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  Abstract   Neurosurgical procedures, carried out routinely in 
health institutions, present postoperative complications that 
result from unavoidable brain injury in fl icted by surgical 
maneuvers. These maneuvers, which include incisions, elec-
trocauterization, and retraction, place brain tissue at the mar-
gins of the operative site at risk of injury. Brain edema is a 
major complication that develops subsequent to this surgi-
cally induced brain injury. In the present review, we will dis-
cuss type of injury as well as the animal model available to 
study it. In addition, we will discuss potential mediators, 
including vascular endothelial growth factor, metalloprotei-
nases, and cyclooxygenases, which have been tested in 
in vivo experimental studies and have been shown to be 
potential targets for the development of clinical therapies for 
neuroprotection against brain edema.  
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   Introduction 

 The unique nature of brain tissue poses considerable chal-
lenges for neurosurgery. Under the rigid and tough protection 
of the skull and meninges, the brain is extremely vulnerable 
to the mechanical insults produced by neurosurgical maneu-
vers, such as direct incisions, electrocauterization, and retrac-
tion. Healthy tissues at the margins of the operative target are 
inevitably subjected to this surgical brain injury (SBI). Brain 
edema and hemorrhage are major  complications that develop 
following SBI in neurosurgeries  [  3  ] . The blood–brain barrier 

(BBB), comprising the vascular endothelium, pericyte, and 
astrocytic processes, prevents the leakage of plasma proteins 
from the vascular bed into the brain tissue  [  25  ] . Vasogenic 
edema results from the passage of water along with the plasma 
proteins into the brain tissue because of damage to the capil-
lary endothelium and the interendothelial tight junctions of 
the BBB, whereas cellular swelling of the injured brain cells 
results in cytotoxic edema. Both result in increased intracra-
nial pressure, which may lead to further brain injury from cell 
death or hypoperfusion  [  3  ] . Currently, SBI is clinically 
addressed by nonspeci fi c postoperative care; however, it has 
become possible to study potential therapies in the preclinical 
laboratory setting with the recent development of a rodent 
model for SBI. This review discusses the SBI rodent model 
and various molecules implicated in the pathogenesis of brain 
edema as well as treatments that have been applied to reduce 
brain edema in this model.  

   Surgical Brain Injury Animal Model 

 An in vivo rodent model was recently developed to study 
SBI pathophysiology as well as potential therapeutic targets 
 [  14,   16,   23  ] . This model was designed to mimic the injuries 
sustained from neurosurgical manipulation of brain tissue. 
The rodent brain is exposed through a small cranial window 
through which tissue resection is performed. The margins of 
the resection are designated in relation to the bregma, as 
shown in Fig.  1 . The model provides consistently measure-
able brain edema using the brain water content (Fig.  2 ) in the 
perisurgical site at 24 h. Studies have shown that brain edema 
in the perisurgical site peaked 24 h after inducing SBI, was 
signi fi cantly higher up to day 3 post-injury, and had subsided 
by day 7; SBI was associated with neurobehavior de fi cits 
that had dissipated by day 7  [  16,   23,   34  ] . Brain edema was 
assessed using brain water content measurement, Evans blue 
dye, and IgG extravasation, and by measuring the apparent 
diffusion coef fi cient (ADC) values    (Table  1 ).     
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   Vascular Endothelial Growth Factor 

 Vascular endothelial growth factors (VEGFs) are a large 
family of proteins designated VEGF-A through VEGF-E 
and are expressed in the choroid plexus and neurons in the 

normal brain  [  24  ] . A well-known growth factor with angio-
genic, mitogenic, and permeability-inducing effects, VEGF 
has also been shown to contribute to SBI-induced brain 
edema. VEGF-A has a potent hyperpermeability-inducing 
effect on the microvascular endothelium that is mediated 
through its receptor VEGF receptor-2 (VEGF-2, kdr)  [  24  ] . 
VEGF-2, a transmembrane tyrosine kinase present in the 
endothelium of the brain vessels, activates MAPK signaling 
 [  19  ] . An upregulation in VEGF has also been reported in 
models of TBI predominantly due to the in fi ltrating neutro-
phils  [  5  ] . VEGF administration and overexpression with 
viral vectors have both been associated with compromised 
integrity of the BBB in the rodent brain  [  29  ] . A potential 
mechanism by which VEGF-A might increase BBB perme-
ability involves downregulating the expression of occludin, a 
tight junction protein; this would disrupt the organization of 
occludin and ZO-1, another junctional protein, leading to 
tight junction disassembly  [  25,   28  ] . Although VEGF may 
have potentially reparative actions during later phases after 
an injury, early inhibition of VEGF or its upstream mediator 
Src tyrosine kinase have been shown to reduce brain edema 
in various stroke models  [  16,   19,   24  ] . 

 The expression of VEGF was increased at 24 h after SBI 
in the ipsilateral frontal region surrounding the surgical 
resection site  [  16  ] . The Src family is implicated in VEGF-
dependent hyperpermeability  [  25  ]  and has been shown to be 
involved in SBI-induced BBB disruption and subsequent 
brain edema in rodents  [  16  ] . An increase in expression of 
VEGF and p-ERK 1/2 as well as a corresponding decrease in 
the tight junction protein ZO-1 were reversed when rats were 
pretreated with PP1, an Src tyrosine kinase inhibitor, prior to 
inducing SBI  [  16  ] . In addition, VEGF was shown to play a 
possible role in the erythropoietin-induced increase in brain 
edema during the early phase in a SBI rodent model. 
Erythropoietin administration led to signi fi cantly increased 
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  Fig. 1    Partial right frontal lobectomy. Two incisions ( dashed lines ) are 
made leading away from the bregma ( white X ) along the sagittal and 
coronal planes, 2 mm lateral to sagittal and 1 mm rostral to coronal 
respectively       
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  Fig. 2    Twenty-four-hour brain 
water content. The  fi gure shows 
marked edema in the right frontal 
region (bordering the surgical 
injury) of the brain compared 
with the sham control group 24 h 
after the surgical brain injury 
(SBI). The other brain regions did 
not differ statistically from each 
other after the injury.  n  = 6. 
 p  < 0.05 for * versus sham. Data 
are expressed as mean ± SEM. 
Statistical signi fi cance was 
veri fi ed using Student’s  t  test       
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brain water content in the perisurgical region at 24 h and was 
associated with increased expression of VEGF  [  23  ] . Thus, 
VEGF-A and its upstream Src tyrosine kinase present poten-
tial therapeutic targets for preserving the BBB and reducing 
brain edema following neurosurgical procedures. 

 VEGF-B, another member of the VEGF family expressed 
in the CNS, mediates its effects through the VEGF recep-
tor-1 (VEGF-1,  fl t-1); VEGF-B is likely responsible for 
maintaining the BBB in a steady state  [  25  ] . Furthermore, 
when bound to the soluble extracellular portion of VEGFR-1, 
VEGF is inactive, sequestered, and unable to bind to VEGF 
receptors  [  24  ] . The role of VEGF-B and its receptors in brain 
edema development following SBI remains to be 
elucidated.  

   Matrix Metalloproteinases 

 Matrix metalloproteinases (MMPs), zinc-dependent endopep-
tidases involved in tissue remodeling and repair, have been 
implicated in the SBI-induced destruction of the extracellular 
matrix proteins of the neurovascular unit. The target substrates 
of MMPs include collagen IV,  fi bronectin, and laminin, all of 

which are critical to maintaining the integrity of the BBB  [  28  ] . 
MMP-2 (gelatinase A) and MMP-9 (gelatinase B) degrade the 
basal lamina and tight junction proteins of the BBB and pro-
mote BBB injury that leads to vasogenic edema during the 
acute stage in experimental models of brain injury and stroke 
 [  9,   28  ] . Upregulation of MMPs has been demonstrated fol-
lowing subarachnoid hemorrhage, cerebral ischemia, trau-
matic brain injury (TBI), and intracerebral hemorrhage, and 
has been shown to contribute to BBB disruption during the 
early stage of injury  [  8,   30,   31,   33  ] . Additionally, MMP-9 
knockout mice had improved functional outcomes, lowered 
BBB permeability, and reduced lesion volume after transient 
focal cerebral ischemia and TBI  [  1,   32  ] . 

 Similarly, the role of MMPs in mediating BBB disruption 
and brain edema after SBI was demonstrated by Yamaguchi 
and colleagues  [  34  ] . An upregulation of MMP-2 and MMP-9 
was temporally associated with BBB disruption after SBI in 
rats. A signi fi cant increase in MMP activity, particularly that of 
MMP-9, compared with presurgery levels was detected at days 
1–14 after SBI, with highest MMP activities observed at days 
1 and 3 coinciding with peak values in brain edema; MMP 
inhibitor, reversed these effects, preserving the BBB integrity 
and reducing SBI-induced brain edema as early as 3 h post-
injury  [  34  ] . Evidence of the role of MMPs in the development 

   Table 1    Experimental rodent studies of therapeutic agents for surgical brain injury   

 Reference  Treatment 
 SBI  fi ndings 

 Treatment outcomes 

  [  23  ]   Erythropoietin pretreatment  SBI: ↑ brain water content (BWC) 
 Treatment (Tx): harmful, ↑↑ BWC 

  [  22  ]   NADPH oxidase KO or apocynin 
pretreatment 

 SBI: ↑ BWC, ↓neurological score (NS) 
 KO: ↑NS 
 Tx: no effect 

  [  15  ]   PP1 pretreatment  SBI: ↑VEGF, ↑p-ERK1/2, ↓ZO-1, ↑BWC 
 Treatment: ↓VEGF, ↓p-ERK1/2, ↑ZO-1, ↓BWC 

  [  34  ]   MMP inhibitor-1 pretreatment  SBI  fi ndings: ↑BWC, ↓NS 
 Tx: ↓BWC 

  [  21  ]   Simvastin pretreatment  SBI: ↑BWC, ↓NS 
 Tx: no effect 

  [  20  ]   Melatonin pretreatment  SBI: ↑BWC, ↓NS, ↑lipid peroxidation (LPO) 
 Tx (low dose): ↓BWC, ↑NS, ↓LPO 
 Tx (high dose): ↑↑BWC, ↓↓NS, ↑↑LPO 

  [  2  ]    l -histidine and thioperamide post-treatment  SBI: ↑BWC, ↓NS 
 Tx: ↑↑BWC 

  [  13  ]   Rosiglitazone pretreatment  SBI: ↑BWC, ↓NS, ↑myeloperoxidase activity (MPO), 
TNF- a , ↑IL-1 b  

 Tx: ↓MPO, ↓TNF- a , ↓IL-1 b  
  [  7  ]   Aminoguanidine post-treatment  SBI: ↑BWC, ↓NS, ↑TNF- a , ↑NF- k B 
  [  12  ]   Aminoguanidine post-treatment  SBI: ↑malondialdehyde (MDA), ↓glutathione (GSH), 

aquaporin-4 (AQ-4) 
 Tx (150 mg/kg): ↓BWC, ↓MDA, ↑GSH, ↓AQ-4 

  [  17  ]   Hyperbaric oxygen preconditioning  SBI: ↑BWC, ↓NS, ↑cyclooxgenase-2 (COX-2), 
↑hypoxia-inducible factor-1 a  (HIF-1 a ) 

 Tx: ↓BWC, ↑NS, ↓COX-2, ↓HIF-1  a  
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of brain edema in the early stages after stroke and in SBI mod-
els supports the potential use of MMP inhibition to prevent 
brain edema following neurosurgical procedures.  

   Cyclooxygenase-2 

 Various in fl ammatory mediators have been implicated in 
BBB disruption and brain edema after stroke and brain 
injury  [  25,   27  ] . The role of cyclooxygenases, enzymes that 
catalyze the conversion of arachidonic acid to prostaglan-
dins and thromboxanes  [  6  ] , in mediating brain edema devel-
opment has been extensively studied. The upregulation of 
cyclooxygenase-2 (COX-2), expressed in various cell types 
including neurons, astrocytes, endothelial cells, mac-
rophages, and microglia in the CNS, has been demonstrated 
following focal and global cerebral ischemia, neonatal 
hypoxia–ischemia, and intracerebral hemorrhage  [  4,   6,   10, 
  11  ] . Selective inhibition of COX-2 provided protection after 
ICH by reducing prostaglandin E 

2
  production, thereby 

decreasing in fl ammation, brain edema, and cell death, which 
translated into improved functional recovery  [  6  ] . Further, 
the role of COX-2 in mediating preconditioning-induced 
protection has been suggested. COX-2 has been shown to 
mediate ischemic preconditioning in vitro  [  18  ] . Studies 
from our laboratory have determined COX-2 to be a poten-
tial mediator of hyperbaric oxygen preconditioning 
(HBO-PC) in SBI and global ischemia rodent models; ani-
mals preconditioned for 1 h daily for 5 days with HBO prior 
to inducing injury had signi fi cantly improved neurological 
function and brain edema  [  4,   17  ] . 

 Cyclooxygenase-2 has been shown to play a part in SBI 
pathophysiology as well. An increase in COX-2 expression 
was detected 24 h after SBI in mice, and HBO-PC signi fi cantly 
attenuated the increase in COX-2 possibly through suppres-
sion of HIF-1 a , the upstream regulator of COX-2  [  17,   26  ] . 
The study showed that HBO-PC increased COX-2 level two-
fold in comparison to the four-fold increase by the SBI, 
which suggested that protection conferred by HBO-PC might 
have involved brain preconditioning by increasing COX-2 to 
 subinjurious levels. Furthermore, the protective effects of 
HBO-PC were reversed in the presence of selective COX-2 
inhibitor. These studies demonstrate HBO-PC or COX-2 
inhibition to be promising therapies in attenuating brain 
edema following neurosurgical procedures.  

   Conclusion 

 The SBI rodent model mimics injuries caused by neurosurgi-
cal procedures and produces postoperative brain edema. It 
allows for the study of the cellular signaling pathways and 

the identi fi cation of key molecular targets for neuroprotec-
tive pretreatment before neurosurgical intervention. To date, 
VEGF, MMPs, and COXs have been revealed to be potential 
targets for therapy. As clinically applicable therapeutic inter-
vention for SBI is likely to result in signi fi cant bene fi ts for 
patients and healthcare organizations, further preclinical and 
clinical studies are necessary to explore the applicability of 
these targets.      
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