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Abstract

Malignant brain tumors, including glioblastoma (GBM), display growth, sur-

vival, and invasive properties that are coupled to blood vessels and vascular-

derived factors. For example, GBM stem cells (GSCs) home to perivascular

niches and invasive tumor cells commonly disperse through the brain microen-

vironment via extracellular matrix (ECM)-rich vascular basement membranes.

Anti-vascular agents that target angiogenesis, and particularly those involving

vascular endothelial cell growth factor-A (VEGF-A) and its receptors, improve

progression-free survival in GBM patients. However, these benefits are often

transient due to compensation by alternative angiogenic pathways. The detailed

molecular mechanisms that couple GBM cells to blood vessels during tumor

growth and progression as well as following anti-angiogenesis therapies are just

beginning to be elucidated, with various cytokines, growth factors, and ECM

proteins playing important roles. In this review we will highlight molecular

pathways that link cerebral blood vessels and GBM cells during tumor growth,

progression, and invasion. We will also discuss mechanisms underlying

GBM-induced angiogenesis, with a particular focus placed on roles for integrin

adhesion receptors and their ECM protein ligands. Therapies that target angio-

genesis in GBM and other brain cancers will also be summarized.
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Abbreviations

BBB Blood–brain barrier

CNS Central nervous system

EC Endothelial cell

ECM Extracellular matrix

EGF Epidermal growth factor

FGF Fibroblast growth factor

HGF Hepatocyte growth factor

GBM Glioblastoma
GSC GBM stem cell

IL Interleukin

MAPK Mitogen-activated protein kinase

MMP Matrix metalloproteinase

MRP Multidrug resistance protein

PDGF Platelet-derived growth factor

RTK Receptor tyrosine kinase

TGFβ Transforming growth factor β
TIMP Tissue inhibitors of matrix metalloproteinase

VEGF Vascular endothelial cell growth factor

7.1 Introduction

The formation of new blood vessels via endothelial cell (EC) proliferation and

sprouting, or angiogenesis, is essential for proper development and physiology of

all mammalian organs (Adams and Alitalo 2007; Potente et al. 2011). This is

particularly relevant in the central nervous system (CNS)—comprised of the

brain, spinal cord, and retina—where neurons and glia regulate EC behaviors via

direct cell–cell contacts as well as secreted growth factors and extracellular matrix

(ECM) proteins (McCarty 2009a; Zacchigna et al. 2008). Aberrant regulation of

angiogenesis occurs in various diseases including brain cancers such as gliomas

(Bao et al. 2006; Calabrese et al. 2007; Gilbertson and Gutmann 2007). Hallmark

features of malignant gliomas include pathological neovascularization, disruption

of the intratumoral blood–brain barrier (BBB), and perivascular tumor cell dis-

persal (Gilbertson and Rich 2007; Jain et al. 2007a; Louis 2006). Gliomas afflict

approximately 20,000 people within the United States each year (Holland 2001;

Maher et al. 2001; Ohgaki 2005). They represent the most common type of primary

brain tumors, and in their advanced stages they are one of the deadliest forms of

cancer. Most high-grade gliomas are refractory to standard surgical, radiation, and

chemotherapeutic interventions (Ware et al. 2003). Survival rates have changed

little in the last few decades, with nearly 100 % of patients succumbing to the

disease within 3 years after diagnosis. Hence, understanding the basic cellular and
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molecular pathways that contribute to glioma growth and invasiveness may lead to

new therapeutic strategies to treat or prevent the pathogenesis of this insidious

disease.

Gliomas can be subdivided into three major categories based on their histology

and prognosis: astrocytomas, oligodendrogliomas, and ependymomas.

Astrocytomas, or gliomas of presumptive astrocytic origin, can be further divided

into four main grades (Ware et al. 2003). Grade I pilocytic astrocytomas develop

mostly in young adults and are managed primarily via surgical interventions. Grade

II astrocytomas are gliomas consisting of differentiated and invasive tumor cells.

Grade III anaplastic astrocytoma and grade IV GBMs are poorly differentiated and

highly infiltrative tumors (Louis 2006).

Multiple chromosomal abnormalities and gene expression defects have been

identified in gliomas, and these alterations often correlate with histological grade

and clinical prognosis (Ohgaki 2005; Phillips et al. 2006). In general, glioma

initiation and progression involve gene mutations that (1) deregulate growth factor

receptor tyrosine kinase signaling and (2) alter the cell cycle checkpoint machinery.

Low-grade tumors often express high levels of the growth factors FGF2 and PDGF,

as well as their cognate receptor tyrosine kinases (Holland 2001; Shih et al. 2004).

Elevated receptor activation in turn leads to amplification of downstream signaling

events, often involving Ras (Ding et al. 2001; Holland et al. 2000), and commonly

correlates with loss of p53 tumor suppressor functions (Reilly et al. 2000). Disrup-

tion of the cell cycle regulatory network is linked to the progression of high-grade

gliomas (Holland et al. 1998b; Uhrbom et al. 2002). For example, anaplastic

astrocytomas often contain deletions of the tumor suppressors Ink4a/Arf and

retinoblastoma (Rb) (Bachoo et al. 2004; Xiao et al. 2002). GBMs also commonly

display amplification of EGFR signaling, which can lead to Ras hyperactivation

(Holland et al. 1998a). Collectively, these alterations disrupt multiple intracellular

signaling pathways that contribute to the progression of glioma from low grade to

high grade (Wechsler-Reya and Scott 2001).

The genetic mutations that contribute to gliomagenesis are commonly mutated

in other cancers. Thus, glioma progression is likely influenced by a combination of

tumor cell-extrinsic factors (Fukumura et al. 2001; Winkler et al. 2004), as well as

alterations in a distinct tumor-initiating cell of origin (Sanai et al. 2005; Shih and

Holland 2004; Wechsler-Reya and Scott 2001). The exact cell type that gives rise to

glioma remains uncertain. However, most neural cells in the adult brain are

terminally differentiated. Thus, the tumor-initiating cell of origin for glioma is

limited to those compartments that retain proliferative potential, i.e., neural stem

cells, glial progenitors, and differentiated glia. Genetically engineered mouse

models reveal that astrocytomas arise from presumptive neural stem cells

(Alcantara Llaguno et al. 2009; Zheng et al. 2008) and/or oligodendroglial cells

(Liu et al. 2011). These cells reside in various regions of the adult brain (Gilbertson

and Gutmann 2007), and abnormal regulation of their proliferative and

differentiative capabilities likely triggers glioma onset and progression (Aboody

et al. 2000; Fomchenko and Holland 2006; Maher et al. 2001).
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Most brain tumors, and particularly GBM, harbor a subpopulation of

proliferative and multipotent tumor-initiating cells, or GSCs (Dirks 2006). GSCs

have several similarities with nonmalignant neural stem cells, including expression

of common molecular markers, for example, Nestin and CD133/Prominin-1 (Read

et al. 2006). Neural stem cells and brain tumor stem cells also intimately associate

with vascular basement membranes in vascular niches. Importantly, contact and

communication events between brain tumor stem cells and angiogenic blood

vessels positively regulate tumor growth and progression (Bao et al. 2006;

Calabrese et al. 2007; Salmaggi et al. 2006). Recently, subpopulations of GBM

cells have been shown to transdifferentiate to ECs and pericytes and contribute to

vascular pathologies. These events are also influenced by cues within the microen-

vironment (Ricci-Vitiani et al. 2011; Soda et al. 2011b; Wang et al. 2011) although

their pathophysiological significance remains to be determined (Rodriguez

et al. 2012). The focus of this review is to highlight how glioma-derived growth

factors and adhesion proteins impact angiogenesis in the brain tumor

microenvironment.

7.2 Blood Vessel Pathologies in Glioma

Malignant gliomas are defined, in part, by the development of hallmark angiogene-

sis pathologies including florid microvascular cell proliferation leading to the

formation of capillaries with glomeruloid-like tufts (Fischer et al. 2005; Jain

et al. 2007b). These abnormal blood vessel morphologies are accompanied by

enhanced vascular permeability due to loss of the intratumoral BBB (Jansen

et al. 2004; Lopes 2003; Rong et al. 2006). Although traditionally defined as the

tight junctions between ECs, the BBB is now considered just one component of a

larger multicellular complex, or neurovascular unit (NVU) (Abbott et al. 2006),

consisting of neurons and astrocytes, vascular ECs and pericytes, as well as various

growth factors and extracellular matrix (ECM) proteins in vascular basement

membranes (McCarty 2009b). Comprised mainly of EC tight junctions and multi-

drug resistance transporters, the BBB regulates the exchange of ions, molecules,

and cells between the circulation and brain and is an impediment for drug delivery

(Liebner et al. 2011; Pardridge 2002). The molecular mechanisms that control BBB

development and physiology remain largely unknown, although Wnts (Daneman

et al. 2009; Liebner et al. 2008; Stenman et al. 2008), G protein coupled receptors

such as Gpr124 (Anderson et al. 2011; Cullen et al. 2011; Kuhnert et al. 2010), and

integrin-activated TGFβs (McCarty et al. 2005; Proctor et al. 2005) play important

roles as detailed below.
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7.3 Growth Factors and Cell Adhesion Molecules in Glioma
Angiogenesis

A balance between angiogenic activators and inhibitors regulates blood vessel

growth, stability, and permeability (Hanahan and Folkman 1996). In glioma, this

balance is disrupted by a number of pro-angiogenic and anti-angiogenic factors.

Below we will discuss various growth factors and cell adhesion proteins that control

angiogenesis during glioma initiation and progression (Fig. 7.1).

7.3.1 VEGF

Vascular endothelial cell growth factor-A (VEGF-A) is a critical regulator of

angiogenesis during organ development as well as tumor growth and progression.

VEGF-A was first discovered by Dvorak and colleagues who initially named it

vascular permeability factor for its ability to enhance permeability properties of

blood vessels (Dvorak 2006). Efforts by Ferrara and colleagues revealed that

VEGF-A also regulates vascular EC proliferation, migration, and survival (Leung

et al. 1989). Subsequent studies by a number of independent groups identified a

larger gene family consisting of at least six different VEGF family members

Fig. 7.1 A summary of factors involved in glioma exploitation of angiogenesis. Glioma cells

dynamically communicate with blood vessels via various secreted growth factors and ECM

proteins. These factors control cerebral endothelial cell and pericyte survival, proliferation, and

BBB permeability
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(Jansen et al. 2004). VEGF genes express multiple protein isoforms and each can

bind to distinct or shared transmembrane receptor tyrosine kinases including

VEGFR1, VEGFR2, and VEGFR3 as well as Neuropilins (Bielenberg

et al. 2006). These receptors are also expressed in glioma cells, suggesting auto-

crine VEGF signaling pathways (Ellis and Hicklin 2008).

VEGF-A expression is upregulated in glioma cells and this correlates with tumor

growth and malignancy (Bulnes et al. 2012). Hypoxia-inducible factor 1a (HIF1α)
is one of the major transcription factors that regulate VEGF-A gene expression

(Kaelin and Ratcliffe 2008; Semenza 2003). In addition to HIF1α, other transcrip-
tion factors also bind to the VEGF-A promoter to regulate gene expression. For

example, p53 and VHL tumor suppressors form complexes with SP1 transcription

factors and inhibit VEGF transcription (Kargiotis et al. 2006; Mukhopadhyay

et al. 1997). p53 is commonly deleted in high-grade gliomas (Verhaak

et al. 2010). EGFR signaling, which is often amplified in gliomas, also regulates

VEGF-A expression via activation of the MAPK/ERK pathway (Woods

et al. 2002). These effects were nullified by the inhibition using anti-EGFR

antibodies (Goldman et al. 1993; Okamura et al. 1992; Valter et al. 1999). In

addition, a truncated and constitutively active form of EGFR, EGFRvIII, has

been shown to upregulate VEGF expression in glioma cells via Ras-dependent

mechanisms (Feldkamp et al. 1999).

7.3.2 Notch/Delta

Cross talk between the VEGF-A and Notch pathways coordinately regulates blood

vessel growth and stability (Chappell et al. 2009; Jakobsson et al. 2010). For

example, VEGF-A stimulates Notch 1 expression which induces the formation of

specialized endothelial “tip cells” found at the leading front of sprouting blood

vessels (Hellstrom et al. 2007a). VEGFR2 signaling and tip cell formation are

dampened by the anti-angiogenic Notch ligand Dll4 (Hellstrom et al. 2007b;

Noguera-Troise et al. 2006). Deletion of one Dll4 allele or blockade of Notch

activation with γ-secretase inhibitors induces similar phenotypes including hyper-

active tip cell formation (Hellstrom et al. 2007b; Noguera-Troise et al. 2006;

Siekmann and Lawson 2007). In contrast, Jag1 is a pro-angiogenic Notch ligand

that counterbalances Dll4-Notch signaling and stimulates tip cell formation

(Benedito et al. 2009). Exploitation of Jag1 by cancer cells has been reported; for

example, epithelial carcinoma cells overexpress Jag1 and activate Notch in ECs

(Zeng et al. 2005). Additionally, Jag1 in metastatic breast cancer cells mediates

interactions with Notch in osteoblasts of the bone microenvironment (Sethi

et al. 2011). Lastly, Notch signaling pathways are often hyperactivated in GBM

(Fan et al. 2010; Hambardzumyan et al. 2008; Stockhausen et al. 2010). Inhibition

of Notch activation diminishes mouse and human GSC self-renewal (Fan

et al. 2010; Jeon et al. 2008) and can synergize with temozolomide to reduce

glioma growth in xenograft models (Gilbert et al. 2010).
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7.3.3 FGFs

Fibroblast growth factors (FGFs) are a family of structurally related proteins that

regulate a wide range of developmental and pathophysiological processes (Friesel

and Maciag 1995). Among the nine FGF family members, FGF-1 and FGF-2 are

well characterized as angiogenic mediators and are often overexpressed in gliomas.

FGF signaling has also been reported to promote VEGF expression in glioma cells

(Friesel and Maciag 1995; Stefanik et al. 1991; Tsai et al. 1995). Degradation of

ECM is an important step in blood vessel sprouting. FGF-2 facilitates EC migration

through the ECM by upregulating urokinase-type plasminogen activator (uPA),

which activates plasmin, a protease for many ECM protein components (Dunn

et al. 2000).

7.3.4 PDGFs

Members of the platelet-derived growth factor (PDGF) family signal through

different receptor tyrosine kinases (PDGFRs). Receptor binding activates multiple

kinase cascades including PI3kinase, MAPK, JAK, SRC, and phospholipase C

gamma (Fomchenko and Holland 2007). Gliomas express high levels of PDGFA

and PDGFRα, but the tumor vasculature expresses low levels of PDGFRα. Instead,
many glioma blood vessels express robust levels of PDGFRβ. These data suggest

PDGFRα-dependent autocrine/paracrine signaling mechanisms in tumor cells and

PDGFRβ-dependent paracrine signaling in ECs and pericytes (Hermanson

et al. 1992). To study the effects of PDGFB in brain tumorigenesis, a mouse

model was generated by overexpressing PDGFRβ in glial cells (Hermanson

et al. 1992). These transgenic mice do not develop spontaneous tumors and showed

normal brain development. However, when crossed to a p53�/� background mice

developed tumors with pathologies similar to human GBMs including pseudopa-

lisading necrosis, glomeruloid vessels, and BBB breakdown. Interestingly,

overexpression of PDGFA in neurogenic regions of the adult mouse brain leads

to premalignant gliomas via uncontrolled proliferation of neural stem and progeni-

tor cells (Jackson et al. 2006). Interestingly, PDGFA is also a molecular marker for

the classical GBM subtype (Verhaak et al. 2010). Using in vitro models, PDGFB

was found to induce chemotaxis of rat brain microvascular ECs verifying the direct

action of PDGFs during angiogenesis. PDGFs did not induce migratory effects on

glioma cells, but were chemotactic for ECs (Brockmann et al. 2003).

7.3.5 TGFbs

The TGFβ superfamily of cytokines consists of bone morphogenetic proteins,

Mullerian inhibiting substance, and activins. These proteins are involved in

regulating a number of cellular processes ranging from proliferation to apoptosis

(Massague et al. 2000). Members of the TGFβ family (TGFβ 1, 2, and 3) signal via
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canonical receptor serine/threonine kinases, TGFβR2 and TGFβR1. TGFβR2 is

shared by all ligands and dimerizes with different TGFβR1s to form signaling-

competent receptor complexes. Endoglin is a TGFβ co-receptor that facilitates

ligand presentation to TGFβR1/TGFβR2 heterodimers (Massague and Gomis

2006). Immunohistochemical analysis of gliomas has shown upregulation of

TGFβ as well as TGFβR1 and TGFβR2. TGFβ signaling via Smad transcription

factors, or canonical TGFβ signaling, is also hyperactivated in many high-grade

gliomas likely via uncontrolled growth and differentiation of GSCs (Bruna

et al. 2007; Penuelas et al. 2009).

TGFβs often inhibit proliferation by cell cycle arrest in the G1 phase and this is

mediated by regulation of INK4B expression. Interestingly, at higher TGFβ
concentrations these growth inhibitory effects are negligible or in some cases

potentiate glioma cell proliferation, in part owing to loss of p15 and p16 (Jen

et al. 1994; Rich et al. 1999). The effects of TGFβs on angiogenesis remain

controversial. In vitro studies using bovine aortic ECs treated with TGFβs showed
an inhibitory effect while in vivo studies using angiogenesis system showed

pro-angiogenic effects (Fajardo et al. 1996; Frater-Schroder et al. 1986). Ablation

of TGFβ receptors in ECs leads to early lethality due to impaired yolk sac angio-

genesis and cardiovascular development (Carvalho et al. 2007; Park et al. 2008).

Additionally, TGFβ can stimulate VEGF production in glioma cells and pharmaco-

logical inhibition of TGFβR1 leads to decreased expression of VEGF and plasmin-

ogen activator inhibitor-1 (PAI-1) in gliomas (Hjelmeland et al. 2004;

Koochekpour et al. 1996). PDGFA and PDGFB are downstream effectors of

TGFβ in ECs while PDGFRβ expression is upregulated in vascular smooth muscle

cells (Dunn et al. 2000; Helseth et al. 1988).

7.3.6 Angiopoietins

Angiopoietins (Ang1 and Ang2) play essential roles in regulating blood vessel

development and stability. During embryogenesis Ang1 binds to its receptor tyro-

sine kinase, Tie2, and regulates stability of pericyte–EC interactions (Suri

et al. 1996). Tumor cells also express Ang1, but Ang2 expression is generally

limited to activated endothelium (Augustin et al. 2009). Ang2 competes with Ang1

for Tie2 binding and antagonizes Ang1 signaling (Maisonpierre et al. 1997). Hyp-

oxia induces Ang2 expression in ECs, which disrupts Ang1–Tie2 signaling proba-

bly by acting as an antagonist to Ang1 (Holash et al. 1999). Antagonists that inhibit

angiopoietin interactions with Tie receptors are currently being tested in clinical

trials as anti-angiogenic agents (Peeters et al. 2013).

7.3.7 HGF

Scatter factor/hepatocyte growth factor (SF/HGF) signaling plays versatile roles in

physiological and pathological processes including organogenesis and cancer
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(Abounader and Laterra 2005; Birchmeier and Gherardi 1998). SF/HGF and its

receptor tyrosine kinase, c-Met, are expressed by glioma cells which correlate with

malignancy and vascular pathologies (Koochekpour et al. 1997; Moriyama

et al. 1998; Rosen et al. 1996). Overexpression of SF/HGF caused increased

tumorigenesis and tumor angiogenesis while inhibition of c-Met signaling using

blocking antibodies or siRNAs suppresses tumor growth (Abounader et al. 1999,

2002; Laterra et al. 1997). In addition to glioma cells, c-Met is also expressed in

tumor-associated blood vessels suggesting paracrine signals from tumor cells lead

to EC growth and sprouting (Ding et al. 2003; Nakamura et al. 1995).

HGF contributes to degradation of vascular basement membranes and promotes

EC migration by upregulating expression of MMPs such as MT1-MMP, MMP2,

and urokinase. Another possible way SF/HGF contributes to tumor angiogenesis is

by promoting proliferation through MAPK/Stat3 pathway and inhibiting apoptosis

of tumor ECs (Lamszus et al. 1998; Ma et al. 2002; Wang et al. 2004). In Matrigel

assays using human umbilical vein ECs, SF/HGF induces EC tube formation in a

dose-dependent manner. This effect was abolished by treating with anti-HGF

antibodies. In another experiment when ECs and SF/HGF secreting keratinocytes

were cocultured in an in vitro system it led to the formation of EC tubes (Jiang

et al. 1999; Martin et al. 1999; Wojta et al. 1999).

7.3.8 IL-6 and IL-8

Interleukins are cytokines secreted by normal and tumor cells, and in gliomas they

promote proliferation and directional migration (Brat et al. 2005). Many glioma

cells are capable of secreting IL-6, which can activate Sp1 and Sp3 transcription

factors to induce expression of VEGF-A mRNA. IL-8 is also expressed at high

levels in many glioma cells (Van Meir et al. 1990, 1992). IL-8 is a potent mediator

of tumor angiogenesis via its cell surface receptors CXCR1, CXCR2, and DARC

(Holmes et al. 1991; Murphy and Tiffany 1991). Glioma cells express all three

receptors while DARC, but not CXCR1 and CXCR2, is expressed in microvascular

ECs. CXCR1 and CXCR2 are expressed in perivascular leukocytes; hence, the

angiogenic properties of IL-8 involve inflammatory responses as well. Lastly, under

hypoxic conditions, IL-8 expression is upregulated via Ap-1 binding to IL-8

promoter sequences (Brat et al. 2005; Desbaillets et al. 1997, 1999).

7.3.9 TNFa

Tumor necrosis factor alpha (TNFα) is a macrophage-derived cytokine that has

pleiotropic effect on cells. At low concentrations TNFα is pro-angiogenic while at

high concentrations it displays anti-angiogenic activities (Fajardo et al. 1992). In

high-grade gliomas, TNFα is expressed in multiple cell types including tumor cells

and ECs (Maruno et al. 1997), while its receptors are expressed by ECs (Slowik

et al. 1993). Angiogenic effects of TNFα are mediated indirectly by inducing
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expression of a number of other pro-angiogenic molecules. For example, upon

TNFα treatment VEGF-A expression is upregulated in glioma cells. TNFα also

upregulates expression of VEGF, IL-8, and FGFs in human microvascular ECs

in vitro and blocking antibodies directed against TNFα inhibit these effects

(Kargiotis et al. 2006; Ryuto et al. 1996).

7.3.10 Other Pro-angiogenic Factors

Additional growth factors and cytokines play important yet less characterized roles

in angiogenesis. For example, the inducible early response gene product Cyr61/

CNN1 and connective tissue growth factor CTGF/CNN2 are growth factors belong-

ing to CNN family that induce proliferative effects on glioma cells and are

downstream targets of c-Met (Goodwin et al. 2010; Jedsadayanmata et al. 1999).

Expression of these proteins correlates with glioma malignancy. Tumor-associated

ECs also express CTGF, suggesting pro-angiogenic roles (Pan et al. 2002; Xie

et al. 2004).

The cytokine stromal cell-derived factor 1 (SDF-1/CXCL12) and its chemokine

receptor CXCR4 regulate glioma cell migration and tumor cell homing to blood

vessels (Rao et al. 2012). Immunohistochemical analysis revealed expression and

co-localization of SDF-1 and CXCR4 in glioma cells, with an increasing intensity

correlating with tumor grade. Expression of these proteins was absent in normal

brain (Rempel et al. 2000). This suggests that the SDF-1/CXCR4 signaling axis

may be a novel target for inhibiting glioma growth and invasion.

Various signaling effectors that control neural development also play central

roles in glioma growth and angiogenesis (Eichmann et al. 2005). For example,

semaphorins have important functions in controlling axonal guidance and also

regulate angiogenesis. Semaphorins bind to plexin as well as Nr cell surface

receptors. Nrps are co-receptors for VEGF-A in ECs and tumor cells and promote

cell proliferation. Whereas VEGFR2-dependent angiogenesis results in increased

vascular permeability, plexin and Nrp elicit anti-angiogenic effects upon

semaphorin binding. Additionally, application of anti-Nrp inhibitory antibodies in

preclinical brain tumor models results in suppression of tumor growth (Snuderl

et al. 2013). Lastly, Slit-Robo interactions are important regulatory pathways in

angiogenesis. Depending on its interacting receptor, Slit has opposing roles in

angiogenesis. For example, when Slit binding to Robo1 leads to pro-angiogenic

effects, interactions with Robo4 have anti-angiogenic outcomes (Jain et al. 2007a;

Tate and Aghi 2009).

7.3.11 Anti-angiogenic Growth Factors and Cytokines

A balance between pro-angiogenic and anti-angiogenic factors, termed the angio-

genic switch, controls vessel growth and stability. Alterations in this switch, for

example, overexpression of pro-angiogenic factors or diminished expression of
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anti-angiogenic factors, promote blood vessel growth and sprouting (Hanahan and

Folkman 1996). Below we detail a partial list of anti-angiogenic molecules and

their likely roles in regulating glioma angiogenesis.

Angiostatin is a 38 kDa fragment of plasminogen generated by cathepsin D and

MMP activities. It was the first anti-angiogenic factor to be identified in mouse

models of metastatic cancer (O’Reilly et al. 1994; Tate and Aghi 2009). Angiostatin

is a ligand for αvβ3 integrin and downstream signaling leads to apoptosis of ECs

and tumor cells (Kirsch et al. 1998; Nishida et al. 2006; Tarui et al. 2001). An

angiostatin receptor is NG2, a chondroitin sulfate proteoglycan expressed by

pericytes, oligodendrocytes, and tumor cells (Stallcup and Huang 2008). NG2 can

bind and sequester angiostatin and impact angiogenesis by altering the angiogenic

switch (Chekenya et al. 2002; Chekenya and Pilkington 2002). Another receptor for

angiostatin is ATP synthase (Rege et al. 2005). Interactions with angiostatin inhibit

the enzymatic activities of ATP synthase and reduce cellular ATP production

(Moser et al. 2001). Angiomotin was also identified as an angiostatin binding

partner in yeast two-hybrid assays. Angiostatin functions by antagonizing the

normal pro-migratory and pro-invasive functions of angiomotin (Rege et al. 2005).

Endostatin is a C-terminal fragment of type XVIII collagen, a basement mem-

brane protein, and is another protein with anti-angiogenic properties. Endostatin

induces its effects by binding to fibronectin and α5β1 and αvβ3 integrins and

potentially blocking the formation of endothelial focal adhesions (O’Reilly

et al. 1997; Rehn et al. 2001; Wickstrom et al. 2002).

Thrombospondins are ECM proteins that induce pro- and anti-angiogenic

outcomes. In the aortic ring assay, overexpression of thrombospondins inhibits

vascular cell migration and blood vessel sprouting. These effects are mediated

through the CLESH domain of the cells surface receptor CD36 and type I repeats

of thrombospondins-1 and -2 (Klenotic et al. 2013). Thrombospondin knockout

mice also display defective wound healing and tumor-induced angiogenesis

(Lawler 2000).

Tissue inhibitors of matrix metalloproteases (TIMPs) negatively regulate MMP

enzymatic activities; they control EC proliferation and downregulate expression of

VEGF-A. TIMPs also have pro-angiogenic properties owing to their potential to

block MMP activities. For example, reduced levels of MMP-dependent expression

of angiostatin and endostatin result in anti-tumorigenic and anti-angiogenic

properties (Jiang et al. 2002). Lastly, pigment epithelial-derived factor (PEDF) is

a member of serpin family of serine proteases that regulate neuronal differentiation

and survival and are also negative regulators of angiogenesis. A specific receptor

pathway, through which PEDF contributes to anti-angiogenesis, has not revealed

but a key pathway involves Fas signaling (Bouck 2002; Rege et al. 2005).
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7.4 Integrins in Glioma Angiogenesis

Integrins are αβ heterodimeric receptors for many ECM protein ligands that play

central roles in controlling cell growth, migration, and other responses (Hynes

2002). Integrin-ECM affinity is modulated by “inside-out” signaling mechanisms

(Kim et al. 2011; Vinogradova et al. 2002) involving proteins such as talins

(Calderwood et al. 1999; Tadokoro et al. 2003) and kindlins (Harburger

et al. 2009; Ma et al. 2008) that bind to β integrin cytoplasmic domains and induce

conformational changes in extracellular regions (Shattil et al. 2010; Takagi

et al. 2002; Xiong et al. 2001). ECM adhesion subsequently triggers “outside-in”

signaling via adhesion protein complexes and the cytoskeleton (Harburger and

Calderwood 2009; Parsons et al. 2010). In vertebrates there are 26 different integrin

genes: 18 genes encoding α subunits and 8 β subunit genes. The network of

integrin–ligand interactions is vast: some integrins are ligand-specific while others

bind many, sharing ligands. This overlap allows for one ECM ligand to have

multiple effects on a cell via adhesion to different integrins.

7.5 Integrins in GBM Cells

The brain contains a rich milieu of extracellular matrix (ECM) proteins (Thiery

2003) and abnormal regulation of cell–ECM communication is associated with

gliomagenesis (Bellail et al. 2004; Gladson 1999; Shi et al. 2007a); see also

Chaps. 10 and 11. For example, glioma cells like nonmalignant neural stem cells

migrate through the brain parenchyma along blood vessels and white matter tracts

(Sanai et al. 2005). In fact, the infiltrative nature of these tumor cells is an important

determinant in the poor prognosis associated with GBM. Most metazoan cells

communicate with protein components of the ECM via a family of heterodimeric

cell surface receptors known as integrins (Hynes 2002). In addition to their extra-

cellular adhesion functions, integrins also regulate intracellular signal transduction

pathways that control multiple cellular responses (Giancotti and Ruoslahti 1999). In

vertebrates there are 26 distinct integrin genes: 18 genes encoding α subunits, and

8 genes that encode β subunits (Hynes 2002).

Various integrins and intracellular signaling partners have been linked to the

onset and/or progression of glioma (Shi et al. 2007b; Tucker 2006; Uhm

et al. 1999a). For example, the fibronectin receptor α5β1 integrin is expressed in

human glioma cells and inhibition of α5β1 integrin with specific small molecule

antagonists retards glioma cell proliferation (Maglott et al. 2006). Additionally,

human glioma cell lines express the laminin receptors α3β1 and α6β1, and these

integrins regulate migration on laminin substrates (Uhm et al. 1999b).

The five members of the αv integrin subfamily primarily recognize RGD

tripeptide motifs present in many shared ECM ligands, most of which are abun-

dantly expressed in the brain microenvironment. αv integrin ECM ligands include

vitronectin and fibronectin (Kalluri 2003), collagen IV (Venstrom and Reichardt

1995), and the latent associated peptide of TGFβ1 (LAP-TGFβ1) (Moses and Serra
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1996). Various data link abnormal regulation of αv integrin expression and function
to glioma cell growth and invasiveness. For example, αvβ1 integrin expressed in

U87 glioma cells binds to the extracellular matrix protein, Ang2, leading to

enhanced glioma invasiveness (Hu et al. 2006). More recently, αvβ1 integrin was

found to be upregulated in glioma cells treated with anti-vascular agents, with

integrin expression promoting angiogenesis and tumor cell invasion (Carbonell

et al. 2013; Jahangiri et al. 2013). Human malignant gliomas display elevated levels

of αvβ3 and αvβ5 integrins, suggesting that these integrins contribute to glioma cell

survival and invasion (Bello et al. 2001; Treasurywala and Berens 1998). Indeed,

small molecule inhibitors of αvβ3 integrin reduce glioma growth and invasiveness

in vitro and in vivo (Chatterjee et al. 2000). Pieper and colleagues have shown that

transformed β3�/� astrocytes form abnormally large intracranial tumors,

suggesting that αvβ3 integrin may act to suppress tumor cell growth (Kanamori

et al. 2004). More recent studies reveal that αvβ3 integrin exerts opposing effects,

depending on whether it is expressed in tumor cells or brain microenvironment

(Kanamori et al. 2006).

7.6 avb8 in Glioma Angiogenesis and Tumor Cell
Invasiveness

The normal brain depends on αvβ8 integrin and its interactions with the ECM. The

blood vessels of mice null for αv or β8 dilate, the BBB is compromised, and the

mice suffer from severe CNS hemorrhage (McCarty et al. 2002), (Zhu et al. 2002).

αvβ8 integrin binds to ECM-associated latent-TGFβ ligands through RGD sites and

mediates release of active TGFβs. The ligands then bind the TGFβRI/II and signal

through Smads and other pathways resulting in a myriad of effects. In the context of

glioma, αvβ8 integrin protein levels are critically important in angiogenesis and

invasiveness (Fig. 7.2). Angiogenesis is more severe in tumors with low levels of

endogenous β8 integrin and overexpression of the integrin diminishes these angio-

genesis pathologies. Glioma cells expressing high endogenous levels of αvβ8
integrin generate less angiogenic tumors, yet the tumors are more invasive. Invasive

pathologies can be attenuated by silencing integrin gene expression using lentiviral-

delivered shRNAs (Tchaicha et al. 2011). More specifically, changes are detected in

cell polarity and directional migration. In scratch-wound assays cells with low

levels of β8 integrin had fewer ECM contacts and displayed delayed polarization

into the wound region. In contrast, β8 integrin-expressing cells formed organized

actin cytoskeletal networks and polarized in a uniform direction toward the wound.

αvβ8 integrin control of glioma cell polarity and directional migration is mediated,

in part, via binding to RhoGDI1 leading to regulation of the Rho GTPase signaling

cascade (Reyes et al. 2013). It has also recently been seen that αvβ8 is negatively

regulated by mir-93, leading to gliomas with increased size and neovascularization

(Fang et al. 2011).
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7.7 avb8 Integrin in Neurovascular Development
and Physiology

Neural cells and vascular cells within the brain microenvironment intimately

interact and communicate to form multicellular structures, or neurovascular units

(Ballabh et al. 2004; Iadecola 2004; McCarty 2005; Zlokovic 2005). Proper cell–

cell communication at the neurovascular unit is essential for normal CNS develop-

ment, and abnormal neurovascular functions are linked to various CNS pathologies

(Abbott 2002; Ballabh et al. 2004; McCarty 2005). Cerebral blood vessels are

entirely compartmentalized from the surrounding neural microenvironment via a

vascular basement membrane that contains a rich assortment of ECM components

(Marin-Padilla 1985). Astrocyte end feet associate with the ablumenal surfaces of

nearly all cerebral blood vessels via direct contacts with the vascular basement

membrane (Abbott 2002). Astrocyte–blood vessel communication plays important

roles in regulating molecular transport across the BBB, and also modulates rates of

cerebral blood flow in response to local metabolic demands (Begley and Brightman

2003; Engelhardt 2003; Neuwelt 2004; Simard et al. 2003; Zonta et al. 2003).

Astrocytes express a variety of cell surface adhesion molecules, including several

integrins. At least two integrins, α6β4 and αvβ8, mediate contact and communica-

tion between perivascular neural cells and ECM components of the vascular

basement membrane (Milner and Campbell 2002).

The αv and β8 integrin subunits are absolutely essential for proper neurovascular
development (McCarty et al. 2002, 2005). Mouse embryos completely null for the

αv integrin gene, and thus lacking all five αv integrin family members, develop

CNS-specific vascular defects that include abnormal angiogenesis and intracerebral

hemorrhage (Bader et al. 1998; McCarty et al. 2002, 2005). Similar integrin-

dependent phenotypes are detected in the neonatal retina, which is vascularized

after birth (Hirota et al. 2011).

Fig. 7.2 αvβ8 integrin regulation of blood vessel pathologies in glioma. (a) A human GBM

section stained with hematoxylin and eosin (H&E) revealing distended, glomeruloid-like blood

vessels. (b) Human GBM section immunostained with antibodies targeting β8 integrin. Note the

enrichment of β8 integrin protein expression (brown stain) in perivascular tumor cells
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The β8 integrin subunit pairs exclusively with αv integrin. To study αvβ8
integrin functions in the postnatal CNS Nestin-Cre transgenic mice were used to

ablate αv or β8 integrin gene expression specifically in CNS neural cells. Condi-

tional αv integrin mutants develop embryonic intracerebral hemorrhage that is

grossly apparent at birth (McCarty et al. 2005). However, unlike complete αv
knockouts, Nestin-Cre conditional mutants live beyond the first day of birth and

survive for several months. Using a GFAP-Cre transgene, we also induced hemor-

rhage in the embryonic and neonatal brain after αv gene ablation (McCarty

et al. 2005). Similarly, the β8 integrin gene was selectively ablated in the CNS

using an identical Nestin-Cre transgene (Proctor et al. 2005). These animals also

develop embryonic and neonatal intracerebral hemorrhage that is phenotypically

identical to that observed in the αv integrin mutants. Deletion of the other four αv
integrin-associated β subunits does not yield similar CNS vascular phenotypes

(Hynes 2002). Genetic ablation of αv or β8 integrin expression in vascular ECs

using the Tie2-Cre transgene did not lead to intracerebral hemorrhage or other

obvious neurovascular defects (McCarty et al. 2005). These αv and β8 integrin

mutant mice actually develop intestinal autoimmunity due to activities of Tie2-Cre

in hematopoietic stem cells. Subsequent studies have shown that αvβ8 integrin in

dendritic cells regulates latent TGFβ activation and signaling to control intestinal

homeostasis.

Collectively, these molecular genetic data prove that αvβ8 integrin in CNS

neural cells, particularly astroglia, regulates proper neurovascular development.

Loss of αvβ8 integrin expression on CNS glia leads to defective glial-vascular cell

adhesion, resulting in abnormal brain angiogenesis and intracerebral hemorrhage.

αv conditional mutants also display neurological phenotypes, including sporadic

seizures and a rigid gait, and mice generally do not survive beyond 8 postnatal

months (McCarty et al. 2005). Similar phenotypes have been reported for the

β8 integrin mutants (Proctor et al. 2005), again suggesting that the neurological

defects that develop in the αv mutants are due to the specific loss of αvβ8 integrin.

Additional postnatal brain deficits in β8 integrin mutant mice include impaired

neuronal migration in the rostral migratory stream and widespread perivascular

reactive gliosis (Mobley and McCarty 2011; Mobley et al. 2009).

αvβ8 integrin is a receptor for LAP-TGFβ1, and adhesion to an RGD peptide

sequence within LAP causes activation of TGFβ signaling pathways in ECs

(Cambier et al. 2005; Mu et al. 2002). Genetic ablation of TGFβ receptors in ECs

leads to neurovascular phenotypes that are identical to those that develop in Nestin-

Cre αv or β8 integrin mutants (Allinson et al. 2012; Arnold et al. 2012; Nguyen

et al. 2011). Interestingly, TGFβ1 stimulation of vascular ECs in vitro leads to the

upregulation of various ECM proteins, such as thrombospondin-1 and plasminogen

activator inhibitor-1, that play established roles in regulating developmental angio-

genesis and postnatal neurovascular functions (Del Zoppo 2005; Lawler 2000).

Lastly, human genetic data reveal that single nucleotide polymorphisms within the

TGFβ1 gene are associated with elevated risk of age-related neurovascular diseases
(Kim and Lee 2006). Hyperactivation of TGFβ1-mediated signaling pathways is

detected in advanced stages of glioma (Bruna et al. 2007; Rich and Bigner 2004).
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Defective TGFβ activation and signaling are linked to various adult-onset CNS

vascular pathologies, including Arteriovenous Malformations (Su et al. 2010),

Hereditary Hemorrhagic Telangiectasia, and Pulmonary Arterial Hypertension

(Orlova et al. 2011). A single nucleotide polymorphism in the TGFβ1 gene is

linked to increased susceptibility to stroke (Kim and Lee 2006).

7.8 Anti-angiogenesis Therapies in Glioma

Significant progress has been made in understanding the molecular genetic events

that lead to GBM initiation and progression (Furnari et al. 2007). However, only

5 % of the patients with GBM survive 5 years or more, and the medium overall

survival time is about 15 months (Stupp et al. 2005; Taylor and Gerstner 2013). In

addition to surgical resection, current standard-of-care treatments consist of radia-

tion therapy and temozolomide (Stupp et al. 2005). Since gliomas are such highly

vascularized neoplasms, targeting angiogenic pathways was thought to have pow-

erful clinical benefits. Indeed, VEGF-A and VEGFRs, the main regulators of

angiogenesis, as well as a number of other pro-angiogenic molecules (see above)

are often overexpressed in malignant gliomas.

The US Food and Drug Administration approved the use of the anti-angiogenic

antibody Bevacizumab/Avastin for the treatment of colon, lung, and breast cancers.

Subsequently, in 2009 Bevacizumab was approved as a monotherapy for the

treatment of gliomas (Mrugala et al. 2012). Bevacizumab is a humanized monoclo-

nal antibody directed against VEGF-A but not other VEGF family members (Onishi

et al. 2011). This antibody binds to all VEGF-A isoforms and proteolytic fragments

with comparable affinities. In gliomas, Bevacizumab treatment gave promising

results when combined with irinotecan. The treatments resulted in radiographic

response rates of 28–40 % and a 6-month progression-free survival rate of 40–50 %.

These efforts led to phase 2 clinical trials, which tested Bevacizumab as a

monotherapy or in combination with irinotecan (Friedman et al. 2009; Vredenburgh

et al. 2007). Combination therapies resulted in progression-free survival rates of

50.2 %, which was significantly higher than the 35 % response with Bevacizumab

monotherapies. However, when compared to the medium overall survival,

Bevacizumab showed promise with 9.7 months against 8.9 months in combination

therapy, although progression-free survival rates were more pronounced with

irinotecan. Overall survival was not significantly improved likely due to combined

cytotoxic effects, leading to approval of Bevacizumab as a monotherapy for

treating recurrent GBM in the United States (Kreisl et al. 2009; Taylor and Gerstner

2013). A recent publication described two patients displaying responses after

receiving a combination treatment of radiation followed by temozolomide and

bevacizumab, with ongoing progression-free survival of 37 and 47 months

(Aguilera et al. 2013).

However, recent studies have revealed unexpected tumor cell behaviors

resulting from Bevacizumab treatment. While Bevacizumab caused a reduction in

tumor volumes, 30–50 % of patients developed highly infiltrative growth patterns.
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Inhibition of angiogenesis results in a shift in tumor growth properties toward more

infiltrative (Norden et al. 2008; Shapiro et al. 2013). Preclinical mouse models

showed similar results, with inhibition of VEGF signaling causing U87 satellite

lesions to form distal to the primary tumor (de Groot et al. 2010; Lucio-Eterovic

et al. 2009). A separate study also yielded similar results with a medium overall

survival of 8.9 months (Sahebjam et al. 2013) and other studies showed comparable

data (Demirci et al. 2013; Nagane et al. 2012).

7.8.1 Cilengitide

Activation of integrin signaling in concert with growth factor receptor tyrosine

kinases regulates a number of cellular processes involved in angiogenesis as well as

tumor cell growth and invasion (Hood and Cheresh 2002; Kurozumi et al. 2012;

Schnell et al. 2008). Cilengitide is a cyclic peptide containing an RGD sequence

that binds and inhibits integrin activation and signaling (Scaringi et al. 2012). This

drug is capable of antagonizing αvβ3 integrin at sub-nanomolar concentrations, and

in case of α3β1 and α5β1 integrins at low nanomolar concentrations. Cilengitide

also induces detachment and apoptosis in αvβ3 and αvβ5 integrin-expressing cells

in culture (Taga et al. 2002). Using human xenograft models of GBM, Cilengitide

suppressed tumor growth and showed anti-angiogenic and anti-tumorigenic

properties (Buerkle et al. 2002; MacDonald et al. 2001; Mitjans et al. 2000; Onishi

et al. 2013). These cellular outcomes are achieved through cytotoxic, anti-

angiogenic, as well as anti-invasive effects (Kurozumi et al. 2012). Phase III trials

in glioma are ongoing. (Eskens et al. 2003; Hariharan et al. 2007; O’Donnell

et al. 2012). Early data suggest that overall survival remains modest, even though

Cilengitide effectively accesses integrin targets in glioma cells and intratumoral

blood vessels (Gilbert et al. 2012).

7.8.2 Sorafenib

Sorafenib is a small molecule inhibitor of VEGFRs, PDGFRs, and other kinases

(Siegelin et al. 2010). In phase I clinical trials Sorafenib tested as a monotherapy or

in combination with bevacizumab (Scott et al. 2010) or with radiation and

temozolomide (Den et al. 2013) resulted in only modest increases in overall

survival, although to date the phase II trial results have not been reported. In vitro

studies have shown that sorafenib treatment of glioma cells caused a marked

reduction in cell proliferation and increased apoptosis that correlated with reduced

phospho-MEK and phospho-MAPK levels (Du et al. 2012). The protein kinase C δ
inhibitor rottlerin has also been reported to potentiate antigrowth effects of

sorafenib (Jane et al. 2006).

7 Angiogenesis in Gliomas 203



7.8.3 Marimastat

During blood vessel sprouting and remodeling various ECM proteins within the

vascular basement membrane must be degraded. These are made possible by a class

of proteins known as matrix metalloproteinases (MMPs). MMP2 (gelatinase A) and

MMP9 (gelatinase B) are particularly important in glioma angiogenesis. These

proteinases are secreted as proactive molecules and membrane-bound MMPs

cleave and activate these proteins (Markovic et al. 2009). In comparison to normal

brain and low-grade astrocytomas, GBMs overexpress many MMPs, likely leading

to increased invasiveness. For example, MMP9 expression was detected at very low

levels in normal brain and low-grade astrocytomas, but strong protein expression

was reported in GBM (Hagemann et al. 2012). In addition, MMPs actively contrib-

ute to tumor angiogenesis by facilitating pericyte release from vascular basement

membranes, releasing ECM-bound growth factors, and releasing pro-migratory

ECM components helping in directed migration and in disruption of EC–cell

adhesion (Rundhaug 2005). Marimastat is an MMP inhibitor that is orally

administered. Activation of MMPs has proven to be essential for the tumor cell

migration and angiogenesis. Various clinical trials have been conducted in different

types of cancer. A phase I study identified the toxicity level of this drug with mild to

severe muscle and joint pain. A phase III trial performed in different cancers,

including glioma, showed only minimal improvements in overall survival (Levin

et al. 2006; Steward and Thomas 2000).

7.8.4 Other Anti-vascular Agents

Thalidomide is an angiogenesis inhibitor, although the exact mechanism of action

is not completely understood. Reduced expression of αvβ3 and αvβ5 integrins, as

well as VEGF-A, has been reported as possible modes of action. However, clinical

trials conducted using thalidomide as a monotherapy failed to improve prognosis

(D’Amato et al. 1994; Fine et al. 2000; Onishi et al. 2011). Imatinib is a tyrosine

kinase inhibitor of PDGFR, c-Kit, Bcr-Abl, and other targets. This compound has

been shown to induce apoptosis at high concentrations. Monotherapy using

imatinib was unsuccessful and did not result in clinical benefits (Morris and

Abrey 2010; Radford 2002). Tenascin-C is a pro-migratory protein overexpressed

in tumor ECs in GBM. Inhibition of tenascin-C using neutralizing antibodies might

block angiogenesis and thereby glioma progression. However, phase II clinical trial

conducted using administration of neutralizing antibodies failed to achieve survival

benefits to GBM patients (Reardon et al. 2002; Zagzag et al. 1996, 2002).
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7.9 Future Directions

Targeting angiogenesis was one of the more promising strategies for inhibiting

tumor growth and progression, particularly in highly vascularized gliomas. Early

preclinical and clinical studies yielded promising results; however, the efficacies of

anti-angiogenic therapies remain in question as many reports indicate recurrence of

tumors with infiltrative and drug-resistant growth properties, especially in GBM.

Activation of alternative signaling pathways or compensation by pro-angiogenic

molecules likely accounts for tumor recurrence and drug resistance. For example,

inhibition of VEGF resulted in upregulation of placental growth factor and FGF.

VEGF was also upregulated after VEGFR or EGFR inhibition, and IL8 was

upregulated after HIF1α gene deletion (Carmeliet 2005). Additional mechanisms

of resistance include “angiogenic mimicry” where tumor cells can transdifferentiate

to ECs and contribute to blood vessel functions. Hence, once the ECs are function-

ally inactive, the tumor cells adapt into the function of ECs integrating into the

vessel wall (El Hallani et al. 2010; Ricci-Vitiani et al. 2010; Soda et al. 2011a). This

transdifferentiation is not limited to ECs, but tumor cells also give rise to mural

cells such as pericytes (Cheng et al. 2013; Scully et al. 2012). Dedifferentiation of

neurons and astrocytes can also contribute to gliomagenesis (Friedmann-Morvinski

et al. 2012).

Another mechanism by which glioma cells acquire resistance to anti-angiogenic

therapies is via enhanced invasion to distal brain regions. Mechanisms of tumor cell

invasion after Bevacizumab treatment are now under intense investigation. For

example, Lu et al. have shown that this invasion is mediated through c-Met

activation (Lu et al. 2012) while research from our laboratory has revealed the

importance of integrin αvβ8 in tumor cell invasion (Reyes et al. 2013; Tchaicha

et al. 2011). A better understanding is needed for how blood vessels develop and

remodel under normal and neoplastic conditions and how their regulation is altered

after anti-angiogenic therapies. Combination therapies that target angiogenic

effectors or both angiogenic and invasive components may lead to more effective

therapies for treating gliomas.
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