y1)− τ(x|yN))

. . .
...

. . . pA(yN, t)pA(yN, t))

]
(118)

A sample of the result is shown in figure 27. Note the differences in flow
field structure, in zones B and C, between the full Large Eddy Simulation
solution (q(x, t); figure on left) and the result obtained by Stochastic Esti-
mation (q̂(x, t); figure on right). The quantity shown in zone B is pressure,
while in zone C both pressure and velocity are shown (the bottom part of
the figure shows a zoom on the section of zone C indicated by the black
rectangle in the top part of the figure). In zone C, the velocity field is indi-
cated by means of black arrows (showing the velocity vector in the plane),
and the skeleton of the pressure field can be discerned by means of red
iso-contours indicating p(x, t) = 0 or p̂(x, t) = 0. In the case of û(x, t) the
gamma criterion has been used to colour the velocity field. This quantity,
often used as a visual aid for the study of coherent structures (Graftieaux
et al. (2001),) is defined as:

Γ(P) =
1

S

∫
S

PM ∧ (UM −UP )] · −→z
||PM || · ||UM −UP || dS with UP =

1

S

∫
S

UMdS,

(119)



Techniques for Noise Source Identification 261

Figure 27. Left: Zone A: Low-angle filtered acoustic field; zones B and C:
full LES solution. Right: Zone A Low-angle filtered acoustic field; zones B
and C: conditional (filtered) flow, q̂D

where P is the point where the function is evaluated, M lies in the region
S centered on P–generally chosen as a rectangular area, z is the unit vector
normal to the measurement plane, UM and UP are the velocity vectors at
point M and P respectively, and N is the number of point in S.

The result shown in figure 27 suggests the kind of wavepacket radiation
observed in the previous studies. In zone C we observe a convected train of
coherent vortical structures carrying a corresponding succession of positive
and negative hydrodynamic pressures. The fact that the pressure and ve-
locity fields are estimated independently, and yet produce a result that is,
qualitatively, physically consistent (high and low hydrodynamic pressures
carried, respectively, by vortical structures and saddle points ), justifies our
thinking about the result, q̂(x, t), as a sub-space of the flow.

We can now study this filtered field with a view to understanding what
kind of simplified models might be appropriate where sound production is
concerned. Two avenues appear worth pursuing: (1) We can decompose the
field q̂(x, t) into orthogonal building blocks by means of Proper Orthogonal
Decomposition; (2) we can study q̂(x, t) during periods of high-level sound
emission in order to get a sense of what loud and quiet periods of flow
activity look like. The first of these steps is of interest for two reasons.
Firstly, the orthogonal building blocks constitute a basis that can help to
characterise, and quantitively assess the degree of complexity (the number
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of degrees of freedom) of, the flow kinematics. And, secondly, the same basis
provides a possible framework within which to begin studying the dynamics
of the reduced-complexity flow skeleton.

Proper Orthogonal Decomposition Proper Orthogonal Decomposi-
tion (POD) is presented in some detail in section §5, we therefore here sim-
ply recall the main equations and results, before applying it to the both the
complete flow solution, q(x, t), and the reduced-complexity, filtered flow,
q̂(x, t).

The snapshot POD is used in this situation. The eigenvalues and eigen
vectors of the two-time correlation function, R(t, t′), are first computed:∫

T

C(t, t′)a(n)(t′)dt′ = λ(n)a(n)(t) (120)

where a(n)(t) are the eigen-vectors, λ(n) the eigenvalues and the two-time
correlation function, C(t, t′), is defined as,

C(t, t′) =
1

T

∫∫
S

nc∑
i=1

ui(x, t)ui(x, t
′)dx (121)

with nc = 3 the number of components of the vector velocity field (when
POD is effected on the pressure field, nc = 1) and T the duration of the

data set. An associated set of spatial functions Φ
(n)
i (x) can be obtained by

projection of a(n)(t) onto the velocity or pressure fields:

Φ
(n)
i (x) =

∫
T

a(n)(t)ui(x, t)dt with i = 1, .., nc. (122)

The result of the POD can provide two pieces of information. The con-
vergence of the eigenspectrum, shown in figure 28, gives a sense of how many
POD modes are required to represent the flow: if the convergence is rapid
a large portion of the flow energy is captured with relatively few modes, if
it is slow we require a large number of modes to capture the same energy.
The former situation indicates that the flow is relatively organised, while

the latter indicates a more disorganised flow. The spatial modes Φ
(n)
i give

us a sense of the characteristic spatial structures that dominate the flow.
The eigenspectrum, shown in figure 28, shows that while the eigenspec-

trum associated with q has a slow convergence, 80 modes being required
to capture 50% of the energy, that of q̂ is considerably more rapid, only 6
modes being necessary to represent the same percentage of the associated
fluctuation energy.
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Figure 28. Eigenspectra associated with q and q̂

(a) (b)

Figure 29. Eigenfunctions associated with q̂; (a): axial velocity; (b) radial
velocity

Figure 30. Eigenfunctions associated with q̂: pressure.
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The eigenfunctions, shown in figures 29 and 30, emphasise once again
the orderly, wavelike character of q̂, in terms of both the velocity and the
pressure fields, over the first five or so diameters. Two characteristic space
scales can be distinguished in the velocity eigenfunctions: one is of the order
of the jet diameter, manifest in modes 0 and 1, representative of activity
towards the end of the potential core, and a second, smaller space scale is ob-
served, in modes 2 through 5, representative of structures further upstream
in the annular mixing-layer region of the flow. The pressure eigenfunctions
are all characterised by similar scales; they peak farther upstream and there
appears to be a distinction between modes 0 through 3, which have reflec-
tional symmetry with respect to the jet axis, and modes 4 and 5 which
are antisymmetric. These symmetries are most likely the two-dimensional
signatures of axisymmetric and helical wavepackets.

Source mechanism analysis We now, finally, consider the space-time
characteristics of q̂ associated with high- and low-level sound emission.
Comparison of the pressure signature on the centerline of the jet gives a

Figure 31. (a): (x, t) structure of full pressure (qp) on jet centerline; (b)
(x, t) structure of reduced pressure (q̂p) on jet centerline; (c): black line:
acoustic pressure (qA) at 30◦; red line: short-time Fourier series of signal.
Figure (c) has been time-shifted to account for propagation times, such that
events at a given time are comparable with events in (a) and (b) at the same
time-coordinate.

clearest indication of how the orderly component of the flow fields behave.
Figure 31 shows this quantity for the full LES solution, qp(x1, t) and the
reduced flow, q̂p(x1, t), and these are compared with the acoustic signature,
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qA(t), sampled at an angle of 30◦. The latter has been time-shifted such
that a direct comparison can be made with the two signals. Furthermore,
the acoustic signal has been transformed by means of a short-time Fourier
series and the result is shown in red. This operation provides a means by
which the loud portions of the signal can be more easily identified.

Examination of the figure shows the following. While it is difficult to
discern any particular relationship between the hydrodynamic centerline
signature of the full flow solution and the radiated sound, analysis of the
same metric of the reduced field, q̂p, reveals a clear correspondence between
the growth and decay of wavepackets (modulation of both their amplitude
and axial extent is observed) and high-amplitude sound radiation. The
fitting procedure applied in the previous study is repeated here using the
filtered flow field, q̂, and the jittering line source ansatz. The result is shown
in figure 32. Good agreement is found between the acoustic observable, qA,

(a) (b)

Figure 32. Comparison of sound field computed by Large Eddy Simulation
with time-averaged and jittering wavepacket ansatz. (a) ansatz fitted with
conditional field data, q̂, after radial integration; (b) ansatz fitted with
conditiona field data, q̂ taken from mixing-layer axis.

and the modelled sound field, q̂A, showing once again that the filtering
procedure has been effective in the eduction of the sound-producing flow
skeleton (kinematics).

4.3 Conclusions

Two case studies have been used, by way of example, in order to illus-
trate implementation of the analysis methodology outlined in section §3.
In both cases, by following the methodology, kinematic models are con-
structed that mimic the sound-producing behaviour of the three different
jets analysed. The quantitative accuracy is in all cases better than 1.5dB,
showing the analysis methodology—which combines the data-analysis tools



266 P. Jordan

presented in section §5 with the theoretical reasoning outlined in section
§3—to be effective with regard to the kinematics of sound source mecha-
nism identification. For the dynamic aspect further tools are necessary;
these are presented briefly in section §6.
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5 Data analysis / reduction

The complexity of most aeroacoustic systems—being associated with high
Reynolds number turbulence—means that we frequently find ourselves faced
with the task of making sense of large quantities of data; such databases
may be the result of numerical simulation and/or experimental measure-
ments. Some form of data synthesis, or reduction, is necessary. The data
can be considerably compressed, for example, by considering only the time-
averaged values of the dependent variables, but at the loss of a large quantity
of information. Other time-averaged statistical moments, such as the root
mean square (2nd order moment), skewness (3rd order moment) and kur-
tosis (4th order moment) can be computed—further information is thereby
obtained regarding the state of the system.

Between such time-averaged quantities and the full space-time struc-
ture of the system considered there lie many intermediate possibilities for
compressing the data into manageable and insight-providing forms. Four
techniques by which such intermediate data compression can be obtained
(Fourier transform, Wavelet transform, Proper Orthogonal Decomposition
and Dynamic Mode Decomposition) are presented in this section, example
implementations being found in section §4. Further to these data com-
pression/decomposition tools we also present a technique, known as Linear
Stochastic Estimation, for the computation of conditional averages. This
can constitute a powerful complementary approach when used in conjunc-
tion with the said data compression/decomposition tools.

The four data compression techniques discussed have the following com-
mon property: they all involve the expansion of space-time data in terms
of sets of basis functions. The interest in such an operation is that the very
high dimensional flow data can be broken down into a more manageable
number of ‘building blocks’, conducive to perspicacious analysis and mod-
elling. In the case of spectral and wavelet analyses, the basis functions are
analytic and specified a priori ; in the case of Proper Orthogonal Decompo-
sition the basis functions are empirical and thus intrinsic to the data; in the
case of Koopman modes (obtained by Dynamic Mode Decomposition), the
functions are associated with the dynamics of the system, in other words
they contain information regarding the temporal evolution of the system.

5.1 The Fourier transform

The Fourier transform is probably the best known and most commonly
used data analysis tool in the domain of fluid mechanics and aeroacoustics
(and indeed in engineering in general) - the Fourier power spectrum of the
sound field radiated by an aeroacoustic system is the quantity that mod-
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elling tools are required to reproduce; it is the quantity by which we most
often endeavour to assess and understand the behaviour of the system. We
recall it briefly in this section, simply so as to have it appear in juxtaposi-
tion with a number of alternative, but less commonly used, data-processing
tools. We do so because three of the latter (the wavelet transform, Proper
Orthogonal Decomposition, and Dynamic Mode Decomposition), as evoked
above, bear certain similarities to the Fourier transform in terms of the
way their result can be useful as an aid to understanding and modelling;
indeed these alternative processing techniques might be best thought of as
surrogate tools for assessing complex data in situations where the Fourier
transform may not necessarily be the best choice.

The Fourier transform involves the expansion of a given data set in terms
of analytical basis functions that are specified a priori ; there is no flexibility
in this choice. The Fourier transform and its inverse are defined as

q̃(f) =

∫ ∞

−∞
q(a) exp(−2πiaf) da (123)

q(f) =

∫ ∞

−∞
q̃(f) exp(2πiaf) df. (124)

When the signal q(a) is periodic in the variable a it can be expanded as
a Fourier series:

q(a) =
1

2
A0 +

∞∑
n=1

An cos(na) +

∞∑
n=1

Bn sin(na), (125)

where

A0 =
1

π

∫ π

−π

q(a) da (126)

An =
1

π

∫ π

−π

q(a) cos(na) da (127)

Bn =
1

π

∫ π

−π

q(a) sin(na) da. (128)

5.2 The wavelet transform

The wavelet transform provides additional flexibility on two levels when
compared with the Fourier transform. (1) The transformed quantity is local
in both frequency (or wavenumber) and time (or space); (2) many different
kinds of basis function are available, and indeed it is possible to create new
functions, provided certain mathematical constraints are satisfied.
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The continuous wavelet transform of a signal q(α) is written:

q̃(s, a) =

∫ ∞

−∞
q(α)ψ(s, a− α)dα. (129)

This amounts to the convolution of a signal of interest with a set of wavelet
functions ψ. This set of functions is generated by dilation and transla-
tion of a basic form known as the mother wavelet: dilation is achieved by
varying the scale, s, translation being effected by means of the variable,
a, which could be a space or time coordinate, for example. The mother
wavelet function must satisfy the mathematical constraints of admissibility
and regularity; however, provided these constraints are satisfied a good deal
of flexibility remains for the design of new mother wavelet functions.

The main difference between the wavelet transform and the Fourier
transform is that the former allows space- or time-localised characteristics
of a signal to be more clearly identified: the transformed signal is local in
both space (and/or time) and scale, whereas its Fourier transformed coun-
terpart is local only in frequency, being infinitely extended in space (and/or
time).

The following are some relations between the fluctuation energy of a
signal, its wavelet transform and its Fourier transform.

1. The relationship between the fluctuation energy, E of the signal q(a)
and the wavelet transform of the signal is given by:

E =

∫
R

|q(a)|2da = C−1
ψ

∫
R+

∫
R

|q̃(s, a)|.|q̃∗(s, a)| ds da
s2

(130)

where Cψ is a constant associated with the mother wavelet function
used.

2. A global wavelet energy spectrum can be defined as:

eglobal(s) =

∫
R

e(s, a) da (131)

where e(s, a) is the energy density as a function of scale, s and the
space or time dimension, a.

3. This can also be expressed in terms of the Fourier energy spectrum
E(f) = |q̂(f)|2:

eglobal(s) =

∫
R

E(f)|ψ̂(sf)|2df (132)

where ψ̂(sf) is the Fourier transform of the wavelet. This shows that
the global wavelet energy spectrum corresponds to the Fourier energy
spectrum smoothed by the wavelet spectrum at each scale.
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4. The total fluctuation energy of the signal can be obtained by

E = C−1
ψ

∫
R+∗

eglobal(s)
ds

s
(133)

5.3 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition is a data processing technique
which is known by this name when used in the field of turbulence anal-
ysis, following its introduction for such usage by Lumley (1967). It can
also be found referred to as Karhunen-Loève decomposition, principal com-
ponent analysis (Jolliffe (1986)) and singular value decomposition (Golub
and Van Loan (1996)). The presentation of POD given here follows that of
Delville (1995).

Consider a flow system for which we possess the information q(a,b). The
vector q could contain, for example, the values of the three components of
velocity on the four-dimensional grid, (x, t); in this case a would represent
three-dimensional cartesian space, and b the time direction. We retain the
notation a and b in order to keep the derivation as general as possible,
because different variants of the POD can be derived from different specific
choices of a and b, and associated definitions of the inner product and
averaging operations that are applied, respectively, with respect to these
coordinates.

POD consists in searching for the function, φ(a), that is best aligned, on
average, with the field q(a,b), the averaging operation being with respect
to the coordinate b.15 Both q(a,b) and φ(a) are indefinitely differentiable,
have compact support, and belong to the space of square integrable func-
tions. The problem is considered in Hibert space, and so it is possible to
define the inner product (q,φ)a with respect to a:

(q, φ)a =

∫
a

q(a,b)φ∗(a) da =

nc∑
i=1

∫
a

qi(a,b)φ
∗
i (a) da (134)

where nc denotes the number of components of the vector q (the three
components of velocity for example).

The search for the function φ amounts to a search, over the ensemble
of realisations of q, for the φ that most closely resembles q on average.
This means maximising the projection q(a,b) on the function φ(a) with
respect to the inner product defined above: we must find the function φ

15Note that a could comprise both space and time coordinates, and the averaging oper-

ation, over b, could be, for example, a phase- or ensemble-average.
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that maximises
< (q(a,b),φ(a))2 >b

||φ(a)|| .16 (135)

The numerator can be expressed as

< (q,φ)2 > =<

∫
a

q(a,b)φ∗(a) da
∫
a

q(a′,b)φ∗(a′) da′ >b (136)

=

∫
a

(∫
a

< q(a,b)q∗(a′,b) >b φ(a′) da′
)
φ∗(a) da, (137)

the averaging being applied only to the (two-point correlations of the) data,
q(a,b), as φ is, by definition, independent of this direction. Denoting the
two point correlation as Rij(a,a

′) =< q(a,b)q∗(a′,b) >b and introducing
the Hermitian operator, A, such that

A · φi =
nc∑
j=1

∫
a

Rij(a,a
′)φj(a′)da′ (138)

means that we can write

< (q,φ)2a >=

nc∑
i=1

(A · φi, φi)a, (139)

and so the POD problem comes down the maximising of

(A · φi, φi)a
||φ||2 . (140)

This maximisation problem corresponds to a constrained optimisation: find
φ that maximises equation 140 subject to the constraint ||φ||2 = 1. This
side-constraint is chosen because we are only interested in the shape of the
functions, φ. The optimisation problem, which can be solved using the
technique of Lagrange multipliers, or by variational analysis, leads to the
following eigenvalue problem

A · φi = λφi, (141)

or, in integral form

nc∑
j=1

∫
a

Rij(a, a
′)φj(a′) da′ = λφi(a), (142)

16The notation <>b indicates that the averaging operation is with respect to the direc-

tion b
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an equation known as the Fredholm integral.
Solution of the integral eigenvalue problem is obtained by means of the

theory of Hilbert-Schmidt Lovitt (1950). The details are not given here,
but we recall some of the main results:

1. As with most eigenvalue problems, rather than admitting a unique
solution, the equation yields a set of solutions:∫

a

Rij(a, a
′)φ(n)j (a′) da′ = λ(n)φ

(n)
i (a) n = 1, 2, 3, ... (143)

2. The ensemble of solutions can be chosen such that the eigenfunctions
are orthonormal: ∫

a

φ
(p)
i (a)φ

(q)
i (a) da = δpq (144)

3. Any field, qi(a,b), can be expanded in terms of these eigenfunctions,

φ
(n)
i (a):

qi(a,b) =

∞∑
n=1

a(n)(b)φ
(n)
i (a) (145)

where the coefficients, a(n)(b), are obtained by the projection of qi(a,b)

onto φ
(n)
i (a):

a(n)(b) =

∫
a

qi(a,b)φ
(n)
i (a) da (146)

4. The series converges in a least mean square sense and the coefficients,
a(n)(b), are mutually uncorrelated:

< a(n) · a(m) >= δmnλ
(n) (147)

5. The eigenvalues are real, positive, their sum finite and they form a
convergent series:

λ(1) > λ(2) > λ(3), ... (148)

The most common experimental implementation of POD involves space-
time velocity or pressure fields: q(a,b) = u(x, t) = u(x, y, z, t) or q(a,b) =
p(x, t) = p(x, y, z, t) in which case expansion of the data in terms of the
POD eigenfunctions reads

ui(x, y, z, t) =

∞∑
n=1

a(n)(t)φ
(n)
i (x, y, z) (149)

or (150)

p(x, y, z, t) =
∞∑

n=1

a(n)(t)φ(n)(x, y, z). (151)
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The space-time structure of the measured field is thus separated into spatial
(topos) and temporal (chronos) functions. Example implementations are
provided in section §4.

5.4 Koopman modes / Dynamic mode decomposition

The Dynamic Mode Decomposition is a procedure for estimating the
eigenvectors and eigenvalues of the Koopman operator. The latter provides
a means by which the dynamics of a flow can be analysed, this analysis
being effected through some associated observable. An assumption central
to the approach is that the flow can be considered as a dynamical system
evolving on a manifold Ω of dimension N . A manifold—the locus of points
that comprise the state-space trajectory of a dynamical system—is a gener-
alisation, to the non-linear case, of the eigenspace associated with the linear
instability of dynamical system in the vicinity of a fixed point : while in a
linearised system eigenvectors denote the directions in which that system
will move, exponentially, either to or from a fixed point (or equilibrium
point), in the non-linear context the manifold amounts to a continuation of
these eigenvectors, which continually change direction as the system evolves
non-linearly.

This section provides an introduction to both the Koopman operator
and the dynamic mode decomposition. The exposition combines elements
taken from Rowley et al. (2009), Schmid (2010) and Pastur (2011).

The Koopman operator Let X be a point on Ω, corresponding to the
state of the system at some given time, and let ft be a propagator (frequently
referred to as a ‘flow’ or a ‘map’ in dynamical systems or control theory
textbooks) that evolves, propagates, or maps, the flow from one time-step
to the next; i.e. from X(t0) ∈ Ω to X(t0 + t) ∈ Ω: 17

X(t0 + t) = ft{X(t0)}. (152)

In an experiment we never have access to the full flow state; at best we may
have access to the velocity field on a two-dimensional spatial section (from
a PIV measurement for example), with restricted temporal resolution, or
single-point information with higher temporal resolution (from a hot-wire,
Laser Doppler Velocimeter or microphone for instance). Such an incomplete
sample of the flow can be referred to as an observable. We denote this
observation by means of a function, q(X), which gives us the observable

17In the case of fluid flow the propagator is the right hand side of the Navier Stokes

equations; i.e. the dynamic law governing the time evolution of the fluid flow.
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corresponding to the full state X. q belongs to a Hilbert space, H, and so
we can define the norm:

||q|| =
√
(q, q)Ω =

√∫
Ω

|q|2 dΩ <∞. (153)

The Koopman operator, Ut, acts in H, such that:

Ut{q(X)} = q(ft{X}). (154)

In other words, the Koopman operator is a map that describes the evolution
of the observable, q (which is a function of the full flow state X), from one
time-step to the next. The non-linear dynamics associated with the evolu-
tion of the full flow leaves its signature in the evolution of the observable;
the essence of Koopman/DMD analysis is here: by considering the evolu-
tion of the observable we seek to gain insight regarding the nature of the
evolution law that underpins the dynamics of the full flow.

The Koopman operator has the following important property. Let φj
and λj be, respectively, eigenfunctions and associated eigenvalues of Ut.

18

If we denote by Xk the state of the system at some time kΔt after an initial
time t0: Xk ≡ X(t0 + kΔt), then:

q(Xk+1) = U{q(Xk)} = U

⎧⎨
⎩∑

j≥1

φj(Xk)νj

⎫⎬
⎭

=
∑
j≥1

U{φj(Xk)νj} =
∑
j≥1

λjφj(Xk)νj (155)

The first equality simply corresponds to the definition of the Koopman
operator—it evolves the observable, q, from its value when the system is in
the state Xk to its value when the system is in the state Xk+1. In the second
equality the observable, q, has been expanded in terms of the eigenfunctions
of the Koopman operator (chosen here as a suitable set of basis functions);
νj are the associated expansion coefficients, obtained by projecting the ob-
servable, q, onto the eigenfunctions, φj . In the third equality the Koopman
operator has simply been moved inside the summation, while in the fourth,
as φj are eigenfunctions of U , U {φj} can be written as λjφj .

νj are the Koopman modes (sometimes referred to as Koopman co-
efficients, or dynamic modes), λj the Koopman eigenvalues and φj the
Koopman eigenfunctions. The Dynamic Mode Decomposition constitutes a

18In what follows we will drop the the subscript t.
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methodology, similar to the Arnoldi algorithm used in the solution of global
stability problems, whereby these quantities can be estimated using limited
data sets.

Now, as the evolution of the system from some initial state, X0 to a
later state Xk+1 is given by Uk(X0) (because U(Xk) = UU(Xk−1) =
U3(Xk−2) = ...), the state of the observable, q(Xk+1), can be expressed
in terms of the state at some initial time, X0, as:

q(Xk+1) =
∑
j≥1

λkjφj(X0)νj . (156)

This equation shows that any value of the observable, q, can be deduced
from knowledge of the projection of the initial condition q(X0) onto the
eigenfunctions, φj , of the Koopman operator, provided the eigenvalues, λj
are known; this property is important in what follows. Furthermore, if the
dynamics considered evolve on a non-degenerated attractor—the dynamics
continue to evolve on the manifold, Ω—then the Koopman operator, U , is
a unit operator: the eigenvalues lie on the unit circle and the eigenvectors,
φj , are orthogonal.

Krylov sub-space Consider the following set of successive snapshots of
data:

QN−1
0 = {q(X0), q(X1), q(X2), ..., q(XN−1)}, (157)

the sub- and super-scripts on Q indicate the first and last snapshots. Ex-
pressed in terms of the Koopman operator this reads:

QN−1
0 = {q(X0), U {q(X0)} , U2 {q(X0)} , ..., UN−1 {q(X0)}}, (158)

which is an N th-order Krylov subspace. And we know that the Koopman
operator applied to this subspace gives:

U
{
QN−1

0

}
= QN

1 : (159)

the action of the Koopman operator is inherently contained in QN
1 .

To this point the observable has been considered a single-point scalar;
however, the generalisation to multi-valued observables (for example a ve-
locity field obtained from PIV) is straightforward. In this case the νj are
multi-valued and complex.

Dynamic mode decomposition DMD is one possible technique, based
on what is known as a companion Matrix, by which the eigenvalues and
eigenvectors of U can be estimated; the technique is similar to that used
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for the computation of global modes from the Hessenberg matrix using the
Arnoldi method.

In what follows we will consider multi-valued observables, represented
by the vector q(x, tk). A Krylov subspace is first constructed from sampled
data, where the time-step is small enough to resolve all of the dynamics:

QN−1
0 = {q0,q1,q2, ...,qN−1}. (160)

The indices correspond to the successive times, t0, t1, t2, ...tN−1. The as-
sumption underpinning the companion matrix approach is that the first N
fields (where N < M , M being the dimension of the observable q, i.e. the
number of spatial points in the snapshot) are sufficient to describe any later
realisation of the field q; thus, the N th snapshot can be expressed as a linear
combination of all previous snapshots:

qN = c0q0 + c1q1 + c2q2 + ...+ cN−1qN−1, (161)

or
qN = QN−1

0 c, (162)

where c = (c0, c1, c2, ..., cN−1)
T and the superscript T denotes hermitian

transpose. From equation 158 we know that

U
{
QN−1

0

}
= QN

1 , (163)

i.e. application of the Koopman operator to the Krylov subspace propagates
all of the fields by one time-step. In light of this observation, and equation
162, equation 163 can be written as

UQN−1
0 = QN

1 = QN−1
0 C + rT eN , (164)

where C is the companion matrix. eN = (0 , 0 , . . . , 1)† ∈ R
N+1 and r is

a residual vector, orthogonal to the Krylov subspace V N−1
0 . The residual

goes to zero when condition 162 is satisfied.
The following example will help illustrate this. Consider that we have

the data:

Q4
1 =

⎡
⎣q11 q12 q13 q14
q21 q22 q23 q24
q31 q32 q33 q34

⎤
⎦

where the first and second indices on the matrix entries denote spatial and
temporal coordinates, respectively: each column is a snapshot. We know
that the Koopman operator, U , will map from Q3

1 to Q4
2:
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⎡
⎣U11 U12 U13

U21 U22 U23

U31 U32 U33

⎤
⎦
⎡
⎣q11 q12 q13
q21 q22 q23
q31 q32 q33

⎤
⎦ =

⎡
⎣q12 q13 q14
q22 q23 q24
q32 q33 q34

⎤
⎦.

But, we are also making the assumption that qi4 can be expressed as a
linear combination of qi1, qi2 and qi3:⎡

⎣q14q24
q34

⎤
⎦ ≈

⎡
⎣c1q11 + c2q21 + c3q31
c1q12 + c2q22 + c3q32
c1q13 + c2q23 + c3q33

⎤
⎦.

Substituting into the previous equation gives,⎡
⎣U11 U12 U13

U21 U22 U23

U31 U32 U33

⎤
⎦
⎡
⎣q11 q12 q13
q21 q22 q23
q31 q32 q33

⎤
⎦ ≈

⎡
⎣q12 q13 (c1q11 + c2q12 + c3q13)
q22 q23 (c1q21 + c2q22 + c3q23)
q32 q33 (c1q31 + c2q32 + c3q33)

⎤
⎦,

which is the same as⎡
⎣U11 U12 U13

U21 U22 U23

U31 U32 U33

⎤
⎦
⎡
⎣q11 q12 q13
q21 q22 q23
q31 q32 q33

⎤
⎦ ≈

⎡
⎣q11 q12 q13
q21 q22 q23
q31 q32 q33

⎤
⎦
⎡
⎣0 0 c1
1 0 c2
0 1 c3

⎤
⎦.

In the more general case, the companion matrix takes the form:

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . . . . 0 c0

1 0
... c1

0 1
. . .

... c2
...

. . .
. . . 0

...
0 . . . 0 1 cN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (165)

DMD consists in computing the eigenmodes of the companion matrix, which
are then considered as approximations of the eigenmodes of the Koopman
operator (when the residual is zero the correspondence is exact). The matrix
C has dimension N × N , and its unknown elements, cj , can be computed
by minimising the norm

copt = min
c

∥∥∥∥∥∥qN −
N−1∑
j=1

cjqj

∥∥∥∥∥∥
2

.

Having computed the eigenvalues and eigenvectors of the companion matrix
we are finally in a position to write

q̃k =
N∑
j=1

λk−1
j φj(X0)νj . (166)
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The initial conditions φj(X0) are obtained by projecting the initial field, q0,
on to the νj . The eigenfunctions, φj , are Fourier modes, φj = exp(iωjt) if
the dynamics are periodic.

5.5 Conditional analysis techniques: Stochastic estimation

The following exposition is based on that of Adrian (1996). Consider
some variable, q, which is unknown, and another vector quantity E = Ei,
i = 1..N which is somehow related to q. We are interested in identifying the
functional relationship, q = g(E), which provides some approximation of q
in terms of E. This kind of estimation of one variable in terms of another
is known as stochastic estimation and is widely used in information theory
(Papoulis (1984)). When such a relationship cannot be usefully derived
from first principals, we frequently revert to statistics: the joint probability
density between q and E is:

fq,Edψdφ = Prob{ψ ≤ q < ψ + dψ and φ ≤ E < φ+ dφ}; (167)

the conditional probability density of q given E is

fq|E(ψ|φ) = fq,E(ψ, φ)

fE(φ)
. (168)

Three estimates of q given E are: (1) the maximum likelihood estimate,
defined as the most probable value of q given E, i.e. the value at which
fq|E is a maximum; (2) the conditional average of q given E, given by the
centroid of the conditional probability

< q|E >=

∫
ψfq|E(ψ|φ)dψ; (169)

and, (3) the mean square estimate, i.e. the estimate q̂ = f(E) that min-
imises < |q − f(E)|2 >. It can be shown that the best mean square es-
timate of q given E is the conditional average < q|E >. In other words,
< |q− f(E)|2 > is a minimum when f(E) =< q|E >.

In this section we outline a technique by which the conditional average
can be estimated ; in other words we wish to estimate the best estimate:
q̂ ≈< q|E >. The conditional average is approximated by means of a
truncated Taylor series expansion about E = 0:

q̂ ≈< q|E >≡ f(E) ≡ f(0) +
∂f

∂E

E

1!
+
∂2f

∂E2

E2

2!
+
∂3f

∂E3

E3

3!
+ ... (170)

As we do not know the function f(E) we cannot evaluate the derivatives
∂nf
∂En and so these are unknowns of the problem. So, considering that the



Techniques for Noise Source Identification 279

mean value is zero, (f(0) = 0), the expansion can be written

q̂ ≈< q|E >≡ f(E) ≡ AE+BE2 + CE3 + ... (171)

and we are required to determine the value of the coefficients A, B, C,...
When truncation is performed after the linear term this expression is known
as Linear stochastic estimation, when the quadratic term is included we
speak of quadratic stochastic estimation, and so on...

Let us now see how to calculate the coefficients, A, in the case where
truncation is performed after the linear term. We have

q̂ ≈ AE, (172)

and we would like to obtain a best estimate for < q|E >; i.e. we need to
minimise the error

e =< |< q|E > −q̂|2 > (173)

=< | < q|E > −AE|2 >, (174)

we therefore require the solution to

∂e

∂A
= 2 < − < q|E > E > +2A < EE >= 0, (175)

which is given by

A =
<< q|E > E >

< EE >
(176)

=
<< qE|E >>

< EE >
(177)

=
< qE >

< EE >
, (178)

where E has been brought inside the conditional average on account of
its being constant with respect to the latter, and, in the final step, the
conditional average has been performed over all values of E, reducing the
conditional average << qE|E >> to the conventional average < qE >.

So, the linear stochastic estimate of q given some related event E, which
provides a best approximation to the conditional average < q|E >, is:

q̂ =
< qE >

< EE >
E. (179)

This shows the close relationship between the conditional average and the
correlation function < qE >. In the context of aeroacoustics, where E is the
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radiated acoustic pressure and q the turbulence velocity, such correlations
can be shown to provide an approximation to the integral solution of the
acoustic analogy (Lee and Ribner (1972)). An example implementation of
this technique is provided in section §4.
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6 Reduced Order Modelling

6.1 Introduction

It was shown in section §4 how the analysis tools presented in section
§5 can provide a useful means by which the analysis methodology outlined
in section §3 can help guide kinematic modelling. However, the final goal,
as evoked in the introduction, is to understand and model the dynamic law
associated with sound production, as it is only then that one can really
claim to have identified source mechanisms.

In this section we provide a very brief introduction to reduced order
modelling. For a more complete treatment the reader is encouraged to refer
to Noack et al. (2011).

6.2 Two approaches for reduced order dynamical modelling

The governing dynamic law of the full flow system is:

Nq = 0. (180)

The objective of reduced order modelling, the final stage of the analysis
methodology outlined in section §3, is to construct a simplified dynamic
law governing the evolution of a simplified kinematic field, q̂:

N̂ q̂ = 0. (181)

Two reduced-order dynamic modelling strategies will be outlined here.
The first is useful when relatively complete space-time data is available,
from a numerical simulation for example, the second being useful in an
experimental context, where more limited data is available. In both cases
the objective is to write down an Ordinary Differential Equation that mimics
either the dynamics of the Navier Stokes operator, or of some reduced sub-
space of the system.

This can be achieved once the flow has been expanded in terms of a set
of orthogonal basis functions, which can be obtained, for example, by means
of POD:19

q̂(x, t) =

N∑
n=1

ai(t)φ(x). (182)

The temporal evolution of the flow is here contained in ai(t), and so
it is via these, the topos, that we can attempt to write down a simplified

19See section §5 for details.
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evolution equation, in the form of an ODE:

dai
dt

= Lijaj +Qijkajak, (183)

which mimics both linear and non-linear aspects of the dynamics, via, re-
spectively, the first and second terms on the right hand side. The goal is
to compute the coefficients, Lij and Qijk, that best reproduce the (known)
temporal structure of ai(t); we then have a simplified dynamic model for
the flow (or flow sub-space) considered.

The difference between the two said approaches is in the way that the
coefficients Lij and Qijk are computed.

Galerkin projection In this approach, the Navier Stokes equations are
projected onto the basis functions, φ(x), giving, directly

dai
dt

= νLijaj + (Qc
ijk +Qp

ijk)ajak (184)

where

Lij = (φi,Δφj) =

∫
x

φiΔφjdx (185)

Qc
ijk = (φi,∇ · (φj ⊗ φk)) =

∫
x

φi∇ · (φj ⊗ φk)dx (186)

Qp
ijk = (φi, φ

p
jk) =

∫
x

φiφ
p
jkdx. (187)

(188)

Qc
ijk is here associated with the non-linear convection term of the Navier-

Stokes equations, Qp
ijk is associated with the pressure term20, while Lij is

associated with viscous and linear convection terms.

Polynomial identification This technique, proposed by Perret et al.
(2006) is useful when only limited experimental data is available. The poly-
nomial form

dai
dt

= Lijaj +Qijkajak (189)

is chosen as a suitable generic dynamic ansatz ; then, knowing the values of
ai, we have a linear system of equations with unknowns, Lij and Qijk. By
solving this linear system, the coefficients can be identified.

20see Noack et al. (2011) for details
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Figure 33. Left: instantaneous image of DNS of 2-D mixing-layer of Wei
and Freund (2006): pressure fluctuations are sampled along the red line,
and this field is then decomposed using POD; Right: green line shows a
truncated representation of the DNS solution for the spatial structure of
the pressure field on the red line at some given instant in time, while the
red line shows the structure predicted by the simplified dynamic model given
by the ODE—the quadratic term has been neglected in this example.

6.3 Example

Figure 33 shows an example implementation of the polynomial identifi-
cation technique. The DNS computation of a two-dimensional shear-layer,
performed by Wei & Freund, is used. The pressure field is sample along
the red line shown on the left of the figure. This sampled pressure field
is then decomposed using Proper Orthogonal Decomposition, allowing it
to be represented in terms of a set of temporal functions, ai(t), and spatial
functions, φ(x). Using the polynomial identification technique, truncated to
only include the linear term, the coefficients, Lij are determined . The ODE
is then integrated in time and the result compared with a truncated rep-
resentation (using 40 POD modes, a number found sufficient to reproduce
the full DNS field with good accuracy) of the original pressure field.

The integrated ODE, a snapshot of which is shown in figure 33, was
found to follow the DNS very closely for about three convective time units.
After this the two solutions begin to differ, although the simplified dynamic
model continues to behave in a qualitatively similar manner to the DNS.
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