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PREFACE

The knowledge of the physical mechanisms underlying the generation
of noise in turbulent shear flows remains a challenging task despite
over 50 years of intensive research in the field. The interest in this
topic is considerable because turbulent shear flows originating noise
are encountered in many engineering applications, such as flows in
pipes, compressible and incompressible jets, turbulent boundary layers
over rigid or elastic surfaces, wakes generated behind streamlined or
bluff bodies.

Recent developments in terms of our capacity to both numerically
and experimentally analyze the physics of turbulent shear flows have
opened up new possibilities to improve our knowledge about noise gen-
eration and propagation mechanisms. These understandings lead, for
example, to the development of flow/noise manipulation techniques
and address the design of noise suppression devices.

The scope of this volume is to present a state-of-the-art review
of on-going activities in noise prediction, modeling and measurement
and to indicate current research directions. This book is partially
based on class notes provided during the course ‘Noise sources in
turbulent shear flows’, given at CISM on April 2011.

Introductory chapters on fundamentals topics will be followed by
up-to-date reviews of arguments of specific interest for engineering
applications.

The first part of the volume is denoted as ‘Fundamentals’ and
contains two chapters. The first one covers general concepts of aeroa-
coustics, from the basic equations of fluid dynamics to the theoretical
description of self-sustained oscillations in internal flows including
the vortex sound theory. The second chapter illustrates more deeply
the acoustic analogies in account also of the presence of solid surfaces.
The flow features involved in sound generation are also highlighted by
means of suitable dimensional analyses.

In the second part of the volume, denoted as ‘Applications’, par-
ticular emphasis is put into arguments of interest for engineers and
relevant for aircraft design. An important topic included in this part
is jet noise, which is treated from both an experimental and an ana-
lytical viewpoint. A comprehensive review of literature results as well



as a description of present understandings of noise generation and
its predictions is presented.

A second chapter is devoted to describing airfoil broadband noise
and its analytical modeling with emphasis on trailing edge noise and
rotating blades.

The boundary layer noise is treated in another chapter that is
divided into two parts. In the first one noise generation mechanisms
are described. In the second, the problem of the interior noise and
some basic approaches used for its control are presented.

As a fundamental completion of the state-of-the-art knowledge,
a chapter is devoted to clarifying the concept of noise sources, their
theoretical modeling and the techniques used for their identification
in turbulent flows.

All these arguments are treated extensively with the inclusion of
many practical examples and references to engineering applications.

For the purpose of optimizing the convenience of this book, the
chapters are conceived to be self-contained. Readers may concentrate
on the topic they are more interested in, with no need of consulting
other chapters. The disadvantage of this approach lies in the repe-
tition of some basic notions, such as the Lighthill’s analogy or the
Green’s function formalism, which can be found replicated in more
than one chapter. Indeed, scientists may use the same mathematical
tool in a different but efficient way, depending on the purpose of their
analysis.

To my opinion, these reiterations do not represent a shortcoming.
On the contrary I consider this approach to be a quite instructive way
for young researchers to discover and appreciate the amazing strength
and effectiveness of theories, models and mathematical formalisms
that provide the foundations of aeroacoustics.

Roberto Camussi
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Part 1: Fundamentals



Introduction to Aeroacoustics and
Self-Sustained Oscillations of Internal Flows

Avraham Hirschberg

Mesoscopic Transport Phenomena
Eindhoven University of Technology

Chapter in CISM Lecture Series: Noise Sources in Turbulent Shear Flows
18-22 April 2011 Udine, Italy

Abstract After a review of basic equations of fluid dynamics, the
Aeroacoustic analogy of Lighthill is derived. This analogy describes
the sound field generated by a complex flow from the point of view
of a listener immerged in a uniform stagnant fluid. The concept of
monopole, dipole and quadrupole are introduced. The scaling of the
sound power generated by a subsonic free jet is explained, providing
an example of the use of the integral formulation of the analogy.
The influence of the Doppler Effect on the radiation of sound by
a moving source is explained. By considering the noise generated
by a free jet in a bubbly liquid, we illustrate the importance of the
choice of the aeroacoustic variable in an aeroacoustic analogy. This
provides some insight into the usefulness of alternative formulations,
such as the Vortex Sound Theory. The energy corrolary of Howe
based on the Vortex Sound Theory appears to be the most suitable
theory to understand various aspects of self-sustained oscillation due
to the coupling of vortex shedding with acoustic standing waves
in a resonator. This approach is used to analyse the convective
energy losses at an open pipe termination, human whistling, flow
instabilities in diffusers, pulsations in pipe systems with deep closed
side branches and the whistling of corrugated pipes.

1 Introduction

Due to the essential non-linearity of the governing equations it is difficult
to predict accurately fluid flows under conditions at which they do pro-
duce sound. This is typical for high speeds with non-linear inertial terms in
the equation of motion much larger than the viscous terms (high Reynolds
numbers). Direct simulation of such flows is very difficult. When the flow
velocity remains low compared to the speed of sound waves (low Mach num-
bers) the sound production is a minute fraction of the energy in the flow,

R. Camussi (Ed.), Noise Sources in Turbulent Shear Flows: Fundamentals and Applications, 
CISM International Centre for Mechanical Sciences, DOI 10.1007/978-3-7091-1458-2_1, 
© CISM, Udine 2013 



4 A. Hirschberg

making numerical simulation even more difficult. It is not even obvious how
one should define the acoustic field in the presence of flows. Aeroacoustics
does provide such definitions. The acoustic field is defined as an extrap-
olation of an ideal reference flow. The difference between the actual flow
and this reference flow is identified as source of sound. Using Lighthill’s
terminology, we call this an “analogy” [Lighthill (1952-54)].

In free field conditions the sound intensity produced by flows is usually
so small that we can neglect the effect of acoustics on the flow. Further-
more, the listener is usually immerged in a uniform stagnant fluid. In such
cases the convenient reference flow is the linear inviscid perturbation of this
stagnant, uniform fluid. It is convenient to use an integral formulation of
the aero-acoustical analogy. This integral equation is a convolution of the
sound source by the Green function: the response of the reference state
to a localized impulsive source. The advantage of the integral formulation
is that random errors in the source term average out. One therefore often
uses such an integral formulation to extract acoustic information from direct
numerical simulations of the flow which are too rough to directly predict
the acoustic field. Such an approach is used so as to obtain scaling laws
for sound production by turbulent flows when only global information is
available about the flow. When flow dimensions are small compared to the
acoustical wave length (compact flow) we can locally neglect the effect of
wave propagation within the source region. Here the analogy of Lighthill
provides again a procedure which guarantees that we keep the leading order
term where brute force would predict no sound production at all or would
dramatically overestimate it [Crighton et al. (1992)]. In compact flows at
low Mach numbers the flow is most efficiently described in terms of vortex
dynamics, allowing a more detailed study of the sound production by non-
linear convective effects.

Walls have a dramatic effect on the production of sound because it be-
comes much easier compressing the fluid than in free space. In internal flows
acoustic energy can accumulate into standing waves, which correspond to
resonances. Even at low Mach numbers acoustical particle velocities of the
order of magnitude of the main flow velocity can be reached when hydrody-
namic flow instabilities couple with the acoustic standing waves. This rel-
atively high amplitude facilitates numerical simulations considerably. Such
self-sustained oscillations are best described qualitatively in terms of vortex
dynamics.

In a pipe the main flow does not necessarily vanish when travelling
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away from the source region. For these reasons another analogy should
be used, called the Vortex-Sound Theory. Whilst Powell (1964) initially
developed this theory for free space, Howe generalised it for internal flows
[Howe (1975), Howe (1984), Howe (1998), Howe (2002)]. In Howe’s ap-
proach the acoustic field is defined as the unsteady irrotational component
of the flow, which again stresses the fact that vortices are the main sources
of sound in isentropic flows. An integral formulation can also be used in
this case.

When considering self-sustained oscillations, one is interested in condi-
tions at which they appear and the amplitude they reach. While a linear
theory provides information on the conditions under which self-sustained
oscillation appears, the amplitude is determined by essentially non-linear
saturation mechanisms. We will show that when ever the relevant non-linear
mechanism is identified, the order of magnitude of steady self-sustained pul-
sation amplitude can be easily obtained. A balance between the acoustic
power produced by the source and the dissipated power will be used.

A summary of the equations of fluid dynamics is given in (section 2). In
Section 3 we introduce the acoustic field by means of Lighthill’s analogy,
followed by basic concepts of the acoustics of a stagnant uniform fluid, such
as elementary solutions of the wave equation, acoustic energy, the Green
function, multipole expansion, Doppler effect and convective effects due to
a uniform main flow (section 4). We use the analogy of Lighthill to derive
the scaling law for sound production by a subsonic isothermal free jet. The
influence of the difference in speed of sound between the source region and
the listener is discussed by using the example of bubbly liquids (section 5).
We then introduce the acoustics of pipes, derive the low frequency limit
of acoustic properties of a pipe discontinuity and of an open pipe termina-
tion (with and without main flow). In Section 6 we introduce the concepts
of resonators and discuss closed-side branch and Helmholtz resonators. In
section 7 we introduce vortex sound theory and apply it to the analysis of
whistling, from human whistling to whistling of corrugated pipes. Some
aspects introduced here are discussed in depth in the following chapters.

Our discussion is inspired by the book of Dowling and Ffowcs Williams
(1983), which is an excellent introductory course. Basic acoustics is dis-
cussed in the books of Morse and Ingard (1968), Pierce (1990), Kinsler
et al. (1982), Temkin (2001), Blackstock (2000) and Bruneau (2006).
Aeroacoustics is treated in the books of Goldstein (1976), Blake (1986),
Crighton et al. (1992), Howe (1998)and Howe (2002). In this introduction
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we ignore the effect of wall vibration [Junger and Feit (1986), Cremer and
Heckl (1988) and Norton (1989)]. Acoustics of musical instruments is dis-
cussed by Fletcher and Rossing (1998) and Chaigne and Kergomard (2008).
In an earlier course Hirschberg et al. (1995) and a review paper [Fabre et al.
(2012)] we discussed the aeroacoustics of woodwinds. In the Lecture notes
of Rienstra and Hirschberg (1999) provide more details on the mathematical
aspects.

2 Fluid dynamics

2.1 Conservation laws

The conservation of mass for an infinitesimal material element of density
ρ and volume V is given in the continuum approximation by [Batchelor
(1967), Landau and Lifchitz (1987), Kundu (1990)]:

DρV

Dt
= 0 (1)

where the convective time derivative is defined by:

Dρ

Dt
=

∂ρ

∂t
+ (�v · ∇) ρ (2)

in vector notation. In the index notation we have:

Dρ

Dt
=

∂ρ

∂t
+ vi

∂ρ

∂xi
. (3)

Following the convention of Einstein, a summation is assumed in equation
(3) over the repeated index i = 1, 2, 3. The dilation rate of a fluid particle
is given by:

1

V

DV

Dt
= ∇ · �v =

∂vi
∂xi

(4)

Hence, the mass conservation law (1) can be written in the conservation
form:

∂ρ

∂t
+∇ · (ρ�v) = ∂ρ

∂t
+

∂ρvi
∂xi

= 0 . (5)

In integral form this equation becomes:

d

dt

∫
V

ρdV +

∫
S

ρ (�v · �n) dS = 0 (6)

in which, V is a fixed control volume delimited by the surface S with outer
unit normal �n (Figure 1). The second law of Newton applied to an infinites-
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Figure 1. Control volume used to establish the integral conservation laws.

imal material element is:

ρ
D�v

Dt
= −∇ · ��P + �f (7)

where �f is the density of a force field acting on the bulk of the fluid and
��P

is the stress tensor representing the surface interaction between the particle
and its surroundings. Using the definition of the convective derivative (2)
and the mass conservation law (5) we obtain the conservation form of the
momentum equation:

∂ρ�v

∂t
+∇ · (ρ�v�v) = −∇ · ��P + �f (8)

or in index notation:

∂ρvi
∂t

+
∂ρvivj
∂xj

= −∂Pij

∂xj
+ fi (9)

and integral form:

d

dt

∫
V

ρ�vdV +

∫
S

ρ�v (�v · �n) dS = −
∫
S

��P · �ndS +

∫
V

�fdV . (10)

The energy conservation law is, in differential form:

Dρ(e+ v2/2)

Dt
= −∇ · �q −∇ ·

(
��P · �v

)
+ �f · �v +Qw (11)
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where e is the internal energy of the fluid per unit of mass, v = |�v| , �q the
heat flux and Qw the energy production per unit volume.

2.2 Constitutive equations

The conservation laws are complemented by empirical constitutive equa-
tions. For simplicity we assume that the fluid is locally in a state close to
thermodynamic equilibrium, so that we can express the internal energy in
terms of two other state variables:

e = e(ρ, s) (12)

where s is the entropy per unit of mass. Using the thermodynamic equation:

de = Tds− pd

(
1

ρ

)
(13)

we get the equations of state:

p = ρ2
(
∂e

∂ρ

)
s

(14)

and

T =

(
∂e

∂s

)
ρ

. (15)

As we also have p = p(ρ, s) we can write:

dp =

(
∂p

∂ρ

)
s

dρ+

(
∂p

∂s

)
ρ

ds . (16)

The speed of sound c is defined by:

c =

√(
∂p

∂ρ

)
s

. (17)

In most applications we will consider an ideal gas for which:

de = cvdT (18)

with cv the specific heat capacity at constant volume. For an ideal gas this
is a function of the temperature only. This further implies:

p = ρRT (19)
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and

c =
√
γRT =

√
γp

ρ
(20)

with R = cp − cv the specific gas constant, γ = cp/cv the Poisson ratio and
cp is the specific heat capacity at constant pressure. By definition:

cv =

(
∂e

∂T

)
ρ

(21)

and

cp =

(
∂i

∂T

)
p

(22)

where the specific enthalpy is defined by:

i = e+
p

ρ
. (23)

Assuming local thermodynamic equilibrium, fluxes are linear functions of
the flow variables. For the heat flux we use the law of Fourier:

�q = −K∇T , (24)

where K is the heat conductivity. The viscous stress tensor is defined by:

τij = pδij − Pij (25)

with δij the Kronecker delta, equal to unity for i = j and otherwise zero.
The viscous stress tensor is described for a so-called Newtonian fluid in
terms of the dynamic viscosity η and the bulk viscosity μ:

τij = 2η
(
Dij − 1

3Dkkδij
)
+ μDkkδij (26)

with

Dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
. (27)

2.3 Boundary conditions

The boundary conditions corresponding to the continuum assumption
and the local thermodynamic equilibrium are, for a solid impermeable wall
with velocity �vw and temperature Tw : �v = �vw and T = Tw.
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2.4 Approximations

Sound production by flows occurs at relatively high Reynolds numbers.
When considering wave propagation in air at audio frequencies, we can
neglect friction and heat transfer over distances of the order of the wave
length. Neglecting friction, heat transfer and heat production, the energy
equation (11) becomes:

Ds

Dt
= 0 . (28)

The momentum equation (7) reduces to the Euler equation:

ρ
D�v

Dt
= −∇p+ �f . (29)

In terms of the vorticity �ω = ∇ × �v the convective acceleration can be
written as:

(�v · ∇)�v = ∇
(
v2

2

)
+ �ω × �v . (30)

For homentropic flows ∇s = 0 we have furthermore ∇p/ρ = ∇i, so that the
Euler equation can be written in the form of Crocco:

∂�v

∂t
+∇B = − (�ω × �v) +

�f

ρ
(31)

with the total enthalpy:

B = i+ v2/2 . (32)

For irrotational flow �ω = 0 we can introduce a velocity potential such that:

�v = ∇ϕ (33)

or:

ϕ =

∫
�v · d�x . (34)

In the absence of an external force field, the integration of the Euler equation
yields the unsteady compressible Bernoulli equation:

∂ϕ

∂t
+B = g(t) (35)

in which the function g(t) is determined by the boundary conditions.
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In this isentropic flow approximation dQ = 0, so that it follows from the
first law of thermodynamics:

dQ = de+ pd

(
1

ρ

)
= di− 1

ρ
dp (36)

and

i =

∫
dp

ρ
. (37)

3 Analogy of Lighthill

The key idea of Lighthill’s analogy [Lighthill (1952-54)] is to derive a wave
equation starting from the exact mass conservation equation (5) and the
momentum equation (9):

∂ρ
∂t +

∂ρvi
∂xi

= 0 (5)

and
∂ρvi
∂t +

∂ρvivj
∂xj

= − ∂p
∂xi

+
∂τij
∂xj

+ fi . (9)

Taking the time derivative of (5) and subtracting from it, the divergence of
(9) we obtain the exact equation:

∂2ρ

∂t2
− ∂2ρvivj

∂xi∂xj
=

∂2p

∂x2
i

− ∂2τij
∂xi∂xj

− ∂fi
∂xi

(38)

which is quite meaningless. By adding 1
c20

∂2p
∂t2 on both sides and rearranging

the terms, making use of the fact that we chose c0 to be a constant, we can
write (38) as a wave equation:

1

c20

∂2p

∂t2
− ∂2p

∂x2
i

=
∂2ρvivj − τij

∂xi∂xj
− ∂fi

∂xi
+

∂2

∂t2

(
p

c20
− ρ

)
. (39)

This equation is still exact and still generally meaningless. We could have
chosen c0 to be a millimetre per century or equal to the speed of light. In
order to have a meaningful equation we now assume that we consider sound
production by a flow bounded by a fluid displaying small perturbations from
a uniform stagnant state with speed of sound equal to c0 (Figure 2). We
furthermore define the perturbations in the pressure p′ = p−p0 and density
ρ′ = ρ − ρ0 as deviations from the state (p0, ρ0) of this reference uniform
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Figure 2. Sound sources and listener in the analogy of Lighthill

stagnant reference fluid. As the reference state is constant and uniform we
can write (39) as:

1

c20

∂2p′

∂t2
− ∂2p′

∂x2
i

=
∂2ρvivj − τij

∂xi∂xj
− ∂fi

∂xi
+

∂2

∂t2

(
p′

c20
− ρ′

)
. (40)

We will see (section 4) that this equation describes the propagation of acous-
tic waves in the uniform stagnant fluid when the right hand side of the
equation (40) is negligible. In regions where the right hand side is not neg-
ligible, it describes the generation of sound. However, because the equation
of Lighthill is a single exact equation for many unknowns, we will not obtain
any result without approximations. Lighthill has shown that these approxi-
mations can best be introduced into an integral formulation of (40). We will
now consider basic acoustic wave propagation allowing to understand some
elementary aspects of the problem and to derive the integral formulation.

An interesting aspect of the analogy is that the sound source we find
depends on the choice of the acoustic variable. Until now we have chosen
pressure fluctuations p′ to describe the acoustic field. We could also have
followed a similar procedure to obtain a wave equation for the density fluc-
tuations ρ′. Starting from (38) we now subtract from both sides of the
equation the term c20∇2ρ′ to find:

∂2ρ′

∂t2
− c20

∂2ρ′

∂x2
i

=
∂2ρvivj − τij

∂xi∂xj
− ∂fi

∂xi
+

∂2

∂x2
i

(
p′ − c20ρ

′) . (41)
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In principle equations (40) and (41) are identical. However the pressure
formulation (40) is most convenient when considering sound production by
combustion processes in which the time-dependent combustion yields time-
dependent fluctuations in the entropy. In contrast, when considering a flow
in spatially non-uniform fluids with large variations in speed of sound the
density formulation (41) will be the most suitable. An example of this is the
sound generation by turbulence in bubbly liquids (section 5.2). In this case
the sound production appears to be dominated by the effect of differences
in the speed of sound.

Equation (41) is often written for convenience in terms of the stress
tensor of Lighthill :

∂2ρ′

∂t2
− c20

∂2ρ′

∂x2
i

=
∂2Tij

∂xi∂xj
− ∂fi

∂xi
(42)

where the stress tensor τij is defined by:

Tij = ρvivj − τij +
(
p′ − c20ρ

′) δij . (43)
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4 Acoustics of a uniform stagnant fluid

4.1 Wave equation

Looking at small perturbations (p′, ρ′, �v′) of a uniform stagnant state
(p0, ρ0) and neglecting friction and heat transfer, we find, for linear pertur-
bations:

∂ρ′

∂t
+ ρ0∇ · �v′ = 0 , (44)

ρ0
∂�v′

∂t
+∇p′ = �f (45)

and
∂s′

∂t
=

Qw

ρ0T0
. (46)

The corresponding linearized equation of state is:

p′ = c20ρ
′ +

(
∂p

∂s

)
ρ

s′ . (47)

Taking the time derivative of (44), subtracting the divergence of (45) and
using (46) and (47) in order to eliminate ρ′ and s′, we obtain the wave
equation for pressure perturbations:

1

c20

∂2p′

∂t2
−∇2p′ =

1

T0ρ0c20

(
∂p

∂s

)
ρ

∂Qw

∂t
−∇ · �f . (48)

As can be seen from this equation, the unsteady heat production is a source
of sound, which is due to the dilatation of the fluid. This is in line with
our common experience that turbulent flames are noisy. Also an unsteady
non-uniform force field appears to be a source of sound. This is the sound
source when considering the whistling of a cylinder placed with its axis
normal to a uniform flow. Due to hydrodynamic instability, the wave be-
hind the cylinder breaks down into a vortex street of alternating rotation
direction. This periodic vortex shedding induces an unsteady force of the
flow on the cylinder. The reaction force from the cylinder on the fluid is the
source of sound. The so-called Aelonian tone will be discussed in section 7.2.

The next sections will focus on wave propagation and hence assume that
Qw = 0 and �f = 0. We therefore consider solutions of the homogeneous
wave equation of d’Alembert

1

c20

∂2p′

∂t2
−∇2p′ = 0 . (49)

As the flow is isentropic the equation of state (16) reduces to p′ = c20ρ
′.
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4.2 Elementary solutions

The homogeneous scalar wave equation (49) satisfies the plane wave
solution:

p′ = F (�n · �x− c0t) (50)

with �n as the unit vector in the direction of propagation. This can easily be
verified for �n = (1, 0, 0), in which case the wave equation (45) reduces to:

1

c20

∂2p′

∂t2
− ∂2p′

∂x2
= 0 . (51)

Using the chain rule we can verify that p′ = F (x − c0t) is a solution. The
function F (x) is determined by initial and boundary conditions. Also p′ =
G(x + c0t) is a solution, representing a wave propagating in the opposite
direction �n = (−1, 0, 0). For harmonic waves with a frequency f we can
write this solution with the complex notation as:

p′ = A exp

[
iω

(
t− �n · �x

c0

)]
= A exp

[
i
(
ωt− �k · �x

)]
(52)

where A is the complex amplitude, �k = (ω/c0)�n the wave vector and ω =
2πf . Substitution of the plane wave solution into the momentum equation
(45)with �f = 0 yields:

�u′ =
p′

ρ0c0
�n . (53)

Another elementary solution is obtained by considering spherical symmetric
waves emanating from a point at source �y. The pressure field is then only
a function of time and of distance r = |�x− �y| between the source position �y
and the observer’s position �x. The mass conservation law and momentum
equation reduce to:

∂ρ′

∂t
+

ρ0
r2

∂

∂r

(
r2

∂v′r
∂r

)
= 0 (54)

and

ρ0
∂v′r
∂t

+
∂p′

∂r
= 0 (55)

where v′r is the fluid velocity in the radial direction. Eliminating the velocity
and the density ρ′ = p′/c20 yields:

1

c20

∂2rp′

∂t2
− ∂2rp′

∂r2
= 0 (56)
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which is satisfied by the one-dimensional d’Alembert solution for the prod-
uct of pressure p′ and distance r:

p′ =
1

r
F (r − c0t) . (57)

By using this equation, we actually assume “free field” conditions. We
assume that there are only outgoing waves and no incoming (or reflected)
waves converging towards the source. For harmonic waves equation (57)
becomes in complex notation:

p′ =
A

r
exp [i(ωt− kr)] (58)

with k = ω/c0. The corresponding radial velocity is found by substitution
in the momentum equation:

v′r =
p′

ρ0c0

[
1 +

1

ikr

]
. (59)

We observe that for large distances compared to the wave length kr >> 1,
the solution can locally be approximated by a plane wave with: p′ = ρ0c0v

′
r.

In this so-called “far field” approximation we have:

∂p′

∂r
≈ − 1

c0

∂p′

∂t
. (60)

In the opposite limit of near field kr << 1 the velocity varies quadrati-
cally with the distance r, which is typical for the incompressible flow from
a point volume source. Whenever characteristic flow dimensions are small
compared to the wave length we can neglect wave propagation. Such a flow
is called a “compact” flow.

Using these results (58-59) we can now consider the sound radiated by
a pulsating sphere of radius

a = a0 + â exp(iωt) (61)

where â/a0 << 1 and ωâ/c0 << 1. Substituting (61) into (59) and using
(58) we find:

iωâ =
A exp(−ika0)

ρ0c0a0

(
1 +

1

ika0

)
(62)

and

p′ = − ρ0ω
2a0â

(1 + (ka0)2)
(1− ika0)

(a0
r

)
exp [i(ωt− k(r − a0))] . (63)
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This result shows that in the limit ka0 << 1 for a given volume flux ampli-
tude 4πa20ωâ, the amplitude of the radiated sound wave increases linearly
with the frequency. At low frequency the pulsating sphere is compact and
is a very inefficient source of sound. In the opposite limit ka0 >> 1 the
radiated amplitude is independent of the frequency.

4.3 Acoustic energy

For further reference we now consider the acoustic energy. Following
the original approach of Kirchhoff, we start from the linearized mass and
momentum equations:

1

c20

∂p′

∂t
+ ρ0∇ · �v′ = 1

T0ρ0c20

(
∂p

∂s

)
ρ

Qw (64)

and

ρ0
∂�v′

∂t
+∇p′ = �f . (65)

Then we multiply the mass conservation law by p′/ρ0 and add the in-product
of the momentum equation with the velocity �v′, to find:

∂E

∂t
+∇ · �I =

1

(ρ0c0)2T0

(
∂p

∂s

)
ρ

p′Qw + �v′ · �f (66)

with the acoustic energy density E defined by :

E =
1

2
ρ0|�v′|2 + (p′)2

2ρ0c20
(67)

and the intensity I defined by:

�I = p′�v′ . (68)

It should be noted that this derivation assumes that we did not neglect any
relevant quadratic terms when using the linear approximation for the mass
and momentum equation. This approach appears to be valid only for the
case considered, i.e. of a uniform stagnant reference state [Morfey (1971),
Landau and Lifchitz (1987), Pierce (1990), Myers (1991)].

Equation (66) clearly shows generating acoustic energy requires that a
volume source should be placed at a position with a large acoustic pressure.
A force needs an acoustic velocity to generate acoustic energy.
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Considering a compact pulsating sphere near a rigid plane wave kh << 1
(Figure 3), we observe that due to reflection at the wall the amplitude of
waves reaching an observer in the far field is roughly double the amplitude
we would find in free space. Hence, the intensity is four times larger than
in free space. However, the source only radiates into a half space, so that
the time averaged power < P > generated by the source is doubled. This
result can also be understood as a result of the doubling of the pressure
fluctuations surrounding the source, due to reflection at the wall, which,
following our energy corollary doubles the generated power. This implies

Figure 3. Influence of a rigid plane wall on the radiation of a compact
sphere placed near the wall: p′ = p′d + p′r ≈ 2p′d ⇒< P >= 1

24πr
2 < Ir >=

2× 4πr2 <
(p′

d)
2

ρ0c0
>

that the radiated power is doubled compared to free field conditions. This
example stresses the fact that the sound power does not only depend on the
source but also on the surroundings of the source.
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4.4 Free space Green’s function and integral formulation

Using the superposition principle we obtain an integral formulation of
the wave equation for free space conditions. We first consider the sound
generated by a pulse from a point source. This implies a localization in
time and space, obtained by using the delta function. The delta function
δ(t) is a generalized function defined by [Chrighton (1992)]:∫ ∞

−∞
δ(t)f(t)dt = f(0) . (69)

For any well behaving function f(t) and:∫ ∞

−∞
δ(t)dt = 1 . (70)

The delta function has no meaning outside an integral. The free-field Green
function G0(�x, t|�y, τ) is the solution of the wave equation:

1

c20

∂2G0

∂t2
−∇2G0 = δ(t− τ)δ(�x− �y) (71)

where δ(�x − �y) = δ(x1 − y1)δ(x2 − y2)δ(x3 − y3), for free-field boundary
conditions and for the initial conditions:

G0(�x, t|�y, τ) = 0, t ≤ τ (72)

and
∂

∂t
G0(�x, t|�y, τ) = 0, t ≤ τ (73)

corresponding to the causality condition that a wave cannot reach an ob-
server before it has been emitted. In order to determine G0(�x, t|�y, τ) we use
the Fourier transform Ĝ0 defined by:

G0(�x, t|�y, τ) =
∫ ∞

−∞
Ĝ0(ω, �x|�y) exp(iωt)dω (74)

and

Ĝ0(ω, �x|�y) = 1

2π

∫ ∞

−∞
G0(�x, t|�y, τ) exp(−iωt)dt . (75)

As we consider the field generated by a point source in free-field conditions
we know that the Fourier transform of the Green function is given by:

Ĝ0(ω, �x|�y) = A

r
exp(−ikr) (76)
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where A is an amplitude which will be determined by using the properties
of the delta function. We take the Fourier transform of the wave equation
(71). Using the property (69) of the delta function:

1
2π

∫∞
−∞ δ(t− τ) exp(−iωt)dt =

= 1
2π

∫∞−τ

−∞−τ
δ(t− τ) exp(−iω(t− τ)− iωτ)d(t− τ) = exp(−iωτ)

2π

(77)

we find:

−(k2 +∇2)Ĝ0 =
exp(−iωτ)

2π
. (78)

We integrate this equation over a spherical volume V of radius R enclosing
the source:

−
∫
V

(k2 +∇2)Ĝ0dV =
exp(−iωτ)

2π
. (79)

By taking the limit of a compact control volume kR << 1 and using the
Gaussian Theorem we find:

−
∫
s

∂Ĝ0

∂r
dS = −4πR2 ∂Ĝ0

∂r

∣∣∣∣∣
r=R

= 4πR2 A

R2
=

exp(−iωτ)

2π
(80)

which yields the amplitude A. Substituting A in (76) and transforming back
to the time domain yields:

G0(�x, t|�y, τ) = δ(τ − te)

4πr
(81)

where the emission (retarded) time te is defined by:

te = t− r

c0
. (82)

Because Green’s function in free-space only depends on the distance r and
time difference (t− τ), rather than on the source and observer’s coordinates
(�x, t) and (�y, τ) separately, it satisfies the important symmetry properties:

G0(�x, t|�y, τ) = G0(�y,−τ |�x,−t) (83)

and
∂G0

∂t
= −∂G0

∂τ
(84)

and
∂G0

∂xi
= −∂G0

∂yi
. (85)
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Equation (83) is the so-called reciprocity relation, which is also valid for
Green’s functions in the presence of walls.

We can now use the Green function to build the free-field solution of the
non-homogeneous wave equation:

1

c20

∂2p′

∂t2
−∇2p′ = q(�x, t) (86)

by using the superposition principle:

p′(�x, t) =
∫ t

−∞

∫
V

q(�y, τ)G0(�x, t|�y, τ)dVydτ =

∫
V

q(�y, te)

4πr
dVy (87)

where dVy = dy1dy2dy3.

Substitution of (87) into (86) and using the definition (71) of Green’s
function we can verify the validity of this solution.

In the presence of walls, we can still use the same free-field Green func-
tion. However, now the solution of the wave equation will include surface
integrals representing the effect of reflections of waves at the walls. Using
Green’s theorem we have:

p′(�x, t) =
∫ t

−∞
∫
V
q(�y, τ)G0(�x, t|�y, τ)dVydτ

− ∫ t

−∞
∫
S
[p′∇yG0 −G0∇yp

′] · �ndSydτ .
(88)

This integral formulation, in combination with Lighthill’s analogy, yields
the integral formulation of Curle (1955). The control volume is chosen
such that it encloses the observation point �x. Note that in the literature
the sign of the unit normal �n is often chosen to be the opposite of the sign
chosen here [Goldstein (1976), Dowling and Ffowcs Williams (1983)].

An alternative approach is the use of a so-called tailored Green function
[Dowling and Ffowcs Williams (1983)]. This is a Green function defined
by the wave equation (71) and the same (locally reacting linear) boundary
conditions as the acoustic field under consideration. In that case the surface
integrals of (88) vanish. An example of such a Green function for the trailing
edge of a plate will be discussed in later chapters, Part 2.

4.5 Monopole, dipole and quadrupole

We consider radiation of a spatially limited source-region under free field
conditions. Whenever the source region (q(�x, t) �= 0) is compact, we can ne-
glect variations in the retarded time te in the integral of equation (87).
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Choosing the origin within the source region we get at distances large com-
pared to the source region:

r = |�x− �y| ≈ |�x| (89)

and

te ≈ t− |�x|
c0

(90)

so that we have:

p′(�x, t) ≈ 1

4π|�x|
∫
V

q

(
�y, t− |�x|

c0

)
dVy . (91)

We call the integral
∫
V
q
(
�y, t− |�x|

c0

)
dVy the monopole strength of the source

region. Whenever the source is the divergence of a force field q(�x, t) = −∇· �f
integral (91) taken over a volume including the source region will vanish

because the surface integral of the flux of the force field
∫
S
�f · �ndSy = 0

vanishes because �f = 0 on the surface. The surface, including the control
volume, is outside the source region so that the force is either uniform or
zero. By partial integration and using the symmetry property (83) we can
write the formal solution of the wave equation as:

p′(�x, t) = − ∫ t

−∞
∫
V
(∇y · �f(�y, τ))G0(�x, t|�y, τ)dVydτ =

= − ∫ t

−∞
∫
V
�f(�y, τ)∇xG0(�x, t|�y, τ)dVydτ .

(92)

As the integration over the source coordinates �y does not interfere with the
derivation by observer’s coordinates �x we have:

p′(�x, t) = −∇x ·
∫ t

−∞

∫
V

�f(�y, τ)G0(�x, t|�y, τ)dVydτ . (93)

For a compact source (k|�y| << 1 and distances large compared to the
dimension of the source region (|�x| >> |�y|), we have a dipole field:

p′(�x, t) ≈ −∇x ·
(

1

4π|�x|
∫
V

�f

(
�y, t− |�x|

c0

)
dVy

)
(94)

where
(∫

V
�f
(
�y, t− |�x|

c0

)
dVy

)
is the dipole strength.

An alternative way to find this expression is to consider the solution φi of
the wave equation:

1

c2o

∂2φi

∂t2
−∇2φi = −fi (95)
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following (87) this is simply:

φi(�x, t) = −
∫ t

−∞

∫
V

fi(�y, τ)G0(�x, t|�y, τ)dVydτ . (96)

Obviously taking the divergence of equation 95 we also have:

1

c20

∂2(∂φi/∂xi)

∂t2
−∇2(∂φi/∂xi) = − ∂fi

∂xi
(97)

which leads to equation (93) because p′(�x, t) = −∇ · �φ.

While a monopole can be represented as a pulsating compact sphere, a
dipole field is generated by a compact translating sphere. In a similar way

we can obtain for the sound source
∂2ρvivj
∂xi∂xj

found in the analogy of Lighthill:

p′(�x, t) =
∂2

∂xi∂xj

∫ t

−∞

∫
V

ρvivjG0(�x, t|�y, t)dVydτ . (98)

In a compact source region this is a so-called quadrupole field.

An alternative approach to the multipole expansion of the source [Gold-
stein (1976)] is to use a Taylor series expansion of the free space Green
function around �y = 0 in the general solution (87):

p′(�x, t) =
∫ t

−∞
∫
V
q(�y, τ)

[
G0(�x, t 0, τ) +

(
∂G0

∂yi

)
�y=0

yi+

+ 1
2

(
∂2G0

∂yi∂yj

)
�y=0

yiyj + ...

]
dVydτ .

(99)

which, using the symmetry properties (85) of the Green’s function and the
far field approximation, yields:

p′(�x, t) ≈ 1
4π|�x|

∫
V
q
(
�y, t− |�x|

c0

)
dVy +

xi∂
4π|�x|2c0∂t

∫
V
yiq(�y, t− |�x|

c0
)dVy+

+
xixj

4π|�x|3
∂2

c20∂t
2

∫
V

1
2yiyjq

(
�y, t− |�x|

c0

)
dVy + ...

(100)
An intuitive interpretation of monopole, diopole and quadrupole on surface
water waves is provided in Figure 4. Due to the oscillating momentum in
the region between the two monopoles forming a dipole it is obvious that
a dipole cannot exist without any force acting on the fluid. This force is
needed to change the momentum. Thus, unsteady force induces a dipole
radiation and a dipole radiation cannot exist without a force acting on the
fluid.
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Figure 4. Intuitive interpretation of monopole, diopole and quadrupole on
surface water waves. We provide a qualitative interpretation of physical
realisations of monopole, dipole and quadrupole. Mass exchange between
two monopoles with opposite phase implies an oscillating momentum. This
is impossible without external force.

4.6 Analogy of Curle

The analogy of Curle (1955) is the integral formulation (88) applied to
Lighthill’s analogy (42) in terms of density fluctuations:

p′(�x, t) = c20ρ
′(�x, t) =

∫ t

−∞
∫
V

(
∂2Tij

∂yi∂yj
− ∂fi

∂yi

)
G0(�x, t|�y, τ)dVydτ

−c20
∫ t

−∞
∫
S

[
ρ′ ∂G0

∂yi
−G0

∂ρ′

∂yi

]
nidSydτ .

(101)

The observer is placed within the control volume V over which we carry
out the integration. This equation is based on the assumption that at the
listener’s position p′ = c20ρ

′. We will further ignore the contribution from

the external force field (�f = 0). By means of partial integration we move
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the space derivatives from the source terms towards the Green function:

p′(�x, t) = c20p
′ =

∫ t

−∞
∫
V
Tij

∂2G0

∂yi∂yj
dVydτ+

+
∫ t

−∞
∫
S

[
G0

∂Tij

∂yi
nj − Tij

∂G0

∂yj
ni

]
dSydτ−

−c20
∫ t

−∞
∫
S

[
ρ′ ∂G0

∂yi
−G0

∂ρ′

∂yi

]
nidSydτ .

(102)

Using the definition of the viscous stress tensor (26) and the momentum
equation (9) we can write (102) in the form:

p′(�x, t) = c20p
′ =

∫ t

−∞
∫
V
Tij

∂2G0

∂yi∂yj
dVydτ +

∫∞
−∞

∫
S
G0

∂ρvi
∂t nidSydτ

− ∫ t

−∞
∫
S
(Pij + ρvivj)

∂G0

∂yj
nidSydτ +

∫ t

−∞
∫
S

(
p′ − c20ρ

′) ∂G0

∂yi
nidSydτ .

(103)
Furthermore we neglect entropy fluctuations on the surface S.

By means of partial integration we move the time derivative in the sec-
ond integral from the momentum flux to the Green’s function. Using the
symmetry relations of the free field derivative with respect to space (85)
and time derivatives (84), we find in the far field approximation (60):

p′(�x, t) = − 1
4π

∂
∂t

∫
S

[
ρvi

r

]
τ=te

nidSy−
− xj

4π|�x|c0
∂
∂t

∫
S

[
Pij+ρvivj

r

]
τ=te

nidSy+

+
xixj

4π|�x|2c20
∂2

∂t2

∫
V

[
Tij

r

]
τ=t

dVy .

(104)

In (104) we recognize the monopole sound production due to the volume flux
leaving the surface (first integral), the dipole field generated by the force
acting on the surfaces and the quadrupole field generated by fluctuations of
the Reynolds stress tensor in the volume.

4.7 Doppler Effect

In Curle’s formulation (section 4.6) we restricted ourselves to fixed con-
trol volumes. When considering sound produced by moving objects such as
fan blades, it is more convenient to use a moving control volume. Ffowcs
Williams and Hawkings (1969b) use generalized functions to take into ac-
count the motion of the sources, the result being a generalization of Curle’s
equation in which Doppler factors appear. In a further step Ffowcs Williams
and Hawking [Goldstein (1976), Dowling and Ffowcs Williams (1983),
Crighton et al. (1992)] introduce the boundaries of the control volume in
the equation of motion, see next chapter. We now focus on the derivation
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of the Doppler effect for point sources.
A moving point source is described by:

q(�x, t) = Q(t)δ(�x− �xs(t)) (105)

where �xs(t) is the position of the source. For free-field conditions we have:

p′(�x, t) =
∫ t

−∞

∫
V

Q(τ)δ(�y − �xs(τ))δ(τ − te)

4πr
dVydτ (106)

where te = t− r
c0

and r = |�x−�y|. Using the properties of the delta function
we get after spatial integration:

p′(�x, t) =
∫ t

−∞

Q(τ)δ
(
t− τ − |�x−�xs(τ)|

c0

)
4π|�x− �xs(τ)| dτ (107)

This is an integral of the type:∫ ∞

−∞
F (τ)δ(H(τ))dτ = Σi

F (ti)

|dHdτ |τ=ti

(108)

with H(ti) = 0. In the present case we have:

H(τ) = t− τ
|�x− �xs(τ)|

c0
(109)

so that:
dH

dτ
= −1 +

�x− �xs

c0|�x− �xs(τ)| ·
d�xs

dτ
= −1 +Mr (110)

where Mr is the ratio of the source velocity component in the direction of
the observer and the speed of sound. The sound field is given by:

p′(�x, t) =
Q(te)

4π|1−Mr||�x− �xs(te)| (111)

where the emission time is the root of:

c0(t− te) = |�x− �xs(te)| . (112)

For subsonic velocities there is only one root (τ = te) of H(τ) = 0. For a
harmonically oscillating sound source with constant frequency ω, the fre-
quency of the signal reaching the observer is:

dωte
dt

=
ω

1−Mr(te)
(113)
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because dte
dt = 1

1−Mr(te)
.

A further discussion of the Doppler Effect is provided in the next chap-
ter, where it is shown that for supersonic Mach numbers, the sound source
will have a strong radiation for directions such that Mr = 1. An example
of such a radiation occurs when elastic bending waves in a plate propa-
gate supersonically with respect to the surrounding fluid. As the velocity
of propagation of bending waves increases with the frequency this occurs
typically above a critical frequency fc, which is called the coincidence fre-
quency. This explains why we hear a high pitch when we hit a glass window.

From equation (111) we observe that in addition to the change in fre-
quency we have an effect of the source motion on the amplitude reaching
the observer. This effect can be understood as a result of the change in
ratio of source size to acoustic wave length. From equation (63) we know
that with increasing Helmholtz numbers the radiate sound amplitude of a
compact object increases. In the direction of motion of the source, the emit-
ted acoustic wave length is shorter by a factor 1 − Mr, with an increased
effective Helmholtz number as a result. In figure 5 we provide an intuitive
interpretation of the Doppler shift in frequency.
Furthermore we note that for a moving object of volume V the sound

source is q(�x, t) = ρ0
d2V
dt2 δ(�x− �xs(t)). Hence we have:

p′(�x, t) = ρ0
∂2

∂t2

(
V (te)

4π|1−Mr||�x− �xs(te)|
)

. (114)

It shows that due to the time dependency of the retarded time ∂te/∂t an
object of constant volume will radiate sound if its velocity varies. This is
the so called thickness noise p′th, which is very important in aircraft fans. In
the far field approximation for a rigid of volume V body moving at subsonic
speed, we have:

p′th(�x, t) ≈ ρ0V

⎛⎝ |1−Mr|d2Mr

dt2e
+ 3dMr

dte

4π|1−Mr|3(1−Mr)2

⎞⎠ 1

|�x− �xs(te)| . (115)

Another example is the sound radiated by a moving point force:

�f = �F (t)δ(�x− �xs(t)) (116)

which is given by:

p′(�x, t) = −∇ ·
(

�F (te)

4π|�x− �xs(te)||1−Mr|

)
. (117)
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Figure 5. Intuitive interpretation of Doppler effect as a change in wave
length λ = c0−U

f of radiated wave due to the movement of the source with
a velocity U in the direction of the listener. The wave-length is reduced in
the direction of the movement. This implies a reduction of the compactness
of the source and leads to an increased radiation power.

In the far-field approximation we have:

p′(�x, t) = − 1

1−Mr

(�x− �xs(te))

|(�x− �xs(te))| ·
∂

∂te

(
�F (te)

4π|�x− �xs(te)||1−Mr(te)|

)
.

(118)

4.8 Influence of speed of sound gradient and of convective effects

Whenever a source of sound is compact we can separate the sound gen-
eration from the wave propagation. Even with this simplification the wave
propagation remains extremely complex.

In the presence of flow and gradients in the speed of sound, acoustic
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waves display complex propagation behaviour [Dowling 1983, Pierce 1990,
Rienstra 1999]. An example of this is the sound propagation in the at-
mosphere. As a result of the non-uniformity of the temperature in the
atmosphere waves are deflected from the straight path assumed in the ele-
mentary solutions for uniform stagnant fluid. An example being that a gun
shot or thunder heard at large distances can be repeated multiple times,
which yields a roll sound. This is due to the fact that sound can reach our
ears along multiple paths.

We now consider a very basic problem of a plane wave that is reflected
at the interface (shear layer) between two uniform media a and b with each

having uniform flow speeds respectively �Ua = (Ua, 0, 0) and �Ub = (Ub, 0, 0)
and speeds of sound ca and cb respectively.

In presence of a uniform flow the plane wave solution (52) becomes:

p′(�x, t) = A exp

(
iω

(
t− �x · �n

c0 + �n · �U

))
= A exp

(
i
(
ωt− �k · �x

))
(119)

with �n = (cos θ, sin θ, 0) and �k = ω�n/(c0 + �n · �U).

We assume an incident wave with amplitude I and wave number �kI =
ω�n

ca+�nI ·�U a
in region a. This induces a reflected wave with amplitude R and

wave number �kR = ω�nR

ca+�nR·�Ua
and a transmitted wave with amplitude T and

wave number �kT = ω�nT

cb+�nT ·�Ub
(Figure 6).

At the interface x2 = 0 we have continuity of pressure so that for x2 = 0
we have:

I exp
(
−ω x1 cos θI

ca+Ua cos θI

)
+R exp

(
−iω x1 cos θR

ca+Ua cos θR

)
=

= T exp
(
−iω x1 cos θT

cb+Ub cos θT

)
.

(120)

As this equation should hold for any value of the coordinate x1 (along the
shear layer) the exponents should be identical:(

cos θI
ca + Ua cos θI

)
=

(
cos θR

ca + Ua cos θR

)
=

(
cos θT

cb + Ub cos θT

)
. (121)

The first equality of (121) implies that cos θ1 = cos θR, so that the reflection
angle is equal to the incidence angle θR = −θI .
The second equality of (121) yields the modified Snelius law:

ca
cos θI

+ Ua =
cb

cos θT
+ Ub (122)
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Figure 6. Reflection and refraction of a plane wave at a flat shear layer
x2 = 0 separating two uniform flows.

or:

cos θT =
cb cos θI

ca + (Ua − Ub) cos θI)
. (123)

The maximum transmission angle is found for grazing incidence cos θI = 1:
In the particular case of ca = cb and Ub = 0 we find:

(θT )max = arcos

(
1

1 + (Ua/ca)

)
(124)

In high speed jets one does indeed observe a cone of silence along the axis
of the jet, because the acoustic waves emitted along the main flow direction
are bent away from the flow direction by the velocity gradient in the shear
layers [Morfey (1978)].

The amplitude of the transmitted and reflected waves is calculated from
the continuity of pressure at the interface I +R = T complemented by the
continuity of particle displacement at the interface.
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5 Turbulence noise at low Mach numbers

5.1 Isothermal free jet

Considering the sound production of a turbulent free jet. This is the
flow with a velocity U0 at the outlet of a pipe of diameter D. Turbulence
is an unsteady chaotic fluid motion which appears when viscous forces are
small compared to non-linear convective forces. This corresponds to high
Reynolds numbers ReD = U0D/ν. We limit ourselves to a low Mach num-
ber flow M = U0/c0 � 1 of an air jet surrounded by air with the same
temperature as its surroundings. The prediction of the scaling rule between
the power of this sound source and the Mach number was a major suc-
cess of the theory of Lighthill (1952-54). As stressed by Powell (1990),
the scaling law was predicted before it was corroborated by experiments.
The steps taken by Lighthill were, however, quite intuitive and justification
of some of these steps came only long after the original publication [Mor-
fey (1973),(1976),(1978), Obermeier (1975)]. We now follow the Lighthill
prodecure [1954].

Firstly Lighthill assumes that there are no external forces working on the
flow and that the effect of walls can be neglected. In free field conditions
equation (99) simplifies to:

p′(�x, t) = c20ρ
′ ∫ t

−∞
∫
V
Tij

∂2G0

∂yi∂yj
dVydτ =

= ∂2

∂xi∂xj

∫ t

−∞
∫
Tij

δ
(
t−τ− r

c0

)

4πr dVydτ .
(125)

This implies that the solution we are seeking for is, at most, a quadrupole
field. In fact, we have imposed this by assuming that there are no external
forces acting on the fluid and the potential monopole sources were neglected.
Please note that in the analogy of Lighthill, ρ′ is used as aeroacoustical vari-
able. In the next section we will discuss why this choice can be important.
Carrying the time integration and using the far field approximation we find:

p′(�x, t) = c20ρ
′ =

xixj

|�x|2c20
∂2

∂t2

∫
V

Tij(�y, t− r
c0
)

4πr
dVy . (126)

The sound appears to be produced mainly by large coherent vortex struc-
tures with a length scale of the order of the pipe diameter D. For such scales
the Reynolds number is large. We therefore expect the Reynolds stress ten-
sor ρvivj to be much larger than the viscous stress tensor τij [Morfey (1976)].
Furthermore, at low Mach numbers variations in temperature and density
are negligible [Morfey (1973), Morfey et al. (1978)], which implies that we
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Figure 7. Overall acoustic sound power level (OAPWL) of the sound
radiation from an isothermal free jet as a function of the jet Mach
number: comparison of theory with experimental results [Fisher et al.
(1973),Viswanathan (2009)].

can use the approximation proposed by Lighthill (1952-54):

Tij ≈ ρ0vivj . (127)

For a circular jet cross section the dominant frequency corresponds to a
Strouhal number of unity. Hence the dominating frequency is U0/D and the
corresponding acoustic wavelength is D/M = Dc0/U0. The sound source
has a volume V of the order of D3. At low Mach numbers the sound source
is small compared to the wave length. This implies that we can neglect
variations of the retarded time in the integral (126): r = | �x− �y| ≈ |�x|.
Summarizing we use the scaling rules:

∂

∂t
∼ U0

D
(128)

Tij ∼ ρ0U
2
0 (129)

V ∼ D3 . (130)
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Substitution in (126) yields:

p′ ∼ ρ0U
4
0

c20

(
D

r

)
. (131)

In terms of sound source power < P >= 4πr2 (p′)2

ρ0c0
we have:

< P >
1
2ρ0U

3
0
πD2

4

∼ 32M5 (132)

where we assumed an isotropic radiation pattern. This famous global scaling
rule of Lighthill (1952-54) appears to be valid up to Mach numbers of order
unity. At these high Mach numbers the radiation pattern has a high forward
directivity due to the Doppler effect and, due to refraction of sound by the
shear layers, it displays a cone of silence around the axis. The fact that the
theory remains valid up to relatively high Mach numbers can be partially
explained by the fact that the convection velocity Uc of the vortices in the
jet is only a fraction of the main flow velocity [Crighton et al. (1992)]. Typ-
ically we have Uc/U0 ≈ 0.3. Recent discussions on jet noise are Morris and
Farassat (2002) and Viswanathan (2009) as well as the discussion in Part 2.

Obviously, by increasing the Mach number, the scaling law of Lighthill
fails simply because the radiated power would become larger than the avail-

able jet power 1
2ρU

3
0
πD2

4 . Also the sound production mechanism changes
drastically. The sound radiation from supersonic jets aboveM = 3 is largely
due to hydrodynamic shear waves which display highly directional radiation
patterns. Entropy effects due to temperature differences in the flow also be-
come very important. In a supersonic flow the temperature typically varies
from the stagnation temperature Tt to the isentropic expansion temperature
T = Tt/(1 + (γ − 1)M2/2). Starting from room temperature Tt ≈ 300K in
the reservoir, M = 3 implies a main flow temperature T ≈ 100K. Obvi-
ously, such a flow is not isothermal and we can use many different definitions
of the temperature or Mach numbers to characterize the flow [Viswanathan
(2009)].

Finally, most supersonic jet are either over- or underexpanded, and there-
fore display standing shock structures, which interact with vortices (turbu-
lence) that give strong sound radiation. In some cases, this leads to spec-
tacular self-sustained oscillation (jet screetch).

Note that approximation (128) is based on the fact that in a circular
jet the characteristic Strouhal number for the sound production is of or-
der unity SrD = Df/U = 0(1). In a planar jet of thickness H we find
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SrH = Hf/U = 0(10−1), which again stresses that the assumptions are not
trivial [Bjørnø et al. (1984)].

Turbulence noise is essential because, when all other sound sources have
been suppressed, this will always remain as the minimum remaining noise
production which we can achieve. Lighthill’s scaling law indicates that the
most efficient way to reduce this noise is to reduce the flow velocity. The
result derived for free-field conditions remains valid for confined flow. In the
absence of resonances, one finds at low frequencies in a pipe p′ ∼ ρ0U

3
0 /c0

and < P >∼ M6.

It is important to stress again that the analogy of Lighthill does not
impose the quadrupole character of the source. Because we neglected the
monopoles (no heat sources and negligible variation in density) and the
dipoles (no external force acting on the “free” jet), the source has at most,
a quadrupole character. Based on the integral formulation (126) the proce-
dure imposes this assumed quadrupole character on the solution. So even
if the applied model predicting the stress tensor Tij does involve density
fluctuations and external forces, the formulation ensures that these contri-
butions are ignored. This explains the success of such analogies [Schram and
Hirschberg (2003)]. They filter out spurious sound sources due to errors in
the estimation of the stress tensor Tij .

5.2 Bubbly liquids

In the previous sections we used the analogy of Lighthill (1952-54) to
obtain a scaling law for sound production by subsonic isothermal free jets.
One of the choices in this derivation is to express the analogy in terms
of fluctuations of density ρ′ (equation 40). As an alternative, we could
have also used the fluctuations of pressure p′ (equation 39). In principle
both formulations are equivalent as long as no approximations are involved.
However, an analogy is only meaningful if we do use approximations. De-
pending on the choice of the aero-acoustic variable some approximations
will appear naturally. For example using the pressure formulation, the en-
tropy noise source term has the form ∂2(p′/c20−ρ′)/∂t2. This is a monopole
sound source, to be understood as the time dependent volume expansion
due to unsteady combustion. A more detailed analysis of thermal effects is
provided by Morfey et al. (1978) and Dowling [in, Crighton et al. (1992)]).
Using the density formulation, the entropy sound source term is a spatial
derivative ∂2(p′ − c20ρ

′)/∂x2
i . We will now explain the physical meaning of

this apparently obscure sound source term. For this we consider the sound
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produced by a turbulent free jet in a bubbly liquid, as observed by a lis-
tener immerged in the pure liquid. In such a case the speed of sound c
in the source region is much lower than the speed of sound c0 of the fluid
surrounding the listener.

β
0 1

c

liquidc

gasc

liquid

gas

gascc
ρ

ρ
2min ≈

0.5

Figure 8. Low frequency limit of the speed of sound in a bubbly liquid as
a function of the gas volume fraction [Crighton et al. (1992)].

Considering the low frequency limit of the behaviour of a mixture of gas
bubbles and a liquid (Figure 8). We find that low frequency implies that
gas density ρg and fluid density ρl are both uniform so that the mixture
density ρ is given by [Crighton et al. (1992)]:

ρ = βρg + (1− β)ρl (133)

where β is the volume fraction of gas in the mixture. Assuming a quasi-
steady behaviour, the pressure is uniform. Thus, we can add the compress-
ibility of the two phases to obtain the compressibility of the mixture:

1

ρc2
=

β

ρgc2g
+

(1− β)

ρlc2l
(134)

where cg is the speed of sound in gas and cl is the speed of sound in liquid.
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Eliminating the density by multiplying (133) by (134) yields:

c2 =
1

[βρg + (1− β)ρl]
[

β
ρgc2g

+ (1−β)
ρlc2l

] . (135)

For air/water mixtures at neither too small or too large a value of β we can
neglect both the contribution of air to the mass density and the contribution
of water to the compressibility. We then get:

c2 ≈ 1

[(1− β)ρl]
[

β
ρgc2g

] = c2g

(
ρg
ρl

)
1

β(1− β)
. (136)

For air with (ρg = 1.2kg/m, cg = 340m/s) and water with (ρl = 1000kg/m,
cl = 1500m/s) we get a minimal speed of sound cmin ≈ 20m/s at β = 0.5 .
The entropy term in the analogy of Lighthill for an isentropic flow can be
written as follows:

∂2

∂x2
i

(p′ − c20ρ
′) =

∂2

∂x2
i

p′
(
1− c20

c2

)
. (137)

The pressure fluctuations in the source region are of the same order as the
fluctuations in the Reynolds stress tensor: p′ ∼ ρU2. Hence, compared to a
free jet of water surrounded by water, the bubbly liquid turbulence sound
is enhanced by a factor |(1 − c20/c

2)| = 5 × 103, which is 74 dB. Infact,
taking a shower in a bath tub, we observe that the water jet impinging on
the water surface is much noisier than the jet immerged in the water, as we
can understand qualitatively in terms of the analogy of Lighthill. According
to Morfey (1973) and Powell (1990) this entropy term can be understood
as the sound produced by the unsteady force exerted on the mixture as
a result of the “buoyancy” force due to the difference in density between
the two phases undergoing a pressure gradient. This corresponds to a slip
between the two phases. Obviously, as there are no net external forces, this
sound source must be a quadrupole, the force of the gas on the liquid being
balanced by the reaction force of the liquid on the gas.

Similar effects, though much weaker can be found in non-isothermal gas
free jets. Contrary to earlier literature predicting a dipole [Morfey (1973),
Obermeier (1975)], recent studies indicate that the overall acoustic power
level radiated by hot jets is also in line with the height power law of Lighthill
[Viswanathan (2009)], which actually confirms that this sound source is also
a quadrupole. In the early literature it was also suggested that next to con-
vection effects due to density differences, the heat transfer between a hot
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gas free jet and its surroundings would generate a monpole sound source. In
cases with ideal gasses and a uniform constant Poisson ratio γ, this does not
occur due to the jet contraction by cooling compensating exactly expansion
of the surroundings due to heating [Morfey and Wright (2007)]. Monopole
sound sources do occur as a result of combustion or phase transition (mois-
ture condensation).

Bubble resonance can induce an even larger amplification of turbulent
sound production [Dowling and FfowcsWilliams (1983)]. Yet, it is argued by
Crighton (1975) that typical turbulent eddies corresponding to frequencies
close to resonance frequencies of bubbles are much smaller than the bubbles
and can therefore not excite the bubbles coherently. He therefore uses the
low frequency approximation described above.

6 Waves in pipes

6.1 Pipes modes

We are considering propagation of harmonic waves p′ = p̂ exp(iωt) in a
duct with a uniform rectangular cross section, with the duct axis is in the x3

direction. The duct is delimited by rigid walls in the planes: x1 = 0, x1 =
h1, x2 = 0, x2 = h2 (Figure 9). For such harmonic waves the wave equation

2x

3x

1x

1h

2h

2x

Figure 9. Duct with rectangular cross section.
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(47) can be written as:[
k20 +

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

]
p̂ = 0 . (138)

This is the Helmholtz equation.
Seeking a solution by using the method of separation of variables:

p̂ = F (x1)G(x2)H(x3) . (139)

and substituting (139) in (138) we get:

k20 +
1

F

d2F

dx2
1

+
1

G

d2G

dx2
2

+
1

H

d2H

dx2
3

= 0 . (140)

As this equation should be valid for any value of �x = (x1, x2, x3) each factor
in (140) should be constant:

1

F

d2F

dx2
1

= −α2 . (141)

1

G

d2G

dx2
2

= −β2 (142)

and
1

H

d2H

dx2
1

= − [
k20 − α2 − β2

]
. (143)

The constants α and β are determined by the boundary conditions of zero
normal velocity at the rigid walls. The normal component of the pressure
gradient, which is proportional to this normal velocity, vanishes at the walls:(

dF

dx1

)
x1=0

=

(
dF

dx1

)
x1=h1

= 0 (144)

and (
dG

dx2

)
x2=0

=

(
dG

dx2

)
x2=h2

= 0 (145)

From this we can conclude that the possible solutions for F and G have the
form:

Fm = cos(αmx1) ; αm =
mπ

h1
; m = 0, 1, 2, 3, ... (146)

and
Gn = cos(βnx2) ; βn =

nπ

h2
; n = 0, 1, 2, 3, ... (147)
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Substitution in equation (143) yields:

1

Hmn

d2Hmn

dx2
1

= − [
k20 − α2

m − β2
n

]
= −k2mn . (148)

There are two types of solution, depending on the sign of k2mn. For positive
values we have propagating wave modes:

p̂±mn = cos

(
mπ

h1
x1

)
cos

(
nπ

h2
x2

)
exp(∓i|kmn|x3) (149)

and for negative values we have evanescent modes:

p̂±mn = cos

(
mπ

h1
x1

)
cos

(
nπ

h2
x2

)
exp(∓|kmn|x3) (150)

with

|kmn| =
∣∣∣∣∣∣
√
k20 −

(
mπ

h1

)2

−
(
nπ

h2

)2
∣∣∣∣∣∣ (151)

The solution we are looking for is a linear superposition of these modes:

p′ =

( ∞∑
m=0

∞∑
n=0

(
A+

mnp̂
+
mn +A−

mnp̂
−
mn

))
exp(iωt) (152)

where the amplitudes of the modes are determined by the boundary con-
ditions at the boundaries of the duct in the x3 direction. For each mode
there is a cut off frequency (ωmn)c below which the mode is evanescent. For
example for the mode p̂10 we have:

(ω10)c =
πc0
h1

. (153)

The duct width should be larger than half the wave length to allow prop-
agation of this first higher-order mode. The mode p̂00 is the plane wave
mode and will always propagate.

Evanescent waves do not propagate energy. They decay exponentionally
with the distance along the duct. In the low frequency limit ω � (ωmn)c
the pressure perturbation due to an evanescent mode will decay faster than

exp
(
−mπ

h1
x1

)
. For mode (1,0) a distance h1 is sufficient for a decay by a

factor exp(π) ≈ 23. All other higher-order modes will decay even faster.
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Hence, the acoustic field will be dominated by plane waves in the low fre-
quency limit for distances larger than the duct width away from disconti-
nuities . This result will be applied in the following sections.

In this discussion we have neglected damping. In ducts damping due
to visco-thermal losses at the walls is usually dominant. These effects on
acoustical wave propagation are discussed in Pierce (1990), Bruneau (2006)
and Rienstra and Hirschberg (1999). Damping, in presence of flow, has been
extensively studied by Ronneberger and Ahrens (1977), Peters et al. (1993),
Howe (1998) and Allam and Abom (2005).

6.2 Reflection at pipe discontinuities at low frequencies

We are looking at the reflection and transmission of plane acoustic waves
at an abrupt transition at x = 0 between a pipe with uniform cross-section
S1(x < 0) and another with uniform cross-section S2(x > 0) (Figure 10).
Assuming that small perturbations of a stagnant fluid, as described by the

+

1
p̂

+

2
p̂

−

2
p̂

−

1
p̂1

S 2
S

x

Figure 10. Reflection and transmission of waves at a pipe discontinuity.

linearized mass and momentum equations (44 and 45), the integral formu-
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lation of the mass equation can be applied:

d

dt

∫
V

ρ′dV +

∫
S

ρ0�v
′ · �ndS = 0 (154)

to a volume V enclosed by the fixed surface S with outer unit normal
vector �n. The surface S is chosen to enclose the pipe discontinuity and
cut the pipes at a distance of the order of the pipe diameter from the
discontinuity. As explained in the previous section, the acoustic field in the
pipes is dominated at low frequences by the plane travelling waves. This
implies that the acoustic field is given by:

p′i = p+i exp(−ik0x) + p−i exp(ik0x) (155)

where the index i = 1 corresponds to the x < 0 and i = 2 to x > 0. Using
equation (53) we have:

S1(p
+
1 − p−1 )− S2(p

+
2 − p−2 ) ∼

(
ω

c0

V

S1
(p+1 + p−1 )

)
(156)

At low frequency the volume flux across the pipe discontinuity is constant
and the flow is locally incompressible.
Assuming, �f = 0 and integrating the momentum equation (45) along the
x-axis, we get the linearized Bernoulli equation:

ρ0
d

dt

∫ x2

x1

v′xdx = p′(x1)− p′(x2) . (157)

In terms of plane waves we have:

p+1 + p−1 − (p+2 + p−2 ) ∼
(
ω

c0

V

S1
(p+1 − p−1 )

)
(158)

which implies that, at low frequencies ωV/(c0S1) << 1, the pressure is
continuous across the pipe discontinuity.
Thus, we have:

S1(p
+
1 − p−1 ) = S2(p

+
2 − p−2 ) (159)

and
p+1 + p−1 = p+2 + p−2 . (160)

In the form of a scattering matrix we get:[
p−1
p+2

]
=

1

S1 + S2

[
S1 − S2 2S2

2S1 S2 − S1

] [
p+1
p−2

]
. (161)
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For an anechoic (non-reflecting) pipe termination of segment 2 (p−2 = 0)
we have a reflection coefficient R = p−1 /p

+
1 = (S1 − S2)/(S1 + S2) and a

transmission coefficient T = p+2 /p
+
1 = 2S1/(S1+S2). For the limit S2 
 S1

we find the ideal open-end behaviour R = −1 and T = 0. The acoustic
flow from pipe segment 1 cannot change the pressure in the much wider
pipe segment 2, so that p+1 + p−1 = 0. The outflow corresponding to a
positive incoming pressure wave produces an under-pressure at the pipe
outlet which propagates into the pipe as a reflected wave with negative
amplitude wave. In the opposite limit S2 � S1, R = 1 because the acoustic
flux meets a closed pipe termination causing into a positive wave travelling
back p+1 − p−1 = 0, the result being that the pressure at the end of section 1
is twice as high. Hence, the transmission coefficient is T = 2. One can check
by using the energy equation that this transmitted wave does not carry any
energy in the limit S2/S1 ⇒ 0.

6.3 Open pipe termination in quiescent fluid

In the ideal open pipe termination limit discussed in the previous section,
the radiation of sound from the open pipe termination was ignored.
This is the very low frequency limit. With increasing the frequency we get
deviations. Firstly the inertia of the oscillating acoustic flow outside the
pipe, around the open end, which implies that there is a finite pressure
at the outlet of the pipe supplying the force needed for the acceleration
of the fluid. As discovered by Bernoulli, this effect can be accounted for
by assuming that the wave reflection occurs at a small distance δ outside
the pipe. This is called the end correction [Rayleigh (1954), Pierce (1990),
Dowling and Ffowcs Williams (1983)]. The exact value of this end correction
depends strongly on the geometry of the pipe termination. Whilst we get in
the low frequency limit δ = 0.61a [Levine and Schwinger (1948)] for a pipe
with a radius a and infinitely thin walls (unflanged pipe) we get δ = 0.82a
for a flanged pipe (pipe end flush with a flat wall) [Morse and Ingard (1968),
Peters et al. (1993)]. The order of magnitude of this end correction can be
estimated by considering the pulsation of a sphere of radius a0. The end
correction corresponds to the part of the solution (63) for the pressure field
which does not carry energy (not in phase with iωâ):

p′ = −ρ0ω
2a0â(1− ika0)

(1 + (ka0)2)

(a0
r

)
exp [i(ωt− k(r − a0))] . (162)

We find δ = a0. Another way to look at this is to consider the incompress-
ible part of the acoustic velocity (vr = iωâ(a0/r)

2 exp(iωt)) associated with
the pulsation of the sphere and to integrate the radial component of the
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momentum (ρ0(∂v
′
r/∂t = −(∂p′/∂r)) to calculate the associated pressure

on the surface of the sphere p̂(a0) =
∫∞
a0

ρ0ω
2â(a0/r)

2dr = ρ0ω
2âa0. It

shows that for a 3-D radial flow the end correction is determined by the
near field, which is incompressible.

This does not apply to a two-dimensional flow through a slit. Assuming
an incompressible flow would result in an infinite large end correction, the
near field is essentially compressible [Lesser and Lewis (1972)]. This illus-
trates the complexity of two-dimensional acoustic fields, as is discussed in
Dowling and Ffowcs Williams (1983). In practice, this means that the use of
a two-dimensional model for an unbounded flow can lead to unrealistically
large radiation losses.
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Figure 11. Sound radiation from a compact open unflanged pipe termina-
tion.

The fact that we hear music generated by a wind instrument is a clear
demonstration that waves are radiated by the open pipe terminations (Fig-
ure 11). We now estimate the amplitude of these waves by coupling a plane
wave propagation model in the pipe with a spherical wave emerging from
the pipe termination. We assume that the frequency is so low that one can
neglect compressibility in the region of the transition from plane waves to
spherical waves.
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In this case the mass conservation law implies:

Spv
′
x = 4πR2v′r (163)

where Sp is the pipe cross sectional area and R is the distance chosen such
that it is small compared to the acoustic wave length, but large compared
to the pipe radius (R >

√
Sp). In terms of plane waves amplitude and

spherical wave amplitude we have:

Sp(p
+
1 − p−1 ) = 4πR2A

R

(
1 +

1

ik0R

)
exp(−ik0R) ≈ −i4π

A

k0
. (164)

The conservation of acoustic energy over the same control volume yields:

Sp(|p+1 |2 − |p−1 |2) ≈ 4π
|A|2
k20

(165)

neglecting the phase of the waves and combined with (164) this implies:

Zr

ρ0c0
=

1−R

1 +R
=

(k0a)
2

4
. (166)

For a flanged pipe termination we have :

Zr

ρ0c0
=

1−R

1 +R
=

(k0a)
2

2
. (167)

Reflections on the flange (wall) double the radiation power (Figure 3).

6.4 Convective effects on reflection from an open pipe termina-
tion

Until now it was assumed that the fluid in the pipe is stagnant. Now
we will consider the influence of a uniform, steady outgoing flow Up in the
pipe on the acoustic response of the pipe termination. For plane waves the
convected d’Alembert solution is:

p′ = p+ exp

(
iω

(
t− x

c0 + Up

))
+ p− exp

(
iω

(
t+

x

c0 − Up

))
. (168)

Through substitution in the linearized momentum equation:

ρ0

(
∂u′

∂t
+ Up

∂u′

∂x

)
= −∂p′

∂x
(169)
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we get:

u′ =
p+

ρ0c0
exp

(
iω

(
t− x

c0 + Up

))
− p−

ρ0c0
exp

(
iω

(
t+

x

c0 − Up

))
(170)

Looking at a pipe of a uniform cross section Sp, terminated by an orifice
plate with opening S0. The flow leaves the pipe through the orifice forming
a free jet downstream of the pipe, which contracts slightly after leaving
the orifice to reach a minimum cross section Sj before mixing with the
surrounding air. The pressure at the minimum cross section in the jet is
equal to the pressure of the surroundings. Typically, the contraction factor
is Sj/S0 = 0.7 for a thin orifice plate with sharp edges. In the low frequency
limit we can describe the flow by using the integral mass conservation law:

ρpUpSp = ρjUjSj . (171)

The integration of the momentum equation in the quasi-static approxima-
tion, neglecting friction and heat transfer and assuming an irrotational flow
(equations 35 and 37) yields:

U2
2

2
+

∫
p

dp

ρ
=

U2
j

2
+

∫
j

dp

ρ
. (172)

Introducing perturbations in these equations shows in linear approximation,
assuming p′j = 0:

ρ′pUp0Sp + ρp0u
′
pSp = ρj0u

′
jSj (173)

and

Up0u
′
p +

p′p
ρp0

= Uj0u
′
j . (174)

Using the equation of state p′p = c2p0ρ
′
p we have:

Sp

[
p+p (1 +Mp)− p−p (1−Mp)

]
= Sjρj0cp0u

′
j (175)

and
p+p (1 +Mp) + p−p (1−Mp) = ρj0Uj0u

′
j . (176)

Elimination of the jet velocity fluctuations yields:

R =
p−p
p+p

=

[
1 +Mp

1−Mp

] [
Mp (Uj0/Up0)

2 − 1

Mp (Uj0/Up0)
2
+ 1

]
. (177)

We observe that the pipe termination is anechoic (R = 0) for Mp =

Up0/cp0 = (Up0/Uj0)
2 � (Sj/Sp)

2
(figure 12). This particular behaviour
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Figure 12. Convective effects on the reflection and transmission at an ori-
fice in a pipe (measurements [Hofmans et al. (2000)]). The upstream reflec-
tion coefficient |R1| displays a sharp minimum at a critical Mach number,
as predicted by the theory (theory, 0 experiments).

was first observed and explained by Bechert [1980]. It is a consequence of
sound absorption by vortex shedding (modulation of the shear layers of the
jet). While the model does not explicitly take the effect of viscosity into
account, the assumption that p′j = 0 can only be explained by the presence
of a free jet, which is a consequence of flow separation due to viscosity. Also
we assume implicitly that all the kinetic energy in this jet is dissipated by
turbulence without any pressure recovery.

Note that in the presence of flow the acoustical intensity is given by
[Morfey (1971)]:

I ′ = m′B′ = (ρ′U + ρ0u
′)
(
u′U + p′

ρ0

)
= 1

ρ0c0

[
[p+(1 +M)]

2

− [p−(1−M)]
2
]
.

(178)
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Where m′ is the fluctuation in mass flux:

m = ρu (179)

and B′ is the fluctuation in the total enthalpy:

B = i+
v2

2
. (180)

Consequently a reflection coefficient R = −1 indicates energy losses. This
is the limit found when Uj0 = Up0.

6.5 Resonators in duct systems

Acoustic energy can accumulate in parts of a duct system delimited by
strongly reflecting boundaries, an example of this being an expansion cham-
ber of length L and cross section Sm along a pipe of cross section Sp << Sm.
Such an expansion chamber can also be used as muffler, to reflect waves
generated by an engine. Maximum transmission losses are found in cases
where the expansion chamber length matches an odd number of quarter
wave-length of the incoming waves (figure 13). Other obvious examples of
resonators are pipe segments terminated either by open or closed pipe ter-
minations.

The flute can be approximated as an open-open pipe with uniform cross
section displaying resonances when an integer number of half wave length
matches the pipe length. Since the mouth opening of the flute is smaller
than the pipe cross section, the end correction of the mouth opening is
quite large. This implies an important inertia, which would detune the pipe
resonances if it was not combined with a compliance approaching that of a
pipe segment of the length of the end correction. For this reason the mouth
of the flute is not at the pipe termination. The volume in the dead end
between the closed pipe termination and the mouth opening is adjusted by
means of a movable piston (cork) so that the first resonances of the pipe
are exactly multiples of the fundamental. This strongly enriches the sound
produced by the instrument [Chaigne and Kergomard (2008)].

The close-open pipe of a uniform cross-section is a model for the clarinet.
It displays resonances when the length of the pipe matches an odd number
of quarter wave-length. This promotes odd harmonics of the fundamental,
giving the sound a particular character. The use of a conical close-open
pipe, such as the oboe or the saxophone, provides a series of resonances
at frequencies that are a multiple of half wave length matching the pipe
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Figure 13. Comparison between measurement [Davis 1954] and theory
[Dowling 1983] for transmission losses of a simple expansion chamber along
a pipe with an anechoic termination. The transmission losses are defined
by: TL = 20log(I/T ), with I the amplitude of the incident wave and T the
amplitude of the transmitted wave. Maxima of transmission losses corre-
spond to a length equal to an odd number of quarter wave-length. Minima
correspond to an integer number of half wave-length.

length. In conical pipes the acoustic field is dominated by spherical waves
rather than plane waves. Consequently the radiation efficiency of the sound
source (reed) increases at low frequences linearily with the frequency, as
demonstrated by equation (63). Thus, contrary to the clarinet, the low-
est resonance frequency does not correspond to the strongest impedance in
conical pipe instruments [Chaigne and Kergomard (2008)].

A pipe system can display localized acoustic standing waves, captured
between two reflectors. A typical reflector is a closed side branch and the
closed end of it imposes a standing wave within the side branch [Bruggeman
et al. (1991), Ziada and Bühlmann (1992), Tonon et al. (2011)]. The incom-
ing and reflected waves have equal amplitudes as imposed by the closed pipe
termination R = 1. Whenever the closed side-branch length corresponds to
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an odd number of quarter wave-length the standing wave imposes a pres-
sure node at the junction of the closed side branch with the main pipe.
At low frequencies the pressure is continuous over the junction and this
imposes a pressure node in the main pipe (equation 157). Thus, this pres-
sure node acts as an ideal open pipe termination with R = −1. When
two closed side branches with equal resonance frequency are placed at a
distance corresponding to an integer number of half a wave length, we ob-
tain an acoustically perfectly closed system [Bruggeman et al. (1991), Ziada
and Bühlmann (1992), Tonon et al. (2011)]. Paradoxically enough, this
system is open for the flow [Hein and Koch (2008)]. The most spectacular
resonances are obtained when considering two opposite closed side-branches
forming a cross configuration with the main pipe [Keller (1984), Kriesels et
al. (1995), Dequand et al. (2003c), Slaton and Zeegers (2005)]. This will
be discussed in more detail in the next chapter.

A series of closed side branches of equal length can display strong acous-
tical resonances even if the side-branches are placed at arbitrary distances
from each other. A system of deep closed side branches of random depth
can also display Anderson localization [Dépolier et al. (1986)].

Another example of strong localization of a resonant acoustic field in an
apparently open system is the Beta Parker mode in a pipe system with a
splitter plate [Welsh and Stokes (1984),Stokes and Welsh (1986)]. When the
longitudinal splitter plate (separating the pipe in two equally wide parallel
ducts) is longer than the pipe width, there is a resonance for which the
half wave length is longer than the pipe width. Hence, at this frequency
only plane waves propagate along the main pipe. If the two pipe segments
separated by the splitter plate are oscillating in opposite phases, the system
will not radiate any plane waves and actually does not radiate at all. This
type of resonance has been observed in ventilation ducts (due to guiding
vanes at bends), turbines (stator or rotor) [Welsh and Stokes (1984), Stokes
and Welsh (1986)] and even protection grid in building (ventilators, roof)
[Spruyt (1972)].

6.6 The Helmholtz resonator

The bottle or Helmholtz resonator is an elementary acoustical resonator
[Dowling and FfowcsWilliams (1983), Pierce (1990), Rienstra and Hirschberg
(1999)]. It is an acoustical mass-spring system, because the volume of the
bottle acts as a spring, while the inertia of the flow (mass) is concentrated
in the neck (Figure 6.6). If the neck has a uniform cross section S and a
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Figure 14. The Helmholtz resonator as an acoustical mass spring system.

length L the mass obviously is:

M = ρ0S(L+ 2δ) (181)

where δ is the end correction at one end of the neck (section 6.3). The spring
constant of the system is obtained by starting from the mass conservation
law, assuming a uniform density within the volume:

Δρ

ρ0
= −ΔV

V
= −SΔx

V
(182)

where Δx is the acoustic fluid displacement in the neck. The uniform density
assumption is actually in agreement with the fact that we neglect inertia in
the volume of the bottle, implying a uniform pressure. This is exactly the
same assumption as for a massless spring, which implies that the tension
is uniform over the spring. Assuming an adiabatic compression we have:
Δp = c20Δρ. The force acting on the fluid in the neck is therefore:

ΔF = SΔp = −Sρ0c
2
0

SΔx

V
. (183)

From this we deduce that the spring constant K of the system is:

K = ρ0c
2
0

S2

V
(184)



Aeroacoustics and Self-Sustained Oscillations of Internal Flows 51

and the resonance frequency of the resonator is given by:

ω0 =

√
K

M
= c0

√
S

V L
. (185)

It is interesting to note that for an ideal gas ρ0c
2
0 = γp0 where γ is the

Poisson ratio of specific heats at constant pressure and volume respectively.
When considering an oven or furnace with an open door, the gas density
in the neck of the system is close to that of the surrounding air at room
temperature, while the average pressure p0 in the volume is atmospheric.
Hence, the resonance frequency depends only weakly on the temperature in
the oven.

A bottle of cider or champagne has a neck with a non-uniform cross
section S(x). In order to calculate its resonance frequency we need a more
sophisticated approach [Cummings (1972)]. We start again by applying the
integral mass conservation law on the volume, assuming a uniform density
in the volume:

V
dρ′

dt
=

V

c20

dp′

dt
= −ρ0u

′S(L) (186)

where u′ is the acoustic velocity at the pipe opening x = L. Furthermore,
we use the integral of the momentum equation (45) over the neck of the
bottle:

ρ0
d

dt

∫ L

0

u′S(L)
S(x)

dx = ρ0

∫ L

0

S(L)

S(x)
dx

du′

dt
= p′(0)− p′(L) (187)

where we assumed the flow in the neck to be incompressible. Elimination of
u′ yields a second-order harmonic equation corresponding to the resonance
frequency:

ω0 = c0

√
S(L)

V Leff
(188)

with:

Leff =

∫ L

0

S(L)

S(x)
dx . (189)

7 Vortex sound theory and whistling

7.1 Powell/Howe analogy

The quantitative relationship between vortex shedding and sound pro-
duction was first established by Powell (1964). His approach was limited
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to free field conditions and low Mach numbers. Howe [Howe (1975), Howe
(1998), Howe (2002)] proposed a generalization of this approach to arbi-
trary Mach numbers, which is valid for confined flows. In its most general
form it implies a numerical solution of a complex convective wave equation
[Doak (1995), Musafir (1997)] and it is mostly used at low Mach numbers.
In most cases it is used for the analysis of the sound production based on
an energy corollary, which we are looking at.

In section (5.2) we have seen that the choice of variable is important in
an analogy, because it determines the approximations that are intuitively
reasonable. In section (6.4) we have seen that in the presence of a frictionless
mean flow, the total enthalpy fluctuation is a natural variable. Following
equation (31):

∂�v

∂t
+∇B = −(�ω + �v) +

�f

ρ
(190)

we see that the Corriolis acceleration (�ω×�v) acts as a source of sound if we
define the acoustic velocity �u′ as the time-dependent part of the potential
flow in a Helmholtz decomposition of the flow velocity:

�v = ∇(ϕ0 + ϕ′) +∇× �ψ . (191)

This yields the definition proposed by Howe (1984) for the acoustic velocity:

�u′ = ∇ϕ′ . (192)

For low Mach number flows Howe (1984) proposes the use of the following
approximation for the time average acoustic power < P > produced by a
flow:

< P >= −ρ0 <

∫
V

(�ω × �v) · �u′dV > . (193)

This corresponds to the use of the energy corollary (64) assuming �f =
−ρ0(�ω × �v). This intuitive statement gives an excellent insight into the
sound production associated with vortex shedding in low Mach number
flows, which is due to the fact that vorticity is a conserved quantity in 2-
D frictionless flows. We therefore have an intuition for the dynamics of
vortices in such flows [Prandtl (1934), Milne-Thomson (1952), Paterson
(1983), Saffman (1992)].

A drawback of the vortex sound theory is that it stresses the dipole
character of the sound source: ∇ · (�ω × �v). Unlike the analogy of Lighthill,
it does not impose a quadrupole character to the sound field. Thus, in order
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to apply this analogy to flows, such as a free jet, one has to use analogies
as proposed by Möhring (1978) or Schram and Hirschberg (2003), which
do take this aspect into account. In our discussions we limit ourselves
to applications with a dominant dipole source term. In such cases the
formulation of Howe (1984), as given in equation (193) can be used.

7.2 Aeolian tone

For Reynolds numbers ReD = UD/ν above 50 the wake of a cylinder
of diameter D placed with its axis normal to a uniform flow (velocity U ,
kinematic viscosity ν) is unstable with periodic vortex shedding occurring.
Vortices have alternating vorticity signs, which results in an oscillating lift
force (normal to the flow direction). The force of this flow on the cylinder

comes from a reaction force �F of the cylinder on the flow. This reaction force
acts as a source of sound. For low Mach numbers the cylinder is compact
so that we can neglect variation of the retarded time over the source region.
Equation (94) can be written in the following form:

p′(�t, t) ≈ xi

4πc0|�x|2
∂Fi

∂t
. (194)

The lift force scales with ρU2DL where L is the length of the cylinder
over which the vortex shedding is coherent. The oscillation frequency corre-
sponds to a Strouhal number which is somewhat dependent on the Reynolds
number SrD = fD/U ≈ 0.2. This was already observed by Strouhal (1878)
(Figure 15). The most important conclusions that can be drawn from this
experience is:

• the cylinder does not need to vibrate or oscillate in order to generate
the whistling tone,

• the vortices shed by the cylinder do not impinge on any surface or
edge.

The first statement contradicts our intuition that sound is produced by wall
vibrations. Oscillation of the cylinder can occur and can strongly affect the
frequency. This occurs when the mechanical oscillation frequency is close
to the natural vortex shedding frequency. One can then observe a strong
increase in coherence length of the vortex shedding [Blake (1986)].

The second statement contradicts the intuition that sound is produced
upon impingement of vortices on edges. In early work [Rockwell (1983)]
this assumption is generally accepted, although it is a rather misleading
assumption, as the following examples show.
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Figure 15. Von Karman vortex street behind a cylinder (copyright Onera,
The French Aerospace Lab).

7.3 Human whistling

As we have seen in section (6.4) convective effects induce acoustical en-
ergy absorption upon reflection at an open pipe termination with outflow.
The ratio of reflected and incoming acoustic intensity is, following equation
(178) and with R = −1:

RE =
I−

I+
=

1−M

1 +M
. (195)

This is a consequence of the losses in total enthalpy ΔB′ = Uu′ in the
free jet formed by flow separation at the pipe exit. This corresponds to the
modulation of the kinetic energy in the jet. This kinetic energy is dissipated
by turbulence in the jet with negligible pressure recovery (p′ = 0).

We now analyse the same phenomenon by using the energy corollary
of Howe (193). As a first step we consider the spatial distribution of the
acoustic velocity field �u′ at the pipe exit. A potential flow such as the acous-
tic field �u′ = ∇ϕ′ does not separate from sharp edges. This flow follows
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the walls smoothly. The acoustic streamlines around the edges of the open
pipe termination are curved. Which implies that there should be a pressure
gradient directed towards the inner side of the bend which provides the
centripetal force bending the streamlines. Following the Bernoulli equation
(36) this decrease in pressure implies an increase of velocity towards the
interior of the bend. Actually, this also follows directly from the condition
that the acoustic flow should be irrotational ∇× �u′ = ∇×∇ϕ′ ≡ 0. Rota-
tion due to the bending of streamlines should be compensated by a gradient
in the radial direction of the tangential component of the velocity. In terms
of forces the radial pressure gradient balances the centrifugal force. As the
velocity increases and the radius of curvature of the streamlines decreases
as we approach the interior of the bend, the centrifugal force increases dra-
matically. Obviously for a sharp edge we have a singularity in a potential
flow [Prandtl (1934), Milne-Thomson (1952), Paterson (1983)]. As we ap-
proach the edge, the magnitude of the acoustic velocity becomes infinitely
large. However, moving away from the edge in the direction of the pipe axis,
causes rapid decrease of the amplitude of the acoustic field. The direction
of the acoustic velocity also turns gradually from normal to the pipe axis to-
wards the direction of the pipe axis (Figure 16). A harmonically oscillating
acoustic field implies that the acoustic flux is directed pipe-outward during
half the oscillation period and is directed pipe-inward during the next half
period.

The next step in our analysis is to consider the vortex shedding. Vortex
shedding is the result of viscous effects in the boundary layers of the flow.
In these boundary layers the flow velocity |�v| decreases from the bulk flow
velocity down to the zero velocity imposed by the no-slip boundary condition
�v = 0 at the wall. At high Reynolds numbers the boundary layers are thin.
The flow in these boundary layers is mainly directed along the wall and
this implies that the pressure in the boundary layer is equal to the pressure
imposed by the bulk flow at the outer edge of the boundary layer. In
the bulk of the flow there is an equilibrium between inertia and pressure
gradient (as the viscous forces are negligible for high Reynolds numbers). An
increase in pressure is compensated by a reduction of velocity. This allows
fluid particles to move against an adverse pressure gradient. In the viscous
boundary layer, the fluid has lost much of its kinetic energy and cannot use
its inertia to overcome an adverse pressure gradient. Viscous drag of the
fluid in the boundary layer by the bulk flow can allow to overcome a small
pressure gradient. However, in a steady flow with bulk velocity U there will
be back flow along the wall, when the characteristic time for momentum
diffusion across the boundary layer θ2/ν (with θ the momentum thickness
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Figure 16. Acoustic streamlines at an unflanged pipe termination.

of the boundary layer) becomes larger than the characteristic deformation
time (∂U/∂x)−1. As a consequence the flow will separate from the wall. As
the flow passes a sharp edge at the end of an unflanged open pipe, the flow
will certainly separate from the wall. This implies that the flow continues
tangentially to the wall (along the direction of the axis of the pipe) rather
than following the bend, as does the potential flow. A shear layer is formed
separating the main flow from a dead water region around the free jet. In
this shear layer there is vorticity �ω. Due to the instability of the shear layer
this vorticity concentrates in coherent vortical structures (vortices). Each
time the acoustic field turns from pipe inward to pipe outward a new vortex
is formed at the edge of the pipe termination. This vortex accumulates most
of the vorticty shed at the sharp edge while travelling at almost constant
velocity Uc ≈ U/2 in the direction of the pipe axis. The strength of the

vortex is measured by the circulation Γ ≡ ∮
C
�v ·d�x =

∫
S
�ω ·d�S taken along a

contour C enclosing the vortex. The circulation is the flux of the vorticity
vector through a surface sustained by the contour. In first approximation,
with the acoustic velocity considerably smaller than the bulk flow velocity,
we have dΓ/dt = −UUc, as illustrated in Figure 17 [Nelson et al. (1983)].
After an oscillation period a new vortex is shed from the pipe edges and the
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old vortex continues to travel at almost constant speed. Further downstream
these vortex rings are eventually dissipated by turbulence.
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Figure 17. Vorticity and circulation of a shear layer.

Considering a new vortex shed at the edges of the pipe, we can see that
the vector �ω×�v is directed normal to the pipe axis in the direction away from
this axis. In first approximation the convection velocity is �v ≈ (Uc, 0, 0). At
this point in time the acoustic velocity �u′ is oriented in the same direction
and locally very large due to the singularity of the acoustic flow at the edge.
Hence the triple product −ρ0(�ω × �v) · �u′ is very large and negative. The
formation of a new vortex by acoustic excitation of the shear layer implies
sound absorption, which seems quite logical. The less trivial message from
the theory of Howe, is that, after half a period, the same vortex will start
to generate sound, because the sign of the acoustic velocity changes while
those of the rotation �ω and of the convection velocity �v do not change. The
power produced in the second half period is much lower than the initial
sound absorption because the growth in the vortex circulation is not able to
compensate for the decrease in acoustic velocity amplitude and its rotation
in the direction of the pipe axis (Figure 18). We obtained a result similar to
the predicted sound absorption found when using the quasi-steady model.

The major gain is the understanding that there is a possibility of net
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Figure 18. Sound absorption as a result of a strong initial absorption.

sound production by the vortex shedding, if we can reduce the initial ab-
sorption and enhance production. This is exactly what occurs when we
whistle with our lips. Flow separation at our lips occurs actually almost
at the neck of the channel formed by our lips. This implies that there is a
strong reduction of the singularity of the acoustic velocity, because the lips
are rounded rather than sharp and the acoustic velocity is almost parallel
to the axis of the flow. Moreover, if we ensure that the vortex travels over
the radius of curvature R of our lips within half an oscillation period, it will
start producing sound. As the acoustic field has not expanded in free space
its amplitude is still large and the direction reasonably normal to the main
flow axis. This particularly favourable condition is met when the Strouhal
number SrR = fR/U = (fR/Uc)(Uc/U) ≈ 0.25. The frequency f is im-
posed by the Helmholtz resonance of our mouth cavity in combination with
the neck formed by our lips (Figure 19) [Wilson et al. (1971), Hirschberg
et al. (1995)]. Once we have adjusted this geometry we should tune the
flow velocity to match the Strouhal number condition. This explains why
a child, that is blowing too hard will never be able to whistle by blowing
harder and harder.

This simple experiment confirms that we do not need any impingement
of vortices on an edge to generate sound. It furthermore indicates that sharp
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Figure 19. Human whistling [Wilson et al. (1971)].

edges are not necessary for vortices to be shed. Finally, it indicates that
sharp edges at the flow separation point actually tend to reduce sound due
to vortex shedding. We should note, however, that sharp edges will strongly
enhance broadband noise production. This effect is clear when we consider
the sound produced by blowing hard trough our lips in comparison with the
sound produced by blowing along our teeth (as we do when we generate a
fricative sound such as an [s]).

A related configuration is that of a pipe terminated by a diffuser, which is
a conical expansion from the pipe cross section Sp to the outlet cross section
S0. This allows reducing the loss of energy by dissipation of kinetic energy
in the free jet at the outlet. This works only typically if the increase in cross
section is not much larger than a factor 2. Furthermore, the opening angle
of the diffuser cone should be less than 8 degrees. This would imply very
long diffusers. In practice one uses therefore opening angles of about 20 to
25 degrees. In this case the flow partially separates from the wall within the
diffuser. Considering the steady flow performance the losses due to this flow
separation is rather marginal. However, it has a spectacular consequence
on the energy reflection coefficient for acoustic waves travelling in the pipe
towards the open end. Measurements of RE = I−/I+ appear to be larger
than unity for two ranges of Strouhal numbers (Figure 20). This implies
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sound generation and potentially whistling of the pipe system too. The
lowest Strouhal number corresponds roughly to a travel time of the vortices
through the diffuser half that of the oscillation period. The second higher
Strouhal number corresponds to a travel time of one and a half periods. This
means that there are two co-existing vortices within the diffuser. These two
flow conditions are called hydrodynamic modes or stages Howe (1998). The
same type of behaviour can be observed with another configuration in the
next section.

Figure 20. Low separation in diffuser at pipe termination.

7.4 Flow induced instabilities in pipe systems with closed side
branches

As explained in section 6.5, closed side branches are almost perfect re-
flectors at frequencies such that the length corresponds to an odd number
of quarter wave-length. Early quantitative research on the self-sustained
oscillation of this type of closed side-branch resonators has been carried out
by Bruggeman et al. (1991) and Ziada and Bühlmann (1992). A literature
review on this subject is provided by Tonon et al. (2011). The simplest
configuration is a set of two side branches of equal length L and diame-
ter D placed opposite each other, forming a cross with the main pipe of
diameter Dp. Figure 22a shows the amplitude of pressure fluctuations p′

measured at the closed side-branch termination as a function of the aver-
age flow velocity U along the main pipe. It also shows the corresponding
frequency f . With increasing flow velocity U we observe successively the
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Figure 21. Measurement of energy reflection coefficient RE demonstrating
the whistling of a diffuser [Van Lier et al. (2001)]. Arrows indicate acoustic
energy production.

first three acoustic modes of the system with: HeL = fL/c0 ≈ 1
4 ;

3
4 and 5

4 .
For each of these acoustic modes we observe two critical Strouhal numbers
(two hydrodynamic modes)for optimal whistling: SrD = fD/U ≈ 0.5 and
1.0. They correspond to a travel time of the vortices across the opening of
the side-branches of one period and two periods respectively.

Figure 22b shows flow visualization for these two hydrodynamic modes.
In this case, the acoustic velocity is mainly normal to the convection veloc-
ity of the vortices. If the edges of the T-junctions between the main pipe
and the side-branches are rounded, the acoustic velocity amplitude is, in
first approximation, spatially uniform over the path of the vortices. The in-
crease in circulation of the vortex during the first oscillation period, whilst
traveling from the upstream edge towards the downstream edge explains
the net sound production in the system.

It should be noted that for the prediction of the oscillation amplitude we
consider self-sustained oscillations. The instability of the shear layer acts
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Figure 22. Whistling of a cross configuration with two opposite closed
side-branches [Kriesels et al. (1995)]. Figure a: Amplitude of pressure pul-
sations and whistling frequency. The hydrodynamic modes m = 1 and
m = 2 correspond to Sr = fD/U = 0.5 and 1.0, respectively. Figure b:
Flow visualization of the first three hydrodynamic modes in a cross junc-
tion (pictures Olivier Schneider and Bram Wijnands). The main pipe is
horizontal. The flow is from left to right.

as an amplifier in this feedback loop, transferring energy from the main
flow to the acoustic field. The acoustic resonator selects oscillations close
to the resonance frequency. It is a filter. The acoustic oscillation induces
new vorticity perturbations at the upstream edge, where the flow separates
from the wall. If all these elements in the feedback loop were linear the sys-
tem would be either stable, neutrally stable or unstable. In stable conditions
perturbations decay exponentionally to zero. In unstable conditions the am-
plitude increases indefinitely. In neutrally stable conditions, the amplitude
is the amplitude imposed at the initial conditions, and can have any value.
We cannot predict a stable limit cycle oscillation with finite amplitude on
the basis of linear theory [Bruggeman et al. (1991), Tonon et al. (2011)].
The non-linear phenomenon which limits the pulsation amplitude depends
on the amplitude of the oscillations. For moderate pulsation amplitudes
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(|u′/U | = |p′|/ρ0c0U ≤ 0.1), the main non-linearity is the saturation of the
shear layer amplification due to the concentration of the vorticity into dis-
crete vortices. Once the shear layer has rolled-up to form a discrete vortex
we have reached a maximum perturbation. Actually, because the amount
of vorticity shed is almost independent of the amplitude dΓ/dt ≈ −UUc

and the path of the vortex almost straight (from the upstream edge to the

downstream edge), the product ρ0( �ω × �v) is mainly determined by the mean
flow. It scales with ρ0U

2. The power generated by this source is at a fixed
Strouhal number proportional to the acoustic amplitude |�u′|/U . The losses
due to friction and radiation are proportional to the square of the amplitude
|�u′|2/U2. A finite amplitude is found by balancing the power generated by
the source and the power related to friction and radiation losses [Tonon et
al. (2011)]. When |�u′|/U ≥ 1 vortex shedding and path become dependent
on the amplitude. Furthermore, additional vortex shedding from the down-
stream edge of the T-junction induces additional losses which are scaling
with (|�u′|/U)3. As a consequence |�u′|/U = 0(1) is a kind of maximum of
the pulsation amplitude which is reached when friction and radiation losses
are negligible.

The exact value of the maximum pulsation amplitude depends on the
details of geometry. For a cross configuration with rounded edges one can
reach |�u′|/U � 2 [Slaton and Zeegers (2005)]. At such large pulsation am-
plitudes shock waves are formed in the side branches due to non-linear wave
steepening. For sharp edges one finds |�u′|/U ≤ 0.8 [Kriesels et al. (1995)].
In a Helmholtz resonator under grazing flow with rounded edges one finds
|�u′|/U ≤ 0.6 [Dequand et al. (2003a)]. In flue instruments such as a recorder
flute or a flute one typically finds |�u′|/U ≤ 0.3 [Verge et al. (1997), Dequand
et al. (2003b)].

An interesting aspect of this discussion is that in contrast to turbulence
noise produced by flows in free field conditions, the acoustic flow due to
whistling is not a small perturbation of the flow. This implies that numerical
simulation of the flow is not impossible. In following section an example of
such a successful numerical simulation is given.

7.5 The “Voice of the Dragon”

Corrugated pipes (Figure 23) are locally rigid and globally flexible. This
makes them very useful for many applications ranging from vacuum cleaner
tubes to risers for offshore natural gas production. A problem is, however,
that flow through such pipe can cause severe whistling. Actually, a plastic
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Figure 23. Corrugated pipe used as musical toy.

corrugated pipe of a length of L = 80 cm and an inner diameter D = 3 cm
is commonly used as a musical toy called: hummer [Silverman and Cush-
man (1989)]. In musical applications this toy is called: the ”Voice of the
Dragon” [Silverman and Cushman (1989)]. Holding one open end of the
tube in the hand and swirling the tube above the head produces a melodic
sound with increasing pitch as the angular rotation velocity Ω increases.
This tube is actually a centrifugal pump. Due to centrifugal acceleration
Ω2r there is a pressure gradient ∂p/∂r = −ρ0Ω

2r along the tube, where r
is the distance from the (non moving) open end. At the moving open end
of the tube the outflow forms a free jet due to viscous flow separation. This
free jet implies that the pressure at this open end is close to the atmospheric
pressure p0. Hence the pressure at the opposite (non moving) open end is
p(0) = p0 − 1

2ρ0Ω
2L2. In the inflow from the surrounding to the fixed inlet,

we can apply the Bernoulli equation p(0)+ 1
2ρ0U

2 = p0 from which we con-
clude that in first order approximation U = ΩL [Nakiboglu et al. (2012)].

The flow along the corrugations can be seen as a grazing flow along a
shallow cavity. The cavity depth H is so small (order of a few millimetres)
that we can in first approximation neglect the compressibility of the air in
the cavity. The shear layer formed along the opening of the cavity is unsta-
ble. The whistling is caused by coupling this instability to a longitudinal
acoustic wave along the pipe. The acoustic modes of the pipe have frequen-
cies predicted by fn = n(ceff/2L) (n = 1, 2, 3) where the effective speed of
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sound along the pipe is:

ceff = c0

√
Vin

Vtot
. (196)

Were Vin = πD2L/4 is the inner volume excluding the cavities of the cor-
rugations and Vtot is the total volume of the tube including the cavities.

The critical Strouhal number SrW = f(W + rup) for whistling based
on the cavity width W plus the upstream edge radius of the cavities rup
appears to be a function of W/D. As shown in figure 25 SrW varies from

Strouhal Number (SrW+rup)

〈P
so

ur
ce

〉/
(ρ

U
S

p
⎢u

’⎢
2 )

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Srp-w

Peak-whistling
Strouhal number

Figure 24. Sound power produced by a cavity in a corrugated tube as a
function of the Strouhal number [Nakiboglu et al. (2011)].

0.8 to 0.3 as W/D varies from 1 to 0.05. In an attempt to explain this
variation Nakiboglu et al. (2011) considered incompressible 2-D axial sym-
metric flow simulations of a single cavity along a tube. These simulations
have been carried out with a commercial code. In the model Nakiboglu et
al. (2011) imposes, at a distance D/2 upstream of the cavity, a steady flow
profile corresponding to the time average of the fully developed turbulent
flow profile through a corrugated pipe. This can be calculated by using
a steady RANS (Reynolds Average Navier Stokes) calculation or it can be
measured. A harmonically oscillating uniform (over the cross section) veloc-
ity representing the acoustic plane wave is superposed on this time average
profile. The fluctuation in the difference in total enthalpy ΔB′ over the
cavity is calculated. The difference of total enthalpy ΔB′

ref calculated for
the same boundary conditions across a reference straight tube segment is
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subtracted ΔB′ − ΔB′
ref . The acoustic power generated by the cavity is

then calculated by using vortex sound theory:

< P >=< ρ0(ΔB′ −ΔB′
ref )u

′ > . (197)

Figure 24 shows the results obtained for this acoustic power at fixed am-
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Figure 25. Predicted and measured Strouhal number for corrugated pipes
as a function of the ratio D/W of pipe diameter to cavity width [Nakiboglu
et al. (2012)].

plitude |�u′|/U as a function of SrW = f(W + rup)/U . The maximum of the
predicted power is assumed to correspond to the critical whistling Strouhal
number (Figure 25). As explained by Nakiboglu et al. (2011) the decrease
of SrW with increasing D/(W + rup) is acually due to the change in ratio
of boundary layer thickness and cavity width. The same effect has been
reported by Golliard (2002), Kooijman et al. (2008) and Ma Ruolong et al.
(2009).

We observe an almost perfect agreement between theory and experi-
ments (Figure 25). The prediction of the whistling amplitude using this
model appears to be less successful [Nakiboglu et al. (2011)]. The model
overestimates the source power by about a factor of two.
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Another interesting fact is that a laminar model was used to predict the
dynamic response of a turbulent flow to acoustic forcing. This approach
has already been used in many papers such as the work of Michalke (1965)
and Méry and Casalis (2008). However, we do provide at this point any
explanations for the success of the quasi-laminar method. This calls for
further research.
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Sound Radiation by Moving Surfaces

and the Green’s Functions Technique

Michel Roger

Ecole Centrale de Lyon

Abstract
The present chapter is dealing with some fundamentals of sound

radiation from rigid moving bodies or bodies in a flow. The theo-
retical background of the analogy is reminded in a first part. Ac-
cording to Ffowcs Williams & Hawkings’ formulation the problem
of sound generation by unsteady flows in the presence of solid sur-
faces is restated as a problem of linear acoustics with equivalent
moving sources. Therefore the solving procedure is based on stan-
dard Green’s function technique. This procedure is detailed in the
second part as a necessary background and source motion is con-
sidered a key feature of the radiation. Aspects inherent to the wave
operator and specific aspects of acoustic sources on the one hand,
and source physics and source motion on the other hand, are ad-
dressed separately for the sake of physical understanding. In the
third part formal developments and dimensional analysis of Ffowcs
Williams & Hawkings’ equation are proposed, both to highlight the
flow features involved in sound generation and to point out the ef-
fects of motion. Some introductory topics have been presented in
chapter 1 and are re-addressed for specific purposes.

1 Aerodynamic Noise Generation - Reminder of Basic

Principles

1.1 Introduction

Aerodynamic noise radiation from an unsteady flow is a dissipation
mechanism by which a tiny part of the mechanical energy of the flow is con-
verted into sound. The particularity of this acoustic dissipation in open-air
aeroacoustic problems is that it propagates at large distances and contam-
inates the environment. Moreover the acoustic dissipation rate of aerody-
namic noise is a very rapidly increasing function of the characteristic Mach
number. Yet it is at a much lower order of magnitude than other forms of
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CISM International Centre for Mechanical Sciences, DOI 10.1007/978-3-7091-1458-2_2, 
© CISM, Udine 2013 



74 M. Roger

dissipation such as viscous losses. This makes the points of view of Fluid
Dynamics and of Aeroacoustics differ. In absence of acoustic back-reaction,
a flow can be most often described ignoring its acoustic dissipation, for what
enters the scope of mechanical efficiency, losses, fuel consumption, and so
on. In contrast describing the acoustic field requires a much higher level
of accuracy. This remark holds for all unsteady flows encountered in aero-
nautics, turbomachinery, heating and ventilating engineering and ground
transportation. More precisely the scope of this book reduces to the basic
sound generating mechanisms which develop around bodies in translating
motion because of some unsteadiness in the flow, provided by turbulence or
instabilities.

As mentioned in chapter 1, the pioneering work of Sir M.J. Lighthill in
the fifties (1952) addressing the problem of turbulence noise is generally
considered the starting point for the investigation of aerodynamic noise.
This work was next extended by Ffowcs Williams & Hawkings (1969) to
include the presence of moving bodies in a flow. The basic idea is to define
an acoustic analogy, by which the real problem involving a highly disturbed
flow and moving solid surfaces is restated as a problem of linear acoustics in
an unbounded uniform medium with some equivalent acoustic sources. The
difficulty of solving exact, non-linear equations is then apparently avoided
and replaced by the question of defining the equivalent sources. A crucial
point is that there are different ways of deriving a wave equation from the
equations of gas dynamics, leading to various analogies. Any analogy is
based, first on the choice of the field variable the wave equation will gov-
ern, and secondly on the wave operator itself. Lighthill’s formulation and
subsequent developments resort to the classical wave operator acting on
the fluctuating density recognized as the relevant acoustic variable. Other
choices can be proposed, each leading to a different definition of the equiv-
alent source terms. Anyway, the difficulty inherent to the equations of gas
dynamics cannot be escaped by just writing the equations in another way.
The pseudo-wave equation of the acoustic analogy cannot be solved exactly
because generally the equivalent source terms still include contributions of
the field variable to be determined : the equation and the source terms
are said implicit. Therefore the advantage of the formalism is enlightened
only if simplifying assumptions are accepted, for instance making the source
terms explicit by removing the acoustic field variable from them. This has
the effect of discarding some part of the physics. The resulting approach
is an interpretation. It is fruitful whenever the neglected phenomena are
of secondary importance and the dominant mechanism is preserved in the
process. Furthermore the degree of simplification of the source terms can
also be a matter of available means of describing the flow. Finally different
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analogies are more suited in different practical problems, as already pointed
in chapter 1. Because the interest of an acoustic analogy is to benefit from
the formal simplicity of the standard Green’s function solving procedure,
the classical wave equation was preferred historically. Ffowcs Williams &
Hawkings’ formulation presented in this chapter and extensively applied in
the aeroacoustic community obeys this strategy. But the idea of the analogy
can be extended to more general propagation operators. Such extensions,
more especially dealing with jet-noise applications, are described in subse-
quent chapters.

It must be stated clearly that the aim of an analogy is not essentially
to provide very accurate results, but rather to infer general laws from the
standard procedures associated with the classical wave equation. This may
be sufficient to achieve low-noise design in engineering applications. How-
ever, a preliminary knowledge of the main flow features must be already
available, either from experiments, Computational Fluid Dynamics (CFD)
or theoretical considerations. What is the degree of required accuracy in
the flow variables to get satisfactory acoustic results will be one of the key
issues when applying the method. In other words tell me the flow I will tell
you the sound.

1.2 Basic Mechanisms - External Flows

Major noise generating mechanisms from external wall-bounded flows
are introduced and described shortly in this section. Phenomena associated
with thermal conductivity are discarded so that the analysis is focused on
mechanical aspects. Complementary developments should be considered for
internal flows and/or combustion problems, as discussed in chapter 1. The
different ways the mechanisms can be simulated or modeled for the sake of
noise predictions in the far-field will be addressed in subsequent chapters.

The first fundamental principle to be retained from everyday life ex-
perience is that vortex dynamics makes sound. This implies two major
mechanisms. First, sound is generated as free vortices interact mutually:
this occurs in any turbulent mixing region such as a free jet or a turbulent
boundary layer over a smooth boundary. Secondly, sound is generated as
vortices interact directly with a geometrical singularity of a solid surface,
such as a sharp edge, a corner, an excrescence or any accident. The sec-
ond mechanism is much more efficient, as easily understood for instance by
putting a knife blade in the jet of a pressure-cooker valve and hearing the
difference in radiated sound level.

Examples shown is the chapter are just specific declinations of the same
process. They are mostly related to a broadband noise signature since a
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(a) (b)

(c) (d)

Figure 1. Generic turbulent flows responsible for broad-
band noise generation, illustrated by instantaneous 3D pat-
terns (a, c, d) and 2D vortical trace (b). (a): vortex-
shedding from a cylinder; (b): trailing-edge scattering of a
turbulent boundary layer; (c): combined trailing-edge scat-
tering and vortex shedding; (d): combined vortex-shedding
and turbulence impingement on an airfoil. From Moon et
al (2010) (a), Wang et al (2009) (b), Chang et al (2006) (c)
and Jacob et al (2002).

turbulent flow is the origin of the sound generating process. Sound can also
be radiated when a solid surface is moving through the air in an acceler-
ated, periodic motion, as shown in section 5.4. This specific mechanism is
typically involved in the tonal noise of rotating blades, not addressed in this
book.

Typical unsteady vortical flows attached to solid surfaces and generating
broadband or narrow-band noise at relatively moderate-to-large Reynolds
numbers (in the sense that the flow regime is definitely turbulent) are illus-
trated in Fig. 1-a-to-d from Moon et al (2010), Wang et al (2009), Chang
et al (2006) and Jacob et al (2002). All pictures are deduced from validated
Large-Eddy Simulations (LES), either compressible or incompressible. They
only illustrate the vortex dynamics responsible for sound production, not
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the sound itself. The vortex-shedding mechanism (Fig. 1-a) produces the
Aeolian tones heard when the wind is blowing on mechanical structures.
The noise produced by trailing-edge scattering (Fig. 1-b) is important for
all rotating-blade technologies, especially for wind turbines. Both may be
produced together in the case of blunted trailing-edges (Fig. 1-c). The two-
body configuration of Fig. 1-d is a first step toward the investigation of more
complicated ones, such as the high-lift devices of an aircraft wing. In this
case, the impingement of the vortical patterns shed from the first body onto
the second one is generally much noisier than the vortex shedding itself. The
first three cases are mechanisms of what is called the self-noise of a solid
surface in a flow. The fourth one illustrates the turbulence-impingement
noise of an airfoil. Both that noise and trailing-edge noise will be addressed
specifically in chapter 5.

Going into the details, the faster the inertia variation in a vortical flow is,
the more efficient is the acoustic dissipation. This makes sound production
much stronger in the vicinity of singular points on a solid surface, such as
leading or trailing edges of blades, slots or bumps on surfaces, and so on.
For vortex-shedding noise, the dominant unsteady vortical motion takes
place downstream in the very near wake. The rapid inertia variation is
precisely in the formation of the vortices. As a result the source domain
is the immediate vicinity of the cylinder. Trailing-edge noise is due to the
rapid re-arrangement of boundary-layer turbulence as it is convected past
the edge; this is why the efficient source region is a limited area around the
trailing edge. The same holds in configuration (c) for both incriminated
mechanisms. In case (d) the dominant source region is the more or less
extended vicinity of the airfoil leading edge.

Previous examples refer to bodies of limited extent with respect to the
acoustic or aerodynamic length scales. But boundary-layer flows developing
on the walls of elongated bodies also generate sound. It is well accepted
that a developed turbulent boundary layer over an extended and smooth
surface such as a rigid flat plate is not an efficient sound generator because
of its dominant quadrupole nature, as pointed out by Goldstein (1976).
In contrast the aerodynamic sound is much higher if the surface exhibits
a geometrical singularity. Therefore cavities, slits, excrescences or steps
appear as localized sources of noise. This will be discussed in section 2.5.

Pictures of Fig. 1 together with aforementioned arguments stress that
the dominant sources are quite localized around the surface edges and that
vortex dynamics farther away in the wake is a minor contribution. With
respect to a distant observer the unsteady flows act as equivalent moving
sources radiating in the surrounding medium. The prediction methodology
subsequently developed is in two steps; one is the description of the equiva-
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lent sources, the other one is the description of the propagation itself. Both
are detailed in next sections.

2 Ffowcs Williams & Hawkings’ Formulation of the

Acoustic Analogy

2.1 The Wave Equation

Lighthill’s equation and alternative forms such as Powell-Howe’s equa-
tion are reformulations of general gas dynamics equations which do not
address specifically the question of physical boundaries. Yet aerodynamic
noise from wall-bounded flows can be predicted from this general back-
ground by solving the wave equation together with relevant boundary con-
ditions imposed on the wall surfaces. The needed material can be any
code or software solving the wave equation, or the Helmholtz equation pro-
vided that a Fourier transform is performed to investigate single frequencies.
This makes the sources of sound interpreted as distributed quadrupoles in
Lighthill’s analogy, and their radiation understood as just scattering by the
surfaces. Such a view can be inconvenient if the character of the sources is
fundamentally modified by the scattering. Furthermore the formal simplic-
ity of the formalism, brought by the homogeneity of the propagation space,
is partly lost because of the needed account of boundaries. Another inter-
pretation is obtained when replacing the surfaces by additional equivalent
sources supposed to radiate in free space, thus extending the original idea of
the acoustic analogy. This is the essence of Ffowcs Williams & Hawkings’
formulation (1969) presented now (Curle’s analysis introduced in chapter
1 for a stationary surface can be considered included in this more general
one).

The principle is as follows. The physical surfaces are removed and re-
placed by mathematical surfaces (Fig. 2). The corresponding inner volume
is assumed to contain the same fluid at rest as in the distant propagating
medium, whereas the surrounding flow is kept as such. In order to main-
tain the discontinuity between the inner volume and the real flow outside,
additional sources of mass and momentum must be distributed on the sur-
faces. This is achieved by writing the equations in the sense of generalized
functions. The continuity equation becomes

∂ρ

∂t
+

∂

∂xi
(ρ Vi) = [ρ (Vi − Vsi)]

(2)
(1)

∂f

∂xi
δ(f) , (1)

introducing the jump of a quantity [ ]
(2)
(1) between both sides of the surfaces

and specifying the kinematics of the surfaces by the equation f(x, t) = 0.
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Figure 2. Mathematical surface definition in Ffowcs
Williams & Hawkings’ analogy. The outer surface (Σ) is
rejected to infinity.

Here ρ and V stand for the total density and velocity fields, and Vs is the
body-surface velocity. The momentum equation reads

∂

∂t
(ρ Vi) +

∂

∂xj
(ρ Vi Vj − σij) = [ρ Vi(Vj − Vsj) − σij ]

(2)
(1) δ(f)

∂f

∂xj
(2)

with the same convention. In the inner volume the density reduces to ρ0
and the fluid is at rest, whereas approaching the surface from outside the
flow speed equals the body-surface velocity: V = Vs. The same algebra as
for Lighthill’s analogy yields the wave equation

∂2ρ

∂t2
− c20

∂2ρ

∂x2
i

=
∂2

∂xi ∂xj

(
ρ Vi Vj − σ′

ij − c20 ρ δij
)

(3)

+
∂

∂xi

(
σ′
ij δ(f)

∂f

∂xj

)
+

∂

∂t

(
ρ0 Vsi δ(f)

∂f

∂xi

)
,

where Dirac’s delta function is introduced. The first source term involves
Lighthill’s stress tensor Tij = ρ Vi Vj − σ′

ij − c20 ρ δij already discussed in
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chapter 1 and involving the stress tensor σ′
ij . Furthermore if the function f

is properly scaled the normal unit vector on the surfaces is just ∇f = n .
Equation (3) is exact, as a reformulation of the general equations of fluid

dynamics. ρ and Tij are understood in the sense of generalized functions:
they are zero inside the mathematical surfaces and equal, respectively, to
the density fluctuations and Lighthill’s tensor of the flow outside. Accord-
ing to the new statement of the analogy the density fluctuations in the real
fluid, in the presence of flow and rigid bodies, are those which would exist in
an equivalent acoustic medium perfectly at rest and forced by three source
distributions. The first term is responsible for the noise produced by virtue
of flow mixing and distortions around the solid bodies. It is just the contin-
uation of the quadrupole sources recognized by Lighthill. The second term
is a surface distribution of dipoles (divergence of a vector field); it generates
what is referred to as loading noise by reference to the aerodynamic loading
of a surface in a flow. The third source term involving the time derivative
of a scalar quantity is a distribution of monopoles. The resulting acoustic
field will be called thickness noise.

The practical use of the formal result is subjected to the same need
for simplifications of the source terms as for Lighthill’s equation, if explicit
solutions are expected from the general background of linear acoustics.The
simplifications are summarized in next section.

2.2 Usual Approximations

Equation (3) is tractable in the usual way if the right-hand side is
known independently of any acoustic consideration. The following approxi-
mations are generally retained; they can be partially released if the needed
information is provided by a CFD code, for instance.

First the Reynolds number of the flow is assumed high and the fluctuat-
ing Mach number is assumed low. This leads to Lighthill’s approximation
Tij � ρ0 UiUj in which ρ0 is the mean density and U stands for the aero-
dynamic velocity, cleaned of the acoustic motion. The second source term
represents all contact forces, say P, applied from the surfaces onto the fluid,
and can be written ∇ ·P. It involves both aerodynamic forces and acoustic
pressure forces which represent sound scattering effects: P = Paero + pn.
In many applications of interest, typically dealing with rotating-blade noise
technology, the diffraction effects are ignored. This is accepted for con-
venience but only valid as long as the surfaces are acoustically compact.
Any surface in a disturbed flow is both a source of sound and a scattering
screen. Substantial errors can be generated if the surfaces are not compact
anymore. The third term does not require any approximation, since it is
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Figure 3. Permeable control surface definition in Ffowcs
Williams & Hawkings’ analogy. The outer surface (Σ) is
rejected to infinity.

completely defined by the kinematics of the surfaces, assumed known.

2.3 Acoustic Analogy in a Moving Fluid

Invariance by any change of Galilean reference frame ensures that
the equations of the acoustic analogies initially derived for a surrounding
medium at rest naturally extend to the case of a uniformly moving medium
of speed V0.The convected wave equation according to Ffowcs Williams &
Hawkings’ formulation, including Lighthill’s as a special case, becomes

D2ρ

Dt2
− c20

∂2ρ

∂x2
i

=
∂2

∂xi ∂xj

(
ρ V ′

i V
′
j − σ′

ij − c20 ρ δij
)

(4)

+
∂

∂xi

(
σ′
ij δ(f)

∂f

∂xj

)
+

D

Dt

(
ρ0 (Vsi − V0i) δ(f)

∂f

∂xi

)
.

Lighthill’s tensor is now defined by the relative velocity V′ = V − V0, as
well as the thickness-noise term involving the surface velocity vector Vs.
Furthermore time derivatives are accounting for convection by the mean
flow : D/Dt = ∂/∂t+V0 · ∇.
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2.4 Penetrable Surfaces and the Extended Analogy

In all applications where the quadrupole term in eq. (3) is significant
and must be calculated, which preferentially occurs at high speeds, the
computations can be made cumbersome because the sources are distributed
within a volume the boundaries of which are not precisely defined. In con-
trast, the surface source terms are much simpler to compute and clearly
delimited. If CFD must be used in a limited domain surrounding the sur-
faces, and if the computations are able to reproduce the acoustic field in
the vicinity of its sources, a more convenient way of solving the acoustic
problem can be proposed by taking the information not on the physical sur-
faces but on a penetrable control surface that can be user-defined at some
distance away. This generalized form of Ffowcs Williams & Hawkings’ anal-
ogy is widely used in modern Computational Aero-Acoustics (CAA). The
continuity and momentum equations are now written as

∂ρ

∂t
+

∂

∂xi
(ρ Vi) = {ρ0 Vsn + ρ (Vn − Vsn)} δ(f) ,

∂

∂t
(ρ Vi) +

∂

∂xj
(ρ Vi Vj − σ′

ij) =
{
ρVi (Vn − Vsn) − σ′

ij nj

}
δ(f) ,

where n = ∇f stands for the normal to the control surface and where
Vsn = Vs · ∇f and Vn = V · ∇f are normal velocities. The new expression
of Ffowcs Williams & Hawkings’ equation reads

∂2ρ

∂t2
− c20

∂2ρ

∂x2
i

=
∂2

∂xi ∂xj

(
ρ Vi Vj − σ′

ij − c20 ρ δij
)

(5)

− ∂

∂xi

{[
ρ Vi(Vn − Vsn) − σ′

ij nj

]
δ(f)

}
+

∂

∂t
{[ρ0 Vsn + ρ (Vn − Vsn)] δ(f)}

and all notations refer to the control surface, again of equation f = 0.
Lighthill’s tensor only needs being evaluated outside the surface. Therefore
the latter can be chosen in such a way that the quadrupole contribution
becomes negligible. In counterpart since the control surface is penetrable,
the surface source terms are more complicated than in the standard form
of Ffowcs Williams & Hawkings’ equation.

As an example of the methodology, the sound radiated by a rotor operat-
ing in free field can be computed from a fixed control surface embedding the
rotor, using eq. (5), which seems far simpler than the integration over the
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moving blades. But the CFD code applied to get the complete field inside
the control surface must reproduce accurately the sound waves generated
by the blades or in the vicinity of the blades and their propagation up to
the surface, in order to avoid numerical errors. This may be challenging.
Finally, the benefit in the solving of the acoustic equation of the analogy is
at the price of a bigger computational effort in the simulation of the flow
inside the control surface. No way to escape the intrinsic difficulties.

An important corollary of Ffowcs Williams & Hawkings’ formulation
with penetrable surfaces is that it can take the non linear processes into ac-
count more easily. If sound is generated close to surfaces at a very high level,
it propagates initially with significant non-linear aspects. Since the analogy
written on the physical surfaces is exact when no approximation is made
and since the wave equation is linear, the non-linear mechanisms must be
all grouped in the equivalent quadrupole sources; if the latter are discarded
from the analysis, the non linearity is ignored. In contrast, non-linear effects
are treated implicitly by the CFD code used to solve the internal problem
when resorting to a penetrable control surface.

2.5 Plurality of Interpretations

An acoustic analogy may be useless if no simplification is made. In
contrast when simplifications are accepted to take advantage from the for-
mal simplicity of linear acoustics, the analogy cannot be exact anymore and
becomes an interpretation. In some circumstances the same configuration
can be interpreted differently, resorting to either Lighthill’s formalism or
Ffowcs Williams & Hawkings’.

As an example consider the sketch of Fig. 4-(a) dealing with an excres-
cence attached to a plate of large dimensions, mimicking the side mirror of a
car. Sound originates from the vicinity of the excrescence where intense vor-
tex dynamics takes place. Lighthill’s interpretation formulates the problem
with distributed quadrupoles Tij assumed to radiate in a medium limited
by the surfaces of the plate and of the body. Boundary conditions need
being specified all over the surfaces. The tensor Tij must be deduced from
a simulation of the flow. Because the Mach number is small in the case of
the side-mirror, the only affordable effort is often incompressible LES. This
is not an issue when post-processing the flow field with Lighthill’s anal-
ogy, of course as long as there is no acoustic back-reaction on the flow. In
principle the same configuration can be formulated with Ffowcs Williams &
Hawkings’ analogy. The surfaces are not considered as boundary conditions
anymore but as distributed additional dipoles radiating as if the medium
was unbounded. These sources are essentially wall-pressure fluctuations
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if the Reynolds number of the flow is high enough, ensuring that inertial
effects in the vortical motion dominate and that viscous terms may be ne-
glected. The exact analogy states that the pressure includes the so-called
hydrodynamic pressure associated with vorticity and the acoustic pressure
associated with compressibility. If an incompressible simulation is used to
feed the equation of the analogy with aerodynamic input data, the genera-
tion of sound by the surface is reproduced but the sound reflection by the
surface is not. This is a significant source of error because the plate is larger
than the acoustic wavelengths of interest. Furthermore sound radiates only
in a half-space. In contrast, if accurate enough, a compressible simulation
would account for the reflection.

Figure 4. Excrescence on a flat wall. Real configuration
(a) and best-suited image representation (b).

To cope with this issue, the problem can be stated by removing the plate
and adding the symmetric images of both the flow and the excrescence (con-
figuration (b)). The featured symmetric body is expectedly compact and
now applying Ffowcs Williams & Hawkings’ analogy with an incompressible
description of the flow as input data makes sense. In configuration (b) the
dominant sources should be dipoles distributed over the surfaces because at
low Mach number quadrupoles are much less efficient; this accepted prop-
erty results from the higher cancellations between constitutive elements of a
quadrupole. But precisely the symmetry of the equivalent flow induces par-
tial cancellation of opposite wall-normal forces. This features quadrupoles
which combine with Lighthill’s quadrupoles in the surrounding volume. In
comparison the fluctuating forces parallel to the wall are doubled by the
reflection. Again they are small at high Reynolds number, so that the
quadrupole contribution can dominate, despite its intrinsic lower efficiency
(Posson & Perrot (2006)). Introducing the image flow to account for the
presence of a reflecting plane has been also discussed by Goldstein (1976)
in connection with the noise generated by developed turbulent boundary
layers over a flat plate. The net result is that, due to the cancellation of
induced pressure forces, the sound remains fundamentally of quadrupole
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nature. Again the viscous forces parallel to the plate are generally ignored
because they are negligible at high Reynolds number. A different situa-
tion can be encountered if the viscous forces are made much larger by wall
roughness.
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Figure 5. Academic exercise: scattering of a lateral
quadrupole by a cylinder. Two-dimensional equivalent
source distribution.

The different ways of posing a problem of aeroacoustics are typically il-
lustrated next on the example of the vortex-shedding sound from a circular
cylinder in a flow (Fig.1-(a)). For simplicity, the mechanism is described
in two dimensions and the incriminated vortex dynamics is reproduced by
an equivalent lateral quadrupole close to the cylinder in the near wake, in
accordance with Lighthill’s interpretation. The radiation process involves
reflection or scattering of the quadrupole by the curved surface of the cylin-
der. At subsonic Mach numbers and in view of the vortex-shedding fre-
quency f0 � 0.2U0/D where U0 is the flow speed and D is the diameter, the
region embedding the cylinder section and the quadrupole is of small extent
compared to the acoustic wavelength. The wave equation or the Helmholtz
equation becomes locally equivalent to Laplace’s equation. This means that
the local acoustic motion can be assimilated to an incompressible potential
flow. The sound field of a source close to the circle is obtained by removing
the circle and adding two identical image sources : one at the center of the
circle and the other one at distance R2

0/a, where a is the true distance of
the source and R0 the circle radius. The resulting configuration is shown
in Fig. 5, where the image sources at the center are not shown because
they exactly cancel each other. The natural field that would be radiated
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by the isolated quadrupole in absence of the circle is shown in Fig. 6-(a),
where the four expected lobes are clearly identified. Were the quadrupole
close to a reflecting plane tangent to the circle, the field would be that of
subplot (b), even less efficient. But the true sound as produced by the
direct and image sources is much stronger and exhibits the two lobes of
an equivalent dipole with orientation normal to the incident flow (subplot
(c)). This is explained by the antisymmetric structure of the von Kármán
vortex street, from which the assumption of a lateral quadrupole is justi-
fied. Nearly the same sound field is obtained by just ignoring the direct
sources (subplot (d)); the radiating efficiency is explained by the image
sources only, in other words by the scattering. The dipole-like behavior is
due to the different partial cancellations between the source pairs closest
to and farthest from the center. The two-lobed pattern is what would be
similarly predicted by the dominant, loading-noise term of Ffowcs Williams
& Hawkings’ analogy. Indeed the dominant effect of vortex shedding is an
oscillating induced lift on the cross-section of the rod, acting as a dipole.
For this the equivalent source will be called a lift dipole. Both problem
statements are found equivalent. Since the body is acoustically compact,
the interpretation of Ffowcs Williams & Hawkings is better suited because
it directly emphasizes the dipolar character of the sound field. Lighthill’s
approach in this case shows that the quadrupole behavior of the source is
dramatically modified by the reflection on the cylinder. This is because the
circular section is a compact body and because the source is very close to
it in terms of wavelengths. This fundamental change is more deeply dis-
cussed by Howe (2003) using the formalism of compact Green’s functions,
not detailed here. It is worth noting that the case of the free-cylinder vortex
shedding is very different from the side-mirror image flow. Changing from
a symmetric to an antisymmetric flow pattern results in the excitation of a
very efficient lift dipole.

Finally all classical statements of the acoustic analogy lead to the defini-
tion of equivalent moving sources in a linear wave equation. The sources can
be monopoles, dipoles or quadrupoles. The formal solving of the wave equa-
tion and the effect of source motion on the radiated field are fundamental
aspects, addressed in the next sections.

3 Green’s Functions Technique - Moving Sources

The formal solution of the linear wave equation is provided by Green’s
function technique, fully described in many handbooks of acoustics and
more specifically by Goldstein (1976). This background is shortly reminded
here for the sake of completeness. The wave equation describes all prob-
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Figure 6. Academic exercise: scattering of a lateral
quadrupole by a cylinder. Instantaneous pressure maps up
to a distance of 5 wavelengths from the cylinder axis.

lems in mathematical physics in which the effect of some scalar quantity
propagates with a finite speed. Aeroacoustics is just a special case in which
the sources are related to unsteady flow features. Therefore source motion
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is first analyzed here from the more general standpoint of the wave equa-
tion itself, and later specified to monopole, dipole and quadrupole acoustic
sources. This will highlight the specific nature of acoustic sources.

3.1 General Solution

For the sake of generality, assume a prescribed source distribution
S(y, t′) radiating in a volume of space V(t′) limited by possibly moving
surfaces S(t′). The local normal on the surfaces n is pointing outwards the
volume. The wave equation for the scalar field variable ϕ to be solved is
written as

Δϕ − 1

c20

∂2ϕ

∂t′2
= S .

Is called a Green’s function for this equation and noted G any solution in
the case of an impulse point source, according to

ΔG − 1

c20

∂2G

∂t′2
= − δ(x− y) δ(t− t′) ,

where δ is Dirac’s delta function. G depends on four variables and represents
the field produced at point x and time t by an elementary source at point y
and time t′. If the effect of initial conditions is ignored, which is justified for
periodic or stationary random processes, the formal solution for the scalar
field follows as (Goldstein (1976))

ϕ(x, t) = −
∫ ∞

−∞

∫
V(t′)

G(x, t/y, t′)S(y, t′) dy dt′ (6)

−
∫ ∞

−∞

∫
S(t′)

{
G

(
∂

∂n
+

Vn

c20

∂

∂t′

)
ϕ − ϕ

(
∂

∂n
+

Vn

c20

∂

∂t′

)
G

}
dSy dt

′ .

The Green’s function is not unique as long as no boundary condition is
involved in its definition, but its expression must be known in order that
explicit solutions are derived. The so-called tailored Green’s function would
provide the field produced at point x and time t by an elementary source at
point y and time t′ in the presence of the surfaces. If it can be known and
introduced in the solution, then the surface integral vanishes. The corre-
sponding explicit result generally leads to closed-form solutions. If another
Green’s function is used, the result is implicit and the formal solution is an
integral equation. The simplest statement is obtained with the free-space
Green’s function G0 for which the volume integral represents the direct field
radiated by the source distribution and the surface integral represents all
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effects of reflection and diffraction by the surfaces. The surface integral
of course vanishes for sources radiating in free space, since no boundaries
are present. This is assumed in the next and leads to the simplest solving
procedure. Within the scope of the acoustic analogy, this formal simplicity
is a great advantage of Ffowcs Williams & Hawkings’ equation, obtained
by considering the solid surfaces not as boundary conditions but rather as
equivalent sources. The general free-field solution reads

ϕ(x, t) = −
∫ ∞

−∞

∫
V(t′)

G0(x, t/y, t
′)S(y, t′) dy dt′ (7)

and the free-space Green’s function has the fairly simple expression

G0(x, t/y, t
′) =

δ(t′ − t+R/c0)

4π R
,

with R = |R| = |x− y|. Reduction of the time integral by the property of
the delta-function leads to the formula of retarded potentials

ϕ(x, t) = −
∫
V(t′)

S(y, t+R/c0)

4π R
dy = −

∫
V(t′)

[S]

4π R
dy . (8)

The quantity te = t−R/c0 is the retarded time or the emission time of
the source at point y, corresponding to a contribution at point x and time t.
Conventionally, the evaluation of a quantity at the retarded time is denoted
by squared brackets. The integral is to be performed over the actual, finite
extent of the source distribution.

It is worth noting that for monochromatic fields of time dependence
e−i ω t, the wave equation reduces to the Helmholtz equation, written below
for the corresponding Green’s function as{

Δ + k2
}
Gω = − δ(x− y) ,

with k = ω/c0. The solution reads

Gω(x/y) =
ei ω R/c0

4π R
.

It is seen that G0 et Gω ei ω t′ are conjugate quantities by Fourier transform.
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3.2 Moving Sources

Retarded-potential formula, eq. (8) is a description in terms of station-
ary sources. In order to address separately features related to source physics
and source motion, going back to eq. (7) and specifying the motion in the
source distribution S is more appropriate. In this section, we consider an el-
ementary point source of strength q moving at constant speed U0 = |U0| in
rectilinear motion (Fig. 7). Then S(y, t′) = −q(t′) δ(y−U0t

′). Performing
first the volume integral and then the time integral, and using properties of
the delta-function (Jones (1972)) yields the simple expression

ϕ(x, t) =
1

4π

∑
j

q(tej)

Rej |1−M0 cos θej | , (9)

where the index e refers to quantities evaluated at the emission time and
where M0 = U0/c0 is the Mach number. Indeed in a moving-source con-
text the source continues its motion along its path during the propagation
towards the observer. The received information at (x, t) is naturally ex-
pressed as a function, not only of the source strength at the corresponding
emission time but also of the retarded location ye = U0te, different from
the current location y = U0t. The summation means that more than one
retarded position is able to provide a contribution at (x, t) depending on
the value of the Mach number. Using eq. (9) requires passage formulas be-
tween both sets of current and retarded coordinates. This is achieved by
solving the retarded-time equation t′ = te(t) or equivalently by geometrical
considerations on the sketch of Fig. 7. The result is

Re(t)

R(t)
=

1

β2

(
M0 cos θ(t) ±

√
M2

0 cos2 θ(t) + β2

)
, (10)

cos θe(t) = M0 +
R(t)

Re(t)
cos θ(t) , (11)

with β =
√

1−M2
0 .

Equations (9) to (11) imply key features of the radiation process. First
the Doppler factor 1−M0 cos θe in the denominator of eq.(9) causes aniso-
tropy in the field, referred to as convective amplification. This is clearly
understood from the instantaneous pattern of wavefronts emitted by the
source at successive time steps, shown in Fig.8. For sub-critical motion
(M0 < 1) all wavefronts get closer to each other in front of the source
and spread away from each other behind. The quantity delivered by the
source in the forward (resp. rearward) direction distributes in a smaller
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Figure 7. Retarded (emission) and current (reception) co-
ordinates.

(resp. larger) volume between adjacent wavefronts, with respect to the case
of a stationary source. The injection per unit volume is increased (resp.
decreased), precisely in the ratio 1−M0 cos θe.

Secondly, since Re(t) must be real and positive, the retarded-time equa-
tion always has a single root given by the sign + in the formula when
M0 < 1, and has zero or two roots depending on the angle θ for the su-
percritical regime M0 > 1 because both signs are acceptable. In this case
the series of wavefronts intersect each other with a conical envelope called
the Mach cone (Fig.8-b). As long as the observer is external to the Mach
cone he cannot receive any signal, whereas once inside he always receives
two signals from two different retarded locations.

Finally, if the source function is assumed monochromatic with strength
q(t′) = q0 e

−i ωe t, the received signal cannot be monochromatic anymore.
However performing a Taylor expansion of the solution around a reference
time within a characteristic period of oscillation would restore an instanta-
neous frequency at observer ω = ωe/(1−M0 cos θe). The received frequency
is higher (resp. lower) than the emitted frequency for an approaching (resp.
retreating) source. This frequency shift is known as Doppler effect. Again
it is understood from Fig.8: an observer located in front of (resp. behind)
the source receives wavefronts at a frequency higher (resp. lower) than the
frequency emitted by the source, in the ratio of the Doppler factor.

For supercritical moving sources this factor has a singularity for the crit-
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Figure 8. Wavefront structures featured by sub-critical
(a) and supercritical (b) point sources. Motion from left to
right.

ical angle θe = sin−1(1/M0) encountered when the observer is exactly on
the Mach cone attached to the source, at which the formalism breaks down.
In order to give sense to the singularity, the supercritical moving elementary
source can be simulated thanks to the identity with a linear distribution of
stationary phased sources, provided that finite time and space scales are
associated to the sources. This is illustrated in Fig. 9 in a discretized form
with a series of impulses emitted by a linear array of sources, similarly to
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Figure 9. Formation of a focused wave on the Mach cone
of a supercritical source, synthesized by 17 Gaussian spots.
Simulated Mach number M0 = 2, motion from left to right.
From (a) to (d), successive time steps, gray scale updated
for clarity.

what happens with Christmas electric garlands. Gaussian impulses which
are solutions of the wave equation in spherical coordinates are used, ac-
cording to the wave pattern ϕ(r, t) = [(r − c0 t)/r] e

− a2 (r−c0 t)2 , where a
is a parameter. Seventeen stationary sources are taken in the example to
simulate a motion at Mach number 2 and the waves are superimposed at
different time steps to produce the plots of the figure. The signal is found
to focus as a spot on the Mach cone whereas it is rapidly attenuated in
other directions. A closer look at the solution would exhibit a decay like
the inverse square root of the propagation distance in the direction normal
to the cone. Therefore the Doppler singularity is interpreted as a focused
cylindrical wave in three-dimensional space (see Ffowcs Williams (1993)).
When this happens with acoustic sources, sound propagates at much larger
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distances than what is expected from simple spherical spreading. In aeroa-
coustics, such focused waves are encountered in supersonic jets because of
supersonically convected quadrupoles. The mechanism is known as ’Mach-
wave radiation’. Advancing blade tips of high-speed helicopter rotors also
produce equivalent waves because of quadrupole sources onset within the
air beyond the tip radius and moving supersonically.

It is worth noting that for a supersonically flying aircraft, the Mach cone
of the acoustic sources is hidden by the shock wave structure attached to the
aircraft. The shock wave is a non-linear, compressible aerodynamic feature,
whereas the Mach cone is a linear wave envelope, but the both of them have
the same angle.

All preceding features refer to the wave equation and can be observed as
well in particle physics and in water waves. For instance the formation of
a Mach cone for supercritical particles in the high atmosphere is known as
the Cerenkov effect, and a similar pattern is generated when making ducks
and drakes on water surface with a flat stone. Further aspects of source
motion in aeroacoustics accounting for space and time correlation scales are
discussed by Crighton (1975).

3.3 The Convected Wave Equation

Most problems in aeroacoustics involve stationary sources radiating
in a uniformly moving medium instead of moving sources radiating in a
medium at rest. This configuration is referred to as convection problem.
The distinction has to be made because sound is always analyzed with the
point of view of the observer. Noise radiated by helicopter rotors in forward
flight by means of microphones embedded on an aircraft flying with the same
velocity, aeolian tones emitted by wires in the wind and sound radiation
by mock-ups in wind-tunnels are typical examples of convection problems.
Because the source and observer are stationary in a moving medium of
velocity U0 = |U0|, the acoustic field is a solution of the convected wave
equation:

Δϕ − 1

c20

D2ϕ

Dt2
= S ,

D

Dt
=

∂

∂t
+ U0 · ∇ (12)

and by convention the first coordinate x1 of unit vector e1 is in the direc-
tion of fluid motion, assumed lower than the propagation speed. The result
can be deduced from the invariance of the general equations in a change of
Galilean frame of reference, noting that the classical wave equation applies
in a frame of reference moving with the propagating medium. The free-
field Green’s function for eq. (12), say Gc, differs from G0. However, the



Sound Radiation by Moving Surfaces… 95

development of wavefronts in the convection problem is similar to that of
a source moving with the same velocity U0 in the opposite direction in a
medium at rest. The source-to-observer relationship is depicted in Fig. 10
in terms of emission and reception coordinates, to be compared to Fig. 7.
Due to wavefront convection, the exact (or geometrical) coordinates (R, θ)
do not coincide with the coordinates of emission (Re, θe). The latter are
apparent coordinates for the observer. A geometrically equivalent config-
uration of moving source can be defined, in which the observer receives
the same signal at time t as if the source was at the retarded location
(Re(t), θe(t)), whereas the actual location is the current one (R(t), θ(t)).
If this configuration is considered at that precise time when both sketches
can be geometrically superimposed, the same relationship holds between
(Re(t), θe(t)) and (R(t), θ(t)), on the one hand, and between (Re, θe) and
(R, θ) on the other hand. Both the retarded coordinates in Fig. 7 and the
apparent coordinates in Fig. 10 are emission coordinates; in the same way
the current coordinates in Fig. 7 and the exact coordinates in Fig. 10 are
reception coordinates. The passage formulas for the problem of convection
are directly obtained from eqs. (10) and (11) as

Re

R
=

1

β2

(
M0 cos θ +

√
M2

0 cos2 θ + β2

)
, (13)

cos θe = M0 +
R

Re
cos θ . (14)

The only difference with the case of the moving source is that eqs. (13)
and (14) do not involve time as a parameter. Consequently, no Doppler
effect occurs, so that the frequency at observer is exactly the same as the
proper frequency of the source. This points two key features out. Doppler
frequency shift occurs because of relative motion between source and ob-
server. In contrast, convective amplification occurs in both problems, since
it is a consequence of relative motion between source and propagating
medium. This formal identity also provides a straightforward determina-
tion of the free-space Green’s function for the convected wave equation by
specifying an impulse source in the general retarded-potential formula. The
expression follows as

Gc(x, t/y, t
′) =

δ(t′ − t+Re/c0)

4π Rs
, (15)

with Rs = Re (1 − M0 cos θe) = R
√
1−M2

0 sin2 θ, θ being defined ac-

cording to the sketch of Fig. 10. Changing for Cartesian coordinates in the
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Figure 10. Stationary source radiating in a moving
medium.

reference frame (e1, e2, e3) and choosing e1 in the direction of the stream
yields

Rs =
√

(x1 − y1)2 + β2[(x2 − y2)2 + (x3 − y3)2] ,

Rt =
1

β2
(Rs − M0(x1 − y1)) .

The retarded-potential formula in a moving medium follows as

ϕ(x, t) = − 1

4π

∫
V∞

S(y, t−Rt/c0)

Rs
dy . (16)

The formal identity also holds for the convected Helmholtz equation
stating about harmonic signals. In this case the Green’s function reads

Gω(x/y) =
ei k Rt

4π Rs
.

It has been first addressed by Garrick & Watkins (1954).

3.4 Specific Properties of Acoustic Sources

Convective amplification and Doppler frequency shift associated with
source motion have been introduced for an elementary point source specified
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in the wave equation. They are characteristics of all waves fields, for instance
also encountered in electromagnetism and water waves. Additional features
are found when addressing acoustic sources, and more especially the source
terms of the wave equation deduced from the acoustic analogy, rewritten
symbolically as

Δp′ − 1

c20

∂2p′

∂t2
= −ρ0

∂q

∂t
+ ρ0

∂Fi

∂xi
+ ρ0

∂2Qij

∂xi ∂xj
.

This equation involves monopole, dipole and quadrupole-like source densi-
ties, so called because of the derivatives involved in their definition. The
sources are moving in the applications but result from different fundamental
mechanisms. Consider again the subsonic rectilinear motion as an illustra-
tive example and the case of the monopole. Because the moving monopole
is actually a moving source of mass as long as no combustion process asso-
ciated with entropy variations is considered, the motion must be specified
in the continuity equation, as

∂ρ′

∂t
+ ρ0

∂v′i
∂xi

= ρ0 q(t) δ(x−U0 t) ,

yielding the corresponding wave equation for the acoustic pressure

Δp′ − 1

c20

∂2p′

∂t2
= −ρ0

∂

∂t
[q(t) δ(x−U0 t)]

different from the canonical form considered in previous section. Introducing
the acoustic potential φ restores the canonical form for φ leading to eq. (9),
from which the formal solution is derived for the acoustic pressure as now

p′(x, t) = ρ0
∂

∂t

∑
j

q(tej)

4π Rej |1−M0 cos θej | .

The derivative of the denominator generates an extra factor 1/Rej and
corresponds to the near field of the moving monopole. As long as the acous-
tic far field is only of interest and the source is in subsonic motion, the
solution reduces to

p′(x, t) =
ρ0
4π

q′(te)
Re (1−M0 cos θe)2

, (17)

where q′ stands for the time derivative of the mass injection. The Doppler
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factor now appears twice in the denominator. In fact one factor arises from
the shifted wavefront structure inherent to any source motion and the second
one comes from the time derivative in the definition of the monopole. For
this reason the monopole is better defined as different from the elementary
source of mass, the former appearing as the time derivative of the latter.

The same procedure can be applied to sources of higher polar orders, by
means of suited changes of variables. For a dipole of strength Fj in the ej
direction, which is defined as two elementary sources of mass very close to
each other and in phase opposition, the far-field pressure is found as

p′(x, t) = − ρ0
4π c0

F ′
j(te) [ej · (R/R)]

Re (1−M0 cos θe)2
, (18)

with no summation on j. Sound is again resulting from the time derivative
of the source function. The convective amplification is the same but it has
a different physical reason. One Doppler factor is due to the wavefront
shift, and the other one is produced by virtue of a modified retarded-time
difference between the two elementary sources of the dipole.

For a quadrupole of axes ej and ei the same procedure leads to the
far-field term

p′(x, t) =
ρ0

4π c20

Q′′
ij(te) [ei · (R/R)] [ej · (R/R)]

Re (1−M0 cos θe)3
(19)

involving the second time derivative of the quadrupole strength Qij , again
without index summations. Convective amplification is found stronger for
the quadrupole. This is important at high speeds and is determinant in the
physics of mixing noise from jets. It is also noticeable that convective am-
plification induces additional directivity. Finally the nature of the moving
acoustic sources cannot be ignored to analyze the far field.

Typical wave patterns of point dipoles are illustrated on the plots of
Fig. 11, valid for both a moving source in a stationary medium and vice
versa provided the reference frame is attached to the source. Convective
amplification makes the radiation of a dipole parallel to the relative fluid
motion stronger upstream (Fig. 11-b). Such a source will be called a drag
dipole. The same holds for the case of a monopole, not shown here. In
contrast radiation remains symmetrical for a lift dipole (Fig. 11-a). The
total radiated power is enhanced for all types of sources, as shown below.

Power criteria for moving point sources Assessing the total acous-
tic power radiated by moving sources is made questionable by the need for
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(a) (b)

Figure 11. Wavefront patterns of moving lift and drag
dipoles, respectively normal (a) and parallel (b) to the
relative flow direction, from left to right. Mach number
M0 = 0.5.

extending the usual definitions of acoustic intensity and power. For station-
ary sources the power is provided by integrating the instantaneous flux of
the intensity vector over a control surface embedding the sources. If the
surface is a sphere centered on the source, the intensity is of magnitude
I =< p′2 > /(ρ0 c0) along the radial direction. But for a moving source
issues are related to the different retarded positions of the source for recep-
tion of simultaneous signals at different points on the observation sphere.
Equivalently the source and the control surface can be assumed stationary
and the surrounding medium moving uniformly in the opposite direction.
Now the only issues are related to the effect of fluid motion: the integration
requires the extended definition of acoustic intensity in a uniformly moving
fluid, which is a well-accepted notion (see for instance Goldstein (1976)).

As an alternative the far-field formulas derived for moving point sources
and transposed to stationary sources in a moving medium by virtue of the
equivalence discussed in section 3.3 can be used directly. Indeed they pro-
vide the acoustic intensity I as a function of both the emission angle θe and
the effective propagation distance Re. Therefore integrating over all emis-
sion angles for a constant value of Re provides an acoustic-power indicator.
When the expressions for the acoustic intensity are scaled by the source
strength, the reduced expressions follow for a monopole, a parallel dipole
and a perpendicular dipole, respectively, as

Im(θe) =
1

R2
e (1−M0 cos θe)4

,
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Id1(θe) =
cos2 θe

R2
e (1−M0 cos θe)4

, Id2(θe, φ) =
sin2 θe cos2 φ

R2
e (1−M0 cos θe)4

,

where φ is the complementary angle between the projection of the distance
vector in the plane θe = 0 and some direction normal to the relative flow
direction. For the monopole and the parallel dipole the radiation is axisym-
metrical and a simple integral over θe is performed with the sphere element
2π R2

e sin θe dθe. The corresponding power criteria follow as

Πm(M0) = 4π
1 +M2

0 /3

(1−M2
0 )

3
, Πd1(M0) =

4π

3

1 + 3M2
0

(1−M2
0 )

3
,

the factors 4π and 4π/3 standing for the classical values of stationary
monopoles and dipoles. A double integral is needed in the case of the
perpendicular dipole, leading to

Πd2(M0) =
4π

3

1

(1−M2
0 )

2
.

The result is substantially different for that dipole because it involves the
squared amplification factor (1 −M0) instead of the power 3 for the other
two. Finally amplification rates are obtained by just forming the ratios of
acoustic powers for the moving and stationary sources, as

Tm(M0) =
1 +M2

0 /3

(1−M2
0 )

3
, Td1(M0) =

1 + 3M2
0

(1−M2
0 )

3
,

Td2(M0) =
1

(1−M2
0 )

2
.

These ratios characterize the effect of source motion assuming that the
motion itself keeps the sources unchanged. They are plotted in Fig. 12 as
functions of the source Mach numberM0. Obviously the lift (perpendicular)
dipole is found much less sensitive to motion in the sense that its amplifi-
cation is much weaker. This is essentially because the direction of motion
relative to the fluid, for which the Doppler factor induces the strongest am-
plification, coincides with the extinction of the dipole radiation, whereas
in the direction of maximum radiation the Doppler factor is just 1. For
obstacles or bodies in a flow, the induced fluctuating aerodynamic forces
are recognized as the dominant sources. They are precisely equivalent to
quasi-perpendicular dipoles in most situations of interest, such as the cir-
cular cylinder in a flow (Fig. 1-a), thin airfoils with moderate camber and
so on.
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Figure 12. Acoustic power amplification rates as evaluated
with the compact-monopole and dipole expressions. Second
evaluation for the monopole plotted in dotted line.

Evaluating the acoustic power according to the aforementioned extended
definition in a uniformly moving fluid requires quite tedious derivations, not
detailed here. For instance, in the case of the monopole, the alternative
expression of the amplification rate could be derived as

Tm =
M2

0

(1−M2
0 )

3
+

1

2
ln

(
1 +M0

1−M0

)
1

M0 (1−M2
0 )

2
.

Though mathematically different, the result is very close to the first evalu-
ation for any reasonably subsonic Mach number, as shown in Fig. 12. It is
found that globally source motion has a weak effect on sound power at Mach
numbers typically below 0.3 or 0.5 depending on the source type, whereas
the amplification is very significant at higher Mach numbers, characteristic
of aeronautical applications.

It must be noted that the present simple developments do not hold any-
more at source speeds approaching the speed of sound because the com-
pactness needed for the definition of quasi-point sources cannot be ensured
anymore.
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4 Tailored Green’s Functions - The Rigid Half-Plane

Exact tailored Green’s functions which remain tractable for analytical
modeling are very few in mathematical wave theory. Some of them can
be generated from the free-space Green’s function by the method of im-
ages, taking advantage of the fact that reflecting plates can be removed
provided that the symmetric images of the primary sources are introduced
(the principle has already been used in Fig. 4). The half-space bounded by
an infinite, either soft or rigid wall, and the quarter-space defined by two
perpendicular planes, can be treated this way. Similar is the case of the
channel limited by two parallel planes, if the infinite set of sources corre-
sponding to the successive reflections is considered. However the channel
is better considered as a waveguide, and the Green’s function expressed as
a combination of the so-called acoustic modes of propagation (see for in-
stance Goldstein (1976) for sound propagation in ducts). Other tailored
Green’s functions useful when formulating open-air radiation problems are
also available for the space limited by a wedge of arbitrary angle, the half-
plane being the special case of wedge with external angle 2π (Macdonald
(1915)). Quite obviously, deriving tailored Green’s functions for more com-
plicated shapes can be as difficult as solving the full problem and is often
accessible only through numerical implementations of the wave equation or
of the Helmholtz equation. Therefore approximate Green’s functions are an
interesting alternative when they can be defined, for instance by removing
the observer at very large distances. A class of such approximations, not
discussed here, is provided by Howe’s so-called compact Green’s functions
(Howe (2003)), often addressing sources very close to compact solid bodies
and observers in the acoustic far field. Since the tailored Green’s functions
rely on source and/or observer distances scaled by the acoustic wavelength,
they are more specifically associated with the Helmholtz equation and the
frequency-domain approach.

4.1 The Half-Plane Green’s Function

The emphasis is put here on the Green’s function of the space limited
by a rigid half-plane with zero thickness, known as the half-plane Green’s
function for the Helmholtz equation, because of its applications in aeroa-
coustics, for instance in the analytical modeling of trailing-edge noise or
high-lift device noise. Initially derived by Macdonald (1915) in spherical
coordinates for a stationary medium, the expression is easily transposed in
cylindrical coordinates for a source point x0 = (r0, θ0, z0) and an observer
at point x = (r, θ, z), with the z axis along the edge and θ being π along
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Figure 13. Half-plane set of coordinates for the definition
of tailored Green’s functions in the presence of uniform flow.

the half-plane and zero in its continuation (Fig. 13). It reads

G(1/2)
ω (x,y) =

−i k

4π2

∫ ξ0

−∞
K∗

1 (i kR cosh ξ) dξ (20)

+
−i k

4π2

∫ ξ1

−∞
K∗

1 (i kR
′ cosh ξ) dξ ,

where K1 is the modified Bessel function of the first kind and where the
upper bounds are given by

sinh ξ0 =
2

R
(r r0)

1/2 cos
θ − θ0

2
, sinh ξ1 =

−2

R′ (r r0)
1/2 cos

θ + θ0
2

.

R is the distance from the source to the observer R = [r2 + r20 + (z −
z0)

2−2 r r0 cos(θ−θ0)]
1/2, and the similar expression for the distance from

the image point to the observer R′ holds with cos(θ + θ0). Equation (20)
is the basis for deriving the radiated field of arbitrary source distributions
accounting for the diffraction by the edge. The acoustic field of a point
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dipole of force P is finally given by the scalar product P ·∇G
(1/2)
ω , and that

of a quadrupole of strength Q by the double scalar product Q : ∇∇G
(1/2)
ω .

Most reported applications, such as the trailing-edge noise analysis pro-
posed by Ffowcs Williams & Hall (1970), are based on the asymptotic form
of the Green’s function for far-field observer and sources very close to the
edge in terms of acoustic wavelengths. The asymptotic form reads

G(1/2)
ω (x,y) � eikR̄

R̄

{
1 + 2

e−iπ/4

√
π

(2kr0 sinφ)1/2 sin
θ0
2

sin
θ

2

}
. (21)

Because space derivatives of the Green’s function are involved in the radi-
ation by multi-pole sources, the term 1 in the brackets has no effect and
factors (kr0)

−1/2 and (kr0)
−1 are produced, for dipoles and quadrupoles

respectively. Since kr0 is a small parameter, the net result is an amplifica-
tion of the natural radiation by the sources. Furthermore the asymptotic
directivity is determined by the factor sin θ/2 and features a cardioid pat-
tern, no sound being radiated in the continuation of the half-plane and the
maximum sound being radiated along the half-plane.

A two-dimensional version of the half-plane Green’s function has been
derived by Jones (1972), citing Macdonald, and re-addressed by Rienstra
(1981) as

G
(1/2)
ω 2D (x1, x3, k) =

1

4π

∫ ξ1

−∞

ei k r1
√
1+u2

√
1 + u2

du

+
1

4π

∫ ξ2

−∞

ei k r2
√
1+u2

√
1 + u2

du , (22)

where the quantities r1,2 and ξ1,2 are just deduced from the equivalent
parameters in eq. (20) by putting z = z0 = 0.

A useful transformation can next be introduced to extend the preceding
Green’s functions in a stationary medium to the case of a uniformly moving
medium, provided that the fluid motion is along x1. The transposition
formula reads

G
(1/2)
M0

(x1, x3, k) =
1

β
G(1/2)

ω (X1, x3,K) e−iK M0 (X1−Y1) , (23)

where (X1, Y1) = (x1, y1)/β, K = k/β and where corrected angles ac-
counting for flow convection are considered in original expressions. The
transformation holds for two-dimensional and three-dimensional spaces, and
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stretches the coordinate along the direction of the flow. In the two-dimensio-
nal case of a trailing edge, thus positive Mach number, a correction account-
ing for the Kutta condition has been proposed by Jones and re-addressed
by Rienstra (1981). This condition has a noticeable effect at Mach numbers
exceeding 0.5 and/or for sources located very close to the edge (see Roger
& Moreau (2008)). It is ignored in the present discussion for conciseness.

(a)

(b)

Figure 14. Sample wave patterns produced by the same
point quadrupole either at some distance (a) or very close to
a trailing edge (b), featuring the asymptotic regime. Source
angle 45◦, flow from left to right.

Exact two-dimensional radiation patterns obtained for the same point
lateral quadrupole located at two different distances from a trailing edge are
plotted in Fig. 14. The Mach number is 0.35, the source angle is θ0 = 45◦

and no Kutta condition is applied. For the first plot (Fig. 14-a) the re-
duced distance to the edge is kr0 = 1.31 and the same spiral pattern as
in free field is recognized. At same distance but at θ0 = 135◦, a shadow
zone would be observed in the bottom part of the map because the half-
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plane would act as a screen. For the second plot (Fig. 14-b) at the reduced
distance kr0 = 0.131 the asymptotic regime is reached and the radiation
has the typical cardioid directivity imposed by the Green’s function, with
wavefronts in phase opposition on both sides. The same would be found for
other source angles at the same distance. This regime is accompanied by a
strong amplification since the gray-scale has been artificially damped by a
factor 6 in order to make both plots comparable. An even stronger amplifi-
cation would be found imposing a Kutta condition. The asymptotic regime
is typical of trailing-edge noise from attached turbulent boundary-layers.
Indeed Lighthill’s interpretation followed by Ffowcs Williams & Hall (1970)
involves quadrupoles remaining very close to the surface and the trailing
edge in terms of acoustic wavelengths for all frequencies of interest. In
contrast quadrupoles located farther away from the edge are amplification-
free. From this fundamental result it is expected that attached turbulent
flows over a trailing edge are much more efficient sound generators than
small-scale vortical patterns developing, for instance, in the separated shear
layers on stalled airfoils. According to Roger & Moreau (2008) the asymp-
totic regime is typically entered below kr0/β � 0.4 for quadrupoles and
below kr0/β � 0.2 for dipoles. As a result turbulence convected along a
wall far from a singularity must be a poor source of sound. More pre-
cisely, classical results about the relationship between trailing-edge noise
and wall-pressure statistics (see chapter 5) make the cut-off frequency of
the sound spectrum expected around ωδ/U0 � 3 for loaded airfoils, where
δ is the boundary-layer thickness within which the quadrupole sources are
distributed. A rough estimate of the condition for amplification associated
with the asymptotic cardioid regime up to that frequency therefore reads
3 (M0/β) r0/δ < 0.4. It appears that the condition is more easily satisfied
at low speeds.

The asymptotic half-plane Green’s function also explains the directivity
of the vortex-shedding sound emitted as a von Kármán vortex street is
formed in the near wake of a thin airfoil or plate with blunted trailing-edge.
The roll-up of vortices features quadrupole sources that are scattered by the
edge and the sound produced is again cardioid-like, with phase opposition
on both sides of the plate. Because the shedding frequency is 0.2U0/h where
h is the trailing-edge thickness and because the shorter expected edge-vortex
distance is around h, now kr0/β � 0.4πM0/β is likely to be lower than 0.4
at low Mach numbers for the closest vortices. Despite the fact that they
result from fundamentally different mechanisms, both trailing-edge noise
and vortex-shedding noise have the same characteristic radiation properties
imposed by the Green’s function. Oppositely a laminar separation bubble at
leading edge is sometimes observed on thin airfoils, triggering a turbulent
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reattached flow. Since the bubble free shear layer is initially laminar, it
is a possible source of noise only if its first oscillations take place at a
leading-edge distance below the threshold kr0/β < 0.4, and if the favorable
condition is fulfilled by frequencies effectively covered by the instabilities.

5 Solution of Ffowcs Williams & Hawkings’ Equation

5.1 Formal Solution

Since the solid surfaces responsible for sound generation are replaced
by equivalent sources, the wave equation of the analogy as stated by Ffowcs
Williams & Hawkings is solved in an unbounded medium at rest by making
use of the free-space Green’s function. The formal solution is described
below for the standard application with integration on the solid surfaces.
After making use of the general properties of convolution products and
performing the change of variable y → η where η is the source coordinate
vector in the reference frame attached to the surfaces, the acoustic pressure
fluctuation at point x and time t is expressed as

c20 ρ
′(x, t) =

∂2

∂xi ∂xj

∫ +∞

−∞

∫
V∞

Tij(η, t
′)
δ(t′ − t+Rη/c0)

4π Rη
dη dt′ (24)

+
∂

∂xi

∫ +∞

−∞

∫
V∞

(
σ′
ij δ(f)

∂f

∂yj

)
(η, t′)

δ(t′ − t+Rη/c0)

4π Rη
dη dt′

+
∂

∂t

∫ +∞

−∞

∫
V∞

ρ0

(
Vsiδ(f)

∂f

∂yi

)
(η, t′)

δ(t′ − t+Rη/c0)

4π Rη
dη dt′ ,

with Rη = |x− y(η, t′)|. Note that the surfaces are assumed rigid.
Now use can be made of properties of the delta-function (Jones (1972))

to perform the time integrals, leading to the first form of Ffowcs Williams
& Hawkings’ solution

c20 ρ
′(x, t) =

1

4π

∂2

∂xi ∂xj

∫
Ve

[
Tij

R|1−Mr|
]
dη (25)

− 1

4π

∂

∂xi

∫
S

[
Pi

R|1−Mr|
]
dSη

+
1

4π

∂

∂t

∫
S

[
ρ0 Vn

R|1−Mr|
]
dSη

expressed as integrals over the external volume Ve and the body surfaces
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S. Note that here the summation required for the two possible roots of the
retarded-time equation in supersonic motion is not written for simplicity.
In eq. (25) P is the net force on the fluid from each surface element, Vn is
the normal velocity field on the surfaces for a normal unit vector pointing
inwards, M is the Mach number of the sources, corresponding to the velocity
in the stationary frame of reference, 1 − Mr with Mr = M · R/R is the
Doppler factor related to the projected motion on the line from the source
to the observer, and the squared brackets mean that the embedded quantity
is to be evaluated at the retarded time. Equation (25) clearly separates
the contributions of source motion with respect to the stationary axes, and
source physics described in the moving axes, leading to generality the simple
arguments introduced with translating point sources in sections 3.2 and 3.4.

Though exact the result involves a surface distribution of monopoles
whereas the total mass is constant for rigid surfaces. There is only fluid dis-
placement induced by the passage of the surfaces. In fact the instantaneous
balance of monopoles is exactly zero and sound is radiated only because of
retarded-time differences between the monopoles. For this reason an alter-
native and mathematically equivalent form of the result has been proposed
by Ffowcs Williams & Hawkings (1969) and Goldstein (1976) as

c20 ρ
′(x, t) =

1

4π

∂2

∂xi ∂xj

∫
Ve

[
Tij

R|1−Mr|
]
dη (26)

− 1

4π

∂

∂xi

∫
S

[
Pi

R|1−Mr|
]
dSη

− 1

4π

∂

∂xi

∫
Vi

[
ρ0 Γi

R|1−Mr|
]
dη +

∂2

∂xi ∂xj

∫
Vi

[
ρ0V

(0)
i V

(0)
j

R|1−Mr|

]
dη ,

introducing volume integrals of equivalent dipoles and quadrupoles over the
inner volume Vi of the surfaces. Note that the volume and surface bound-
aries do not depend on time anymore. Notations (V(0),Γ) stand for the
absolute velocity and acceleration fields defining the solid-body motion of
the surfaces. All quantities are now defined in the sense of ordinary func-
tions. Finally the noise radiated by flows and surfaces in arbitrary motion
can be thought of as produced by dipoles and quadrupoles only. Moreover,
when the inner volume of the surfaces tends to zero, as in the case of thin
airfoils or blades of compressors, the noise from the third and fourth source
terms in eq. (26) is expected negligibly small. This justifies the terminology
of thickness noise. Both formulations are singular at the sonic radiation
angle for which the denominator vanishes. The physical meaning of the sin-
gularity has been discussed in section 3.2. As shown by Ffowcs Williams &
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Hawkings (1969) and Farassat (1983), it is removable at the price of other so-
phisticated solving procedures, not detailed here. The present expressions
hold away from the singular condition, for either subsonic or supersonic
regimes. For simplicity the subsonic regime is retained later on.

5.2 Far-Field Noise Radiation

In usual applications the observation point x is in the acoustic far-
field, for which the general solution must be specified. This is achieved by
applying commutation rules between the space derivatives and the retarded-
time operator and only retaining the terms with the spherical attenuation
(see Goldstein (1976) and Ffowcs Williams & Hawkings (1969)). Because
the acoustic pressure is defined as p′ = c20 ρ

′ eq. (26) is changed in

p′(x, t) =
1

4π

∫
Ve

[
RiRj

c20 R
3(1−Mr)

∂

∂t′

(
1

1−Mr

∂

∂t′

(
Tij

1−Mr

))]
dη

+
1

4π

∫
S

[
Ri

R2 c0 (1−Mr)

(
∂

∂t′

(
Pi

1−Mr

))]
dSη (27)

+
1

4π

∫
Vi

[
Ri

R2 c0 (1−Mr)

(
∂

∂t′

(
ρ0Γi

1−Mr

))]
dη

+
1

4π

∫
Vi

[
RiRj

c20 R
3(1−Mr)

∂

∂t′

(
1

1−Mr

∂

∂t′

(
ρ0V

(0)
i V

(0)
j

1−Mr

))]
dη .

This formula shows that unsteadiness is a necessary condition for noise
to be heard in the far-field. Because dipoles are fundamentally more ef-
ficient sources than quadrupoles, on the one hand, and because thickness
noise is expected of secondary importance for thin surfaces on the other
hand, loading noise is very often dominant and never negligible. This is
why the emphasis is put on the loading-noise term to highlight the role of
unsteadiness. Writing

∂

∂t′

(
Pi

1−Mr

)
=

1

1−Mr

∂Pi

∂t′
− Pi

(1−Mr)2
∂(1−Mr)

∂t′

indicates that far-field noise has two origins, namely the intrinsic unsteadi-
ness of the source terms, considered in the moving frame of reference at-
tached to the surface, and the unsteadiness due to source motion expressed
by the Doppler factor. Furthermore,

∂(1−Mr)

∂t′
=

Mi

R

(
V

(0)
i − RiRj

R2
V

(0)
j

)
− Ri

Rc0
Γi ,



110 M. Roger

thus in turn the Doppler unsteadiness splits into two contributions. The
second one results from the acceleration of the source; the first one also
exists for non-accelerated motion but must be neglected as a near-field term
in the far-field approximation. An important conclusion is that a steady
force does produce sound if accelerated. This is a well-known contribution
to the tonal noise radiated by high-speed rotating blades. In contrast a
body in uniform translating motion produces sound in the far field only by
virtue of unsteady aerodynamics, and variations of the denominator can be
ignored to evaluate that noise.

When applied to the first term of Ffowcs Williams & Hawkings’ equation
the same analysis yields the simplified statement

p′(x, t) =
1

4π c0

∫
Ve

[
RiRj

R3(1−Mr)3
∂2Tij

∂t′2

]
dη

useful for a preliminary understanding of the mixing noise from jets: far-field
sound of translating quadrupoles arises from the second time derivatives of
Lighthill’s stress tensor. In fact the result is just an extended version of the
point-quadrupole formula derived in section 3.4.

5.3 Compact Sources in Motion

For both numerical implementation issues and deeper insight into the
general solution, the possibility of reducing the extended source region to a
single point source or to a discretized set of sources involves the property
of source compactness. A source region is said acoustically compact when
retarded time variations over it are negligible in comparison with a charac-
teristic period Tη. This condition is simple for stationary sources but more
subtle for moving sources. It reads

Tη 
 L

c0
[
1−Mr

] , L[
1−Mr

] � λ (28)

where L is the extent of the source region and 1 −Mr an average value of
the Doppler factor.

A simple example is detailed below to illustrate this key notion. Consider
an emitting segment of length L moving at some subsonic speed V0 = M0 c0,
as depicted in Fig. 15. At time t the segment is between two points (A,B)
but the sound received at observer comes from retarded locations between
the points (A′, B′) that are the retarded locations of (A,B) and that define
the ’acoustic image’ of the segment. Because the propagation distances from
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Figure 15. The moving segment.

all retarded locations are different, the length of the acoustic image differs
from L. It is longer if the segment is approaching the observer and shorter
if it is leaving. Motion artificially induces spatial stretching of any source
distribution. Because compactness must be evaluated on the acoustic image,
a given source region is more compact when leaving the observer and less
compact when approaching. Assuming dipoles on the segment, the general
expression of the acoustic pressure is provided for instance by the second
term of Ffowcs Williams & Hawkings’ solution specified as the line integral

p′(x, t) =
1

4π

∫ L/2

−L/2

[
Ri

c0 (1−M − r)R2

∂

∂t′

(
Pi

1−Mr

)]
dη .

For simplicity consider a uniform distribution of identical dipoles with
axis aligned along the segment direction e1. The strength of the dipoles is
P = P (t) e1 = Ae−i ω t e1. At the origin of time the center of the segment
will be at observer’s location, so that the times of interest are negative. The
observer is assumed in the acoustical and geometrical far field, in front of
the segment and on its trajectory. In these conditions the general formula
reduces to

p′(x, t) =
−i ω A

4π c0 (1−M0)2

∫ L/2

−L/2

[
e−i ω t′

R(t′)

]
dη ,
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where the retarded time is a function of (x, η, t). At any time t′ the center
of the segment is distant from the observer of −M0 c0 t

′ and the element
of the segment of coordinate η is at distance −(η + M0 c0 t

′) . Therefore
te(η) = (t+η/c0)/(1−M0). Furthermore in the far field 1/Re(t) � 1/R0(t)
where R0(t) is the retarded distance of the center of the segment. It is worth
noting that the parameters involved in the far-field assumptions must be
evaluated at the retarded time and position. Therefore the condition of
geometrical far field reads Re(t) 
 L/(1 −M0) and involves the length of
the acoustic image of the segment. The acoustic pressure is finally written
as

p′(x, t) � −i k A e−i ω t/(1−M0)

4π (1−M0)2 R0(t)

∫ L/2

−L/2

e−i k η/(1−M0) dη

=
−i k A e−i ω t/(1−M0)

4π (1−M0)R0(t)

L

1−M0

sin [kL/(2 (1−M0))]

kL/(2 (1−M0))
.

The result for a stationary segment with the same source distribution
would be obtained by putting M0 = 0. The expression involves the sine-
cardinal function which approaches 1 at very low frequencies such that
k L /(1 − M0) � 1. Under this condition the acoustic pressure is pro-
portional to the length of the segment, because the distributed sources are
identical and perfectly in phase in the example, and the whole segment is
said compact. When the argument is a multiple of π, the function is ex-
actly zero and no sound can be heard in the conditions of the example: all
sources interfere in such a way to produce a complete cancellation. The
crucial point associated with source motion is that the Mach number now
enters the definition of the argument. Typically at kL = π assuming source
compactness for the stationary segment remains acceptable, whereas for the
approaching segment at Mach number 0.5 the same frequency corresponds
to a total extinction of the sound.

It is worth noting that the length of the acoustic image of the segment
extends to infinity if the segment approaches the observer at exactly the
speed of sound. In such conditions the solving procedure has been recog-
nized as no longer valid. More generally the sonic singularity also means
that any discretization cell of the source domain will not fulfill the compact-
ness condition, leading to possible issues for numerical implementation.

Going back to the general result the assumed dominant loading-noise
term for a compact surface in Ffowcs Williams & Hawkings’ solution sim-
plifies to

1

4π

∫
S

[
Ri

c0 R2(1−Mr)

∂

∂t′

(
Pi

1−Mr

)]
dSη
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� − 1

4π

[
Ri

c0 R
2

∂

∂t′

(
Fi

1−Mr

)]
, Fi = −

∫
S
Pi dSη ,

where the total aerodynamic force induced by the fluid on the surface F is
introduced and where the over-bar, omitted in the following, stands for an
average value over the surface. This simplified expression is the basis of the
dimensional analysis proposed in the next section.

5.4 Dimensional Analysis

A rapid analysis is proposed in this section to assess both parts of the
loading-noise term for a compact segment of lifting surface, keeping in mind
that similar principles could be applied to other source terms. The kine-
matics of interest is that of a blade segment rotating at constant speed Ω at
some radius R0, so that the characteristic velocity scale is U0 = ΩR0. The
corresponding centripetal acceleration is Γi = U2

0 /R0. The chord length is c
and the spanwise extent is assumed of the same order of magnitude. Steady-
loading noise involves the steady-state aerodynamic force which scales ac-
cording to F0 � CL c2 ρ0 U

2
0 /2 (see chapter 5 for justifications). In contrast

the fluctuations around the mean value F0 arise from time variations of the
relative flow velocity on the segment; the velocity disturbances of amplitude
w are in most cases proportional to the mean-flow speed, leading to some
disturbance rate w/U0 which is assumed constant in the present analysis.
According to simple unsteady aerodynamic arguments, typically Sears’ the-
ory outlined in chapter 5, the fluctuating force amplitude is evaluated as
F̃ � π ρ0 c

2 wU0 and its time derivative as∣∣∣∣∂F∂t′
∣∣∣∣ ∝ nρ0 c

2 wU2
0 /R0 ,

where n stands for a multiple of the rotational frequency (R0/U0 is taken as
the relevant time scale). Furthermore ∂Mr/∂t

′ ∝ U2
0 /(c0 R0). Finally, in-

troducing the acoustic far-field intensities IS and IU associated with steady-
loading noise and unsteady-loading noise respectively leads to the dimen-
sional evaluations

IS ∝ ρ0 c
4 U8

0

R2
0 c

5
0 R

2 (1−M0)6
, IU ∝ n2 ρ0 (w/U0)

2 c4 U6
0

R2
0 c

3
0 R

2 (1−M0)4
,

M0 = U0/c0 being the characteristic Mach number and R the distance to
the observer. This is made irrespective of possibly different constant scaling
factors. Unsteady-loading noise intensity is found to scale with the sixth
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power of a characteristic flow speed and to include the fourth power of the
Doppler factor in the denominator. This is typical of dipoles in translating
motion and is generally retained as the scaling law of dipole sources in
aeroacoustics. In contrast steady-loading noise scales like the eighth power
of flow speeds with the sixth power of the Doppler factor in the denominator,
similarly to what is obtained for translating quadrupoles (see section 3.4).
Comparing both contributions is achieved by forming the ratio

IS
IU

∝ 1

n2

(
U0

w

)2 (
M0

1−M0

)2

to be considered with the rate of unsteadiness w/U0 as parameter. It ap-
pears that the flow Mach number strongly determines which contribution
dominates. At low to moderately subsonic Mach numbers and for a signifi-
cantly disturbed oncoming flow, steady-loading noise can be neglected. The
fluctuating forces on the moving bodies are the most efficient sound sources.
This holds especially at higher frequencies. Conversely, at high Mach num-
bers, and more precisely at lower frequencies, steady-loading noise is the
dominant mechanism, even with effective unsteadiness in the flow. But
unsteady-loading noise must be considered anyway.

For constant rotating motion thus constant centripetal acceleration, the
dipole part of thickness noise in eq. (27) would be found to behave like
steady-loading noise. Without going further into the details, the same sim-
ple developments also suggest that quadrupole sources associated with flows
around a body become efficient at transonic speeds.

Finally the dimensional analysis justifies that preferred attention is paid
to unsteady loading noise in most applications. This is not only true for the
broadband noise of bodies in translating motion but also for subsonic ro-
tating blade segments. As a consequence all predictions methods developed
in chapter 5 will hold for low-speed fans as well, even though the rotating
motion will not be explicitly taken into account. Now once recognized as
the primary source of sound, the unsteady loads on moving surfaces must
be known as a first step to enable any prediction of the radiated sound field
based on the acoustic analogy. This makes aeroacoustic predictions gener-
ally more challenging than classical aerodynamic predictions for engineer-
ing applications. Simulating steady-state aerodynamics is clearly affordable
with modern computational tools; but it is more specifically related to the
performances and mechanical efficiency of a system (fan, propeller, turbo-
fan engine...). Acoustic predictions require the description of all kinds of
unsteadiness in the flow, which is a much more demanding task in terms of
resources. Moreover flow unsteadiness is often not intrinsic to the system
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but rather depending on the environment or the installation of the system.

6 Concluding Remarks

The acoustic analogy has been presented in this chapter as a theoretical
background for the analysis of aerodynamically generated sound. Once the
equations of gas dynamics are reformulated as a linear wave equation, all
flow features responsible for sound production are grouped in equivalent
source terms. This mathematical statement makes the radiated sound field
easily expressed from the sources, provided that the latter are previously
determined accepting some simplifications. In that sense the analogy is an
indirect approach. The flow must be first described assuming that it de-
velops independently of its acoustic signature, and the sound calculation
appears as a post-processing step. The equivalent sources are moving with
respect to the observer and/or the surrounding medium. Therefore atten-
tion has been paid to emphasize all effects of motion in the formal solution,
classically expressed by the Green’s function technique. The most crucial
point for practical sound predictions is the description of the sources. Ap-
plications to lifting surfaces are presented in chapter 5.
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Abstract This chapter provides an overview of the present un-
derstanding of jet noise from both an experimental and analyti-
cal viewpoint. First, a general review of experimental observations
is provided. Only single axisymmetric jets are considered. Then
a historical review of theoretical contributions to jet noise under-
standing and prediction is provided. The emphasis is on both the
assumptions and shortcomings of the approaches, in addition to
their successes. The present understanding of jet noise generation
mechanisms and noise predictions is then presented. It is shown
that there remain two competing explanations of many observed
phenomena. The ability of the different approaches to predict jet
noise is assessed. Both subsonic and supersonic jets are considered.
Finally, recent prediction methods and experimental observations
are described.

1 Introduction

The advent of the jet engine as the preferred propulsion system, first for mili-
tary aircraft and then for commercial aircraft, highlighted the problem of jet
noise. The extremely high noise levels of the small military jets of the Sec-
ond World War needed to be reduced significantly before larger jet-powered
aircraft could be introduced into civilian service. In the early 1950’s letters
began appearing in the Times of London complaining about “the screaming
of jet fighters” at seaside towns in England on the weekends and a Presi-
dential Commission identified noise as the “principal nuisance factor,” for
people who live near airports (see Bolt (1953)). Initially, research was ex-
perimental. In England, jet noise studies were being conducted at Cranfield
by Westley and Lilley (1952) and in Southampton by Powell (1953a). In
the United States, von Gierke (1953) at Wright-Patterson Air Force Base
and Hubbard and Lassiter (1953) at Langley Field were also conducting jet
and propeller noise measurements. Powell (1954) provided a survey of jet
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CISM International Centre for Mechanical Sciences, DOI 10.1007/978-3-7091-1458-2_3, 
© CISM, Udine 2013 



120 P. Morris and K. Viswanathan

noise experiments conducted to that time. The seminal theoretical contri-
butions were made by Lighthill (1952), Lighthill (1954). In addition, the
introduction of his Acoustic Analogy provided a framework for the correla-
tion of experimental data. For example, the theory resulted in scaling laws
such as the “eighth power law” for the radiated power as well as the high
and low frequency dependencies of the spectrum. A review of this theory
and its subsequent extensions is given in Section 3.1.

These notes are not intended to be a comprehensive review of jet noise
research over the last fifty years. There have been several excellent reviews
during this period. These include (among others); Lighthill (1963), Ribner
(1964), Goldstein (1976), Ffowcs Williams (1977), Lilley (1995), Goldstein
(1995) and Tam (1995a). A good reference for an overview of aircraft noise
is given by Smith (1989). Here we have emphasized key theoretical and
experimental studies and the latest developments. These notes represent
our opinions, not always unanimous, and we apologize in advance for any
omissions.

2 Experimentally Observed Characteristics of Jet
Noise

There are three principal jet noise components. These are the turbulent
mixing noise, broadband shock-associated noise, and screech tones. The
latter two components are present only for supersonic jets and only when
the nozzle is operated at off-design conditions. The relative importance of
the three components is strongly dependent on the noise radiation direc-
tion. Turbulent mixing noise is dominant in the aft direction, while the
shock noise is dominant in the forward direction for round nozzles. Most
commercial jet engines have fixed nozzle geometry, with the jet Mach num-
ber being subsonic during takeoff. During climb and at cruise, the ambient
pressure is much lower than at sea level and the nozzle is often operated at
supersonic conditions, generating shock noise. Several experimental studies
since the seventies have investigated the characteristics of the three noise
components. First the salient experimental results are presented.

2.1 Turbulent Mixing Noise

The noise from a high-speed jet is intimately related to the turbulence
characteristics of the jet. Both fine-scale turbulence and large-scale tur-
bulence generate noise. It is important to note here that the terms fine-
scale and large-scale turbulence noise are very imprecise and confusing. As
discussed in Section 3.3, the terms are used in these notes to distinguish
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between different noise generation mechanisms. The fine-scale turbulence
mechanism is taken to be associated with relatively compact sources and
involves the propagation of the sound, once generated, through the moving,
sheared mean flow. Thus mean flow/acoustic interaction effects such as re-
fraction, described in Section 3.1, are important for this noise source. The
large-scale noise mechanism is associated with a direct connection between
the turbulent structures in the jet shear layer and the acoustic field. An
example is given by the instability wave model discussed in Section 3.2.
Both mechanisms are broadband in nature, though the large-scale noise ra-
diation is expected to dominate at low frequencies and small angles to the
jet downstream axis. The relative contributions of these two noise mecha-
nisms depend on the jet Mach number, jet temperature, and the radiation
angle. For subsonic jets, especially at low and moderate temperatures, the
large turbulence structures propagate downstream at subsonic speeds rela-
tive to the ambient speed of sound. For these jets, the fine-scale turbulence
is probably the dominant noise source at most angles. However, at angles
close to the jet axis, including the peak noise radiation angles, the contri-
bution from large-scale structures could be significant. For supersonic jets,
and subsonic jets at high temperatures, as in practical jet engine applica-
tions, the large-scale structures convect downstream at supersonic speeds
relative to the ambient speed of sound. As such, they are efficient gener-
ators of noise and constitute the dominant noise sources, especially in the
downstream direction.

Jet noise depends on the jet operating conditions: Nozzle Pressure Ratio
(NPR) pt/Pa and Total Temperature Ratio (TTR) Tt/Ta, the nozzle exit
area (related to the fully expanded jet diameter Dj), the distance of the
observer from the nozzle exit, ambient conditions, and the polar direction
of radiation ψ. 1 Usually, the origin of the reference coordinate system
is located at the center of the nozzle exit, with the noise emission angle
measured from the inlet axis. Unless otherwise stated, this convention is
followed throughout this set of class notes. However, theoretical analysis
usually uses the angle θ, which is the polar angle measured from the jet
downstream axis. Jet noise was typically measured in 1/3-octave bands
until the late nineteen eighties. The bandwidth that corresponds to a par-
ticular 1/3-octave band center frequency, increases as frequency increases.
In the last few decades, high quality narrow band spectra have been mea-
sured. These narrow band data shed more light on the noise characteristics
and have been used by researchers in the development of noise prediction

1For noncircular jets the noise is also a function of the azimuthal location, though this

effect is generally small unless the aspect ratio of the nozzle is very large.
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Figure 1. Overall Sound Pressure Level of typical mixing noise from a
round nozzle corrected to a polar distance of 100 diameters. D = 8.79 cm,
Mj = 0.86, Tt = 811K.

methods. However, the metric for the calculation of aircraft or engine noise
is the effective perceived noise level (EPNL), which is based on octave or
1/3-octave spectra. In computing the EPNL, the measured spectrum at
each observer angle is converted to a single number based on a set of formu-
lae or a table, with the octave band center frequencies weighted differently.
The heaviest weighting is given to frequency bands to which the average
human listener is most sensitive. For aircraft certification, the computed
perceived noise level at each angle (or time) is integrated to account for the
duration effect, and an effective perceived noise level is calculated. The ap-
proved procedure for noise certification has been established by the Federal
Aviation Authority, see code of federal regulations, part 36. The procedure
for aircraft noise certification is described by Peart et al. (1995). It is clear
from the above description that these regulations have profound implica-
tions for noise reduction strategies. Though it would be desirable to reduce
the noise level at all frequencies, any noise reduction concept should target
those frequencies that reduce the perceived noise level.

Figure 1 shows the typical noise characteristics of a hot subsonic jet with
Mj = 0.86 and Tt = 811 K at a polar distance of 100 diameters. The Overall
Sound Pressure Level (OASPL) increases gradually with observer angle from
the inlet and reaches a peak at approximately 150 degrees. The spectra at
90 degrees to the jet are shown in Figure 2 from Viswanathan (2004). This
figure also shows the effect of increasing Mach number. It should be noticed
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Figure 2. Comparison of spectra from unheated jets. D = 1.5 in., inlet
angle = 90o. Symbols: M = 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9; 1:0. Lines: FSS
spectrum. (From Viswanathan (2004), with permission)

that all the spectra have the same broad, flat shape, which is characterized
by the fine-scale similarity (FSS) spectrum of Tam et al. (1996). This is
discussed in more detail in Section 3.3 below. At the lowest Mach number
the jet noise spectra are contaminated by facility noise and do not conform
to the FSS spectral shape. The spectral shape at larger inlet angles is much
more peaked with a faster roll-off at both high and low frequencies. This
is shown in Figure 3 from Viswanathan (2004) for several subsonic Mach
numbers and an unheated jet at 160 degrees. Also shown in the figure are
curves representing the Large Scale Similarity (LSS) spectrum from Tam
et al. (1996): see Section 3.3. The agreement is very good. Also notice that
the peak frequency is independent of jet Mach number.

The acoustic analogy by Lighthill (1954) provides a scaling formula for
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1.0. Lines: LSS spectrum. (From Viswanathan (2004), with permission)
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Figure 4. Comparison of spectra from unheated jets. D=2.45 in. Symbols:
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(2004), with permission)

the power radiated by a low Mach number, unheated jet that varies as the
eighth power of velocity (see Section 3.1). The variation of the Overall
Power Level (OAPWL)for a range of jet Mach numbers from 0.5 to 1.0
and total temperature ratios of 1.0 (unheated) to 3.2 is shown in Figure 4
from Viswanathan (2004). Also shown is a line representing the V 8 varia-
tion. The agreement is good. However, as shown by Viswanathan (2004) a
closer look at the effect of temperature shows that each total temperature
ratio follows its own power curve with a slightly different exponent for each
temperature. This is shown in Figure 5 from Viswanathan (2004). Notice
that the unheated jet has an exponent that is very close to the eighth power
scaling.

Viswanathan (2004) also showed that the effect of heating on jet noise
at a fixed jet velocity was different for lower velocity jets than at higher
velocities. At lower velocities, heating at a fixed velocity increased the noise
and at higher velocities, heating decreased the levels. The transition occurs



126 P. Morris and K. Viswanathan

log (Vj/a)

 0.3 0.2 0.1 0.0-0.1-0.2-0.3-0.4

20 dB

O
A

P
W

L
-1

0
lo

g(
A

),
dB

V8.74

V8.34

V8.34

V8.03

V7.98

Figure 5. Variation of OAPWL with jet velocity, D = 2.45 in. ∎, Tt/Ta
= 1.0; ×, 1.8; △, 2.2; ◯, 2.7; ●, 3.2. (From Viswanathan (2004), with
permission)

at an acoustic Mach number Vj/a of approximately 0.8. The variation of
OASPL at different angles was also shown to depend differently above and
below this acoustic velocity. For example, Figure 6 shows the variation of
OASPL at an inlet angle of 160o for different acoustic Mach numbers and
temperature ratios. The value of the velocity exponent decreases from 9.67
for the unheated case to 7.67 for the highest temperature case. Note that
the data fall in clusters with the highest temperature giving the lowest level
at the higher acoustic velocities. On the basis of the database generated in
the Boeing Low Speed Aeroacoustic Facility (LSAF) Viswanathan (2006)
developed scaling laws to identify the different components of jet noise. He
argued that the jet total temperature was an important parameter and that,

Sound power∝ (Vj
a
)n , n = n( Tt

Ta
) . (1)
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In addition, the OASPL can be scaled by,

OASPL∝ (Vj
a
)n , n = n(θ, Tt

Ta
) . (2)

The variation of the velocity exponent with inlet angle and temperature
ratio is shown in Figure 7 from Viswanathan (2006). The exponent is rel-
atively uniform for lower inlet angles and then rises rapidly in the peak
noise radiation direction. At 90o the exponent falls monotonically with in-
crease in temperature ratio, being approximately 5.6 for the highest temper-
ature. An example of the collapse of the spectra at 90o is shown in Figure 8
from Viswanathan (2006)). All the spectra for the subsonic cases collapse
very well. The lines show the spectra for supersonic cases where broadband
shock-associated noise becomes evident (See Section 2.2). If it assumed that
the mixing noise spectra would also continue to collapse if the supersonic
cases were ideally expanded, then the scaling laws and spectral shapes not
only provide a method for noise prediction (see Viswanathan (2007)), they



128 P. Morris and K. Viswanathan

10

 9

 8

 7

 6

 5
 160 150 140 130 120 110 100 90  80  70  60  50 

Tt / Ta = 1.0

1.8

2.2

Tt / Ta = 3.2
2.7

Ve
lo

ci
ty

ex
po

ne
nt

(n
)

Angle, re. inlet

Figure 7. Velocity exponent for various angles and jet stagnation temper-
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also provide a means for the separation of mixing and broadband shock-
associated noise. An example is shown in Figure 9 from Viswanathan (2006).
The mixing noise dominates at lower frequencies and is of the same order of
magnitude as the shock noise at high frequencies. In the mid-frequencies,
the spectrum is dominated by broadband shock-associated noise. Shock
noise is described in the next section.

2.2 Broadband Shock-Associated Noise

A convergent nozzle operated at supercritical pressure ratios always pro-
duces expansions and shocks in the plume. This results in the appearance
of shock-associated noise. The same situation occurs when a convergent-
divergent (C-D) nozzle is operated at off-design conditions. Shock-associated
noise generally consists of discrete tones and broadband components. Though
it is possible to design a shock-free C-D nozzle for laboratory investigation,
C-D nozzles in commercial and military applications are usually constructed
with straight conical sections, so some level of shock noise is present even at
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the supposed design conditions. Harper-Bourne and Fisher (1974) were the
first to provide a comprehensive experimental study and model of broad-
band shock-associated noise. They operated a convergent nozzle at super-
critical pressure ratios and at ambient reservoir temperatures, and observed
a dramatic increase in noise in the forward quadrant. They identified this
noise source as being associated with the quasi-periodic shock cell struc-
ture in the jet plume. From an examination of their cold data, together
with hot jet data from Rolls-Royce, they showed that the intensity of shock
noise is only a function of nozzle pressure ratio and is nearly independent
of jet reservoir temperature and hence jet velocity. Subsequently, Tanna
(1977), Seiner and Norum (1979), Seiner and Norum (1980), Norum and
Seiner (1982a), Norum and Seiner (1982b), Tam and Tanna (1982), Seiner
(1984), Seiner and Yu (1984), Yamamoto et al. (1984) and, more re-
cently, Viswanathan et al. (2009) have carried out extensive studies that
have formed the basis for our understanding of shock-associated noise.
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The experiments conducted at NASA Langley Research Center by Seiner,
Norum and Yu included measurements of the aerodynamic characteristics,
as well as the near and far field acoustics of shock containing plumes in order
to uncover the physical mechanisms responsible for the generation of shock
noise. Both convergent and C-D nozzles were tested. Whereas a convergent
nozzle can only be operated supersonically at underexpanded conditions
(pe/pa > 1), where pe and pa are the exit and ambient pressures respec-
tively, a C-D nozzle can be operated at either overexpanded (pe/pa < 1) or
underexpanded conditions.

Figure 10 from Norum and Seiner (1982a) shows typical narrowband
noise spectra from a C-D nozzle with design Mach number of 1.5 at a fully
expanded Mach number of 1.8 (NPR=4.72), and unheated. Several spectra
are shown that cover polar angles from 30○ to 120○. Also shown are pre-
dictions by Tam (1987): see Section 4.3. This figure displays all the three
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noise components. A screech tone is clearly visible in all the spectra, with
its amplitude more than 10 dB above the broadband noise in the forward
angles. The distinct peak to the right of the screech tone is the broadband
shock-associated noise. The broadband noise contains one dominant peak,
with a secondary peak sometimes evident, and the peak frequency of the
radiation increases with angle from the inlet. The half-width of the broad-
band spectral peak widens as the radiation angle increases and in the aft
quadrant the peak is very broad. The broadband shock noise component
is dominant in the forward quadrant. The peak to the left of the screech
tone is the turbulent mixing noise, which is most easily identified at 120○.
The peak frequency of the broadband shock noise increases with angle. The
spectral level of the shock noise is nearly unaffected by jet temperature at
a fixed Mach number. Though recent experiments by Viswanathan et al.
(2009) and Kuo et al. (2011) show that the addition of small amounts
of heating increases the peak levels, but then the levels become effectively
independent of jet temperature.

The intensity of shock noise depends on the degree of mismatch between
the design Mach number, Md and the fully expanded Mach number, Mj .
Figure 11, from Seiner and Yu (1981), shows the variation of noise inten-
sity obtained with a C-D nozzle of design Mach number 1.5 operated over a
range of fully expanded Mach numbers. The jet was operated unheated and
the radiation angle shown is 30○. Also shown on this plot (denoted by dark
circles and solid line) is the turbulent mixing noise obtained by operating
the three nozzles at their design Mach numbers of 1.0, 1.5 and 2.0. The dif-
ference between the open circles (and dashed line) and the dark circles (and
solid line) is an estimate of the shock noise contribution. When the Mach
number of a C-D nozzle is progressively increased from subsonic to slightly
supersonic conditions, the flow is highly overexpanded with strong shocks
in the plume. Depending on the degree of overexpansion, a Mach disc may
be present in the plume. The total noise of the jet in the forward quadrant
increases with contributions from shock noise. As the Mach number is in-
creased from unity, the noise level increases until the Mach disc disappears.
This Mach number is denoted by point C. At higher Mach numbers, there
is a decrease in noise due to the weakening of the shock strength and the
minimum noise occurs at the design point A. With a further increase in
Mach number, the nozzle is operated at underexpanded conditions and the
shock noise again begins to increase following the trend AB. When the flow
is highly underexpanded, normal shocks appear again and a Mach disc is
formed, point B. The spectral level reaches a peak at approximately this
condition and any further increase in Mach number results in a slight de-
crease initially and then no further change in the noise level. The diameter
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Figure 10. Narrow band noise spectra for a convergent-divergent nozzle
operated at Mach numbers of 1.67. Design Mach number = 1.5. D = 5.08
cm. (Adapted from Norum and Seiner (1982a) and Tam (1987)).
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Figure 11. Variation of noise intensity with Mach number at 30o to the
inlet axis. Design Mach number = 1.5. ◯, Imperfectly expanded jet; ●,
perfectly expanded jet. (Adapted from Seiner and Yu (1981)).

and the downstream location of the Mach disc increases with the degree of
underexpansion. Seiner and Norum (1980) recommended that a distinc-
tion should be made between plumes with strong shocks and plumes with
weak expansion and compression waves. In the latter case the flow is super-
sonic while in the former case there are mixed supersonic and subsonic flow
regimes, due to the presence of the normal shocks. These strong shocks
reduce the extent of the supersonic flow and weaken the strength of the
downstream shocks.

These experiments also showed that though the first shock cell has the
greatest strength, the downstream shocks are responsible for shock noise
production. The main region of shock noise production was found to occur
near the end of the potential core for both underexpanded and overexpanded
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supersonic jets. Flow and near-field acoustic correlations indicated a spatial
coherence of several shock wavelengths, with the shock noise appearing to
originate from the vicinity of each oblique shock wave. These results sug-
gested strongly that broadband shock noise is produced by the interaction
of turbulent flow structures with the periodic shock cell system.

The relative importance of broadband shock-associated noise and turbu-
lent mixing noise is a strong function of radiation angle and jet operating
conditions. For a fixed Mach number, the turbulent mixing noise level
increases as the jet temperature is increased, while the amplitude of the
broadband shock noise remains nearly unaltered. Hence, the magnitude of
the shock noise over the mixing noise is a maximum for cold jets, as seen in
Figure 10. The shock noise radiation is fairly omnidirectional, whereas the
mixing noise radiates principally in the aft directions. The jet temperature
then sets the relative levels of the two components. Figure 12 shows the
effect of total temperature ratio on the OASPL from a convergent nozzle
operated at a fully-expanded Mach number of 1.36 (underexpanded). The
shock noise is see to be relatively omindirectional for each temperature ra-
tio. The increase at some angles near 90 degrees in the unheated case is
due to the presence of screech tones. The mixing noise is highly directional
and dominates the shock noise in level for large angles to the inlet axis. In
the unheated case, the peak levels of the shock and mixing noise are similar
(within 5 dB when the screech tones are neglected). At the highest temper-
ature ratio the peak mixing noise OASPL is approximately 15 dB higher
than the shock noise.

2.3 Screech Tones

Powell (1953b), Powell (1953c) was the first to perform detailed in-
vestigations of screech tones from model scale supersonic jets. Powell’s
experiments from convergent nozzles revealed that the wavelengths of the
screech tones increased with increasing NPR and that the tone radiated
preferentially in the upstream direction. A two-dimensional nozzle exhib-
ited a smooth variation of screech wavelengths with pressure ratio, while
an axisymmetric nozzle had discontinuous frequency (and corresponding
wavelength) jumps with increasing NPR. He attributed the tone generation
phenomenon to a feedback mechanism. Davies and Oldfield (1962) showed
that the various screech modes of an axisymmetric nozzle were not dis-
joint but actually overlapped, indicating that several modes could co-exist
or that the preference for a particular mode switched randomly back and
forth. Many investigators have studied the screech phenomenon since then.
For example, Hammitt (1961), Westley and Woolley (1969), Westley and
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Figure 12. Directivity of the mixing and shock components at different
temperature ratios. Convergent nozzle; Mj = 1.36. ▴, shock noise; ●, mixing
noise. (From Viswanathan et al. (2009)).
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Woolley (1975), Rosfjord and Toms (1975), Sherman et al. (1976), and
researchers at the NASA Langley Research Center, including Norum (1983)
and Seiner (1984), are just a few references. Raman (1998), Raman (1999)
has provided an extensive list of references.

The discrete screech tones can be of high intensity depending on the
nozzle operating conditions and geometry. Usually, these tones are more
pronounced for cold jets, with the amplitude of screech decreasing with
increasing jet temperature. As the jet temperature is increased at a fixed
Mach number, the screech frequency increases. The frequency of screech
is independent of observer angle, indicating that the source of screech is
spatially stationary. Simultaneous multiple screech modes are generally
observed at most jet operating conditions. Figure 13, from Seiner (1984),
shows the screech modes as a function of jet Mach number. This figure is a
compilation of various experimental measurements of screech tones obtained
with a convergent nozzle and an unheated jet. The round jet exhibits a
staging phenomenon when the Mach number is increased, with jumps in
the screech frequency. Optical observations have revealed that the different
screech modes are associated with different oscillatory modes of the jet
plume. These are either toroidal or helical mode instabilities. At lower
Mach numbers, the toroidal large-scale instabilities are dominant, while the
helical modes become dominant above a Mach number of approximately
1.3. Flow visualizations by Seiner et al. (1986), among others, have shown
that the left and right hand helical disturbances are excited simultaneously,
causing the jet to flap up and down. However, the azimuthal orientation of
the flapping plane is not constant and has been found to precess for as yet
unknown reasons. As seen in Figure 13, more than one mode may be present
at a given Mach number. However, these tones are not harmonics of each
other. As the jet Mach number is increased, the wavelength of the screech
increases until a critical value is reached, beyond which a marked jump in
wavelength occurs. For the Mach number range of 1.1 to 1.8, more than
five modes or stages, labeled A1, A2, B, C, D and E in Figure 13 have been
observed. These tones are very sensitive to the details of the experimental
facility and not all modes are observed in any individual facility.

In summary, the screech generation mechanism is strongly dependent on
upstream geometry. In commercial engines, the nozzle geometry is seldom
perfectly axisymmetric. For realistic hot engine flows, screech is not consid-
ered to be a problem at all. However, high tone levels have been measured
in military aircraft with closely spaced engines. For such aircraft (F-15 and
the B1-B), sonic fatigue and structural failure of upstream aircraft com-
ponents is a concern. The early work of Hay and Rose (1970) showed
clearly that significant noise amplitudes around the screech frequency could
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Figure 13. Variation of fundamental screech tone wavelength with Mach
number for various stages of screech. Convergent nozzle and unheated flow.
(From Seiner (1984), with permission).

be present for some engine conditions and geometries. As the flight altitude
increased, the nozzle operated at supersonic conditions due to the decrease
in ambient static pressure. Consequently, high tone levels were observed at
cruise. Prolonged exposure to the high dynamic loads, when there was a
matching of the screech frequency and that of the structural modes caused
structural damage. Seiner et al. (1987) investigated the screech character-
istics and the plume dynamics of twin supersonic jets using axisymmetric
C-D and rectangular nozzles. The study revealed that when two adjacent
supersonic nozzles have a centerline spacing less than two nozzle diameters,
the axial evolution of each nozzle plume’s preferred shear layer instability
wave was coupled. This coupling process stimulated an axially synchronized
and enhanced growth of each plume’s preferred spatial instability. Under
these conditions, the dynamic pressure in the inter-nozzle region was found
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to be significantly higher than would be expected from two uncoupled su-
personic jets. In some instances, the amplitude was found to exceed the
design loads for the structure. This study also showed that the staging phe-
nomenon observed for the convergent nozzle was not as prevalent as for the
single C-D nozzle. Even when several modes existed simultaneously, only
one mode was dominant, with a significantly higher amplitude. At lower
Mach numbers, when the nozzle was operated in an overexpanded state,
the axisymmetric screech mode was dominant. In the underexpanded state
(higher Mach numbers), the helical mode was found to be dominant.

2.4 Forward Flight Effects

The effects of forward flight on aircraft noise are difficult to quantify for
a variety of reasons. Even the measurement of this effect poses a signifi-
cant challenge; validated predictions of the effects of flight are consequently
harder. Flight testing of aircraft is very expensive and time-consuming. Sev-
eral factors such as multiple engine noise sources, multiple engine configura-
tions, engine installation effects and non-uniform flow around the engines,
atmospheric propagation effects, varying weather conditions over very long
propagation distances, ground reflection, and ground absorption at shallow
grazing angles render even the interpretation of the measured data very
difficult. Given this level of complexity, it is not surprising that there is
no consensus on what constitutes a flight effect for individual engine noise
components. Since the early seventies, many experimental techniques have
been developed that attempt to simulate a real aircraft flyover. These have
consisted of a jet embedded in a wind tunnel, a jet mounted on tracked ve-
hicles on land, a jet mounted on a whirling rotor arm, and taxiing aircraft.
Crighton et al. (1976) provide a critical evaluation of the different tech-
niques and the advantages and disadvantages associated with each. They
highlighted some fundamental issues regarding the necessity to preserve the
dimensionless parameters at the model-scale and the importance of the de-
tailed nature of the noise source and its acoustic environment, in evaluating
the direct effect of flight on source strength.

Nowadays, flight effects are usually assessed by embedding a jet simu-
lator in a free jet wind tunnel of much larger diameter, in a large anechoic
chamber. Von Glahn et al. (1973), Cocking and Bryce (1975), Bushell
(1975), Packman et al. (1975), and Tanna and Morris (1977) carried out
some of the earliest studies. In wind tunnel tests, the microphones are
located either in the tunnel flow or in the static environment outside the
tunnel flow. The latter case of out-of-flow measurements are the easiest to
perform and true far field measurements can be made. However, correc-
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tions are needed for the propagation of sound through the tunnel jet shear
layer. Some of the factors that need to be considered in the development
of these corrections are: the finite thickness of the tunnel shear layer; the
axial spreading of the tunnel shear layer in the downstream direction; mul-
tiple reflections of sound waves between the jet and tunnel shear layers; the
scattering of sound by turbulence in the tunnel shear layer; the background
noise of the tunnel shear layer; any near field interaction of the jet and
tunnel shear layers if the wind tunnel is not large enough; and a few other
issues such as the possible excitation of the tunnel flow by the jet. The other
major issue concerns the distributed nature of the jet sources. If there is a
rapid variation of the correction factor with angle, it is necessary to place
the microphones at a large distance from the tunnel shear layer so as to be
able to invoke the assumption that the jet acts as a point source. The con-
flicting requirements of a very large wind tunnel to prevent the interaction
of the jet flow with the simulator shear layer and a large anechoic chamber
to ensure far field observer locations pose a tremendous problem and these
requirements are not met by many facilities.

In-flow measurements avoid problems with propagation through the tun-
nel shear layer. However, the tunnel may not be perfectly anechoic. The
problem of the tunnel flow over the microphones is also an issue. However,
the biggest concern is the requirement for a very large tunnel to ensure that
the microphones are in the far field, especially for a large source region.

Out-of-flow measurements are generally favored. Many of the issues men-
tioned above with this type of arrangement have been investigated. Amiet
(1975) developed analytical expressions for the calculation of the refraction
from the shear layer assuming that the tunnel shear layer could be rep-
resented by a vortex sheet. Morfey and Szewczyk (1977a) examined the
various issues and recommended some guidelines for the proper choice of
tunnel size, jet and tunnel operating conditions, to assure good quality of
data. The scattering of sound by the turbulence of the tunnel shear layer
was shown to be negligible. This proposed correction procedure was used
by Tanna and Morris (1977) to interpret their data. Amiet (1978) evalu-
ated the various correction procedures and the validity of the assumptions
made in their derivations. All these methodologies attempt to convert the
measured wind tunnel data to equivalent flyover conditions. Based on these
ideas, the aircraft and engine companies have developed procedures to ex-
trapolate the wind-on model scale data to full-scale flyover conditions. One
of the biggest differences in these methods is the prescription of the source
location for a given frequency. Empirical relations for source distributions
have been derived based on theoretical considerations, acoustic mirror mea-
surements, microphones located at multiple sideline arrays, and a combina-
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tion of in-flow and out-of-flow microphones. In the multiple sideline array
technique, data from each array are extrapolated to a common larger dis-
tance, with an assumed source distribution. Through proper modification
of the source locations, the difference between the two sets of extrapolated
data is driven to an acceptable tolerance. However, when a novel suppressor
nozzle is tested, this process has to be repeated since the source distribu-
tions could be very different. Not unexpectedly, the same data processed by
different procedures yield slightly different noise estimates. This is not to
say that there are fundamental problems with these methods; rather, that
the complexities are addressed and treated in different ways.

Norum and Shearin (1988) made extensive measurements of the far
field acoustic characteristics and the plume fields of supersonic jets in an
open wind tunnel with a tunnel Mach number range of 0.0-0.4. Their study
indicated that there were three effects of flight on broadband shock noise.
There was a lowering of the peak frequency with flight Mach number. Also,
the spectral peak became narrower and several higher-order peaks became
prominent with increasing flight speed. Norum and Brown (1993) extended
the range of tunnel Mach number by using a free jet of diameter 0.30 m,
and performed detailed aerodynamic and acoustic measurements from small
convergent and C-D nozzles (Dj = 1.90 cm). The Mach number of the free
jet was as high as 0.9. They noticed that the plume characteristics could be
altered significantly when the free jet Mach number was increased to higher
values. Even for the C-D nozzle at its design Mach number, weak shocks
were observed at a flight Mach number of 0.6. With further increase in
freestream Mach number, the strength and extent of the shock-containing
region increased dramatically. Norum and Brown attempted to isolate the
effects of source strength modification, convection due to the freestream
and refraction by the shear layer as the flight speed was increased. They
reported that the change in source strength for the shock noise was minimal,
while the convection effect was very strong. A decrease in peak frequency
of broadband shock noise was also observed with increasing flight Mach
number. Finally, the effect of flight on turbulent mixing noise showed a
monotonic decrease in amplitude with increasing flight Mach number at all
frequencies.

The effects of forward flight on the OASPL is usually characterized in
terms of the flight velocity parameter k = 10 log10 [Vj/ (Vj − Vt)] where Vj
is the jet velocity and Vt is the tunnel or flight velocity. Early studies by
Tanna and Morris (1977) and Michalke and Michel (1979) suggest an ex-
ponent of 5 to 5.5, especially at 90 degrees. This was argued by Tanna and
Morris (1977) to be consistent with the reduction of the turbulence inten-
sity with forward flight as measured by Morris (1976). This value has been
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Figure 14. Variation of the relative velocity exponent with radiation angle;
various jet conditions (From Viswanathan and Czech (2011)).

used in noise prediction methods to account for the effect of forward flight:
for example the ARP876 by SAE (1994). However, recent measurements
by Viswanathan and Czech (2011) show a lower value of velocity exponent
at sideline angles with a steadily increasing value from inlet angles of 110
degrees. Figure 14 shows this variation of velocity exponent with radiation
angle for various jet operating conditions. The reason for this difference
could be contamination by the free jet noise and facility noise in the previ-
ous experiments: particularly at low jet exit velocities. Viswanathan and
Czech (2011) removed any spectra that showed evidence of these effects in
determining the velocity exponent. However, this lower exponent is not con-
sistent with the measured reductions in turbulence intensities with forward
flight. This remains a question to be resolved by both measurements and
simulations.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

50 60 70 80 90 100 110 120 130 140 150

M=0.9, Tt/Ta=1.0
M=1.0, Tt/Ta=1.0
M=0.8, Tt/Ta=2.2
M=0.9, Tt/Ta=2.2
M=1.0, Tt/Ta=2.2
M=0.8, Tt/Ta=2.7
M=0.9, Tt/Ta=2.7
M=0.8, Tt/Ta=3.2

Fl
ig

ht
 v

el
oc

ity
 e

xp
on

en
t

Inlet angle, degrees



142 P. Morris and K. Viswanathan

3 Turbulent Mixing Noise

Experiments and analysis of turbulent mixing noise have been ongoing for
fifty years. For most of this period, the acoustic analogy, proposed by
Lighthill (1952), Lighthill (1954), and its extensions, have dominated anal-
ysis and predictions. In the 1970’s, it was recognized that large-scale tur-
bulent structures in the jet mixing layer are very efficient noise radiators in
high-speed jets. In addition, with recent increases in computational power,
Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES)
have shown their potential to provide a complete three-dimensional, time-
dependent prediction of both the flow and noise of jets.

In Section 3.1 the early acoustic analogy models and their subsequent
extensions to include the effects of source convection and mean flow re-
fraction are described. Jet noise prediction schemes based on the acoustic
analogy are also introduced. Section 3.2 describes the mechanism of noise
generation by large-scale turbulent structures, modeled as instability waves.
The associated analytical and numerical predictions are also introduced. A
recent empirical correlation of turbulent mixing noise directivity and spec-
tra is described in Section 3.3. Finally, the model of Tam and Auriault
(1999) for noise generation and radiation by fine-scale turbulence, as well as
more recent improvements in acoustic analogy-based models, are described
in Section 3.4.

3.1 Lighthill’s Acoustic Analogy

A general theory for sound generated aerodynamically was developed
by Lighthill (1952). He chose to formulate the problem by comparing the
full equations of motion with the equations governing density fluctuations
in a uniform acoustic medium at rest. The differences were considered to
be the effect of a fluctuating force field, acting on the uniform acoustic
medium, which would be known if the flow were known. Such an approach
has been called an acoustic analogy, as it replaces the physical noise sources
by a distribution of equivalent sources. Lighthill’s equation was introduced
in Chapter 1. Here it is written as,

∂2ρ

∂t2
− a2o ∂2ρ

∂xi∂xi
= ∂2Tij

∂xi∂xj
. (3)

Tij , known as the Lighthill stress tensor, is the instantaneous applied stress
at any point given by,

Tij = ρvivj + pij − a2oρδij , (4)
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where pij is the compressive stress tensor, given for a Stokesian gas by

pij = pδij − μ [ ∂vi
∂xj

+ ∂vj
∂xi

− 2

3
( ∂vk
∂xk

) δij] (5)

μ is the coefficient of viscosity and p is the thermodynamic pressure.
For low Mach number, unheated flows, Lighthill argued that Tij ≃ ρovivj

where ρo is the constant mean density of the medium. It should be noted
that the equivalent source term, ∂2Tij/∂xi∂xj contains all physical effects
such as convection and refraction. It is also important to note that vi is the
instantaneous velocity: not a perturbation about a mean value. To over-
come this problem to some extent it is possible to write the equations of
motion in a frame of reference moving with the mean axial velocity, with the
time derivatives replaced with convective derivatives and where the veloc-
ities are perturbations about the mean velocity. Then the Lighthill stress
tensor is nonlinear in the fluctuations. This generalization of Lighthill’s
acoustic analogy for sources embedded in a uniform mean flow is described
by Dowling et al. (1978). Alternatively, the average of the equation can be
subtracted from its instantaneous form. This approach has been used in
more recent acoustic analogies.

In any event, the solution to Eqn. (3) can be obtained using the free
space Green’s function for the wave equation,

ρ (x, t) − ρo = ρ′ (x, t) = 1

4πa2o

∂2

∂xi∂xj
∫ Tij (y, τ1) dy

∣x − y∣ (6)

where τ1 is the retarded time,

τ1 = t − ∣x − y∣ /ao (7)

In the far field where x = ∣x∣ >> ∣y∣, Eqn. (6) becomes

ρ′ (x, t) = 1

4πa4o
∫ xixj

x3
∂2Tij

∂τ21
(y, τ1)dy (8)

If it is assumed that the velocity scales with the jet exit velocity Vj and
that the time rate of change of the source term varies as Vj/	 where 	 is a
characteristic length scale, it is readily shown that

ρ′ (x, t) ∼ ρo (Vj
ao

)4 dj
x

(9)

where it has been assumed that 	 scales with the jet exit diameter dj and
x ≃ ∣x − y∣ in the far field. The far field intensity I (x), defined as the
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acoustic energy flux per unit area, is given by

I (x) = a3o
ρo

⟨(ρ′ (x, t))2⟩ ∼ ρoV 3
j M

5
a (djx )2 (10)

where ⟨ ⟩ denotes the time average value and Ma is the acoustic Mach
number: the ratio of the jet exit velocity to the ambient speed of sound.
This gives Lighthill’s famous eighth power law, that the total acoustic power
output is proportional to

ρoV
3
j M

5
ad

2
j (11)

Since the total mechanical power of the jet is proportional to ρoV
3
j d

2
j , the

acoustic efficiency is approximately

η ∝M5
a (12)

The constant of proportionality can be estimated to be very small (of the
order 10−4) so, fortunately, the acoustic efficiency is very low.

Lighthill (1954) applied his general theory to the sound generated by
turbulence. He related the sound intensity in the far field to the statistical
properties of the turbulent sources. To account for the effects of convection
of the turbulent eddies in the jet, the statistical properties were described
in a moving reference frame. Ffowcs Williams (1963) provided a more
complete analysis of the effects of convection as well as the effect of the
relative motion of the jet exhaust and the observer. He also showed how to
remove an apparently singular result that occurs when the sources convect
at the speed of sound in the direction of the observer. These results are
most clearly developed in terms of the source wavenumber frequency spec-
trum. To see this, following Proudman (1952), the source component in the
direction of the observer is introduced such that

Txx = (xi − yi) (xj − yj)
∣x − y∣2 Tij (13)

This form is appropriate for isotropic turbulence. For statistically stationary
turbulence the intensity can be obtained from the autocorrelation of the far
field density in the form,

I (x, τ∗) = a3o
ρo

⟨ρ′ (x, t)ρ′ (x, t + τ∗)⟩
= 1

16π2ρoa5ox
2 ∫ ∫ ∂4

∂τ4
Rf (y,Δ, τ)dΔdy (14)
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where the integrand is to be evaluated at

τ = τ∗ + ∣x − y∣ − ∣x − y −Δ∣
ao

≃ τ∗ + Δ ⋅ x
aox

for ∣x∣ >> ∣y∣ (15)

Rf (y,Δ, τ) is the cross correlation of the Lighthill stress tensor, given by

Rf (y,Δ, τ) = ⟨Txx (y, τ1)Txx (y +Δ, τ1 + τ)⟩ (16)

where Δ is the separation distance between the two source locations. The
superscript f indicates that the correlation is performed in a fixed reference
frame. The wavenumber frequency spectrum of the sources is defined as the
Fourier transform of the cross correlation function. That is,

Hf (y,k, ω) = 1

(2π)4 ∫ ∫ Rf (y,Δ, τ) exp [−i (ωτ + k ⋅Δ)]dΔdτ (17)

here, k and ω are a wavenumber vector and radian frequency respectively.
Also, the spectral density of the intensity at the observer S (x, γ), where γ
is the observer frequency, is given by the Fourier transform of the intensity,

S (x, γ) = 1

2π
∫ I (x, τ∗) exp (−iγτ∗)dτ∗ (18)

Then, it is readily shown that,

S (x, γ) = π

2ρoa5ox
2 ∫ γ4Hf (y,− γx

aox
, γ)dy (19)

Equation (19) shows that the spectral density depends on an integral over
the source volume of the frequency–weighted source wavenumber frequency
spectrum. It is important to note that, for a given observer frequency γ,
only the wavenumber component of the source spectrum that has a sonic
phase velocity in the direction of the observer contributes to the radiated
noise. As discussed by Ffowcs Williams (1963), Crighton (1975) and Gold-
stein (1984), among others, this means that only a small fraction of the
wavenumbers present in the turbulence can contribute to the noise radia-
tion for convectively subsonic jets (Ma ⪅ 1.4).

In the practically important case where the convection is in the axial
direction, a new coordinate is introduced such that

δ =Δ −Ucτ i (20)

where i is the unit vector in the x1, axial, direction. Then the far field
autocorrelation for the intensity is given by

I (x, τ∗) = 1

16π2ρoa5o
∫ ∫ ∣1 −Mc cos θ∣−5 ∂4

∂τ4
Rm (y,δ, τ)dδdy (21)



146 P. Morris and K. Viswanathan

where
Rf (y,Δ, τ) = Rm (y,δ, τ) (22)

The superscript m refers to a correlation in the moving reference frame and
θ is the polar angle of the observer relative to the downstream jet axis. The
integrand in Eqn. (21) is to be evaluated at

τ = δ ⋅ x/x + aoτ∗
ao (1 −Mc cos θ) (23)

and Mc = Uc/ao. If the wavenumber frequency spectrum in the moving
reference frame is defined by

Hm (y,k, ω) = 1

(2π)4 ∫ ∫ Rm (y,δ, τ) exp [−i (ωτ + k ⋅ δ)]dδdτ (24)

then the spectral density is given by

S (x, γ) = π

2ρoa5ox
2 ∫ γ4Hm (y,− γx

aox
,ω)dy (25)

with
ω = γ (1 −Mc cos θ) (26)

It is important to remember that δ = δ (τ) in the differentiation in the
integrand of Eqn. (21): see Ffowcs Williams (1963). Again the radiated
noise is at a wavenumber that gives a sonic phase velocity in the direction of
the observer at the frequency γ: but, the source spectrum is now evaluated
at a Doppler shifted frequency, ω given by Eqn. (26).

Source Cross Correlation Function In order to make any noise predic-
tions, based on the preceding formulas for the spectral density, it is necessary
to provide a model for the source cross correlation function. In addition,
though the introduction of the Proudman (1952) form of the correlation in
Eqn. (13) simplifies the algebra, it conceals the individual contributions
of the different components of Tij . Ribner (1969) derived expressions for
the relative weightings of the individual source correlations to the far field
intensity for an axisymmetric jet. He assumed that the correlation involv-
ing the velocity fluctuations had a joint normal probability. This enabled⟨u′iu′ju′ku′l⟩ to be written in terms of the second moments ⟨u′iu′j⟩, etc.

Models for the source correlation function have been based on an as-
sumption of isotropic turbulence (for example, Ribner (1969), Balsa and
Gliebe (1977), Lilley (1995) and Lilley (1996)), axisymmetric turbulence
(Khavaran (1999)), on measured two-point velocity correlations such as
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those obtained by Davies et al. (1963) and Chu (1966), or based on Large
Eddy Simulations (Karabasov et al. (2010)). For example, consider a source
correlation in the moving reference frame with a Gaussian form2. That is,

Rm (y, δ, τ) = ρ2su4s exp [−(δ
2
1

	21
+ δ22
	22

+ δ23
	23

+ ω2
sτ

2)] (27)

ρs, us, and ωs are density, velocity fluctuation, and frequency scales in
the source region. 	i are the source length scales in the yi directions. All
these scales are functions of the source location y. It should be noted that
this form is chosen for simplicity and is only a crude approximation to
the actual cross correlation. So it should only be used to obtain estimates
for the overall sound power radiated rather than detailed spectral densities
and directivities. Lilley (1995) has argued that, though there may be
large negative values in the longitudinal correlation in the fixed reference
frame, the moving frame correlation is likely to be positive except at large
separations. The wavenumber frequency spectrum corresponding to the
correlation in Eqn. (27) is readily obtained and then Eqn. (25) yields the
far field spectral density,

S (x, γ) = 1

32πρoa5ox
2 ∫ 	1	2	3ρ

2
su

4
sω

3
s ( γωs

)4 exp(−γC2
θ

4ω2
s

)dy (28)

where Cθ is referred to as the modified Doppler factor given by,

Cθ = [(1 −Mc cos θ)2 + ω2
s

a2o
(	21 cos2 θ + 	22 sin2 θ)]

1/2
(29)

The overall intensity is obtained by integration of Eqn. (28) with respect
to γ giving

I (x) = 3

4
√
πρoa5ox

2 ∫ 	1	2	3ρ
2
su

4
sω

4
s

C5
θ

dy (30)

The source strength in the denominator of the integrand in Eqn. (30) is
weighted by five inverse powers of the modified Doppler factor. This is
called the convective amplification effect. In general terms, this results in
an increased intensity for observer locations closer to the downstream jet
axis. However, this directivity is modified by mean flow–acoustic interaction
effects. These are described in the next section.

2Identical results are obtained if the analysis is performed in the fixed reference frame if

the fixed reference frame cross correlation is obtained by a coordinate transformation

from the moving frame as given by Eqn. (22). (See Morris et al. (2002)).
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Mean Flow–Acoustic Interaction Effects Lighthill’s simplification of
his equivalent source term to ρovivj is valid for low Mach number unheated
jets. Detailed measurements of jet noise spectra and directivity over a range
of operating conditions by Lush (1971) and Ahuja and Bushell (1973), in-
dicated that the theoretical predictions embodied in Eqns. (28) and (30)
did not match the experiments: particularly at angles close to the down-
stream jet axis and at high frequencies. Atvars et al. (1965) had performed
experiments with point sources embedded in a jet flow and showed that
refraction effects by the jet flow were important. These experimental ob-
servations complemented attempts to extend Lighthill’s acoustic analogy to
include the effects associated with the equivalent sources being surrounded
by a moving, sheared flow. Phillips (1960) developed an acoustic analogy
that included the effects of a uniform mean flow. However, it was Lilley
(1972), Lilley (1973) who argued that the Phillips’ acoustic analogy still in-
cluded mean flow acoustic interaction effects in its equivalent source term.
Lilley developed an acoustic analogy such that the equivalent sources acted
on a parallel shear flow. Lilley (1972), Lilley (1973) originally followed
Phillips (1960) by first developing a convected wave equation for the loga-
rithm of the pressure.

The equations of continuity, momentum and energy, and the equation of
state for a perfect gas can be rearranged in the form

Dπ

Dt
= − ∂vi

∂xi
, (31)

and
Dvi
Dt

= −a2 ∂π
∂xi

, (32)

where,

π = 1

γ
ln( p

po
) , (33)

and
D

Dt
≡ ∂

∂t
+ vj ∂

∂xj
. (34)

po is the mean static pressure that is assumed to be constant and a is the
speed of sound that may vary. Phillips’ equation is obtained by elimination
of the divergence of the velocity from Eqns. (31) and (32), giving

D2π

Dt2
+ ∂

∂xi
(a2 ∂π

∂xi
) = −∂vj

∂xi

∂vi
∂xj

. (35)

If the variables in Eqn. (35) are decomposed into fluctuations about the
mean thermodynamic properties and a parallel mean flow of the form ui =
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V (x2, x3) δi1 is introduced, where the overbar denotes a time average, the
term on the right hand side of Eqn. (35) is found to contain terms that
are linear in the perturbations. Lilley (1972), Lilley (1973) argued that
only terms that are second order in the fluctuations should be considered as
equivalent sources, as linear terms describe propagation effects. If the con-
vective derivative operator, Eqn. (34) is applied to Eqn. (35), the variables
are again decomposed, and only linear terms are retained on the left hand
side, Lilley’s equation is obtained,

Do

Dt
[D2π′

Dt2
− ∂

∂xi
(a2 ∂π′

∂xi
)] + 2a2 [ ∂V

∂xα

∂2π′

∂x1∂xα
] = Γ, (36)

where α = 2,3, and
Do

Dt
≡ ∂

∂t
+ V ∂

∂x1
. (37)

The source term Γ is at least second order in fluctuations of velocity and
temperature and some terms are multiplied by the mean shear and tem-
perature gradients. In the limit of infinitesimal fluctuations, the equation
reduces to a homogeneous form first derived by Pridmore-Brown (1958) to
describe sound propagation in a duct containing a nonuniform mean flow.
It is also known as the compressible Rayleigh equation.

In general, solutions of Lilley’s equation must be obtained numerically.
However, asymptotic solutions at low frequency were developed by Mani
(1976) who used a vortex sheet approximation for the jet. A solution for a
cylindrical vortex sheet representation of the jet mean flow was also given
by Dowling et al. (1978). High frequency solutions have been obtained by
Balsa (1976) and Goldstein (1982). Solutions based on ray acoustics are
given by Durbin (1983).

The general characteristics of solutions to Lilley’s equation are explained
most simply by considering a two–dimensional mean flow with V = V (y) as
discussed by Lilley (1972). For simplicity, the speed of sound is assumed to
be constant. If solutions of the form3

π′ ∼ f(y) (1 − κM) exp [ik (κx − aot)] , (38)

are introduced into Lilley’s equation, where M = V /ao, the equation takes
the form

d2f

dy2
+ q (y)f = r (y) , (39)

3The inclusion of (1 − κM) eliminates the first derivative from the differential operator

in the resulting equation.
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where,

q (y) = k2 [κ2 − (1 − κM)2] − κ

(1 − κM) [
d2M

dy2
+ 2κ(dM

dy
)2] , (40)

and r (y) is representative of the source distribution. The turning points
of Eqn. (39) correspond to q (yc) = 0. For q (y) > 0 the general solutions
are periodic and propagation will occur. For q (y) < 0 the solutions decay
exponentially. At high frequencies q (y) is dominated by the first term.
Now, κ = k1/k = cos θ is the angle of radiation relative to the downstream
jet axis. It is readily shown that the turning points correspond to

θc = 1/ (1 +M) (41)

For θ < θc the sound experiences exponential decay away from the source
while for θ > θc the sound waves are able to propagate. θc is the boundary
of the zone of silence of geometric acoustics. This is equivalent to Snell’s
law in optics.

Since, in a real jet, the flow is not truly parallel, but develops slowly in
the axial direction, θc also changes with axial distance. Also, a sound wave
may only experience exponential decay for a portion of its propagation path
before radiating. Finally, the simple result of Eqn. (41) is only true at very
high frequencies. All these factors result in a zone of silence that is not
completely silent. The greatest attenuation and refraction occurs for the
highest frequencies and low frequencies are relatively unaffected.

Noise Prediction Models Based on the Acoustic Analogy In spite
of the considerable effort expended on theoretical developments arising from
the acoustic analogy, actual noise prediction methods are scarce. At the
simplest level some general scaling laws have been developed. These are
well summarized by Ribner (1964) and Lilley (1995). An example is the
‘slice-of-the-jet’ method in which contributions to the overall radiated power
from axial slices of the jet are estimated. For example, Eqn. (30) can be
integrated over all angles, with the convective amplification effects neglected
for simplicity, to give the radiated power from a volume element of the jet
as,

dP ∼ ρou8s
a5o	s

dV (42)

Here, it has been assumed that the source length scales are all proportional
to 	s, that the source density is equal to the ambient density, and that
ωs ∼ us/	s. In the annular mixing region of the jet, us ∼ Uj , dV ∼ Djxdx,
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and 	s ∼ x. In the developed region of the jet, us ∼ UjDj/x, dV ∼ x2dx, and
	s ∼ x. So that,

dP

dx
∼ { (ρoU8

jDj/a5o) in the annular mixing region

(ρoU8
jDj/a5o) (x/Dj)−7 in the developed jet

(43)

Thus, the contribution to the radiated power from each axial slice of the
jet is constant in the annular mixing and then decays rapidly beyond the
end of the potential core. If these expressions are integrated with respect
to x, the eighth power law given by Eqn. (11) is obtained. Since ωs ∼ us/	s,
the characteristic source frequency scales as Uj/x in the annular mixing
region and as UjDj/x2 in the developed jet. Then the spectral density of
the acoustic power is given by,

dP

df
= dP
dx

∣dx
df

∣ ∼ { (ρoU9
jDj/a5o)f −2 in the annular mixing region

(ρoU5
jD

5
j /a5o)f 2 in the developed jet

(44)
Thus, the acoustic power spectrum is predicted to scale as f 2 at low fre-
quencies (generated predominantly in the developed jet) and f −2 at high
frequencies(generated near the jet exit in the annular mixing region). These
results give an indication of the regions of the jet responsible for sound gen-
eration and provide an overall picture of jet noise scaling and are useful for
preliminary design estimates. But they do not predict absolute amplitude
and mean flow/acoustic interaction effects are not included.

The first method to attempt to predict both the aerodynamic and acous-
tic properties of jets was the Mani-Gliebe-Balsa (MGB) prediction scheme
(see Balsa et al. (1978)). In this method the jet aerodynamics were predicted
using the turbulence model of Reichardt (1941) in which the jet plume is
synthesized by a summation of elemental jets each with a Gaussian velocity
profile. Comparisons of the aerodynamic predictions with measurements are
given by Gliebe and Balsa (1978) as well as Gliebe et al. (1995). To obtain
the characteristic frequency and length scales needed to describe the acous-
tic sources, such as those in Eqn. (28), two models were used. Balsa and
Gliebe (1977) assumed that ω ∼ (τ/ρ)1/2/	 with 	 ∼ (x/ū)(τ/ρ)1/2. Here, τ
is the magnitude of the Reynolds shear stress that is given by Reichardt’s
turbulence model and ū is the mean axial velocity. Gliebe and Balsa (1978)
assumed that ω was proportional to the local mean velocity gradient and
	 ∼ u′/ω, where u′ is the local turbulence intensity. Mean flow acoustic
interaction effects were modeled using solutions to Lilley’s equation [Eqn.
(36)] with the multistream jets modeled as cylindrical vortex sheets. Sim-
ilar solutions had been obtained by Mani (1976) and Balsa (1975). The
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relative contributions from the individual components of the source term
were based on the quadrupole correlations developed by Ribner (1969) that
assumed isotropic turbulence in a moving reference frame. Some compar-
isons between predictions and measurements are given by Balsa and Gliebe
(1977) and Gliebe and Balsa (1978). The agreement between predictions
and measurements is generally reasonable, though significant discrepancies
are evident in the directivities at higher frequencies and the individual 1/3
octave spectra at different angles.

A different prediction methodology developed from the noise source and
propagation model is described by Tester and Morfey (1976). The empha-
sis of this study was on the prediction of the mean flow/acoustic interaction
effects on the sources described by Lilley’s equation. They derived both
high frequency (Geometric Acoustics) and low frequency solutions to Lil-
ley’s equation. This analysis led to the notion that if the noise spectra at
90 degrees to the jet axis were known then the noise spectra at any other
angle could be predicted using their acoustic model. Morfey and Szewczyk
(1977a), Morfey and Szewczyk (1977b) used a large database of experimen-
tal data and removed all amplitude scaling factors and mean flow/acoustic
interaction effects as described by a high frequency solution to Lilley’s equa-
tion. This enabled them to construct two master spectra representing the
spectral shapes at 90 degrees to the jet axis. They needed two spectra
to be able to correlate the spectra for hot, low speed jets, where sources
associated with the temperature fluctuations in the jet were argued to be
important. However, as discussed by Viswanathan (2004), and shown in
Figure 15, the change in spectral shape at low Mach numbers can be asso-
ciated with a Reynolds number effect. Morfey and Szewczyk (1978) give a
summary of their predictions for noise radiation outside the zone of silence.
Predictions within the zone of silence, described by Morfey and Szewczyk
(1977b) were less satisfactory, particularly for very high speed jets. How-
ever, no account of the noise radiation by the large-scale structures was
included in their model, so this result is perhaps not surprising. It should
be emphasized that this model was purely acoustic in that it didn’t attempt
to predict any turbulence properties to be used to model the noise source
characteristics. Any changes in the jet turbulence, perhaps by the addition
of a noise reduction device, would not be reflected in the noise predictions as
the master spectra were developed for an unmodified single jet. Morris and
Tanna (1985) were able to adapt the model to predict the noise radiated by
coannular jets with the core stream faster than the fan stream. They did
this by dividing the jet into three equivalent jets to represent the inner and
outer shear layers and the developed region of the jet. Good agreement with
experiment was obtained using reasonable assumptions for the properties of
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Figure 15. Comparison of measured spectra with fine-scale similarity spec-
trum. M = 0.7, Tt/Ta = 3.2, φ = 90 degrees. ×, D = 3.81 cm; ●, D = 6.22
cm; ◯, D = 8.79 cm.(From Viswanathan (2004), with permission).

the separate jets.
In an effort to improve the generality of the aerodynamic component

of the MGB code, Khavaran et al. (1994) replaced Reichardt’s turbulence
model with a k − ε model. This revision and its extensions are known as
the MGB-Khavaran (MGBK) model. The acoustic formulation in terms of
source description was unchanged but the mean flow/acoustic interaction
effects were based on high frequency solutions of Lilley’s equation by Balsa
(1976). The length and frequency scales required to define the source spec-
tral characteristics were written in terms of k and ε such that 	 ∼ k3/2/ε
and ω ∼ ε/k. Flow and noise predictions were made for a single C-D nozzle
with Mj = 1.4 and Tt/Ta = 3.3 The variation of overall SPL was predicted
reasonably well: but 1/3 octave spectra predictions, particularly away from
the peak noise direction, were less satisfactory. Two additional changes
were reported by Khavaran (1999). Firstly, rather than using an isotropic
description of the acoustic sources, an axisymmetric turbulence model was
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incorporated. In such a model, the axial turbulence intensity is assumed to
be greater than the other two components that are equal. This is a better
representation of the measured anisotropic properties of the turbulence in
the jet. Noise and flow predictions were made for a dual stream nozzle.
The primary and secondary Mach numbers and total temperature ratios
were Mp ∼ 1.0, Ttp/Ta = 2.7 and Ms ∼ 1.0, Tts/To ∼ 1.0. Khavaran examined
the effects of the ratio of the axial and lateral turbulence intensities on the
radiated noise as well as the contributions of “self” and “shear” noise. The
predictions showed an improvement over the previous ones ( Khavaran et al.
(1994)), particularly for the 1/3 octave spectra. However, the revisions in
the source description permitted two more empirical factors to be assigned:
the ratios of the turbulence intensities and the length scales in the axial and
lateral directions.

Viswanathan (2001) describes a comparison of predictions of single
stream jet noise with measurements, using both the MGBK method and
the fine-scale turbulence mixing noise model by Tam and Auriault (1999).
This latter model, as well as additional recent prediction models, is de-
scribed in Section 3.4 below. The predictions were made without any prior
access to the experimental data. In general, the spectral predictions with
the Tam and Auriault model were superior to those made with the MGBK
method. However, as discussed further in Section 3.4, the fine-scale turbu-
lence model does not provide predictions in the peak noise direction. Tam
and Auriault (1999) argue that the noise radiation in this direction is domi-
nated by noise from the large-scale turbulent structures. The mechanism by
which this noise generation and radiation process occurs and its modeling
are described in the next section.

3.2 Large Scale Structures and Instability Wave Model Theory

It is now generally recognized that the noise radiation from high speed
jets in the peak noise direction is dominated by the noise generated by
the large scale turbulent structures in the jet. Tam (1995a) provides an
extensive review of the role played by the large scale structures in jet noise.
Beginning with the experiments by McLaughlin and his research team at
Oklahoma State University ( McLaughlin et al. (1975), McLaughlin et al.
(1977)) numerous experimental observations of large-scale structures in both
subsonic and supersonic jets at both high and low Reynolds number have
been made.

The key observation of the large-scale turbulent structures in a high
Reynolds number jet is that, though they occur in a non-deterministic fash-
ion in space and time, any single occurrence is in the form of a train of
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structures of gradually increasing scale in the axial direction. The growth
of the jet upstream of the end of the potential core, as in the case of the
two-dimensional shear layer, is associated with the engulfment of ambient
fluid and the ejection of high speed jet fluid induced by the large-scale struc-
tures. The fact that the large-scale structures appear as a slowly-developing
sequence suggests that they may be modeled in both a physical and math-
ematical sense by a train of waves of gradually varying wavelength. If the
growth and decay of the instability wave is included the large-scale struc-
tures can be modeled as wavepackets. Tam (1971) was the first to demon-
strate a direct link between the instability waves in the thin shear layers
close to the jet exit and a radiating wave pattern. Chan and Westley (1973)
also demonstrated the connection between the directional acoustic radiation
from high speed jets and predictions based on a spatial stability analysis
using a vortex sheet approximation to the jet flow. They showed good agree-
ment between the computed and measured wavelengths and phase velocities
of waves in the near fields of high speed helium jets.

In order to extend these ideas to jets with finite thickness, realistic jet
profiles, several researchers used ideas originally proposed by Ko et al.
(1970) who examined the development of finite amplitude instabilities in
wakes. Chan (1974a), Chan (1974b), Chan (1975), Morris (1974), Mor-
ris (1977), Liu (1974) and Tam (1975) predicted the evolution of fixed
frequency instability waves in jet flows. Tam and Morris (1985) also used
this general formulation to predict the development of tone-excited jets.
The mean momentum and energy integral equations, with an eddy viscos-
ity model to describe the dissipative action of the small-scale turbulence,
were solved to describe the mean jet flow development. The local radial
variation of the instability wave properties was obtained from a linear, in-
viscid instability analysis, and the amplitude of the instability wave was
determined by the integral kinetic energy equation for the wave.

Tam and Morris (1980) and Morris and Tam (1979) showed how the
development of an instability wave could be coupled to the near and far
sound fields of a two-dimensional shear layer and a jet respectively. The
range of validity of these analyses was subsequently extended by Tam and
Burton (1984). The local stability analysis of the jet flow that is used
to describe the evolution of the instability waves, can be based either on
a parallel mean flow approximation or some account can be taken of the
effects of the relatively slow axial variation of the mean flow. The method
of multiple scales (see Nayfeh (1973)) can be used for the latter purpose.
In the method of multiple scales a series expansion is developed for the
perturbations developing in the non-parallel mean flow. The expansion
parameter ε is a measure of the relative rate of change of the mean flow
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in the axial to the cross stream directions. In a jet, ε ∼ dδ/dx where δ
is a measure of the jet shear layer thickness. All the terms in the series
expansion are required to have vanishing amplitude at large radial distances.
However, Tam and Morris (1980) showed that the multiple scales expansion
is not uniformly valid at large radial distances. A complete description
of the unsteady field associated with the instability waves, including their
acoustic radiation, can be obtained by the method of matched asymptotic
expansions. The inner solution is given by the multiple scales solution. This
solution involves an uneven stretching of the axial and radial coordinates to
allow for the slow axial variation of the jet mean flow. However, there is no
such preferred stretching required in the acoustic field. This implies that the
coordinates should be stretched equally. The resulting series solution of the
linearized equations of motion provides the outer solution. The matching
of the two series solutions takes place in an intermediate region where both
solutions can be used. For the jet case, the matching procedure is described
by Tam and Burton (1984) and complete details are given by Dahl (1994).
To lowest order, the pressure outside the jet is given by,

p (r, x, φ, t) =
∞

∫
−∞

g (k)H(1)n [iλ (k) r] exp [i (kx + nφ − ωt)]dk, (45)

where,

g (k) = 1

2π

∞

∫
−∞

Ao (εx) exp [iΘ (εx) /ε − ikx]dx. (46)

Ao (εx) is the slowly axially varying amplitude of the leading order term in
the inner solution, Θ (εx) /ε provides the corresponding rapid phase varia-
tion, k is an axial wavenumber and g (k) represents the Fourier transform of
the axial variation of the inner instability wave solution. n is the azimuthal

wavenumber, ω is the instability wave radian frequency, and H
(1)
n [ ] is the

Hankel function of the first kind and order n.

λ (k) = (k2 − ρ̄oM2
j ω

2)1/2 with 0 ≤ arg (λ) < π/2 (47)

where ρ̄o is the ambient density nondimensionalized by the jet exit mean
density. The pressure in the far field can be obtained by replacing the
Hankel function in Eqn. (45) by its asymptotic form for large argument,
introducing spherical polar coordinates centered on the jet exit with the
polar axis aligned with the jet axis, and evaluating the resulting integral
by the method of stationary phase (see Tam and Morris (1980)). The
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stationary point is given by

ks = ρ̄1/2o Mjω cos θ (48)

where θ is the polar angle. The mean square pressure in the far field is then
given by

D (θ) = R2 ∣p∣2R→∞ = 4 ∣g (ks)∣2 (49)

Thus, the far field directivity is determined by the magnitude of the compo-
nent of the instability wave’s axial wavenumber spectrum that has a sonic
phase velocity in the direction of the far field observer. This condition ap-
plies in general and must be met by any source spectrum for noise radiation
to occur.

Equation (49) is sufficiently simple that it provides an opportunity to
examine the effect of the instability wave’s phase velocity and amplitude
growth and decay on the far field directivity. Detailed calculations of the
amplitude and phase evolution of a single frequency instability (see Tam
and Burton (1984)) suggest that,

Ao (εx) exp [iΘ (εx) /ε] ∼ A exp [−α2 (x − xo)2] exp (iωx/c) (50)

where A and α control the amplitude and its growth and decay rate respec-
tively, xo is an arbitrary axial location for the wave’s maximum amplitude,
and c is the nondimensional instability wave phase velocity (assumed to be
constant). Then, from Eqn. (49) the far field directivity is given by,

D (θ) = A

πα2
exp [− ω2

2α2c2
(1 −Mc cos θ)2] , (51)

where, Mc = cUj/ao. If the instability wave’s phase velocity is supersonic
with respect to the ambient speed of sound ao, that is, Mc ≥ 1, the far field
directivity will have its peak amplitude at,

θpeak = cos−1 (1/Mc) . (52)

However, even if the instability wave travels at a subsonic phase velocity,
relative to the ambient speed of sound, the instability wave or wavepacket
can still radiate to the far field. In this case, the peak radiation direction
will occur at Θ = 0. The amplitude is controlled by the value of α: the
growth or decay factor of the wave amplitude. If α >> 1, D (θ) varies slowly
with Θ. This is the case where either the growth or decay of the instability
wave amplitude is very rapid. However, if α << 1, and the wave’s amplitude
variation is slow, the far field sound pressure level would fall very rapidly
with increasing θ. Tam and Morris (1980) showed that if the growth and



158 P. Morris and K. Viswanathan

decay of the instability wave is determined by linear theory, α is relatively
small and the decrease in noise radiation levels with decrease in (shear layer)
Mach number is very rapid. This suggests that the instability waves or large-
scale structures are very inefficient noise radiators at convectively subsonic
conditions. However, if the amplitude variation, most likely the decay of
the large-scale structures, is controlled by a nonlinear process, then a rapid
decay is possible and the radiation efficiency of the large scale structures
would be significant. This issue is discussed again in Section 3.3.

So far, only a single frequency instability wave has been considered.
At low to moderate Reynolds numbers, such as in the experiments by
McLaughlin et al. (1975), McLaughlin et al. (1977), a single frequency or
azimuthal mode number can be excited easily. At high Reynolds num-
bers the jet turbulence has a broadband spectrum. Tam and Chen (1979)
developed a stochastic model for the large-scale turbulent structures in a
two-dimensional shear layer in terms of a random superposition of the shear
layer instability waves. The spectrum and two-point statistics were shown
to be dominated by the most unstable mode. As described in Section 4.3
below, Tam (1987) used this stochastic description of the turbulence to
develop a prediction scheme for broadband shock-associated noise. Morris
et al. (1990) also used a broadband excitation of instability waves in a shear
layer to simulate the axial evolution of the shear layer growth rate and the
turbulence spectrum. This model was able to predict the absolute value of
the shear layer growth rate for a wide range of velocity ratios and Mach
numbers, without the need to specify any empirical model constants. These
ideas were extended to jets by Viswanathan and Morris (1992). All these
models demonstrate that the turbulence spectrum at the largest scales is
controlled by the large-scale structures. In addition, the models are weakly
nonlinear: that is, there is no significant interaction between different fre-
quency and azimuthal mode number components. Thus, the broadband
noise spectrum can be considered as a random superposition of the contri-
butions of individual frequency and azimuthal mode number components.
In closing this discussion it is important to note that the noise radiation by
the large-scale structures or instability waves is broadband, though its peak
will be at relatively low frequencies, so it is not readily distinguished from
the noise radiation by the fine-scale turbulence. However, the two mecha-
nisms do generate different spectral shapes in the far field. This is discussed
further in the next section.
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3.3 Similarity Spectra and the Two Mechanisms of Turbulent
Mixing Noise

Two mechanisms have been recognized in the generation of turbulent
mixing noise. The first is associated with the large-scale structures in the
jet. The second is related to the more random spatial and temporal behav-
ior of the smaller turbulent scales. The prediction of jet noise radiation by
the large scales can be determined within the framework of an instability
wave model as described in Section 3.2. In very high speed jets there is
a direct weakly nonlinear coupling between the flow disturbances created
by the large-scale structures and the acoustic field they generate. At lower
jet velocities, a strong nonlinear mechanism is likely to be needed for the
spatial and temporal behavior of the large-scale structures to generate the
wavenumbers necessary for noise radiation. However, at this time, no first
principles theory exists for noise radiation by large-scale structures in con-
vectively subsonic jets. On the other hand, the smaller-scale turbulence,
when viewed in terms of its wavenumber and frequency content, is able to
generate radiating components. But the energy-containing components of
the turbulence are not efficient noise radiators in convectively subsonic jets.
The theoretical description of this noise generation process is the one found
in almost all models based on the acoustic analogy, described in Section 3.1,
as well as the model proposed by Tam and Auriault (1999), to be described
in the next section.

Since the radiation by the large-scale structures involves a direct con-
nection between the jet turbulence and the acoustic field, this process does
not experience mean flow/acoustic interaction effects. On the other hand,
noise from fine-scale turbulence, being a more local process within the tur-
bulent jet plume, is subject to refraction as the generated sound propagates
through the sheared mean flow. Both mechanisms generate sound over a
broad range of frequencies, though the large-scale structure noise is strongest
at low frequencies and in directions close to the downstream jet axis.

In the mixing layer of a high Reynolds number turbulent jet, there is no
intrinsic length scale. Furthermore, molecular viscosity is not important,
except as an energy sink at the smallest scales. So high Reynolds number
jets exhibit a dynamic, inviscid behavior. Hence, there is also no intrinsic
time scale in this region of the jet. Experimental measurements have shown
that the mean flow as well as the turbulence statistics exhibit self-similarity.
Tam et al. (1996) contended that the noise from the fine scale turbulence is
also generated in the same region of the jet, where the flow properties are
similar. Based on these observations, they proposed that the noise spectra
of both the large and small scale noise components should also exhibit self-
similarity. They reasoned further that the absence of a time (or frequency)
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scale implied that the frequency f must be scaled by fL, the peak frequency
of the large turbulent structures noise spectrum or fF the peak frequency
of the fine-scale turbulence noise spectrum.

Tam et al. (1996) expressed the jet noise spectrum S as a sum of the
two independent noise components, in the following similarity form,

S = [AF ( f
fL

) +BG( f
fF

)](Dj

r
)2 (53)

F (f/fL) and G(f/fF ) are the similarity spectra associated with the large-
scale and fine-scale turbulence, respectively and r is the radial distance
to the observer from the jet exit. These spectrum functions have been
normalized such that F (1) = G(1) = 1. A and B, the amplitudes of the
two spectra, and the peak frequencies fL and fF are functions of the jet
operating conditions and direction of radiation.

Tam et al. (1996) also recast this equation in decibel form as,

10 log( S

p2ref
) = 10 log( A

p2ref
F ( f

fL
) + B

p2ref
G( f

fF
)) − 20 log( r

Dj
) (54)

where pref is the standard reference pressure (2× 10−5 N/m2) of the decibel
scale. If this hypothesis is true, then this equation would be valid for any
jet operating condition and radiation angle. At large aft angles where the
large-scale structure noise is dominant, and in the forward quadrant where
the fine scale structure is dominant, the above equation reduces to a simpler
form with the measured spectra characterized by either the large-scale or
fine-scale component, F or G.

Tam et al. (1996) investigated the jet noise database acquired with
round nozzles, operated at supersonic Mach numbers, at NASA Langley’s
Jet Noise Laboratory (JNL). This database consisted of narrow-band data
with a 122 Hz bandwidth that covered a Mach number range of 1.37 to 2.24
and a total temperature ratio range of 1.0 to 4.9. From a selected subset of
this database, they developed two empirical similarity spectrum functions
and determined that the empirical spectra fitted the measured spectra over
the entire range of Mach numbers and temperature ratios. Figure 16 shows
the shape of these two similarity spectra, 10 logF and 10 logG, plotted on a
decibel scale as a function of log (f/fpeak). The shapes of the two similarity
spectra are very different. The spectrum associated with the large-scale
structures (10 logF ) has a narrow peak and drops off linearly, while the
spectral shape associated with the fine-scale turbulence (10 logG) has a
broader peak and a more gradual roll off away from the peak. The correct
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Figure 16. Similarity spectra for the two components of turbulent mixing
noise. ———-, Large turbulent structure noise; — – —, fine-scale turbu-
lence noise. (Adapted from and inspired by Tam et al. (1996))

analytical expressions for the two master spectra can be found in Tam and
Zaman (2000).

Tam (1998a) also examined the supersonic noise data of Yamamoto
et al. (1984) from a variety of round nozzles: convergent, C-D, conver-
gent with a plug, C-D with a plug, and a 20-chute C-D suppressor. Good
agreement between the similarity spectra and measurements for both static
and wind-on conditions, was found. This study indicates that the turbu-
lent mixing noise of supersonic jets from not-too-complex nozzle geometries
consist of two components. In addition, the shapes of the noise spectra of
supersonic jets are very similar regardless of the nozzle geometry.

More recently, Tam and Zaman (2000) carried out some simple experi-
ments and measured noise from elliptic (AR=3.0) and rectangular (AR=3.0,
8.0) nozzles, a circular nozzle with 2 and 4 tabs, and a six-lobed mixer noz-
zle. All the test points were restricted to unheated jets at subsonic Mach
numbers. The results showed that, in general, turbulent mixing noise from
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non-circular subsonic jets can also be described by the two similarity com-
ponents. However, it should be borne in mind that the quality of this data
set is questionable. One interesting result of this study is that the noise field
of the lobed mixer was very different from those from the other simpler ge-
ometries. The lobed mixer, designed to enhance perimeter mixing with the
ambient fluid, divides the main jet into many thin sheets at the nozzle exit.
As such, flow from this geometry does not apparently support large-scale
structures comparable in scale to the equivalent circular diameter. The
test results indicated that the noise spectrum at large aft angles, where the
large-scale structure noise typically dominates, fitted the spectrum associ-
ated with fine-scale turbulence. Tam and Zaman (2000) concluded that the
nozzle geometry, by suppressing the development of large-scale structures,
effectively eliminated the noise associated with this component. In the ab-
sence of this component, the fine-scale noise component becomes dominant
at all radiation angles.

In summary, there is strong evidence that two self-similar spectra can
be used to characterize the radiated noise spectra for a wide range of jet
operating conditions. This applies to supersonic jets, from both circular
and other simple non-circular nozzle geometries as well as cold subsonic
jets. The spectra at lower angles to the jet inlet from heated subsonic
jets can also be characterized by the fine-scale similarity spectrum. At
angles close to the jet downstream axis, the spectral shape changes at higher
temperatures, as noted by Viswanathan (2004). An important point to
remember is that all these experimental data are restricted to single stream
nozzles. However, in closing this section, it should be noted that other
explanations for the different spectral shapes between the sideline and large
aft angles are available. For example, it has been argued that a combination
of convective amplification, Doppler frequency shift, and mean flow/acoustic
interaction effects, could result in the observed spectral changes with angle.
This hypothesis is the basis for the jet noise model developed by Morfey
and Szewczyk (1978) as well as the MGB and MGBK methods discussed
in Section 3.1. It remains to be determined whether one or other of these
descriptions of turbulent mixing noise generation, or a combination of the
two, are valid.

3.4 Noise from Fine-Scale Turbulence

Traditional theories of aerodynamic noise and the development of their
mathematical foundations were described in Section 3.1. These methods
require a detailed knowledge of turbulence, which is then used as input
for noise calculations. Therein lies the fundamental difficulty in these ap-
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proaches. Despite nearly a century of turbulence research, our understand-
ing of turbulence and the development of accurate models for the turbulence
statistics are still remote. Given this situation, it is perhaps not surprising
that most existing methods4, which make use of some model for the statis-
tical properties of the turbulence, fail to capture the spectral characteristics
of jet noise at all angles.

Tam (1995b) and Tam (1998b) have provided a different perspective
on jet noise. As described in Section 3.2, Tam and Morris, among others,
have had success in predicting the large-scale structure noise of circular and
non-circular jets using an instability wave model. Following the arguments
presented in the previous section that the turbulent mixing noise consists of
two components. Tam and Auriault (1999) proposed a model, not formu-
lated as an acoustic analogy, for the fine-scale noise component. Drawing an
analogy with the kinetic theory of gases, they reasoned that the fine-scale
turbulence exerts a pressure on its surroundings, which must be balanced
by the pressure and momentum flux of the surrounding fluid. Since this
pressure fluctuates in time, it will lead to compressions and rarefactions in
the fluid, resulting in acoustic disturbances. They argued that the time rate
of change of this pressure in the moving frame of the fluid would constitute
the source of the fine-scale turbulence noise. They also argued that the
propagation of the resulting sound waves through the jet flow can be de-
scribed by the Euler equations linearized about the jet mean flow. It should
be noted that, if the mean flow is taken to be parallel, the linearized Euler
equations are equivalent to the propagator provided by Lilley’s equation.
Tam and Auriault (1999) obtained the Green’s functions for the linearized
Euler equations in terms of their adjoint solutions. Details of the use of
the adjoint solution to calculate refraction effects in sheared mean flows are
given by Tam and Auriault (1998). The method is quite novel, though it
is not without difficulties. The cause of the difficulties is the presence of
Kelvin-Helmholtz (K-H) instabilities. Both the physical problem and its
adjoint have these convective instabilities. It is possible for these unstable
solutions to dominate over and obscure the part of the solution associated
with sound wave propagation. Tam and Auriault (1998) acknowledged their
presence and, in order to avoid these instabilities, they introduced damping
functions and damping regions to suppress them. Agarwal et al. (2004)
have shown how the instability can be suppressed if a frequency domain
formulation is used for the adjoint Green’s function.

Tam and Auriault (1999) showed how the pressure fluctuation outside
the jet could be related to the convolution of the adjoint pressure and the

4There are some exceptions to this statement. These cases are described in Section 6.1



164 P. Morris and K. Viswanathan

convective derivative of their source term. The formula for the pressure
fluctuation is given by,

p (x, t) =
∞

∫
−∞

⋅ ⋅ ⋅
∞

∫
−∞
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∞
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pa (x1,x, ω) exp [−iω (t − t1)]dω
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Dt1
dt1dx1

(55)
where pa (x1,x, ω) is the time harmonic adjoint pressure, qs = 2ρks/2, and
ks is the turbulent kinetic energy of the fine-scale turbulence per unit mass.
An expression for the autocorrelation of the intensity can then be obtained
and the far field spectral density is obtained using Eqn. (19).

As in noise prediction models based on the acoustic analogy, it is nec-
essary to specify a mathematical expression for the noise source space-time
correlation function. Tam and Auriault (1999) assumed that the source cor-
relation had the same characteristics as the measured two-point space-time
correlation of the fluctuating axial velocity in a jet. Morris and Farassat
(2002) have shown that there is no essential difference between models based
on the acoustic analogy and the predictive model developed by Tam and
Auriault (1999) 5. The key difference in the resulting prediction formulas
lies in the model used to describe the two-point space-time correlation of
the source function. Tam and Auriault (1999) showed that the spectral
density can be written,
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[1 + ω2τ2s (1 − ū
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(56)
where ū is the local mean velocity and θ is the polar angle relative to the
downstream jet axis. This formula contains three parameters associated
with the fine scale turbulence: a typical length scale 	s, a time scale τs,
and a measure of the intensity of the fluctuating kinetic energy A2q2, where
q = 2

3
ρ̄k, ρ̄ is the mean density and k is the turbulent kinetic energy per unit

mass. Tam and Auriault (1999) used the modified k − ε model of Thies
and Tam (1996) to obtain these three characteristic parameters. Since the
k − ε model also includes the contributions from the large-scale turbulence,
they proposed to extract the fine-scale turbulence contribution through the
use of constants with values of less than unity. That is,

	s = c� (k3/2/ε) , τs = cτ (k/ε) ∶ c� = 0.256, cτ = 0.233 (57)

5Though the modeling philosophy and details of the analysis are different.
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where ε is the viscous dissipation rate. The values of these constants, and
a third constant to set the absolute level, were determined by a best fit of
the predicted noise to measured data.

There are three major steps involved in this prediction method. First,
the jet mean flow field and the turbulence properties k and ε, are computed.
In the second step, the adjoint Green’s function is evaluated using the jet
mean flow field. Finally, the radiated noise is calculated by adding the noise
contributions from each volume element in the computational grid.

Tam and Auriault (1999) show good agreement of the predicted noise
spectra with measured data for cold jets at both subsonic and supersonic
Mach numbers: however, there are some discrepancies at the very high
frequencies. The ability of the model to predict the spectral variations with
radiation angle for a Mach 2.0 isothermal jet is also demonstrated. This
model also captures the effect of jet temperature on radiated noise. Finally,
they show good comparisons of the peak spectral levels for a wide range
of jet operating conditions. Tam et al. (2001) show additional test cases
for cold jets embedded in a freestream, with good predictive capability. It
should be emphasized that this theory makes absolute noise predictions;
intensity, directivity, as well as the spectral characteristics of the measured
data are reproduced. Of course this is a semi-empirical theory because of
the three new constants in addition to the empirical constants inherent in
the k − ε turbulence model. Importantly, it should be noted that Tam
and Auriault (1999) limit their predictions to angles close to 90○ to the jet
axis. They argue that noise at other angles, particularly in the peak noise
direction at small angles to the jet downstream axis, depend on noise from
the large-scale structures. So, fine-scale turbulence noise predictions would
not be relevant at other angles. Similar findings were obtained by Morris
and Farassat (2002) and Morris and Boluriaan (2004) using an acoustic
analogy based on the linearized Euler equations.

This model is not without critics. Ribner (2000) questions the validity
of the two similarity components and the approach adopted by Tam and
Auriault (1999). However, it should be noted that there is a vast amount of
experimental data that has established the presence of large-scale structures
and their Mach wave radiation. In addition, examination of the expression
for the spectral density, Eqn. (56), shows that the jet temperature does
not appear explicitly in the integrand. Fisher (38) pointed out that since
the dipole term that occurs in classical approaches based on the acoustic
analogy is not included, this model should not be able to predict the noise
from hot jets.

It should also be noted that there is no convective amplification of the
fine-scale turbulence noise in the model of Tam and Auriault (1999). This is
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not a result of the use of the fixed frame of reference description of the source
statistics. The result is independent of the reference frame for consistent
source descriptions. Morris et al. (2002) show that if a Gaussian model
is used to describe the source correlation in the Tam and Auriualt model,
convective amplification appears: but, with only three inverse powers of the
modified Doppler factor, rather than the five appearing in models based on
the acoustic analogy, such as given by Eqn. (31).

4 Broadband Shock-Associated Noise

The characteristics of shock-associated noise were described in Section 2.2
Harper-Bourne and Fisher (1974) proposed a simple model, consisting of
phased sources at regular intervals to represent the turbulence/shock cell
system interaction. They inferred that the interaction of the spatially co-
herent turbulence with the quasi-periodic point sources would be necessary
to produce the observed noise characteristics in the far field. Tam (1995a)
stressed that any shock noise model must incorporate these features and
points out that prior and later studies on sound generation by the interac-
tion of random turbulence with a single shock wave do not represent the
generation mechanism of broadband shock-associated noise. This section
describes the broadband shock-associated noise generation mechanism as
well as models to predict its radiated noise.

4.1 The Noise Generation Mechanism

It is now well established that broadband shock-associated noise is gen-
erated by the interaction of the large-scale structures that propagate down-
stream and the quasi-periodic shock cell structure. The point-source array
model proposed by Harper-Bourne and Fisher Harper-Bourne and Fisher
(1974) was successful in explaining many of the observed noise character-
istics. Tam and Tanna (1982) proposed an alternate theory based on the
observed properties of the large-scale turbulence structures, which possess
the important characteristics of being coherent and spatially quasi-periodic
over several jet diameters. Thus the large-scale structures are wave-like
when viewed as a whole. As these structures propagate downstream, they
interact with the shock cell system established in the jet plume of an im-
perfectly expanded supersonic jet. Tam and Tanna (1982) proposed a
simple analytical model to explain the noise generation mechanism. They
first expressed the pressure perturbation associated with the shock cells as
a summation of the waveguide modes. Such a first order shock solution
had been developed by Pack (1950), based on the work of Prandtl (1904).
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In a cylindrical polar coordinate system centered at the nozzle exit, any
perturbation associated with the shock cells can be expressed as,

us = ∞∑
n=1

Anφn (r) cos (knx) = 1

2

∞∑
n=1

Anφn (r) (eiknx + e−iknx) , (58)

where An, φn(r) and kn are the amplitude, the eigenfunction, and the axial
wavenumber of the n-th mode, respectively. The fundamental shock cell
spacing L1 = 2π/k1.

The large-scale turbulent structures can be represented by a linear su-
perposition of the normal wave modes of the flow with random amplitude
functions. For a frequency f = ω/2π, the corresponding disturbance quan-
tity can be expressed as

ut =R{B (x)ψ (r) exp [i (kx − ωt +mφ)]} , (59)

where B(x), ψ(r), k, and m are the amplitude, the eigenfunction or radial
distribution, the axial wavenumber, and the azimuthal mode number of the
traveling instability wave, respectively. The wavenumber and frequency are
related by uc = ω/k, where uc is the convection or phase velocity of the
large-scale turbulent structure or instability wave.

The perturbations created by a weak interaction between the instability
waves or large scale structures and the shock cell structure are given by
the product of the Eqns. (58) and (59). The expression for the shock cell
structure involves two summations corresponding to the different signs of
the exponent. Tam and Tanna (1982) noted that the phase velocities of the
terms associated with the shock cell component with the positive exponent,
given by ω/(k + kn), are less than those of the instability wave alone. They
are usually subsonic relative to the ambient speed of sound and do not
radiate. For the term involving the product with the component with the
negative exponent, the interaction quantity is given by

R{1
2
B (x)ψ (r)Anφn (r) exp [i(k − kn)x − iωt]} . (60)

This expression represents a traveling wave with wavenumber (k − kn) and
phase velocity equal to ω/(k − kn), if any amplitude variation B(x) is ig-
nored. If kn is slightly larger than k, then the phase velocity is negative.
This phase velocity could be supersonic relative to the ambient speed of
sound even if the convection velocity of the large-scale structures them-
selves, given by ω/k, is subsonic. These supersonic components would gen-
erate Mach wave radiation mainly in the upstream direction. The direction
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of radiation can be related to the phase velocity and ambient speed of sound
by

ao = ( ω

k − kn ) cos (π − φ) (61)

where φ is measured from the jet inlet direction. This relation can be
rewritten as an expression for the frequency as a function of angle as,

fn = uc
Ln (1 +Mc cosφ) , n = 1,2,3, . . . (62)

whereMc = uc/a is the convection Mach number of the large scale structures
relative to the ambient speed of sound and Ln is the wavelength of the n-
th Fourier mode of the shock cell structure. L1 is the fundamental shock
cell spacing. The peak frequency for a given angle of radiation would be
close to but not exactly that given by Eqn. (62). The axial variation of
the instability wave amplitude B(x), broadens the wavenumber spectrum,
as shown by Tam and Morris (1980) and discussed in Section 3.2. This
broadening produces a band of components with different supersonic phase
velocities at frequency f . These components radiate at different angles,
producing the observed directivity pattern at this frequency.

Since the shock cell system is composed of several waveguide modes,
with different wavelengths, the interaction effects of the different waveguide
modes are different. The principal direction of radiation and the spectral
content of the noise are different for each mode. Thus, the far field noise
that is made up of the superposition of the contributions from all the modes
should exhibit multiple peaks and directional dependencies. These are pre-
cisely the characteristics observed experimentally as shown in Figure 10.
Since the amplitude of the broadband shock noise is directly proportional
to the amplitude of the waveguide modes, and the amplitudes decrease
rapidly with mode number, the spectral levels associated with the higher
order modes are smaller than that of the fundamental. Even though multi-
ple peaks are possible, they may not be easily observed. This explains why
only a single dominant peak is often observed in the measured spectra.

Tam and Tanna (1982) also developed an expression for the intensity of
broadband shock associated noise for jets operated at slightly off-design con-
ditions ∣M2

j −M2
d ∣ ≤ 1, where Md and Mj are the design and fully-expanded

Mach numbers of the jet respectively. The intensity is given by,

Is ∝ (M2
j −M2

d )2 . (63)

This expression, which is valid for both convergent and C-D nozzles, was
shown to provide excellent agreement with measured data for both cold and
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hot jets, and for over- and under-expanded modes of operation for the C-D
nozzle. This expression is not valid when a strong shock, such as a Mach
disc, is present in the plume.

4.2 Models for the Shock Cell Structure

From the model described in the previous section, it is clear that an
accurate representation of the shock cell structure as well as the large scale
turbulence structures is necessary for the prediction of broadband shock
noise. When a supersonic jet is operated at an under-expanded condition,
pe/po > 1, where pe and po are the exit and ambient pressures respectively,
expansion waves occur at the nozzle exit so that the pressures inside and
outside the jet can come into balance. In the overexpanded mode, oblique
shock waves are set up in the plume. Tam and Tanna (1982) derived an
expression for the fully expanded jet diameter Dj , which is larger than the
physical nozzle diameter for the under-expanded case and smaller for the
over-expanded case. Pack (1950), following Prandtl (1904), first provided
a complete shock cell solution using a vortex sheet approximation to repre-
sent the jet shear layer. This solution is valid only for slightly imperfectly
expanded jets, and only close to the nozzle exit where the shear layer is
thin. However, experimental evidence shows that the region of importance
for shock noise generation is close to the end of the potential core, where the
shear layer is no longer thin. Further, the effect of turbulence in reducing the
shock strength and smoothing sharp discontinuities must be taken into ac-
count. Tam et al. (1985) extended Pack’s linear solution to account for the
slowly diverging mean flow using the method of multiple scales. The effect
of turbulence was simulated through the inclusion of eddy viscosity terms.
The most suitable value for the turbulent Reynolds number was determined
by comparison of predictions with experimental data. They evaluated the
contributions of the higher order terms to the non-parallel correction and
concluded that only the first order correction term was significant. Thus,
the simpler locally parallel assumption was shown to be adequate for the
calculation of the shock cell structure.

Tam et al. (1985) demonstrated very good agreement between their
predictions and measured data for a variety of jet operating conditions.
Both the axial and radial variations of the pressure field, in terms of shock
cell spacing and shock amplitude were well predicted for both over- and
under-expanded jets. Morris et al. (1989) extended Tam’s vortex sheet
shock cell model for jets of arbitrary geometry using a boundary element
technique. Examples for circular, elliptic and rectangular jets were given.
Bhat et al. (1990) included the effects of finite jet shear layer thickness and
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the dissipative effects of the fine-scale turbulence in a shock cell model for
elliptic jets. They also concluded that the fundamental waveguide mode
could be used as a good approximation for the shock spacing at the end of
the potential core and that the higher order modes only contributed to the
fine structure of the shock cells near the jet nozzle exit.

The linear shock cell model is valid only for weakly imperfectly expanded
jets, with ∣M2

j −M2
d ∣ ≤ 1. Extensive plume surveys carried out at NASA

Langley Research Center and reported by Norum and Seiner (1982a) indi-
cated that as the degree of mismatch between the design and fully expanded
Mach numbers increased, there was a dramatic change in the shock cell
structure. At highly off-design conditions, the strength of the first shock
cell increased tremendously while the rest of the shock cells remained reg-
ular and quasi-periodic. That is, downstream of the first shock, the shock
cell structure for the strongly off-design conditions resembled that of the
slightly imperfectly expanded jet. Based on this observation and the fact
that the first shock plays only a negligible role in noise generation as noted
by Seiner and Norum (1980), Tam (1990) suggested that the linear solu-
tion, suitably modified, could be used to model the shock cell structure of
even moderately imperfectly expanded jets. Tam (1990) also developed a
semi-empirical formula to estimate the initial amplitude of the linear shock
cells for this situation.

4.3 Broadband Shock-Associated Noise Prediction

A good representation of the large-scale turbulence structures is the
next required step in the development of predictions for broadband shock-
associated noise. Tam (1987) proposed a formal mathematical theory start-
ing from the equations of motion. Tam and Chen (1979), in their study
of plane mixing layers, had developed a stochastic model to describe the
large-scale turbulence structures. In this approach, the large structures are
represented by a superposition of the instability wave modes of the flow,
with the amplitudes of the instability waves represented by stochastic ran-
dom functions possessing similarity properties. In the initial mixing region
of the axisymmetric jet, self-similarity applies and hence the same argument
can be invoked. Here, only a general description of the stochastic theory is
provided. Complete details are given by Tam (1987) and Tam (1995a).

Tam (1987) decomposed the flow variables into four parts, consisting
of the time-averaged mean, perturbations associated with the turbulence
structures, perturbations associated with the shock cell structure and the
time-dependent disturbances that are generated as a consequence of the in-
teractions between the large structures and the quasi-periodic shock struc-
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tures. These interaction terms, which are responsible for shock noise gen-
eration, can be determined from the solution of a boundary value problem.
Tam developed expressions for the noise power spectrum, both for the near
and far fields. The complete formal solution requires extensive computa-
tions, which renders it impractical. So, Tam introduced a similarity source
model for the interaction terms and developed a semi-empirical theory with
four empirical constants. The values of the empirical constants were chosen
by comparison with the measurements of Norum and Seiner (1982a).

Tam (1987) showed good agreement with experiment for both the spec-
tral levels and directivity of broadband shock-associated noise for both
under- and over-expanded supersonic jets. A sample comparison at several
radiation angles was shown in Figure 10. There is good overall agreement,
with the predicted peak frequencies at all angles following the measured
trend. The calculated spectra also reproduce the reduction in the half-
width of the dominant peak, as the observer angle moves towards the jet
inlet. Tam also showed good comparisons of the near-field OASPL with
experiments. For practical airplane applications, such as the prediction of
the impinging shock noise on the fuselage, this capability is very valuable.

Tam (1990) extended his theory for slightly imperfectly expanded jets
to moderately imperfectly expanded Mach numbers. Based on the mea-
surements of Norum and Seiner (1982a), as shown in Fig. 11, Tam noted
that the dependence of broadband shock noise on jet Mach number for un-
derexpanded jets is quite different from that for overexpanded jets. The
expression for the intensity of shock-associated noise, given by the slightly

imperfectly expanded theory, Is ∝ (M2
j −M2

d )2, is strictly valid only for
small deviations of the fully expanded Mach number from the design Mach
number. To increase the range of applicability of the theory for a broader
Mach number range, for Mach numbers slightly less than that of local max-
imum point C to slightly greater than point B in Fig. 11, Tam (1990) made
modifications to the stochastic theory. Primarily, this approach involved the
proper prescription of the shock cell strength, since the turbulence spectrum
and the shock cell wavelength are not affected significantly by the degree
of imperfect expansion. He noted that the effect on spectral shape was
consequently unimportant and that the degree of imperfect expansion only
affected the spectral level. Suitable expressions for the broadband shock-
associated noise, for both cold and hot jets, were shown to provide very
good agreement with measured spectra for jets operated at strongly off-
design conditions.

Tam (1991) included the effects of flight on broadband shock-associated
noise, through additional considerations of changes in the noise source as
well as the effect of flight on the convection speed of the large scale struc-
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tures. He argued that due to the thick boundary layer on the nozzle external
surface, the shock cell strength would not be modified to a great extent and
hence could be approximated by that for the static case: especially for low
flight Mach numbers. Further, he assumed that the same similarity source
spectrum adopted for the static case, with account taken of the increased
shock-cell spacing and increased convection speed for the large-scale struc-
tures due to the co-flowing stream, would be valid. He developed modified
expressions for the noise power spectrum and peak frequency for the flight
case. This formulation provided the correct trends of a reduction in peak
frequency, a narrowing of the spectral peak, and the appearance of higher
order peaks with increasing flight speed. Tam (1992), through a transfor-
mation of the co-ordinate system, developed expressions for the calculation
of broadband shock noise as measured by a ground observer in a typical fly-
over noise test. This expression contains a term in the form of the familiar
Doppler shift, but without a high power of convective amplification factor.

Tam and Reddy (1996) adapted the stochastic noise theory for the
prediction of broadband shock noise from rectangular nozzles. The flow
and shock cell structure of supersonic rectangular jets is different from those
of round jets. As noted out by Tam (1988), for rectangular nozzles with
straight sidewalls, two different shock cell systems are set up in the flow.
One is the familiar system formed outside the nozzle and the other one
originates inside the nozzle, close to the nozzle throat. Because of the second
shock cell system, broadband shock noise is generated even at the so-called
design Mach number of the nozzle. So, an additional term was added to
the expression for the shock cell strength, to account for the second shock
cell system. Tam (1988) had already developed a vortex sheet model for
the description of the shock cell spacing from elliptic and rectangular jets.
This expression was modified empirically to account for the finite thickness
of the mixing layer. Furthermore, the convection velocity of the large-scale
structures was changed to be 0.55Uj , instead of the typical value of 0.7Uj

used for circular jets. With these modifications, good agreement with the
measurements of Ponton et al. (1986) was shown for rectangular nozzles
with different aspect ratios.

The primary difficulty with the stochastic broadband shock noise the-
ory is that it does not provide a connection to the flow. So, calculations
for different geometries requires a reformulation of the model parameters.
To overcome this difficulty, Morris and Miller (2010) developed a broad-
band shock-associated noise (BBSAN) model that uses input from RANS
CFD calculations to provide the properties of the shock cell structure and
the characteristic scales of the turbulence. The model is formulated as an
acoustic analogy based on the linearized Euler equations. The far field pres-
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sure is determined from a convolution of the equivalent source terms and
the vector Green’s function for the linearized Euler equations. In the first
version of the model the effects of mean flow refraction were neglected, since
BBSAN radiation occurs primarily towards smaller inlet angles or towards
the sideline. The evaluation of the spectral density depends on a model for
the shock cell structure and the second order two-point velocity correlation
of the turbulence. Note that it is the fourth order cross correlation of the
velocity that is needed for the source modeling of fine-scale turbulence noise
in the traditional acoustic analogy framework. In addition, the shock cell
structure is represented by its axial wavenumber spectrum. In this way the
model has much in common with Tam (1987).

Calculations were presented by Morris and Miller (2010) for circular and
rectangular jets using the same empirical parameters for all cases. Figure 17
shows a prediction for a circular convergent nozzle withMj = 1.5 and Tt/Ta
= 1.0. The observer is at an inlet angle of 60o at R/D = 100. The total
BBSAN prediction is shown with the black line and compares well with
measurements - especially in the peak BBSAN frequency range. Curves are
also shown for the contribution to the total spectrum from the turbulence
interaction with different peaks in the shock cell wavenumber spectrum.
These interactions give multiple smaller peaks at higher frequencies, which
are also seen in the measurements. The same parameters are used to pre-
dict the BBSAN for a rectangular jet with aspect ratio 1.75. This is shown
in Figure 18. The agreement is very good. Note how the mixing noise
overwhelms the BBSAN at small angles to the jet downstream axis in this
case. This model has been extended to dual stream jets. In this case,
the presence of the outer high speed fan stream does give rise to propaga-
tion effects. Miller and Morris (2011) consider dual stream jets operating
off-design and include adjoint solutions to the vector Green’s function to
account for refraction effects. It should be noted that Tam et al. (2009) has
extended his model for the BBSAN peak frequencies for a dual stream jet.

5 Jet Screech Tones

Experimental measurements have shown that screech tones are very sen-
sitive to upstream conditions, as discussed in Section 2.3. The amplitude
of the tone could be altered by as much as 10 dB, just by changing the
nozzle lip thickness. It is not surprising then, that the prediction of screech
amplitude is very difficult and no method for its prediction existed until
recently. Shen and Tam (1998), Shen and Tam (2000), Shen and Tam
(2002) have provided the first direct numerical simulations of axisymmetric
and three-dimensional screech tones. The simulations use a finite difference
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Figure 17. Total BBSAN prediction and the accompanying contributions
from selective integrations over contributing wavenumbers of the shock cell
structure wavenumber spectrum. Md = 1.0, Mj = 1.5, Tt/Ta = 1.0, R/D
= 100, inlet angle = 60o. (From Morris and Miller (2010)).

methodology with optimized algorithms used for both space and time dis-
cretizations. The effects of the fine-scale turbulence are included through
the use of a k − ε model. Comparisons of screech frequency, mode staging,
and amplitude are made with experiments. Good agreement is obtained for
all these phenomena. However, the calculations are computationally very
expensive, even though three-dimensional effects are included in a simplified
fashion. Thus, much work remains to be done in this area. On the other
hand, several formulas for the prediction of the screech frequency have been
developed over the years, based on different theoretical models.

5.1 Prediction of Screech Tone Frequency

The screech tone generation mechanism is very similar to the mechanism
of broadband shock noise generation. For the generation of tones, a single
excited instability wave is responsible, while for the generation of broadband
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Figure 18. Comparison of BBSAN predictions with experiments for an AR
= 1.75 rectangular jet. Md = 1.50, Mj = 1.70, Tt/Ta = 2.20, and R/De =
100, in the minor axis direction. (From Morris and Miller (2010)).

shock noise, a spectrum of instability waves is involved. Tam et al. (1986)
examined the relationship between the two shock noise components and
provided experimental and theoretical evidence that the two are indeed
related. From the shock noise data of Norum and Seiner (1982a), they
observed that the fundamental screech frequency was always at a lower value
than the peak frequency of broadband shock noise and that the half-width
of the broadband shock noise spectrum decreased rapidly as the observer
position moved towards the jet inlet. They also showed that only a narrow
band of frequencies are radiated in the upstream direction when acoustic
waves are generated by the interaction mechanism. Based on their analysis
and experimental observations, they suggested that the screech frequency
could be regarded as the limiting case of broadband shock noise as the
observer angle approaches the nozzle inlet, φ = 0o. The decrease in the
spectrum half-width and peak frequency, and the approach of the broadband
shock noise spectrum peak frequency to the screech frequency, is evident in
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Figure 10.
Tam et al. (1986) also noted that the feedback mechanism was not

similar to that for the generation of cavity tones or impingement tones since
there was no constraining geometric feature that would set the feedback path
length for a shock containing jet and thus set the frequency of the tone. They
proposed that the screech frequency is determined by the weakest link of the
feedback loop, which is the connection between the outer and inner parts
of the loop at the nozzle exit. This connection is responsible for triggering
the instability waves. Therefore, sound waves of sufficient strength must
reach the nozzle exit in order to excite an instability wave of large enough
amplitude, so as to maintain the feedback loop. However, the interaction
mechanism generates only a narrow band of frequencies with high intensity
that travel in the upstream direction. Hence if the feedback loop is to be
self-sustaining, then the fundamental screech frequency must be confined to
this upstream propagating narrow band of frequencies. The weakest link
hypothesis also explains why a good approximation for the screech frequency
is obtained by setting φ = 0 in the equation for the broadband shock noise
peak frequency; Eqn. (62).

In order to use the expression for the peak frequency of broadband shock
noise and screech, the value of the convection velocity uc and the shock cell
wave number kn are required. As in the interaction theory, the source of
broadband shock noise would occur near the axial location at which the
instability wave attains its maximum amplitude, consistent with the obser-
vations of Seiner and Yu (1984). Thus, the phase velocity and shock cell
wavenumber must be evaluated at the location where the amplitude of the
instability wave is maximum. This axial location can be determined if a
locally parallel assumption for the mean flow is used in a stability analy-
sis. Tam et al. (1986) describe an iterative procedure for the calculation of
the fundamental screech frequency. This methodology requires no empiri-
cal inputs and the screech frequencies are calculated from first principles.
However, this methodology involves extensive computations. In order to
develop a simple formula for the estimation of screech frequencies, they
adopted some simplifying assumptions. First, on the basis of experimental
observations, the convection velocity was assumed to be 70% of the fully
expanded jet velocity Uj . Secondly, the value of the lowest order shock cell
wave number, k1 was obtained using a vortex sheet model for the shear
layer. Additionally, to account for the finite thickness of the jet shear layer,
the shock cell spacing near the end of the potential core was estimated to be
20% less than that given by the vortex sheet model. Using values based on
these assumptions and the isentropic relationships, Tam et al. (1986) de-
veloped the following semi-empirical expression for the fundamental screech
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frequency,

fsDj

Uj
= 0.67 (M2

j − 1)−1/2 [1 + 0.7Mj (1 + γ − 1

2
M2

j )
−1/2 (Tt

To
)1/2]

−1
(64)

In this expression, Dj is the fully-expanded jet diameter, which, as shown
by Tam and Tanna (1982), is related to the nozzle geometric diameter D
by,

Dj

D
= [(1 + γ − 1

2
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j ) /(1 + γ − 1

2
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[ γ+1
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] (Md
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)
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(65)

This formula was shown to provide good agreement with measured screech
frequencies. Figure 19 from Tam et al. (1986) illustrates that Eqn. 64 pro-
vides a good match with data obtained by Rosfjord and Toms (1975) using
a convergent nozzle for both cold and heated jets. The agreement is better
at higher nozzle pressure ratios. In the development of Eqn. (64), a helical
instability wave mode was assumed to be dominant. It is known that for for
a convergent nozzle and Mj < 1.3 the toroidal instability mode is dominant.
Thus, it is perhaps not surprising that the agreement is not as good at the
lower Mach numbers. Tam (1988) extended these concepts to jets of non-
axisymmetric cross-sections and developed a formula for the calculation of
screech tones from rectangular jets. Again, he demonstrated good agree-
ment with measured frequencies. Morris et al. (1989) also used their shock
cell model for arbitrary geometry jets to predict the screech frequencies for
rectangular jets and obtained good agreement with measurements. Tam
(1995a) developed an expression that accounted for the effect of forward
flight on the peak frequency of radiation.

Recently, Panda (1998), Panda (1999) carried out detailed experiments
on the screech generation mechanism of choked axisymmetric jets. He found
a partial interference of the downstream-propagating instability waves and
the upstream-propagating acoustic waves along the jet boundary, result-
ing in a standing wave pattern. A corresponding length scale, identical to
that of the standing wavelength, was also observed in the jet shear layer.
The new length scale was found to be approximately 80% of the shock cell
spacing. This new length scale correlated the measured screech frequencies
well. Interestingly, Tam et al. (1986) selected the same modifications to
the shock cell length based on entirely different reasoning (the effects of
growth of the jet shear layer on the shock spacing) in the development of
the semi-empirical formula, Eqn. (64). However, it should be noted that the
complete analysis by Tam et al. (1986), in which the shock cell spacing is
determined by a multiple scales analysis, does not involve this assumption.



178 P. Morris and K. Viswanathan

Figure 19. Predictions of screech frequency for hot and cold jets from a
round convergent nozzle at different nozzle pressure ratios. Measurements
shown by symbols and predictions shown by lines. ♢, ———, Tt = 291 K;◯, — – —, Tt = 596 K; ◻, — — —, Tt = 803 K. (From Tam et al. (1986),
with permission)

5.2 Intensity and Directivity Prediction

The prediction of the screech tone intensity remains a challenging prob-
lem. The phenomenon of mode switching or staging adds an additional
layer of complication, which makes the development of a prediction method
even more intimidating. Numerical simulations, with detailed specification
of the entire upstream geometry, could provide a means for computing the
intensity of the screech tone for a particular geometry. Such simulations
using computational aeroacoustics methods have been attempted for simple
geometries. Shen and Tam (1998) carried out such a simulation for a low
supersonic Mach number jet for which the toroidal instability mode is dom-
inant. This axisymmetric numerical simulation provided good qualitative
details of the screech phenomenon. Features such as mode switching and
the principal radiation lobes of the fundamental and second harmonics were
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reproduced in this study. The predicted screech intensities were close to the
values measured on a large reflecting surface placed upstream of the nozzle
exit. Shen and Tam (2000) have also examined the effects of jet temper-
ature and nozzle-lip thickness on the screech tone intensity. The results of
their simulations were in agreement with the experimental observations.

It has been observed that the intensity of the screech tones decreases
with increasing jet temperature. The reasons for this observed change in
intensity appear to be understood. In the previous section it was shown
that, in the weakest link theory, the frequency of screech is determined by
the characteristics of the feedback acoustic waves. Tam et al. (1994) exam-
ined the role of the other two factors responsible for screech generation; that
is, the instability waves and the shock cell structure. They suggested that
the characteristics of the instability waves dictated the intensity and occur-
rence of screech tones. By carrying out a hydrodynamic stability analysis,
they examined the evolution of the instability waves for a variety of Mach
numbers and jet temperatures. This study revealed that the axisymmetric
or toroidal modes have the highest total amplification at lower supersonic
Mach numbers. Above a Mach number of approximately 1.3, the helical or
flapping mode becomes dominant. Since the feedback mechanism is driven
by the instability waves, which function as the energy source, the observed
switching or staging of screech mode from toroidal to flapping at about this
Mach number can be attributed to the change in the dominant instability
wave mode. Secondly, the Strouhal number of the most amplified instabil-
ity wave decreases with increases in jet temperature and jet Mach number.
In terms of frequency, even though the jet velocity increases as

√
Tt, the

decrease in Strouhal number is greater than 1/√Tt. Hence, the frequency
of the most amplified instability wave decreases with increasing tempera-
ture. The measured screech frequencies, on the other hand, increase as the
jet temperature increases. The implication is that the feedback mechanism
is not driven by the most amplified instability waves, thereby leading to a
reduction in tone intensity. At elevated temperatures, these tones may not
be easily observed above the background noise. Tam et al. (1994) summa-
rized that the observed reduction in tone intensity or the non-occurrence
of the tone is the direct result of the mismatch between the screech tone
frequencies and the band of the most amplified instability waves. As men-
tioned earlier, screech tones are not considered to be important in most
real engine applications. The non-symmetric geometric features of installed
engines and the reduction of screech intensity with increase in temperature,
provide an explanation of this observation.
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6 Recent Developments

Research in jet noise prediction is an ongoing activity. Significant progress
has been made in recent years in the direct simulation of the jet flow and
the noise it radiates. An example of such a computation is the work by Shur
et al. (2005). These authors used a hybrid RANS/LES method and then
propagated the near field solution to the far field using a permeable surface
Ffowcs Williams - Hawkings equation solution (see Ffowcs Williams and
Hawkings (1969), Brentner and Farassat (1998)). In this section, three
additional topics will be covered very briefly: new acoustic analogy predic-
tion methods; new views on the role of large-scale structures; and nonlinear
propagation.

6.1 New Acoustic Analogies

As noted in Section 3.1 little success has been achieved with the predic-
tion of the noise spectra in the peak radiation direction based on acoustic
analogies. Two recent approaches appear to have overcome some these ear-
lier problems. Goldstein and Leib (2008) and Karabasov et al. (2010)
have extended earlier approaches and achieved some success. However, it
should be noted that both studies were limited to convectively subsonic,
unheated jets. The work by Goldstein and Leib (2008) builds on the gener-
alized acoustic analogy developed by Goldstein (2003). Goldstein and Leib
(2008) rearranged the equations of continuity, momentum, and energy for
an ideal gas into a system of five formally linear equations. The equivalent
sources on the right hand sides of the system of equations have zero time
average. The problem is split into two parts: first, find the vector Green’s
function for the system of equations, and then model the statistical proper-
ties of the noise sources. Goldstein and Leib (2008) stress the importance
of accounting for the slow divergence of the jet flow in the Green’s func-
tion. They base their statistical model for the sources on their expected
symmetry properties as well as experimental measurements. Predictions
are presented for unheated jets with Mach numbers 0.5, 0.9 and 1.4 and the
comparisons with measurements are very encouraging. Karabasov et al.
(2010) take a slightly different approach. They also used the generalized
acoustic analogy of Goldstein (2003), but they calculate the vector Green’s
function numerically using an adjoint approach (see Tam (1998a)). In
addition, they use a companion Large Eddy Simulation (LES) to provide
source statistics, including the general shape of the two-point space-time
cross correlations as well as the relative amplitude of the different com-
ponents. However, they choose to use very simple Gaussian functions to
model the correlations. They present results for an unheated jet with Mach
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number 0.75 and compare with noise measurements. Again, the agreement
is quite good. The authors argue that the important effects to be included
are; the divergence of the mean flow, the use of non-isotropic source models,
the inclusion of the radial variation of the Green’s function, and the use of
the same observer location as in the experiments. A careful examination
of these two works indicates that different assumptions are made in order
to achieve similar agreement with measurements. The two studies do agree
on the importance of including the mean flow divergence in the propaga-
tion calculation and the need for an anisotropic source model. The other
differences have yet to be reconciled.

6.2 The Role of Large Scale Structures in Jet Noise

In Section 3.2 the role of large scale turbulent structures and their model-
ing as instability waves was discussed. In addition, in Section 3.3 the ability
of two similarity spectra to successfully collapse the measured noise spectra
at all angles was described. This is only a part of a growing body of exper-
imental evidence that there are two noise generation mechanisms - though
this remains a very contentious issue. At issue is the role played by the large
scale turbulent structures in subsonic or convectively subsonic jets. Excel-
lent discussions of recent experimental evidence are given by Tam et al.
(2008) and Viswanathan (2009). In particular it is noted that the noise
characteristics at small angles to the jet downstream axis, including the
peak noise directions, and that at larger angles to the downstream axis are
very different. In addition, these differences are observed, whether the flow
is subsonic or supersonic. For example, Figure 20 from Tam et al. (2008)
shows the variation of the OASPL with inlet angle. The levels are deter-
mined by fitting the FSS and LSS spectral shapes to the measured data. So
at some angles, for example 120-140 degrees, both spectra are used to match
the data. The FSS levels vary very slowly with angle, whereas the LSS lev-
els increase rapidly with increase in inlet angle. Note that the effects are
similar whether the flow is unheated or heated, except that in the heated
case (higher exit velocity) the LSS dominates at more angles. A similar
trend is observed in terms of the peak Strouhal number. This is shown in
Figure 21 from Tam et al. (2008). The peak Strouhal number for the FSS
noise increases slowly with increase in inlet angle, whereas the LSS peak
Strouhal number decreases rapidly. Additional evidence of the differences
associated with noise radiation in the two regions comes in the form of the
correlations between fluctuations of velocity and density in the jet and the
radiated pressure. For example, Figure 22 from Tam et al. (2008) shows
the directivity of the normalized correlation between density fluctuations in
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Figure 20. Variation of OASPL with inlet angle. (a) Tt/Ta = 1.0, (b)
Tt/Ta =2.2. (From Tam et al. (2008), with permission).

the jet and the far field pressure as a function of jet operating conditions
and inlet angle. Again there is a clear demarcation of two regions: one of
very low correlation at smaller inlet angles and one of very high correlation
at large inlet angles. Tam et al. (2008) argue that the flow measurement,
using Rayleigh scattering, is for a very small probe volume. For small or
fine scale turbulent blobs, the probe will only sense the contribution from
a single blob and so the correlation would be expected to be very low as
many blobs would contribute to the total radiated noise. This explains the
very low correlations at smaller inlet angles where the fine-scale mechanism
dominates. However, though a single point measurement, the flow probe
signal would be representative of larger turbulent structures that are coher-
ent over a larger volume of the turbulence. The strong correlations at the
larger inlet angles are consistent with the noise at these angles being radi-
ated by these large scale structures. Also, though the correlation levels do
decrease with at lower Mach numbers, there is still a significant correlation
in the subsonic case.

As noted in Section 3.2, the large scale structures can be represented
by instability waves or wave packets. There have been several recent stud-
ies that have used this concept. For example, Reba et al. (2010) devel-
oped a wavepacket model and determined the parameters needed to define
the wavepacket (amplitude, phase velocity, and growth and decay rates)
from microphone measurements on a conical cage array of near field micro-
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Figure 21. ; Variation of peak Strouhal number with inlet angle. (a) Mj

=0.6; ●, ▽, Tt/Ta =1.0, ∎, ◯, Tt/Ta =1.8, ▴, △, Tt/Ta =2.7. (b)Mj =1.0; ●,▽, Tt/Ta =1.0, ∎, ◯, Tt/Ta =2.2, ▴, △, Tt/Ta =3.2. (From Tam et al. (2008),
with permission).

phones. They then projected the noise associated with the wavepacket to
the far field and compared with measurements. The measurements show
good agreement at large inlet angles in the peak noise direction. Mor-
ris (2009) examined large-scale mixing noise generation. He used the LSS
spectrum to extract only the large-scale mixing noise from measured far
field spectra for both subsonic and supersonic jets. From the directivities
for different Strouhal numbers he was able to project back to a cylindrical
surface around the jet and determine the axial wavenumber spectrum of the
pressure fluctuations on the surface. He showed that the shape of the spec-
trum for all the jet operating conditions was consistent with that produced
by wavepackets. However, only the lowest wavenumbers (the ones that give
a sonic phase velocity to a far field observer) were able to radiate in the
subsonic cases. This provides further evidence that the noise radiation in
the peak noise direction is controlled by the large-scale turbulent structures.

6.3 Nonlinear Propagation

The noise generated by high performance military aircraft engines is so
intense that the propagation of the sound to the far field observer is no longer
linear. The earliest evidence of nonlinearity in jet noise was provided by the
Olympus engines for the Concorde. Ffowcs Williams et al. (1975) observed
a phenomenon they called “crackle.” These were intermittent “intense spas-
modic short-duration compressive elements of the wave form.” Though these
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Figure 22. Directivity of normalized ⟨ρ′, p′⟩max correlation. Laser probe
locations are at r/D = 0, x/D = 12 (Mach 1.8), 10 (Mach 1.4 and Mach
0.95), ●, M =1.8; ∎, M =1.4; ▴, M =0.95. (From Tam et al. (2008), with
permission).

are not easily characterized by a change in the spectral shape, the skewness
increases and the sound is very annoying. Ffowcs Williams et al. (1975) ar-
gued that the source of this change in the signal was associated with wave
steepening at the source rather than from nonlinear propagation. However,
though the character of the time history is set at the source, nonlinear prop-
agation occurs and does maintain the skewed and annoying nature of the
sound into far field.

Methods to predict the nonlinear propagation of jet noise have used the
Burgers equation (see Morfey and Howell (1981), Gee (2005), Saxena et al.
(2009) and Lee et al. (2010)) and the one-dimensional Navier-Stokes equa-
tions (see Wochner et al. (2005)). Morfey and Howell (1981) introduced a
nonlinearity parameter that indicates those regions of the spectrum where
nonlinear effects are either increasing or decreasing the intensity. However,
their solution was based on a knowledge of the spectrum of the noise in the
near field rather than the time history, so the propagation results were not
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Figure 23. Comparison of spectra from sideline microphones at different
locations normalized to a fixed distance; M =1.72, and Tt/Ta =2.7. Gray:
25-ft polar, and black: 15-ft constant sideline. (From Viswanathan (2009)).

satisfactory. The more recent studies make use of the measured time history
and then propagate this wave form, using solutions to the Burgers equation,
in the same way that sonic boom propagation is calculated. The algorithm
used by Gee (2005) is based on the “Anderson algorithm” (see Anderson
(1974)). The nonlinear steepening is calculated in the time domain using the
“Earnshaw” solution ( Earnshaw (1860)) and the atmospheric absorption
effects are calculated in the frequency domain. The calculations by Saxena
et al. (2009) and Lee et al. (2010) determine both the nonlinear and atmo-
spheric absorption effects in the frequency domain. This has computational
and accuracy advantages as shown by Lee et al. (2010). The effects of non-
linear propagation are best seen when the experimental data are represented
in lossless or standard day form and propagated linearly to a common ob-
server location. A good example is shown in Figure 23 from Viswanathan
et al. (2009). Here, measurements in a jet withM =1.72 and Tt/Ta =2.7 are
shown for a microphone distances of 15 and 25 feet. If linear propagation
were present at all frequencies then the curves would fall on top of each
other (assuming that the measurements are in the far field). However, it



186 P. Morris and K. Viswanathan

is clear that at high frequencies the curves don’t collapse. This is evidence
on the presence of nonlinear propagation. Care should be taken not to as-
sume that the spectra shown are “as-measured” spectra. The lift at high
frequencies is purely because the data have been made lossless assuming
linear propagation. The “as-measured” spectra would still show a roll-off
at high frequencies, but it would be less rapid if nonlinear propagation were
present.
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1 Introduction

Aeroacoustic analysis is concerned with the problem of sound source mech-
anism identification. Let us consider for a moment what we mean by this,
because, depending on the context, the same terminology can be interpreted
differently. Two different contexts for the analysis of an aeroacoustic sys-
tem, or indeed a fluid flow system in general, are: (1) the kinematic context;
and, (2) the dynamic context.

When we are interested in kinematics, we are concerned with description
of the space-time structure of a fluid flow, and perhaps with phenomeno-
logical explanations vis-à-vis our observation of that structure: this vortical
structure interacted with that one to produce this or that result. Such kine-
matic descriptions will very often be with regard to some observable; in
aeroacoustics that observable is the radiated sound field: this vortical struc-
ture interacted with that one to produce this or that property of the sound
field.

Aeroacoustic theory was constructed from such a kinematic standpoint.
Lighthill (1952) states on the second page of his seminal paper that he
wishes to provide “...a general procedure for estimating the intensity of the
sound produced in terms of the details of the fluid flow...”. He makes it clear
that the search for sound source mechanisms, as he intends it, “is concerned
with uncovering the mechanism of conversion of energy between...the kinetic
energy of fluctuating shearing motions and the acoustic energy of fluctuating
longitudinal motions.”. The “details of the fluid flow”, the “fluctuating
shearing motions”, are considered as given.

However, if we are to consider more broadly the problem of source mech-
anism identification, we realise that, in order to be able to speak clearly
about source mechanisms we need to be able to speak clearly about fluid
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dynamics mechanisms, and it is difficult to do so without placing ourselves
in the context of dynamics: we would like to be able to explain why this
vortical structure interacted with that one to produce this or that property of
the sound field ; i.e. we wish to discern the dynamic law that underpins the
observed interactions, where sound production is concerned. Of course there
is one very simple, correct, but not terribly useful, reply to such an inquiry:
the Navier-Stokes equations constitute the underlying dynamic law, both of
the “fluctuating shearing motions” of the turbulence and the “fluctuating
longitudinal motions” of the sound field. But for high Reynolds number
turbulence this law, and the space-time flow structure that it engenders,
are—from the point of view of perspicacious phenomenological description,
flow-state prediction, or design guidance—invariably too complex to be use-
ful; we are thus forced to seek simplified models.

Lighthill (1952) provided us with a tool that allows the “fluctuating
longitudinal motions” of the sound field to be modelled more simply, and
then connected to the “fluctuating shearing motions” of the turbulence; but
the same tool does not provide an analogous clarification with regard to how
the latter should be modelled. His theory and its descendants are probably
best thought of as means by which the connection between the two kinds
of motion can be modelled; and by virtue of this connection-model, some
insight can be provided regarding the kinematic structure of the underlying
flow motions. However, these theories cannot inform with regard to the
dynamic law of the “fluctuating shearing motions” that underpin sound
radiation.

These lectures are concerned with the exposition of an analysis method-
ology which, while it uses aeroacoustic theory as a central tool, attempts
to take the problem of source mechanism identification beyond the kine-
matic limits imposed by that theory. The methodology, whose objective
is source mechanism identification on both kinematic and dynamic levels
(implicit is assumption is that the Navier-Stokes dynamics can be mod-
elled in a simplified manner, that simplification being specifically tailored
with respect to the acoustic observable), is largely an exercise in system re-
duction, and relies both on theoretical considerations and signal-processing
tools. The document has therefore been organised as follows. In the next
section, §2, an overview of aeroacoustic theory is provided; we focus on the
earliest (Lighthill (1952)) and most recent theoretical developments (Gold-
stein (2003), Goldstein (2005), Sinayoko et al. (2011)). This is followed by
a discussion, in section §3, of the source modelling problem, the bulk of the
attention being focused on ‘coherent structures’. It is in this section that
the analysis methodology evoked above is outlined. Example implementa-
tions of the methodology are presented in section §4, where two specific case
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studies are considered. The various signal processing tools used to support
the analysis methodology, and which are implemented in section §4 without
detailed explanation, form the basis of section §5. Finally, a brief outline of
two reduced-order dynamical modelling approaches is given in section §6.
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2 Aeroacoustic theory

In this section we provide a brief presentation of the basic mathematical
constructs necessary for an understanding of aeroacoustic theory: the wave
equation and its integral solution by means of the free-space Green’s func-
tion. This is followed by a detailed exposition of the theory of Lighthill
(1952), where its dimensional, statistical and instantaneous representations
are used to illustrate some aspects of the relationship between turbulence
and sound. The first theoretical evolutions of Lighthill’s theory, due to
Phillips (1960) and Lilley (1974), are then evoked, more briefly, followed by
a presentation of the most recent theoretical developments, due to Gold-
stein (2003) and Goldstein (2005), and which amount to a generalisation
of the earlier acoustic analogies. Our exposition of Goldstein’s generalised
theory follows the slightly modified formulation proposed by Sinayoko et al.
(2011), and we use a model problem computed by these authors in order to
illustrate some of the essential aspects of aeroacoustic theory as it pertains
to subsonic jets.

2.1 The wave equation

The motion of a viscous, compressible, heat-conducting fluid continuum
is governed by the equations of mass, momentum and energy conservation,
and the equation of state, which are, respectively:

∂ρ

∂t
+∇ · (ρu) = m (1)

∂ρu

∂t
+∇ · ρuu+∇ · P = f (2)

ρT
(∂s
∂t

+ u · ∇s) = −∇ · q + τ : ∇u (3)

dp = c2dρ+
(∂p
∂s

)
ρ
ds, (4)

where
P = pI − τ (5)

represents fluid stresses associated with the thermodynamic pressure, p,
and the viscous stresses, τ ; q is the heat flux due to conduction, given by
Fourier’s law, q = −K∇T ; T is the temperature, s is the entropy, and

c2 =
(∂p
∂ρ

)
s
. (6)

Taken together, these equations constitute a closed system of differential
equations that governs all classes of motion of a fluid continuum. The
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mechanisms that underpin the generation of propagative acoustic energy
are contained within this system. However, due to the non-linear nature of
the equations, general solutions are not available; and, furthermore, in the
general case it is not clear how to: (1) classify motions as turbulent, thermal
and acoustic—this classification being possible only in certain limited cases,
as shown by Chu and Kovásznay (1958); and, (2) identify clear relationships
of cause and effect between different regions of a fluid in motion, or between
different kinds of fluctuation of that motion (between velocity and pressure
for example).

In acoustics, the situation is considerably simplified, as we focus on one
particular class of fluid motion: that which is characterised by small am-
plitude fluctuations of a potential nature. In this case it is legitimate to
linearise the equations of motion, which reduce, in the case of a quiescent
fluid medium, and in the absence of external sources of mass or momentum,
to

∂ρ′

∂t
+ ρo∇ · u′ = 0 (7)

ρo
∂u′

∂t
+∇p′ = 0 (8)

∂s′

∂t
= 0 (9)

p′ = c2oρ
′. (10)

The velocity perturbation, u′, can be eliminated by subtracting the time
derivative of the mass conservation equation from the divergence of the
momentum conservation equation, giving:

∂2ρ′

∂t2
−Δp′ = 0. (11)

p′ and/or ρ′ can then be eliminated, by means of the constitutive equation
p′ = c2oρ

′, to give wave equations in either the density or the pressure:

∂2p′

∂t2
− c2oΔp

′ = 0

∂2ρ′

∂t2
− c2oΔρ

′ = 0. (12)

2.2 Green’s functions

So, what do these wave equations represent? Well, simply stated: they
describe propagative wave-like fluctuations of the density or pressure in a
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quiescent fluid medium1. Such wave-like motion will only be sustained by
the medium for space-time scales that satisfy the balance expressed by the
equation. A Fourier transform of the wave equation can help illustrate this:

ω2p′ = c2o|κ|2p′,
ωp′ = co|κ|p′. (13)

This is known as the dispersion relation for the wave equation, and what
it states is that for propagation to be supported in the quiescent, homoge-
neous fluid medium considered, the time scales of the motion, ω−1, must be
matched with the space scales, κ−1, by the speed of sound, co. When such
a system is excited by a disturbance that does not satisfy this criterion, the
associated motions will not be supported as a propagating wave, and will
tend, rather, to evanescence (very rapid decay). This concept is central to
understanding the mechanisms by which a given source structure 2 gener-
ates a propagative energy flux, and these mechanisms can be most clearly
seen by looking at integral solutions of the wave equation, which can be
obtained by means of an appropriate Green’s function.

The Green’s function, G(x, t|y, τ), describes the wave-like response (as
described by the wave equation) of the quiescent fluid medium to an im-
pulse localised at x = y and at time t = τ . Where the free-field Green’s
function is concerned, a single clap of your hands in a large open space is
an approximate equivalent of this. Mathematically, this can be expressed
as:

∂2G

∂t2
− c2oΔG = δ(x− y)δ(t− τ). (14)

Once we have found the Green’s function we are equipped with a filter which,
when convolved with a given source, will extract the space-time scales of
the source structure that match the balance expressed by the propagation

operator (∂
2p′

∂t2 = c2oΔp
′), and which are therefore capable of producing a

propagating wave. For example, consider the physical problem described
by

∂2p′

∂t2
− c2oΔp

′ = q(x, t), (15)

where q(x, t) is some (known) source (this could be an unsteady, spatially-
distributed force field, or an unsteady, spatially-distributed, addition of

1In fact the wave equation can, alternatively, be expressed in terms of a velocity poten-

tial, φ, from which density (ρ = 1
c2o

∂φ
∂t

), pressure (p = ∂φ
∂t

) and velocity (u = �∇φ) can

all be derived.
2In what follows we will see that the flow equations can be manipulated such that this

source represents the turbulent jet.
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mass), that drives sound waves in a quiescent medium. Multiplying equa-
tion 14 by p′, equation 15 by G, integrating in both space and time (ne-
glecting the effect of initial conditions), and subtracting the former from
the latter, we get, provided there are no solid boundaries, and after a little
manipulation

p′(x, t) =
∫ t

to

∫
V

q(y, τ)G(x, t|y, τ)dydτ. (16)

The right hand side of this equation describes the filtering of q(y, τ) by
G(x, t|y, τ): G(x, t|y, τ) allows us to extract, from the heart of what might
be an extremely complex, and largely (acoustically) ineffective, source struc-
ture, q(y, τ), only those scales that are acoustically-matched.

This is the key to analysing and understanding aeroacoustic systems,
experimentally, numerically or theoretically. It is necessary to identify the
space-time scales (or flow behaviour that leads to the generation of such
scales) that are actually efficient in the generation of sound waves—the vast
majority are not. In the context of Lighthill’s acoustic analogy the problem
is exactly that described here, insofar as the wave equation used has the
same form as 15. For the more sophisticated acoustic analogies, while the
wave equations and source descriptions change, conceptually we are dealing
with the same scenario: the dispersion-relations and Green’s functions will
change, and this will modify the criterion by which we identify the pertinent
space-time scales of the ‘source’ quantity (which it is then necessary to relate
to the turbulence characteristics of the jet). Further discussion on this point
is provided in the next section.

2.3 Lighthill’s acoustic analogy

Lighthill’s acoustic analogy is a peculiar kind of object: it amounts to a
model representation of the jet-noise problem, but one which is described
by an exact fluid dynamics equation (nothing less than the Navier-Stokes
equations is stated). This dual quality constitutes both the elegance of,
and the crux of the interpretational difficulties associated with, the acoustic
analogy formulations in general.

Lighthill sought to rearrange the equations of mass and momentum
conservation—taken in their full, non-linear form—such that the wave op-
erator would appear. In order to do so, he followed the same basic steps
used in the derivation of the wave equation, but without performing the
linearisation. Taking the time derivative of the mass conservation equation,
the divergence of the momentum conservation equation, and combined the
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two gives, after a little manipulation, 3

∂2ρ′

∂t2
− c2oΔρ

′ = ∇ · ∇ · (ρuu− τ + (p′ − c2oρ
′)I). (17)

In terms of p′, the equation becomes

1

c20

∂2p′

∂t2
−Δp′ = ∇ · ∇ · (ρuu− τ ) +

1

c20

∂2

∂t2
(p′ − c2oρ

′). (18)

These inhomogeneous wave equations can be interpreted in terms of a source
term (the right hand side) that drives density or pressure fluctuations, as
described by the left hand side.

We can now examine integral solutions to Lighthill’s equation, and it is
at this point that we make a first connection between radiated sound energy
and the flow characteristics of a turbulent jet.

These solutions can be considered on three levels: that of (1) elementary
dimensional analysis; (2) time-averaged (second and higher order) statistics;
and, (3) space-time analysis. The third of these gives us the most direct
insight, in so far as it allows a local (in space and time) grasp of the sound
production mechanisms; it is most useful for highly organised flows, and/or
for understanding the organised component of high Reynolds number flows
(‘coherent structures’). In the second approach, detailed understanding is
hampered by time-averaging, and we are obliged to consider the connection
between the radiated sound power and the jet flow via the second and
higher order statistical moments of the unsteady flow; this kind of approach
is most useful for the more random components of the flow unsteadiness.
The first of the approaches is the most elementary of the three, where very
little physical insight is provided regarding the underlying mechanisms. In
section §3 we will revisit these representations when we discuss the role
played by coherent structures in the generation of sound.

Integral solutions to equations 17 and 18 can be obtained using the
Green’s function formalism outlined earlier. Henceforth we will change to
tensor notation, we will only consider the equation expressed in terms of p′,
and we will consider the simplified source quantity

∂2ρuiuj
∂yi∂yj

(y, t) : (19)

the term associated with viscous effects τ can be neglected for most flows of
interest, and the third term on the right hand side of equation 18 is believed

3See Lighthill (1952) for full details.
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to correspond to the effect of temperature fluctuations (this is often referred
to as the entropy source term). This is probably an oversimplification, as in
high Mach number flows there is evidence to suggest that the first and third
terms on the right hand side of equation 18 are correlated (cf. Bodony and
Lele (2005)). However, as our objective in this lecture is to make as clear
as possible, and in as simple a manner as possible, the essential workings
of acoustic analogies, we will continue to use this simplified scenario. Once
the reasoning has been clearly understood in terms of the simplified source
term, it is conceptually straightforward to extend to more complex source
terms.

The free-field Green’s function is Go = δ
4π|x−y| , and so solution to

Lighthill’s equation can be written as follows:

p′(x, t) =
∫ ∞

∞

∫
Vy

∂2ρuiuj
∂yi∂yj

(y, t)δ
(
t− τ − |x− y|

co

) dVydτ

4π|x− y|

=

∫
Vy

∂2ρuiuj
∂yi∂yj

(
y, t− |x− y|

co

) dVy
4π|x− y| . (20)

From equation 20 we can proceed in two ways: (1) we can do the most basic
kind of dimensional analysis, which will lead to the simplest expressions of
the relationship between radiated sound power and flow characteristics; or,
(2) we can take things from the statistical standpoint. We will here do both.

First, however, we introduce two simplifications that are frequently used.
The first exploits the reciprocity property of the Green’s function, which
means that source and observer can be interchanged. This allows the double
divergence in equation 20, which is in terms of the source coordinates y, to
be expressed in terms of the observer coordinates, x, at which point it can
be taken outside the volume integral:

p′(x, t) =
1

4π

∂2

∂xi∂xj

∫
Vy

ρuiuj

(
y, t− |x− y|

co

) dVy
|x− y| . (21)

Now that differentiation is being performed in the observer frame (assumed
to be in the farfield), where fluctuations are entirely acoustic, the spatial
derivatives are related to temporal derivatives through

∂

∂xi
= − xi

|x|
1

co

∂

∂t
, (22)

because we are dealing with a non-dispersive wavefield: if you want to
know the spatial gradient of the waveform, rather than walk along the wave
and measuring the slope as you go, you can simply stay put, letting the
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wavefield pass you by, at the speed of sound; by then measuring its temporal
rate of change, knowing it’s propagation speed and considering that the
sound waves are locally plane, you immediately have access to the spatial
derivative. The solution can thus be written, because we are in the farfield
(|x− y| ≈ |x|), in the following simplified form:

p′(x, t) =
xixj

4πc2o|x|3
∂2

∂t2

∫
Vy

ρuiuj

(
y, t− |x|

co

)
dVy. (23)

Dimensional analysis Let us consider the problem of the subsonic propul-
sive jet, which is the system that Lighthill’s analogy was first used to as-
sess. If we consider that a characteristic eddy dimension in the turbulent
jet plume is of the order of the jet diameter, D, which corresponds, ap-
proximately, to the vorticity thickness of the mixing-layer at the end of the
potential core of a subsonic jet4, a characteristic frequency is f = Uo/D,
where Uo is the exit velocity of the jet, and Df/co = Uo/co =M , where M
is the Mach number (a measure of compressibility). This means that

p′ ∼ f2

c2o
ρoU

2
o

D3

|x| (24)

∼ ρoU
2
o

f2

c2o

M2c2o
f2

D

|x| (25)

∼ ρoU
2
oM

2 D

|x| , (26)

and so the acoustic intensity, I = 〈p′2〉
ρoco

, should scale as

I =∼ ρU3
oM

5
( D
|x|
)2

∼ U8
o . (27)

This very simple analysis immediately shows the very strong dependence of
the sound power radiated on the velocity and Mach number of a jet. This
was the first major result of Lighthill’s theory. In terms of jet noise control,
if we are to judge an analysis in terms of the impact it has had on the design
of the application, it remains the most significant result to date: it was clear
from this analysis that the jet velocity and Mach number would need to be
reduced, and that moderate reductions could lead to significant reductions

4This region is now known to be one of the most important in terms of sound production,

but was not known at the time of Lighthill’s first estimates of the sound power radiated

by a flow
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in sound power. In order to do so, without losing thrust, larger diameter
jets would be required: the introduction, and subsequent optimisation of,
the (low and high) by-pass jet engine led, between 1950 and 2000, to a 20dB
reduction in the sound power radiated by jets exhausts at take-off.

Statistical analysis We now consider the second way in which it is pos-
sible to relate radiated sound power to flow/source characteristics. Us-
ing equation 23, expressions for the autocorrelation of the farfield pressure
(which is related to the power spectrum of the pressure by a Fourier trans-
form) can be obtained; this can then be related to the turbulence through
the term ρuiuj . Assuming constant density in the source term (ρ = ρo),
the autocorrelation function of the farfield pressure fluctuation is given by

C(x, τ) = 〈p′(x, t)p′(x, t+ τ)〉

= ρo
xixjxkxl
16π2c4o|x|6

∫
Vy′′

∫
Vy′

〈∂2uiuj
∂t2

(
y′, t− |x− y′|

co

)
∂2ukul
∂t2

(
y′′, t− |x− y′′|

co
+ τ
)〉

dy′dy′′. (28)

And, if the turbulence is considered to be statistically stationary, the equa-
tion can be rewritten as

C(x, τ) = ρo
xixjxkxl
16π2c4o|x|6

∫
Vy′′

∫
Vy′

∂4

∂τ4

〈
uiuj

(
y′, t− |x− y′|

co

)

ukul

(
y′′, t− |x− y′′|

co
+ τ
)〉

dy′dy′′. (29)

By virtue of this equation we now have a far more detailed description of
how the sound power radiated by a jet flow is related to that flow: for
a single observer in the farfield, at x, the sound power, as a function of
frequency,5 is given by a volume integral, over the entire extent of the jet,
of the two-point, two-time correlation of the Reynolds stress field.

Instantaneous analysis The two approaches presented above, both of
which involve considerable data compression when compared to the full
space-time fields from which they begin (and where mechanisms show them-
selves most exactly), necessarily hide a certain amount of information.6

5The power spectrum is given by taking the Fourier transform
6In 1952 measurement and computational capabilities were such that it was not possible

to access full-field data; the two-point correlations were about the best that could be

achieved.
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Some kind of compression is of course indispensable: the formidable com-
plexity of the full space-time structure of turbulence is such that useful
assimilation and description is only possible at the expense of some such
information loss. However, the ever-increasing capabilities of numerical
simulation, experimental data acquisition and data post-processing, mean
that new kinds of analysis and modelling methodologies, which deal more
directly with the local space-time details of flow mechanisms, can be con-
sidered. Such methodologies and tools, which are outline sections §3, §5
and §6, are essential from the point of view of real-time, closed-loop con-
trol, towards which fluid dynamics research is headed. It is therefore useful
to consider the space-time-local representation of the solution to Lighthill’s
equation 20.

As outlined above, the physical system described by an inhomogeneous
wave equation, such as Lighthill’s, involves a coupling between a source
term—which in this sub-section we will simply refer to as q(x, t)—and some
base-flow medium that can sustain propagative, wavelike perturbations in
accordance with the balance expressed by the wave equation. In the context
of Lighthill’s formulation, the mechanism by which a propagative wave is
set up, in the quiescent medium, by the source, amounts to the acoustic
matching described earlier. In order therefore to have access to what is
happening in real time, we need to examine the integral solution in its most
primitive form

p(x, t) =
1

4π

∫
V

q(y, t− |x−y|
c )

|x− y| d3y. (30)

What this equation tells us is that if we consider the excitation field in a

distorted space-time reference frame, q(y, t − |x−y|
c ), the farfield pressure

is given by simply summing all the points of that distorted field. If the
source field is considered in undistorted space-time, additional time-delays,
corresponding to wave-propagation times, weight the summation. Physi-
cally, this summation corresponds to the time-delayed constructive and de-
structive interference phenomena that underpin, respectively, loud or quiet
source activity. We will discuss this in the next section when we consider
the antenna-like wavepacket radiation associated with ‘coherent structures’.

2.4 Acoustic analogies of Phillips and Lilley

A difficulty with the Lighthill analogy, for the problem of jet noise, is that
the wave equation describes propagation through a medium at rest. While
this model is approximately correct outside the region of turbulent flow, it
is not so within the turbulent jet. Two subsequent developments, due to
Phillips (1960) and Lilley (1974), were aimed at improving this aspect of
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the model. Both were motivated by the desire to explicitly describe effects
associated with interactions between the sound field and the jet.

Phillips (1960) proposed an alternative rearrangement of the Navier-
Stokes equations, leading to:

d 2π

dt2
− ∂

∂xi

(
c2
∂π

∂xj

)
=
∂ui
∂xj

∂uj
∂xi

− ∂

∂xi

(1
ρ

∂τij
∂xj

)
+

d

dt

( 1

Cp

ds

dt

)
, (31)

where π = log(p). This equation comprises, explicitly, in the wave operator,
some effects of the mean velocity (via the material derivative), in addition
to the effects of variable speed of sound that can occur due to temperature
or Mach number gradients. The right hand side, which again is considered
a source term, comprises, as did Lighthill’s source term, terms associated
with non-linear momentum fluctuations, viscous stresses and a term due to
entropy unsteadiness.

The modification due to Lilley (1974) comes about from recognising
that if we linearise Phillips’ equation about some mean flow, and we con-
sider the fluctuation to be entirely acoustic, the source contains a term
associated with flow-acoustic interaction in the form of refraction of the
small-amplitude acoustic disturbances by mean shear. To see this, consider
acoustic disturbances propagation in two-dimensional shear-flow with mean
velocity profile U(y) ·�x. Linearising Phillip’s equation about this mean flow,
and neglecting thermal and viscous effects, the LHS reduces to

1

c2o

d2p

dt2
− ∂2p

∂x2i
, (32)

while the RHS reduces to

2ρo
∂v

∂x

dU(y)

dy
. (33)

When it is possible to verify that the perturbation about the mean flow is
indeed an acoustic disturbance, this term describes the refraction of sound
by the mean flow, and one can argue that it should appear on the LHS, in
the wave operator.

With this in mind, Lilley took the material derivative of Phillips’ equa-
tion:

d

dt

[d2π
dt2

− ∂

∂xi

(
c2
∂π

∂xj

)]
+ 2

∂vj
∂xi

∂

∂xj

(
c2
∂π

∂xi

)
= −2

∂vj
∂xi

∂vk
∂xj

∂vi
∂xk

+Ψ,

(34)
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where

Ψ = 2
∂vj
∂xi

∂

∂xj

(1
ρ

∂τij
∂xk

)
− d

∂t

[ ∂
∂xi

(1
ρ

∂τij
∂xj

)]
+

d2

dt2

[ 1
cp

ds

dt

]
, (35)

and we see that by linearising this equation about a base-flow comprising
mean shear, we obtain a wave operator that describes acoustic propagation
in that shear-flow. It is important to point out however, that a Reynolds
decomposition of the velocity field (into U+u), does not correspond to a split
into hydrodynamic and acoustic disturbances, and so it is not clear that the
linear term so obtained does indeed correspond to a refraction effect in the
case of a turbulent jet, where the fluctuation about the time-averaged mean,
within the jet, is largely hydrodynamic. This problem of decomposing a flow
into acoustic and non-acoustic components lies at the heart of much of the
controversy that surrounds acoustic analogy approaches for the description
and study of aeroacoustic systems. The most recent attempt to address this
difficulty has been proposed by Goldstein (2003) and Goldstein (2005).

2.5 The generalised acoustic analogy

Goldstein (2003, 2005) has shown how the formulations typified by the
efforts of Phillips (1960) and Lilley (1974) amount to particular cases in
a more general framework. In what follows we provide, firstly, a compact
exposition of this generalised formulation, in order to facilitate description
and interpretation. We then proceed to give a more complete presentation,
following the work of Sinayoko et al. (2011). We end with an overview of a
model problem, proposed by these authors, which serves as an instructive
illustration of the differences between different acoustic analogy formula-
tions.

In a nutshell Consider the Navier-Stokes equations, expressed in the
compact form

N (q) = 0, (36)

where q is here a vector containing all of the dependent flow variables, and
N represents the Navier-Stokes operator. Goldstein’s generalisation of the
acoustic analogy proceeds as follows.

The full solution is first decomposed into a (possibly unsteady) base-flow
and a perturbation:

q = qD + qA, (37)

the subscript D indicating non-linear fluid dynamics, as opposed to lin-
ear acoustic dynamics, which are denoted by the subscript A. From this
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decomposition an equation of the following form can be written

LqD
(qA) = s(qD), (38)

where LqD
is a linear operator describing the evolution of qA, a disturbance

generated and carried by qD. Let us consider this equation for a moment,
as it has certain uses, but also some limitations.

A first difficulty associated with an equation constructed in this manner
is that, if we are to interpret it in terms of a non-acoustic, causal, source,
s(qD), that drives an acoustic effect, qA, we need to be sure that the full flow
solution has been decomposed into acoustic and non-acoustic, or radiating
and non-radiating, components: there is presently no consensus as to how
such a decomposition might be unambiguously effected.

A second difficulty becomes apparent when we consider what has been
gained by identifying s(qD) in this way. If we consider equation 38 to be
physically pertinent—in other words we believe that we have successfully
decomposed the flow solution into acoustic and non-acoustic components—
at best we can consider the decomposition of equation 37 to provide us with
the kinematic structure of the flow, qD, that underpins sound radiation.
However, as we will see in the following example, qD is almost identical
to q, the full flow solution, as one would expect given the large amplitude
disparity between hydrodynamic and acoustic fluctuations at the heart of
the flow; and so the question that arises is the following: in what way does
the information provided by decomposition 37 and equation 38 enlighten us
with regard to the physical flow mechanisms associated with sound produc-
tion? The answer appears to be: it constitutes a powerful means by which
the radiating flow structure can be visualised and probed. For instance, by
superposing s(qD) and qD, and studying, simultaneously, the space-time
(or frequency-wavenumber) structure of the two, it may be possible to gain
some insight regarding what it was about the flow motions qD that led
to the radiating source structure s(qD): this structure (∈ qD) interacted
with that structure (∈ qD) to produce this or that aspect of the source field
(∈ s(qD)).

However, having clarified the kinematics in this way, it is then necessary
to address the question of the dynamics, as the flow motions associated
with the generation of sound can only be fully understood in the context
of their underlying dynamic law. In the context of high Reynolds number
turbulent jets, qD will be no less complex than q, and thus the dynamic law
of the source is approximately the Navier-Stokes operator; in which case we
arrive at the conclusion that the sound-source mechanism is the turbulence!
The point on which we insist is the same evoked in the introduction: while
the acoustic analogies can provide simplified models for the propagation
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and connection-to-turbulence parts of the problem, they do not directly
provide any such simplification where the “fluctuating shearing motions”
are concerned. These points will be further discussed in section §3.

Full derivation The following derivation, taken from Sinayoko et al.
(2011), shows, in detail, how a generalised acoustic analogy, such as that
evoked more compactly above, can be formulated for a homentropic fluid
medium. The derivation is followed by the presentation and discussion of a
model problem chosen by those authors; the problem considered constitutes
a useful illustration of the differences between this and more conventional
acoustic analogies; it also serves to illustrate the limitations of acoustic
analogies in general.

Unsteady, non-radiating base-flow

The flow equations are written as:

∂ρ

∂t
+

∂

∂xj
ρvj = 0 (39)

∂

∂t
ρvi +

∂

∂xj
ρvivj +

∂p

∂xi
=

∂

∂xj
σij (40)

∂p

∂t
+ vj

∂p

∂xj
+ γp

∂vj
∂xj

= 0. (41)

Using a modified pressure variable π = p1/γ , the momentum and energy
equations can be rewritten as

∂

∂t
ρvi +

∂

∂xj
ρvivj +

∂

∂xi
πγ = 0 (42)

∂π

∂t
+

∂

∂xj
πvj = 0. (43)

Note that the pressure equation now appears in conservative form.
For the moment consider that a filter capable of extracting acoustic, or

radiating, disturbances, q′, from the full flow variable, q, exists: L′ = I−L.
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Application of this filter to the conservation equations gives:

∂ρ′

∂t
+

∂

∂xj
(ρvj)

′ = 0 (44)

∂

∂t
(ρvi)

′ +
∂

∂xj
(ρvivj)

′ +
∂

∂xi
(πγ)′ = 0 (45)

∂(π)′

∂t
+

∂

∂xj
(πvj)

′ = 0. (46)

The non-linear momentum flux term can be expanded as

ρvivj = ρṽiṽj + ṽj(ρvi)
′ + ṽi(ρvj)

′ − ṽiṽjρ
′ +O(ρ′2), (47)

where

ṽi =
(ρvi)

ρ
. (48)

O(ρ′2) terms, being quadratic in the radiating (acoustic variables), are
several orders of magnitude smaller than radiating components, and can be
neglected. Thus, application of the filter L′ to the expanded momentum
flux term gives

(ρvivj)
′ ≈ (ρṽiṽj)

′︸ ︷︷ ︸
A

+(ṽj(ρvi)
′ + ṽi(ρvj)

′ − ṽiṽjρ
′)′︸ ︷︷ ︸

B

. (49)

Term A is the acoustically-matched part of the non-linear momentum flux
term, i.e. it comprises only those components of the triple correlation
ρṽiṽj that present radiation-capable space-time scales, and that can thereby
couple with the sound field. The second group of terms, B, corresponds
to acoustically-matched components of hydrodynamic-acoustic interaction
terms: refraction, scattering, convective transport, etc.

Similarly the modified pressure term, which is also non-linear, can be
expanded and filtered:

πγ = (π + π′)γ = πγ + γπγ−1π′ +O(π′2), (50)

(πγ)′ = (πγ)′︸ ︷︷ ︸
A

+(γπγ−1π′)′︸ ︷︷ ︸
B

. (51)

On account of the homentropic character of the fluid medium, it can be
shown (see Sinayoko et al. (2011) for details) that the radiating component
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arising due to the non-linearity of the non-radiating pressure term, A, is
equal to zero:

(πγ)′ =
π∞
ρ∞

(ργ)′ =
(
ρ∞
π∞

)γ−1

(p)′ = 0. (52)

Similarly, the energy flux term, (πvj)
′, can be decomposed as follows

(πvj)
′ ≈ (πṽj)

′︸ ︷︷ ︸
A

+(
π

ρ
(ρvj)

′ + ṽjπ
′ − π

ρ
ṽjρ

′)′︸ ︷︷ ︸
B

, (53)

and the radiating component of the non-linear part shown also to be equal
to zero:

(πṽj)
′ =

π∞
ρ∞

(ρṽj)
′ =

π∞
ρ∞

(ρvj)
′ = 0. (54)

The filtered Navier Stokes equations can now be re-written, placing all of
the non-zero sound source terms, A (which comprise radiating components
of non-linear interactions of non-radiating components) on the right hand
side, and the flow-acoustic interaction terms, B, on the left:

∂ρ′

∂t
+

∂

∂xj
(ρvj)

′ = 0, (55)

∂

∂t
(ρvi)

′ +
∂

∂xj
(ṽj(ρvi)

′ + ṽi(ρvj)
′ − ṽiṽjρ

′)′

+γ
∂

∂xi
(πγ−1π′)′ = − ∂

∂xj
(ρ ṽiṽj)

′, (56)

∂π′

∂t
+

∂

∂xj

(π
ρ
((ρvj)

′ − ṽjρ
′) + ṽjπ

′)′ = 0. (57)

This is a generalised acoustic analogy, the source and propagator compo-
nents of which depend on how the filter, L′ is defined.

Time-averaged base-flow

In order to compare the above formulation with more conventional ap-
proaches, Sinayoko et al. (2011) repeat the same derivation where the de-
composition into base-flow and perturbation follows a simple Reynolds de-
composition. The result leads to a formulation synonymous with the Lin-
earised Euler Equations.
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Base flow and perturbation are thus defined by

q = q0 + q′′, (58)

where q0 and q′′ denote, respectively, the steady (time-averaged) and un-
steady part of q. Following the previous procedure leads to

∂ρ′′

∂t
+
∂(ρvj)

′′

∂xj
= 0, (59)

∂(ρvi)
′′

∂t
+
∂(ρvivj)

′′

∂xj
+ p∞

∂(πγ)′′

∂xi
= 0, (60)

∂π′′

∂t
+ γ

∂(πvj)
′′

∂xj
= 0. (61)

The term ρvivj can be decomposed as

ρvivj =
ρvi ρvj
ρ

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a) ρ0v̂iv̂j+

(b) v̂j(ρvi)
′′ + v̂i(ρvj)

′′ − v̂iv̂jρ
′′+

(c)
1

ρ0
(ρvi)

′′ (ρvj)′′ − v̂j
ρ0

(ρvi)
′′ρ′′ − v̂i

ρ0
(ρvj)

′′ρ′′ +
v̂i v̂j
ρ0

ρ′′2 +O(ρ′′3),

(62)

where

v̂i =
(ρvi)0
ρ0

, (63)

which is analogous to ṽi but uses a steady base flow rather than a non-
radiating base flow.

Term (a) is steady and so cannot contribute to sound production or
propagation; term (b) is an interaction term, between the time-averaged
mean flow and the fluctuation, although it is clearly incorrect to speak of
flow-acoustic interaction, the fluctuation in this case being dominated by
hydrodynamic unsteadiness (turbulence). Term (c) contains quadratic and
higher order non-linearities dominated by hydrodynamic unsteadiness. It is
terms of this kind that are referred to as ‘source’ in acoustic analogies that
involve time-averaged base-flows, or Linearised Euler formulations.

The term (πγ)′′ is decomposed as:

πγ = (π0 + π′′)γ = πγ
0 + γπγ−1

0 π′′ +
1

2
γ(γ − 1)πγ−2

0 π′′2 +O(π′′3) (64)

(πγ)′′ ≈ γπγ−1
0 π′′ +

1

2
γ(γ − 1)πγ−2

0 (π′′2)′′. (65)
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Finally, the term πvj is decomposed as follows:

πvj =
πρvj
ρ

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(a)
π0
ρ0

(ρvj)0

(b)
π0
ρ0

(ρvj)
′′ + v̂jπ

′′ − π0
ρ0
v̂jρ

′′

(c)
1

ρ0
π′′(ρvj)′′ − v̂j

ρ0
ρ′′π′′ − π0

ρ20
ρ′′(ρvj)′′ +

π0v̂j
ρ20

ρ′′2 +O(ρ′′3),

(66)
where (a) has no unsteady part, (b) corresponds to interaction terms and
(c) to source terms; however, Sinayoko et al. show that term (c) can be
shown to be equal to zero.

Equations (59–61) are now re-written, the quadratic non-linear terms
being placed on the right hand side, the interaction terms, between the
mean-flow and the perturbation, being retained as ‘propagation terms’ on
the left hand side:

∂ρ′′

∂t
+

∂

∂xj
(ρvj)

′′ = 0, (67)

∂

∂t
(ρvi)

′′ +
∂

∂xj
(v̂j(ρvi)
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0 π′′ = f2i, (68)
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)

= 0, (69)

where the momentum equation source term f2i is defined as

f2i ≡ − ∂

∂xj

(
1

ρ0
(ρvi)

′′ (ρvj)′′ − v̂j
ρ0

(ρvi)
′′ρ′′ − v̂i

ρ0
(ρvj)

′′ρ′′ +
v̂i v̂j
ρ0

ρ′′2
)
(70)

−1

2
γ(γ − 1)

∂

∂xi
(πγ−2

0 (π)”2)′′.

Application of the two foregoing formulations to a model flow, where the
flow is manipulated in such away that the sound-production mechanisms are
clear, will help to more fully appreciate what the two formulations involve.

Application to a model problem We here provide a brief exposition of
the model problem and main results. For more complete details the reader
should refer to Sinayoko et al. (2011).

A Direct Numerical Simulation is performed wherein a laminar, axisym-
metric jet is driven at the inflow by two different frequencies. The response
of the jet comprises the growth of two hydrodynamic instabilities; these
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Figure 1. Top center: full flow solution; Left and right columns show, from
top to bottom: base flow, perturbation and sound source corresponding to
the two flow decompositions; left column :q0 + q′′; right column: qD + qA.

undergo a non-linear interaction which results in a difference wave, and it
is this difference wave that dominates the generation of sound waves. The
instability waves each couple directly with the sound field, but this linear
mechanism is weaker than that of the non-linear interaction.

The full solution of the model problem is shown in figure 1. The filtering
operation used to separate ‘radiating’ and ‘non-radiating’ components of
the flow is based on the free-space Green’s function, and in this particular
implementation the ‘perturbation’ is defined as the radiating component of
the flow at the dominant radiation frequency only. It is for this reason that
some radiating components remain in the base flow, qD.

The considerable differences between what is referred to as ‘base flow’,
‘perturbation’ and, consequently, ‘source’ are illustrative of the degree to
which different acoustic analogies will yield different interpretational frame-
works: the mechanisms that we infer from the equations can differ as widely
as the decompositions, base-flows, perturbations and sources with which
they are associated. Much contemporary debate regarding the true physics
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of sound production is fueled by this lack of universality.
We here draw attention to one importance difference in particular. In the

case of the time-averaged base flow (which is what is used in Lilley or Lin-
earised Euler formulations), the fluctuation is largely dominated, as stated
earlier, by hydrodynamic unsteadiness, whereas the radiating fluctuation
obtained by means of an acoustic filter is mainly acoustic. The difference in
both amplitude and space-time structure between the two attests to this.
As seen in figure 1, when a time-averaged base-flow is considered, the per-
turbation within the jet is dominated by hydrodynamic, convective scales.
When the radiating/non-radiating decomposition is used, the perturbation
shows an acoustic (radiating) scale throughout the jet. A corresponding
difference in amplitude between the two perturbations (not shown in the
figure, where colour scales are saturated) is also observed. This illustrates
the extent to which it is incorrect to think of interactions terms of the
kind q0q

′′ as corresponding to mean-flow/acoustic interaction; the correct
interpretation is that these terms are dominated by mean-flow/turbulence
interactions, as is the interpretation attributed to such terms by students of
incompressible turbulence (cf. George et al. (1984)), where such terms are
referred to as slow-pressure terms.

Finally, Sinayoko et al. (2011) verify that when the time-averaged base
flow is driven by the two source terms, the correct result is obtained in the
acoustic field. Figure 2 shows this.

2.6 Conclusion

Two things are worth pointing out with regard to the results of the model
problem considered above. The first is the difference between the two source
terms; it clearly cannot be correct to refer to both of these as the ‘source of
sound’. Furthermore, because in this model problem the flow has been care-
fully manipulated so that the fluid dynamics and acoustic mechanisms are
clear, we know that the dominant source mechanism comprises a non-linear
interaction between two hydrodynamic instabilities; this interaction creates
an acoustically-matched difference wave. The source identified by the for-
mulation based on the decomposition into a predominantly non-radiating
unsteady base-flow and a monochromatic, purely radiating disturbance re-
sembles such a difference wave. The source obtained using a time-averaged
base flow and corresponding disturbance does not. The former system does
therefore appear to constitute a more physically pertinent description of
the problem than the latter. The causal reading of the problem, as a one
way transmission of fluctuation energy from ‘source’ to ‘sound’, also ap-
pears to be more justified by the former formulation. As evoked earlier,
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Figure 2. Result of driving the time-averaged base flow by both sources.
Result is compared with the DNS result at the peak acoustic frequency.
While the source term constructed from the non-radiating, unsteady base
flow elicits a purely acoustic response, the source term associated with the
time-averaged base flow causes the mean-flow to respond with both hy-
drodynamic and acoustic components. Both give the correct result in the
acoustic field.

this improved consistency is also manifest in the response of the base-flow
to excitation by the two sources; in the former case the response is purely
acoustic, consistent with what has been denoted ‘perturbation’, whereas in
the latter case the response is dominated, within the flow, by hydrodynam-
ics: we therefore have a case in the latter situation where the cause is part
of the effect and vice versa; this is clearly problematic. It should also be
noted, however, that in both cases the correct solution is obtained in the
sound field. This shows, as has been borne out over the past 10 years or so
by means of numerical simulation, that all acoustic analogies are capable
of providing a link between turbulence and sound; however, the differences
illustrated by the foregoing study shows that we need to be careful with
regard to the physical interpretations that we infer from analysis based on
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acoustic analogies.

Where the question of the relationship between qD and s(qD) is con-
cerned, further visualisation and analysis will always be necessary. The
same is true with regard to the question of the dynamic law that underpins
qD. These observations constitute useful departure points for the experi-
mental approach, and the remainder of these lectures will be concerned with
outlining methodologies and tools that can be useful in this regard.
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3 The modelling challenge

3.1 Introduction

As outlined in the previous section, estimation of the sound radiation
from a turbulent flow, using an acoustic analogy, requires the solution of
a propagation equation given a corresponding source term. If the source
is not known exactly (such exact knowledge implies knowledge of the full
Navier Stokes solution) it must be modelled, and the question of how best
to construct this model arises.

Regardless of the acoustic analogy used, the source is a function of the
flow turbulence, and so the question of source modelling is inseparable from
that of turbulence modelling. In this section we consider the turbulent
jet, and the link between this and sound sources. The way turbulence is
perceived and modelled has changed considerably in the last fifty years, as
has, correspondingly, our understanding of the jet as a source of sound.
We therefore briefly trace out these evolutions, providing examples of some
recent developments where the source modelling question is concerned.

3.2 A systematic approach to modelling

Analysis of aeroacoustic systems is, like that of most of complex fluid
systems, largely an exercise in system reduction. We are interested in dis-
cerning the essential aspects of the fluid system with regard to the quantity
(observable) that interests us (the radiated sound in the present case), our
end objective being to come up with a simplified model of the flow (both
kinematically and dynamically). And, of course, it is a prerequisite that this
simplified model provide as accurate as possible a prediction of the radiated
sound field: how best to model the flow turbulence as a sound source. The
acoustic analogy can be useful as an aid, but, as we saw in the previous
section, used in isolation it is not sufficient.

The information neglected in a simplified model of an aeroacoustic sys-
tem can be seen as an error, and the success or failure of that model will be
reflected by the degree to which the acoustic analogy considered is sensitive
to that error. Note, however, that such errors can arise, or be perceived,
in two quite different contexts. The errors might be due to there being
incomplete flow information available to us. Or, alternatively, the ‘error’
might be something that we intentionally introduce, through the removal of
flow information that we consider non-essential where the sound production
problem is concerned. In the latter case, the missing information is some-
thing that we are required to consider and choose carefully. An analysis
methodology is outlined in this section, concerned with such a considered
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removal of non-essential information: we intentionally introduce considered
and calculated ‘errors’.

The sensitivity issue has been studied in an ad hoc manner by Samanta
et al. (2006) with the former idea in mind: how sensitive are acoustic
analogies to unwanted errors? The authors considered a DNS of a two-
dimensional mixing layer, which they used in conjunction with a number
of acoustic analogy formulations (Lighthill-like and Lilley-like formulations
were assessed); the sound fields computed by all analogies showed good
agreement with the DNS, consistent with the results of the model problem
considered in the previous section. The full solution of the DNS was then
artificially modified so as to introduce an error, which we here denote δs(q).
This error was produced through a manipulation of the coefficients of the
POD modes 7 of the full solution. The sound field was then recomputed, by
means of the different acoustic analogies, using the contaminated flow data,
and the error in the sound field so computed was assessed in each case.

Different kinds of source error were explored: effects analogous to low-
pass filtering, and the reduction of energy in narrow frequency bands, are
two examples. In many cases the resultant error in the sound field was
found to be similar for all of the acoustic analogies considered. For one par-
ticular case, however, where the error corresponds to a division of the first
POD mode coefficient by 2 (this amounts to a significant reduction of the
low frequency fluctuation energy of the flow), the Lighthill-like formulation
showed greater sensitivity than the other formulations.

The problem can be thought about as follows. Consider an acoustic
analogy, written in the general form Lp = s(q). The parameter space of the
source, s(q), can be expressed in terms of an orthonormal basis, to which
there corresponds an inner product; such is the case, for instance, for the
POD basis of Samanta et al. (2006). If we now consider the eventual impact
of the introduction of a small disturbance (which simulates a modelling
error) to the source, δs(q) (as per Samanta et al. (2006)), we are interested
in the impact that this will have on the acoustic field, i.e. δp. The problem
comes down to the following situation: if δs(q) ‖ ∇L then the sound field
will be sensitive to small perturbations in the source, δs(q). δs(q) is in this
case aligned with the direction of maximum sensitivity of the propagation
operator L in the parameter space considered. If, on the other hand, δs(q) ⊥
∇L, then changes in s(q) will have no impact on the sound field, p. 8

This way of viewing the aeroacoustic problem means that the modelling

7see section 5 for an exposition of POD
8This shows that the arbitrary introduction of disturbances to, and subsequent com-

parison of, two different analogies cannot provide an unambiguous assessment, in an

absolute sense, of the relative robustness of the two formulations. For, if the gradients
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problem can be formulated in the following way: beginning with full flow
information q, from a numerical simulation for example, we are required
to find the directions (in a suitably chosen parameter space) of the flow
solution that can be eliminated without adversely affecting the quality of
sound prediction. We must identify the ‘errors’ δq, such that we obtain a
simplified flow field, q̂ = q − δq; the source computed from this simplified
flow field, s(q̂), has an associated error, and this error must be such that
the component of s(q̂) aligned with the propagation operator is unaffected.

The following analysis methodology, based on the above reasoning, is
intended as a guide for the analysis of complex aeroacoustic systems, from
the point of view of source mechanism identification and the design of sim-
plified models (from both kinematic and dynamic standpoints).

Analysis methodology

1. Obtain full or partial information associated with the complete flow
solution, q (whose dynamic law we know: the Navier-Stokes operator,
N (q) = 0); this data could be provided by experimental measurements
or from a numerical simulation;

2. Identify and extract, from q, the observable of interest: the radiated
sound in our case, qA;

3. Construct an observable-based filter, FqA
, which, applied to the full

solution removes information not associated with sound production,
and thereby provides a reduced-complexity sound-producing flow skele-
ton (kinematics), q̂D = FqA

(q);
4. Analyse q̂D with a view to postulating a simplified ansatz for the

source, s(q̂D);
5. Using an acoustic analogy, compute q̂A = L−1s(q̂D), and verify that

min||qA − q̂A||;
6. Determine a reduced-complexity dynamic law, N̂ (q̂D) = 0, that gov-

erns the evolution of q̂D.

Let us consider step 3 for a moment, as the observable-based filter, FqA
,

can be defined with varying degrees of rigour. The following are some pos-
sible scenarios. (i) In some situations the application of FqA

might be quite
heuristic, e.g. no more than the simple observation of the flow—we see
with relative ease that this structure interacted with that to produce this
aspect of the sound field, whence we propose a model. (ii) Alternatively,

∇L1 and ∇L2 (where the subscripts 1 and 2 indicate the two analogies) have different

directions in the parameter space, one will always be able to find a perturbation that

causes one operator to appear less robust than the other.
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it could comprise a more sophisticated flow visualisation, or perhaps a se-
ries of measurements giving quantitative access to the flow solution, from
which a simplified model might be proposed, provided the essential mecha-
nisms show themselves clearly in this data. However, in the context of high
Reynolds number turbulent flows, it is frequently necessary to approach the
design of FqA

in a more rigorous, methodological and objective, manner.
Two further avenues can be pursued in this regard: (iii) it may be possible,
using a purely theoretical deduction, to identify flow (or source) information
that can be safely removed (examples are provided in what follows); and,
(iv) signal processing tools can be used to decompose the complex system
into more easily manageable ‘building blocks’, whose relative importance
for sound production can then be tested.

Early analysis in aeroacoustics (1950s-1980s) was largely undertaken in
contexts (i) and (iii), due to the limited capabilities of measurement and
signal-processing. With the progressive improvement of the two latter dis-
ciplines, analysis in contexts (ii) and (iv) has become more common. In
what follows we will show how a complete analysis will generally involve a
combination of (i)-(iv).

In the following, we provide a short historical sketch (contexts (i) and
(iii) are preponderant) outlining how the complexity of the turbulent jet
was observed, considered, discerned and finally modelled with respect to
both its internal turbulence mechanisms and the associated sound sources.

3.3 Turbulence: as a space-time chaos

When Lighthill first provided us with a theoretical foundation from which
to model, study and understand jet noise, turbulence, both generally and
in the specific case of the round jet, was considered to comprise a space-
time chaos, devoid of any underlying order. The standard at that time for
the kinematic description of turbulence structure could be found in turbu-
lence theories such as that of Batchelor (1953): attempts to understand
and model turbulence were based on the Reynolds Averaged Navier-Stokes
(RANS) equations, where the only conceptual constructs invoked, aside
from those expressed in the conservation equations, are those required for
closure (Boussinesq’s notion of eddy viscosity, for instance) on one hand,
and, on the other, the flow entities supposed to participate in the physical
processes associated with the various terms that appear in the RANS equa-
tions: fluctuation energy is ‘produced’, ‘transported’, ‘dissipated’ by virtue
of interactions between stochastic flow ‘scales’ or ‘eddies’.

Figure 3(a), which shows a schlieren photograph of a turbulent jet, gives
a visual sense of this stochastic character. Source terms in acoustic analogies
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were constructed in accordance with this conceptual picture of turbulence.
Lighthill (1952) assumed a statistical distribution of uncorrelated eddies
throughout the source region, and this led to the well known U8 power law
for the isothermal turbulent jet. However, predictions based on Lighthill’s
analogy, using such kinematic models for the turbulence, do not explain all
of the features of subsonic jet noise: at low emission angles (with respect to
the downstream jet axis), for example, the U8 power law does not hold, and
the narrower spectral shape is generally not well predicted. Something is
missing from this combination of acoustic-analogy formulation and source
representation.

(a) (b)

Figure 3. Different visualisation techniques of jets at similar Reynolds
number, taken from Crow and Champagne (1971). (a) Schlieren photogra-
phy; Re = 1.06 × 105; (b) CO2 fog visualisation using sheet illumination;
Re = 7.5× 104.

3.4 Turbulence and ‘coherent structures’

Soon after the first attempts by Lighthill and his successors to predict the
sound radiated by turbulent jets a change occurred in the way turbulence
is perceived. Turbulent flows were observed to be more ordered than had
previously been believed, and a new conceptual flow entity was born, some-
times referred to as a ‘coherent structure’, or, alternatively, a ‘wave-packet’.
Mollo-Christensen (1967) was one of the first to report such order in the
case of the round jet: “...although the velocity signal is random, one should
expect to see intermittently a rather regular spatial structure in the shear
layer.”. A series of papers followed, confirming these observations and pos-
tulating on the nature of this order (Crow and Champagne (1971), Brown
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Figure 4. Flash Schlieren images of jets (Re = 5× 105; M = 0.83), taken
from Moore (1977). Left: random ensemble average; middle: conditional av-
erage using axisymmetric nearfield pressure signature as trigger; right: con-
ditional average using a single nearfield microphone as trigger (this educes
the antisymmetric organisation).

and Roshko (1974) and Moore (1977) to cite just a few). Figure 3(b), taken
from Crow and Champagne (1971), provides a visual sense of this under-
lying order: by changing visualisation technique, using sheet illumination
and carbon dioxide fog, rather than the fine grained patterns revealed by
the schlieren technique, an axially-aligned waveform with wavelength of the
order of the jet diameter is observed.

A further illustration of the underlying organisation present in high
Reynolds number jets is shown in figure 4, which shows the difference be-
tween time-averaged and conditionally-averaged images of round jets at high
Reynolds and Mach numbers. We will discuss conditional averaging tech-
niques later in more detail.

Order in chaos

The following series of citations gives a sense of the impression that this
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discovery made on researchers working in the field of both turbulence and
aeroacoustics.

“The apparently intimate connexion between jet stability and noise gen-
eration appears worthy of further investigation” – Mollo-Christensen and
Narasimha (1960)

“[jet noise] is of interest as a problem in fluid dynamics in the class of
problems which involve the interaction between instability, turbulence and
wave emission” – Mollo-Christensen (1963)

“There appear to be at least two distinguishable types of emitted sound,
one dominating at very low frequencies and another dominating at high
frequencies. A relation which gives a smooth interpolation between these
asymptotic ranges would prove useful, if one could be invented.” – Mollo-
Christensen (1963)

“The data suggest that one may perhaps represent the fluctuating [hy-
drodynamic] pressure field in terms of rather simple functions. For example,
one may consider the jet as a...semi-infinite antenna for sound...” – Mollo-
Christensen (1967)

“...although the velocity signal is random, one should expect to see in-
termittently a rather regular spatial structure in the shear layer.” – Mollo-
Christensen (1967)

“We therefore decided to stress measurements near and in the jets, hop-
ing to discern some of the simpler features of the turbulent field. We also
did measure for field pressures, and intended to see if we could not connect
the two sets of observations somehow, using the equations of sound propa-
gation.” – Mollo-Christensen (1967)

“It is suggested that turbulence, at least as far as some of the lower order
statistical measures are concerned, may be more regular than we may think
it is, if we could only find a new way of looking at it.” – Mollo-Christensen
(1967)

“The mechanics of turbulence remains obscure, so that it comes as a
matter of some relief to find that the motions which now interest us are co-
herent on a large scale...Such large eddies might be readily recognisable as
a coherent transverse motion more in the category of a complicated laminar
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flow than chaotic turbulence. In any event the eddies generating the noise
seem to be much bigger than those eddies which have been the subject of in-
tense turbulence study. They are very likely those large eddies which derive
their energy from an instability of the mean motion...” – Bishop et al. (1971)

“These [measurements] suggest that hidden in the apparently random
fluctuations in the mixing layer region is perhaps a very regular and or-
dered pattern of flow which has not been detected yet” – Fuchs (1972)

“Whether one views these structures as waves or vortices is, to some
extent, a matter of viewpoint.” – Brown and Roshko (1974)

“All this evidence suggests that the turbulence in the mixing layer of the
jet behaves like a train similar to the hydrodynamic stability waves propa-
gating in the shear flow.” – Chan (1974)

“The dominant role of the dynamics and interaction of the large struc-
ture in the overall mechanism that eventually brings the two fluids into in-
timate contact becomes apparent. It is clear that any theoretical attempts
to model the complex mixing process in the shear layer must take this ubiq-
uitous large structure into account.” – Dimotakis and Brown (1976)

“Turbulence research has advanced rapidly in the last decade with the
widespread recognition of orderly large-scale structure in many kinds of tur-
bulent shear flows...some measure of agreement seems to have been reached
among investigators on the general properties of the coherent motions.” –
Crighton and Gaster (1976)

“...the turbulence establishes an equivalent laminar flow profile as far as
large-scale modes are concerned.” – Crighton and Gaster (1976)

“In the last years our understanding of turbulence, especially in jets,
has changed rather dramatically. The reason is that jet turbulence has been
found to be more regular than had been thought before.” – Michalke (1977)

“This ‘new-look’ in shear-flow turbulence, contrary to the classical notion
of essentially complete chaos and randomness, has engendered an unusually
high contemporary interest in the large-scale structures.” – Hussain and
Zaman (1981)

“The last twenty years of research on turbulence have seen a growing
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realisation that the transport properties of most turbulence shear flows are
dominated by large-scale vortex motions that are not random.” – Cantwell
(1981)

“Suddenly it was feasible and reasonable to draw a picture of turbulence!
The hand, the eye, and the mind were brought into a new relationship that
had never quite existed before; cartooning became an integral part of the
study of turbulence.” – Cantwell (1981)

As we see from many of the above citations, stability theory is frequently
evoked as a possible theoretical framework for the dynamical modelling of
the flow behaviour described above. However, a full treatment of hydrody-
namic stability is beyond the scope of this lecture, and so we will simply
list, briefly, a few of the different kinds of stability frameworks that are
sometimes used to model the organised component of turbulent shear flows.
We would also point out that the application of stability theory to turbu-
lent flows, where the stability of a time-averaged mean-flow is considered, is
not entirely rigorous (hydrodynamic stability analysis is self-consistent only
when applied to laminar flows), involving a number of assumptions: one of
these is that there exists a scale-separation between a large-scale organised
component of the flow and a finer-grained, stochastic, ‘background’ compo-
nent; the latter establishes a mean-flow profile that can sustain large-scale
instabilities, and acts, furthermore, as a kind of eddy viscosity that damps
the large-scale instabilities.

The first stability calculations with respect to the round jet were per-
formed by Batchelor and Gill (1962) who studied the temporal stability
problem for a plug flow. Michalke and Timme (1967) looked at the temporal
instability of a finite-thickness, two-dimensional shear layer, while Michalke
(1971) considered the spatial instability of a finite thickness axisymmetric
shear-layer. Crighton & Gaster (1976) took account of the slow axial varia-
tion of the shear-layer thickness. Mankbadi and Liu (1984) made an attempt
to include the effect of non-linearities. Tam and Morris (1980) used matched
asymptotic expansions to obtain the acoustic field of a two-dimensional com-
pressible mixing-layer; Tam and Burton (1984) then extending this effort to
the case of a round jet. More recent approaches have been based on linear
and non-linear Parabolised Stability Equations, as used by Colonius et al.
(2010) for example, and Global Stability approaches, applied for instance
to the problem of heated jets by Lesshafft et al. (2010).
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3.5 Coherent structures as a sound source

We now turn our attention to the mechanisms by which such coherent
structures may be active as sound sources. We will work in the context of
Lighthill’s acoustic analogy, whence by means of theoretical considerations
it will be possible to gain some insight regarding pertinent simplifications.
We are, therefore, in what follows, working in the context of steps 3, 4 and 5
of the analysis methodology outlined earlier; and with regard to the filtering
operation, FqA

, we are in context (iii).

The wavepacket source ansatz Mollo-Christensen (1967) appears to
have been first to propose a mechanism by which coherent structures might
be active as a source of sound. Observing that the nearfield pressure sig-
nature of the subsonic jet presents a surprising degree of organisation in
the (y1, τ) plane, he suggested that such organisation could result in the jet
behaving as a ‘semi-infinite antenna for sound’. Where this kind of sound
production is concerned, a convected wavepacket constitutes a pertinent
model for the organised component of the flow. Such a model, first ex-
plored by Michalke (1971) and Crow (1972), continues to be widely used by
researchers today, even if there is probably some disagreement with regard
to the salient sound-producing features and dynamic law of such wavepack-
ets.

Our presentation of the wavepacket sound source is organised as follows:

• We begin by introducing the basic wavepacket source ansatz, as pro-
posed by Michalke (1971), Crow (1972) (see also Crighton (1975)),

• We then outline some of the arguments used to justify its simple line-
source form: the elimination of the radial dimension is a good example
of observable-based simplification,

• We next present a comparison of experimentally obtained acoustic
data with the sound field characteristics of the wavepacket model,

• We then discuss, in greater detail, the radiation mechanism associated
with wavepackets, exploring a number of different kinds of behaviour
which lead to its being enhanced:
1. Spatial modulation,

2. Temporal modulation,

3. Temporally-localised wavepacket truncation,

4. Space-time ‘jitter’.
• Finally, we present, in section §4, two case studies, in which a num-
ber of numerical databases (obtained both by Large Eddy Simula-
tion and by Direct Numerical Simulation) are analysed, following the
methodology outlined earlier, and the salient sound-producing fea-
tures of wavepackets thereby educed.
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The basic wavepacket model First attempts to explore the wavepacket
ansatz as a kinematic model for the organised component of the jet were
made by Michalke (1971), Crow (1972) (see also Crighton (1975)). The
physical problem considered is that of small amplitude acoustic disturbances
propagating through a quiescent, homogeneous medium, as a result of an
externally-imposed source term:

1

c2o

∂2p(x, t)

∂t2
−∇p(x, t) = s(y, t), (71)

where the source takes the following form:

s(y, t) =
∂2

∂y21
2ρ0Uũ

πD2

4
δ(y2)δ(y3)e

(ωt−κyy1)e(−y2
1/l

2). (72)

The solution of the spherical wave equation to an externally-imposed exci-
tation of this kind is:

p(x, t) = −ρ0UũM
2
c (kD)2L

√
π cos2 θ

8|x| e−
L2k2(1−Mc cos θ)2

4 eiω(t−
|x|
c ), (73)

where Mc is the Mach number based on the phase velocity of the convected
wave, Uc.

Figure 5. Effect of axial compactness parameter, kL, on directivity.

As outlined in section §2, equation 73 results from a convolution of the
source ansatz with the free-space Green’s function, this operation identify-
ing the source characteristics to which the radiated sound field is sensitive.
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One of these characteristics, visible in the solution, is the source compact-
ness, kL. Figure 5 shows how for small values of kL the source is com-
pact, while for larger values it becomes non-compact, exhibiting numerous
oscillations over its spatial extent. The corresponding dependence of the
sound field directivity is shown in the right-hand figure: the less compact
the source, the more the sound field is ‘beamed’, due to an antenna ef-
fect, to shallow axial angles. For kL = 6 the directivity pattern is close
to exponential; sources exhibiting such exponential directivity are termed
superdirective (Crighton and Huerre (1990)).

It can be seen in equation 72 that the source is concentrated on a line
(by δ(y2)δ(y3)). This may seem strange considering that the turbulent re-
gion of a propulsive jet fills a volume that is approximately bounded by a
conical surface. This simplification can be justified, however, by appeal-
ing to the radiation efficiency of different azimuthal modes of a cylindrical
source (which is a slightly better approximation to the real dimensions of
a jet, particularly when one considers the regions of maximal turbulence
intensity: these lie on such a cylindrical surface). In the following section
we outline this justification; this is an exercise in system reduction based
purely on theoretical arguments: we use the Lighthill acoustic analogy for-
mulation to demonstrate how certain ‘directions’ of the source system can
be disregarded: the conclusion that we come to is that equation 72 is a rea-
sonable approximation for the coherent structures where low-angle sound
emission is concerned.

Radiation efficiency of azimuthal modes The following is taken from
Cavalieri et al. (2010b) and Cavalieri et al. (2011a), similar analysis being
found in Michalke (1970). Consider a source term of the form

T11(y, τ) = ρ0UũRδ(r −R)ei(ωτ−ky1)e−
y2
1

L2 Cmeimφ. (74)

Where m denotes azimuthal Fourier mode number, and Cm the correspond-
ing Fourier coefficient. The corresponding solution of the wave equation can
be written

p(x, t) =
ρ0UũR

2

4πc2|x|
∂2

∂t2

∫∫
ei[ω(t−

|x−y|
c )−ky1]e−

y2
1

L2 Cmeimφdφdy1. (75)

We assume, without loss of generality, that the observer is at Φ = 0 and
x2 = 0 in cartesian coordinates, where Φ = tan−1(x2/x3). The distance can
be expressed, with a far-field assumption, as,

|x− y| ≈ |x| − y1 cos θ −R cosφ sin θ, (76)
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where θ is the angle of x to the jet axis. The solution thus becomes

p(x, t) =

ρ0UũR
2

4πc2|x|
∂2

∂t2

∫ ∫
e
i
[
ω
(
t− |x|−y1 cos θ−R cosφ sin θ

c

)
−ky1

]
e−

y2
1

L2 Cmeimφdφdy1,

(77)

which can be rearranged as

p(x, t) =

ρ0UũR
2

4πc2|x|
∂2

∂t2

∫ ∞

−∞
e
i
[
ω
(
t− |x|−y1 cos θ

c

)
−ky1

]
− y2

1
L2 dy1

∫ 2π

0

Cmei(mφ−ωR cosφ sin θ
c )dφ.

(78)

Evaluation of the azimuthal integral

I1 =

∫ 2π

0

ei(mφ−ωR cosφ sin θ
c )dφ, (79)

which can be expressed as

I1 =

∫ 2π

0

ei(mφ)e(−iπStM cosφ sin θ)dφ, (80)

indicates the radiation efficiency of azimuthal mode m; i.e. the capacity of
that azimuthal source mode to couple with the acoustic field.9 This integral
can be expressed in terms of Bessel functions Jm,

Jm(x) =
1

2πim

∫ 2π

0

eix cosφeimφdφ, (81)

giving
I1 = (−i)m2πJm(πStM sin θ). (82)

For StM sin θ = 0 the I1 integral yields 2π for m = 0, and 0 for all other
values of m. This means that, if we neglect retarded time differences along
the azimuthal direction, which is justified if this direction is acoustically
compact (i.e., the acoustic wavelength is much larger than the azimuthal
wavenumber, which being always smaller than the jet diameter, D, allows

9Or, stated otherwise, the extent to which that mode is aligned with the propagation

operator. If we find that certain modes are not so aligned, this will be an indication

that there neglect constitutes a pertinent modelling simplification.
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Figure 6. Results for the I1 integral

the compactness criterion to be expressed in terms of the jet diameter:
D/λ = StM) only axisymmetric wave-packets can radiate. In other words,
if the wave-packet diameter D is compact, or, if the observation angle θ is
small, only the axisymmetric wave-packet has significant radiation. This
is always true for θ = 0 and θ = π, i.e. for an observer on the jet axis
(Michalke (1970); Michalke and Fuchs (1975); Michel (2009)).

Figure 6 shows the I1 integral, divided by (−i)m so as to yield a real
quantity. We see that the integral of m = 0 decays from its compact value
of 2π, eventually goes to zero, and then oscillates. The integrals for the
higher azimuthal modes are zero at the compact limit, as expected from
the properties of the Bessel functions; they go from zero to a certain value,
which is of the same order of the m = 0 integral, and then oscillate.

In order to appreciate the implications for a realistic jet flow, consider
the sound radiation to low axial angles from a high Mach number subsonic
jet. Taking θ = π/6, M = 0.9 and St = 0.4, we have StM sin θ = 0.18, and
in this case, as seen in fig. 6, we can, if we have similar amplitudes Cm for
the different m values, neglect all modes m > 0 and consider the compact
limit (I1 = 2π for m = 0) as a first approximation; the I1 integral for m = 1
yields a sound intensity 10dB lower than that for m = 0, the integrals for
higherm modes being lower still. Suzuki and Colonius (2006) have provided
experimental evidence showing that the peak amplitudes, Cm, for azimuthal
modes m = 0 and m = 1 are similar, the amplitudes of mode m = 2 being
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somewhat lower.
If we retain only the axisymmetric wave-packet and approximate I1 as

2π, we have

p(x, t) =
ρ0UũR

2

2c2|x|
∂2

∂t2

∫
C0e

i
[
ω
(
t− |x|−y1 cos θ

c

)
−ky1

]
e−

y2
1

L2 dy1, (83)

and integration gives

p(x, t) = −C0
ρ0UũM

2
c (kD)2L

√
π cos2 θ

8|x| e−
L2k2(1−Mc cos θ)2

4 eiω(t−
|x|
c ) (84)

which is the same result obtained using the line source in equations 71, 72
and 73. This means that for small values of the parameter StM sin θ, the
use of a wave-packet concentrated on a line leads to the same result as a
surface wave-packet, justifying therefore the use of a line distribution for
T11, whose amplitude is that of the azimuthal mean of the u fluctuation on
the jet lipline. We will see, later, the extent to which this considerably sim-
plified source model, and variants thereof, can mimic the sound-producing
behaviour of a turbulent jet. In particular, we will be interested in some
important additional modifications, identified thanks to the application of
the analysis methodology outlined earlier, which are necessary in order that
the ansatz be capable of producing quantitative agreement with the sound
field radiated by the turbulent jet. First, however, let us examine some ex-
perimental data, comparing, qualitatively, with the basic wavepacket ansatz
outlined above.

Experimental evidence of wavepacket radiation The following re-
sults are taken from Cavalieri et al. (2011b). The experiments were per-
formed at the Bruit & Vent jet-noise facility of the Pprime Institute. The
setup is shown in figure 7. The exit diameter of the jet is D = 0.05m,
the flow is isothermal, and the exit velocity is varied over the Mach num-
ber range 0.3 < M < 06; the corresponding Reynolds number range is
3.7×105 < Re < 5.7×105, and the boundary layer is tripped in all cases so
as to ensure that at the outlet it is fully turbulent. Acoustic measurements
are performed by means of an azimuthal distribution of six microphones
at a radial distance of 35D, and the axial position of the ring array was
variable. In this way the directivity of the sound field, decomposed into
azimuthal Fourier modes, can be studied. These measurements can then be
compared with the sound field of the wavepacket ansatz discussed above;
in particular we focus on the axisymmetric component. Figure 7(b) shows
the directivity in terms of both the overall SPL and the contributions from
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(a) (b)

Figure 7. (a) Jet noise experiment assessing azimuthal structure of the
acoustic field radiated by moderate Mach number jets; 0.3 < M < 06,
< Re <. Red arrow shows direction of jet; red circles indicate the positions
of the 6 azimuthally-distributed microphones; (b) OASPL: squares: total;
contributions from azimuthal modes m=0, m=1 & m=2 indicated in figure.
Note dominance of axisymmetric mode in downstream radiation.

each of the first three azimuthal Fourier modes, m = 0, m = 1 and m = 2.
The axisymmetric component, m = 0, dominates the downstream radiation,
sideline radiation comprising larger contributions from modes m = 1 and
m = 2.

The dominance of the low-angle radiation by the axisymmetric mode is
consistent with the foregoing analysis of the efficiency of azimuthal source
modes, suggesting the existence of wavepacket radiation. By continuing to
interrogate the experimental data with respect to the wavepacket model
characteristics, we can evaluate the extent to which this model is pertinent.

Concentrating now on the lower emission angles, assessing the power
spectral density as a function of emission angle and azimuthal Fourier mode,
we obtain the result shown in figure 8. As we move from 40◦ to 20◦ we
observe the progressive emergence of the axisymmetric component of the
power spectrum, and we note that this emergence occurs over a relatively
narrow spectral range, with peak frequency StD = 0.2. The energy of the
axisymmetric component of the sound field finds itself concentrated at low
angles (highly directive) and across a relatively narrow range of frequency.
At the lowest emission angles the peak of the overall spectrum is almost
entirely axisymmetric, the energy of mode m = 0 being 10dB (that is one
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Figure 8. Power spectra of azimuthal modes 0, 1 & 2 at low emission
angles.

Figure 9. Narrowband-filtered (at StD = 0.2) directivity of azimuthal
modes and comparison of axisymmetric mode with wavepacket ansatz. Ax-
isymmetric component of experimentally obtained sound field is superdirec-
tive (exponential polar decay) in agreement with the wavepacket model
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Figure 10. Azimuthal mode directivities as a function of Mach num-
ber. Axisymmetric mode is superdirective for all Mach numbers; indicates
wavepacket radiation even at low Mach number

order of magnitude) greater than the next most energetic azimuthal mode,
m = 1. The narrowband character of the emergence of the axismmetric
mode, whose energy is concentrated at StD = 0.2, justifies an assessment
of the directivity of the SPL in a narrow frequency range centered at this
frequency. The result is shown in figure 9(a), where the downstream direc-
tivity of the axisymmetric component at this frequency is even more marked.
Comparison can now be made with the directivity factor of the wavepacket
ansatz, (1 −Mc cos θ)

2; this is done in figure 9(b). The exponential char-
acter of the axisymmetric component of the sound field, when plotted as a
function of this wavepacket directivity factor again suggests that the asso-
ciated underlying source mechanism is associated with an axially extended
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wavepacket of the kind modelled by equation 72. The term superdirectivity
was coined by Crighton and Huerre (1990) to describe such directivity.

It is now of interest to study two further aspects of the experimental
sound field: the Mach number dependence and the spectral scaling; both
will allow further insight with regard to the possibility that the downstream
radiation is underpinned by these relatively simply wavepacket source func-
tions. Figure 10 shows the OASPL and narrowband-filtered SPL as a func-
tion of emission angle for the different azimuthal Fourier modes of the sound
field, as a function of jet Mach number. The result shows that precisely
the same behaviour observed at Mach 0.6 is also observed at lower Mach
number, suggesting that wavepacket radiation is a dominant mechanism for
low-angle emission, even at low Mach number.

Finally, we assess the scaling of spectra for the modes m0 and m1, as
a function of Mach number, for emission angle θ = 30◦. The result is
shown in figure 11, where both Strouhal (StD = fD/Uj) and Helmholtz
(He = D/λ) numbers are assessed. For the axisymmetric component of the
sound field we find that Helmholtz scaling best collapses the sound spectra.
As the Helmholtz number is the ratio of a characteristic flow scale to a
characteristic scale of the sound field, the fact that this parameter collapses
the axisymmetric component of the sound field suggests that the associated
source is non-compact, as it suggests that this component of the sound field
is sensitive to the ratio between flow scales and acoustic scales; this would
not be so for a compact source, where a clear scale separation exists between
acoustic waves and flow eddies.

By comparing the experimental data with the details of the wavepacket
ansatz, it is possible to make a quantitative estimate of the wavepacket
compacntess parameter, kL, which can be written as

Lk =
2π

Mc
He

L

D
. (85)

Considering the jet at M = 0.6, we have, Mc = 0.36, He = 0.12 and
D = 0.05. For the same jet the directivity of the axismmetric mode is char-
acterised by a decrease of 15.6dB over the angular range 20◦ < θ < 45◦,
which allows us to estimate that the compactness parameter, Lk = 6.5.
Comparison with figure 5, gives a sense of the corresponding wavepacket
structure; this value, which suggests that the wavepacket extends over an
axial region of about 6D, is consistent with the analysis of Hussain and
Zaman (1981), who educed coherent structures from low Mach number tur-
bulent jets by means of conditional averaging of hotwire measurements.
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Figure 11. Scaling of azimuthal modes 0 and 1. Axisymmetric mode scales
best with Helmholtz number, He = D/λ, suggesting that it is associated
with a non-compact source. Substituting the experimental parameters into
the wavepacket model we can deduce that Lk = 6.5; comparison with
figure5 shows that this implies wavepacket with a spatial structure com-
prising about three oscillations, extended over approximately 6D, i.e. from
the jet exit to beyond the end of the potential core.

The radiation mechanism Let us now consider the details of the mecha-
nism by which sound sources, and in particular, ‘coherent structures’, excite
acoustic modes in turbulent flows. The mechanism can be understood by
considering the acoustic analogy, written down either as a partial differen-
tial equation, or expressed in terms of its integral solution; time-domain,
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frequency-domain and linear alebräıc formulations of both the inhomoge-
neous PDE and its integral solution can be helpful in understanding the
essentials: the sound production mechanism can be thought about in three
different ways; we can say that:

1. Space-time inhomogeneity of the source field is such that cancellation
(in time-delayed coordinates) between regions of positive and negative
stresses is incomplete; the fluid medium thus finds itself subjected
to compressions and rarefactions that engender a propagative energy
flux,

2. The propagation operator has an acoustic response to only those com-
ponents of the source field that are acoustically-matched: those that
satisfy the dispersion relation ω2 = c20|κ|2; in terms of the integral
solution we can say that the Green’s function filters out, from the full
range of source scales, only those that satisfy that dispersion relation,

3. In terms of linear algebra we can say that the propagator maps to
the farfield those components of the source with which it is aligned:
L ‖ s(q).

In the case of the wavepacket, these different scenarios can be represented
schematically as in figure 12.

Let us now consider a number of different kinds of physical wavepacket
behaviour that can lead to such radiation, before going on to explore data
from turbulent jets. The following is taken from Cavalieri et al. (2011a) and
Cavalieri et al. (2010b).

Spatial modulation The wavepacket characteristic most often referred
to in the literature as important for the production of radiating sound en-
ergy is its spatial modulation. A subsonically-convected spatial sinusoid of
constant amplitude and infinite spatial extent contains only non-radiating
scales, because ω < kxc. However, any truncation or spatial modulation of
the amplitude of that wavepacket will cause its axial wavenumber spectrum
to broaden, and in this way some of the wavepacket energy will find itself in
the acoustically-matched region of the spectrum. Figure 12 illustrates this:
(a) shows non-radiating and radiating space-time structures; (b) shows the
frequency-wavenumber spectrum of a radiating wavepacket—the tail of the
spectrum that finds itself in the radiating sector causes sound radiation.

Temporal modulation A further feature of the unsteadiness associated
with the orderly part of a turbulent jet is its intermittency. The earlier cita-
tions from Mollo-Christensen recognise this. A further citation from Crow
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(a) (b) (c)

Figure 12. Different ways of thinking about the wavepacket radiation
mechanism: (a) Space-time representation: amplitude inhomogeneities lead
to incomplete cancellation, and associated compressions and rarefactions;
(b) frequency-wavenumber representation; mechanism can be thought of as
a filter that only passes the source components that satisfy ω2 = c20|κ|2; (c)
Representation in terms of linear algebra: mapping to the farfield of source
by propagation operator: directions of the source, s(q), that are parallel to
the propagator, L, get mapped to the farfield.

and Champagne (1971) is also relevant; they observed, by means of flow
visualisation, the appearance of a train of coherent ‘puffs’ of turbulence.
These were characterised by an average Strouhal number of 0.3, but the
authors noted how “three or four puffs form and induct themselves down-
stream, an interval of confused flow ensues, several more puffs form, and so
on”.

The effect of such intermittency can considered in a number of ways.
Ffowcs Williams and Kempton (1978) were the first to consider a kinematic
model for such behaviour; this took the form of a random variation of the
phase velocity of the convected wavepacket, as shown in equation 86. In
this case the wave envelope remains time-invariant.

s(y, τ) =
∂2

∂y21
2ρ0Uũ

πD2

4
δ(y2)δ(y3)

[1 + ε(t− y1/U)]

U
e(ωt−κyy1)e(−y2

1/l
2).

(86)
Figure 13, which shows data taken from the DNS of Freund (2001) and the
experimental measurements of Tinney and Jordan (2008), illustrates how
intermittency is also manifest in an unsteadiness of the wavepacket envelope:
a pattern of convected waves is observed from x ≈ D to x ≈ 6D. These are
characterised by some average frequency, but they undergo a modulation
which is both spatial and temporal: the maximum amplitude of the wave
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Figure 13. Left: axisymmetric axial velocity fluctuation at r/D = 0.5,
from DNS of Freund (2001); Re = 3600. Right: nearfield pressure signature
of jet at Re = 5.106, from measurements of Tinney and Jordan (2008).
Note in both cases the time variation of wavepacket amplitudes and spatial
extension.

changes in time, as does the position where it breaks down. A model for
the former effect is

T11(y, τ) = 2ρ0Uũ
πD2

4
δ(y2)δ(y3)e

i(ωτ−ky1)e−
y2
1

L2 e
− τ2

τ2
c . (87)

Examples of this kind of space and time modulation are shown in figure 14
and this leads to a radiated sound pressure:

p(x, t) =
ρ0UũD

2 cos2 θ
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(88)
where c is the speed of sound in the undisturbed fluid and θ is the angle of
x to the jet axis. Use of the far-field approximation |x− y| ≈ |x| − y1 cos θ
leads to

p(x, t) =
ρ0UũD

2 cos2 θ
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−∞
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⎫⎬
⎭ (89)
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Figure 14. Space- and time-modulated wavepackets.

with

f(y1) = ei(
ωy1 cos θ

c −ky1)e
− y2

1
L2 − (y1 cos θ)2

c2τ2
c e

− 2y1 cos θ(t− |x|
c )

cτ2
c , (90)

where c is the speed of sound in the undisturbed fluid and θ is the angle of
x to the jet axis.

Evaluation of the integral of equation 90 leads to an analytical expression
for the pressure in the far field:

p(x, t) = PQe
iωtr− t2r

τ2
c
− L2

4τ2
c γ2 [(ck−ω cos θ)τ2

c−2itr cos θ]
2

(91)

with

tr = t− |x|
c
, (92)
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P =
ρ0UũD

2τccL
√
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4c2|x|γ , (93)
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(94)
and

γ =
√
τ2c c

2 + L2 cos2 θ. (95)

If we calculate the limit with τc → ∞ of eqs. (91)–(95), we have

γ → τcc (96)

and

P → ρ0UũD
2L

√
π cos2 θ

4c2|x| , (97)

which, after substitution in eq. (91), leads, as expected, to the earlier result
for a purely spatially modulated wavepacket,

p(x, t) = −ρ0UũM
2
c (kD)2L

√
π cos2 θ

8|x| e−
L2k2(1−Mc cos θ)2

4 eiω(t−
|x|
c ), (98)

where Mc is the convective Mach number given by ω/(kc).
We can define a source efficiency as the ratio between the acoustic energy,

EA =

∫ ∞

0

∫
Ω

p2

ρ0c
dS(x)dt, (99)

with the surface integral calculated over a spherical surface Ω in the far
field, and the turbulent kinetic energy, or “source” energy, given by

ES =
1

T

∫ ∞

0

∫
VS

ρ0u
2

2
dydτ . (100)

This allows an evaluation of the impact of changes in the space and time
scales of the wavepacket envelope on the acoustic efficiency. Figure 15
shows this dependence. Note that the colour scale is logarithmic: at high
Mach number small reductions in either the spatial or temporal extent of
the wavepacket can lead to considerably enhanced radiation efficiency; the
space-time localisation of a wavepacket is thus an important source param-
eter: such behaviour in a jet comprises a flow ‘direction’ to which the wave
operator is highly sensitive.
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Figure 15. Wavepacket efficiency, as a function of space- and time-envelope
scales, for different Mach numbers.

Temporally-localised envelope truncation In order to provide tem-
poral changes in the spatial extent of the envelope function, in an effort to
better model the wavepacket characteristics observed in figure 13, we can
model T11 as

T11(y, τ) = 2ρ0Uũ
πD2

4
δ(y2)δ(y3)e

i(ωτ−ky1)e
− y2

1
L2(τ) . (101)

With this expression the peak amplitude of the convected wave is kept
constant, but the characteristic length of the envelope, L, changes with
time. We model the changes in L as

L(τ) = L0 − κe
− (τ−τ0)2

τ2
L , (102)

where L0 is an initial envelope width and κ is the maximum envelope reduc-
tion, which happens at τ = τ0. This reduction of the envelope occurs over
an interval characterised by the temporal scale τL, and is modelled by a
Gaussian function. Examples of this source behaviour are shown in fig. 16.
The sound radiation is obtained in this case by numerical integration using
this line source. A sample result is shown in figure 16: we note that the
envelope truncation also leads to an enhancement of the sound radiation,
again suggesting that this kind of unsteadiness, observed in the numerical
and experimental data, may underpin the emission of high-amplitude acous-
tic perturbations to the far field of turbulent jets: again, in the spirit of the
system reduction at the heart of the analysis methodology evoked earlier,
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Figure 16. Space- and time-modulated wavepackets.

the propagation operator is sensitive to this kind of flow behaviour, and so
such flow ‘directions’ should, again, be retained, i.e. explicitly modelled.

We now consider a final model, which takes us closer again to the be-
haviour we observe in the data shown in figure 13. We wish to mimic the
space-time ‘jitter’ manifest in the data, we must therefore capture the time
variation of the wavepacket envelope in terms of both its peak amplitude and
its axial extent. This final model combines the effects modelled individually
in the two previous models.

Space-time ‘jitter’ T11 is now modelled as

T11(y, τ) = 2ρ0Uũ
πD2

4
δ(y2)δ(y3)A(τ)e

i(ωτ−ky1)e
− y2

1
L2(τ) , (103)

where we allow temporal variations of the amplitude A, and also tempo-
ral changes in L. This expression, used in conjunction with the far-field
assumption, leads to:

p(x, t) =
ρ0UũD

2 cos2 θ

8c2|x|
∂2

∂t2

∫ ∞

−∞
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(
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c

)

e
i
[
ω
(
t− |x|−y1 cos θ

c

)
−ky1

]
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L2
(
t− |x|−y1 cos θ

c

)
dy1. (104)

If the amplitude A and the characteristic length of the envelope, L,
change slowly when evaluated at retarded-time differences (y1 cos θ/c) along
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the wave-packet, we can consider axial compactness for these functions in
the integration, such that

A

(
t− |x| − y1 cos θ

c

)
≈ A

(
t− |x|

c

)
(105)

and

L

(
t− |x| − y1 cos θ

c

)
≈ L

(
t− |x|

c

)
. (106)

If ∗ is used to denote a function evaluated at the retarded time t − |x|
c ,

we have

p(x, t) =
ρ0UũD

2 cos2 θ

8c2|x|
∂2

∂t2

{
A∗
∫

e
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(
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1
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.(107)

Evaluation of this integral, considering that the temporal changes in L and
in A are slower than those related to the harmonic oscillation in ω, leads to

p(x, t) = −A∗ ρ0UũM
2
c (kD)2L∗√π cos2 θ

8|x| e−
(L∗)2k2(1−Mc cos θ)2

4 eiω(t−
|x|
c ).(108)

This means that for sufficiently slow temporal changes in A and in L,
the radiated sound field at a given time t is that of a wave-packet whose
amplitude and envelope corresponds to the values A∗ and L∗, that is, to the
wave-packet at the retarded time t− |x|/c (compare with eq. (98)).

In the spirit of the analysis methodology outlined earlier the models
considered here will be used, in conjunction with an ensemble of data-
processing/reduction techniques (outlined in section §5), to analyse data
obtained using Large Eddy Simulation and Direct Numerical Simulation.

3.6 Conclusion

In this section we have considered the source modelling problem from
the perspective of ‘coherent structures’. It has been shown how consider-
able simplifications can be justified where the associated sound production
mechanisms are concerned, these simplifications being for the most part de-
rived from theoretical reasoning based on Lighthill’s acoustic analogy. In
what follows we will explore some numerical databases, from which we will
endeavour to extract and evaluate the salient source features through the
application of a number of different analysis tools. These analyses closely
follow the methodology outlined at the beginning of this section; and a de-
tailed exposition of the various analysis tools implemented are described in
section §5.
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4 Two case studies

In this section we provide two examples of applications of the analysis
methodology outlined earlier, focusing on the organised component of the
turbulent jet discussed in the previous section; we also make use of the
wavepacket sound source models of that section.

Let us begin by briefly recalling the analysis methodology: (1) we equip
ourselves with complete or partial data from full Navier-Stokes solution10;
(2) we then identify the acoustic observable, qA, and design a correspond-
ing filter, FqA

11, used to extract the radiating flow skeleton, q̂D; (3) we
construct a simplified kinematic source model, s(q̂D) (based on the models
developed in section §3), and verify that solution of Lq̂A = s(q̂D) is such
that |qA− q̂A| be acceptably small. The final stage of the analysis method-
ology involves identifying the associated dynamic law; this aspect will be
outlined briefly in section §6.

We use three different databases for the analysis, two LES and one DNS.
The two LES use different numerical schemes, leading to one having higher
space-time scale resolution than the other. We will refer to these as LESMD

and LESHR, the subscripts denoting, respectively, moderate and high reso-
lution. The DNS and LESMR therefore constitute databases where coher-
ent structures are relatively easy to identify, on account, respectively, of the
low Reynolds number and the moderate scale resolution. LESHR is more
challenging, as it contains a broader range of turbulence scales, making the
coherent structures more difficult to educe. In this case we are required to
construct a filter based on Linear Stochastic Estimation (LSE).12

4.1 Case study 1. Moderate-resolution LES and DNS

We begin by performing a Large Eddy Simulation of a Mach 0.9, isother-
mal jet, with nominal Reynolds number, Re = 400000. The details of the
computation can be found in Cavalieri et al. (2010a). An image of the flow
solution is shown in figure 17, where the first stage in the analysis method-
ology is illustrated. We, of course, verify that the simulation shows good
agreement with experimental results: at peak sound radiation frequencies

10It is true that the LES does not provide a full Navier Stokes solution, being based on

filtered equations; we nonetheless consider that it provides a relatively complete rep-

resentation of the behaviour of the larger structures, which are those we are interested

in here.
11In the first study this filter is rather heuristic, being based simply on flow visualisation

following the application of Fourier and wavelet transforms; in the second, the filter

has a rigorous mathematical definition.
12A detalied presentation of LSE is provided in section §5.
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the LES is within 2dB of experimentally observed values.

Figure 17. First stage of analysis: obtain Navier Stokes solution, q, which
contains the acoustic observable, qA.

The next stage is to analyse the observable, qA. To do so we imple-
ment the following signal processing: azimuthal Fourier decomposition is
performed on the acoustic data on a cylindrical surface of radius, r = 9D,
and which extends from x/D = 0 to x/D = 20; wavelet transforms are
applied in the time direction, for each azimuthal Fourier mode. The rea-
sons for this choice of data-processing can be found in the previous section:
we saw in the experiment that the sound field is dominated by only three
azimuthal Fourier modes; this being the case, it is legitimate and useful
to break the sound field down into these building blocks. This will allow
us to simplify the analysis. Also, we saw that coherent structures in jets
display intermittency, and in peak radiation directions much of the overall
sound energy arrives in temporally localised bursts. This suggests a link
between the intermittency of coherent structures and peak sound radiation,
and the models developed in the previous section illustrate how such source
behaviour can indeed enhance the sound radiation efficiency of organised
flow structures.

We can see in figure 18 that the downstream direction is, in agreement
with what was observed experimentally, dominated by axisymmetric sound
radiation. We will therefore focus on this component of the sound field, and
see if we can ascertain the associated flow kinematics. Note the procedure
that is being followed here: we are gradually eliminating flow information,
thereby homing in progressively on the dominant aspects of the flow with
regard to the acoustic observable. By doing so we simplify the task of
analysing and later modelling the jet as a source of sound.

We now consider the temporal structure of the axisymmetric component
of the sound field. Application of a wavelet transform13 to the time history

13The wavelet transform is presented in section §5.
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Figure 18. Left: instantaneous image of the jet, taken in a cross-section at
x/D = 7; note the azimuthal organisation of the radiating pressure wave.
Right: jet directivity as a function of azimuthal Fourier mode; note, con-
sistent with image on the left, dominance of the axisymmetric mode in the
downstream direction.

of the axisymmetric mode of the sound field at each axial station provides a
corresponding scalogram. Figure 19 shows an example for the axial station,
x/D = 17 (i.e. at low emission angle, θ ≈ 30◦). A series of high-amplitude
events, labelled A - H, stand out. By setting a threshold the scalogram can
be filtered and the time signal reconstructed such that only the said events
are retained. In what follows we concentrate on the first high-amplitude
event. This filtering procedure is applied to the sensors at all axial stations
and the result is shown in figure 20. We have here isolated one particular
piece of the observable, qA(m = 0 ; 19 < tc0/D < 30), and from this filtered
information we will now work our way back into the flow, qD, in order to
analyse and understand the flow events that caused the high-amplitude
sound pressure fluctuation.

Figure 21 shows the flow at four consecutive times during the pro-
duction of the said fluctuation. The following behaviour is observed. At
t = 8.576 (top left) we see an axisymmetric wavepacket extending out to
about x/D = 5, downstream of which the structures are tilted into some-
thing closer to mode 1. As far as the axisymmetric component of the flow is
concerned we therefore have a truncated wavepacket. We saw in section §3
how such behaviour can lead to enhanced acoustic efficiency, and, indeed,
consistent with this, a high-amplitude depression is emitted from the flow
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Figure 19. Scalogram computed from the time history of the axisymmetric
acoustic mode at r/D = 9, x/D = 17

at this time. This propagating wave is the same observed in figure 20 at
(tc0/D ≈ 20 ; 15 < x/D < 20). After the emission of this wavefront the
axisymmetric wavepacket extends axially, as seen in figure 21 at t = 9.514,
and then undergoes a second truncation, at both the upstream and down-
stream ends (t = 12.596), at which point a second wavefront is released
from the flow: this corresponds to the second depression observed, after
wavelet transform, in figure 20, at (tc0/D ≈ 25 ; 15 < x/D < 20). Finally,
the axisymmetric wavepacket increases in both intensity and axial extent,
as seen in figure 21 at t = 16.48, before collapsing a third time (not shown)
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Figure 20. Left: space-time structure of axisymmetric component of sound
field on cylindrical surface with r/D = 9. Right: same filed after application
of wavelet filtering; this serves to isolate high amplitude bursts.

and thereby releasing the third wavefront observed in figure 20.
The flow kinematics associated with the high-amplitude axisymmetric

acoustic wavepacket is thus seen to comprise a drifting of the flow in and
out of axially-extended axisymmetry; i.e. we have space-time modulation,
or ‘jitter’ of an axisymmetric wavepacket. This behaviour is reminiscent of
the observation of Crow and Champagne (1971) cited earlier: “three or four
puffs form and induct themselves downstream, an interval of confused flow
ensues, several more puffs form, and so on”. The third wavepacket ansatz
proposed in section §3 would therefore appear to be appropriate. We recall
the source model

T11(y, τ) = 2ρ0Uũ
πD2

4
δ(y2)δ(y3)A(τ)e

i(ωτ−ky1)e
− y2

1
L2(τ) . (109)

By application of a short-time Fourier series (figure 22), followed by the
fitting of a Gaussian envelope function (figure 23), values of A(τ) and L(τ)
are obtained. Inserting these into equation 109 and then solving the wave
equation with this as source allows us to assess to what degree our kinematic
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Figure 21. Visualisation of the hydrodynamic pressure within the jet at
times corresponding to the acoustic wavepacket identified by wavelet trans-
form in figure 20

source model, s(q̂D), reproduces a result, q̂A, which is close to the acoustic
observable qA. The result is shown in figure 24 , where the result of the
model is compared with both the OASPL of the axisymmetric mode of
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Figure 22. Left: space-time structure of axisymmetric component of axial
velocity fluctuation at r/D = 0.5; right: short-time Fourier transform of
the data in figure on the left.

Figure 23. Gaussian functions are fitted to the result of projecting the flow
data on the short-time Fourier series. In this way, values for the instanta-
neous wavepacket envelope amplitude, A(τ) and length scale, L(τ) can be
obtained.

the LES, and a result obtained using a wavepacket ansatz where the time-
averaged values of the A(τ) and L(τ) are used, i.e. a wavepacket that does
not jitter. Whereas the non-jittering wavepacket shows a 12dB discrepancy
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Figure 24. Comparison of the DNS and LES sound fields, left and right,
respectively, with those obtained using simplified, jittering source models.

with the LES, showing it to be clearly incorrect, the jittering wavepacket
is within 1.5dB, suggesting that this kinematic description is physically
pertinent: this confirms that this behaviour comprises flow directions that
are aligned with the propagation operator. The same procedure applied to
the DNS database produced similar agreement, as can be seen in figure 24.

The next stage in the analysis methodology, which is work in progress,
is to repeat the above analysis with respect to the other azimuthal Fourier
modes of the sound field, in that way building up a composite, simplified
kinematic description of the jet as a sound source, at which point it will be
possible to address the question of the associated simplified dynamic law.
Tools for reduced order dynamical modelling are outlined briefly in section
§6.

4.2 Case study 2. High-resolution LES

The foregoing case study was considerably simplified by the relatively
organised character of the flow solutions obtained using DNS and LESMR.
In this case study (taken from Kerhervé et al. (2010)) we consider a Large
Eddy Simulation (Bogey et al. (2003)) with a higher order numerical scheme,
which provides a flow solution with a broader range of turbulence scales in
the noise producing region of the flow. This flow thus presents a greater
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challenge in terms of flow feature eduction, and is in this respect a step
closer to the high-Reynolds number experimental context.

Figure 25. Large Eddy Simulation solution of Bogey et al. (2003), as used
by Kerhervé et al. (2010). Zones A: linear acoustic region; zone B: nearfield,
transition from non-linear hydrodynamics to linear acoustics; zone C: non-
linear turbulent region.

A two-dimensional slice of the flow solution is shown in figure 25. Again,
in the spirit of the analysis methodology outlined in section §3, we consider,
separately, the acoustic region, where we define what is to be our observ-
able, qA, and the flow region, where we are interested in reducing qD down
to q̂D. As seen in figure 25, the flow zone has been further split into zones
B and C; the reason for this is that these zones present quite different be-
haviour. In zone C the flow is turbulent, non-linear, dominated by confused
vortical motion, whereas in zone B fluctuations are predominantly irrota-
tional, and a transition is observed, as we move radially through this region,
the flow motions going from being dominated by hydrodynamics to being
dominated by acoustics. It is often in this region of the flow, particularly in
high Reynolds number experimental contexts, as the short historical note in
section §3 outlined, that the signature of coherent structures is most easily
observed.
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Because of the greater complexity of both the flow and sound fields
computed by this LES, we refine our definition of qA by filtering the sound
field so as to only retain fluctuations associated with low-angle emission,
which is believed to be predominantly contributed to by coherent structures.
A frequency-wavenumber transform and subsequent filtering allows this to
be achieved. The procedure works as follows. For each y− position in zone
A, the pressure field is Fourier transformed from (x, t) to (κx, ω):

p̃(kx, y, ω) =

∫∫
p(x, y, t)e−j(ωt+kxx) dt dx. (110)

A bandpass filter is then applied, which, for a given frequency, retains
wavenumbers in the range ω/c(θ1) < kx < ω/c(θ2) where c(θi)=co/cos(θi)
and θi denotes a given radiation direction. The bandpass filter is defined as

Ω(ω, kx) =

{
1 if kx < ω/c(θi)

exp
[
− (kx−|ω|/c(θi))4

α4

]
otherwise

. (111)

The filtered pressure is then recovered by inverse Fourier transform after
application of the frequency-wavenumber filter,

pf (x, y, t) =

∫∫
p̃(kx, y, ω)Ω(ω, kx)e

j(ωt−kxx) dω dkx. (112)

The results of the filtering are shown in figure 26. On the left the en-
tire propagating field is shown in both frequency-wavenumber and physical
space. The middle and right figures show, respectively, sound radiation in
the angular sectors 0◦ < θ < 60◦ and 60◦ < θ < 120◦. The space-time
field corresponding to the middle image is considered the acoustic observ-
able, qA, and we now use this to construct a filter, FqA

, by which we can
eliminate, from the full flow solution, any information not directly associ-
ated with sound production. What remains is then considered the sound
producing flow skeleton, which we can subsequently proceed to analyse and
model.

Linear Stochastic Estimation The method used in order to perform
the said filtering is based on Linear Stochastic Estimation, which provides
a means by which an approximation of a conditional average

q̂(x, t) =< q(x, t)|qA(x, t+ τ) > (113)

can be obtained. For the specific case considered in this study, q will be
either the hydrodynamic pressure or the turbulent velocity, associated with
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Figure 26. Top row: segments of frequency-wavenumber spectrum corre-
sponding to radiation in different angular ranges; bottom row: correspond-
ing instantaneous fields. Left column: 0◦ < θ < 180◦; middle columne:
0◦ < θ < 60◦; right columne: 60◦ < θ < 120◦

the full LES solution, in zones B and C; qA is the acoustic pressure, filtered
so as to only retain components radiating in the angular range, 0 < θ < 60.
The approach is used to determine, independently, conditional averages
(which are here a function of space and of time) of the turbulent velocity
and the pressure in zones B and C14:

û(x, t) =< u(x, t)|pA(y, t+ τ(x|y)) > (114)

p̂(x, t) =< p(x, t)|pA(y, t+ τ(x|y)) >, (115)

where the time delay τ(x|y) corresponds to the propagation time between
each flow point and each observer (obtained by means of ray-tracing).

As LSE is comprehensively dealt with in section §5 we here simply re-
call the main result, which is that the above conditional average can be

14where the pressure is concerned it is, in zone C, predominantly hydrodynamic, while in

zone B it contains a increasing proportion of acoustic fluctuation as we move radially

away from the jet through zone B



260 P. Jordan

approximated as

q̂(x, t) =

N∑
i=1

a(x,yi)pA(yi, t+ τ(x|yi)); (116)

i.e. the value of the the filtered (conditional) flow variable, q̂(x, t), is ob-
tained as the weighted linear combination of the values of the acoustic pres-
sure, pA(yi, t + τ(x|yi)); the acoustic domain, y is discretised into an en-
semble of discrete sensors. The coefficients a(x,yi) are obtained by solving
a linear system of equations of the form Q = P ·A where,

Q =

⎡
⎢⎣ q(x, t)pA(y1, t+ τ(x|y1))

...

q(x, t)pA(yN , t+ τ(x|yN))

⎤
⎥⎦ A =

⎡
⎢⎣ a(x,y1)

...
a(x,yN)

⎤
⎥⎦ (117)

P =

[ pA(y1, t)pA(y1, t) . . .
...

. . .

pA(y1, t)pA(yN, t+ τ(x|yN)− τ(x|y1)) . . .

. . . pA(yN, t)pA(y1, t+ τ(x|y1)− τ(x|yN))

. . .
...

. . . pA(yN, t)pA(yN, t))

]
(118)

A sample of the result is shown in figure 27. Note the differences in flow
field structure, in zones B and C, between the full Large Eddy Simulation
solution (q(x, t); figure on left) and the result obtained by Stochastic Esti-
mation (q̂(x, t); figure on right). The quantity shown in zone B is pressure,
while in zone C both pressure and velocity are shown (the bottom part of
the figure shows a zoom on the section of zone C indicated by the black
rectangle in the top part of the figure). In zone C, the velocity field is indi-
cated by means of black arrows (showing the velocity vector in the plane),
and the skeleton of the pressure field can be discerned by means of red
iso-contours indicating p(x, t) = 0 or p̂(x, t) = 0. In the case of û(x, t) the
gamma criterion has been used to colour the velocity field. This quantity,
often used as a visual aid for the study of coherent structures (Graftieaux
et al. (2001),) is defined as:

Γ(P) =
1

S

∫
S

PM ∧ (UM −UP )] · −→z
||PM || · ||UM −UP || dS with UP =

1

S

∫
S

UMdS,

(119)
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Figure 27. Left: Zone A: Low-angle filtered acoustic field; zones B and C:
full LES solution. Right: Zone A Low-angle filtered acoustic field; zones B
and C: conditional (filtered) flow, q̂D

where P is the point where the function is evaluated, M lies in the region
S centered on P–generally chosen as a rectangular area, z is the unit vector
normal to the measurement plane, UM and UP are the velocity vectors at
point M and P respectively, and N is the number of point in S.

The result shown in figure 27 suggests the kind of wavepacket radiation
observed in the previous studies. In zone C we observe a convected train of
coherent vortical structures carrying a corresponding succession of positive
and negative hydrodynamic pressures. The fact that the pressure and ve-
locity fields are estimated independently, and yet produce a result that is,
qualitatively, physically consistent (high and low hydrodynamic pressures
carried, respectively, by vortical structures and saddle points ), justifies our
thinking about the result, q̂(x, t), as a sub-space of the flow.

We can now study this filtered field with a view to understanding what
kind of simplified models might be appropriate where sound production is
concerned. Two avenues appear worth pursuing: (1) We can decompose the
field q̂(x, t) into orthogonal building blocks by means of Proper Orthogonal
Decomposition; (2) we can study q̂(x, t) during periods of high-level sound
emission in order to get a sense of what loud and quiet periods of flow
activity look like. The first of these steps is of interest for two reasons.
Firstly, the orthogonal building blocks constitute a basis that can help to
characterise, and quantitively assess the degree of complexity (the number
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of degrees of freedom) of, the flow kinematics. And, secondly, the same basis
provides a possible framework within which to begin studying the dynamics
of the reduced-complexity flow skeleton.

Proper Orthogonal Decomposition Proper Orthogonal Decomposi-
tion (POD) is presented in some detail in section §5, we therefore here sim-
ply recall the main equations and results, before applying it to the both the
complete flow solution, q(x, t), and the reduced-complexity, filtered flow,
q̂(x, t).

The snapshot POD is used in this situation. The eigenvalues and eigen
vectors of the two-time correlation function, R(t, t′), are first computed:∫

T

C(t, t′)a(n)(t′)dt′ = λ(n)a(n)(t) (120)

where a(n)(t) are the eigen-vectors, λ(n) the eigenvalues and the two-time
correlation function, C(t, t′), is defined as,

C(t, t′) =
1

T

∫∫
S

nc∑
i=1

ui(x, t)ui(x, t
′)dx (121)

with nc = 3 the number of components of the vector velocity field (when
POD is effected on the pressure field, nc = 1) and T the duration of the

data set. An associated set of spatial functions Φ
(n)
i (x) can be obtained by

projection of a(n)(t) onto the velocity or pressure fields:

Φ
(n)
i (x) =

∫
T

a(n)(t)ui(x, t)dt with i = 1, .., nc. (122)

The result of the POD can provide two pieces of information. The con-
vergence of the eigenspectrum, shown in figure 28, gives a sense of how many
POD modes are required to represent the flow: if the convergence is rapid
a large portion of the flow energy is captured with relatively few modes, if
it is slow we require a large number of modes to capture the same energy.
The former situation indicates that the flow is relatively organised, while

the latter indicates a more disorganised flow. The spatial modes Φ
(n)
i give

us a sense of the characteristic spatial structures that dominate the flow.
The eigenspectrum, shown in figure 28, shows that while the eigenspec-

trum associated with q has a slow convergence, 80 modes being required
to capture 50% of the energy, that of q̂ is considerably more rapid, only 6
modes being necessary to represent the same percentage of the associated
fluctuation energy.
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Figure 28. Eigenspectra associated with q and q̂

(a) (b)

Figure 29. Eigenfunctions associated with q̂; (a): axial velocity; (b) radial
velocity

Figure 30. Eigenfunctions associated with q̂: pressure.
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The eigenfunctions, shown in figures 29 and 30, emphasise once again
the orderly, wavelike character of q̂, in terms of both the velocity and the
pressure fields, over the first five or so diameters. Two characteristic space
scales can be distinguished in the velocity eigenfunctions: one is of the order
of the jet diameter, manifest in modes 0 and 1, representative of activity
towards the end of the potential core, and a second, smaller space scale is ob-
served, in modes 2 through 5, representative of structures further upstream
in the annular mixing-layer region of the flow. The pressure eigenfunctions
are all characterised by similar scales; they peak farther upstream and there
appears to be a distinction between modes 0 through 3, which have reflec-
tional symmetry with respect to the jet axis, and modes 4 and 5 which
are antisymmetric. These symmetries are most likely the two-dimensional
signatures of axisymmetric and helical wavepackets.

Source mechanism analysis We now, finally, consider the space-time
characteristics of q̂ associated with high- and low-level sound emission.
Comparison of the pressure signature on the centerline of the jet gives a

Figure 31. (a): (x, t) structure of full pressure (qp) on jet centerline; (b)
(x, t) structure of reduced pressure (q̂p) on jet centerline; (c): black line:
acoustic pressure (qA) at 30◦; red line: short-time Fourier series of signal.
Figure (c) has been time-shifted to account for propagation times, such that
events at a given time are comparable with events in (a) and (b) at the same
time-coordinate.

clearest indication of how the orderly component of the flow fields behave.
Figure 31 shows this quantity for the full LES solution, qp(x1, t) and the
reduced flow, q̂p(x1, t), and these are compared with the acoustic signature,
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qA(t), sampled at an angle of 30◦. The latter has been time-shifted such
that a direct comparison can be made with the two signals. Furthermore,
the acoustic signal has been transformed by means of a short-time Fourier
series and the result is shown in red. This operation provides a means by
which the loud portions of the signal can be more easily identified.

Examination of the figure shows the following. While it is difficult to
discern any particular relationship between the hydrodynamic centerline
signature of the full flow solution and the radiated sound, analysis of the
same metric of the reduced field, q̂p, reveals a clear correspondence between
the growth and decay of wavepackets (modulation of both their amplitude
and axial extent is observed) and high-amplitude sound radiation. The
fitting procedure applied in the previous study is repeated here using the
filtered flow field, q̂, and the jittering line source ansatz. The result is shown
in figure 32. Good agreement is found between the acoustic observable, qA,

(a) (b)

Figure 32. Comparison of sound field computed by Large Eddy Simulation
with time-averaged and jittering wavepacket ansatz. (a) ansatz fitted with
conditional field data, q̂, after radial integration; (b) ansatz fitted with
conditiona field data, q̂ taken from mixing-layer axis.

and the modelled sound field, q̂A, showing once again that the filtering
procedure has been effective in the eduction of the sound-producing flow
skeleton (kinematics).

4.3 Conclusions

Two case studies have been used, by way of example, in order to illus-
trate implementation of the analysis methodology outlined in section §3.
In both cases, by following the methodology, kinematic models are con-
structed that mimic the sound-producing behaviour of the three different
jets analysed. The quantitative accuracy is in all cases better than 1.5dB,
showing the analysis methodology—which combines the data-analysis tools
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presented in section §5 with the theoretical reasoning outlined in section
§3—to be effective with regard to the kinematics of sound source mecha-
nism identification. For the dynamic aspect further tools are necessary;
these are presented briefly in section §6.
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5 Data analysis / reduction

The complexity of most aeroacoustic systems—being associated with high
Reynolds number turbulence—means that we frequently find ourselves faced
with the task of making sense of large quantities of data; such databases
may be the result of numerical simulation and/or experimental measure-
ments. Some form of data synthesis, or reduction, is necessary. The data
can be considerably compressed, for example, by considering only the time-
averaged values of the dependent variables, but at the loss of a large quantity
of information. Other time-averaged statistical moments, such as the root
mean square (2nd order moment), skewness (3rd order moment) and kur-
tosis (4th order moment) can be computed—further information is thereby
obtained regarding the state of the system.

Between such time-averaged quantities and the full space-time struc-
ture of the system considered there lie many intermediate possibilities for
compressing the data into manageable and insight-providing forms. Four
techniques by which such intermediate data compression can be obtained
(Fourier transform, Wavelet transform, Proper Orthogonal Decomposition
and Dynamic Mode Decomposition) are presented in this section, example
implementations being found in section §4. Further to these data com-
pression/decomposition tools we also present a technique, known as Linear
Stochastic Estimation, for the computation of conditional averages. This
can constitute a powerful complementary approach when used in conjunc-
tion with the said data compression/decomposition tools.

The four data compression techniques discussed have the following com-
mon property: they all involve the expansion of space-time data in terms
of sets of basis functions. The interest in such an operation is that the very
high dimensional flow data can be broken down into a more manageable
number of ‘building blocks’, conducive to perspicacious analysis and mod-
elling. In the case of spectral and wavelet analyses, the basis functions are
analytic and specified a priori ; in the case of Proper Orthogonal Decompo-
sition the basis functions are empirical and thus intrinsic to the data; in the
case of Koopman modes (obtained by Dynamic Mode Decomposition), the
functions are associated with the dynamics of the system, in other words
they contain information regarding the temporal evolution of the system.

5.1 The Fourier transform

The Fourier transform is probably the best known and most commonly
used data analysis tool in the domain of fluid mechanics and aeroacoustics
(and indeed in engineering in general) - the Fourier power spectrum of the
sound field radiated by an aeroacoustic system is the quantity that mod-
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elling tools are required to reproduce; it is the quantity by which we most
often endeavour to assess and understand the behaviour of the system. We
recall it briefly in this section, simply so as to have it appear in juxtaposi-
tion with a number of alternative, but less commonly used, data-processing
tools. We do so because three of the latter (the wavelet transform, Proper
Orthogonal Decomposition, and Dynamic Mode Decomposition), as evoked
above, bear certain similarities to the Fourier transform in terms of the
way their result can be useful as an aid to understanding and modelling;
indeed these alternative processing techniques might be best thought of as
surrogate tools for assessing complex data in situations where the Fourier
transform may not necessarily be the best choice.

The Fourier transform involves the expansion of a given data set in terms
of analytical basis functions that are specified a priori ; there is no flexibility
in this choice. The Fourier transform and its inverse are defined as

q̃(f) =

∫ ∞

−∞
q(a) exp(−2πiaf) da (123)

q(f) =

∫ ∞

−∞
q̃(f) exp(2πiaf) df. (124)

When the signal q(a) is periodic in the variable a it can be expanded as
a Fourier series:

q(a) =
1

2
A0 +

∞∑
n=1

An cos(na) +

∞∑
n=1

Bn sin(na), (125)

where

A0 =
1

π

∫ π

−π

q(a) da (126)

An =
1

π

∫ π

−π

q(a) cos(na) da (127)

Bn =
1

π

∫ π

−π

q(a) sin(na) da. (128)

5.2 The wavelet transform

The wavelet transform provides additional flexibility on two levels when
compared with the Fourier transform. (1) The transformed quantity is local
in both frequency (or wavenumber) and time (or space); (2) many different
kinds of basis function are available, and indeed it is possible to create new
functions, provided certain mathematical constraints are satisfied.
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The continuous wavelet transform of a signal q(α) is written:

q̃(s, a) =

∫ ∞

−∞
q(α)ψ(s, a− α)dα. (129)

This amounts to the convolution of a signal of interest with a set of wavelet
functions ψ. This set of functions is generated by dilation and transla-
tion of a basic form known as the mother wavelet: dilation is achieved by
varying the scale, s, translation being effected by means of the variable,
a, which could be a space or time coordinate, for example. The mother
wavelet function must satisfy the mathematical constraints of admissibility
and regularity; however, provided these constraints are satisfied a good deal
of flexibility remains for the design of new mother wavelet functions.

The main difference between the wavelet transform and the Fourier
transform is that the former allows space- or time-localised characteristics
of a signal to be more clearly identified: the transformed signal is local in
both space (and/or time) and scale, whereas its Fourier transformed coun-
terpart is local only in frequency, being infinitely extended in space (and/or
time).

The following are some relations between the fluctuation energy of a
signal, its wavelet transform and its Fourier transform.

1. The relationship between the fluctuation energy, E of the signal q(a)
and the wavelet transform of the signal is given by:

E =

∫
R

|q(a)|2da = C−1
ψ

∫
R+

∫
R

|q̃(s, a)|.|q̃∗(s, a)| ds da
s2

(130)

where Cψ is a constant associated with the mother wavelet function
used.

2. A global wavelet energy spectrum can be defined as:

eglobal(s) =

∫
R

e(s, a) da (131)

where e(s, a) is the energy density as a function of scale, s and the
space or time dimension, a.

3. This can also be expressed in terms of the Fourier energy spectrum
E(f) = |q̂(f)|2:

eglobal(s) =

∫
R

E(f)|ψ̂(sf)|2df (132)

where ψ̂(sf) is the Fourier transform of the wavelet. This shows that
the global wavelet energy spectrum corresponds to the Fourier energy
spectrum smoothed by the wavelet spectrum at each scale.
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4. The total fluctuation energy of the signal can be obtained by

E = C−1
ψ

∫
R+∗

eglobal(s)
ds

s
(133)

5.3 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition is a data processing technique
which is known by this name when used in the field of turbulence anal-
ysis, following its introduction for such usage by Lumley (1967). It can
also be found referred to as Karhunen-Loève decomposition, principal com-
ponent analysis (Jolliffe (1986)) and singular value decomposition (Golub
and Van Loan (1996)). The presentation of POD given here follows that of
Delville (1995).

Consider a flow system for which we possess the information q(a,b). The
vector q could contain, for example, the values of the three components of
velocity on the four-dimensional grid, (x, t); in this case a would represent
three-dimensional cartesian space, and b the time direction. We retain the
notation a and b in order to keep the derivation as general as possible,
because different variants of the POD can be derived from different specific
choices of a and b, and associated definitions of the inner product and
averaging operations that are applied, respectively, with respect to these
coordinates.

POD consists in searching for the function, φ(a), that is best aligned, on
average, with the field q(a,b), the averaging operation being with respect
to the coordinate b.15 Both q(a,b) and φ(a) are indefinitely differentiable,
have compact support, and belong to the space of square integrable func-
tions. The problem is considered in Hibert space, and so it is possible to
define the inner product (q,φ)a with respect to a:

(q, φ)a =

∫
a

q(a,b)φ∗(a) da =

nc∑
i=1

∫
a

qi(a,b)φ
∗
i (a) da (134)

where nc denotes the number of components of the vector q (the three
components of velocity for example).

The search for the function φ amounts to a search, over the ensemble
of realisations of q, for the φ that most closely resembles q on average.
This means maximising the projection q(a,b) on the function φ(a) with
respect to the inner product defined above: we must find the function φ

15Note that a could comprise both space and time coordinates, and the averaging oper-

ation, over b, could be, for example, a phase- or ensemble-average.
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that maximises
< (q(a,b),φ(a))2 >b

||φ(a)|| .16 (135)

The numerator can be expressed as

< (q,φ)2 > =<

∫
a

q(a,b)φ∗(a) da
∫
a

q(a′,b)φ∗(a′) da′ >b (136)

=

∫
a

(∫
a

< q(a,b)q∗(a′,b) >b φ(a′) da′
)
φ∗(a) da, (137)

the averaging being applied only to the (two-point correlations of the) data,
q(a,b), as φ is, by definition, independent of this direction. Denoting the
two point correlation as Rij(a,a

′) =< q(a,b)q∗(a′,b) >b and introducing
the Hermitian operator, A, such that

A · φi =
nc∑
j=1

∫
a

Rij(a,a
′)φj(a′)da′ (138)

means that we can write

< (q,φ)2a >=

nc∑
i=1

(A · φi, φi)a, (139)

and so the POD problem comes down the maximising of

(A · φi, φi)a
||φ||2 . (140)

This maximisation problem corresponds to a constrained optimisation: find
φ that maximises equation 140 subject to the constraint ||φ||2 = 1. This
side-constraint is chosen because we are only interested in the shape of the
functions, φ. The optimisation problem, which can be solved using the
technique of Lagrange multipliers, or by variational analysis, leads to the
following eigenvalue problem

A · φi = λφi, (141)

or, in integral form

nc∑
j=1

∫
a

Rij(a, a
′)φj(a′) da′ = λφi(a), (142)

16The notation <>b indicates that the averaging operation is with respect to the direc-

tion b
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an equation known as the Fredholm integral.
Solution of the integral eigenvalue problem is obtained by means of the

theory of Hilbert-Schmidt Lovitt (1950). The details are not given here,
but we recall some of the main results:

1. As with most eigenvalue problems, rather than admitting a unique
solution, the equation yields a set of solutions:∫

a

Rij(a, a
′)φ(n)j (a′) da′ = λ(n)φ

(n)
i (a) n = 1, 2, 3, ... (143)

2. The ensemble of solutions can be chosen such that the eigenfunctions
are orthonormal: ∫

a

φ
(p)
i (a)φ

(q)
i (a) da = δpq (144)

3. Any field, qi(a,b), can be expanded in terms of these eigenfunctions,

φ
(n)
i (a):

qi(a,b) =

∞∑
n=1

a(n)(b)φ
(n)
i (a) (145)

where the coefficients, a(n)(b), are obtained by the projection of qi(a,b)

onto φ
(n)
i (a):

a(n)(b) =

∫
a

qi(a,b)φ
(n)
i (a) da (146)

4. The series converges in a least mean square sense and the coefficients,
a(n)(b), are mutually uncorrelated:

< a(n) · a(m) >= δmnλ
(n) (147)

5. The eigenvalues are real, positive, their sum finite and they form a
convergent series:

λ(1) > λ(2) > λ(3), ... (148)

The most common experimental implementation of POD involves space-
time velocity or pressure fields: q(a,b) = u(x, t) = u(x, y, z, t) or q(a,b) =
p(x, t) = p(x, y, z, t) in which case expansion of the data in terms of the
POD eigenfunctions reads

ui(x, y, z, t) =

∞∑
n=1

a(n)(t)φ
(n)
i (x, y, z) (149)

or (150)

p(x, y, z, t) =
∞∑

n=1

a(n)(t)φ(n)(x, y, z). (151)
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The space-time structure of the measured field is thus separated into spatial
(topos) and temporal (chronos) functions. Example implementations are
provided in section §4.

5.4 Koopman modes / Dynamic mode decomposition

The Dynamic Mode Decomposition is a procedure for estimating the
eigenvectors and eigenvalues of the Koopman operator. The latter provides
a means by which the dynamics of a flow can be analysed, this analysis
being effected through some associated observable. An assumption central
to the approach is that the flow can be considered as a dynamical system
evolving on a manifold Ω of dimension N . A manifold—the locus of points
that comprise the state-space trajectory of a dynamical system—is a gener-
alisation, to the non-linear case, of the eigenspace associated with the linear
instability of dynamical system in the vicinity of a fixed point : while in a
linearised system eigenvectors denote the directions in which that system
will move, exponentially, either to or from a fixed point (or equilibrium
point), in the non-linear context the manifold amounts to a continuation of
these eigenvectors, which continually change direction as the system evolves
non-linearly.

This section provides an introduction to both the Koopman operator
and the dynamic mode decomposition. The exposition combines elements
taken from Rowley et al. (2009), Schmid (2010) and Pastur (2011).

The Koopman operator Let X be a point on Ω, corresponding to the
state of the system at some given time, and let ft be a propagator (frequently
referred to as a ‘flow’ or a ‘map’ in dynamical systems or control theory
textbooks) that evolves, propagates, or maps, the flow from one time-step
to the next; i.e. from X(t0) ∈ Ω to X(t0 + t) ∈ Ω: 17

X(t0 + t) = ft{X(t0)}. (152)

In an experiment we never have access to the full flow state; at best we may
have access to the velocity field on a two-dimensional spatial section (from
a PIV measurement for example), with restricted temporal resolution, or
single-point information with higher temporal resolution (from a hot-wire,
Laser Doppler Velocimeter or microphone for instance). Such an incomplete
sample of the flow can be referred to as an observable. We denote this
observation by means of a function, q(X), which gives us the observable

17In the case of fluid flow the propagator is the right hand side of the Navier Stokes

equations; i.e. the dynamic law governing the time evolution of the fluid flow.
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corresponding to the full state X. q belongs to a Hilbert space, H, and so
we can define the norm:

||q|| =
√
(q, q)Ω =

√∫
Ω

|q|2 dΩ <∞. (153)

The Koopman operator, Ut, acts in H, such that:

Ut{q(X)} = q(ft{X}). (154)

In other words, the Koopman operator is a map that describes the evolution
of the observable, q (which is a function of the full flow state X), from one
time-step to the next. The non-linear dynamics associated with the evolu-
tion of the full flow leaves its signature in the evolution of the observable;
the essence of Koopman/DMD analysis is here: by considering the evolu-
tion of the observable we seek to gain insight regarding the nature of the
evolution law that underpins the dynamics of the full flow.

The Koopman operator has the following important property. Let φj
and λj be, respectively, eigenfunctions and associated eigenvalues of Ut.

18

If we denote by Xk the state of the system at some time kΔt after an initial
time t0: Xk ≡ X(t0 + kΔt), then:

q(Xk+1) = U{q(Xk)} = U

⎧⎨
⎩∑

j≥1

φj(Xk)νj

⎫⎬
⎭

=
∑
j≥1

U{φj(Xk)νj} =
∑
j≥1

λjφj(Xk)νj (155)

The first equality simply corresponds to the definition of the Koopman
operator—it evolves the observable, q, from its value when the system is in
the state Xk to its value when the system is in the state Xk+1. In the second
equality the observable, q, has been expanded in terms of the eigenfunctions
of the Koopman operator (chosen here as a suitable set of basis functions);
νj are the associated expansion coefficients, obtained by projecting the ob-
servable, q, onto the eigenfunctions, φj . In the third equality the Koopman
operator has simply been moved inside the summation, while in the fourth,
as φj are eigenfunctions of U , U {φj} can be written as λjφj .

νj are the Koopman modes (sometimes referred to as Koopman co-
efficients, or dynamic modes), λj the Koopman eigenvalues and φj the
Koopman eigenfunctions. The Dynamic Mode Decomposition constitutes a

18In what follows we will drop the the subscript t.
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methodology, similar to the Arnoldi algorithm used in the solution of global
stability problems, whereby these quantities can be estimated using limited
data sets.

Now, as the evolution of the system from some initial state, X0 to a
later state Xk+1 is given by Uk(X0) (because U(Xk) = UU(Xk−1) =
U3(Xk−2) = ...), the state of the observable, q(Xk+1), can be expressed
in terms of the state at some initial time, X0, as:

q(Xk+1) =
∑
j≥1

λkjφj(X0)νj . (156)

This equation shows that any value of the observable, q, can be deduced
from knowledge of the projection of the initial condition q(X0) onto the
eigenfunctions, φj , of the Koopman operator, provided the eigenvalues, λj
are known; this property is important in what follows. Furthermore, if the
dynamics considered evolve on a non-degenerated attractor—the dynamics
continue to evolve on the manifold, Ω—then the Koopman operator, U , is
a unit operator: the eigenvalues lie on the unit circle and the eigenvectors,
φj , are orthogonal.

Krylov sub-space Consider the following set of successive snapshots of
data:

QN−1
0 = {q(X0), q(X1), q(X2), ..., q(XN−1)}, (157)

the sub- and super-scripts on Q indicate the first and last snapshots. Ex-
pressed in terms of the Koopman operator this reads:

QN−1
0 = {q(X0), U {q(X0)} , U2 {q(X0)} , ..., UN−1 {q(X0)}}, (158)

which is an N th-order Krylov subspace. And we know that the Koopman
operator applied to this subspace gives:

U
{
QN−1

0

}
= QN

1 : (159)

the action of the Koopman operator is inherently contained in QN
1 .

To this point the observable has been considered a single-point scalar;
however, the generalisation to multi-valued observables (for example a ve-
locity field obtained from PIV) is straightforward. In this case the νj are
multi-valued and complex.

Dynamic mode decomposition DMD is one possible technique, based
on what is known as a companion Matrix, by which the eigenvalues and
eigenvectors of U can be estimated; the technique is similar to that used
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for the computation of global modes from the Hessenberg matrix using the
Arnoldi method.

In what follows we will consider multi-valued observables, represented
by the vector q(x, tk). A Krylov subspace is first constructed from sampled
data, where the time-step is small enough to resolve all of the dynamics:

QN−1
0 = {q0,q1,q2, ...,qN−1}. (160)

The indices correspond to the successive times, t0, t1, t2, ...tN−1. The as-
sumption underpinning the companion matrix approach is that the first N
fields (where N < M , M being the dimension of the observable q, i.e. the
number of spatial points in the snapshot) are sufficient to describe any later
realisation of the field q; thus, the N th snapshot can be expressed as a linear
combination of all previous snapshots:

qN = c0q0 + c1q1 + c2q2 + ...+ cN−1qN−1, (161)

or
qN = QN−1

0 c, (162)

where c = (c0, c1, c2, ..., cN−1)
T and the superscript T denotes hermitian

transpose. From equation 158 we know that

U
{
QN−1

0

}
= QN

1 , (163)

i.e. application of the Koopman operator to the Krylov subspace propagates
all of the fields by one time-step. In light of this observation, and equation
162, equation 163 can be written as

UQN−1
0 = QN

1 = QN−1
0 C + rT eN , (164)

where C is the companion matrix. eN = (0 , 0 , . . . , 1)† ∈ R
N+1 and r is

a residual vector, orthogonal to the Krylov subspace V N−1
0 . The residual

goes to zero when condition 162 is satisfied.
The following example will help illustrate this. Consider that we have

the data:

Q4
1 =

⎡
⎣q11 q12 q13 q14
q21 q22 q23 q24
q31 q32 q33 q34

⎤
⎦

where the first and second indices on the matrix entries denote spatial and
temporal coordinates, respectively: each column is a snapshot. We know
that the Koopman operator, U , will map from Q3

1 to Q4
2:
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⎡
⎣U11 U12 U13

U21 U22 U23

U31 U32 U33

⎤
⎦
⎡
⎣q11 q12 q13
q21 q22 q23
q31 q32 q33

⎤
⎦ =

⎡
⎣q12 q13 q14
q22 q23 q24
q32 q33 q34

⎤
⎦.

But, we are also making the assumption that qi4 can be expressed as a
linear combination of qi1, qi2 and qi3:⎡

⎣q14q24
q34

⎤
⎦ ≈

⎡
⎣c1q11 + c2q21 + c3q31
c1q12 + c2q22 + c3q32
c1q13 + c2q23 + c3q33

⎤
⎦.

Substituting into the previous equation gives,⎡
⎣U11 U12 U13

U21 U22 U23

U31 U32 U33

⎤
⎦
⎡
⎣q11 q12 q13
q21 q22 q23
q31 q32 q33

⎤
⎦ ≈

⎡
⎣q12 q13 (c1q11 + c2q12 + c3q13)
q22 q23 (c1q21 + c2q22 + c3q23)
q32 q33 (c1q31 + c2q32 + c3q33)

⎤
⎦,

which is the same as⎡
⎣U11 U12 U13

U21 U22 U23

U31 U32 U33

⎤
⎦
⎡
⎣q11 q12 q13
q21 q22 q23
q31 q32 q33

⎤
⎦ ≈

⎡
⎣q11 q12 q13
q21 q22 q23
q31 q32 q33

⎤
⎦
⎡
⎣0 0 c1
1 0 c2
0 1 c3

⎤
⎦.

In the more general case, the companion matrix takes the form:

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . . . . 0 c0

1 0
... c1

0 1
. . .

... c2
...

. . .
. . . 0

...
0 . . . 0 1 cN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (165)

DMD consists in computing the eigenmodes of the companion matrix, which
are then considered as approximations of the eigenmodes of the Koopman
operator (when the residual is zero the correspondence is exact). The matrix
C has dimension N × N , and its unknown elements, cj , can be computed
by minimising the norm

copt = min
c

∥∥∥∥∥∥qN −
N−1∑
j=1

cjqj

∥∥∥∥∥∥
2

.

Having computed the eigenvalues and eigenvectors of the companion matrix
we are finally in a position to write

q̃k =
N∑
j=1

λk−1
j φj(X0)νj . (166)
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The initial conditions φj(X0) are obtained by projecting the initial field, q0,
on to the νj . The eigenfunctions, φj , are Fourier modes, φj = exp(iωjt) if
the dynamics are periodic.

5.5 Conditional analysis techniques: Stochastic estimation

The following exposition is based on that of Adrian (1996). Consider
some variable, q, which is unknown, and another vector quantity E = Ei,
i = 1..N which is somehow related to q. We are interested in identifying the
functional relationship, q = g(E), which provides some approximation of q
in terms of E. This kind of estimation of one variable in terms of another
is known as stochastic estimation and is widely used in information theory
(Papoulis (1984)). When such a relationship cannot be usefully derived
from first principals, we frequently revert to statistics: the joint probability
density between q and E is:

fq,Edψdφ = Prob{ψ ≤ q < ψ + dψ and φ ≤ E < φ+ dφ}; (167)

the conditional probability density of q given E is

fq|E(ψ|φ) = fq,E(ψ, φ)

fE(φ)
. (168)

Three estimates of q given E are: (1) the maximum likelihood estimate,
defined as the most probable value of q given E, i.e. the value at which
fq|E is a maximum; (2) the conditional average of q given E, given by the
centroid of the conditional probability

< q|E >=

∫
ψfq|E(ψ|φ)dψ; (169)

and, (3) the mean square estimate, i.e. the estimate q̂ = f(E) that min-
imises < |q − f(E)|2 >. It can be shown that the best mean square es-
timate of q given E is the conditional average < q|E >. In other words,
< |q− f(E)|2 > is a minimum when f(E) =< q|E >.

In this section we outline a technique by which the conditional average
can be estimated ; in other words we wish to estimate the best estimate:
q̂ ≈< q|E >. The conditional average is approximated by means of a
truncated Taylor series expansion about E = 0:

q̂ ≈< q|E >≡ f(E) ≡ f(0) +
∂f

∂E

E

1!
+
∂2f

∂E2

E2

2!
+
∂3f

∂E3

E3

3!
+ ... (170)

As we do not know the function f(E) we cannot evaluate the derivatives
∂nf
∂En and so these are unknowns of the problem. So, considering that the
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mean value is zero, (f(0) = 0), the expansion can be written

q̂ ≈< q|E >≡ f(E) ≡ AE+BE2 + CE3 + ... (171)

and we are required to determine the value of the coefficients A, B, C,...
When truncation is performed after the linear term this expression is known
as Linear stochastic estimation, when the quadratic term is included we
speak of quadratic stochastic estimation, and so on...

Let us now see how to calculate the coefficients, A, in the case where
truncation is performed after the linear term. We have

q̂ ≈ AE, (172)

and we would like to obtain a best estimate for < q|E >; i.e. we need to
minimise the error

e =< |< q|E > −q̂|2 > (173)

=< | < q|E > −AE|2 >, (174)

we therefore require the solution to

∂e

∂A
= 2 < − < q|E > E > +2A < EE >= 0, (175)

which is given by

A =
<< q|E > E >

< EE >
(176)

=
<< qE|E >>

< EE >
(177)

=
< qE >

< EE >
, (178)

where E has been brought inside the conditional average on account of
its being constant with respect to the latter, and, in the final step, the
conditional average has been performed over all values of E, reducing the
conditional average << qE|E >> to the conventional average < qE >.

So, the linear stochastic estimate of q given some related event E, which
provides a best approximation to the conditional average < q|E >, is:

q̂ =
< qE >

< EE >
E. (179)

This shows the close relationship between the conditional average and the
correlation function < qE >. In the context of aeroacoustics, where E is the
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radiated acoustic pressure and q the turbulence velocity, such correlations
can be shown to provide an approximation to the integral solution of the
acoustic analogy (Lee and Ribner (1972)). An example implementation of
this technique is provided in section §4.
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6 Reduced Order Modelling

6.1 Introduction

It was shown in section §4 how the analysis tools presented in section
§5 can provide a useful means by which the analysis methodology outlined
in section §3 can help guide kinematic modelling. However, the final goal,
as evoked in the introduction, is to understand and model the dynamic law
associated with sound production, as it is only then that one can really
claim to have identified source mechanisms.

In this section we provide a very brief introduction to reduced order
modelling. For a more complete treatment the reader is encouraged to refer
to Noack et al. (2011).

6.2 Two approaches for reduced order dynamical modelling

The governing dynamic law of the full flow system is:

Nq = 0. (180)

The objective of reduced order modelling, the final stage of the analysis
methodology outlined in section §3, is to construct a simplified dynamic
law governing the evolution of a simplified kinematic field, q̂:

N̂ q̂ = 0. (181)

Two reduced-order dynamic modelling strategies will be outlined here.
The first is useful when relatively complete space-time data is available,
from a numerical simulation for example, the second being useful in an
experimental context, where more limited data is available. In both cases
the objective is to write down an Ordinary Differential Equation that mimics
either the dynamics of the Navier Stokes operator, or of some reduced sub-
space of the system.

This can be achieved once the flow has been expanded in terms of a set
of orthogonal basis functions, which can be obtained, for example, by means
of POD:19

q̂(x, t) =

N∑
n=1

ai(t)φ(x). (182)

The temporal evolution of the flow is here contained in ai(t), and so
it is via these, the topos, that we can attempt to write down a simplified

19See section §5 for details.
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evolution equation, in the form of an ODE:

dai
dt

= Lijaj +Qijkajak, (183)

which mimics both linear and non-linear aspects of the dynamics, via, re-
spectively, the first and second terms on the right hand side. The goal is
to compute the coefficients, Lij and Qijk, that best reproduce the (known)
temporal structure of ai(t); we then have a simplified dynamic model for
the flow (or flow sub-space) considered.

The difference between the two said approaches is in the way that the
coefficients Lij and Qijk are computed.

Galerkin projection In this approach, the Navier Stokes equations are
projected onto the basis functions, φ(x), giving, directly

dai
dt

= νLijaj + (Qc
ijk +Qp

ijk)ajak (184)

where

Lij = (φi,Δφj) =

∫
x

φiΔφjdx (185)

Qc
ijk = (φi,∇ · (φj ⊗ φk)) =

∫
x

φi∇ · (φj ⊗ φk)dx (186)

Qp
ijk = (φi, φ

p
jk) =

∫
x

φiφ
p
jkdx. (187)

(188)

Qc
ijk is here associated with the non-linear convection term of the Navier-

Stokes equations, Qp
ijk is associated with the pressure term20, while Lij is

associated with viscous and linear convection terms.

Polynomial identification This technique, proposed by Perret et al.
(2006) is useful when only limited experimental data is available. The poly-
nomial form

dai
dt

= Lijaj +Qijkajak (189)

is chosen as a suitable generic dynamic ansatz ; then, knowing the values of
ai, we have a linear system of equations with unknowns, Lij and Qijk. By
solving this linear system, the coefficients can be identified.

20see Noack et al. (2011) for details
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Figure 33. Left: instantaneous image of DNS of 2-D mixing-layer of Wei
and Freund (2006): pressure fluctuations are sampled along the red line,
and this field is then decomposed using POD; Right: green line shows a
truncated representation of the DNS solution for the spatial structure of
the pressure field on the red line at some given instant in time, while the
red line shows the structure predicted by the simplified dynamic model given
by the ODE—the quadratic term has been neglected in this example.

6.3 Example

Figure 33 shows an example implementation of the polynomial identifi-
cation technique. The DNS computation of a two-dimensional shear-layer,
performed by Wei & Freund, is used. The pressure field is sample along
the red line shown on the left of the figure. This sampled pressure field
is then decomposed using Proper Orthogonal Decomposition, allowing it
to be represented in terms of a set of temporal functions, ai(t), and spatial
functions, φ(x). Using the polynomial identification technique, truncated to
only include the linear term, the coefficients, Lij are determined . The ODE
is then integrated in time and the result compared with a truncated rep-
resentation (using 40 POD modes, a number found sufficient to reproduce
the full DNS field with good accuracy) of the original pressure field.

The integrated ODE, a snapshot of which is shown in figure 33, was
found to follow the DNS very closely for about three convective time units.
After this the two solutions begin to differ, although the simplified dynamic
model continues to behave in a qualitatively similar manner to the DNS.
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tics associated with downstream and sideline sound emission. In AIAA
Paper 2010-3964, 16th AIAA/CEAS Aeroacoustics Conference and Ex-
hibit, Stockholm, USA, June 2010.

H.K. Lee and HS Ribner. Direct correlation of noise and flow of a jet. The
Journal of the Acoustical Society of America, 52:1280, 1972.

L. Lesshafft, P. Huerre, and P. Sagaut. Aerodynamic sound generation by
global modes in hot jets. Journal of Fluid Mechanics, 647:473–489, 2010.
ISSN 0022-1120.

M. J. Lighthill. On sound generated aerodynamically. I. General theory.
Proceedings of the Royal Society of London. Series A, Mathematical and
Physical Sciences, pages 564–587, 1952.

G. M. Lilley. On the noise from jets. AGARD CP-131, pages 13–1, 1974.

W.V. Lovitt. Linear integral equations. Dover Publications, 1950.

JL Lumley. The structure of inhomogeneous turbulent flows. Atmospheric
turbulence and radio wave propagation, pages 166–178, 1967.

R. Mankbadi and JTC Liu. Sound generated aerodynamically revisited:
large-scale structures in a turbulent jet as a source of sound. Philosophical
Transactions of the Royal Society of London. Series A, Mathematical and
Physical Sciences, 311(1516):183–217, 1984. ISSN 0080-4614.

A. Michalke. A wave model for sound generation in circular jets. Tech-
nical report, Deutsche Luft- und Raumfahrt, November 1970. URL
http://elib.dlr.de/63062/.

A. Michalke. Instabilitat eines Kompressiblen Runden Freistrahls unter
Berucksichtigung des Einflusses der Strahlgrenzschichtdicke. Z. Flugwiss,
19:319–328; English translation: NASA TM 75190, 1977, 1971.

A. Michalke. On the effect of spatial source coherence on the radiation of
jet noise. Journal of Sound and Vibration, 55(3):377–394, 1977. ISSN
0022-460X.

A. Michalke and H. V. Fuchs. On turbulence and noise of an axisymmetric
shear flow. Journal of Fluid Mechanics, 70:179–205, 1975.

A. Michalke and A. Timme. On the inviscid instability of certain two-
dimensional vortex-type flows. Journal of Fluid Mechanics, 29(04):647–
666, 1967. ISSN 1469-7645.

U. Michel. The role of source interference in jet noise. In 15th AIAA/CEAS
Aeroacoustics Conference(30th Aeroacoustics Conference), pages 1–15,
2009.

E. Mollo-Christensen. Measurements of near field pressure of subsonic jets.
Technical report, ADVISORY GROUP FOR AERONAUTICAL RE-
SEARCH AND DEVELOPMENT PARIS (FRANCE), 1963.



Techniques for Noise Source Identification 287

E. Mollo-Christensen. Jet noise and shear flow instability seen from an
experimenter’s viewpoint(Similarity laws for jet noise and shear flow in-
stability as suggested by experiments). Journal of Applied Mechanics,
34:1–7, 1967.

E. Mollo-Christensen and R. Narasimha. Sound emission from jets at high
subsonic velocities. Journal of Fluid Mechanics, 8(01):49–60, 1960. ISSN
1469-7645.

C. J. Moore. The role of shear-layer instability waves in jet exhaust noise.
Journal of Fluid Mechanics, 80(2):321–367, 1977.

B.R. Noack, M. Morzynski, and G. Tadmor. Reduced-Order Modelling for
Flow Control. CISM Courses and Lectures 528. Springer-Verlag Berlin
(in press), 2011.

L. Pastur. personal communication, 2011.
L. Perret, E. Collin, and J. Delville. Polynomial identification of POD based

low-order dynamical system. Journal of Turbulence, 7(17):1–15, 2006.
O.M. Phillips. On the generation of sound by supersonic turbulent shear

layers. Journal of Fluid Mechanics, 9(1):1–28, 1960. ISSN 0022-1120.
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Broadband Noise from Lifting Surfaces

Analytical Modeling and Experimental

Validation

Michel Roger

Ecole Centrale de Lyon

Abstract
The chapter is dedicated to the noise radiated by thin airfoils

in either disturbed or homogeneous flows. This includes noise pro-
duced by impingement of upstream turbulence onto a leading edge,
self-noise caused by boundary-layer turbulence scattering at the
trailing edge and noise due to the formation of a vortex street in
the near wake. Analytical modeling is proposed in the frequency do-
main, based on linearized theories of unsteady aerodynamics. The
same mathematical background referred to as Schwarzschild’s tech-
nique is used for all mechanisms in order that the predicted trends
can be compared. In a first step the analysis is focused on the
derivation of the induced lift fluctuations, acting as the sources of
sound according to Ffowcs Williams & Hawkings’ analogy. The
radiation properties of isolated aerodynamic wave-numbers in the
sources are discussed in a second step. Next a statistical declination
of the formalism is introduced, relating the source statistics to the
PSD of the acoustic pressure in the far field. Finally the statistical
models are assessed against experimental data.

1 Introduction

1.1 Methodology and Context

Rotating blades, wings with high-lift devices and other so-called lifting
surfaces (splitter plates, spoilers...) embedded in a flow generate aerody-
namic sound by various declinations of vortex dynamics. Some of them have
been introduced in chapter 2. If random disturbances are carried from up-
stream in the oncoming flow, they are rapidly distorted around the leading
edge of the surface. This produces what is often called interaction or im-
pingement noise. It is not intrinsic to the surface but rather characteristic of
the incident flow, even though the surface shape may have a large influence

R. Camussi (Ed.), Noise Sources in Turbulent Shear Flows: Fundamentals and Applications, 
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© CISM, Udine 2013 
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on the produced noise. In absence of oncoming disturbances, the surface
generates its own vortex dynamics through the formation of boundary lay-
ers or the onset of vortex shedding, because of the effect of viscosity. The
associated acoustic signature is called self-noise because it is more intrin-
sic to the incriminated surface. Most applications involve airfoil-like lifting
surfaces, defined by their chord and span lengths and some cross-section de-
sign. Interaction noise and self-noise include span-wise distributed sources
concentrated at the leading edge or the trailing edge, and localized sources
at span ends (tips of blades, flap side-edges of high-lift devices...).

In all cases the prediction of the broadband noise is made a considerable
task by the random character of the flow. The corresponding mechanisms
can be addressed either numerically or analytically. Typically a numerical
approach, based on the recent know-how in Computational Aero-Acoustics
for a direct simulation or based on hybrid techniques, can be understood
as a demanding extension (more than just a special case) of Computational
Fluid Dynamics. An analytical approach is conceptually different. It is
dedicated to an isolated, previously identified mechanism and needs drastic
simplifications and assumptions on the flow features and/or on the geome-
try. The general equations are linearized and the initial problem is generally
interpreted as a wave-scattering problem. This major difference makes both
approaches different jobs and what can be expected from one or the other
one cannot fit with the same ambitions. The numerical techniques are aimed
at understanding the tiniest details of the sound generating mechanism and
describing or reproducing it as accurately as possible. This is achieved at
the price of heavy, time-consuming computations. Some of them are not
tractable yet for the Reynolds and Mach numbers of interest, making the
field still open for further progress. Conversely the analytical investigations
are aimed at providing approximate but very fast and cheep results. The
previously required recognition of a mechanism makes the solution clearly
expressed as a function of the main parameters of the flow, thus the solution
itself is easily used to get information on the scaling laws and the underlying
physics. This is very useful for preliminary design in engineering context.
Within the scope of hybrid approaches, an analytical prediction model can
also be used to deduce the far-field sound by post-processing an already
available simulation of the flow. It is clear that both approaches remain
necessary in any case, and for the both of them significant improvements
and new achievements are made every year in the community of aeroa-
coustics. On the one hand, numerical techniques become more and more
attractive and tractable. On the other hand, analytical techniques can still
be extended and thus have not yet reached their limitations. The present
chapter is dealing more specially with flows developing on airfoils placed
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in either disturbed or clean streams. It is focused on analytical prediction
methods and their experimental validation.

(a) (b) (c)

Figure 1. Top: large-scale unsteady fluid motions around
bodies. (a): splitter plate in turbulence; (b): stalled airfoil,
(c): vortex shedding behind a cylinder. Bottom: turbu-
lent boundary layer upstream of an airfoil trailing-edge, as
example of small-scale motion.

1.2 Importance of Characteristic Scales

Whenever the dimensions of a solid body immersed in a disturbed flow
are smaller than or of the same order of magnitude as some aerodynamic
wavelength λA, the characteristic period of the experienced aerodynamic
force variations on the body λA/U0 is not small with respect to the travel-
ing time of fluid particles over the body, say L/U0. In such conditions, the
body responds as a whole to the disturbances, which can be defined as aero-
dynamic compactness in the sense that the non-dimensional aerodynamic
wavenumber 2π /λA is small. This also ensures that the body is acoustically
compact because the acoustic wavelength λ = λA/M0 exceeds the body size,
especially at low and moderate Mach numbers. Typical large-scale motions
for which this asymptotic behavior makes sense are illustrated in Fig.1-top.
They are the turbulence impingement on a flat body at low frequency (case
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(a)), the stall regime of an airfoil for which a large recirculating bubble forms
(case (b)) and the shedding of vortices in the near wake of a cylinder (case
(c)). In contrast the flow patterns of Fig. 1-bottom responsible for the emis-
sion of trailing-edge noise correspond to much smaller scales which involve
more subtle mechanisms. Typically for the narrow-band vortex-shedding
sound of a cylinder in a flow, any cross-section of the cylinder is equivalent
to a point dipole as stated in chapter 2. A relevant model based on the defi-
nition of an unsteady lift coefficient has been proposed by Goldstein (1976).
The same would hold for any bluff body, introducing adequate global aero-
dynamic coefficients able to provide a description of the equivalent dipoles.
A finer description in terms of distributed wall-pressure fluctuations will be
needed for the configuration of Fig. 1-bottom, as shown later on.

In the present chapter the general framework introduced in Fig. 1 is
reduced to span-wise distributed sources of broadband noise for relatively
thin airfoils. Two mechanisms clearly dominate in most situations, namely
interaction with upstream turbulence and boundary-layer turbulence scat-
tering at the trailing-edge. The both of them are different declinations of
the same basic process: sound is generated as the inertia of a vortical pat-
tern is modified by its interaction with a singularity on a solid surface. The
first mechanism, referred to as turbulence-impingement noise or leading-
edge noise, involves the breakdown of oncoming vortices on the airfoil and,
as such, corresponds to equivalent acoustic sources concentrated at the lead-
ing edge (Fig. 1-d of chapter 2). Nevertheless the trailing edge is involved as
well in the response of the airfoil, at least as far as the scales in the incident
flow are not negligibly small when compared to the chord length. A basis for
the modeling will be the use of unsteady aerodynamic theories presented in
the next section. Trailing-edge noise involves a modification of the incident
vortices due to the secondary vorticity shed in the wake as a consequence
of the Kutta condition; the corresponding acoustic sources concentrate at
the trailing edge. In each case, sound radiation is associated with a sudden
change in the boundary conditions applied to convected vortical patterns.
In the case of a blunted trailing edge or when the boundary layer thickness
is small enough with respect to the physical trailing-edge thickness, von
Kármán vortex shedding takes place in the near wake, similar to case (c)
of Fig. 1 but at smaller scale (Fig. 1-c of chapter 2). The shed vortices
induce pressure fluctuations on the surface close to the trailing edge, again
producing vortex-shedding sound. This mechanism is considered different
from trailing-edge noise and will be addressed separately.

The general methodology described in the next sections relies first on
linearized unsteady aerodynamic theories to get an approximate descrip-
tion of the equivalent acoustic sources. Because the addressed mechanisms
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involve thin airfoils in subsonic Mach number flows, on the one hand, and
because only non-accelerated motion is considered, the aerodynamic noise
is essentially unsteady-loading noise. The noise itself is deduced in a second
step using the acoustic analogy.

2 Unsteady Aerodynamics

2.1 Preliminaries

A lifting surface embedded in a disturbed flow experiences time vari-
ations of both lift and drag forces. These variations are sources of sound
according to the acoustic analogy. For airfoil-like designed bodies with at-
tached flows considered later on, lift variations are much larger than drag
forces, therefore the latter are neglected and the unsteady problem is ad-
dressed based on non-viscous flow arguments. Random incident velocity
disturbances cause time variations of both the magnitude and the angle of
attack of the relative velocity vector experienced by the airfoil. These vari-
ations induce a total instantaneous force F (t), or at a more precise level the
corresponding local instantaneous lift forces distributed over the surface,
noted �(t). When calculating the noise from the airfoil according to Ffowcs
Williams & Hawkings’ equation, the major difficulty to deal with is the
evaluation of this force field with enough accuracy. In the fluid-dynamics
community, the mean value of F (t) or �(t), referred to as steady loading,
is primarily addressed because only the steady-state is directly related to
the aerodynamic efficiency the surface must ensure. Typically the airfoil is
designed for a desired value of the mean lift coefficient CL, as a function of
the angle of attack α. The fluctuations of F (t) or �(t) around the mean,
essentially responsible for the noise, are much more difficult to quantify,
and depend on external conditions not intrinsic to the surface design. The
fluctuations bring no benefit to the aerodynamic efficiency and are only an
undesirable source of noise (or vibration, even though vibrations are not
addressed here). So any reduction of the unsteadiness, if possible, is a good
deal from the acoustical point of view and does not essentially suffer from
efficiency constraints.

2.2 Basic Assumptions - Thin-Airfoil Linearized Theory

For the mathematical statement dedicated to analytical investigations,
is defined as unsteady aerodynamics any lift variation on an airfoil due to a
variation in the oncoming flow (speed or angle of incidence), for which the
Kutta condition of no flow around the trailing edge has to be fulfilled. Such
a mechanism involves the entire airfoil section. The theoretical determina-
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tion of �(t) would be certainly a considerable task, were the exact solution
sought for each practical flow field of interest, because of the variety encoun-
tered in both airfoil shapes and surrounding flow conditions. But acoustic
calculations benefit from the favorable effect of the logarithmic dB-scale,
and often only require a consistent approximation of �(t) in most cases of
interest (rotating blades, high-lift devices). For subsonic thin airfoils with
small camber and angle of incidence, referred to as slightly loaded airfoils,
and small velocity fluctuations, the linearized unsteady aerodynamic the-
ory described below provides helpful approximate solutions. In contrast for
highly cambered, thick blades, such as the ones encountered in turbine blade
rows, the linearized approach is not relevant, and a numerical analysis is
required.

ζ

tangent to mean camber−line

at leading edge

< >
 chord c

 SUCTION SIDE

 PRESSURE SIDE

U 0

α

LE

TE

Figure 2. General airfoil definition. α and ζ are the angle
of attack and the maximum camber displacement, respec-
tively.

Before listing the assumptions of the linearized thin-airfoil theory, let us
perform first a rapid analysis in the two-dimensional framework of Fig. 2. U0

is the mean flow velocity, at an angle of attack α with respect to the chord
line. Consider the velocity fluctuation vector u = (u,w) superimposed on
the mean flow and defined in absence of airfoil. u is the variation of velocity
magnitude along the average flow direction and w the variation of angle of
attack.

A first insight into unsteady aerodynamics is provided by perturbing the
steady-state equation relating the lift force per unit span F0 to the relative
velocity U0:

F0 = CL c
1

2
ρ0 U

2
0 , (1)
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where CL is the lift coefficient, function of the angle of attack α , and c
the chord length (Fig. 2). Small variations of the angle of attack and of the
magnitude of the velocity vector then lead to the differential

dF = CL c ρ0 U0 u+
∂CL

∂α

1

2
c ρ0 U0 w .

This is a quasi-steady approximation because eq.(1) is assumed to hold also
for transient flow conditions. For weakly loaded airfoils it can be assumed
that CL � 1 ; furthermore ∂CL/∂α = 2π for a Joukowski airfoil. It is
concluded that whenever the incident velocity disturbances w and u have the
same order of magnitude, the component w is responsible for the major part
of the unsteady loads. The assumptions are better justified for moderately
cambered airfoils or lifting surfaces. Intuitively, blowing on a flat plate
parallel to its surface and varying the flow speed is not expected to induce lift
variations, whereas slightly changing the angle of attack produces significant
ones. In contrast, variations of the flow speed U0 at constant angle of
attack on a highly cambered surface are known to also generate large lift
fluctuations, as suggested by the vertical efforts exerted on an umbrella in a
varying wind. As a consequence, only the fluctuations of angle of attack are
generally considered in linearized unsteady aerodynamic theories applied to
slightly cambered airfoils. Highly cambered airfoils are not considered here;
they would require numerical investigation.

Obviously the direct proportionality and the immediate response of the
airfoil expressed in eq.(1) are abusive. Indeed by virtue of the Kutta con-
dition, vorticity is continuously shed in the wake as a result of any inflow
variation. The evacuation of the shed vorticity in the flow requires a finite
time, which results in some delay of the force variation. The quasi-steady
approximation is just the asymptotic form of a needed more general de-
scription; it is valid for very slow variations or for large flow patterns with
respect to the dimensions of a body in a flow (see Fig. 1-a again). Part
of the broadband noise from low-speed fans is predicted based on similar
arguments by Sharland (1964) and Fukano et al (1977).

Anyway, as shown by the pioneering work by von Kármán & Sears
(1938), cited by Goldstein (1976), small thickness, camber and angle of
incidence only determine the steady lift, but have no significant effect on
the unsteady loads. This fundamental decoupling of the unsteady aerody-
namic behavior from the mean loading has very important implications.
Typically it means that lift fluctuations can be determined independently
of the airfoil design by just solving the problem of the response of a thin flat
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plate embedded at zero incidence in a parallel mean flow carrying normal
velocity disturbances. This will be called Sears’ problem in this course.

The general approach for solving Sears’ problem in two or three dimen-
sions is described now. First of all, the incident disturbances are assumed
frozen, which means that their decaying time is large in comparison with
a characteristic traveling time along the chord length. They are rotational
in essence but the additional disturbance induced by the airfoil can be de-
scribed as a potential field, apart from the wake; the part of this field which
propagates away from the airfoil is precisely the acoustic motion. Secondly
the solution is derived in the frequency domain because the time delay pro-
duced by the Kutta condition must be compared to the characteristic period
of the variations of angle of attack. The procedure is as follows.

1 - The oncoming velocity disturbance normal to the airfoil surface (up-
wash) is Fourier-analyzed. Each Fourier component defines a transverse
sinusoidal gust in the sense of unsteady aerodynamics. A gust is charac-
terized by the chord-wise aerodynamic wave number k1 and, because of the
convection speed U0 , induces forces on the airfoil at the corresponding an-
gular frequency ω = k1 U0 . A spanwise aerodynamic wavenumber k2 is also
introduced when the theory is extended in three dimensions (Fig.5 ).

2 - At a given value of ω or k1 , the Fourier coefficient F̃ (k1) of the total
unsteady lift force is determined by some unsteady aerodynamic theory in
terms of the transverse fluctuation amplitude w̃(k1) . In order to connect
the formal result eq.(1), it is written:

F̃ (k1) = π ρ0 U0 w̃ c T ,

where T is some aerodynamic transfer function introduced for physical con-
sistency to account for the phase shift between the lift variations and the
variations of angle of attack. More precisely the local distribution of fluc-
tuating lift along the chord line, say �̃(k1, y1) where y1 is the chord-wise
coordinate, may be of interest. For acoustic purposes, the integrated lift is
enough if the chord length is acoustically compact, but the distributed local
lift is needed if it is not.

The phase shift results in an inclined hysteresis response curve in the
plane (α,CL) (Fig. 3). Instead of following the steady-state curve, the op-
erating point of the airfoil follows that hysteresis loop, centered around
the mean-value point. The amplitude of the lift variations is well smaller
than what the quasi-steady approximation would predict. The figure also
suggests that oncoming disturbances can prevent the airfoil from stall. In-
deed wind-tunnel experiments and simulations on oscillating airfoils have
confirmed this point.
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Figure 3. Typical aerodynamic lift coefficient curve of an
airfoil (steady state) and illustration of the unsteady aero-
dynamic response to cyclic variations of the angle of attack.

3 - The contribution of the gust to the far-field sound is derived, based
on the acoustic analogy.

In this procedure the key step is the relationship between the incident
velocity disturbances, assumed known, and the associated lift variations,
still to be determined. A minimum review of available theories achieving
this step is given below. It must be kept in mind that in practice information
about velocity disturbances is generally of easier access than information
about the wall pressure on a body.

2.3 The Two-dimensional Incompressible Gust

The simplest physically consistent theory is two-dimensional Sears’
theory assuming incompressible flow (see for instance Goldstein (1976)).
Though it only addresses parallel gusts, it is presented for historical interest
and because it already contains major physical features which will also be
included in more sophisticated approaches. The local instantaneous lift
fluctuation per unit span is distributed as:

�S(k1, y1, t) = 2 ρ0 U0 w̃(k
∗
1)

√
1− y∗1
1 + y∗1

S∗(k∗1) e
−i ω t , (2)

where y∗1 = 2 y1/c is the non-dimensional chord-wise coordinate with refer-
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ence at mid chord and k∗1 = k1 c/2 the non-dimensional aerodynamic wave
number of the incident fluctuation in the chord-wise direction. The theory
applies to a given wave number and requires a Fourier analysis of the in-
cident fluctuations. S∗ is Sears’ function, expressed with Bessel functions
as

S∗(k∗1) =
2

π k∗1
([J0(k

∗
1)− Y1(k

∗
1)]− i [J1(k

∗
1) + Y0(k

∗
1)])

−1
.

Integrating eq. (2) along the chord line leads to the total unsteady lift
force per unit span for the wave number k∗1 of the incident gust

F̃ (k1, t) = F̃ (k1) e
−i ω t = π ρ0 cU0 w̃(k

∗
1)S

∗(k∗1) e
−i ω t .
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Figure 4. Sears’ function (solid line) and its approximation
(dashed line).

This result gives sense to the intuitively introduced transfer function T of
section 2.2. Equation (2) shows that the lift fluctuations concentrate at the
leading edge and decay to zero at the trailing edge. The center of action of
the total fluctuating lift force is at the quarter-chord point. Sears’ function
is plotted in Fig. 4. It does not depart so much from the approximation

S̄∗(k∗1) =
1√

1 + 2π k∗1
e
i k∗1

[
1− π2

2 (1 + 2π k∗1)

]
.
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The amplitude of Sears’ function decays as frequency increases. In that
sense higher-frequency fluctuations correspond to lower aerodynamic effi-
ciency.

Assuming incompressibility means that the sound speed is considered
infinite in view of the time and velocity scales involved in the aerodynamic
processes. This is acceptable if the time taken for the airfoil response to in-
cident disturbances remains much smaller than the periods of oscillations. If
the response to an event occurring at the leading edge involves transmission
of information down to the trailing edge plus back-transmission upstream
to the leading edge accounting for the effect of the Kutta condition, the
condition reads

2c

c0β2
� λA

U0
,

with β2 = 1−M2
0 , M0 = U0/c0. In other words, since λA = 2π/k1,

M0k
∗
1

β2
=

kc

2β2
� π

2
.

The incompressible Sears and von Kármán’s solution is therefore only
valid if the chord is compact and if the Mach number is sufficiently small.
As a result the effect of compressibility is important not only at high Mach
number but also at high frequencies (Homicz & George (1974)). In many
cases of interest the aforementioned condition is not fulfilled and a com-
pressible solution is needed.

2.4 The Compressible Gust - Schwarzschild’s Technique

Compressible alternatives to von Kármán & Sears’ theory have been
proposed and reviewed for instance by Goldstein (1976). The approach
proposed by Amiet (1976) is selected here for its formal simplicity and the
wide possibilities of extensions it offers, discussed later on. In particular
the solution will be easily extended in a three-dimensional context. At low
frequencies it reduces to a compressibility correction of the incompressible
theory, described in the references. The correction is not addressed here
because it remains quite close to original Sears’ solution for compact airfoils.
Of more interest is the case of non-compact airfoil chords and related high
frequencies, for which the solution is detailed below.

Sears’ problem is considered now in a three-dimensional space, thus in-
troducing oblique gusts. A gust is defined by two aerodynamic wavenumbers
k1 and k2 in the streamwise (chordwise) and spanwise directions respectively
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Figure 5. Two-dimensional gust for generalized Sears’
problem statement.

by the upwash w̃(k1, k2) e
i (k1 x2+k2 x2−ω t) (Fig. 5). For convenience, the no-

tation (y1, y2, y3) is devoted later on to the source point (with y3 = 0) and
(x1, x2, x3) to the observation point or any field point. When evaluating the
unsteady lift the airfoil is assumed of infinite span, as also featured in the
figure, so that the potential is factorized as φ(x1, x2, t) e

i (k2 x2−ω t) in accor-
dance with the excitation by the gust. This leads to the modified convected
Helmholtz equation, equivalent form of the linearized Euler and continuity
equations

β2 ∂2φ

∂x2
1

+
∂2φ

∂x2
3

+ 2 i kM0
∂φ

∂x1
+ (k2 − k22)φ = 0

to be solved with the rigidity condition on the surface of the airfoil and
a Kutta condition in the wake. This equation is reduced to the ordinary
Helmholtz equation by a change of variables referred to as Ribner’s trans-
formation:

Φ = eiM0 μx∗
1 φ , μ =

k∗1 M0

β2
, x∗

1 =
2x1

c
, x∗

3 =
2β x1

c

leading to
∂2Φ

∂x∗ 2
1

+
∂2Φ

∂x∗ 2
3

+ μ2

(
1− 1

Θ2

)
Φ = 0 , (3)

where Graham’s parameter Θ = M0 k
∗
1/(β k∗2) has been introduced for con-

venience. When Θ is smaller than 1 the gust is said sub-critical and the
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equation is elliptic. The disturbance potential attenuates as an evanescent
wave away from the airfoil leading edge. When Θ is larger than 1 the gust is
supercritical and the potential radiates to the far field as sound. This is why
the interest is often limited to supercritical gusts as the only contributing
ones in the sound field. But this is true only in the limit of infinite or arbi-
trary large span and if the problem is addressed to directly derive the sound.
In the following two-step approach the equation is solved first to derive the
induced unsteady lift, which is the trace of the sound on the airfoil. The
sound itself is calculated afterwards from its trace by taking into account
the source distribution over the actual span, and this truncation makes the
sub-critical gusts contribute as well. In other words the sources are evalu-
ated ignoring the span-end effect. It is worth noting that sub-critical and
supercritical gusts correspond to subsonic and supersonic phase speeds of
their trace along the leading edge with respect to the incident mean flow,
respectively, as pointed out by Amiet (1975).

The aeroacoustic response of the airfoil is now interpreted as a wave
scattering problem. The approach is outlined as a reference that can be
applied in many more complicated configurations. The focus is first on the
induced lift and the acoustic field will be addressed in the next section,
essentially because the complete mathematical problem has no analytical
solution. Furthermore even the finite-chord strip representing the airfoil
cannot be handled exactly from this standpoint. The solution proposed
by Amiet (1976) is to consider separately the contributions of the leading
edge and of the trailing edge within the scope of an iterative procedure called
Schwarzschild’s technique (see Landahl (1961)). The theoretical background
is Schwarzschild’s theorem, stated as follows. Let ψ be a scalar field solution
of the Helmholtz equation

∂2ψ

∂x,2
1

+
∂2ψ

∂x,2
3

+ k2 ψ = 0

with the boundary conditions:

ψ(x1, 0) = F (x1) x1 ≥ 0 ,

∂ψ

∂x3
(x1, 0) = 0 x1 < 0 ,

where F is a known function. Then for x1 < 0 , the solution on x3 = 0
reads

ψ(x1, 0) =
1

π

∫ ∞

0

√−x1

ξ

ei μ (ξ−x1)

ξ − x1
F (ξ) dξ . (4)



302 M. Roger

This theorem is inherited from electromagnetism (the complex conjugate
can need being taken depending on the choice of convention for the time
Fourier transform). It produces closed-form solutions provided that the
integral can be calculated analytically, which is always the case when dealing
with gusts defined by complex exponentials.

Only the principle is explained here. For the application the airfoil is first
assumed semi-infinite by removing the trailing edge to infinity downstream.
A zero-order disturbance potential is introduced that exactly cancels the
incident gust upwash not only on the airfoil surface but also everywhere
on x3 = 0. This potential is balanced upstream of the leading-edge by a
first-order contribution for which the transformed potential Φ1 is solution of
a Schwarzschild’s problem. Indeed Φ1 is prescribed upstream of the leading
edge and its normal derivative must be zero on the extended airfoil surface.
Once determined, it is transformed back to get the effective potential φ1,
and the pressure jump � = Δp1 = 2 p1 is deduced by the relationship in
the presence of flow

p = −ρ0 U0

[
∂φ

∂x1
− i k1 φ

]
.

This first iteration alone is wrong because the actual airfoil chord is not
infinite. Therefore a trailing-edge correction is introduced, calculated as if
now the leading edge was removed to infinity upstream. The difference is
that the disturbance pressure is used to write down another Schwarzschild’s
problem, because the Kutta condition states that this pressure must be
zero in the wake and have a zero normal derivative on the airfoil surface
(the details, not given here, again involve changes of variables to move
the origin of coordinates from the leading edge to the trailing edge). In
principle higher-order iterations could be performed but the first two are
enough in practice, as pointed out by Amiet (1976). Details can be found
in the referenced papers. In the present three-dimensional context, the
full solution for the distributed unsteady lift of supercritical oblique gusts
including main leading-edge impingement and trailing-edge back-scattering
reads (Mish & Devenport (2000), Roger (2010))

�̃(y1, y2) = �(y1, y2, t) e
i ω t =

2 ρ0 U0 w̃ ei π/4√
2π (k∗1 + β2κ)

ei k
∗
2 y∗

2

×
{
1−

√
2

1 + y∗1
− (1− i)E [2κ (1− y∗1)]

}
e−i (M0 μ−κ) (1+y∗

1 ) ,

introducing the non-dimensional chordwise coordinate y∗1 with origin at the
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center chord, and the notation κ = μ
√
1− 1/Θ2 =

√
μ2 − k∗ 2

2 /β2. E is
the function introduced by Amiet and involving Fresnel integrals

E(ξ) =

∫ ∞

0

ei t√
2π t

dt .

The same expression for the unsteady lift and more generally for Schwarz-
schild’s eq. (4) or the complex conjugates are found in the literature de-
pending on the definition of Fourier transforms; remind that in the present
document time dependence is assumed as e−i ω t.

For sub-critical gusts κ is replaced by i κ′ with κ′ =
√

(k∗ 2
2 /β2)− μ2

and the term involving the function (1− i)E by the error function erf ([2κ′

(1−y∗1)]
1/2). All gusts involve the integrable inverse square-root singularity

at the leading edge already pointed out by Sears’s solution, but the unsteady
lift of sub-critical gusts decreases much faster farther downstream. This is
emphasized in Fig. 6, where the chord-wise distribution of the unsteady lift
amplitude on a flat-plate airfoil is plotted for various oblique gusts con-
tributing to the same frequency, thus various angles triggered by different
values of k2. Despite the physical drop at the trailing edge imposed by the
Kutta condition, the lift induced by supercritical gusts contaminates more
significantly the aft part of the airfoil.

Including sub-critical gusts in the modeling and paying attention to the
sub- or supercritical duality of sinusoidal gusts is important for practical
applications. Typically analytical studies of rotating blade broadband noise
rely on a strip-theory approach: a blade is split into segments, each of
which is assimilated to a rectangular airfoil of small aspect ratio, in order
to account for span-wise varying conditions. If a two-dimensional response
of each segment is assumed for simplicity, only parallel gusts are abusively
selected, supercritical by definition. If the actual excitation by oncoming
disturbances tends to produce sub-critical conditions, substantial errors are
expected.

In its original two-dimensional declination for parallel gusts (k2 = 0) the
compressible high-frequency solution holds whenever μ = k c/(2β2) > π/4
or whenever c/β2 > λ/4. Very low frequencies are possibly addressed by
the technique but would a priori require a larger number of iterations, not
compatible anymore with the derivation of closed-form solutions. Classical
Sears’ solution could provide a good alternative for gust-impingement at a
leading edge at low frequencies, used together with Graham’s similarity rules
(see Graham (1970)). The mathematical limitation must be transposed
to the parameter κ instead of μ in the general case, leading to possible
concern for values of k2 approaching the transition between sub-critical and
supercritical gusts. A palliative interpolation between both regimes can be
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Figure 6. Typical chord-wise distribution of unsteady lift
amplitude for various oblique gusts in both sub-critical and
supercritical ranges. kc = 2π, M0 = 0.3.

applied instead as proposed by Roger & Moreau (2005) for the similar case
encountered in trailing-edge noise modeling.

2.5 Radiation Integrals of Oblique Gusts

The trace determined by Schwarzschild’s technique provides the pres-
sure jump along the airfoil, acting as the equivalent source distribution.
The acoustic field is calculated now from the sources by a classical radia-
tion integral. This is equivalent to resorting to Ffowcs Williams & Hawk-
ings’ acoustic analogy. The sources are exactly the dipole contribution of
the analogy, recognized as dominant at subsonic Mach numbers. Since the
problem is solved in a non-compact and compressible context, the solu-
tion implicitly accounts for the auto-diffraction by the surface. But if the
formalism is to be applied to rotating blades, mutual diffraction between
adjacent blades, if any, is not accounted for, because Amiet-Schwarzschild’s
approach provides isolated-airfoil response functions. For non-overlapping
blades or low-solidity fans within the scope of a strip-theory approach, this
other simplification is fully acceptable. Oppositely high blade counts typi-
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cal of some turbomachines would in principle require the implementation of
cascade response functions, much more expensive and time-consuming, not
addressed here.

The far-field radiation for a single gust is expressed in a reference frame
attached to the airfoil as

p̃(x, ω) = − i k c ρ0 x3

2S2
0

U0 w̃ L
sin[L (k∗2 − k∗ x2/S0)/c]

L (k∗2 − k∗ x2/S0)/c
I ,

with k∗ = kc/2, where the sine-cardinal function sin ξ/ξ represents the
span-wise radiation integral and where the non-dimensional chord-wise ra-
diation integral (or aeroacoustic transfer function) I is introduced as

I (x, k1, k2) =

∫ 1

−1

�(y∗1 , y
∗
2) e

−i k∗
2 y∗

2

2π ρ0 w̃
ei μ (M0−x1/S0) y

∗
1 dy∗1 .

In the expressions (x1, x2, x3) stand for observer’s coordinates with ori-
gin at the center of the airfoil, respectively in the stream-wise, span-wise
and normal directions. S0 = [x2

1 + β2 (x2
2 + x2

3)]
1/2 is a corrected distance

accounting for sound convection by the surrounding flow. It is close to
the geometrical distance R only if M0 is small. L is the span. The sine-
cardinal function accounts for the span-wise interference associated with the
wavenumber k2. The function I has different expressions for the sub-critical
and supercritical gusts, including leading-edge and trailing-edge contribu-
tions: I = I1 + I2. For supercritical gusts it reads (Roger (2010))

I1 = − 1

π

√
2

(k∗1 + β2 κ)Θ4
e−iΘ2 E [2Θ4] , (5)

I2 =
e−iΘ2

π
√
2π (k∗1 + β2 κ)Θ4

(6)

×
{
i (1− e2 iΘ4) − (1 + i)

[
E(4κ) − e2 iΘ4

√
2κ

Θ3
E [2Θ3]

]}
,

with Θ2 = μ (M0 − x1/S0)− π/4, Θ3 = κ+ μx1/S0, Θ4 = κ− μx1/S0.
For sub-critical gusts the expressions follow as

I1 = − 1

π

√
2

(k∗1 + i β2 κ̄′)Θ′
4

e−iΘ2 E [2Θ′
4] , (7)

I2 =
− e−iΘ2

i π
√
2π (k∗1 + i β2 κ̄′)Θ′

4

(8)
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×
{
1− e2 iΘ′

4 − erf(
√
4κ′) + 2 e2 iΘ′

4

√
κ′

Θ′
3

E [2Θ′
3]

}
,

with Θ′
4 = i κ′ − μx1/S0, Θ

′
3 = i κ′ + μx1/S0.

For the sake of robustness the Fresnel integrals and related functions are
better implemented using the following relationship with the complex error
function of complex argument

ES (z) =
E(z)√

z
=

1 + i

2

Φ(0)(
√−i z)√
z

, Φ(0)(Z) =
2√
π

∫ Z

0

e−u2

du

and the algorithm

Φ(0)(
√−i z)√
z

= 2
e−i π/4

√
π

∞∑
n=0

(i z)n

(2n+ 1)n !
.

Figure 7. Chord-wise radiation-integral amplitude |I| as
a function of observation angle with respect to chord line
and span-wise wavenumber. μ = 2π, M0 = 0.3, x2 = 0.
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The amplitude of the radiation integral I is plotted in decibels and in
logarithmic k∗2-scale in Fig. 7 for an arbitrary set of parameters, as a func-
tion of observation angle with respect to the chord-wise direction. The plot
emphasizes a rapid drop for large values of k∗2 , and a plateau for small val-
ues at fixed angle. Note that interpolation has been performed between
the supercritical and sub-critical ranges to smoothen the response surface
at the singular value k∗2 = β μ, for which the two-step Schwarzschild’s pro-
cedure breaks down because the effective frequency parameter κ is exactly
zero. At some angles the dip in the supercritical range a priori makes the
sub-critical gusts more significant contributors. This dip is caused by cancel-
lations which result from chord-wise non compactness. At lower frequencies
(typically μ < π/4) the plateau would extend nearly constant whatever the
observation angle could be. In contrast at even higher frequencies, multiple
dips would be found.

The complete directivity pattern of a single oblique gust results from
the combination of this radiation integral with the additional sine-cardinal
function, on the one hand, and the factor x3/S0 which accounts for the
dipole character of the lift fluctuations, on the other hand. For non-compact
chords and supercritical gusts it exhibits multiple inclined lobes. Another
sample result with different parameters is plotted in Fig. 8. The four lobes
result from chord-wise non-compactness associated with the relatively high
reduced frequency. They are inclined away from the mid-span plane because
of the obliqueness of the gust, as first pointed out by Amiet (1975). The
radiation would be preferentially in the mid-span plane for a parallel gust.
The larger the aspect ratio L/c, the thinner the lobes. In the limit of
infinite aspect ratio, a single oblique angle would be selected. As frequency
increases, not only the number of lobes increases but the radiation also takes
place with more pronounced beaming downstream. In the limit of arbitrary
large frequencies, as shown later on, the diagram would become cardioid-
like with a maximum downstream; this is a typical feature of the half-plane
Green’s function already identified in chapter 2. In contrast to supercritical
gusts, sub-critical ones cannot produce multiple radiation lobes nor oblique
focusing.

Globally the chord-wise radiation integral behaves like a low-wavenumber
filter. The sine-cardinal factor acts as a band-pass filter centered on the
wavenumber k∗2 = k∗x2/S0 which gets progressively thinner as the aspect
ratio increases. The wider it is, the more likely the sub-critical gusts con-
tribute. More precisely if the observer gets closer to the mid-span plane, the
sub-critical gusts bring a poor contribution. In this case the parallel and
nearly-parallel gusts are responsible for the major sound. As x2/S0 increases
the sine-cardinal filter shifts towards larger values of k2 and gives more im-
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Figure 8. Typical directivity diagram of an oblique super-
critical gust. kc = 12.57, μ = 6.3, M0 = 0.05, k∗2 = −1.26,
L/c = 2. Arbitrary units.

portance to sub-critical gusts. But in the same time extreme observer posi-
tions close to the airfoil plane along the span correspond to vanishing values
of x3 for which the dipole directivity factor makes the contribution smaller
and smaller. This is why, again, sub-critical gusts are often discarded for
simplicity. Yet in view of the three-dimensional plot of Fig. 7 their relative
contribution can be significant if the sound must be evaluated for all pos-
sible observer locations and for all configurations. This is precisely what is
needed in rotating blade noise studies.

Because the present discussion is a question of gust obliqueness combined
with convection Mach number, it will also hold in the subsequent analysis
of trailing-edge noise, based on the same mathematical background.



Broadband Noise from Lifting Surfaces 309

2.6 Extensions

One of the most striking aspects of aforementioned Amiet-Schwarz-
schild’s technique is its wide range of extension capabilities. First it is ap-
plied later on to derive formulas for trailing-edge noise and vortex-shedding
noise; secondly it has also been used to account for realistic features de-
parting from the restrictive assumption of a rectangular airfoil the edges of
which are perpendicular to the mean flow. The former advantage makes
the analytical models of the three mechanisms addressed in this chapter
quantitatively comparable, because they are built on the same basis. The
latter allows introducing more physics in the models, thus offering more
practical interest. But it is beyond the scope of the present document.
Only indicative examples of reported works that are expected to enlarge
turbulence-impingement noise modeling are listed below as an open door
towards further extensions.

1 - Impingement of disturbances on a swept edge. Because the span-
wise extent of the airfoil is assumed infinite for the sake of determining the
induced lift, sweep, defined as a possible arbitrary angle between the lead-
ing edge and the flow direction, is simply accounted for by performing a
change of variables and introducing Cartesian coordinates along and nor-
mal to the edges, thus oblique with respect to the flow direction. First
derivations of the lift distribution �̃ are reported by Adamczyk (1974),
based on the Wiener-Hopf technique. Equivalent solutions are obtained
with Schwarzschild’s technique, and lead to extended expressions of the
radiation integrals, as shown by Roger & Carazo (2010). Essentially the ef-
fect of sweep is to shift the threshold between supercritical and sub-critical
gusts by changing the relative edge-to wavefront angle and the associated
span-wise phase speeds of the interaction.

2 - Effect of varying chord length. Fan design usually involves span-wise
variations of all geometrical parameters of a blade. Therefore any blade
segment in a strip-theory approach can have different chords at both ends,
or equivalently non-parallel leading and trailing edges. This again can be
included in Amiet-Schwarzschild’s approach, provided that some approxi-
mation is accepted. Indeed both edges are treated separately as edges of
half-planes. Once the dominant leading-edge scattering is determined by
the first iteration in the same way as for a rectangular airfoil, a change of
variables is performed in order to project the solution �̃1 in a new set of coor-
dinates aligned with the trailing edge. The procedure, detailed by Roger &
Carazo (2010), requires a splitting of �̃1 into trailing-edge aligned secondary
gusts, which is only valuable for segments of moderate aspect-ratio.

3 - Unsteady response of a blade tip. Because the highest relative flow
speeds on rotating blades are encountered at the tip, the effect of the blade
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termination upon the unsteady aerodynamic response is a key issue, espe-
cially if the oncoming disturbances concentrate to precisely impinge near
the tip. Again Schwarzschild’s technique provides a way to include the tip
effect in the analysis. Detailed derivations are also described by Roger &
Carazo (2010), for the tip of a rectangular unswept airfoil. The principle is
as follows. The unsteady lift determined ignoring the tip is first continued
by zero away from the airfoil surface and expanded in Fourier components.
For each component the lift is forced to zero beyond the tip by adding
a correction which is solution of another Schwarzschild’s problem, now in
the span-wise direction instead of the original stream-wise statement. The
inverse Fourier transform is finally performed numerically to get the cor-
rected response. Application to blade-tip vortex interaction noise modeling
is proposed by Roger & Schram (2012).

4 - Different convection and free-stream velocities. In some analytical
reductions of practical problems, oncoming disturbances can need being
assumed with a convection or phase speed that differs from the free-stream
velocity involved in the far-field radiation. For instance, this would be the
case for the turbulence generated in the flap cove of a wing with deployed
high-lift devices and impinging on the flap leading edge. Though seldom
addressed this extension is quite straightforward. It is not discussed here
because similar statements are mentioned in the next sections for trailing-
edge noise and vortex-shedding noise modeling.

3 Unsteady Aerodynamics for Trailing-Edge

Scattering

Most attached flows over well designed airfoils with a more or less sharp
trailing edge belong the regime illustrated in Fig. 9. Turbulence carried
in the boundary layers radiates sound because it is rapidly re-organized
around the trailing-edge. Analytical sound predictions require a special
mathematical statement. They are better derived starting from the incident
wall-pressure field corresponding to the boundary-layer turbulence, since
the Kutta condition is expressed in terms of a pressure release. In that
sense the convection speed Uc of Fig. 9 refers to the wall-pressure trace of
the incident vortex dynamics rather than to the incriminated velocity field.
The sound-generating mechanism is addressed by the generic configuration
of hydrodynamic pressure patterns convected past the edge of a thin rigid
plate, sketched in Fig. 10.

More precisely the wall-pressure field is again Fourier-analyzed and ex-
pressed as a combination of pressure gusts, and the airfoil response deduced
for each gust. This suggests that few differences arise in the modeling with
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Figure 9. Pure trailing-edge noise configuration. The sec-
ondary convection speed U ′

c in the wake introduced by Howe
(1978) is not used in the present modeling approach.

respect to the previous mechanism, except that what was done with the
velocity or the velocity potential is now repeated with the disturbance pres-
sure. It must be noted however that different models have been proposed
in the literature (see for instance Howe (1978) and Blake (1986)). They are
not detailed here.

The incident forcing by a wall-pressure gust of amplitude, say P0 is con-
sidered for one side only, that most often is the suction side of a loaded
airfoil. The proper way of imposing a Kutta condition remains a matter
of controversy when resorting to simplified models expected to reproduce
real-life flows. A full Kutta condition on the pressure jump is most often
considered. The scattered pressure field around the edge involves contri-
butions in phase opposition on each side of the plate, so that the pressure
jump is continuous and zero. Another choice is to assume that an incident
vortical pattern in the boundary layer tends to follow its path in the wake.
According to this interpretation discussed by Moreau & Roger (2009), the
disturbance pressure remains continuous and zero around the edge instead
of the pressure jump, and a counter-pressure of amplitude P0 is distributed
on each side of the airfoil. A factor 2 makes the difference between both
assumptions, and the effect will be 6 dB more in the far-field noise with the
second one, for the same incident turbulence. Apart from that, the proce-
dure will be declined in the same way. According to authors’ experience
with a set of airfoils tested at low speeds, the condition of zero pressure
around the edge produces the best agreement with measured data; further-
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Figure 10. Reference frame for trailing-edge noise model-
ing, and schematic view of a wall-pressure gust. Radiation
angles mentioned for completeness. θ is used in asymptotic
formulations of section 6.1.

more it ensures that Amiet’s formulation coincides with asymptotic Howe’s
theory at very high non-dimensional frequencies (Moreau & Roger (2009)).

In the derivations the origin of coordinates is taken at trailing-edge mid-
point according to the sketch of Fig. 10. Pressure gusts are defined in a
first step as if there were neither scattering nor edge. Though turbulence
in a boundary layer is not homogeneous in the stream-wise direction, it is
assumed almost homogeneous over the small extent just upstream of the
edge where the dominant vortex dynamics takes place. More rigorously
a gust should be given a growing amplitude, which would be equivalent
to adding an imaginary part to the stream-wise wavenumber. Accepting
the simplification, a gust of wall-pressure P0 is then forced to zero at the
trailing edge by adding a counter-pressure P1 in phase opposition on both
sides of the airfoil (this ensures continuity of the pressure in a close vicinity
of the edge). If the airfoil leading edge is removed to infinity, P1 is solution
of a Schwarzschild’s problem since it has to exactly cancel P0 in the wake
and have a zero normal derivative upstream. The corresponding induced
lift does not satisfy the condition of zero potential upstream of the airfoil
leading edge. In the original formulation proposed by Amiet (1976-b), this
is not considered a drawback because trailing-edge noise generally involves
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small-scale turbulence and relatively high frequencies for which the induced
counter-pressure decreases rapidly away from the edge. For low-frequency
needs, a leading-edge back-scattering correction can be derived by going
back to the disturbance potential and performing another application of
Schwarzschild’s theorem (Roger & Moreau (2005)). The back-scattering
correction is not negligible but is is only significant in limited cases. As
such it is not detailed here. In contrast the duality of supercritical and
sub-critical gusts still makes sense in the three-dimensional formulation of
trailing-edge noise. The induced lift of supercritical gusts is �̃ = �̃1 + �̃2,
with the dominant contribution �̃ � �̃1 given as

�̃1(y
∗
1 , , y

∗
2) = 2 ei (a k∗

1 y∗
1+ k∗

2 y∗
2 ) [(1− i)E (− [a k∗1 + κ+M0 μ] y

∗
1)− 1] ,

(9)

where a = U0/Uc is the ratio of the free-stream velocity to the averaged
convection speed of the incident boundary-layer wall-pressure disturbances.

For sub-critical gusts, the expression reads

�̃1(y
∗
1 , y

∗
2) = 2 ei (a k∗

1 y∗
1+ k∗

2 y∗
2 )

[
1− Φ(0)

(
− [i (a k∗1 + i κ′ +M0 μ) y

∗
1 ]

1/2
)]

(10)

with the same other notations as in previous section.
It is worth noting that the model assumptions remain questionable, prob-

ably because the physical processes highly depend on the flow features and
airfoil design in the vicinity of the trailing edge. Reducing the airfoil to a
flat plate of zero thickness and assuming locally homogeneous turbulence is
a concern if the actual shape is not much thinner than the boundary-layers,
as in the case of quite thick beveled edges. In particular, the meaning and
the hypothesis of a full or partial Kutta condition, as well as questions about
the coupled incident and scattered wall pressures have been examined by
some authors (Howe (1978), Zhou & Joseph (2007)). This variability of
small-scale motions in boundary-layers explains both the difficulty of defin-
ing universal scaling laws, addressed in section 6.1, and the either successful
or disappointing comparisons of model predictions with measurements. It
must be also kept in mind that trailing-edge noise modeling is addressed for
a single incriminated boundary layer. Most often this one is the suction-
side boundary layer of a loaded airfoil; if the pressure-side boundary layer
is also turbulent, the model must be considered twice with different param-
eters, assuming uncoupled sides. Outdoor measurements of the trailing-
edge noise of wind-turbine blades reported by Oerlemans & Mendez-Lopez
(2005) exhibit spectral features involving both sides of the blades: logically
the high-frequency range is attributed to the thinner boundary layers of the



314 M. Roger

pressure sides whereas the low-and-middle frequency range is attributed to
the thicker suction-side boundary layers.

Chord-wise radiation integrals (aeroacoustic transfer functions) are also
derived from the unsteady lift distributions, following the same methodology
as in section 2.5. The expression initially proposed by Amiet (1976-b) for
parallel gusts has been readdressed by Roger & Moreau (2005) to account
for three-dimensionality. For supercritical gusts the result reads

I1 =
e−2i C

i C

{
(1− i) e2i C

√
B

B − C
E [2 (B − C)]− (1− i)E [2B] + 1

}
,

(11)

with B = a k∗1 +M0 μ+ κ, C = a k∗1 +μ (M0 − x1/S0). Again for numerical
issues it is better implemented using the function ES. For sub-critical gusts
the radiation integral is found as

I ′1 =
e−2i C

i C

{
(1− i) e2i C

√
2B′ES [2 (B′ − C)] −Φ(0)

(
[−2 i B′]1/2

)
+ 1

}
(12)

with B′ = a k∗1 + i κ′ +M0 μ .
Because trailing-edge scattering and turbulence impingement involve

vortex dynamics close to an edge, the associated radiation properties have
some similarities. Typically, isolated oblique supercritical wall-pressure
gusts force trailing-edge noise in oblique directions, in the same way as
illustrated in Fig. 8 for turbulence-impingement noise but with lobes now
pointing preferentially upstream.

4 Vortex-Shedding Noise - The Reversed Sears’

Problem

Vortex-shedding noise is referred to in this chapter as the generation of
sound by the formation of structured vortices, such as a von Kármán street,
downstream of a blunted airfoil trailing edge. The mechanism differs from
aforementioned trailing-edge noise produced by vortical patterns already
present upstream in the developing boundary layers (note that yet some
authors use the same terminology). As stated by Brooks & Hodgson (1981),
the occurrence or not of structured vortex shedding is a matter of compared
values of the physical thickness of the trailing edge h and of the boundary
layer displacement thickness δ1. Typically the vortex street cannot develop
if h/δ1 < 0.3. Vortex shedding is known to radiate narrow-band noise
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around the Strouhal frequency f0 = 0.2U0/h. In contrast trailing-edge
noise is either broadband or tonal depending whether the boundary layers
are turbulent or laminar-unstable. Vortex-shedding sound in fan technology
can be difficult to recognize because the different values of the characteristic
flow speed along the span of a blade result in a broader frequency range.
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Figure 11. Model von Kármán vortex street in the wake
of a thick plate (a) and associated reversed Sears’ problem
(b) from Roger et al (2006). Pure vortex-shedding configu-
ration.

Imposing a Kutta condition in the present generic model would make no
sense because both experiments and numerical simulations show evidence
of lift fluctuations concentrating at the trailing edge with phase opposition
between both sides. This symmetry with what happens at a leading edge
impinged by upstream disturbances and referred to as Sears’ problem in
section 2 suggests that a similar mathematical statement is also relevant.
This is why the configuration is interpreted as a reversed Sears’ problem
by Roger et al (2006) (note that another modeling approach has been pro-
posed by Blake (1986)). This is simply made by reversing the flow direction
in Fig.2-a and assuming that the leading edge becomes the trailing edge
and vice versa. The wake oscillation defines an upwash w which is con-
vected downstream and has to be canceled farther upstream on the airfoil
surface. When applied to the vortex-shedding noise from a thick plate,
a refinement must be introduced to account for a convection speed Uc of
the upwash lower than the external flow speed U0 (Fig. 11). Again using
Schwarzschild’s technique, the dominant first iteration for the induced lift
is obtained as

�̃(y∗1) = − 2 ρ0 wU0 (1− i) ei a k∗
1 y∗

1 (13)
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with Θ′
1 = ak∗1+μ (1+M0),K

∗
1 = a k∗1 [1−M2

0 (1−1/a)2]1/2, ak∗1 � 0.2π c/h.
Since vortex shedding is known to have quite a large spanwise correlation
length, between 5 and 7 trailing-edge thicknesses h, and because the observer
is generally in the mid-span plane in validation experiments, the solution is
derived only for two-dimensional gusts. The result reduces to the main term
of parallel-gust impingement onto a leading edge as the convection speed
is set equal to U0 and as the Mach number and chord-wise coordinates
are given the opposite sign. The mathematical expression is defined up
to −∞ upstream, but the unsteady loads concentrate at the trailing edge
and negligible values are expected at the leading edge. Only the loads
distributed over the actual plate surface are taken into account for the
acoustic calculations.

The normalized radiation integral of a gust at angular frequency ω is
derived in a way similar to preceding cases. It is found as

IV K
1 = − (1− i)
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1
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2
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with
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2 = a k∗1 − μ

(
x1

S0
−M0

)
.

5 Application to Airfoil Broadband Noise Modeling

The equivalent source distributions derived analytically in previous sec-
tions are now used for a statistical description of the far-field noise. For
tonal noise predictions, they would be applied directly. It must be noted
that the theoretical background of Amiet’s theory and equivalent formula-
tions ignore the aerodynamic wavenumber of the incident disturbances in
the direction normal to the airfoil plane, say k3. This together with the
flat-plate assumption is considered enough for most broadband noise mod-
eling purposes. More sophisticated and fully three-dimensional approaches
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are possible, but they are beyond the scope of the course and most often
not tractable anymore by analytical methods.

5.1 Statistical Turbulence-Interaction Noise Model

Once the radiation integral corresponding to a single gust is obtained
from the distributed unsteady lift analytically, the power spectral density
(PSD) of the far-field sound pressure Spp is related to the statistics of the
upstream turbulent velocity field via spectral turbulent models used as input
data. The complete formulation for a rectangular airfoil reads

Spp(x, ω) =

(
k ρ0 c x3

2S2
0

)2

π U0
L

2
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−∞

[
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)2

]
dk2 , (15)

where Φww is the two-dimensional wave-number spectrum of the turbulent
velocity component normal to the airfoil. The full expression is required for
short-span airfoils, most often encountered in rotating blade applications.
For large-span airfoils, typically high-lift flaps such that the aspect ratio
L/c → ∞, an approximate expression follows from the equivalence of the
sine-cardinal function with Dirac’s delta function, as

Spp(x, ω) =

(
ρ0 k c x3

2S2
0

)2

π U0
L

2
Φww

(
k1,

k x2

S0

) ∣∣∣∣I (x1, k1,
k x2

S0

)∣∣∣∣2 .

(16)
This approximation selects the specific wavenumber k2 = k x2/S0 and

perfectly focuses the radiation in the corresponding oblique direction.
When using eq.( 15) or eq.( 16) the minimum relevancy for Φww is en-

sured by assuming homogeneous and isotropic turbulence, described by an-
alytical models such as Liepmann’s or von Kármán’s. This reduces the
statistical inputs to two parameters, the root mean square value of the ve-
locity fluctuations wrms and the integral length scale Λ. Expressions for
Φww can be found in the standard literature on turbulent flows (Hinze
(1975)). For assessment in the mid-span plane, the quantity Φww is related
to the frequency spectrum Sww(ω) and the correlation length �y(ω) by the
relationship Φww = U0 Sww �y/π with, respectively for the von Kármán’s
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and Liepmann’s models,
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It is worth noting that the wall pressure field does not enter the formu-
lation directly though it is the equivalent source of the sound according to
the acoustic analogy. In fact resorting to unsteady aerodynamic theories
displaces the needed input data from lift fluctuations to incident velocity
fluctuations. In this interpretation the airfoil acts as a converter of velocity
disturbances into acoustic pressure waves.

The statistics of the upwash component is not of easy access in ex-
periments because it requires using for instance cross-wire two-dimensional
anemometry. Single hot-wire anemometry is more tractable but it provides
only the power spectral density of the stream-wise velocity component Suu.
The information on Sww can be reconstructed from Suu by fitting the pa-
rameters (urms,Λ) of one of the aforementioned turbulence models on the
measurements, with wrms = urms. This is done typically in the experiments
mentioned in the next section, in which airfoils are tested in grid-generated
turbulence. Model expressions for Suu according to von Kármán and Liep-
mann are respectively given as (Hinze (1975))

Suu(ω) =

u2
rms Λ

π U0[
1 +

(
k1
ke

)2
]5/6

, Suu(ω) =
u2
rms Λ

π U0

1

1 + k21 Λ
2
.
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A typical check against hot-wire measured spectra is reported in Fig. 12.
The measurements are made in the presence of a turbulence grid placed
upstream of the nozzle contraction in an open-jet wind tunnel, at different
speeds. The distance to the grid is too short for obtaining ideal homoge-
neous and isotropic turbulence but ensures a higher fluctuating level. The
agreement is not perfect but well satisfactory enough for acoustic applica-
tions. By the way the collapse in non-dimensional variables confirms that
grid-generated turbulence is a self-similar flow. For a better consistency a
correction can been applied to force the model spectral envelope to decrease
at the highest frequencies towards the Kolmogorov scale, if these frequencies
effectively contribute to the sound.
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Figure 12. Stream-wise velocity spectra at the exit of a
convergent nozzle measured by hot-wire anemometry. Flow
speed 20 m/s (∗), 30 m/s (o), 40 m/s (×). Cont. line: von
Kármán model including high-frequency correction.

If turbulence parameters must be estimated from RANS simulations,
they are related to the turbulent kinetic energy K̄ and the dissipation ε̄ as

w2
rms =

2

3
K̄ , Λ � (2K̄/3)3/2

ε̄
.

Reliability issues remain when non-homogeneous turbulence is addressed
or when the local turbulence parameters vary over distances which are not
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large when compared to the airfoil chord. For instance, the predictions of
turbulence-impingement noise of a ring-airfoil placed in the mixing layer of
a round jet reported by Roger (2010) are based on measured Suu turbulent
spectra. For a ring of same diameter as the jet, the predictions compare
very well with the measurements, because turbulence in the middle of the
jet shear layers is quite close to homogeneity. In contrast the disagreement
observed with smaller or larger rings is attributed to significant departure
from homogeneous and isotropic turbulence away from the center shear
layer. In another context, the complex flows developing over high-lift devices
of aircraft wings such as deployed flaps also exhibit strong variations in the
vicinity of the flap leading edge; applying the methodology in such a case
becomes questionable.

5.2 Trailing-Edge Noise Model

The corresponding PSD of the far-field sound reads

Spp(x, ω) =
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It is written here in non-dimensional variables, introducing the wavenumber
spectrum of the wall-pressure fluctuations
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2 , ω) ,

where Φpp(ω) is the wall-pressure PSD induced closely upstream of the
trailing edge by the incident turbulence only (ignoring contamination by
the Kutta condition) and �y(k

∗
2 , ω) is the correlation length defined from

the coherence function between two span-wise locations η2 apart from each
other as
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The associated long-span approximation reads
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The key practical issue is to get a relevant information on Φpp(ω) and
�y(k

∗
2 , ω). Very different flow conditions are encountered in engineering

applications, corresponding to different wall-pressure statistics: attached
turbulent boundary layers with more or less pronounced adverse pressure
gradients, intermittently separated flows, re-attached flows after leading-
edge separation and so on (in principle separated flows are out of the scope
of usual trailing-edge noise modeling, except if the trace of the turbulence in
terms of wall pressure still exhibits a phase convection speed in the stream-
wise direction). The source information is reconstructed in experimental
studies by interpolation from measurements on a cluster of wall-pressure
sensors. Span-wise distributed sensors are needed to give partial access to
the correlation length, and chord-wise sensors are needed to evaluate the
convection speed Uc involved in the transfer function I. When small-scale
mock-ups are tested in wind tunnels, the size of the sensors causes resolution
issues that limit the relevance of the measurements; furthermore very thin
areas such as the vicinity of the trailing edge are difficult to implement. This
makes eq. (17) and eq. (18) more difficult to feed with reliable input data
when compared to the equivalent expressions for turbulence-impingement
noise.

Caution is required if Computational Fluid Dynamics is used to simulate
the flow. At moderate Mach numbers, incompressible LES is the minimum
required computational effort, but it may be not affordable. A possible
alternative is resorting to RANS (Reynolds-Averaged Navier-Stokes) com-
putations to infer the inner and/or outer scales of the boundary layers,
and reconstructing the quantities Φpp and �y via empirical laws previously
tuned on experimental data bases. This approach still needs being com-
forted, facing the wide variety of possible flows encountered in rotating blade
technology. Furthermore wall-pressure fluctuations are caused by turbulent
patterns developing at different heights in the boundary layer and traveling
at different convection speeds. Larger and faster eddies are farther away
from the wall whereas smaller and slower ones are convected at shortest
distance. In the same time larger or smaller eddies define lower or higher
frequencies at same convection speed. This intricate mechanisms make the
wall-pressure statistics difficult to analyze. Schematically arbitrary low fre-
quencies can be produced by small-scale turbulence convected at very low
speed. But eddy size is limited by boundary layer thickness, so that the
correlation length is expected to drop at vanishing frequencies.

Wall pressure statistics is addressed more specifically in chapter 6. Com-
plementary considerations are presented in the present section for trailing-
edge noise applications. Wall-pressure spectra Φpp measured beneath bound-
ary layers over flat plates and/or curved airfoil surfaces with more or less
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pronounced stream-wise pressure gradients are first reported in Fig. 13 in
dimensionless variables taking the displacement thickness as parameter. For
finite-chord airfoils the measurement has been performed close to the trail-
ing edge. Developed turbulence over a flat plate with zero pressure gra-
dient (small dots) often taken as reference is found to produce the lowest
fluctuations. In contrast an adverse pressure gradient causes a significant
increase, more especially at lower frequencies, up to 10 or 20 dB. This
has been observed by many investigators, on both large plates and airfoils,
and certainly depends on many parameters, such as curvature and gradient
strength. More especially leading-edge separation followed by reattachment
is found to produce the highest levels, with a wide low-frequency bump.
This flow regime is typical of thin or roughly designed leading-edges in fan-
noise technology, for which off-design conditions can be encountered.
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Model wall-pressure spectra can be built up based on boundary-layer
parameters. A review dedicated to aeronautical fan-noise applications has
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been proposed for instance by Gliebe et al (2000). Substantial differences
might be expected for low-speed cooling fans. First reported attempts for
the definition of universal statistical models are based on the use of outer
boundary-layer variables to scale the wall-pressure spectrum, as

Ψpp(ω) =
Φpp(ω)

ρ20 δ1 U
3
0

or Ψpp(f) =
Φpp(f)

π ρ20 δ1 U
3
0

, ω = 2π f > 0 ,

where the second form is directly expressed in terms of frequency. Schlinker-
Amiet’s model reads

Ψpp(ω) = 10−5
(
1 + ω̃ + 0.217 ω̃2 + 0.00562 ω̃4

)−1
, ω̃ = ω δ1/U0

and Gliebe’s et al model

Ψpp(ω) = 10−4
(
1 + ã ω̃2

)−5/2
,

where ã is 0.5 in the reference, and is better replaced by a smaller value,
here 0.3 to fit with the low-Mach number results of Fig. 13. Both provide
constant values at vanishing frequencies, abusive in view of some measure-
ments, and asymptotic high-frequency trends like ω−4 and ω−5. The former
and the latter hold for zero and adverse pressure gradients, respectively. The
alternative Chase-Howe model based on inner variables (not plotted here)
is expressed as

Ψ̄pp =
Φpp U0

δ1 τ2p
= ω̃2

(
ω̃2 + 0.0144

)−3/2
,

where τp is the wall-shear stress. It is known to yield better high-frequency
collapse and reproduces some low-frequency decrease. In counterpart the
wall-shear stress is of more difficult access for practical applications. The
large scatter of data in Fig. 13 suggests that model predictions could be
very sensitive to the pressure gradient associated with aerodynamic loading.
Yet this gradient does not enter explicitly the definition of aforementioned
models. An improved model including the pressure gradient and based on
mixed variables has been proposed very recently by Rozenberg et al (2012).
The assessment on extended sets of experimental data still requires further
investigation.

The correlation length is another matter of concern for sound predictions.
For developed turbulence in boundary layers with zero pressure gradient,
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Corcos’ model is often used. The corresponding expression reads

�y(k
∗
2 , ω) =

ω/(bcUc)

k22 + ω2/(bcUc)2
,

where bc is a constant, and essentially states that the correlation is inversely
proportional to frequency (at least for parallel gusts k2 = 0). This property
is not physically consistent at very low frequencies. Indeed low frequencies
naturally correspond to large scales and scales larger than the boundary
layer thickness cannot be found.
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Evidence of a relevant Gaussian distribution of the coherence as a func-
tion of frequency on a logarithmic scale is reported in Fig. 14. The left-hand
side plot refers to wall-pressure measurements directly made on the blades
of a low-speed axial fan, from Rozenberg et al (2008). They are compared
to a theoretical fit that obeys the log-normal law

γ2(f) =
A2

σ
√
2π f

e−[ln f−ln f0]
2 /(2σ2)

in which the parameters A, f0, σ appear as functions of the span-wise sep-
aration. Only retaining the variations of A as dominant makes the same
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qualitative variations expected for the correlation length. A similar be-
havior is reported by Roger & Moreau (2004) about the development of a
rapidly growing boundary layer close to the trailing edge of a Controlled-
Diffusion airfoil, in a flow regime identified as ’distributed vortex shedding’
(see Fig. 22-d later on). In such a case, believed representative of many
airfoils in real applications, the mean flow remains attached but vortical
patterns are progressively shed along the suction side in the aft part of the
airfoil. In fact Corcos’ model fails at very low frequencies but often pro-
vides a consistent estimate of the coherence or of the correlation length at
middle-and high frequencies. If the low-frequency range is not accessible as
in some wind-tunnel airfoil testing setups because of installation effects or
background noise issues, this model remains acceptable provided that tur-
bulence in the vicinity of the trailing-edge is close to homogeneity. Other
coherence measurements performed at two different speeds by Brooks &
Hodgson (1981) on a NACA-0012 airfoil are shown on the right-hand side
plot of Fig. 14. The log-normal frequency distribution is confirmed, with
some similarity according to a Strouhal-number scaling.

Other data recently reported by Fischer (2012) also exhibit the drop of
the coherence and of the correlation length at low frequencies, for airfoils
dedicated to wind-turbine applications. Typical correlation lengths as de-
termined by Rozenberg and Fischer are plotted in Fig. 15, in the upper
and lower plots respectively. Bump-shaped distributions expected from the
log-normal profiles are found. The data of Fig. 15-a refers to clustered wall-
pressure probes mounted in the tip region of a blade and close to mid-span,
for two stagger angles of the blades triggering different flow regimes. The
physical behavior is the same but the involved characteristic scales are dif-
ferent. In Fig. 15-b, the NACA 64-618 airfoil is tested at different flow
speeds. The frequency is scaled by the Reynolds number, proportionally to
some Strouhal number, and the correlation length by the square root of the
Reynolds number, quite arbitrarily. Classical laws for boundary layers do
not make a perfect collapse expected this way, because the transition oc-
curs at different locations on the airfoil suction side at different flow speeds.
Anyway the results suggest that modeling the correlation is achievable but
still remains an open issue. Other reported variations of �y with the angle of
attack suggest that again the pressure gradient should enter the scaling pa-
rameters. Physical considerations lead to accept that the correlation length
�y must be proportional to boundary-layer thickness.

The non-dimensional plot of Fig. 16 attempts in pointing evidence of
such a proportionality, but the reported data exhibit significant scatter.
Determinations of both �y and δ1 suffer from uncertainties because of ei-
ther numerical or experimental resolution issues. The average theoretical
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fit proposed by Guédel et al (2011) and another fit deduced from the log-
normal model assuming variations of A only with the span-wise separation
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are added on the figure. Both are acceptable assumptions for acoustic pre-
dictions in terms of decibels. In contrast Corcos-like fitting is not, at low
frequencies. Extrapolated values at high frequencies for which measure-
ments cannot be achieved lead to significant differences. At 2 π f δ1/U0 = 4
in Fig. 16 the new proposed fit produces 12 dB less than the other two,
therefore the choice of theoretical model becomes crucial.

5.3 Vortex-Shedding Noise Model

For vortex-shedding noise the far-field pressure PSD reads

Spp(x, ω) =

(
ρ0 k c x3 U0

2S2
0

)2
L

2
Sww(ω) ly(ω)

∣∣IV K
1

∣∣2 (19)

and only refers to the narrow-band spectral signature. The expression looks
very similar to the one of turbulence-impingement noise because the mathe-
matical statement also relies on velocity disturbances as the origin of sound.
Here Sww is the PSD of the upwash velocity w in the near wake and ly
the corresponding span-wise correlation length. It must be noted that the
quantity Sww refers to a disturbance field which is not homogeneous in the
direction normal to the wake, therefore the definition of input data for the
formulation is questionable. The obvious choice is taking the information
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on the wake center-line where it is at its maximum. Moreover the formation
of von Kármán vortices at the back edge of a body requires a finite stream-
wise distance which influences the induced loads. The situation is clear in
the case of a rectangular trailing-edge for which the flow detaches from the
corners, taken below as example. Two sets of data obtained from differ-
ent methods and referring to different Reynolds numbers of the flow over
a flat plate a zero incidence are compared in Fig. 17. The power spectral
density of the upswash is evaluated at twice the plate thickness h down-
stream and assumed representative of the forcing quantity. It is deduced
from incompressible LES performed over a limited span-wise extent for the
low-Reynolds number case, and directly measured by hot-wire anemometry
in the large-Reynolds number case. For the latter a slight frequency shift
has been applied to account for some confinement effect in the experiment.
A very good collapse is obtained by plotting the reduced PSD Sww/U0 as
a function of the Strouhal number fh/U0. This allows proposing a model
exponential fit in logarithmic frequency scale, to be used as input data.
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Figure 17. Upwash velocity spectra in the near wake
of a flat plate as predicted by LES at low Reh of
4,000 (from Roger et al (2006)) and as measured at high
Reh of 330,000 (unpublished ECL data, French Program
SAMBA).

The associated correlation length has been assessed in the experiment
from wall-pressure measurements closely upstream of the trailing edge, as-
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suming that it is the same here and in the near wake by virtue of the
continuity of the flow. It is quite large at the vortex-shedding frequency
and drops rapidly besides. A consistent model fitted on measured data for
the coherence has been found as

γ2 = e−(ζ/Λ0)
2

e−a |ω−ω0|

where a is some constant, around 0.012 /(2π) at the Reynolds number of
4,000 based on the trailing-edge thickness. The corresponding correlation
length reads �y(ω) =

√
π/2Λ(ω), with Λ = Λ0 e

−a |ω−ω0| and Λ0 � 7h.
Because the scaling of Fig. 17 is perfect with regard to the differences of

dimensional parameters, it is considered reliable. However it holds only for
zero angle of attack and a rectangular trailing edge. Other shapes such as
beveled edges would possibly exhibit different features.

6 Scaling Laws and Experimental Validations

6.1 Scaling Laws and Asymptotic Trends

Scaling laws in aeroacoustics are often used as empirical prediction
means. They can be obtained either from experimental data bases or from
theoretical arguments. In the first case, the point is that the laws may fail
when applied to configurations not covered by the original data base. The
theoretical background is more reliable. Scaling laws are discussed in this
section for turbulence-interaction noise and trailing-edge noise, from the
aforementioned analytical models. They are based on the very important
assumption that the flows are self-similar. This is very often so in practice
because unsteady flows exhibit higher frequencies and levels with increasing
mean-flow speeds. Typically the frequency is proportional to the mean flow
speed U0 and can be made dimensionless by introducing a Strouhal number
St = f l/U0 based on a relevant length scale l. Depending on the con-
figuration, the fluctuating velocity amplitudes can be also proportional to
the mean flow speed, or not (especially for three-dimensional flows, highly
Reynolds-number dependent flows...). Therefore the PSD of the acoustic
pressure is divided by Un

0 where the exponent n is to be determined. Afore-
mentioned analytical models state that the acoustic intensity is proportional
to the mean square value of the forcing disturbance, w2

rms or P 2
rms, to its

span-wise correlation length �y and to the span-wise extent of the edge L.
The derivations assume that the ratio �y/L is small. Furthermore the inci-
dent disturbances must have the properties of homogeneous and stationary
random processes. Examples will be given in the next section.
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The asymptotic high-frequency trend for turbulence-impingement noise
is derived by only retaining the first term I1 of the radiation integral, since
the trailing-edge correction gets smaller and smaller. For kc = 2M0 k

∗
1 →

∞ and accounting for the developments of Fresnel integrals (Abramowitz &
Stegun (1970)), some algebra leads to

Spp

Φww
� ρ20 U0 LM0

π R2
e

cos2(θe/2)

(1 +M0 cos θe)3

with S0 = Re (1+M0 cos θe). The result is expressed in emission coordinates
with respect to the surrounding flow for the sake of a better physical insight,
and θe is the observation angle from the streamwise direction (see chapter
2 for definitions). In the limit of small Mach numbers M2

0 → 0, a cardioid
directivity pattern is found. The sound goes to zero upstream at small
angles close to the airfoil plane and is maximum downstream. For the low-
frequency limit, Amiet’s formalism must be replaced by Sears’ theory and
the radiation integral reads |I| = |S(k∗1/β2)|/β. Small values of kc and
reasonable values of M0 make the function get close to 1, so that now the
ratio becomes

Spp

Φww
� ρ20 U0 π LM0

8β2 R2
e

(kc)2
sin2 θe

(1 +M0 cos θe)4
.

The radiation is that of a compact dipole in motion, zero in the plane
of the airfoil and maximum in the normal direction. Except that it is not
specified in the mid-span plane, the general case illustrated by the sample
results of Figs. 7 and 8 is between the two asymptotic regimes. Apart from
the change in the directivity, the exponent of convective amplification is also
found to go from 4 to 3 from low to high frequencies because of increased
non-compactness.

A similar analysis for trailing-edge noise only makes sense for the high-
frequency limit. In this case, introducing the convection Mach number
Mc = Uc/c0 yields the result

Spp

Φpp �y
� LMc sin2(θe/2)

π2 R2
e (1 +M0 cos θe)

1− (M0 −Mc)

[1 + (M0 −Mc) cos θe]2

in which the last factor has a secondary importance, especially for low-Mach
number applications. The opposite cardioid trend to leading-edge noise
is found, no sound being radiated downstream and a maximum radiation
upstream. Both results are in accordance with what is expected from the
half-plane Green’s function for a distant observer and a source located close
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to the edge. In the limit of high frequencies, what happens at one edge
radiates as if the complementary edge was removed to infinity. Trailing-edge
noise radiates preferentially upstream and turbulence-impingement noise
preferentially downstream.

Even though different in essence, both vortex-shedding noise and trailing-
edge noise have common features because the underlying vortex dynamics
responsible for sound radiation takes place in the very vicinity of the trail-
ing edge in terms of emitted wavelengths. As a result if the radiation is
interpreted as quadrupole sound according to Lighthill’s analogy it tends to
obey the asymptotic half-plane Green’s function and produce a cardioid pat-
tern. The present statements using Schwarzschild’s technique adopt Ffowcs
Williams & Hawkings’ interpretation and directly address the equivalent dis-
tributed dipoles the radiation of which is defined by the free-space Green’s
function. Again it is verified that both interpretations provide the same
result.

6.2 Turbulence-Impingement Noise Results

The figure 18 reproduces turbulence-impingement sound spectra for a
NACA-0012 airfoil embedded in grid-generated turbulence, as reported by Pa-
terson & Amiet (1976). The airfoil is mounted between end-plates at the
nozzle of an open-jet anechoic wind tunnel and the noise is measured in the
mid-span plane. Model predictions are superimposed on the sound spectra
for different flow speeds. The agreement is found very good at the highest
speed whereas the sound is clearly overestimated at the lowest flow speeds.
The same experimental protocol repeated on a smaller set-up with a thinner
airfoil of maximum thickness 3% at three flow speeds provides the results
reported next in Fig. 19. Obviously the overall sound level and frequencies
both increase with increasing flow speeds but humps and dips are seen al-
ways at the same frequencies, at Helmholtz numbers close to 2π and 4π.
The dips are attributed to interference fringes caused by chord-wise non-
compactness and therefore do not depend on the flow speed (at least at the
low Mach numbers investigated). They correspond to the same pattern il-
lustrated in Fig. 7. A similar dip is observed in Fig. 18. But unlike the ones
of the NACA-0012, the model predictions based on the same analytical for-
mulation are now found very close to the measurements despite the low flow
speeds. This difference is attributed to the thinner airfoil design, 3% against
12%. Various authors recognized that thick rounded leading edges have a
reduced response to oncoming turbulence at sufficiently high frequencies.
This is especially prominent for some cross-sections of wind-turbine blades,
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Figure 18. Turbulence-impingement noise spectra of a
NACA-0012 airfoil from Paterson & Amiet (1976). Grid-
generated turbulence, observer at 90◦ in the mid-span
plane. c = 23 cm.

the relative thickness of which reaches 15% or 18%. The reduction occurs
intuitively when the incident turbulent eddies are smaller than the airfoil
leading-edge thickness or curvature radius. Such small eddies are deviated
by the mean streamlines instead of being scattered at the edge. If Amiet’s
theory is assumed to hold for vanishing thickness or at least as long as the
characteristic lengths of the turbulence exceed the thickness at the lead-
ing edge, comparing the response of different airfoils to the same incident
turbulence provides a way to quantify the reduction due to thickness effect.

Data gathered from various investigators are found to collapse reason-
ably, at least over an extended range of parameters, provided that they are
plotted in a corrected form to account for the variety of experimental con-
ditions, as shown in Fig.20 reproduced from Roger & Moreau (2010). The
reduction is divided by the ratio (e/c) / (e/c)ref and plotted as a function
of the variable fξ/U0 where ξ = (Λ/c)ref / (Λ/c), the index ref standing for
the NACA-0012 airfoil in the experiment of Paterson & Amiet (1976) taken
as reference.

The amount of reduction in dB is almost proportional to thickness and to
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frequency. The reduction also depends on the experimental set-up, mainly
the grid-mesh size used to generate the turbulent field. The reasonable
collapse of the figure can be used to empirically correct analytical predictions
based on a thin-airfoil assumption.

Globally, turbulence-interaction noise at any subsonic Mach number is
well predicted by Amiet’s analytical model for velocity disturbance rates
of less than 10%, relative thicknesses of a couple of percent, and moderate
cambers. The mean load, or equivalently the actual angle of attack neglected
in the linearized theories of unsteady aerodynamics, has no noticeable effect
for a thin and slightly cambered airfoil over a large range of realistic values,
provided that the oncoming turbulence is nearly homogeneous and isotropic.
Recent developments also indicate that the precise design of an airfoil is
more sensitive when the incident turbulence departs from ideal homogeneity
and isotropy (Staubs et al (2008)).
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6.3 Strouhal-Number Versus Helmholtz-Number Scaling

For self-similar flows the properties of which do not essentially vary
with the Reynolds number, the amplitude and the frequencies of velocity
fluctuations are both proportional to the mean flow speed. The spectral
shape of the far-field sound extends wider for higher speeds, with increased
levels. The flow statistics involved in the forcing source terms is expected
to scale according to the Strouhal number St = fc/U0. As a result, plotting

the reduced PSD Spp U
−(n−1)
0 as a function of the Strouhal number and ig-

noring non-compactness interferences must produce a perfect collapse of the
curves, if the overall (frequency-integrated) acoustic intensity scales like Un

0 .
This property should be used systematically to scale broadband noise data
in aeroacoustics. In the same time higher frequencies triggered by higher
flow speeds make the airfoil chord less compact, and departure from the self-
similarity is expected in the sound signature from the onset of interference
fringes. Apart from this, any geometrical environment of a flow is character-
ized by resonant frequencies which do not essentially depend on flow speed.
It can be guessed that resonance and interference features, in particular
related to chord-wise non-compactness, rather depend on the Helmholtz
number He = kc. Indeed plotting the PSD as a function of frequency or
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Helmholtz number preserves the non-compactness dips and humps at the
same places but cannot produce a collapse over the entire frequency range.
Plotting as a function of the Strouhal number provides a better overall col-
lapse except that the dips are now at different Strouhal numbers for different
speeds. Yet the Strouhal-number scaling is more physically consistent when
tracking scaling laws of sound-generating mechanisms.
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Figure 21. Helmholtz-number scaling of turbulence-airfoil
interaction noise. Symbols stand for the NACA-0012 of Pa-
terson & Amiet (1976) and thick lines for the thin cambered
airfoil tested at ECL. Grid-generated turbulence, observer
at 90◦ in the mid-span plane.

The sample results collected in Fig. 21 are taken again from Paterson
& Amiet (1976) and the ECL data for a thin cambered airfoil (Figs. 18
and 19). A good collapse is achieved by plotting Spp/U

7
0 as a function of

the Helmholtz number kc, if the plot is aimed at emphasizing the humps and
the dips attributed to non-compactness. Yet unacceptable scatter is found
at lower frequencies. The first dip occurs quite close to the value kc = 2π
for which the acoustic wavelength is equal to the chord length, which is
somewhat expected for an observer at 90◦. The slight frequency shift of
the dip between both sets of data is attributed to the different geometrical
design. The sound levels also differ because of different experimental con-
ditions and because of the thickness effect of the NACA-0012. This simple
example illustrates that aerodynamic noise in the presence of solid surfaces
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combines intricate flow and geometry effects. The duality He-versus-St
has been identified in many applications, for instance by Neise & Barsikow
(1982) who discussed the acoustic similarity laws of low-speed fans.

6.4 Trailing-Edge Noise Results

Trailing-edge noise results for an industrial Controlled-Diffusion (CD)
airfoil tested at low-Mach number are presented and discussed in this section
as illustration of the methodology. The experimental protocol is the same as
for turbulence-impingement noise. The airfoil is instrumented by clustered
remote-microphone probes so that the wall-pressure statistics (Φpp and �y)
close to the trailing edge is measured directly (Roger & Moreau (2004)).
This provides information on the sound sources. The far-field sound is also
measured in the mid-span plane. Both wall-pressure spectra and acoustic
spectra are compared in Fig. 22. Different flow regimes are obtained by
setting different geometrical angles of attack, all with attached and stable
laminar boundary layers on the pressure side. The acoustic spectra are
artificially shifted up in order to make the comparison of spectral envelopes
easier.

In case (a) a laminar unstable boundary layer develops on the suction
side, with the expected Tollmien-Schlichting (TS) instability waves. The
main bump and its distortion harmonics feature the range of unstable fre-
quencies. Because the unsteady motion is coherent, both source and sound
spectra exhibit additional tones resulting from acoustic back-reaction. Case
(b) corresponds to a turbulent boundary layer triggered by a small leading-
edge separation bubble. This regime is characterized by quite high fluctu-
ating levels at low frequencies. In case (c) the flow remains attached but
the boundary layer rapidly grows upstream of the trailing edge due to the
formation of large vortical patterns in the aft part of the airfoil. This regime
is referred to as ’distributed vortex shedding’ by Roger & Moreau (2004).
In each case the overall similarity of source and sound spectra confirms the
cause-to-effect relationship. The level differences illustrate the ratio Spp/Φpp

and emphasize the variations of radiation efficiency with flow regime and/or
frequency, essentially attributed to the span-wise correlations length �y. TS
waves are the most efficient in the frequency range of the bump, because
they are associated with quite large values of �y. Case (b) has the minimum
efficiency, nearly frequency-independent. In contrast case (c) is more effi-
cient below 1 kHz, because the span-wise coherence takes quite high values
as reported in the reference paper.

Sound predictions in dimensional variables achieved by the analytical
model of section 5.2 taking the measured wall-pressure statistics as input
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Figure 22. Compared wall-pressure (thick lines) and far-
field sound (thin dotted) spectra for a CD airfoil at different
flow regimes. Sound measured in the mid-span plane, nor-
mal to chord length. (a) airfoil cross-section. (b) Tollmien-
Schlichting waves (laminar boundary layer). (c) leading-
edge separation. (d) distributed vortex shedding. Acoustic
spectra scaled by R2/(Lc) and shifted up by 30 dB. Fre-
quencies below the vertical dashed lines are not reliable
because of background-noise issues.

data are compared with measurements in Fig. 23, for the same three afore-
mentioned regimes (Moreau & Roger (2009)). The upper plot refers to
the onset of TS waves. The tones of Fig. 22-b resulting from amplifica-
tion by acoustic feedback have been removed from the spectrum because
the statistical model only addresses direct sound production from random
disturbances. The remaining hump-like part corresponding to the primary



338 M. Roger

10
2

10
3

10
4

−60

−40

−20

0

20

40

60

Frequency (Hz)

S
P

L 
 (

dB
, r

ef
. 2

. 1
0−

5  P
a 

)

TBL case 2

TBL case 1

TS waves

Figure 23. Predicted versus measured trailing-edge noise
spectra of a thin cambered airfoil, from Moreau & Roger
(2009). The three sets of data are vertically shifted from
each other by 10 dB for clarity.

TS wave radiation with no feedback is reproduced accurately because the
span-wise coherence can be measured over an extended frequency range.
The other plots are shifted by -10 dB (case 1, Fig. 22-c) and -20 dB (case
2, Fig. 22-d) for clarity. In these cases the much weaker span-wise coher-
ence at high frequencies is not accessible. Therefore it is as far as possible
deduced from the measurements and continued by fitted theoretical trends;
Corcos’ model is used in case 1 and an ad hoc model proposed by Roger &
Moreau (2004) is used in case 2. Bumps in the predicted spectra around 3
kHz and 5.5 kHz as well as dips around 2 kHz and 4.5 kHz are attributed
to chord-wise non compactness (airfoil chord 13 cm). They do not clearly
appear or they are shifted in the measurements, possibly because of camber
effects and additional sound scattering by the nozzle lips in the experiment.
Anyway the good overall agreement reported in Fig. 23 shows that the pre-
dictions are reliable when fed with directly measured input data. Similar
results for a flat plate are found in next section.
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6.5 Vortex-Shedding Noise Results

Vortex-shedding sound is a less documented topic. Indicative results
and modeling attempts are mentioned in this section, for a flat plate with
rectangular trailing-edge. Complementary elements are found in the book
by Blake (1986). Typical far-field sound spectra are first plotted in Fig. 24
for an inclined flat plate tested in an open-jet anechoic wind tunnel. Because
the flow is deflected by the mean lift acting on the plate, precise values of
the geometrical angle of attack are indicative. Only the qualitative features
of the flow and the related acoustic signature make sense, described here for
increasing values of the angle from α1 = 0 to a maximum value α4. Even
higher values would correspond to stall. The relative thickness of the plate
is 3%. At zero angle of attack, a large peak is heard at the expected Strouhal
number of 0.2 built on the plate thickness h. As the angle increases that
peak reduces whereas a wide hump grows at lower frequencies. The higher
the angle of attack, the lower and wider the associated frequency range.
The bump is attributed to trailing-edge noise; indeed the flow separates at
the leading edge and reattaches on the suction side of the plate, triggering
a turbulent boundary layer, similar to the case of the CD airfoil, Fig. 22-c.
The drop of the peak is caused by a loss of coherence and a progressive
deactivation of the vortex shedding by increasing upstream disturbances.
The frequency shift is attributed to different local flow accelerations at dif-
ferent angles of attack. It is concluded that both vortex-shedding sound
and trailing-edge noise can coexist if the frequency range of the latter does
not cover the one of the former. Yet competition obviously takes place.

The same plate of 3% thickness tested on a different nozzle produces
the results of Fig. 25, taken from Chang et al (2006) and Roger & Moreau
(2010) for illustrating the accompanying prediction methodology. In the
first configuration at zero angle of attack, vortex shedding is well structured
and not significantly influenced by disturbances developing upstream in the
boundary layers. The associated sound can be predicted with eq. (19). The
needed upwash spectrum is provided by the model calibrated in Fig. 17. The
agreement is perfect in this case, dealing with the narrow-band signature
only.

The procedure has been repeated for the geometrical angle of attack of
5◦. In this case vortex shedding is disturbed by a higher turbulence level
in the boundary layers and again the emergence of the peak is reduced as
already emphasized in Fig. 24. Because of computational cost issues the nu-
merical simulations ignored the flow-deflection effect in the experiment and
some uncertainty results in the definition of the input data. An empirical
spectral shape has been again defined anyway and the effect of the uncer-
tainty assessed by the upper and lower estimates of the acoustic signature
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Figure 24. Sound spectra of a flat plate of 10 cm chord
length inclined in a flow, as function of angle of attack.
Combined trailing-edge noise and vortex-shedding noise.
ECL data.

in Fig. 25. For completeness, the trailing-edge noise prediction achieved
with the model of section 5.2 fed with measured wall-pressure statistics is
reported, again showing a satisfactory agreement.

The flat-plate test-case illustrates a hybrid application in which input
data are partly measured and partly provided by Computational Fluid Dy-
namics. The good overall agreement achieved here is in favor of the physical
consistency of the reversed Sears’ problem. However the practical applica-
tion is made tricky by the non-homogeneity of the velocity in the near wake.

7 Concluding Remarks

The analytical approach declined in the chapter for various broadband-
noise mechanisms can be understood as a post-processing technique to be
associated with some flow description. It is found reliable for thin and mod-
erately cambered airfoils provided that aerodynamic input data are avail-
able. The latter appear as the crucial point of the method. When they are
provided by unsteady flow computations, the models can be applied as an
alternative till full numerical methods including the prediction of the sound
field can be applied at reasonable cost. The analytical method also suffers
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from limitations inherent to the necessary assumptions. The limitations are
the best motivation for further developments and improvements. Among
other topics, connections between the wall-pressure statistics and the mean-
flow parameters in the boundary layers with adverse pressure gradients still
need being elucidated for trailing-edge noise predictions. For turbulence-
impingement noise, the effect of departures from homogeneity are not fully
understood either. Finally, for all investigated mechanisms, including three-
dimensional effects related to blade geometry in turbomachines is required
to accurately cover engineering applications.
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Boundary layer noise
Part 1: generation mechanisms
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Abstract Boundary layer noise concerns the generation of acous-
tic waves as an effect of the interaction of a fluid with a moving
surface. Several issues are related to the noise generation mecha-
nisms in such a configuration. In the present description we focalize
mainly onto the case of an infinite flat plate and two main distinct
situations are considered. The first one deals with the prediction of
the far field noise as accomplished from the classical integral the-
ories, and the main formulations, including Curle’s approach, are
briefly reviewed. A novel approach based on the computation of the
surface transpiration velocity is also presented. The second aspect
concerns the interior noise problem and it is treated from the view
point of the fluid dynamic effects rather than from that of the struc-
tural dynamics. Attention is focused on the statistical properties
of the wall pressure fluctuations and a review of the most effective
theoretical models predicting statistical quantities is given. The
discussion is completed by a short review of the pressure behavior
in realistic situations, including the separated boundary layers in
incompressible and compressible conditions and the effect of shock
waves at transonic Mach numbers.

1 Introduction

Aerodynamic noise from a turbulent boundary layer is a fundamental topic
in flow-induced noise and is of interest for both fundamental studies and
applied research. The action of the pressure fluctuations indeed provides
the driving force to excite surface vibrations and produce acoustic radia-
tion. Many engineering problems are connected with this topic. Fatigue
loading on panels of an aircraft fuselage and the vibrational generation of
acoustic radiation into an aircraft cabin enclosed by the boundary surface,

R. Camussi (Ed.), Noise Sources in Turbulent Shear Flows: Fundamentals and Applications, 
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© CISM, Udine 2013 
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are two examples among many. Generally speaking, in high speed trans-
port technology, the understanding of the physical mechanisms underlying
the generation of pressure fluctuations at the wall, has received increasing
attention in view of the use of lightweight and flexible structures. In the
field of aerospace launch vehicles design, this problem is of great relevance
since vibrations induced in the interior can cause costly damages to the
payload while panel vibrations of the external surface must be avoided to
prevent fatigue problems and structural damages. In the context of ma-
rine transportation, this topic has become quite important in the case e.g.
of high-speed ships for passenger transportation where requirements of on
board comfort have to be satisfied. This concern has become of great im-
portance for ground transportation as well, notably for high speed trains
design. In this case, the effect of pressure fluctuations induced by flow sep-
arations (e.g. due to the pantograph cavity) becomes the dominant noise
producing mechanism, this situation being of relevance in the automotive
industry in general, since large flow separations are unavoidable on cars.

The vibration of a panel induced by a random pressure load leads to
acoustic radiation into the flow as well. Also this problem is of relevance
for many engineering applications including, for example, the generation of
noise from piping systems or the transmission of pressure waves by under-
water vehicles, the so–called acoustic–signature.

Due to its importance, since the early 1960s, researchers have been study-
ing this subject using different approaches including experimental investi-
gations, numerical simulations and theoretical speculations.

When a solid surface is overflown by a turbulent boundary layer, several
relevant mechanisms contributing to the generation of sound waves, can be
identified. To simplify the description, consider the case of a panel subject
to a flow on one side. The pressure field on the surface flow side consists of
the sum of the turbulence pressures which would be observed on a rigid wall
and the acoustic pressures which would be generated by the plane motion
in the absence of turbulence. At a first approximation, these two effects
can be studied separately. This idea represents the so-called weak coupling
approximation and can be derived from an acoustic analogy analysis of
the problem [see e.g. Dowling (1983) and Howe (1992)]. The hypothesis
that the basic turbulence structure is unaffected by the acoustic motions
is indeed the basis of the acoustic analogies and can be accepted if the
acoustic velocities are small in comparison with the turbulence velocities.
This position, even though not always satisfied, has become accepted as a
standard method even at supersonic flow speed [see also Graham (1997)].
The main reason for this is that fully coupled computations are, at present,
prohibitive for any length scale of practical relevance even with the most
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powerful computer resources. On the other hand, the engineering design
still nowadays requires simple models which allows fast understanding and
rapid computations.

In view of such considerations, in the following discussions the wall can
be considered as a rigid plate and the panel vibrations considered apart.

The problem of the boundary layer noise can then be treated consider-
ing two different aspects, namely the so-called community noise and the
interior noise. The first term applies to the effect of the acoustic waves
generated by the wall turbulence and evolving in the far field from the flow
side of the surface. The second one pertains with the transmission of noise
at the side of the surface in still air. In both cases, the attempt to predict
the noise emission is based on the correct representation, in a statistical
sense, of the random load acting on the surface. For this reason, most of
the discussions that follow are concerned with the clarification of the prop-
erties of the wall pressure field and the predictability of its main statistical
properties. In Figure 1 an overall view of the mechanisms generating sound
waves including the definitions adopted therein is reported. Figure 2 evi-
dences the topics faced in the present chapter. The problem related to the
interior noise is treated in more details in the second part of this chapter
where the theoretical background regarding the noise transmission trough
solid structures is presented.

2 The community noise problem

With the term ‘Community noise’ we mean the far field noise generated at
the flow side of a plate moving in a still fluid. Even though very difficult,
several theoretical studies have been carried out with the aim of predicting
the features of the pressure field radiated by a plane turbulent boundary
layer. This topic was first investigated by Curle (1955) and Powell (1960a)
using Lighthill’s analogy [Lighthill (1952)]. In the following, the integral
formulations underlying those original approaches are briefly reviewed along
with order of magnitude considerations to establish the importance of the
radiative effects.

2.1 Integral formulations

The prediction of the propagation of acoustic waves in the far-field can
be attained through an acoustic analogy approach and the search for a
solution of the propagation equation derived therein. The reference theory
is that of Lighthill (1952) that is based on the rearrangement of the Navier-
Stokes equations to form an exact, inhomogeneous, wave equation, whose
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Figure 1. A scheme of the overall mechanisms generating sound waves from
a turbulent boundary layer overflowing an elastic flat plate.

Figure 2. A scheme of the theoretical problems faced in the present chapter.
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source terms are significant in the neighborhood of vortical regions of the
flow. As pointed out above, the sound is supposed to be a sufficiently small
component of the whole motion that its effect on the main flow can be
neglected. This hypothesis can be accepted in low Mach number (M) flows
as well as in the absence of resonating systems and multiphase flows.

Detailed discussion about such an approach, elucidating also the appli-
cability limits, are given in other chapters of the present book. Here we
limit ourselves to recall the final form of Lighthill’s equation that can be
written as:

∂2ρ

∂t2
− c2∇2ρ =

∂2Tij
∂xi∂xj

(1)

where Tij represents the Lighthill stress tensor that, neglecting the viscous
terms, is denoted as follows:

Tij = ρuiuj + (p− ρc2)δij (2)

Here, c is the speed of sound, ρ and p are density and pressure perturbations,
u the fluid velocity, x the spatial coordinate and t the time. This equation
is valid within and without a source region. Where linear acoustics is valid,
the acoustic pressure can be found from the relation p = c2ρ.

In the presence of solid boundaries, an integral solution of Eq. 1 is
based on the introduction of a closed control surface S that may coincide
with the surface of a moving body or mark a convenient interface between
fluid regions of widely differing mean properties. When S coincides with
the solid boundary, the solution of the equation is carried out by imposing
suitable boundary conditions on it. The oldest strategy proposed to solve
the propagation equation relies on the use of a proper Green’s function
obtained as a solution of Eq. 1 when the source term is replaced by the
impulse point source. The most general representation of this kind is due to
Ffowcs Williams & Hawkings (1969), and is applicable to a control surface
in arbitrary motion. This equation is obtained by deriving a wave type
equation similar to that by Lighthill for a region made up of two subregions
bounded by the control surface S. The region inside S contains fluid and/or
solid boundaries, the region outside contains only fluid.

Without entering into the details, the integral form of the FfowcsWilliams
and Hawkings equation can be obtained again making use of the free space
Green’s function, leading to the outgoing wave solution. To the purpose
of the present discussion, we can consider the case of a stationary control
surface, leading the FWH equation to reduce to a simpler formula [see also
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Howe (1998)] that was given previously by Curle (1955) and that we report
in the following1:

p(x, t) =
∂2

∂xi∂xj

∫
V

Tij
d3y

4π |x− y|
− ∂

∂xi

∫ ∫
S

(ρuiuj + pδij − σij)
dSj(y)

4π |x− y| (3)

+
∂

∂t

∫ ∫
S

(ρuj)
dSj(y)

4π |x− y|
As indicated by Howe (1998), Curle’s equation written for a rigid surface

can be used to determine the order of magnitude of the sound generated
by an acoustically compact body within a turbulent flow (e.g. a cylinder
or an airfoil moving in an incompressible flow). This analysis applies also
for non-compact bodies when turbulence interacts with compact structural
elements, such as surface discontinuities, edges, corners.

The contribution from the quadrupole volume integral in Eq. 3 to the
acoustic power Π radiated in the far field, can be estimated to be

Π ∝ v3M5 (4)

The quadrupole effect predicted by Eq. 4 is the same as in the absence of the
body (it is the famous Lighthill’s ‘eight power’ law). On the other hand,
at low M , the total power radiated by the dipole term (the first surface
integral of equation 3) can be estimated to be:

Π ∝ v3M3 (5)

thus exceeding the quadrupole power by a factor ∼ 1/M2 >> 1. The
conclusion is that at low M the dipole term is largely dominant. This is the
reason why surfaces with disconuities (such as sharp edges, steps, cavities)
are much more noisy than smooth walls.

A different conclusion can be driven in the case of non-compact struc-
tures, that is, for objects whose size is not small compared to the acoustic
wavelength, as is the case of an infinite rigid plate. Curle’s approach can
again be used, and the presence of the infinite surface can be taken into
account by introducing image vortices [Powell (1960b)]. Powell suggests

1The notation evidencing the retarded time is not reported for clarity. Interested readers

can find a more detailed presentation of this equation and of its theoretical framework

in Chapters 1 and 2.
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to use a Green’s function that is basically obtained by superimposing the
free-space G with its image. In this way Powell shows that the pressure
exerted on a plane boundary is the result of reflections of the quadrupole
generators of the flow itself. In other words it is demonstrated that the
surface integral is not a true dipole source but it represents the effect of
image quadrupoles. Therefore, as concluded by Howe [Howe (1998)], the
apparently strong contribution from the surface pressure dipoles actually
reduces to a term of quadrupole strength, thus much less efficient, at low
M , in terms of radiated pressure power. In the airframe noise context, if the
effect of panel vibrations is not accounted for, it is reasonable to ignore the
pure quadrupole radiation from the boundary layers, in comparison with
that from edges and other inhomogeinities, such as wing trailing edge, flap
side-edges, undercarriage gears and cavities. This is proven even for aircraft
of large dimensions. As an example, the noise from the fuselage is expected
to be more than 10dB below the level of the trailing edge noise.

However [Hubbard (1991)] the far field acoustic radiation due to panel
vibrations might be a significant source of airframe noise in real (full-scale)
aircraft. Furthermore [Howe (1998)] the presence of roughness breaks the
Powell cancellation mechanism thus leading the dipole contribution to be-
come relevant.

It should be pointed out that some recent numerical experiments [Hu,
Morfey & Sandham (2002), Hu, Morfey & Sandham (2003) and Shariff &
Wang (2005)] have focused on the role of the wall shear stress, rather than
pressure, as sound source. They have shown that unsteady shear stresses
can be an efficient sound source of dipole type that can be dominant at low
Mach numbers and at very low frequencies.

We refer the reader to classical textbooks [such as Howe (1998)] and to
the notes of the other authors included in this book, for further details on
the integral approaches.

2.2 Prediction of the far field pressure spectrum: a novel ap-
proach

In a recent paper Morino, Leotardi & Camussi (2010) proposed a novel
approach for estimating the far field pressure Power Spectrum (PSD) by the
knowledge of the PSD of the pressure on the boundary surface, provided
that the region where the flow is rotational and/or nonlinear is adequately
thin. In order to accomplish this, the PSD of the pressure at any given point
(either in the field or on the boundary) is evaluated in terms of the Power
Spectral Density (PSD) of the transpiration velocity over the boundary
surface. This contribution is denoted as given by equivalent sources χB .
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The approach briefly described therein is based upon a formulation that
falls within the general class of potential–vorticity decompositions for the
velocity field of the type

v = ∇ϕ+w, (6)

where w is any particular solution of the equation

∇×w = ζ. (7)

with ζ := ∇× v denoting the vorticity field.

The decomposition given in Eq. 6 is valid for any vector field and Eq.
7 is a necessary and sufficient condition for the validity of Eq. 6. Here, we
assume w to be defined so as to have

w = 0 (8)

outside of the vortical region, Vζ , which is defined as the region where the
vorticity ζ is not negligible.

For incompressible flows, the continuity equation reads

∇ · v = 0 (9)

Combining with v = ∇ϕ+w, one obtains

∇2ϕ = σ, where σ = −∇ ·w (10)

In order to complete the problem, the boundary conditions have to be con-
sidered. For viscous flows, the boundary condition over SB is the no–slip
condition:

v = vB

(
x ∈ SB

)
(11)

For simplicity, we introduce an additional boundary condition

w · n = 0
(
x ∈ SB

)
(12)

Similarly, on the wake mid–surface SW , we impose

Δ
(
w · n) = 0

(
x ∈ SW

)
(13)

Combining Eqs. 6, 11 and 12, we have, on the body surface SB ,

∂ϕ

∂n
= χ, where χ := vB · n (

x ∈ SB

)
(14)
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Similarly, combining Eqs. 6 and 13, we have, on the wake mid–surface SW ,

Δ

(
∂ϕ

∂n

)
= 0

(
x ∈ SW

)
(15)

In addition, in a frame of reference connected with the undisturbed air, we
have

ϕ = O
(‖x‖−1

)
, at infinity. (16)

Finally, at the trailing edge, we have (from the Joukowski smooth–flow
assumption, akin to quasi–potential flows)

lim
xW→xTE

Δϕ(xW ) = lim
x2→xTE

ϕ(x2)− lim
x1→xTE

ϕ(x1), (17)

where 1 and 2 here denote the sides of the wing surface corresponding to
the sides 1 and 2 of the wake mid–surface, respectively.

Using Eqs. 15 and 16, the boundary integral representation for the
Poisson’s equation, Eq. 10, is:

E(x, t)ϕ(x, t) =

∮
SB

(
∂ϕ

∂n
G− ϕ

∂G

∂n

)
dS(y)

−
∫
SW

Δϕ
∂G

∂n
dS(y) +

∫
Vζ

σGdV (y) (18)

where G = −1/4π‖x − y‖. If the vortical region, Vζ (boundary layer and
wake), is sufficiently thin, we can ‘compress’ the volume integral into a
source layer over SB and SW , to yield

E(x, t)ϕ(x, t) =

∮
SB

(
(χ+ χB)G− ϕ

∂G

∂n

)
dS(y)

+

∫
SW

(
χW G−Δϕ

∂G

∂n

)
dS(y) (19)

Equation 19 is the key to the approach presented here since it allows one
to evaluate ϕ anywhere in the field, if ϕ and χ+χB over SB , as well as Δϕ
and χW over SW are known.

The linearized Bernoulli’s theorem reads:

p− p∞ = −ρ
(
ϕ̇+ U∞

∂ϕ

∂x

)
(20)

The numerical formulation of the above equations can be determined
both in the physical and in the Fourier domain but it is not reported here for



354 R. Camussi and A. Di Marco

the sake of brevity. We just point out that, after discretization using piece–
wise constant approximation and Fourier transform, the following linear
relationship can be achieved:

p̂F = H p̂B . (21)

the symbol ·̂ denotes the Fourier transform of the discretized counterpart of
the pressure and the equation represents the desired relationship between
the field pressure (subscript F ) and the boundary pressure (subscript B).

By using classical Wiener-Khintchine relationships, the above equation
can be expressed in terms of the PSD matrix Sv. Thus, using Eq. 21, we
have

SpF
= H∗ SpB

HT (22)

which is the desired relationship between the PSD matrix SpF
of the pressure

at NV arbitrary points in the region �3\W and the PSD matrix SpB
of the

pressure at NB points on SB .
The expression in Eq. 22 allows one to evaluate the field–pressure PSD

from the boundary–pressure PSD, thereby providing a link between two sets
of experimental data (PSD of field pressure and PSD of surface pressure),
often considered independent.

3 The wall pressure statistics

The random forces resulting from pressure fluctuations in the turbulent
boundary layer over structural surfaces cause vibration. This surface motion
becomes a source of noise which must be considered in the design of a vehicle.
Therefore, the development of methods aimed at predicting interior noise
levels, pressure fluctuations, and structural loading has become important
in the design for instance of commercial aircraft, payload–carrying aerospace
launchers, high speed trains. As pointed out by Graham (1996), in order
to take into account this aspect in the design phase, there is a need for
simple models capable of enhancing our physical understanding of the noise
generation process and to provide relatively simple predictive formula to be
utilized in the design process.

The methods of modeling and predicting sound and vibrations from a
structure subject to a random pressure load, presume that the forcing func-
tion for the surface has been estimated. It can be shown [see e.g. Blake
(1986) and Graham (1997)] that the excitation term is directly related to
the boundary layer wavenumber-frequency spectrum that, therefore, has
become the subject of many investigations. In the present discussion, we
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do not enter into the details of the structural aspects, but we limit our-
selves to reviewing the main features concerning the wavenumber-frequency
spectrum analysis, modeling and prediction.

3.1 Relevant properties of the turbulent boundary layer

A short review of the main parameters characterizing the turbulent
boundary layer and used for the scaling of the wall pressure spectra is given
in the following. Extensive discussions can be found in several textbooks
[see e.g. Schlichting (1979)]; therefore we limit ourselves to reviewing some
relevant parameters that influence the overall statistical properties of the
wall pressure fluctuations field.

At the wall, the boundary layer exerts a shear stress τw, and there is
a strong connection between this shearing and the behavior of the flow in
the immediate vicinity of the wall. As the distance from the wall increases,
the influence of the wall shear on the fluid motion diminishes and the flow
properties may be described in terms of the local free stream velocity U∞
and the thickness of the boundary layer δ, this symbol denoting the so-called
Blasius thickness. In this region, the flow behavior is usually called wake−
like. Thus, depending upon the distance from the wall, two important
flow regions can be identified. A layer close to the wall, where the velocity
depends upon the fluid viscosity and the local wall shear, and an outer layer,
where the velocity depends on the external properties of the flow (i.e. U∞, δ
and the upstream history of the layer). In the near wall region, the velocity
increases linearly for increasing distance from the wall. In the outer layer
the velocity defect evolves according to the well–known logarithmic law. Of
course, due to the turbulent nature of the velocity field, the two regions
boundaries can be defined only statistically.

In the linear region, the velocity gradient is independent of the distance
from the wall. This assumption yields the following relationship:

U1 =
τwy

μ
(23)

where the subscript 1 denote the velocity component on the streamwise (x)
direction and μ is the dynamic viscosity of the fluid.

In the logarithmic region the turbulence activity is the greatest and the
velocity gradients are proportional to the distance from the wall. This gives
rise to the logarithmic velocity profile described by the following equation:

U1

Uτ
=

1

k
ln

(
yUτ

ν

)
+B (24)
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where ln(·) is the natural logarithm of ·. The quantity Uτ is called the
friction velocity and it is defined as

Uτ =

√
τw
ρ

(25)

being ρ the fluid density at ambient temperature. The coefficient k in Eq.
24 is the so–called Von Kàrmàn constant, equal to approximately 0.4 for any
type of wall. B is a coefficient that depends only on the degree of surface
roughness. The notation commonly used to represent the dimensionless
quantities, is the following:

U+ =
U1

Uτ
, y+ =

yUτ

ν
(26)

In Figure 3 a simplified scheme of the turbulent boundary layer is re-
ported for completeness.

Figure 3. A scheme of the main parts of a turbulent boundary layer

Throughout the major portion of the fully developed turbulent boundary
layer, the mean velocity profile over both smooth and rough walls satisfies
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a defect law of the following form:

Ue − U1

Uτ
=

1

k
ln
(y
δ

)
+ 1.38

[
2−W

(y
δ

)]
(27)

where Ue is the external velocity, outside the boundary layer. The function
W (y/δ) has been introduced by Coles (1956) and it is given by:

W
(y
δ

)
= 1 + sin

[(
y

δ
− 1

2

)
π

]
(28)

It is well know that the definition of the Blasius thickness δ is not suitable
for turbulent boundary layers. It is better to introduce more objective
definitions. Very briefly we remind the definition of displacement thickness
δ∗ based on a mass balance in the boundary layer and given by the following
expression:

δ∗ =

∫ ∞

0

[
Ue − U1(y)

Ue

]
dy (29)

Of course also δ∗ is an outer scale because its magnitude is of the order of
the depth of the viscous sublayer. Typically, δ∗ is approximately equal to
a fraction of δ, from 1/8 to 1/5, depending on the surface roughness and
the pressure gradient. Similarly, another length scale can be defined on the
basis of the momentum balance. It is called the momentum thickness θ and
it is given by the following expression:

θ =

∫ ∞

0

U1(y)

Ue

[
Ue − U1(y)

Ue

]
dy (30)

The ratio of the two length scales is called the shape factor:

H =
δ∗

θ
(31)

According to the laws of the wall described above, it is possible to determine
explicit relationships among set of boundary layer thickness and the friction
factor. We refer to more specific textbooks for the details [e.g. Schlichting
(1979)].

By integrating along y, between 0 and δ, the momentum balance equa-
tion written on x, it is possible to determine an equation relating integral
quantities characterizing the turbulent boundary layer. This relationship,
often denoted as the Von Kàrmàn integral equation, reads:

Cf

2
=
dθ

dx
− θ

2

(
2 +H
1
2ρU

2∞

)
dP

dx
(32)
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Cf is the wall friction coefficient, given by:

Cf =
τw

1
2ρU

2∞
(33)

Equation 32 gives the growth of the boundary layer in terms of θ as a
function of the local wall shear stress coefficient and the static pressure
gradient.

For a given Reynolds number Rex = xU∞/ν it is possible to determine
the momentum thickness by using empirical relationships. A commonly
used expression, valid for smooth infinite flat plates, is the following:

Cf = 0.0592 Re
− 1

5
x for Rex ≥ 108 (34)

combining with Eq. 32, one obtains:

θ

x
= 0.037 Re

− 1
5

x (35)

This equation is valid provided that

Cf

θ
� −(2 +H)

Cp

dx
(36)

being Cp the static pressure coefficient.
Empirical relationships are used also to determine the inner properties of

the turbulent boundary layer once the outer scales are known either exper-
imentally or numerically. In this case, by the knowledge of θ, it is possible
to empirically determine Cf and then Uτ . This approach is of common use
since the estimation of Uτ by the direct measurement or computation of τw
might be very difficult in practice.

We finally remind that the velocity profile at high Reynolds numbers
can be described by a power law of the following form [Schlichting (1979)]:

U1

Uτ
=
(y1
δ

) 1
n

(37)

where typically n ∼ 7 for smooth walls and 4 for rough walls. By considering
the thickness definitions, the following relations are obtained:

δ∗

δ
=

1

n+ 1
(38)

and

δ∗

θ
=
n+ 2

n
(39)

For n = 7 it is obtained δ∗/δ = 1/8. Also Eqs. 37, 38 and 39 can be used
for a qualitative estimation of the boundary layer integral properties.
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3.2 Statistical properties of the wall pressure spectrum: corre-
lations and wavenumber–frequency spectra

According to the ‘weak coupling approximation’ introduced above, in the
present approach we consider a boundary layer developing on an infinitely
extended rigid flat plate in a low Mach number flow without mean pressure
gradients. In this framework, taking into account that the boundary layer
thickness increases slowly in the streamwise direction, it is possible to con-
sider the pressure field statistically homogeneous on the plane of the plate
and statistically stationary in time. The homogeneous plane is described by
the Cartesian axes that, for the sake of clarity, are defined as x1, x2, being
x1 aligned with the free stream velocity. The frame of reference adopted is
depicted in Figure 4.

Figure 4. Frame of reference adopted to describe the statistics of pressure
fluctuations.

Considering the fluctuating component of the pressure field p(x1, x2, t),
the space time correlation can be written as:

Rpp(ξ1, ξ2, τ) =
1

σ2
p

E[p(x1, x2, t)p(x1 + ξ1, x2 + ξ2, t+ τ)] (40)

where σ2
p is the pressure variance and the symbol E[·] denotes the expected

value. When the ergodic hypothesis holds, time averages can be used. This
is an important hypothesis when pointwise pressure measurements are per-
formed. In this case the pressure is a function of time only and the cross-
correlation is given by a much simpler expression:

Rpp(τ) =
1

σ2
p

< p(t)p(t+ τ) >t (41)

where the symbol < · >t now denotes the time average. Taking the Fourier
transform of Eqs. 40 and 41 one obtain the wavenumber-frequency spectrum
ΦP (k1, k2, ω) and the frequency spectrum Φp(ω). In this notation ω is
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the radian frequency and k1, k2 are the components of a two dimensional
wavevector. By taking the frequency Fourier transform of Eq. 40 it is
possible to obtain the cross-spectrum Γp(ξ1, ξ2, ω) that is defined in the
space–frequency domain. The experimental determination not being very
difficult, Γp represents a key ingredient for the theoretical models that are
presented below.

In the framework of the statistical modeling, a relevant role is played
by the phase velocity ω/k, being k the magnitude of the wavevector, whose
magnitude spans from the order of the flow speed to sonic or supersonic
values.

3.3 The wave–number frequency spectrum

In this section the main characteristics of the wall pressure spectrum are
briefly reviewed. First, the scaling properties of the frequency spectra are
discussed taking into account the most relevant experimental investigations
conducted in the last 50 years. Then, illustrative examples of statistical
models of the wavenumber-frequency spectrum are revised starting from
the early Corcos’ idea up to the most recent developments.

Scaling of the frequency spectra Due to the complex structure of the
turbulent boundary layer, it is not possible to obtain a single scaling that
leads to a satisfactory collapse of experimental or numerical frequency spec-
tra ΦP (ω). As will be clarified below, it is possible to normalize the spectra
using inner or outer variables, and a universal collapse can be obtained in
various regions of the pressure spectra separately [see, among many, the
early work by Willmarth (1975) and the papers by Keith, Hurdis & Abra-
ham (1992), Farabee & Caserella (1991) and Goody et al. (1998)]. This is
due to the fact that the wall pressure is influenced by velocity fluctuations
from all parts of the boundary layer and because the convection velocity
depends strongly upon the distance from the wall, as a result of the non-
uniform mean velocity distribution.

For an incompressible flow, the wall pressure can be written in the form
of a Poisson’s equation,

∇2 p(�x, t) = q(�x, t) (42)

where q(�x, t) represents the source terms. As suggested by Farabee &
Caserella (1991), the analysis of the solution of the above equation in the
Fourier domain, shows that the contributions to the high-frequency portion
of the spectrum has mainly to be attributed to turbulence activity located
in the near wall region while contributions to the lower-frequency portion
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can originate from activities throughout the boundary layer. Following this
physical picture, and the conjectures suggested by Bradshaw (1967) and
Bull (1979), it is possible to divide Φp(ω) into three main regions, depend-
ing on the frequency magnitude. At low frequencies, Φp(ω) scales on outer
layer variables; at high frequencies, Φp(ω) is influenced by the fluid viscosity
and thus it scales on inner variables; at intermediate frequencies, the shape
of the spectrum is scale independent and an universal power law decay of
the type ω−1 is expected.

Measurements of the cross-spectral densities [e.g. Bull (1967) and Farabee
& Caserella (1991)] confirm that the pressure field can be divided into two
distinct families, one associated with the motion in the outer layer and the
other with motion in the inner layer. This separation occurs at the frequency
where the auto-spectrum exhibit its maximum value. This frequency sepa-
rates the non-universal from the universal scaling regimes of the frequency
spectrum.

More precisely, in the low frequency region, different outer scalings have
been identified. Keith, Hurdis & Abraham (1992) suggests to scale the fre-
quency using U (the free stream velocity) and δ∗, whereas the amplitude of
the pressure spectrum can be scaled through the free stream based dynamic
pressure q. Other authors [including Farabee & Caserella (1991)] recom-
mend a more effective scaling using τw instead of q. They suggest to scale
the frequency upon U/δ and the dimensionless spectrum to be of the form
ΦP (ω)U/τ

2
wδ.

In the high frequency region, there is a more general consensus on the
most effective scaling that is achieved through the variables Uτ , ν and τw.
This implies that the dimensionless frequency is ων/U2

τ and the dimension-
less spectrum should be ΦP (ω)U

2
τ /τ

2
w.

The universal region can be interpreted as an overlap of the two regions
described above. In this part of the spectrum it is assumed ωΦP (ω)U/τ

2
w =

constant, thus leading to the ω−1 scaling. A precise definition of the ampli-
tude of the frequencies bounding the universal region can be found in Bull
(1979) and Farabee & Caserella (1991).

An additional range at very low frequencies has been also identified
by some authors. Farabee & Caserella (1991) determine this region at
ωδ∗/U ≤ 0.03 and they collapsed the spectrum using the normalization
ΦP (ω)U/q

2δ∗. In the very low frequency region they observed the spectrum
to scale as ω2. This form of scaling is in agreement with the prediction given
by the Kraichnan-Phillips theorem [Kraichnan (1956) and Phillips (1956)]
which suggests that the wavenumber spectrum should scale like k2 as k → 0.
According to the theoretical developments of e.g. Lilley & Hodgson (1960),
this conclusion can be extended to the frequency spectrum under the hy-
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pothesis of low Mach number flow conditions.
In Figure 5 a scheme summarizing the expected scalings is reported.

Figure 5. Sketch clarifying the expected scaling regions of a typical wall
pressure auto–spectrum.

We refer to the literature [in particular Farabee & Caserella (1991) and
Bull (1996)] for further discussions on the above topics and considerations
about the scaling of the pressure variance.

Modeling the wavenumber-frequency spectrum According to the
above discussion, several models have been proposed in the literature to
reproduce the shape of the frequency auto-spectrum using suitable fits of
experimental data. Here we only cite some of them as illustrative examples
of common approaches. We refer to the literature for comprehensive reviews.

An early and widely used model was proposed by Corcos (1964). He
gives the following representation of the frequency auto-spectrum:

Φp(ω) =

⎧⎨
⎩

C for ω ≤ Ue

δ∗

C Ue

ωδ∗ for ω > U
δ∗

(43)
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The quantity C is a dimensionless constant and U is the external velocity.
Note that for ω > Uc

δ∗ the model correctly predicts the power law decay of
the spectrum of the form ω−1.

An example, among many, explaining the way the Corcos’ early model
has been successively modified, is given by Cousin (1999). This more general
approach leads to the following expression:

Φp(ω) =

⎧⎨
⎩

2.14× 10−5B for ωδ∗/Ue ≤ 0.25

7.56× 10−6B (ωδ∗/U)
−0.75

for 0.25 < ωδ∗/Ue ≤ 3.5

1.27× 10−4B (ωδ∗/U)
−3

for ωδ∗/Ue > 3.5

(44)

where B = q2δ∗/U .
Other formulations worth mentioning are those by Efimtsov (1986) and

Chase (1987, 1991). We refer to the literature for the details.
As pointed out above, the knowledge of the frequency spectrum is not

sufficient to determine the modal excitation term of a plate subject to the
turbulence induced pressure filed. This quantity is directly related to the
shape of the complete wavenumber-frequency spectrum of the wall pressure
field. The knowledge of ΦP (k1, k2, ω) is therefore fundamental to compute
the response of a surface panel subject to the action of the random pressure
load.

As pointed out by Bull (1996), the highest spectral levels of the pres-
sure fluctuations are associated to the mean flow convection and, in the
wavenumber spectrum, are centered on a wavenumber k1 = ω/Uc, k1 along
the free stream velocity. This part of the spectrum is often referred to
as the convective ridge. For k1 � ω/Uc the spectrum is expected to be
independent of the wavenumber. Another important aspect is related to
the so-called sonic wavenumber k0 = ω/c. According to Blake (1986), for
k = k0 an apparent singularity is present in the spectrum. However, in
real flows, the wavenumber-frequency spectrum is expected to have a local
finite peak in the vicinity of k0. These are among the main features that
an analytical model attempting to predict the Φp(k1, k2, ω) shape, have to
reproduce correctly.

One of the most reliable model developed in literature is again the early
approach proposed by Corcos (1964) and based on the Fourier transform
of a curve fit of measured narrow band pressure correlations. According to
extensive experimental measurements [namely Willmarth (1975) and Bull
(1967)], the cross-spectral density Γp(ξ1, ξ2, ω) can be represented as:

Γp(ξ1, ξ2, ω) = Φp(ω)A(ωξ1/Uc)B(ωξ2/Uc) e
iωξ1/Uc (45)

where

A(ωξ1/Uc) = e−α1|ωξ1|/Uc and B(ωξ2/Uc) = e−α2|ωξ2|/Uc
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Figure 6. A scheme representing the wavenumber-frequency spectrum as a
function of wavenumber, at constant frequency (scheme adapted from Blake
(1986)).

Figure 7. A scheme representing the wavenumber-frequency spectrum as a
function of frequency, at constant wavenumber (scheme adapted from Blake
(1986)).
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whereas Uc is the convection velocity and α1 and α2 are parameters chosen
to yield the best agreement with experiments. Various values are given in
the literature. The typical range of the values is α1 = 0.11 ÷ 0.12 and
α2 = 0.7÷ 1.2 for smooth rigid walls.

Unfortunately, only few experimental or numerical data concerning di-
rect measurements of the wavenumber–frequency spectrum are available
in the literature [Abraham (1998), Choi & Moin (1990), Panton & Robert
(1994), Farabee & Geib (1991), Hwang & Maidanik (1990), Manoha (1996)].
However, it appears evident that a big spread is present in the low wavenum-
ber range and that the Corcos model overpredicts levels at wavenumbers
below the convective peak. This point is crucial for many applications, in
particular in the case of underwater and surface marine vehicles and for
aeronautical structures above the aerodynamic coincidence frequency [see
also Ciappi et al. (2009)]. Later workers used analytical or quasi analyti-
cal approaches, or revised versions of the Corcos approach, in attempts to
describe this region more accurately [see e.g. Graham (1997) for details].

Most of the models proposed continued to follow the philosophy of the
Corcos approach that can be generalized as follows. A first common feature
of those empirical models is the separation of variables approach to repre-
sent the correlation function dependence on the streamwise separation ξ1
and the crossflow separation ξ2. This is known as the ‘multiplication hy-
pothesis’ in which the coherence of the cross-spectral density for an arbitrary
separation direction is formed by the product of the cross-spectral densities
for streamwise and spanwise separations, respectively. The axisymmetry of
the geometry and of the flow is usually not explicit in those formulations
but it is accounted for through the adjustable coefficients. According to the
Corcos idea given in Eq. 45, most of the models suggest to take exponential
decaying form of the functions A and B,

A(ω, ξ1) = e
− |ξ1|

L1(ω) and B(ω, ξ2) = e
− |ξ2|

L2(ω) (46)

where L1 and L2 are the so-called coherence lengths in the streamwise and
spanwise direction respectively.

The main advantage of adopting the expression given in Eqs. 45 and
46 is that the auto-spectrum part is decoupled from the cross-spectrum
part. That implies that any choice for modeling the function Φp(ω), as
those described above, can be addressed independently of any choice for
representing the functions L1 and L2.

As for auto-spectra, Cousin modified the Corcos model yielding the fol-
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lowing expressions of the coherence lengths:

L1 = Uc

ωα1

{
1 +
(

Uc

ωbMδ

)2}−1/2

L2 = Uc

ωα2

{
1 +
(

Uc

ωbT δ

)2}−1/2 (47)

where Uc = 0.75U , bM = 0.756, bT = 0.378. α1 = 0.115 for smooth walls
and 0.32 for rough walls, whereas α2 = 0.32 in all cases.

A similar model, not reported here for brevity, has been proposed by
Cockburn & Robertson (1974). Wu & Maestrello (1995) proposed a model
where the flow is assumed semi-frozen and decaying in space and time at a
constant velocity Uc. After performing a comprehensive set of experimental
results of wind tunnel testing, they defined an ensemble average of the
cross correlation for the pressure fluctuation due to the turbulent boundary
layer in which the effects of the Reynolds number and the boundary layer
thickness were included.

Other models proposed by Chase (1980), Efimtsov (1982), Ffowcs Williams
(1982), Chase (1987) and Smol’yakov & Tkachenko (1991) are compared
in Graham (1997) and a plot reporting the spectra predicted by different
models is given in Figure 8. It is shown that even at the convective peak,
a relevant scattering among the model predictions is evident. Even larger
scattering is observed in the estimation of the radiated sound as reported
in the same paper.

The best model for high speed aircraft is, according to Graham, the one
which provides an accurate description of the convective peak. Efimtsov’s
model, an extension of Corcos model, is cited as a suitable candidate. For
the sake of completeness, we report in the following the Efimtsov idea:

L1 = δ

[(
a1Stτ
Uc/Uτ

)2
+

a2
2

St2τ+(a2/a3)2

]−1/2

for 0.41 < M < 2.1

L2 = δ

[(
a4Stτ
Uc/Uτ

)2
+

a2
5

St2τ+(a5/a6)2

]−1/2

for M < 0.75

L2 = δ

[(
a4Stτ
Uc/Uτ

)2
+ a27

]−1/2

for M > 0.9

(48)

In this model Uc = 0.75Ue and Stτ = ωδ/Uτ is a Strouhal number
defined on the friction velocity. Averaged values of the empirical constants
are a1 = 0.1, a2 = 72.8, a3 = 1.54, a4 = 0.77, a5 = 548, a6 = 13.5, a7 =
5.66. It can be shown that at high frequencies, these expressions correspond
to a Corcos model with α1 = 0.1 and α2 = 0.7. Even though the number of
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empirical constants is relevant, the model is extensively used thanks to the
introduction of the Mach number as a relevant parameter.

Figure 8. Wavenumber frequency spectra computed at a fixed frequency as
reported in Graham (1997). The spectra are computed as functions of the
longitudinal wavenumber non-dimensionalized on the convective wavenum-
ber ω/UC (courtesy of JSV).

More recently, Singer (1996a) and Singer (1996b) performed a Large-
Eddy Simulation (LES) of a turbulent boundary layer at relatively high
Reynolds number and proposed a model that overcomes the ‘multiplication
hypothesis’ that is the basis of all the models based on the Corcos’ phi-
losophy. His approach is based on an accurate fit of the two-dimensional
coherence and therefore is particularly efficient for the determination of the
off-axis coherences.

To the best of our knowledge, the most recent model proposed in liter-
ature is the one presented by Finneveden et al. (2005). They suggested
a modified version of the Corcos and of the Chase model, thus going back
to the ‘multiplication hypothesis’. They demonstrated that it is possible
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to find for both models a complete set of free parameters that provide a
fair agreement with experimental data. The key point was to modify the
Corcos model by introducing a frequency and flow speed dependence in the
parameters and to introduce two new parameters in the Chase model to
better fit the spanwise coherence to measurements.

3.4 Coherent structures and wall pressure fluctuations

As pointed out above, it is possible to establish a connection between
the wall pressure wavenumber spectra and physical quantities describing the
turbulent boundary layer. In particular, the high wavenumber components
should be attributed to fluid dynamic structures in the near wall region
while the low wavenumber domain is influenced by the large scale struc-
tures in the outer layer. However, the detailed features of organized events
that occur in the boundary layer are lost by the unconditional averaging
techniques used in obtaining spectral estimates of the pressure field. This is
an important issue from the practical viewpoint since a deeper knowledge
of the fluid dynamic structures underlying the observed pressure properties
may be helpful to address suitable control strategies aimed at manipulating
the flow structures and modifying the wall pressure behavior.

Numerical simulations of simplified configurations attempted to clarify
the connection between wall pressure fields and near wall vortical structures
whose topology was selected a-priori according to classical conceptual mod-
els of the turbulent boundary layer. For example, Dhanak & Dowling (1995)
and Dhanak, Dowling & Si (1997), following the conceptual model of the
boundary layer proposed by Orlandi & Jimenez (1994), were able to clarify
the effect of near wall quasi-streamwise structures upon the wall pressure
field. More recently, Ahn, Graham & Rizzi (2004) and Ahn, Graham &
Rizzi (2010) reproduced correlations and spectra at the wall. In order to
estimate the wall pressure distribution, they reproduced hairpin vortex dy-
namics on the basis of the so called attached eddy model proposed by Perry
& Chong (1982).

Only a few experiments have been focused on these aspects, since the
correlation between wall pressure and coherent structures is rather difficult
to interpret due to the chaotic nature of the pressure field. Among the
existing studies, the work by Johansson, Her & Haritonidis (1987) can be
mentioned: they carried out simultaneous pressure–velocity measurements
and suggested physical mechanisms for the underlying generation of positive
or negative pressure peaks at the wall. However, they did not clarify the
connection between the educed structures and the wall pressure spectral
quantities.
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In a recent paper, Camussi, Robert & Jacob (2008) applied non conven-
tional time-frequency post-processing tools to analyze wall pressure experi-
mental data. The application of multi-variate wavelet transform permitted
them to establish a connection between sweep/ejections events and large
pressure coherence. More specifically, using a conditional sampling tech-
nique, they observed that averaged pressure signatures due to hydrodynamic
effects were composed of a large negative pressure drop coupled to a weaker
positive bump. This behavior was ascribed to accelerated-decelerated mo-
tions within the turbulent boundary layer.

The presence of a positive pressure bump coupled with a stronger neg-
ative pressure drop was also observed by Dhanak & Dowling (1995) who
simulated numerically the pressure field induced at the wall by streamwise
vortices. Similarly, in an experiment performed by Johansson, Her & Hari-
tonidis (1987) negative–positive pressure jumps were also observed and were
identified as burst−sweep events. The conditional results of Johansson, Her
& Haritonidis (1987) were obtained by correlating pressure negative peaks
with velocity events found in the buffer region of the boundary layer through
the so–called VITA technique [see e.g. Blackwelder & Kaplan (1976)].

Analogous conclusions were driven by Jayasundera, Casarella & Russell
(1996) through the investigation of experimental wall pressure and inflow
velocity data and the application of coherent structures identification tech-
niques. They showed that the organized structures present within the tur-
bulent boundary layer contain both ejection and sweep motions inducing
positive and negative pressure events respectively.

More recently, Kim, Choi & Sung (2002) attempted to correlate the wall
pressure fluctuations with the streamwise vortices of a numerically simulated
turbulent boundary layer. They suggest that the high negative wall pressure
fluctuations are due to outward motion in the vicinity of the wall correlated
to the presence of streamwise vortices.

3.5 Effect of adverse pressure gradient and separation

An overall effect of adverse pressure gradients onto the wall pressure field
statistics is an increase of the wall pressure fluctuations and a reduction of
the convection velocity. This behavior was first observed by Schloemer
(1967) through an experimental study devoted to the investigation of the
influence of a mild adverse pressure gradient on wall pressure fluctuations.
Owing to changes in the streamwise turbulent intensity, Schloemer also
noticed an increase in the wall pressure spectral densities at low-frequencies
(in outer scaling), whereas little effect was observed in the high-frequency
range. This result has been later confirmed [see e.g. Lim (1971)] and seems
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to suggest that the pressure gradient influences the outer layer region which,
as described above, is directly correlated to the mid and low frequency range
of the wall pressure frequency spectra.

Na & Moin (1998) performed a Direct Numerical Simulation (DNS) of
a turbulent boundary layer developing over a flat plate, under both mild
and strong imposed adverse pressure gradient. In the latter case (involving
extensive separation) the frequency spectra in the separation bubble were
found to exhibit a ω−4 decay, whereas a ω−2 behavior at high frequencies
was observed for the spectra downstream of the reattachment position. The
analysis of two-point correlations of wall pressure fluctuations also revealed
strong coherence in the spanwise direction, that was attributed to the oc-
currence of large two-dimensional roller-type vortical structures. These au-
thors also showed that the presence of flow separations, re-circulations and
re-attachments lead to the generation of wall pressure fluctuations whose
overall level might be significantly larger (up to 30dB) than that observed
in equilibrium turbulent boundary layer with no separations.

Measurements of surface pressure fluctuations for a separated turbulent
boundary layer under adverse pressure gradient were reported by Simpson,
Ghodbane & McGrath (1987). Those authors found that pressure fluctua-
tions increase monotonically through the adverse pressure gradient region,
and showed that the maximum turbulent shear stress in the wall-normal
direction can be used as a scaling variable since it yields good collapse of
the normalized spectra at various streamwise stations.

Several studies have been conducted to characterize the fluid dynamic
structure of flows whose separation is induced by a surface discontinuity.
Detailed results have been obtained for several geometries, including back-
ward facing steps [see Simpson (1989), and the literature cited therein for
a comprehensive review in the field], sharp edges [as in Kiya, Sasaki & Arie
(1982), Kiya & Sasaki (1985), and Hudy, Naguib & Humphreys (2003)],
inclined surfaces [e.g. Song, DeGraaff & Eaton (2000)] and surface bumps
[e.g. Kim & Sung (2006)]. Most of these studies have shown that the wall
pressure fluctuations are driven by a low frequency excitation linked to the
expansion and contraction of the separation bubble, a phenomenon usually
designated as flapping motion. Besides, the vortical structures within the
shear layer have been identified as the source of higher frequency peaks
normally observed close to the reattachment position.

Stüer, Gyr & Kinzelbach (1999) analyzed the separation bubble up-
stream of a Forward Facing Step (FFS) in laminar flow conditions through
flow visualizations and particle tracking velocimetry measurements. They
demonstrated that the laminar re-circulating region upstream of the step
is an open separation bubble characterized by spanwise quasi-periodic un-
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steadiness. The flow topology and the pressure field upstream and down-
stream of an FFS at much higher Reynolds numbers have been recently stud-
ied by Largeau & Moriniere (2007). The effect of the relevant length-scales
has been underlined in this work and the influence of the flapping motion
upon the pressure field at the reattachment point has been demonstrated
by means of pressure-velocity cross-correlations obtained from simultaneous
wall microphones and hot wire anemometry measurements. Fourier pres-
sure spectra upstream and downstream of a FFS have been presented also
by Efimtzov et al. (1999) who showed that the region downstream of the
step is the most significant in terms of pressure level. On the other hand,
Leclercq et al. (2001) considered the acoustic field induced by a forward-
backward step sequence and suggested that the most effective region in
terms of noise emission is located just upstream of the FFS. The exper-
imental results reported in Leclercq et al. (2001) have been successfully
reproduced in a large eddy simulation performed by the same group, Addad
et al. (2003). It was confirmed that the largest acoustic source is located
in the separated region upstream of the wall discontinuity. Camussi, Guj
& Ragni (2006) and Camussi et al. (2006) measured the pressure fluctua-
tions at the wall of a shallow cavity representing a backward-forward step
sequence. The authors again showed that the region close to the FFS is the
most effective in terms of wall pressure fluctuations level even though the
origin of the observed acoustic field was not clarified. In a recent study of
the incompressible flow past a forward-facing step, Camussi et al. (2008)
also observed the increase of energy at low-frequencies and a decrease at
higher ones.

A flow separation can be induced also by the effect of a shockwave inter-
acting with the boundary layer, a situation that can typically be encountered
in transonic flow conditions. The prediction of pressure fluctuations in the
transonic regime is particularly important in the vibro-acoustic design of
aerospace launch vehicles. As a matter of fact, vibrations induced in the
interior of the vehicle can exceed design specifications, and cause payload
damage, as well as structural damage due to fatigue problems.

The presence of a shockwave and the consequent separation, causes an
adverse pressure gradient that modifies significantly the boundary layer dy-
namics and causes substantial modification of the wall pressure signature.
The Mach number effect in attached boundary layers has been taken into
account in a few literature models [see e.g. the one proposed by Efimtsov
(1982) and cited above]. On the other hand, the effect of the shockwave
induced separation on the wavenumber-frequency spectrum is the subject
of quite a few literature papers. We remind the numerical studies con-
ducted by Pirozzoli and co-workers [Pirozzoli, Bernardini & Grasso (2010)



372 R. Camussi and A. Di Marco

and Bernardini, Pirozzoli & Grasso (2011)] based on a DNS approach used
to simulate the shockwave induced separation on a flat plate at a transonic
Mach number (M = 1.3). They show that the shape of the frequency wall
pressure spectra is qualitatively modified by the interaction with the shock
wave. In the region with zero pressure gradient, the shape of the spectra
is similar to that observed in low-speed boundary layers. When the pres-
sure gradient is relevant, the low-frequency components of the spectrum
are enhanced while the higher ones are attenuated. This observation is in
agreement with results obtained in low-speed boundary layers in adverse
pressure gradient and it is the signature of the greater importance of large-
scale, low-frequency dynamics past the interacting shock, with respect to
the fine scale effects. According to observations in low speed flows upstream
an FFS by Camussi et al. (2008), in the separated region downstream of
the shock, a self-similar structure of the pressure spectra is observed ex-
hibiting the -7/3 inertial scaling at intermediate frequencies and a -5 decay
law at high frequencies.

Similar scalings were observed in transonic and supersonic flow condi-
tions by Camussi et al. (2007). They analyzed the statistics of the wall
pressure fluctuations on a scaled model of an aerospace launcher that has
been investigated in transonic and supersonic wind tunnels. Even though
qualitatively, the -1 and -7/3 scalings were documented at several stations
along the surface of the model.

The determination of a general predictive model for the wavenumber–
frequency spectrum in the presence of shockwaves is however still far and,
to the authors’ opinion, this topic merits to be the task for future extensive
research.

3.6 Concluding remarks

A brief overview of the studies made in the field of boundary layer noise
in the last 60 years, has been reported, with particular emphasis on the
interior noise problem and the mechanisms underlying the generation of
the wall pressure fluctuations responsible for the panel vibrations and the
transmission of noise.

The problem of the acoustic radiation due to the interaction of a turbu-
lent boundary layer with a solid surface, has been treated only qualitatively.
The prediction of the far field noise can be achieved by integral formulations
and the main feature outlined in the present notes consisted in an order of
magnitude estimation of the terms representing the far field pressure solu-
tion. The practical consequences of those results have been discussed in the
framework of the airframe noise problem.
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More emphasis has been given on the description of the wall pressure
statistics mainly in terms of their spectral content estimated in the Fourier
domain. The scaling parameters of the frequency spectra have been dis-
cussed in connection with the properties of the near wall and the outer–
layer regions of the turbulent boundary layer. The main properties of the
wavenumber-frequency spectra have been also reviewed and discussed along
with the main statistical models proposed in literature to predict the auto–
and cross–spectra behaviors.

More practical aspects have been treated by considering the case of sep-
arated flows and the complex behavior arising by the interaction of the
boundary layer with shockwaves.
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Abstract This chapter is focused on the interior noise caused by a Turbulent 
Boundary Layer (TBL) relative fluid flow over the flexible thin walls of an 
enclosure. This is a typical interior noise problem encountered in surface and 
air passenger transportation vehicles. When such vehicles travel at high speed, 
the airflow around the skin develops into a TBL. This phenomenon produces 
large pressure fluctuations that effectively excite the skin panels of the 
vehicle, which, in turn, radiate noise into the interior.  

The formulation for the coupled structural–acoustic response to a TBL 
pressure field is first introduced for a general model problem given by a 
cylindrical cavity bounded by a thin flexible wall, which is immerged in a 
convected fluid that has developed a TBL. Structural vibration and sound 
radiation effects are expressed in terms of the Power Spectral Densities (PSD) 
of the wall flexural kinetic energy and cavity acoustic potential energy.  

A reduced model problem is then analysed in detail by examining a small 
section of the enclosure flexible wall and assuming a heavily damped interior. 
In this case a simplified model is used, which considers a rigidly baffled flat 
panel with unbounded fluid domains on the two sides. The panel is excited on 
the exterior side by the pressure field generated by a TBL fluid flow and 
radiates sound on the interior side. To facilitate the analysis, the PSDs of the 
panel flexural kinetic energy and interior sound power radiation produced by 
the TBL pressure field are contrasted with those produced by harmonic 
acoustic plane waves, by a stochastic acoustic diffuse field and by the so 
called “rain on the roof” stochastic excitation.  

The chapter is then completed with two sections illustrating the principal 
effects produced by mass, stiffness and damping passive treatments and 
structural–acoustic active systems on the panel. The first active system 
consists of an array of decentralised feedback loops with point sensor and 
actuator transducers while the second active system is composed by a single 
channel feedback loop with distributed sensor and actuator transducers. 

R. Camussi (Ed.), Noise Sources in Turbulent Shear Flows: Fundamentals and Applications, 
CISM International Centre for Mechanical Sciences, DOI 10.1007/978-3-7091-1458-2_7, 
© CISM, Udine 2013 
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1. Flexural Response and Interior Sound Radiation of a Closed Shell 
Excited by a TBL Pressure Field 

This section introduces a general formulation for the interior noise in a cavity 
bounded by a flexible wall, which is excited by the space and time stochastic 
pressure field exerted by a “Turbulent Boundary Layer” (TBL) relative fluid 
flow (for brevity, the fact that the fluid flow is relative to the wall structure will 
not be specified in the remaining part of this chapter). A coupled structural–
acoustic formulation is presented considering a cylindrical cavity of finite length 
bounded by a thin flexible wall, which is assumed to be simply–supported at the 
two ends. As illustrated in Figure 1, the cylindrical flexible wall is connected to 
rigid extensions acting as baffles and is immerged in an unbounded fluid. The 
fluid is convected in axial direction and produces a fully developed TBL over the 
wall. Although this model problem can be used to study a limited number of 
practical systems, it provides general indications of the principal mechanisms 
characterising the TBL excitation, response and radiation phenomena of the 
complex enclosures that are encountered in surface and air passenger 
transportation vehicles (Mixson and Wilby 1995; Thompson and Dixon 2004). 

 

Figure 1. (a) Cylindrical wall with rigid extensions immerged in a convected 
fluid that has developed a turbulent boundary layer in axial direction.  
(b) Notation for the exterior and interior fluid domains. 
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Figure 2. Block diagram for the interior noise caused by a TBL fluid flow over 
the flexible thin wall of an enclosure 

As schematically depicted in Figure 2, the interior sound radiation is 
produced by the flexural vibration of the enclosing wall, which depends on the 
resulting pressure fields acting on the inner and outer faces of the wall. The 
pressure field on the inner face is due to the interior sound field, which, in turn, 
depends on the flexural vibration of the enclosing wall itself. Normally, at low 
audio frequencies, the interior sound is characterised by standing wave fields due 
to the low order acoustic natural modes of the enclosure. Alternatively, at higher 
frequencies the interior sound field becomes increasingly diffuse since, at each 
frequency, the acoustic response of the enclosure results from the overlap of 
multiple acoustic modes whose number grows with the cube of frequency 
(Morse and Ingard 1968; Pierce 1989; Nelson and Elliott 1992; Fahy and 
Gardonio 2007). Usually the transition from standing wave to diffuse sound field 
is specified in terms of the “modal overlap” factor, which depends on the “modal 
density” and damping properties of the cavity (Cremer et al. 1988). At low 
frequencies where the acoustic response of the enclosure and the vibration 
response of the shell structure are characterised by distinct resonant modes, the 
interior fluid loading effect is normally formulated in terms of modal coupling 
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factors (Dowell and Voss 1962; Pretlove 1966; Fahy 1969; Guy and 
Bhattacharya 1973). Alternatively, at higher frequencies such that the acoustic 
and structural responses are controlled by the overalp of multiple modes, the 
fluid loading is modelled in average terms through coupling factors for 
“statistical energy analysis” models (Lyon and DeJong 1995; Craik 1996; Keane 
and Price 1997; Langley and Fahy 2004; Fahy and Gardonio 2007). In general, 
the interior of surface and air transportation vehicles is filled with air, i.e. a 
lightweight compressible fluid. As further detailed in Section 1.5, in this case the 
interior fluid loading primarily produces a damping action. 

The pressure field on the outer face of the wall structure is characterised by 
two contributions: first, the pressure field produced by the TBL fluid flow over 
the flexible wall and second the acoustic pressure field due to the exterior sound 
radiation produced by the vibration of the flexible wall itself. As discussed in 
Chaper 6 of this book, the TBL fluid flow produces a stochastic pressure field 
over the external surface of the wall, which, in general, is also influenced by the 
flexural vibration of the wall (Graham 1997; Maury et al. 2002a). However, in 
this chapter, the so called “blocked pressure” field is considered, which 
corresponds to the pressure developed beneath a boundary layer on a hard wall. 
In this case the pressure generated by the TBL fluid flow is not affected by the 
flexural vibration of the wall and it is twice the pressure that a nominally 
identical turbulent fluid flow would generate in absence of the wall. This 
assumption is valid when the TBL is fully developed and the acoustic near field 
particle velocities produced by flexural vibration of the wall are small in 
comparison with the turbulence particle velocities (Graham 1997; Maury et al. 
2002a). This type of approximation has been found valid in a wide range of cases 
as detailed in the following references, for example (Davies 1971; Efimtsov and 
Shubin 1977; Efimtsov 1986; Bano et al. 1992). A fully coupled model would 
require a rather complex formulation, using the Lighthill stress tensor to describe 
the boundary layer sources (Dowling and Ffowcs Williams 1983). The outward 
sound radiation due to the wall flexural vibration also produces a pressure field 
over the surface of the shell structure. In general, the exterior of surface and air 
transportation vehicles is characterised by air (i.e. lightweight compressible 
fluid), which, as will be shown in Section 1.5, for low flow speeds, tends to 
produce a damping fluid loading effect arising from the sound radiation into a 
fully or partially unbounded field (Junger and Feit 1986; Fahy and Gardonio 
2007). However, the cruise speed of aircraft for passenger transportation 
approaches rather high values, around 0.8 Mach. In this case the flexible skin 
structure efficiently couples with the fluid dynamic response and gives rise to the 
so called “aeroelastic coupling” (Dowell 1975; Abrahams 1983; Lyle and 
Dowell 1994; Atalla and Nicolas 1995; Clark and Frampton 1997; Frampton and 
Clark 1997; Frampton 2005; Xin and Lu 2010). Clark and Frampton (Clark and 
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Frampton 1997; Frampton and Clark 1997; Frampton 2005) have shown that, for 
high flow speeds around 0.8 Mach, the convected fluid produces damping and 
increasingly higher mass impedance effects on the structure that tend to reduce 
the amplitude and to move to lower frequencies the resonance peaks that 
characterise the low–frequency spectrum of the flexural response of the 
enclosing wall structure. The aeroelastic response of shell structures is a rather 
complex non–linear phenomenon that involves strong coupling effects between 
low order flexural modes of the wall panels via the dynamics of the mean flow. 
Eventually, for very large flow velocities that exceed the speed of sound, this 
coupling effect may lead to limit cycle modal vibrations and thus to flutter 
instability conditions (Dowell 1975). Of course, flutter is of no concern for the 
skin panels of modern aircraft. Nevertheless, for high flow speeds approaching 
0.8 Mach, the dynamic coupling between the panels and the fluid has a relevant 
effect on the response of the shell structure and interior sound radiation. The 
scope of this chapter is to introduce the principal characteristics of interior sound 
radiation produced by TBL disturbances. Thus, although the model problem 
considered in this section also refers to fast moving air transportation vehicles, to 
keep the analysis simple, the proposed formulation does not take into account 
aeroelastic coupling. However it considers the fluid loading effect arising from 
sound radiation into a stationary fluid, which can be assumed valid for flow 
velocities below 0.8 Mach. This formulation provides a good basis for the 
understanding of the physical mechanisms characterising the coupling of 
structural modes via the exterior fluid loading. In general, a high velocity mean 
flow tends to emphasise these coupling effects so that, even with lightweight 
compressible fluids, strong couplings between low order modes of the wall 
structure may emerge (Clark and Frampton 1997; Frampton and Clark 1997; 
Frampton 2005). In summary the model presented in this chapter considers the 
flexural response and interior sound radiation of a closed shell structure, which is 
excited by the blocked pressure field exerted by a TBL fluid flow and is 
influenced by the acoustic loading effects exerted by the interior and exterior 
fluids.  

Much of the analytical work on the structural–acoustic response to TBL fluid 
flow excitation is organised around two types of models: the first is based on 
space–frequency domain formulations (Dyer 1959; Mead and Richards 1968; 
Crocker 1969; Davies 1971; Robert 1984; Blake 1986; Masson 1991; Bano et al. 
1992; Filippi and Mazzoni 1994; Thomas and Nelson 1995; Durant et al. 2000), 
while the second is based on wavenumber–frequency domain formulations 
(Aupperle and Lambert 1973; Blake 1986; Hwang and Maidanik 1990; 
Strawderman 1990; Graham 1996; Borisyuk and Grinchenko 1997; Graham 
1997; Han et al. 1999; Maury et al. 2002a). The first modelling approach uses 
the space–frequency spectra of the pressure fields exerted by the internal and 
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external fluids and by the TBL fluid flow, which, as discussed in Chapter 6, was 
introduced by Corcos (Corcos 1963a; Corcos 1963b; Corcos 1967). The second 
is instead based on the wavenumber–frequency spectra of the pressure fields 
exerted by the internal and external fluids and by the TBL fluid flow. As 
discussed in Chapter 6, over the past three decades a selection of analytical or 
quasi–analytical models have been proposed in the attempt of describing the 
spectrum of TBL pressure fields both at convective and sub–convective 
wavenumbers (Chase 1980; Efimtsov 1982; Ffowcs Williams 1982; Chase 1987; 
Smol'yakov and Tkachenko 1991; Bull 1995; Graham 1997). Maury et al. 
(2002a) have analysed the principal characteristics of the space–frequency and 
wavenumber–frequency formulations in a consistent framework and have 
highlighted how the two formulations are related by spatial Fourier transforms.  

As seen for the interior sound field, in general, at low audio frequencies the 
response of the wall structure is also characterised by a low modal overlap. Thus 
the expression of the flexural vibration field can be expanded into a series of 
modal terms with reference to the in vacuo natural modes of the structure. In this 
case both formulations in the space and wavenumber domains lead to double 
series modal expressions for the structural response and sound radiation, which 
include the self and mutual admittance functions for the modal excitation exerted 
by the TBL pressure field, the self and mutual fluid loading impedance functions 
and the self and mutual sound radiation efficiencies (Davies 1971; Blake 1986). 
With the space–frequency domain formulation, the modal excitation, fluid 
loading and sound radiation effects are derived from integral expressions in a 
bounded space domain. Alternatively, for the wavenumber–frequency domain 
formulation, these terms are derived from integral expressions in the unbounded 
wavenumber domain. Although the two approaches provide equivalent results, 
the formulation in the space–frequency domain is more intuitive to derive since 
it refers to spatial coordinates (Blake 1986; Thomas and Nelson 1995; Maury et 
al. 2002a). Nevertheless, with the wavenumber–frequency domain formulation, 
the expressions for the modal excitation, fluid loading and sound radiation 
effects are transformed into wavenumber spectra. Thus the response of the 
structure can be viewed as the result of filtering phenomena between the 
wavenumber spectra of the modal excitation, the interior and exterior modal fluid 
loading and the interior modal sound radiation (Blake 1986; Hwang and 
Maidanik 1990; Graham 1997). This provides direct insight on the physics of the 
excitation, fluid loading and interior sound radiation phenomena under study, 
although working in the wavenumbers domain requires some practice. Both 
types of approaches are based on double integrations, which, in general, cannot 
be solved analytically and thus involve numerical derivation using, for example, 
the Gaussian quadrature. The wavenumber approach offers some advantages 
when the geometry of the structure can be defined in terms of a single coordinate 
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with reference to systems of orthogonal coordinates in which the structural 
vibration field, the interior sound pressure field and the exterior sound and TBL 
pressure fields are separable. In this case, the wavenumber integral expressions 
can be derived analytically in closed form (Junger and Feit 1986; Fahy and 
Gardonio 2007). On the other hand the spatial approach can be easily 
implemented when the vibration response of complex structures and the interior 
and exterior sound fields are derived with approximated methods such as the 
structural and acoustic “Finite Element Method” (FEM) and the acoustic 
“Boundary Element Method” (BEM) (Filippi and Mazzoni 1994). At high audio 
frequencies the structural response and the interior sound field increasingly 
become complex, since multiple resonant modes contribute to both the vibration 
and sound fields at each frequency. Thus alternative formulations based on 
energy functions are employed such as the “Statistical Energy Analysis” (SEA) 
method. This chapter considers only the modal formulation, which for simple 
model problems, such as the cylindrical enclosure considered in this section or 
the baffled panel considered in the following sections, provides realistic results 
also at high audio frequencies. 

In summary this section introduces the space–frequency domain formulation 
for the structural–acoustic response to TBL fluid flow excitations. Also, it briefly 
discusses the derivation of the modal excitation functions in the wavenumber–
frequency domain. The reader interested to know more about “full” 
wavenumber–frequency domain formulations is referred to the review papers by 
(Graham 1997; Maury et al. 2002a) and to the monograph chapters written by 
(Blake 1986). The space–frequency domain formulation presented here is built 
around the description of the interior and exterior sound fields and the modal 
representation of the distributed flexural vibration of thin shells. In general, the 
interior and exterior sound fields can be derived with the so called “direct 
boundary integral formulation”, which uses acoustic Green functions (Morse and 
Ingard 1968; Blake 1986; Junger and Feit 1986; Pierce 1989; Nelson and Elliott 
1992; Fahy and Gardonio 2007). For the exterior fluid domain, this equation 
provides the resultant sound field produced by a distribution of acoustic sources 
and by the radiation and scattering effects of a flexible body (or multiple bodies) 
of arbitrary shape. Alternatively, for the interior fluid domain, it provides the 
resultant sound field produced inside the enclosure by a distribution of interior 
acoustic sources and by the radiation and reflection effects of the enclosure 
flexible walls. The effects produced by the surface of the body or enclosure are 
normally classified in terms of three different boundary conditions that prescribe 
a) the velocity distribution normal to the boundary surface (Neumann or natural 
boundary condition), b) the sound pressure acting on the boundary surface 
(Dirichlet or essential boundary condition) and c) the specific acoustic 
impedance normal to the boundary surface (mixed boundary condition) 



386 P. Gardonio

(Ciskowski and Brebbia 1991; Desmet 1998; Wu 2000; Gaul et al. 2003). In 
general, when the boundary surface is defined by a flexible structure, the 
boundary conditions for both the exterior and interior noise problems are 
expressed in terms of the acoustic particle velocity distributions normal to the 
boundary surface, which are considered compatible with the transverse vibration 
velocity of the flexible wall. Thus they are treated as Neumann boundary 
conditions. The boundary integral formulation involves a surface integration that 
can be solved in closed form only for few regular shapes (e.g. cylinders and 
spheres). For more realistic irregular boundary surfaces, approximated numerical 
methods are employed such as the acoustic “Boundary Element Method” (BEM) 
or the acoustic “Finite Element Method” (FEM) (Wu 2000; Fahy and Gardonio 
2007). Although the two methods can be used for both interior and exterior 
sound problems, normally the BEM method is used for the exterior sound 
radiation/scattering problem, while the FEM method is employed for the interior 
sound radiation/reflection problem.  

For simple wall structures either formed by a single span shell or an assembly 
of plate and shell panels, the flexural response can be derived analytically from 
the inhomogeneous equations of motion for closed shells or flat and curved 
panels. The flexural response is derived in terms of structural Green functions, 
which, are usually expressed as admittance or mobility functions (Gardonio and 
Brennan 2002; Gardonio and Brennan 2004). Also in this case, for distributed 
pressure field excitations, the expression for the response assumes an integral 
form over the surface of the structure. In general, only for very few simple 
structures, such as for example cylinders or flat and curved rectangular panels, 
the flexural response can be derived analytically. In practice, the body of surface 
and air vehicles are rather complex structures. Thus, as for the acoustic problem, 
approximated numerical methods are normally employed such as the structural 
FEM (Fahy and Gardonio 2007). When the analysis is limited to low audio 
frequencies, the problem is often simplified by considering a simple closed wall 
structure (e.g. a cylinder or a folded box) where the stiffening and mass effects of 
the reinforcing ribs are smeared over the surface of the structure. Alternatively, 
at mid and high audio frequencies, the response of different sections of the 
enclosure wall can be considered weakly coupled to each other and thus the 
problem can be split into the analysis of the structural–acoustic response of 
single span flat panels and curved shells. 

As schematically shown in Figure 2, the coupled structural–acoustic analysis 
presented in this section is derived by combining the acoustic responses of the 
interior and exterior sound fields and the structural response of the flexible wall. 
The flexural response of the wall produced by the TBL pressure field and by the 
feedback effects exerted by sound pressure fields over the internal and external 
surfaces of the wall is derived from the structural equation of motion. The sound 
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pressure over the internal and external surfaces are derived from the direct 
boundary integral equations for the interior and exterior sound fields calculated 
on the boundary surface. The structural equation of motion and the direct 
boundary integral equations are then combined into a system of equations in the 
unknown sound pressure and particle velocity fields over the boundary surface. 
The resulting sound pressure and particle velocity fields are then used again in 
the direct boundary integral equation for the interior sound field to derive the 
noise radiation inside the enclosure. 

To effectively establish the interior sound radiation and global flexural 
response of a cavity bounded by flexible walls, it is convenient to express the 
two phenomena in terms of energy functions, which embrace in a single term the 
spatially distributed nature of the sound and flexural vibration fields in the cavity 
and enclosing wall respectively (Nelson and Elliott 1992; Gardonio 2012). 
Moreover, the stochastic nature of the disturbance pressure field exerted by the 
TBL fluid flow on the external side of the flexible wall, makes indispensable to 
express these energy functions in terms of concepts and formulations for random 
processes. Thus, a particular formulation is introduced in Section 1.6, which is 
inspired to a similar study proposed by (Gardonio et al. 2012) and refers to the 
formulations for stationary stochastic processes given in (Crandall and Mark 
1963; Newland 1975; Bendat and Piersol 2000). 

1.1 Direct boundary integral equation for exterior and interior sound fields 
Assuming the system is linear, the exterior and interior sound fields of the model 
problem shown in Figure 1 can be expressed as the superposition of the 
boundary sound fields generated by the scattering/reflection and radiation effects 
of the flexible wall and the direct sound fields generated by acoustic sources 
located respectively outside and inside the cavity. Both terms can be derived 
starting from the following inhomogeneous acoustic wave equation (Dowling 
and Ffowcs Williams 1983)  
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that takes into account the effects produced by acoustic monopole and dipole 
sources. In fact, the excitation terms ttq ),(x  and ),( txf  represent a 
kinematic (volumetric) monopole source and a kinetic (force) dipole source 
respectively. More precisely ),( tq x  is the rate of volume flow per unit volume 
produced by the monopole source and ),( txf  is a vector with the fluctuating 
forces produced by the dipole source. In this equation 0c  is the speed of sound, 

 is the mass density of the fluid and the vector x  identifies the position in the 
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exterior or interior fluid domains. Also ),(2 tp x  is the Laplacian of ),( tp x  and 
),( txf  is the divergence of ),( txf . Assuming time–harmonic dependence, the 

wave equation can be rewritten in the following form (Morse and Ingard 1968; 
Nelson and Elliott 1992) 

),(),(),( 22 xxx Qpkp   , (2)

where 0ck  is the acoustic wavenumber and the volumetric monopole and 
force dipole sources are merged in the term ),(),(),( xfxx qjQ . 
Also ),(xp , ),(xQ , ),(xq , ),(xf  are the frequency dependent complex 
amplitudes of the co-respective time–domain functions assuming the time–
harmonic dependence is given in the exponential form )exp( tj , where  is the 
circular frequency. The remaining part of this formulation will be expressed in 
the frequency domain and, for brevity, the frequency dependence of the complex 
amplitudes will not be displayed. The solution of Eq. (2) is derived in terms of 
acoustic Green functions ),|( xxG , which are chosen according to the problem 
under study and satisfy the following inhomogeneous differential equation 
(Morse and Ingard 1968; Nelson and Elliott 1992) 

)()|()|( 22 xxxxxx GkG   , (3)

where )( xx  is the three-dimensional Dirac delta function, which defines a 
point monopole source in x  (Nelson and Elliott 1992). Thus, the Green 
function describes the spatial dependence of the complex pressure field at x  
produced by a harmonic point monopole source at x . Eq. (2) is then solved by 
multiplying it by )|( xxG  and subtracting to the resulting equation Eq. (3) 
multiplied by )(xp . The resulting equation is then integrated in the acoustic 
volume V , which yields 

VV
dVGQdVGppGp )|()()|()()()|()( 22 xxxxxxxxxx  . (4)

The Green’s theorem given in the form 
SV

dSfggfdVfggf   22 n  
and the reciprocity property )|()|( xxxx GG  are then used to transform the 
first volume integral into an integral over the boundary surface S  of the acoustic 
volume V . As a result, the following “direct boundary integral equation” is 
derived 

VS
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where 
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and n  is a unit vector with direction orthogonal to the boundary surface S  (note 
that, as shown in Figure 1, n has opposite directions for the exterior and interior 
domains).  

In order to solve Eq. (5) it is necessary to define the pressure and pressure 
gradient on the boundary surface, i.e. for Sx . For a well–posed boundary–
value problem, only one of the two sets of boundary conditions can be defined a 
priori. However, also the other set can be derived from the direct boundary 
integral equation by co–locating the point x  on the boundary surface itself. 
Thus the derivation of the scattered/reflected or radiated sound fields by a 
flexible object or an enclosure is carried out in two steps based on the same 
integral equation. Although at first sight this may appear as a mere repetition of 
the same integration, the implementation of the first step is not trivial since the 
surface integral becomes singular when the point x  is co–located on the 
boundary surface. Nevertheless this singularity is weak, and the surface integral 
converges in the regular sense (Wu 2000). There is also a second difficulty to be 
considered, that is, for exterior problems, the surface integral in Eq. (5) may not 
have a unique solution at certain characteristic frequencies. The reader is referred 
to specialised monographs that show how this problem is normally overcome 
with the so called CHIEF method (Wu 2000).  

Besides the boundary conditions, a suitable Green function )|( xxG  must be 
defined to implement the direct boundary integral Eq. (5). In principle there is a 
vast selection of functions that can be used to solve a given problem, since the 
only requirement is that they satisfy both Eq. (3) and the principle of reciprocity 
(Nelson and Elliott 1992). Nevertheless exterior and interior sound fields are 
normally handled with two specific types of functions that are described below. 

1.2 Green function for the exterior sound field 
As shown in Figure 1, a particular boundary surface is chosen for the exterior 
sound field, which is composed by the external surface bS  of the flexible wall 
and by the surface S  of an imaginary sphere centred in the radiating object and 
with radius that tends to infinity. In this way the Sommerfeld radiation condition 
at infinity (Sommerfeld 1949) can be assumed, which imposes that only waves 
travelling outwards from a source are allowed and that the pressure tends to zero 
at infinite distance from the source. Assuming the system of reference is located 
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at the centre of the radiating object, this physical condition can be expressed 
mathematically with the following equation: 
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where the vector ex  identifies a point in the exterior sound field. In this case, it 
can be shown that the surface integral over S  in Eq. (5) goes to zero. Also, for 
free–field sound radiation, the Green function takes the simple form  
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which is known as the free space Green function (Morse and Ingard 1968; 
Nelson and Elliott 1992). For the specific problem considered in this chapter 
where there is no external acoustic source distribution, i.e. )( eQ x , and the 
velocity distribution normal to the boundary surface is prescribed as compatible 
with the transverse vibration velocity of the flexible wall, the direct boundary 
integral equation derived above can be re-formulated as follows 
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where the vector sx  identifies a point on the surface of the enclosure wall and 
ng se )|( xx  and np e )(x  are the directional derivatives1 of )|( seg xx  and 

)( ep x  along the normal n  to the boundary surface bS  (Junger and Feit 1986). 
Equation (9) gives the sound pressure radiated by a vibrating body, provided the 
sound pressure in bS  and its derivative along the normal to the surface bS  are 
known. According to the fluid momentum equation, the sound pressure 
derivative np s )(x  and the sound particle velocity )( snv x  along the normal to 
the boundary surface are related by the momentum equation 

0)()( sns vjnp xx  (Morse and Ingard 1968; Pierce 1989; Fahy and 
Gardonio 2007). Thus Eq. (9) can be rewritten in the following form 
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1  nn  (Junger and Feit 1986). 
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which, in literature, is known as the Helmholtz integral equation (Junger and Feit 
1986; Wu 2000). Since the sound particle velocity )( snv x  is compatible with the 
transverse velocity of the structure )( sw x , the sound pressure over the boundary 
surface )( sp x  can be readily derived by coupling the structural wave equation 
with the Helmholtz integral Eq. (10) calculated in se xx  assuming 21)( sc x  
and setting2 )()( ssn wv xx . The radiated sound field can then be derived yet 
again from the Helmholtz integral equation setting 1)( ec x . Nevertheless, for 
the noise problem considered in this section, this first step is sufficient to provide 
the external sound pressure fluid loading effect on the flexible wall. A 
phenomenological analysis of Eq. (10) indicates that the sound pressure )( sp x  at 
a given point sx  of the boundary surface of a flexible body is given by the 
surface integral of the superposition of the sound pressure generated by the 
vibration of the body, via the term )( )|( sss wgj xxx , and the sound pressure 

generated by the scattering effect of the body, via the term )(),(
sn

g pss xxx .  
In general, for arbitrary geometries of the flexible body, the surface pressure 

distribution necessary to solve the Helmholtz integral equation must be derived 
by solving Eq. (10) numerically (Wu 2000). Analytical approximate solutions 
can be derived in the short– and long–wavelength limits (Junger and Feit 1986; 
Koopmann 1997). For instance, analytical solutions can be derived either for 
very small sound radiating objects compared to the acoustic wavelength or when 
the acoustic wavelength is smaller than both the radius of curvature of the sound 
radiating object and the portions of the sound radiating object that vibrate in 
phase. Also, analytical exact solution can be derived for specific geometries of 
the sound radiating object so that a special class of acoustic Green functions, 

)|(ˆ
seeG xx , can be defined. These functions satisfy the Neumann boundary 

condition on the surface of the sound radiating object, i.e. 0)|(ˆ
se

seen G
xx

xx  

(Junger and Feit 1986; Koopmann 1997). As a result, only the velocity normal to 
the boundary surface is required to derive Eq. (10). According to the 
nomenclature in (Kellogg 1953), these functions are referred to as the Green 
functions of the second kind. Alternatively other authors identify them as 
Neumann functions (Garabedian 1964). The 0)|(ˆ

se
seen G

xx
xx  condition can 

be straightforwardly imposed when the shape of the radiating body is such that it 

                                                           
2 Note that, as shown in shown in Figure 1b, the standard notation used for the 

Helmholtz integral equation is used where the vector n points away from the acoustic 
domain, thus )()( ssn wv xx . 
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can be defined in terms of a single coordinate with reference to systems of 
orthogonal coordinates in which the acoustic wave equation is separable (e.g. 
rectangular, cylindrical and spherical coordinates) (Junger and Feit 1986). In this 
case the second kind Green function can be formulated analytically and the 
simplified form of the Helmholtz integral equation  

bS bsnseeee dSvGjpc )()|(ˆ)()( xxxxx  (11)

can be used to derive the radiated sound field directly from the boundary particle 
velocity )( snv x , that is the transverse velocity of the structure )( sw x . From a 
physical point of view, in contrast to the free space Green function, this function 
includes the scattering effect that would have the wall if assumed to be rigid 
(Junger and Feit 1986; Koopmann 1997). 

It is interesting to note that in the special case where the flexible body is an 
infinitely extended flat plate, the scattering of sound is such that the first term 
equals the second term in Eq. (10). Thus, using the expression for the free space 
Green function given in Eq. (8) and recalling that )()( ssn wv xx , the radiated 
sound pressure can be readily derived with the following integral  

b

se

S b
se

jk

se dSewjp
xx

xx
xx

)(
2

)(  . (12)

This integral expression in known as the Rayleigh integral for the radiated sound 
pressure by an infinitely extended flat surface with transverse velocity )( sw x  
(Fahy and Gardonio 2007). Thus the free space Green function can be considered 
as a second kind Green function for the sound radiation problem of an infinitely 
extended flat surface.  

Since this section is focused on the coupled structural–acoustic response of a 
cylindrical enclosure, the second kind Green function for the baffled cylinder 
vibrating surface shown in Figure 1 is briefly recalled. In the literature this Green 
function is derived by applying space–Fourier transforms to the homogeneous 
counterpart of Eq. (3) formulated in cylindrical coordinates rz  , , (Morse and 
Ingard 1968; Junger and Feit 1986). More specifically, since the cylindrical 
geometry imposes a periodicity along the circumferential direction, a Fourier 
series is applied along the circumferential direction, such that 

2

2
2

),(),,(
m

jm
m erzprzp , and a space–Fourier transform3 is applied along the 

                                                           
3 Space–Fourier transforms are normally referred to as wavenumber transforms 

(Junger and Feit 1986; Fahy Gardonio 2007). 
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axial direction, which is given by dzerzprkp zjk
mzm

z),(),(~
22

, where the 

acoustic wave number is expressed as 222
zr kkk  and  ,2 ,1 ,02m  is the index 

for the Fourier series expansion in circumferential direction. In this way, the 
homogeneous counterpart of the partial differential Eq. (3) is transformed into a 
series expansion of Bessel’s differential equations in the unknown ),(~

2
rkp zm  

functions. This series expansion is satisfied when each Bessel’s differential 
equation is set to zero. The solution of this set of equations can be found 
analytically in terms of Hankel functions. This formulation leads to a series 
expression whose terms are function of the axial wavenumber. Thus to obtain the 
Green function in the spatial coordinates, an inverse space–Fourier transform is 
implemented with reference to the axial wavenumber, which leads to the 
following expression (Morse and Ingard 1968; Stephanishen 1981; Lesueur 
1988; Millard 1997) 

0
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erm
semsee dke

RkHRk
rkH

mG sezxx   , (13)

where the position vectors ex  and sx  are defined in cylindrical coordinates 

rz  , , , and  ,2 ,1 ,02m  Here R  is the radius of the cylinder, )()1(
2mH  is the first 

kind Hankel function of order 2m  and 102m , 202m  is the Neumann factor. 
A comprehensive introduction to the wave number transform approach for the 
solution of wave equations can be found in the monographs by (Morse and 
Ingard 1968; Junger and Feit 1986; Millard 1997). Since the Green function in 
Eq. (13) satisfies Neumann’s boundary condition such that 0)|(ˆ

se
seen G

xx
xx , 

the integral expression in Eq. (10) reduces to Eq. (11). From the physical point of 
view this result follows from the fact that the Green function of Eq. (13) already 
includes the scattering effects that are produced by the cylinder.  

1.3 Green function for the interior sound field 
In general, the Green function for enclosed sound fields can be expressed with a 
series expansion in terms of  ,2 ,1n  acoustic natural modes of the cavity 

)( cn x  and complex modal amplitudes )( cna x  due to a point monopole source 
of unit amplitude (Morse and Ingard 1968; Pierce 1989; Nelson and Elliott 1992; 
Koopmann 1997), that is: 

1
)()()|(  

n
cncnccc aG xxxx  . (14)
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Here the vectors cx  and cx  identify the positions of the sound pressure and 
point monopole source in the enclosure. The natural modes are chosen to form a 
complete set of functions so that any pressure field in the cavity can be derived 
from their linear combination. As seen for the exterior sound field, in order to 
avoid the two steps numerical solution of the boundary integral Eq. (5), the series 
expansion for the Green function in Eq. (14) is chosen to satisfy Neumann’s 
boundary condition such that 0)|(ˆ

sc
sccn G

xx
xx  over the boundary surface of 

the enclosure (Morse and Ingard 1968; Pierce 1989; Nelson and Elliott 1992; 
Koopmann 1997). From the physical point of view, this condition corresponds to 
rigidly walled boundary conditions. Thus the natural mode shapes used in 
Eq. (14) are chosen assuming the cavity is rigidly walled. The complex modal 
amplitudes na  are derived by substituting Eq. (14) into Eq. (3), which is then 
multiplied by the n–th mode and integrated over the volume of the cylindrical 
cavity. As a result, considering the orthonormality property of the natural modes, 
the following set of uncoupled ordinary equations in the unknown modal 
amplitudes )( cna x  are derived 

. , ,2 ,1         2
0

22
, nqcaV nnna  (15)

These equations are derived assuming the natural modes of the cavity )( cn x  are 
normalised in such a way as 

V cn V)(2 x , where V  is the volume of the cavity. 

Also na,  is the n–th natural frequency for the rigidly walled cavity and nq  are 
the modal excitation terms, which, using the “sifting” property of the three–
dimensional Dirac delta function, are derived as follows   

)()()( cnV cccnn dVq xxxx  . (16)

Thus, the Neumann Green function for the interior sound field is given by: 

1 22
,

2
0

)()()|(ˆ
n na

cncn
ccc

V
cG xxxx  . (17)

The sound absorption effects produced by internal fittings in transportation 
vehicles (floor, seats, wall finishing/trim layers, etc.) generate a damping action, 
which, for light damping, is normally taken into account in terms of modal 
damping so that Eq. (17) becomes (Morse and Ingard 1968; Nelson and Elliott 
1992): 
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1 ,,
22

,

2
0

2

)()()|(ˆ
n nanana

cncn
ccc

jV
cG xxxx  , (18)

where na,  is the acoustic modal damping. The details for the derivation of this 
expression can be found in Morse and Ingard (1968) and Nelson and Elliott 
(1992). In conclusion, assuming there are no interior acoustic sources )( cQ x  and 
assuming the Neumann Green function (18) is employed, also for the interior 
sound field the boundary integral equation (5)  reduces to:  

bS bsnscccc dSvGjpc )()|(ˆ)()( xxxxx , (19)

where )( snv x  is the sound particle velocity in direction normal to the boundary 
surface.  

When the enclosing wall has regular geometry it is possible to derive the 
natural frequencies na ,  and natural modes )( cn x  in terms of simple analytic 
expressions. For instance, for the cylindrical enclosure shown in Figure 1, the 
natural frequencies and natural modes, assuming rigid wall boundary conditions, 
are given by (Blevins 2001): 
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(21a,b)

These equations are given in cylindrical coordinates z ,  , r so that ,2 ,1 ,01n  
 ,2 ,1 ,02n   ,2 ,1 ,03n  are the modal indices in axial, circumferential and 

radial directions for the n-th acoustic natural frequency and mode. Also, )(
2nJ  

is the first kind Bessel function of order 2n  and the term 32,nn  is derived from 
the equation 0)(

322 ,nnnJ . Finally R and L are the radius and the length of the 
cylindrical cavity respectively. Since the mode shapes show a periodicity in 
circumferential direction, in order to represent a generic sound pressure 
distribution, two mode components oriented orthogonally in circumferential 
direction must be employed in Eqs. (17) and (18). For instance, in this 
formulation the symmetric cosine and anti–symmetric sine functions given in 
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Eqs. (21a,b) are used, which are denoted by the superscripts s and a respectively. 
Thus, to take into account the contributions of both symmetric and anti–
symmetric mode shapes, the Green function of Eq. (18) must be modified as 
follows:  

as
n nananan
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,
1  ,,

22
,

2
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2

)()()|(ˆ xxxx  , (22)

where for each mode index n , the summation is carried out considering 
symmetric (  = s) and antisymmetric (  = a) mode shapes. In this case, since the 
natural modes given by Eqs. (21a) and (21b) are not volume–normalised, the 
denominator includes the term )(

322 ,
2

11 nnnnn JVV , where 21
1n  when 01n  

and 41
1n  when 01n . As discussed for the exterior sound problem, for 

cavities with complex geometries, either FEM or BEM numerical methods can 
be used to formulate an eigenvalue–eigenvector problem from which the 
approximate natural frequencies and natural modes are derived (Wu 2000; Fahy 
and Gardonio 2007). 

1.4 Derivation of the structural response 
In general, the transverse vibration of a flexible thin shell structure is governed 
by three inhomogeneous equations of motion, which can be written in the 
following form (Soedel 1993; Markus 1998): 
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 (23a-c)

Here )t,,,,( sxwvuLi  are differential operators for the theory used to describe the 
equations of motion of the shell structure. Also wvu ,,  and rz fff ,,  are the 
displacements and forces per unit surface along the three axis used to describe 
the geometry of the shell (in this section, the notation for cylindrical coordinates 
is used). Finally sm  is the mass per unit surface of the shell structure and the 
vector sx  defines a generic point on the shell structure. Normally, for thin shell 
structures, the response is derived from the so-called classical theory of thin 
shells established by Love. This theory assumes the shell is thin compared to the 
radii of curvature and the deflections are reasonably small. Also it neglects the 
effects produced by shear deflections and rotary inertia. After Love’s work, 
several refinement theories have been proposed for specific classes of shells, 
which are discussed in specialised texts such as, for example, those in references 
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(Graff 1975; Cremer et al. 1988; Leissa 1993; Soedel 1993; Markus 1998; Reddy 
2006). Assuming time-harmonic motion, Eqs. (23a-c) become 
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 (24a-c)

where, in this case, wvu ,,  and rz fff ,,  are the frequency dependent complex 
amplitudes of the co-respective time-domain functions assuming the time-
harmonic dependence is expressed in the complex exponential form )exp( tj . 
Also in this case, for brevity, the frequency dependence of the complex 
amplitudes will not be displayed in the remaining part of the formulation. In 
general, for curved shell structures, the three equations of motion are coupled 
(Soedel 1993; Markus 1998). 

The solution of Eqs. (24a-c) can be expressed with the following set of three 
series expansions in the  ,2 ,1m  structural natural modes of the shell, (Morse 
and Ingard 1968): 
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 (25a-c)

Here mrmmz ,,, ,,  and mrmmz bbb ,,, ,,  are the components of the m-th natural mode 
and the co-respective complex modal responses along the axis used to describe 
the geometry of the shell (the combination of the three functions mrmmz ,,, ,,  
constitute a natural mode).  

Considering the model problem studied in this chapter, the free vibration of 
in vacuo cylindrical structures is characterised by three families of natural 
modes: the axial modes that are dominated by longitudinal vibrations, the 
torsional modes that are controlled by circumferential vibrations and the flexural 
modes that are governed by radial vibrations (Junger and Feit 1986). Thus for 
each mode number there are three natural frequencies relative to the axial, 
circumferential and radial natural modes. Usually the lowest one corresponds to 
the predominantly radial (i.e. flexural) natural mode (Markus 1998). Moreover, 
for circular cylinders, these mode shapes show a periodicity in circumferential 
direction. Thus, in order to represent a generic vibration field, two mode 
components oriented orthogonally in circumferential direction must be used in 
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Eqs. (25a-c). Normally a symmetric cosine and an anti–symmetric sine function 
are employed. A comprehensive account on the derivation of natural frequencies 
and natural modes of thin cylinders can be found in (Junger and Feit 1986; 
Soedel 1993; Markus 1998). For the specific structural–acoustic problem 
considered in this section, the coupling of the interior/exterior sound and TBL 
pressure fields with the structure occurs predominantly via radial, i.e. flexural, 
response of the structure. Thus, the formulation for the structural vibration can 
be simplified by neglecting the axial and torsional natural modes and using 
simplified expressions for the flexural natural frequencies as described by 
(Junger and Feit 1986; Soedel 1993). For instance, for the simply supported 
circular cylindrical shell model problem of Figure 1, the derivation of the 
response in radial direction can be expressed with the following series expansion 
(Soedel 1993): 

as
m
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,s,s )()( xx  , (26)

where, for each mode index m , the summation is carried out considering 
symmetric (  = s) and antisymmetric (  = a) radial mode shapes. Also the natural 
frequencies and co-respective symmetric and anti–symmetric radial mode shapes 
are given by (Soedel 1993):  
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where s , sE , s  are respectively the mass density, Young’s modulus of 
elasticity and Poisson ratio of the material and R , L , h  are respectively the 
radius, length and thickness of the cylinder. These equations are given in 
cylindrical coordinates rz  , ,  so that  ,3 ,2 ,11m  and  ,2 ,1 ,02m  are the 
modal indices in axial and circumferential directions for the m-th structural 
natural mode. The first term under the square root of Eq. (27) is controlled by the 
membrane stiffness of the cylinder and tends to reduce to zero for increasing 
circumferential mode orders 2m . Alternatively, the second term under the square 
root of Eq. (27) is controlled by the bending stiffness of the cylinder and 
becomes progressively important for increasing circumferential mode orders 2m . 

The unknown complex modal amplitudes s
mrb ,  and a

mrb ,  can be derived by 
substituting Eq. (26) into Eq. (24c). The resulting equation is then multiplied by 
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a m –th mode and integrated over the surface of the cylinder so that, using the 
orthormality property of the natural modes and assuming the natural modes are 
mass normalised, the following set of uncoupled ordinary equations is obtained: 

asmfbM mrmrms  ,         , ,2 ,1         ,,
22

,   , (29)

where M is the mass of the shell. Thus for each mode order m , two equations 
are defined with respect to the symmetric and anti–symmetric complex modal 
amplitudes s

mrb ,  and a
mrb , . Also, mrf ,  is the m–th modal excitation term for either 

the symmetric or anti–symmetric mode shape, which, for the specific case of 
radial excitation only, is given by (Soedel 1993): 

bS brmrmr dSff )()( ss,, xx  . (30)

Thus, according to Eqs. (26) and (29), the velocity response in radial direction of 
the cylinder can be expressed with the following modal summation 
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In general, analytical expressions for the natural frequencies and natural modes 
can be derived only for regular shapes such as, for example, circular cylinder 
closed shells or flat and curved shells panels. When the problem at hand involves 
complex wall structures, the Finite Element Method (FEM) numerical technique 
is normally employed (Fahy and Gardonio 2007).  

The energy dissipation in the structure is normally modelled with a hysteretic 
damping model (Cremer et al. 1988), which, leads to a complex stiffness in 
modal coordinates so that the Eq. (31) becomes 
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where  is the loss factor. The interaction between a structure and the 
surrounding fluid also produce energy dissipation. For slender structures this 
effect is normally modelled in terms of viscous damping without carrying out a 
coupled structural–acoustic analysis. In particular, the so called Rayleigh 
damping model is used, so that the damping can be modelled in terms of viscous 
damping coefficients in modal coordinates. Alternatively, for structures with 
extended surfaces such as the cylinder problem considered in this section, the 
true dissipation effects are modelled with a coupled structural–acoustic analysis, 
which is presented in the forthcoming section. 
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1.5 Derivation of the coupled structural–acoustic response 
In general, for the structural–acoustic problem at hand, the shell structure is 
excited only by transverse force distributions. For instance, for the cylindrical 
wall of the model problem shown in Figure 1, the excitation vector is 
characterised only by forces in radial direction. More specifically, the transverse 
force excitation per unit surface )( srf x  is composed by three terms: the pressure 
field ),( s tpTBL x  produced by the TBL fluid flow and the fluid loading pressure 
fields ),( s tpe x , ),( s tpc x  exerted by the external and internal fluids.  

As discussed in the opening part of this section, the pressure field produced 
by the TBL fluid flow is assumed independent from the flexural vibration of the 
cylindrical shell. In this case the excitation is specified in terms of the blocked 
pressure. Comprehensive overviews of the models for the excitation spectra that 
have been proposed since the early work by Corcos (1963a); (Corcos 1963b) can 
be found in Bull (1995); Graham (1997) and in Chapter 6 of this book. In this 
respect, it is important to emphasize that, despite the growing evidence that the 
model proposed by Corcos (Corcos 1963a; Corcos 1963b; Corcos 1967) over 
predicts the excitation levels at wavenumbers below the convective coincidence 
range (Martin and Leehey 1977; Blake 1986; Leehey 1988), it is still widely 
used to predict the response and interior sound radiation in high speed 
transportation vehicles such as aircraft. This is because, for high flow speeds, the 
convective coincidence range tends to coincide with the wavenumbers of the low 
order natural modes of the shell structure controlling the response and interior 
sound radiation phenomena (Graham 1997; Cousin 1999; Maury et al. 2002b). 
Nevertheless it is important to highlight that situations exist where the 
contribution in the sub–convective wavenumber region may be significant 
(Hwang and Maidanik 1990; Graham 1997). 

The external and internal fluid loadings are instead derived considering the 
feedback effects produced by the flexible wall sound radiation into the external 
and internal fluids. As anticipated at the beginning of this section, this is a 
reasonable model for the fluid loadings produced by the air in the interior and 
exterior of a vehicle that travels at low speed. For aircraft vehicles traveling at 
very high speed approaching 0.8 Mach at cruise condition, a proper aeroelastic 
formulation would be necessary to correctly predict the exterior fluid loading 
(Frampton 2005). Nonetheless, the structural–acoustic model presented here 
provides a good foundation for the understanding of the physical mechanisms 
characterising the coupling of structural modes via the internal and external 
fluids. In this respect, a complete set of graphs with the spectra of the self and 
mutual fluid loading impedance functions is introduced at the end of this 
subsection, which provide direct indications on the damping–, mass– and 
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stiffness–like physical effects produced between the modes of the shell via the 
fluid loading.  

In summary, the excitation exerted by the TBL fluid flow on the wall 
structure is expressed in terms of the blocked TBL pressure )( sTBLp x , which is 
twice the pressure that a nominally identical flow would produce if the wall was 
removed (Howe 1998). Also, the exterior and interior sound pressure fields, 

),( s tpe x  and ),( s tpc x , are derived from the first step “collocation analysis” of the 
boundary integral in Eq. (5). As discussed above, if there are no distributions of 
acoustic sources in the exterior and interior fluid domains, the boundary integral 
expression (5) reduces to Eq. (11) and Eq. (19) when both the exterior and 
interior sound fields are described with Neumann Green functions. For instance, 
assuming that the acoustic particle velocity on the boundary surface of the model 
problem shown in Figure 1 coincides with the radial velocity of the cylinder, i.e. 

)()( ssn wv xx , the radial force per unit surface is given by4 
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Since the natural modes used to derive the structural response are characterised 
by the symmetric and anti–symmetric functions given in Eqs. (28a,b), the modal 
excitation terms defined in Eq. (30) are expressed as follows  
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Here, the two Green functions eĜ  and cĜ  are given by Eqs. (13) and (22) 
respectively. Thus, considering the orthonormal properties of the trigonometric 
functions that describe the structural and acoustic mode shapes and the Green 
functions for the external fluid domain, simplified analytical expressions can be 
derived for the three integrals in the equation above. In particular, the first 
integral is expressed in terms of TBL modal excitations while, considering the 
modal expansion for the radial displacement given by Eq. (26), the other two 
integrals are expressed in the form of modal impedances. Thus it follows that: 
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4 According to the notation in Figure 1b: )()( ssen wv xxx  and )()( sscn wv xxx .  
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Here the TBL modal excitations are given by 

bS bsTBLmrmTBL dSpf )()( s,, xx  . (36)

Also, the modal impedance terms due to the interaction between the modal 
vibration of the cylinder wall and exterior fluid are given by (Junger and Feit 
1986; Lesueur 1988) 
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 and 102m , 
202m  is the Neumann factor. Finally (Junger and Feit 1986; Lesueur 1988)  
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is an impedance function per unit surface, where, as introduced in Section 1.2, 
222
zr kkk  and (...))1(

2mH  is the first kind Hankel function of order 2m .  Since the 
flexural natural modes of the cylinder are orthogonal to each other, no coupling 
exists, i.e.  0, mmeZ , when 11 mm  is odd or when 

 
22 mm . Finally, the modal 

impedance terms due to the interaction between the cylinder wall and interior 
fluid are given by 
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where the mode coupling terms are given by (Gardonio et al. 2001) 
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with 1
2

s
n  when 02n  and 2

2

s
n  when 02n  and with 2

2

a
n  for all 2n . 

Also in this case, the orthonormal properties of the trigonometric functions in the 
natural modes leads to no coupling, i.e. 0, mmcZ , between modes with 

 ,4 ,2 , 1111 nnnm  or  ,4 ,2 , 1111 nnnm  and 22 nm  or 22 nm . 
Substitution of Eq. (35) into Eq. (29) gives the following set of coupled 

modal equations 
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To simplify the remaining part of the formulation, these equations are arranged 
in the following matrix expression 

TBLrj fbKZM  2   , (42)

where the elements of the diagonal mass and stiffness matrices are given by 
M

mm
M  and 2

,msM
mm

K  respectively. Also, the elements of the modal 

excitation and modal response vectors are given by mTBLmTBL f ,,f  and mrmr b ,,b  
respectively. Finally the complex terms in the sparse impedance matrix are given 
by mmcmme ZZ

mm ,,Z . The diagonal self impedance terms provide the exterior 
and interior fluid loading effects on a given mode ),( 21 mmm  exerted by the 
modal velocity of the same mode ),( 21 mmm . Alternatively the off-diagonal 
mutual impedance terms (often called cross impedances) give the exterior and 
interior fluid loading effects on a given mode ),( 21 mmm  generated by the 
modal velocity of another mode ),( 21 mmm .  

Before continuing with the final part of this formulation for the interior sound 
radiation, the physical effects due to the fluid loadings produced by the external 
and internal air fluids are studied in detail for a cylindrical enclosure with aspect 
ratio 3.0LR . To facilitate the analysis, the spectra with the real and imaginary 
parts of the self and mutual impedances given in Eqs. (37) and (39) are 
presented. The fluid loading effects are then analysed recalling that a) a real 
positive impedance indicates a damping–like effect, i.e. cZdamping ; b) an 
imaginary positive impedance proportional to frequency denotes a mass–like 
effect, i.e. mjZmass ; and c) a imaginary negative impedance inversely 
proportional to frequency indicates a stiffness–like effect, i.e. kjZstiffness  
(here c , m , k , represent the damping, mass and stiffness factors respectively). 
Figure 3 shows the spectra of the real (left–hand side plots) and imaginary 
(right–hand side plots) parts of normalised self modal impedances of a cylinder 
immerged in air. The three rows of graphs show the self modal impedances with 
circumferential mode numbers 2 ,1 ,02m . The left–hand side plots shows that 
the spectra of the real parts are always positive. This indicates that the fluid 
produces a resistive effect on each mode, thus it absorbs energy from the modal 
vibrations of the cylinder. In general, at low frequencies, all spectra set off from  
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Figure 3. Self external fluid loading impedances on a baffled cylinder with R/L=0.3. 

 

 

Figure 4. Mutual external fluid loading impedances on a baffled cylinder with R/L=0.3. 
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very small values close to zero and then rapidly rise up to a maximum value in 
correspondence of specific critical frequencies mmcr, . Above these critical 
frequencies, the resistive effects rapidly fall and then level to constant values of 
0.5 for the breathing modes with 02m  and 0.25 for the other modes with 

02m . Thus, in general, the self modal loading exerted by the external fluid 
produces large resistive effects at high frequencies starting from about the modal 
critical frequencies where the resistive effect is maximum. Also, the resistive 
effects produced by breathing modes are double than those of modes with higher 
circumferential mode orders. Finally the critical frequencies rise together with 
the axial mode orders 11 mm . Moving to the right–hand side plots, it is noted 
that also the spectra for the imaginary parts are always positive, which indicates 
that the fluid also produces a mass effect on each mode. In general, all spectra 
grow rapidly from zero and reach a maximum value at frequencies slightly lower 
than the modal critical frequency mmcr, . Then, for higher frequencies, they 
rapidly fall to zero. Thus, in general, the self modal loading exerted by the 
external fluid produces mass effects up to the critical frequencies. Also, the peak 
mass effects produced by breathing modes are double than those of modes with 
higher circumferential mode orders. 

Figure 4 shows the spectra of the real part (left–hand side plots) and 
imaginary part (right–hand side plots) of normalised mutual modal impedances 
with circumferential mode numbers 2 ,1 ,02m . The two columns of graphs show 
that in this case the real and the imaginary parts assume both positive and 
negative values. This indicates that the fluid tends to transfer energy between 
pairs of modes. In general, the spectra for both the real and imaginary parts start 
from zero and then depict a waved contour that peaks at frequencies below the 
upper critical frequency of the two modes and then rapidly fade to zero. Thus, in 
general, the mutual fluid loading effect transfers energy from one mode to 
another around the upper critical frequencies mmcr,  of the two modes. Plots in 
Figure 4 highlight that this effect is larger for breeding modes with 02m  and 
progressively becomes smaller as the circumferential mode order grows. In 
general, as can be noted by contrasting the graphs in Figures 3 and 4, for light 
fluids the energy transfer between pairs of modes is much smaller than the 
energy absorption exerted on single modes (Guyader and Laulagnet 1994). For 
this reason, the effect of the mutual impedances is often neglected for light 
fluids, such as air for example, so that the set of equations (41) becomes 
uncoupled. To conclude this analysis, it is important to note that, according to 
Eq. (37) and (38), the modal impedance terms relative to the external fluid 
loading are proportional to the specific acoustic impedance of the fluid 0c . 
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Figure 5. Self internal fluid loading impedances for a cylinder with R/L=0.3. 
 

 

Figure 6. Mutual internal fluid loading impedances for a cylinder with R/L=0.3. 
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Thus the energy absorption and transfer effects, as well as the mass effects 
described above, become increasingly important for heavy fluids (e.g. water). 
Normally, for light fluids, such as air, the mutual fluid loading effects and the 
self mass fluid loading effects are neglected. Also, the self resistive effects are 
described in terms of a viscous damping ratio, which is often considered constant 
and equal for all modes, although it should follow the typical spectra shown in 
the left–hand side plots of Figure 3. 

The modal impedance effects produced by the interior fluid is now analysed 
assuming the cylinder is filled with air and has aspect ratio 3.0LR . Figure 5 
shows the spectra of the real (left–hand side plots) and imaginary (right–hand 
side plots) parts of the normalised self modal impedances with circumferential 
mode numbers 2 ,1 ,02m . The left–hand side plots show that the spectra of the 
real parts are positive and are characterised by peaks occurring at the resonance 
frequencies relative to acoustic modes that are efficiently coupled with the 
structural mode that specifies the modal impedance term. The right–hand side 
plots show that the spectra of the imaginary parts jump from positive to negative 
values in correspondence of these resonances. Thus, the interior fluid produces a 
combination of stiffness, dissipative and mass effects on single structural modes, 
which is typical of enclosed sound fields with resonant behaviour (Kinsler et al. 
2000). More specifically the stiffness effect is produced at frequencies below 
resonance while the mass effect is generated at frequencies above resonance. 
Also, the dissipative effect becomes significant at frequencies around resonance. 
On average, the magnitude of the impedances for breathing modes with 
circumferential mode order 02m  is one order of magnitude greater than that of 
modes with higher circumferential mode orders. Also, for a given circumferential 
mode order, the magnitude of the resonance peaks tends to decrease as the axial 
mode number 1m  rises. Finally, the modal impedances of breathing modes are 
characterised by a low frequency stiffness behaviour, which is due to the elastic 
reaction offered by the fluid in the cavity to the volumetric modal vibration.  

Figure 6 shows the real part (left–hand side plots) and the imaginary part 
(right–hand side plots) of the normalised mutual modal impedances with 
circumferential mode numbers 2 ,1 ,02m . The left–hand side plots show that the 
spectra for the real parts of the mutual modal impedances are also characterised 
by peaks occurring at the resonance frequencies due to the acoustic modes that 
are efficiently coupled with the structural mode that specifies the modal 
impedances. However, in this case, the peaks assume either positive or negative 
values. As found for the self impedances, the right–hand side plots show that the 
spectra for the imaginary parts are characterised by a discontinuity in 
correspondence of the resonance frequencies where the co–respective real part 
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peaks. However, in this case the jumps can be either from negative to positive 
values or from positive to negative values. Thus, the interior fluid produces a 
combination of stiffness, dissipative and mass effects also between pairs of 
structural modes, although the order of the stiffness and mass effects is inverted 
for certain pairs of structural modes. This phenomenon is indicative of an energy 
transfer between pairs of modes.  Similarly to the self impedance functions 
shown in Figure 5, the average magnitude of the impedances for breathing 
modes with circumferential mode order 02m  is much larger than that of modes 
with higher circumferential mode orders. Also, for a given circumferential mode 
order, the average magnitude tends to decrease as the axial mode number 1m  
rises.  Finally, as seen for the modal impedances produced by the external fluid, 
Eqs. (39) and (40) indicate that the modal impedance is proportional to the 
specific acoustic impedance of the fluid 0c . Thus the energy absorption and 
transfer effects as well as the mass effects become increasingly important for 
heavy fluids, e.g. water. In general, for light fluids such as air, the mutual fluid 
loading is neglected and the self fluid loading is assumed purely dissipative. In 
this way, as seen for the modal impedances exerted by the exterior fluid, the self 
dissipative effects are described in terms of a viscous damping ratio, which is 
often considered constant and equal for all modes, although it should comply 
with the typical spectra shown in the left–hand side plots of Figure 5. 

1.6 Interior noise radiation and vibration of the shell structure 
To effectively establish the interior sound radiation and global flexural response 
of the enclosing flexible wall, it is convenient to express the two phenomena in 
terms of energy functions, which embrace in a single term the spatially 
distributed characteristics of the sound and flexural vibration fields. Moreover, 
the stochastic nature of the disturbance pressure field exerted by the TBL fluid 
flow necessarily leads to the expression of these energy functions in terms of 
concepts and formulations for random processes. Thus a particular formulation is 
presented below, which refers to a similar study proposed by (Gardonio et al. 
2012) and considers the formulation for stationary stochastic processes given in 
(Bendat and Piersol 2000). 

The overall sound radiation to the interior of a cavity can be established in 
terms of the time-averaged total acoustic potential energy pE , which can be 
expressed as follows (Nelson and Elliott 1992): 

2

2

2
c2

1  ),( 1lim 2
0

T

T
V cTp dtdVtp

T
E x  , (43)
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where the instantaneous total acoustic potential energy is given by 

V cp dVtptE 2
c2

1 ),()( 2
0

x . For stationary and ergodic processes, such as the 

interior sound radiation induced by the pressure field due to a fully developed 
TBL, this quantity can be derived in terms of a “Power Spectral Density” (PSD) 
function of the total acoustic potential energy )(EpS   

dSE Epp )(
2
1  . (44)

Normally, in acoustics, rather than considering the averaged function, the 
corresponding frequency spectrum is studied, which can be plotted graphically 
and provides a deeper insight on the physics of the sound radiation phenomenon 
under study. According to (Bendat and Piersol 2000), the PSD of the total 
potential energy )(EpS  can be derived starting from the following expression: 

V ccTEp dVpp
T

S ),(),(1Elim)( *
c2

1
2
0

xx  , (45)

where the superscript * indicates the complex conjugate, ][E  denotes the 
expectation operator. The interior pressure can be derived from Eq. (19) with 

)( )( ssn wv xx , where )|(ˆ
sccG xx  is given by Eq. (22) and )( sw x  is derived from 

Eq. (26), so that  
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Thus, after some mathematical manipulations, the PSD of the total acoustic 
potential energy can be expressed with the following matrix relation  

)(Tr
2

2
2
0

qqS
c

VSEp   , (47)

where Tr  is the trace of the matrix qqS  with the self and mutual PSDs of the 
acoustic modal responses, which is given by  

)()()()()()()(1Elim)( HHH

T T
QYSYQqqS ppqq  . (48)

Here 12 KZMY j  is the structural modal admittance matrix that can 
be derived from Eq. (42). Also, Q  is the acoustic modal impedance matrix 
whose elements are given by  
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Finally, the elements of the )(ppS  matrix with the modal excitations PSDs are 
given by 

b b

b b

S bS bsmssTBLsm

S S bbsmsTBLsTBLsmTmm

SddSS

SddSpp
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)(),,()(                 

)(),(),()(1Elim)( *
,

xxxx

xxxxSpp

 ,
 (50)

where ),,( ssTBLS xx  is the spatial cross spectral density of the TBL blocked 
pressure field between points ),( yxsx  and ),( yxsx : 

][ ),(),(1Elim),,( *
ssTssTBL pp

T
S xxxx  . (51)

Chapter 6 of this book presents an overview of the models and formulations for 
the spectral density of the pressure field produced by a TBL fluid flow on a rigid 
wall. Additional review material can be found in references (Blake 1986; Leehey 
1988; Bull 1995; Graham 1997; Howe 1998; Cousin 1999; Maury et al. 2002b; 
Hwang et al. 2009). 

The analysis of the sound radiation to the interior is often contrasted with the 
flexural response of the shell enclosure, which can also be represented in terms 
of a single function. In fact, the overall flexural vibration of the shell can be 
established in terms of the time-averaged total flexural kinetic energy kE , which 
can be expressed as follows: 
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where the instantaneous total flexural kinetic energy is given by 

bS bssk dStwhtE 2
2
1 ),()( x . As seen with the interior sound radiation, for 

stationary and ergodic processes this quantity can be derived in terms of the PSD 
functions of the total kinetic energy )(EkS :  

dSE Ekk )(
2
1  , (53)

where 



Boundary Layer Noise - 2: Interior Noise Radiation and Control 411

S bssTsEk dSww
T

hS ),(),(1Elim
2
1 * xx  . (54)

Also, in this case, the orthonormality property of the structural natural modes 
leads to the following simple matrix expression  

)(Tr
2
1 2

bbSMS Ek  , (55)

where the matrix )(bbS  with the self and mutual PSDs of the structural modal 
responses is given by: 

)()()()()(1Elim)( HH

T T
YSYbbS ppbb  . (56)

As discussed at the beginning of this section, the space–frequency domains 
formulation presented above can also be developed in the wavenumber–
frequency domain. For instance, as discussed in Chapter 6, the spatial cross 
spectral density of the excitation field can be expressed in terms of the 
wavenumber spectral density function ),(kTBLS  by means of inverse space–
Fourier transform such that: 

kkxx xxk 2)(
2 ),(

)2(
1),,( deSS j

TBLssTBL  , (57)

where the vector k  contains the wavenumber components in the stream-wise and 
cross-wise directions of the fluid flow. Substitution of this expression into 
Eq. (50) leads to the following expression for the elements of the matrix with the 
modal excitations PSDs  
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where the shape functions ),(km  are given by the space–Fourier transforms of 
the natural modes: 

bS b
j

smm dSe kxxk )()(  . (59)

Here the integration is restricted to the surface of the structure bS  since 

0)( sm x  for bs Sx . Eq. (58) highlights how the wavenumber approach leads 
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to a formulation where the frequency–dependent modal excitation produced by 
the TBL fluid flow, )(, mmppS , is given by the unbounded integral in the 
wavenumber domain of the product of the wavenumber spectral density function 
for the excitation field ),(kTBLS  and the wavenumber spectrum of the natural 

modes ),(km , i.e. the shape functions. Thus it can be interpreted as the result of 
a filtering effect between the wavenumber spectrum of the excitation field and 
the wavenumber spectrum of the natural modes.  

The spatial Fourier transform approach can be extended also to the early part 
of the formulation presented above for the derivation of the total potential energy 
PSD, )(EpS , and total kinetic energy PSD )(EkS . In this case, as shown by 
Mazzoni (2003) and Maury et al. (2002a), the PSD functions are derived from 
the wavenumber integrals of the products of wavenumber spectra for the TBL 
excitation, the modal shapes and the structural–acoustic modal response 
functions. With this “full wavenumber” approach, the structural response and 
interior sound radiation are thus derived as the product of wavenumber spectra 
for the excitation, modal couplings and structural and acoustic responses, each 
producing a specific filtering effect. This appears to be a very interesting and 
appealing approach for studying the response of a system, although some 
practice is required to produce accurate analyses. 

2. Sound Radiation by a Baffled Panel Subject to TBL Exciation 
The formulation presented in the section above has provided a general modelling 
framework for the structural–acoustic coupled response of a closed shell, which 
is excited by the pressure field exerted by the TBL fluid flow. A simplified 
model problem is now considered in order to identify the principal properties of 
the interior sound radiation generated by a flexible wall subject to a TBL 
pressure field. As schematically shown in Figure 7, the model problem 
considered here comprises a thin flat rectangular panel, which is baffled and 
immerged in an unbounded fluid. The panel is excited by a TBL pressure field 
on the outer side and radiates sound to the inner side. The panel is considered to 
be immerged in air, in which case, based on the considerations presented in 
Section 1.5, the so called “weakly coupled response” is derived by neglecting the 
fluid loading effects on both sides of the panel. This type of model provides the 
principal features for the sound radiation to the interior of a large and heavily 
damped enclosure produced by a section of the enclosure wall.  

For this type of problem, the interior sound radiation is expressed in terms of 
the time-averaged total radiated sound power rP , which can be derived with the 
following formula: 
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Figure 7. Model problem composed of a baffled flexible panel, which is excited 
by a TBL pressure field on the outer side and radiates sound on the inner side. 
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Here the spatial integral is for the instantaneous total radiated sound power 

bS bssr dStptwtP ),(),()( xx  (Fahy and Gardonio 2007). As discussed in the previous 

section, assuming the process is stationary and ergodic, this quantity can be 
derived with the following relation:  

,)(
2
1

Pr dSPr  (61)

where the PSD function of the total radiated sound power )(PrS  is given by 
(Gardonio et al. 2012): 
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The complex velocity ),( sw x  can be derived from the modal expansion of the 
transverse displacement, which is given by Eq. (25c). Also, as discussed in 
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Section 1.2, the sound pressure over the surface of the panel can be derived from 
the Rayleigh integral given in Eq. (12) assuming5 )()( ssn wv xx , so that  

b

ss

S b
ss

jk

ss dSewjp
xx

xx
xx

)(
2

)(  . (63)

Substituting this equation into Eq. (62) and considering the modal expansion for 
the panel velocity derived from Eq. (25c), after some mathematical 
manipulations, the following expression is derived for the radiated sound power 
PSD 

)()(Tr
2
1 2

Pr bbSAS  (64)

where )(A  is the power transfer matrix that defines the sound power radiated 
by single modes (diagonal terms) and pairs of modes (off diagonal terms). For a 
flat rectangular panel the power transfer matrix is given by (Fahy and Gardonio 
2007) 

b bS S bbsrs
T
r SddS

kd
kd )(sin)(

4
)( xxA  , (65)

where || ssd xx  is the distance between point sx  and point sx .  Also, the 
matrix )(bbS  with the self and mutual PSDs of the modal responses is given by  

)()()()()(1Elim)( HH

T T
YSYbbS ppbb  , (66)

where the structural modal admittance matrix Y  is obtained from the modal 
equations of motion of the plate structure. More specifically, as seen for the 
cylinder structure, the unknown complex modal amplitudes mrb ,  are derived by 
substituting Eq. (25c) into Eq. (24c) with the differential operator )(3L   for 
flexural vibration of thin flat plates (Graff 1975; Cremer et al. 1988; Reddy 
2006). The resulting equation is then multiplied by a m –th mode and integrated 
over the surface of the plate so that, using the orthonormality property of the 
natural modes and assuming hysteretic structural damping, the following set of 
uncoupled ordinary equations is obtained: 

mrmrmsp fbjM ,,
22

,  )1(  , (67)

                                                           
5 Also for this system, as shown in shown in Figure 7, the standard notation used for 

the Helmholtz integral equation is used where the vector n points away from the acoustic 
domain, thus )()( ssn wv xx . 
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where pM  is the mass of the panel and mrf ,  is the m–th modal excitation term, 
which is given by  

bS smrrmr dSff )()( s,s, xx  . (68)

For a flat rectangular thin panel, the natural frequencies and natural modes are 
given by: 
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where ppp hm , ypxpppp llhM  and )1(12 23
pppp hEB , assuming p , pE  

and p  are respectively the density, Young’s modulus of elasticity and Poisson’s 
ratio for the material of the plate. Finally, m1, m2 are the indices in the x and y 
directions for the m-th mode. As seen in Section 1.5, the set of Eqs. (67), can be 
casted in the following matrix expression 

rrj fbKM  )1(2  , (70)

where the diagonal elements of the mass and stiffness matrices are given by 

pmm MM  and 2
,mspmm MK  respectively and the elements in the modal 

response and excitation vectors are given by mrmr b ,, b  and mrmr f ,, f  
respectively. Thus, the structural modal admittance matrix is given by 

12 )1( jKMY . In summary, for the simplified model problem 
considered in this section, the flexural response and interior sound radiation are 
studied using Eqs. (55) and (64) respectively. The modal amplitudes are derived 
by substituting Eq. (25c) into Eq. (24c), which, for a flat plate structure, is 
uncoupled from Eqs. (24a,b) for the in–plane vibration (Soedel 1993). According 
to Eq. (55) the spatially averaged response of the structure depends on the 
squared modal responses, which, in turn, depend on the coupling between the 
distributed excitation field and the natural modes. As illustrated in more detail in 
the following subsection, the TBL pressure field efficiently couples with all 
modes. In contrast, for example, a plane acoustic wave incident at a given angle 
with the normal axis to the plate, tends to couple efficiently with the so called 
volumetric modes which are characterised by a non–zero spatially averaged 
displacement and thus have both mode orders odd. Eq. (64) shows that the 
radiated sound power PSD depends on the squared modal amplitudes weighted 
by the diagonal terms of the matrix )(A  and on the products of pairs of modal 
amplitudes weighted by the appropriate off-diagonal terms of the matrix )(A .  
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Figure 8. Self (a) and mutual (b) radiation efficiencies of the rectangular panel 
natural modes.  

In other words, sound radiation occurs both via self radiation effects of each 
mode and the cross radiation effects of pairs of modes. Figure 8 shows both the 
diagonal (plot a) and off-diagonal (plot b) elements of the matrix )(A  for the 
panel considered in the next subsection with reference to the ratio between the 
acoustic and flexural wave numbers bkk . Plot (a) indicates that, at low 
frequencies such that bkk  (i.e. for subsonic flexural waves such that ccb , 

where 41
ppb mBc ), the self radiation effect of each mode is rather weak and 

tends to increase with frequency until it reaches the maximum value around 
1bkk  (i.e. for sonic flexural waves with ccb ). Volumetric modes 

characterised by both odd mode orders tend to radiate sound more efficiently 
than other modes. Also, the radiation efficiency tends to decrease as the mode 
orders raise. For frequencies such that bkk  (i.e. for supersonic flexural waves 
with ccb ) all modes become efficient radiators of sound.  Plot (b) shows that 
the mutual radiation effects are comparatively smaller than the self radiation 
effects, particularly at higher frequencies such that bkk 5.0 . Also, the curves in 
the graph are characterised by sharp dips around certain values of the ratio bkk , 
which are due to the fact that the off diagonal terms in matrix )(A  alternate 
between positive and negative values and thus their moduli go to zero at certain 
values of the ratio bkk  (Fahy and Gardonio 2007). This interesting finding 
indicates that for certain frequency bands, the mutual sound radiation effect of 
pairs of modes may be either positive or negative; in other words it may enhance 
or reduce the total sound radiation. Therefore, reducing the response due to some 
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specific modes could lead to reductions of sound radiation at given frequency 
bands, but to the enhancement of sound radiation at other frequency bands 
(Fuller et al. 1996).  

2.1 Physics of TBL sound radiation by a baffled panel 
In order to better understand the physics of the interior sound radiation generated 
by a TBL pressure field on the panel (Figure 9d), three typical sound radiation 
problems are considered first, which are due to the following excitation fields 
acting upon the panel: a) the fully correlated pressure field generated by a time–
harmonic “acoustic plane wave” (APW) with grazing, 45o and normal angles of 
incidence (Figure 9a); b) the partially correlated pressure field generated by an 
“acoustic diffuse field” (ADF), which is composed by a random distribution of 
plane waves whose energies are equally divided over all angles of incidence 
(Figure 9b) and c) the fully uncorrelated pressure field due to the so called “rain 
on the roof” (ROR) random excitation, which is characterised by a uniform 
distribution of point forces totally uncorrelated between each other (Figure 9c). 
The panel is assumed simply supported along the perimeter and its dimensions 
and material properties are summarised in Table 2.1. An extended version of this 
analysis can be found in (Rohlfing and Gardonio 2009). 

The panel response and the sound radiation produced by the ADF, ROR and 
TBL excitations are analysed in terms of the total kinetic energy PSD and total 
radiated sound power PSD, derived with the formulation presented in the  

 

Figure 9. Sound radiation induced by: a) APW at grazing, normal and 45o 
incidence angles, b) ADF, c) ROR and d) TBL. 

(b) acoustic diffuse field (c) rain on the roof(a) acoustic plane waves

(d) TBL excitation
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Table 2.1. Geometry and physical parameters for the panel. 

Parameter Value

dimensions mm  472278ypxp ll  

thickness mm  6.1ph  

mass density 3mKg 0227p  

Young’s modulus 210 mN  107pE  

Poisson ratio 33.0p  

Structural loss factor 02.0  

 
 
previous section. For the fully correlated time–harmonic plane wave acoustic 
excitations, the panel response and sound radiation are instead investigated with 
reference to the spectra of the time–averaged total kinetic energy )(kE  and 

time–averaged total radiated sound power )(rP . These two frequency–
dependent functions are derived from Eqs. (52) and (60) respectively. Thus, as 
discussed in (Fahy and Gardonio 2007), these two functions can be derived in 
terms of the complex modal responses with the following two matrix 
expressions: 
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where the vector )(rb  is derived from Eq. (70). The pressure field over the 
surface of the panel produced by an acoustic wave with azimuthal and elevation 
(with reference to the normal of the plate) angles,  and  respectively, can be 
expressed as:  

)( )(Re),( ykxktj
APWsAPW

yxeptp x  , (73)

where )(APWp  is the complex amplitude of the incident wave and 
)cos()sin(kkx , )sin()sin(kky  are the wave number components in x and y 

directions. Thus, the incident acoustic plane wave produces a waved pressure 
field on the panel whose wavelength is given by sin . For instance, as 
schematically depicted in Figure 5a, for grazing angle of incidence such that 
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o90 , the waved pressure field acting on the panel is characterised by the same 
wavelength as that of the incident acoustic field. When the angle of incidence 
turns to o45 , the wavelength of the pressure field acting on the panel 

becomes 2  times longer than that of the incident acoustic wave. Finally, if the 
angle of incidence is further reduced towards o0  the projection of the acoustic 
wavelength into the plane of the plate tends to infinity and thus the pressure field 
is no more waved and becomes spatially uniform. Moving back to the 
formulation for the response and sound radiation of the plate, considering the 
excitation pressure field given in Eq. (73), the modal excitation terms mrf ,  in Eq. 
(68) result (Wang et al. 1991): 
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ykxkj
mrAPWmr llIIpdSeyxpf yx

21
 )( 4 ),()(2)( )(

,,  (74)

where, if )( cos sin 1 oxp clm  and )( sin sin 2 oyp clm , 

22
2

)(sinsin
2

22
1

)(cossin
1

)(sinsin

)1(1     ,      
)(cossin

)1(1 2

2

1

1

oyp

cljm

m

oxp

cljm

m
clm

emI
clm

emI
oypoxp

,  (75a,b)

and, if )( cos sin 1 oxp clm  and )( sin sin 2 oyp clm ,  
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The response and sound radiation produced by the other three types of 
excitations are instead analysed in terms of the total kinetic energy PSD and total 
radiated sound power PSD derived with the formulations presented in Sections 
1.6 and 2 respectively. Thus the excitations are expressed in terms of cross 
spectral density functions. The cross spectral density for the diffuse sound field 
excitation is assumed  

kd
kdSS ADFssADF

sin)(),,( xx  (77)

where in this case || ssd xx  is the distance between the two points sx  and sx  

and )(ADFS  is the PSD of the ADF excitation at any point on the panel. Thus 
the ADF cross spectral density function is the same in all directions and is 
characterised by the so called “sinc” function which is shown by the dashed line 
in Figure 10. For the fully uncorrelated rain on the roof excitation, the cross 
spectral density is assumed as 
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Figure 10. Normalised spatial components of the cross spectral density function 
of the TBL excitation in stream–wise (solid line) and span–wise (dotted line) 
directions and ADF excitation (dashed line) with reference to the separation 
distance r per unit acoustic wavelength. 
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where, in this case, )(RORS  is the PSD of the ROR excitation at any point on the 
panel. Thus the cross spectral density is characterised by a delta function. As 
discussed in Chapter 6, the cross spectral density for TBL excitation is derived 
from the Corcos model, so that (Corcos 1963a; Corcos 1963b; Corcos 1967) 

cyyyxs UrjLrLr
TBLssTBL eeeSS )(),,( xx   , (79)

where )(TBLS  is the PSD of the TBL excitation at any point on the panel, xr  and 

yr  are the x and y components of the distance between points sx  and sx , 

cxx UL  and cyy UL  are the correlation lengths in x and y directions and 

cU  is the convective velocity, which is normally derived from the relation 
KUUc , with 85.06.0 K  (Cousin 1999). In this study, the convective 

velocity is assumed to be UUc 6.0 , where the free flow velocity is taken as 
sm 225U . Also, as indicated in references (Maury et al. 2004; Elliott et al. 

2005), the empirical parameters x  and y  are assumed to be 2.1  and 8  
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respectively. According to Eq. (79), the TBL cross spectral density function 
varies with direction and is characterised by two exponentially decaying 
functions in the stream-wise and span-wise flow directions. In the stream-wise 
direction, the convective effect also produces a waved profile of the cross 
spectral density function. The solid and dotted lines in Figure 10 show that the 
span-wise component decays more rapidly than that in the stream-wise direction. 
This is due to the fact that the correlated pressure field produced by each vortex 
in the turbulent fluid flow is smeared in the direction of the flow by the motion 
of the fluid.  

The comparative analysis of the structural response and sound radiation 
produced by these four types of excitations will be carried out considering the 
spectra of the time–averaged total kinetic energy and of the time–averaged total 
radiated sound power produced by the APW excitations with unit amplitude, i.e. 

1)(APWp . Also the spectra of the total kinetic energy PSD and total radiated 
sound power PSD produced by the ADF, ROR and TBL excitations will be 
considered assuming they have unit PSD, i.e.  1)()()( TBLRRADF SSS . In 
this way the specific characteristics of the structural response and sound 
radiation produced by the TBL pressure field are contrasted with those of the 
other three excitations independently from the specific energy distribution in 
frequency of each type of excitation. 

2.2 APW excitation 
The effects produced by the acoustic plane wave excitations are considered first. 
The three lines in plots (a) and (b) of Figure 11 show the spectra of the time–
averaged total kinetic energy and total radiated sound power by the panel due to 
acoustic plane waves at grazing, 45o and normal angles of incidence as depicted 
in Figure 9a. Considering first the kinetic energy plot (a), the three lines show 
that, at low frequency the spectra are characterised by sharp and well separated 
peaks due to the natural modes of the panel. The spectrum for the acoustic plane 
wave excitation with normal angle of incidence (dotted line) is characterised by 
fewer resonance peaks, as this type of wave excites only the modes with a net 
non–zero volumetric displacement, that is modes with both odd mode orders. At 
frequencies above the first resonance frequency of the panel, the mean kinetic 
energy spectra tend to fall with a typical 6 dB/octave slope, i.e. the so called 
“mass law”, which is due to the mass effect of the panel. As the frequency rises, 
the resonance peaks in the kinetic energy spectra progressively overlap so that 
the spectra show wide rounded crests spaced out by wide troughs, which are due 
to the clustering of many resonance peaks at given frequency bands. This effect 
is specific to the structure at hand and is quantified by the “modal overlap” factor  
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Figure 11. Spectra of the total kinetic energy (left–hand side plots) and total 
radiated sound power (right–hand side plots) per unit exciation due to (a,b) 
APWat grazing (dashed line) 45o (thick-solid line) and normal (faint-solid line) 
angles of incidence; (c,d) ADF; (e,f) ROR and (g,h) TBL pressure fields. 

(Cremer et al. 1988), which gives the number of structural modes of the structure 
significantly excited at any one excitation frequency. For instance, the modal 
overlap for thin rectangular plates increases linearly with frequency and is given 
by 
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where )(pn  is the plate “modal density”. For the plate considered in this section  
the modal overlap reaches the threshold value of 1 at about 3.6 kHz. Starting 
from this frequency, the response of the panel at each frequency is characterised 
by the overlap of two or more resonant responses. For frequencies above 5 kHz, 
the kinetic energy spectra produced by the grazing (dashed line) and 45o (thick-
solid line) acoustic plane waves show distinct wide frequency band ridges, which 
are characterised by multiple resonance peaks. These phenomena are generated 
by the so called “coincidence effect” where the projection of the acoustic 
wavelength into the plane of the panel equals the frequency-dependent bending 
wavelength, i.e. bsin/ , and thus the waved pressure field produced on the 
plate by the incident acoustic plane wave couples effectively with the structural 
wave motion (Fahy and Gardonio 2007). Consequently, for frequencies close to 
the “acoustic coincidence frequency” ,co  such that bsin/ , the response of 
the panel increases and forms the wide frequency band crests with multiple 
resonance peaks that can be seen in the kinetic energy spectra produced by the 
grazing and 45o incident acoustic waves (dashed and thick-solid lines 
respectively). Since for acoustic waves k2 , with the wavenumber given by 

ck , and since for thin plates bb k2 , with the wavenumber given by 
41

ppbb Bmck , the acoustic coincidence frequency can be readily 
derived as follows: 

2sin
cr

co  , (81)

where  
21
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p
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m
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is the so called “critical frequency”, which is highlighted with the thick-dashed 
vertical lines in the plots of Figure 11 and represents the smallest coincidence 
frequency that occurs for acoustic waves incident at grazing angle, that is o90 . 
For the panel at hand, the critical frequency occurs at about 7.54 kHz. Eq. (81) 
indicates that the coincidence frequency tends to infinity as 0 , thus as the 
acoustic wave approaches normal angle of incidence. Indeed the kinetic energy 
spectra produced by the normal acoustic plane wave excitation (faint-solid line) 
do not show the wide frequency band ridge found for the grazing and 45o 
excitations (dashed and thick-solid lines respectively). Normally, the coincidence 
phenomenon between flexural waves in the structure and acoustic waves in the  
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Figure 12. Dispersion curves relative to a) flexural waves in a thin plate (solid 
line), b) acoustic trace wave for grazing incidence (dashed line), c) acoustic trace 

wave for 45o incidence and d) convective flow (dash-dotted line). 

fluid is analysed with reference to the dispersion curves for the two types of 
waves. For instance, Figure 12 shows that the dispersion curve for the trace of 
the acoustic wave at grazing angle with the panel (dashed line) intersects the 
dispersion curve for flexural wave propagating in the plate (solid line) exactly at 
the critical frequency, so that cr

o
co )90( . Moreover, the dispersion curve for 

the trace of the acoustic wave at 45o with the panel (dotted line) intersects the 
dispersion curve for flexural wave propagation on the thin plate (solid line) at 
higher frequency than the critical frequency, that is cr

o
co 2)45( . Moving 

back to plot (a) of Figure 11, the dashed and thick-solid lines show that for very 
high frequencies above the coincidence region, the mean kinetic energy spectrum 
falls rapidly with a typical 18 dB/octave slope, i.e. following the so called 
“stiffness law”, which is due to the bending stiffness effect of the panel (Fahy 
and Gardonio 2007).  

Considering now plot (b) in Figure 11, it is noted that the spectra of the 
radiated sound power by the panel due to acoustic plane waves at grazing, 45o 
and normal angles of incidence (dashed, thick-solid, faint-solid lines 
respectively) are similar to those found for the kinetic energy. However, at low 
frequencies where the spectra of the kinetic energy are characterised by well 
separated resonance peaks, the co-respective spectra of the radiated sound power 
are characterised by fewer resonance peaks. This is because, as discussed in 
Section 2.1, at low frequencies such that 1bkk , the natural modes characterised 
by one or both even mode orders are poor sound radiators. As a result the 
resonant vibration responses due to those natural modes do not turn into a high 
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sound radiation. For example the resonant responses due to the (1,2) and (2,1) 
natural modes of the panel produce the second and third sharp resonance peaks 
in the kinetic energy spectra and the comparatively much smaller second and 
third resonance peaks in the radiated sound power spectra. For frequencies above 
the first resonance frequency of the panel, the spectra of the mean radiated sound 
power tend to fall following the so called mass law, i.e. with a typical 
6 dB/octave slope. As found for the kinetic energy spectra, at higher frequencies 
where the response of the panel at every frequency is characterised by the 
overlap of multiple modes the sound radiation spectra are characterised by 
increasingly smoother wide frequency band crests and troughs, which are 
generated by the resonant response of clusters of natural modes. When the 
frequency approaches the critical frequency at about 7.54 kHz (highlighted by 
the thick-dashed vertical line), in all three cases under consideration the sound 
radiation tends to rise. This is due to the fact that 1bkk  and thus, as can be 
noted in Figure 8a, all modes become efficient sound radiators. In particular, 
when the plate is excited by the plane wave at grazing angle (dashed line), this 
phenomenon is magnified by the concomitant efficient acoustic excitation effect 
described above. Thus, the coincidence ridge in the sound radiation spectrum 
becomes very high. Alternatively, when the plate is excited by the plane wave 
with a 45o angle of incidence, the spectrum is characterised by a small crest 
around the critical frequency, which is due to the efficient sound radiation of all 
modes, and then, at higher frequencies, by another comparatively bigger ridge, 
which is due to the efficient excitation of the waved pressure field generated on 
the panel by the acoustic plane wave. Finally, the radiated sound power spectrum 
of the plate excited by the plane wave with normal angle of incidence (faint-solid 
line) is characterised only by a small ridge around the critical frequency due to 
the efficient sound radiation of all modes. 

2.3 ADF excitation 
The effects produced by the acoustic diffuse field excitations are considered next 
with reference to the spectra of the total kinetic energy PSD and total radiated 
sound power PSD shown in plots (c) and (d) of Figure 11. At frequencies below 
acoustic coincidence, the spectrum of the kinetic energy is similar to that found 
for the 45o acoustic plane wave excitation (thick-solid line in plot (a)). Thus, 
above the first resonance frequency of the plate, the spectrum of the kinetic 
energy tends to fall following the mass law with a 6 dB/octave slope. Also, the 
spectrum becomes increasingly smooth and characterised by wide band crests 
due to the overlapping of a linearly increasing number of modal responses. 
Around the critical frequency at about 7.54 kHz, the spectrum shows the wide 
frequency band ridge with multiple resonance peaks. However, this ridge is 
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relatively modest in comparison to that found for the grazing acoustic plane 
wave excitation and extends over a wider frequency band. This is because, as 
schematically shown in Figure 9(b), the acoustic diffuse field excitation is 
composed by acoustic plane waves with a uniform distribution of angles of 
incidence. Thus the excitation coincidence phenomenon extends to all 
frequencies starting from the critical frequency (highlighted by the thick-dashed 
vertical line) to infinity. Since the energy of the diffuse excitation field is equally 
divided between waves at all angles of incidence, the excitation coincidence 
phenomenon at every frequency, and thus for every angle of incidence, is not as 
strong as that for the single plane wave with a fixed angle of incidence. 
However, it spans over a much wider frequency range, ideally up to infinity.  

In general the observations made for the spectrum for the total kinetic energy 
also apply to the spectrum for the total radiated sound power. In fact, for 
frequencies below acoustic coincidence, the radiated sound power shown in plot 
(d) is similar to that found for the 45o acoustic plane wave excitation (solid line 
in plot b). Thus, at low frequencies, the spectrum of the radiated sound power 
PSD is characterised by a smaller number of well separated resonances since the 
sound radiation mechanism tends to filter out those resonances due to plate 
natural modes with both or one even mode orders. As the frequency rises above 
the fundamental resonance frequency of the plate, the spectrum of the mean 
radiated sound power tends to fall according to the mass law with a slope of 
6 dB/octave. When the frequency reaches the critical frequency at about 
7.54 kHz (highlighted by the thick-dashed vertical line), the spectrum shows a 
wide band ridge, which is less marked than that visible in plot (b) for the 45o 
acoustic plane wave excitation (thick-solid line) but is much more noticeable 
than that found in plot (c) for the kinetic energy due to the diffuse acoustic field 
excitation. This phenomenon is due to the fact that, on one hand, the diffuse 
acoustic field distributes the energy to plane waves with all angles of incidence 
and thus distributes the excitation coincidence effect over all frequencies above 
the critical frequency and, on the other hand, the sound radiation becomes very 
effective around the critical frequency. 

2.4 ROR excitation 
The effects produced by the rain on the roof excitation are now analysed 
considering plots (e) and (f) of Figure 11. Considering first plot (e), it is noted 
that also in this case the spectrum of the kinetic energy is characterised by well 
separated resonances, which tend to become wide band crests as the frequency, 
and thus modal overlap effect, grows. However, contrasting this graph with the 
two kinetic energy graphs (a) and (c), it is clear that, when the panel is excited by 
a uniform distribution of uncorrelated forces, all resonant modes are efficiently 
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actuated. This is due to the fact that, in contrast to acoustic excitations, the rain 
on the roof excitation is composed by a uniform distribution of fully uncorrelated 
forces, which equally couples with all natural modes of the panel. Hence the 
amplitude of the resonance peaks in the spectrum for the kinetic energy tends to 
be uniform, since the coupling between the ROR excitation field and modal 
response of the panel does not vary from one mode to another. The relative 
amplitude of the resonance peaks are solely dictated by the damping effect and 
by the overlap with neighbouring modes. As a result, at frequencies above the 
fundamental resonance of the panel, the amplitudes of the resonance peaks are 
rather uniform and the mean spectrum falls with a 3 dB/octave rate instead of the 
6 dB/octave rate found for the plane wave and diffuse acoustic excitations. Thus, 
as one would expect, the mean spectrum of the panel kinetic energy due to a rain 
on the roof excitation follows that of the squared point mobility function for the 
ratio between the transverse velocity and transverse force. This trend carries on 
also around and beyond the critical frequency at about 7.54 kHz. This is due to 
the fact that there are no favoured frequencies, such as the acoustic coincidence 
frequency, where the excitation field effectively couples with the structural 
response of the panel.  

Moving on to the radiated sound power, comparing plot (f) with plots (b) and 
(d), it is noted that the spectrum of the radiated sound power generated by a rain 
on the roof excitation presents remarkable differences with respect to the spectra 
generated by an acoustic plane wave or diffuse field excitations. For instance, in 
contrast to what found with the acoustic excitations, at low frequencies the sound 
radiation is characterised by many more resonance peaks, which are due to 
efficiently and non efficiently radiating modes. Thus the radiated sound power is 
characterised by a comparatively denser distribution of resonance peaks, which, 
at low frequency, are well separated and then, as the frequency and modal 
overlap rise, become wide frequency band crests characterised by the overlap of 
multiple resonant modes. Moreover the level of the spectrum of the radiated 
sound power remains constant up to about the critical frequency where it shows 
the typical wide band ridge. All this is due to two concomitant effects. Firstly, as 
discussed above, the rain on the roof uniform distribution of uncorrelated point 
forces equally excites all natural modes of the panel. Secondly, as discussed in 
(Fahy and Gardonio 2007), in contrast with the modal sound radiation, the sound 
radiation produced by point forces is constant with frequencies, thus it is very 
effective also at frequencies well below the critical frequency. Moving back to 
plot (f), at higher frequencies around the critical frequency at about 7.54 kHz, the 
sound radiation shows the typical wide frequency band ridge with multiple 
resonance peaks, which is due to the fact that all structural modes effectively 
radiates sound. 
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2.5 TBL excitation 
The response and sound radiation of the panel when it is excited by the fully 
developed TBL pressure field is finally studied with reference to the spectra of 
the total kinetic energy PSD and total sound power radiated PSD shown in plots 
(g) and (h) of Figure 11. At low frequencies, the spectrum of the kinetic energy 
PSD is similar to that for the panel excited by the uncorrelated pressure field 
shown in plot (e). In fact, the response is characterised by well separated sharp 
resonance peaks of all natural modes with either odd or even mode orders. 
However, in contrast to what found with the ROR excitation, in this case the 
amplitude of the resonance peaks is uneven. These effects are produced by two 
concomitant properties of the TBL excitation. On one hand, as seen for the ROR 
excitation, the TBL pressure field is composed by a stochastic distribution of 
small patches of transverse force excitations that couples efficiently with all 
modes of the panel. On the other hand, the convected fluid tends to smear these 
excitations in a waved pattern along the stram-wise direction. Thus the coupling 
of the waved excitation field with the resonant modes varies depending on the 
plate mode order in the direction of the fluid flow. At about 1.17 kHz, the 
spectrum of the response PSD shows a small ridge, which is due to the so called 
“convective coincidence” or “aerodynamic coincidence” effect. As discussed in 
Chapter 6, the vortexes that develop in the TBL fluid flow are conveyed in the 
stream-wise direction at the convective velocity cU . Thus the pressure field 
generated over the panel is characterised by an exponentially decaying 
correlation function in span-wise direction and a weaved exponentially decaying 
correlation function in stream-wise direction, whose characteristic wave length is 
given by cc k2 , where cc Uk  is the convective wave number. As a 
result, the panel is efficiently excited at frequencies close to the so called 
“convective coincidence frequency”, where the wavelength of the flexural 
vibration in the flow direction coincides with the correlation wavelength that 
characterises the TBL pressure field in the stream-wise direction, i.e. cb . 
This condition implies that cb kk  and thus, considering that 

41
ppbb Bmck  and cc Uk , the convective coincidence frequency can 

be readily derived as follows:  
21

2

p

p
cc B

m
U  . (83)

This expression suggests that the convective coincidence frequency grows with 
the square of the convective speed cU . Recalling that the convective speed is a 
fraction of the flow velocity, i.e. KUUc

 
 with 85.06.0 K  and comparing 
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Eq. (83) and Eq. (82) for the lower acoustic coincidence frequency, it is noted 
that  

2
2

c
UK

cr

c
 . (84)

Thus, even for a sonic speed of the flow, i.e. cU , the convective coincidence 
frequency is 4.1  to 8.2 times smaller than the critical frequency. When the speed 
of the flow is lower than the speed of sound, the convective coincidence 
frequency becomes much smaller than the lowest acoustic coincidence 
frequency. Thus, for most vehicles, the convective coincidence effect is likely to 
occur in the low to mid audio frequency range where noise is mostly perceived 
as a source of annoyance and, as will be discussed in the next section, passive 
sound insulation treatments are less effective. Indeed, as can be noted in plot (g), 
the spectrum of the kinetic energy is characterised by a wide band ridge around 
the convective coincidence frequency that, as highlighted by the thick-solid 
vertical line, for the panel and flow conditions at hand, occurs around 1.17 kHz. 
As seen for the acoustic coincidence phenomenon, the convective coincidence 
can also be analysed in terms of dispersion curves for the flexural wave and for 
the fluid-dynamic convective effect. As an example, Figure 12 shows the 
dispersion curves for the plate flexural wave and for the TBL fluid flow 
considered in this study. The two curves intersect at cb kk , that is at the 
convective critical frequency c .  

Moving back to the analysis of plot (g), at frequencies above the convective 
coincidence frequency, which is highlighted by the thick-solid vertical line, the 
spectrum of the kinetic energy becomes increasingly smoother, since the 
response of the panel at each frequency is due to the overlap of an increasing 
larger number of modes. As a result, the spectrum is characterised by wide 
frequency band crests with multiple resonant modes, spaced out by wide 
frequency band troughs. The spectrum of the kinetic energy falls rapidly with a 
12 dB / octave slope, thus following the so called “stiffness law”, since the 
response is controlled by the stiffness of the panel. The spectrum continues to 
fall rapidly even at very high frequencies around acoustic coincidence.  

Considering now the sound power radiated, by contrasting plots (h) and (f), it 
is noted that, below and around the convective coincidence frequency, which is 
highlighted by the thick-solid vertical line, the spectrum of the radiated sound 
power generated by the TBL excitation is quite similar to that produced by the 
ROR excitation, although the spectrum in plot (h) shows a much uneven 
sequence of resonance peaks. This is due to two phenomena. Firstly, as discussed 
above, the convected stochastic excitation field couples with all modes but 
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unevenly. Secondly, at frequencies below the acoustic critical frequency, the 
sound radiation efficiency varies from mode to mode. As seen for the kinetic 
energy in plot (g), at frequencies above the convective coincidence frequency, 
the spectrum of the radiated sound power in plot (h) becomes increasingly 
smoother, since the response of the structure is given by the overlap of an 
increasingly larger number of modes. Similarly to the spectra obtained for 
acoustic excitations in plots (b) and (d), the mean value of the spectrum in plot 
(h) tends to fall with a 6 dB / octave slope up to higher frequencies around the 
acoustic coincidence frequency, where the spectrum shows the characteristic 
wide band ridge with multiple resonance peaks due to the enhanced sound 
radiation properties of all modes. At further higher frequencies, the spectrum 
resumes the 6 dB / octave slope. 

3. Passive Treatments to Reduce Sound Radiation 
The previous section has shown that the sound radiated to the interior of a 
distributed thin wall structure is a complex phenomenon that depends on the 
characteristics of the excitation field, the flexural response of the structure and 
the radiation properties of the structure. Normally, for a NVH6 engineer it is 
rather difficult to work on the excitation and sound radiation aspects in a 
transportation vehicle, since they strongly depend on the operation conditions 
and interior design of the vehicle. Thus, the most common option left to reduce 
noise transmission to the interior is to modify the flexural response of the body 
of the vehicle. In general, the flexural response of a thin structure is determined 
by three parameters: a) the mass per unit area, b) the flexural stiffness and c) the 
structural or fluid damping. Normally structural energy dissipation is modelled 
by considering a complex modulus of elasticity )1( jEE , where  is the  

 

Figure 13. Sound radiation induced by a TBL pressure field acting on a panel 
with (a) mass treatment; (b) stiffness treatment and (c) damping treatment. 
                                                           
6 NVH stands for Noise Vibration Harness  

(a) mass tretment

increased density: >� �p p

(b) stiffness tretment

increased Young’s modulus E >Ep p

(c) damping tretment

increased loss factor >� �
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loss factor (Cremer et al. 1988; Fahy and Gardonio 2007). As discussed in 
Section 1.5, the energy dissipation arising from the fluid loading on the structure 
is a complex phenomenon, which however, for light fluids can be modelled in 
terms of modal damping ratios. In practice, the implementation of passive sound 
insulation treatments always produces a combination of mass, stiffness and 
damping effects. However, the treatment can be focused on one of the three 
properties and described as a mass, or stiffness, or damping treatment. Thus, as 
schematically depicted in Figure 13, in this section the sound radiation of the 
panel excited by the TBL pressure field considered in the previous section is 
analysed with reference to variations in turn of the density (mass-treatment), 
Young modulus of elasticity (stiffness treatment) and structural loss factor 
(damping treatment) of the panel. Figure 14 shows the spectra for the total 
kinetic energy PSD (left–hand side plots a, c, e) and total radiated sound power 
PSD (right–hand side plots b, d, f) in presence of mass (plots a, b), stiffness 
(plots c, d) and damping (plots e, f) treatments. The thick-solid lines in the plots 
show the kinetic energy and radiated sound power spectra for the reference panel 
considered in the previous section. The solid faint lines show the spectra when 
one of the three properties are varied. Also, the variations of the acoustic 
coincidence frequency (thick-dashed vertical line) and convective coincidence 
frequencies (thick-solid vertical line) are indicated by a thin-dashed vertical line 
and a thin-solid vertical line respectively. 

The effect of increasing by a factor 2 the mass density of the panel is 
analysed first. Plots (a) and (b) show that the first few resonance frequencies 
shift to lower values. Also, the transition from a spectrum with well separated 
resonance frequencies to a smoother spectrum characterised by the overlap of 
multiple resonant modes at each frequency occurs at lower frequencies. In fact, 
according to Eq. (80), the modal overlap grows more rapidly with frequency as 
the mass density is increased. The thick-solid (for the reference panel) and faint-
solid (for the heavier panel) vertical lines in the two plots highlight that the 
increment of mass density shifts to higher frequencies the convective 
coincidence effect. In particular, as can be deduced from Eq. (83), the convective 
coincidence frequency of the reference panel at about 1.17 kHz is increased by a 
factor 2pp mm  to about 1.65 kHz for the panel with double density. At 

higher frequencies the spectra for the reference and heavier panels become 
increasingly smoother. It is interesting to note that the levels of the two spectra 
for the kinetic energy nearly coincide while the levels of the two spectra for the 
radiated sound power are about dB 6  apart. This discrepancy between the two 
plots should not mislead the reader. In fact, the kinetic energy plot gives the level 
of the response of the panel weighted by the mass of the panel. Thus, if the 
spectrum of the spatially averaged squared transverse velocity PSD was plotted, 
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Figure 14. PSD of the total kinetic energy (left–hand plots) and total radiated 
sound power (right–hand plots) per unit turbulent boundary layer pressure field 
PSD. Thick solid lines reference panel; faint solid lines (a,b) panel with double 
mass density; (c,d) panel with double Young’s modulus; (e,f) panel with ten 
times higher loss factor. Solid and dashed vertical lines identify the convective 
coincidence frequency and acoustic critical frequency for the reference panel 
(thick-lines) and for the panel with passive treatments (faint-lines). 

when 1pN , the two spectra for the reference and heavier panel would be 

separated by a factor proportional to 21pp mm , which corresponds to dB 6 . 
Finally, considering the spectra for the radiated sound power PSD in plot (b), it 
is noted that, when the panel density is increased, the typical wide band ridge 
due to efficient sound radiation of all modes of the panel is shifted up in 
frequency. In fact, according to Eq. (82) the critical frequency for the heavier 
panel is increased by a factor 2pp mm  with respect to that of the reference 
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panel. Thus, as highlighted by the thick-dashed and thin-dashed vertical lines in 
plot (b), the critical frequency of the reference panel at about 7.54 kHz is shifted 
up to about 10.67 kHz for the heavier panel.  

The effect of increasing by a factor 2 the panel material Young’s modulus of 
the panel is considered next. Plots (c) and (d) of Figure 14 show that the 
increased stiffness of the panel shifts the resonance frequencies of the 
fundamental and low order modes of the panel to higher values. Also, the 
transition from a spectrum with well separated resonance frequencies to a 
smoother spectrum occurs at relatively higher frequencies. This is because, as 
can be deduced from Eq. (80), when the stiffness of the panel is increased, the 
modal overlap factor grows less rapidly with frequency. The thick-solid and 
faint-solid vertical lines in the two plots indicate that, when the stiffness of the 
panel is increased, the convective coincidence effect in the two spectra is shifted 
down from about 1.17 kHz to about 826 Hz. In fact, according to Eq. (83), the 
convective coincidence frequency of the stiffer panel is varied by a factor 
proportional to 21pp BB . At higher frequencies, where 1pN  and thus 

the two spectra become increasingly smoother, the spectrum of the kinetic 
energy of the stiffer panel is about 3 dB lower than that of the reference panel, 
while the levels of the spectra of the radiated sound power for the reference and 
stiffer panel are the same. Finally, the spectra for the radiated sound power in 
plot (d), show that, in this case, the typical wide band ridge due to efficient 
sound radiation of all modes of the panel is shifted down in frequency. In fact, 
according to Eq. (82) the critical frequency for the stiffer panel is varied by a 
factor 21pp BB  with respect to that of the reference panel. Thus, as 

highlighted by the thick-dashed and faint-dashed vertical lines in plot (d), the 
critical frequency of the reference panel at about 7.54 kHz is shifted down to 
about 5.33 kHz for the stiffer panel. 

At last, the effect of increasing by a factor 10 the material loss factor of the 
panel is considered. According to Eqs. (82) and (83), damping has no effects on 
the acoustic and the convective coincidence phenomena. Thus the thick and faint 
solid or dashed vertical lines shown in plots (e) and (f) overlap. The two graphs 
also show that the damping does not shift the resonance frequencies of the lower 
order modes. However, as can be deduced from Eq. (80), damping has an 
important effect on the modal overlap factor. In particular, the doubling of the 
loss factor produces a doubling of the overlap factor so that the transition from a 
response characterised by well separated resonances to a smoother spectrum 
characterised by the overlap of multiple modes is shifted to lower frequencies. 
The spectra in plots (e) and (f) show that the increment of damping in the panel 
also reduces the amplitudes of the resonance peaks, due to the fundamental and 
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low order modes, which are still well separated from each other. Finally, the two 
plots show how an increase in the loss factor effectively reduces the levels of the 
spectra of the kinetic energy and radiated sound power as the frequency rises. 
For instance, when the frequency approaches the critical frequency at about 
7.54 kHz, both the kinetic energy and the radiated sound power spectra have 
fallen by about 10 dB in contrast to the values for the reference panel. 

In summary, adding mass to a partition produces two important beneficial 
effects: first it reduces the level of the response and sound radiation and second it 
moves to higher frequencies the convective and acoustic coincidence effects. 
This second effect is particularly important since human annoyance to noise is 
particularly important at mid audio frequencies, thus in the range from 1 to 
4 kHz. Increasing the stiffness of the partition shifts to higher frequencies the 
resonances of the fundamental and lower order modes of the panel. However it 
has little effects on the level of the response and radiated sound power and, more 
importantly, it tends to shift to lower frequencies the convective and acoustic 
coincidence effects. This is a rather undesirable effect since it tends to compress 
the two coincidence phenomena towards the mid audio frequency range, which 
is particularly critical in terms of noise annoyance perception. Finally, increasing 
damping is generally beneficial although it normally affects the higher frequency 
portion of the spectrum where the response and sound radiation of the structure 
are in any case relatively low. 

4. Active Treatments to Reduce Sound Radiation 
In parallel to passive treatments, active control systems can also be added to 
shell structures in order to reduce their vibration and sound radiation (Maury et 
al. 2001; Maury et al. 2002c). The fundamental principles of active noise control 
dates back to the 1930’ (Gardonio 2010), however it took more than 50 years 
before the first applications were developed. This was due to both intrinsic 
limitations in the speed of the electronics for the controllers and to the limited 
technologies available for the sensor and actuator transducers. Nevertheless, the 
progress in digital electronics occurred in the second half of the twentieth 
century has brought to the development of fast processors with high computing 
power that enables the implementation of multi-channel controllers, which can 
manage the small time delays allowed for the implementation of noise and 
vibration control algorithms. In parallel, new types of transducers were 
developed, which have brought to the conception of new control systems. For 
example arrays of small size piezoelectric patch actuators or thin piezoelectric 
films were embedded in thin plates or shells to form composite structures with 
active layers (Bianchi et al. 2004; Aoki et al. 2008; Gardonio et al. 2010; 
Gardonio 2012). Alternatively electromechanical or magnetostrictive transducers 



Boundary Layer Noise - 2: Interior Noise Radiation and Control 435

were used to build small size proof–mass actuators that can be attached to thin 
structures to produce localised active effects (Preumont 2002; Preumont 2006; 
Gonzalez Diaz et al. 2008a; Gonzalez Diaz et al. 2008b; Gardonio and Alujevic 
2010; Alujevic et al. 2011; Rohlfing et al. 2011). Such “smart structures” can be 
effectively used for the implementation of the so called “Active Structural 
Acoustic Control” (ASAC) systems for the reduction of the sound radiation by 
thin structures (Fuller et al. 1996; Gardonio and Elliott 2004; Gardonio and 
Elliott 2005b; Gardonio 2012). 

In this section the basic principles of ASAC control are reviewed and then 
two examples of ASAC smart panels are described in more details with reference 
to the control of vibration and sound radiation due to a TBL excitation pressure 
field. Section 2 has shown that sound radiation is a rather complex phenomenon, 
which depends on the self and mutual radiation efficiencies between pair of 
modes of the structure. The fact that, as shown in Figure 8, at certain frequency 
bands the mutual radiation efficiencies may assume negative values indicates 
that the interaction between the vibration of pair of modes may lead to a 
“natural” reduction of the total radiation of noise. Thus, it is not so clear-cut that 
reducing the response of clusters of structural modes, for example of low order 
modes, leads to the control of the sound radiation at low frequencies. On the 
contrary it may bring to an increment of the sound radiation at some narrow 
frequency bands since the natural reduction of sound radiation between certain 
pairs of modes has been prevented. Several authors have studied the 
implementation of specific vibration control approaches aimed at the reduction 
of the sound radiation by structures. In this chapter the formulation proposed by 
Elliott and Johnson (1993) for the description of the sound radiation in terms of a 
new set of modes of the structure, which radiates sound independently, is 
considered. This is a simple and elegant formulation which directly leads to the 
conception of a new control paradigm where the sound radiation is reduced by 
controlling the vibration field of the most efficient radiation mode(s) of the 
structure. The formulation is based on the fact that the matrix )(A  with the self 
and mutual radiation efficiencies defined in Eq. (65) is normal, i.e. it is real, 
symmetric and positive definite. Thus the following eigenvalue-eigenvector 
decomposition can be implemented,  

)()()()( PPA T  , (85)

where )(P  is the ][ MR  orthogonal matrix of eigenvectors and )(  is the 
][ RR  diagonal matrix with real and positive eigenvalues. Therefore, the 

expression for the radiated sound power PSD in Eq. (64) can be rewritten as 
follows  
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Figure 15. First five radiation efficiencies of the radition modes derived from the 
eigenvalue-eigenvector problem in Eq. (85). 

)()(Tr
2
1 2

Pr aaSS  , (86)

where )(aaS  is the matrix of PSDs of the transformed complex modal responses 
)(a  that radiate sound independently from each other  

)()()( bPa  . (87)

Thus, considering Eq. (66), the matrix of the new modal responses )(aaS  is 
given by  

)()()()()()( TH PYSYPS ppaa  . (88)

According to Eq. (85), the diagonal matrix with the eigenvalues )(  provides 
the self radiation efficiencies of the new set of vibration modes, whose shapes 
can be reconstructed by linearly combining the natural modes of the panel with 
the eigenvectors. Thus the j-th radiation mode is given by  

)(),(),,( T
jj yxyx P  (89)

where )(jP  is the j-th row of the matrix )(P . This expression indicates that the 
radiation modes are frequency dependent. The plot in Figure 15 shows the first 
six eigenvalues, that is the first six radiation efficiencies, with reference to the 
ratio between the acoustic and flexural wave numbers bkk  in logarithmic scale.  

(1)

(2)

(3)

(4)

(5)
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Figure 16. First five structural modes (column a) and radiation modes at 100 and 
800 Hz (respectively columns b and c) for the panel considered in this chapter. 

The graph shows that, similarly to the self radiation efficiencies of the structural 
modes, the radiation modes are also characterised by rather small radiation 
efficiencies at low frequencies, which however rise rapidly with frequency up to 
the critical frequency where bkk . At higher frequencies the radiation rises 
further but at a lower rate. At low frequencies the radiation efficiency of the 
second and higher order radiation modes is much lower than that of the first 
radiation mode. Thus it is expected that controlling the vibration field related to  

(a)
structural modes

(b)
radiation modes

at f = 100 Hz

(c)
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at f = 800 Hz
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Figure 17. Sound radiation induced by TBL pressure field on smart panels 
composed of: (a) a 3x3 array of decentralised velocity feedback loops using 

idealised point velocity and point force sensor–actuator pairs and (b) a single 
velocity feedback using an idealised distributed volume velocity sensor and an 

idealised distributed uniform force actuator pair. 

the first radiation mode should lead to a consistent reduction in the sound 
radiation particularly at low frequencies below the critical frequency where 

bkk . The graphs in Figure 16 show the first five structural modes (column a) 
and then the first five radiation modes at 100 and 800 Hz (respectively columns 
b and c) for the panel considered in this study. The first and most efficient 
radiation mode is therefore characterised by a volumetric shape, which tends to 
be rounded off along the borders as the frequency rises. This leads to the 
conclusion that, in order to control the vibration field of the panel associated to 
the first radiation mode, and thus to control the low frequency sound radiation, it 
is necessary to reduce the volumetric vibration of the panel. This may be 
achieved with an active system, which uses a distributed actuator that exerts a 
uniform force over the panel surface in such a way as to minimise an error signal 
provided by a sensor that measures the volumetric vibration of the panel. In 
principle, a multiple channel controller can be used, which simultaneously 
controls two or more radiation modes. However, this would be a rather complex 
system that marginally increments the control effects at low frequencies. In 
general, the active control of sound and vibration is based on two control 
architectures. When the primary disturbance to be controlled can be detected in 
advance, a feed-forward control architecture is implemented, which drives the 
control actuators in such a way as to produce a secondary acoustic or vibration 
field that destructively interferes with the primary disturbance field (Gardonio 
2012). Alternatively, when the primary disturbance cannot be detected in 
advance, a feedback control architecture is used, which tends to modify the 
dynamic response of the system in such a way as to reduce the effect of the 

(a)
3   3 array of

velocity feedback loops
with point sensors/actuators

(b)
single velocity feedback loop

with distributed sensor/actuator



Boundary Layer Noise - 2: Interior Noise Radiation and Control 439

primary disturbance (Gardonio 2012). Since the pressure field generated by TBL 
excitations is stochastic (both in time and in space domains) it is rather difficult 
to collect the reference signals that would allow the implementation of feed-
forward control systems. Thus, feedback control systems are normally 
implemented to contrast the effects produced by TBL disturbances. In this 
chapter the two smart panels with the feedback systems shown in Figure 17 will 
be considered. System (a) comprises a 33  array of decentralised feedback 
loops composed of an idealised force actuator with a collocated velocity sensor. 
The second system consists of a distributed uniform force actuator with a 
matched volume velocity sensor that implements a single absolute velocity 
feedback loop. In this case the feedback loop is aimed at controlling the 
volumetric vibration field of the panel, which, as discussed above, is the major 
contributor to sound radiation. The control of both feedback loops is proportional 
to velocity, thus it produces a damping effect. For this reason, these control 
systems are often reported as “active damping systems”. When the feedback loop 
or loops are implemented, the structural modal admittance matrix Y used to 
derive the kinetic energy PSD and radiated sound power PSDs is derived from 
the following modified version of Eq. (70)  

rrjj fbDKM   )1(2  , (90)

thus 12 )1( DKMY jj . The elements of the “active damping 
matrix” D  for the system with the 33  array of feedback loops are given by   

S

i
isqiapspq gD

1
,, )()( xx  , (91)

where sg  is the gain implemented in the feedback loops and the vectors ia,x  and 

is,x  identify the positions of the i-th control actuator and i-th error sensor, which 
are collocated in the specific case under consideration. The elements of the 
“active damping matrix” D  for the system with the distributed uniform force 
actuator and distributed volume velocity sensor are instead given by   

bb S bsqS bspspq dSdSgD )()( xx  . (92)

where sg  is the gain implemented in the feedback loop. In summary the total  
kinetic energy PSD and total radiated sound power PSD for the smart panels 
with arrays of point feedback loops or with a single feedback loop using 
distributed transducers have been derived from Eqs. (55) and (64) with the 
matrix of modal response PSDs )(bbS  derived with Eq. (66) using the  
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Figure 18. PSD of the total kinetic energy (left–hand side plots) and total 
radiated sound power (right–hand side plots) per unit TBL pressure field PSD. 
Thick solid lines reference panel. Broken and solid-faint lines in plots (a,b) 
reference panel with 3 3 array of point velocity feedback loops with increasing 
feedback gains up to the optimal value that minimises the radiated sound power. 
Broken and solid-faint lines in plots (c,d) reference panel with the volume 
velocity–uniform force feedback loop with increasing feedback gains.  

following expression for the matrix of modal addmittances 
12 )1()( DKMY jj .  

Plots (a) and (b) in Figure 18 show the spectra of the total kinetic energy PSD 
and total radiated sound power PSD as the control gains of the 3 3 array of 
velocity feedback loops are increased. The broken and solid-faint lines in the two 
plots indicates that, as the feedback control gains are increased, the active 
damping action exerted by the feedback loops smoothens the resonance peaks of 
the low order modes of the panel. Thus, this system can effectively reduce both 
the response and sound radiation at low frequencies where, as discussed in 
Section 3, passive treatments are less effective. The principal reason why this 
active system is so effective at low frequencies is because the damping effect 
produced by the feedback loops is proportional to the absolute transverse 
velocity of the panel. Thus the so called “sky-hook” active damping effect is 
produced (Preumont 2002), which effectively reduces the flexural response and 
sound radiation of the panel. In contrast, the action of a passive damping 
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treatment is proportional to the strain rate in the structure, which is particularly 
small at low frequencies where the response is controlled by the lower order 
modes whose shapes are shown in column (a) of Figure 16. Plots (a) and (b) 
show that, if the control gains are set to very large values, the response and 
sound radiation at mid frequencies become even larger than those of the 
reference panel without control system. This phenomenon is due to the fact that 
for very large feedback gains, control loops tend to pin the panel at the control 
positions (Gardonio and Elliott 2005a). Thus the loops do not absorb energy, that 
is they do not produce active damping anymore. They in fact introduce new 
boundary conditions, which lead to new set of modes with higher natural 
frequency. Thus the response and sound radiation of the panel become those of a 
new, stiffened, panel, with the natural frequencies of the fundamental and low 
order modes shifted to higher frequencies. As a result, the mid frequency 
response and sound radiation are increased with respect to those of the reference 
panel. In conclusion, the 3 3 array of velocity feedback loops produces a very 
effective sky-hook active damping action which is maximum for a given set of 
feedback gains. The optimal feedback gains for the minimisation of the response, 
and thus sound radiation, are very similar to each other (Gardonio and Elliott, 
2004). Zilletti et al. (2010) have shown that these correspond to the condition of 
locally maximising the power absorbed by each feedback loop. This is a very 
interesting result since it indicates that the feedback loops can be locally tuned 
without the need of a global cost function to be minimised. Moreover, since the 
control force is proportional to velocity, the power absorbed given by the product 
of the control force and control velocity, is in practice proportional to the square 
of the control velocity. Thus the velocity control sensor signal can be used to 
implement both the feedback loop and the tuning algorithm necessary to set the 
optimal control gain. 

Plots (c) and (d) in Figure 18 show the kinetic energy PSD and radiated 
sound power PSD as the control gain of the single feedback loop using a volume 
velocity distributed sensor and a uniform force distributed actuator is increased. 
In this case, the control system tends to smoothen the response and sound 
radiation of selected resonances of the panel. This is because the system can act 
only on those modes that have a non zero net volumetric component, that is those 
modes with both mode orders odd. Thus, for example, it cannot be effective on 
the (1,2), or (2,1) modes, which cause the second and third resonance peaks in 
the two spectra. However, in this case, since the control system acts on the 
approximated shape of the first radiation mode, the feedback effect rises 
indefinitely with the control gain. Thus, provided the control gain is set to large 
enough values, there is no need of an online tuning system of the control gain. 
Nevertheless, the control effect produced by this control configuration is 
relatively lower than that obtained with the decentralised system. It should be 
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highlighted that this result is peculiar to the TBL pressure field primary 
excitation, which, as discussed in Section 2, effectively excites both volumetric 
and non volumetric modes. 

The short analysis presented in this section about the implementation of 
active systems for the reduction of vibration and sound radiation by a thin panel 
excited by a TBL pressure field has been focused on the physics of these control 
systems. No discussion has been presented on the stability and practical 
implementation of the feedback loops. This is a very important aspect of the 
systems, which however lies outside the scope of this chapter. The reader who 
would like to learn more on this topic is referred to specialised text and articles, 
as for example those in references (Fuller et al. 1996; Clark et al. 1998; 
Preumont 2002; Fahy and Gardonio 2007; Gardonio 2012). 
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