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  Abstract   

  Induction of protective immunity in infants 
has the potential to reduce morbidity and mor-
tality in childhood infections but it has long 
been known that long-lasting protective 
immunity is diffi cult to induce in the neonate. 
This chapter describe the basis of the neonatal 
adaptive immune system. It also gives an 
update on current childhood immunisation 
programmes on a global level as well as the 
known side effects to vaccines in children and 
young adults. Finally, it also provides data on 
how to improve childhood vaccinations and 
future much needed vaccines.     

4.1      Introduction 

    The fi rst months of life are a time of high risk for 
infections in the newborn infant, and it would 
therefore be useful to induce adaptive immunity 
by immunizations early in life. However, it has 
long been known that long-lasting protective 
immunity is diffi cult to induce in neonates both 
upon immunization and also after infection. 
Some of these problems could in theory be solved 
by vaccination of the pregnant women to enhance 
the passage of protective maternal antibodies to 
the child, but this may later affect the adaptive 
immune response of the infant. The diffi culties to 
induce proper vaccine responses will be described 
and put into a context of the neonatal immune 
system that in many other aspects is capable of 
protecting the infant against disease [ 1 ,  2 ].  
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4.2     Cellular Components 
of Innate and Adaptive 
Immunity 

 A major disadvantage for the neonatal immune 
system is, independent of species, that most B 
and T cells are naïve. Although the majority of 
cells and soluble factors appear early in fetal life, 
their numbers and relative ratio and activation 
status differ from adults [ 3 ]. There is a lack of 
knowledge in human infants since the majority of 
studies in neonatal immunology have been gener-
ated in rodent models. It is diffi cult to translate 
these fi ndings to humans since newborn mice are 
underdeveloped compared to human infants [ 4 ]. 
The studies of cells isolated from umbilical cord 
blood have provided new insight, but these data 
may not be representative of the circulating cells 
in the neonatal immune system. Data obtained 
from cord blood should therefore be combined 
with data acquired from infants [ 5 ].  

4.3     Neonatal and Childhood 
Antigen-Presenting Cells 

 Monocytes and dendritic cells (DCs) function as 
antigen-presenting cells and are key players in 
innate immunity but also responsible for initia-
tion of adaptive immune responses. Two subtypes 
of DCs are identifi ed in peripheral blood: the 
myeloid DC (mDCs) and the plasmacytoid DC 
(pDCs). The mDC is the main antigen- presenting 
cell and plays a crucial role in B cell differentia-
tion by the release of cytokines such as IL-12, 
IL-6, BAFF, and April, which drive the formation 
of antibody-producing B cells. On the other hand, 
pDCs produce interferons and thereby play a vital 
role in antiviral immunity [ 6 ]. There are age-
associated differences in the proportion of DCs in 
peripheral blood in children, where pDC numbers 
are much higher in infants than in older children, 
probably refl ecting their importance for protec-
tion against viral illness in early life before pro-
tective adaptive immune responses have been 
initiated [ 7 ]. However, that comes at the cost of 
less effi cient B cell activation early in life. 

 Several studies on cord blood DCs have con-
fi rmed an immature phenotype with low, or no 

basal expression of CD40, co-stimulatory mole-
cules CD80/CD86 or MHC class II molecules 
[ 8 – 10 ]. Functionally, this translates into subopti-
mal human neonatal DC responses to most stimuli 
[ 11 ]. In addition, the importance of the toll-like 
receptors (TLR) pathway on DCs for induction of 
adaptive immune responses is apparent and well 
established. Despite comparable expression of 
TLRs on cord blood DCs and adult cells, the 
capacity of cord blood DCs to respond to TLR 
agonists is also signifi cantly reduced and charac-
terized by low production of the pro-infl ammatory 
Th1 cytokine TNFα and IFN [ 12 ,  13 ]. However, 
recent data suggests that neonatal TLR-mediated 
impairments are selective since the TLR8 agonist 
R848 is able to induce a robust immune response 
in cord blood DCs comparable to adult cells. This 
fi nding has also been confi rmed in infant cells and 
may have important implications for the choice of 
adjuvants in neonatal vaccine research [ 14 ,  15 ]. 

 The innate responses of monocytes and 
antigen- presenting cells develop within the fi rst 
year of life [ 15 ,  16 ]. Phenotypic analysis of 
peripheral blood monocytes and DCs has shown 
that circulating DCs acquire an adult-like pheno-
type around 6 months of age. Cytokine produc-
tion after TLR stimulation at birth is skewed 
towards a Th2 response with production of IL-6, 
IL-8, and IL-10 and low levels of the Th1- 
polarizing IL-12p70 cytokine [ 17 ]. However, the 
IL-6 levels are comparable to adults already at 
3 month of age. For IL-10, the production remains 
signifi cantly higher also at 12 month of age, and 
the same trend is shown for IL-8 [ 16 ]. 

 Thus, small children are impaired in both the 
maturation of the antigen-presenting cells and the 
capacity of such cells to respond to bacterial and 
viral antigens, with the important exception of 
TLR8. Using TLR8 ligands as vaccine adjuvants 
may represent a window of opportunity.  

4.4     Neonatal and Childhood 
T Cells 

 The peripheral blood T lymphocyte subsets in 
infants differ from that of adults. At birth, there is 
a gradual increase in the absolute number of 
CD3+ T lymphocytes and, from the age of 
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2 years, a decrease to levels similar to adults [ 18 ]. 
Helper CD4+ T cells and cytotoxic CD8+ T cells 
also increase in the fi rst months of life and decline 
after 9–15 months of age [ 19 ]. Analysis by fl ow 
cytometry has revealed several CD4+ memory 
cell populations in blood, where only the central 
memory T cell population is present at birth. As a 
result of antigenic stimulation, effector memory 
helper T cells increase during the fi rst year to lev-
els comparable to adults and remain stable during 
childhood. The recently described population of 
CXCR5+ memory T cells, also defi ned as 
 follicular helper T cells, is absent at birth but 
increase in number during the fi rst year of life in 
parallel to the increase in serum IgA and IgG 
[ 19 ]. Follicular helper T cells were fi rst described 
as cells able to effi ciently support the differentia-
tion of switched B cells in secondary lymphoid 
organs with the subsequent production of IgA 
and IgG [ 20 ]. The absolute numbers of regulatory 
T cells (Treg) increase the fi rst month of life simi-
lar to CD4+ memory T cells and remain stable 
thereafter. Neonatal Treg exert potent immuno-
suppressive activities and suppress antigen-spe-
cifi c T cell proliferation and IFNγ production 
[ 21 ] which may modulate the development of a 
memory CD4+ T cell pool later in life [ 22 ]. 

 Intrinsic defects in T cell immunity has been 
described for neonatal T cells. A key feature of 
signalling via T-cell receptor (TCR)-CD3 on 
naïve CD4+ T cells is the upregulation of CD40 
ligand on the cell surface. Neonatal CD4+ T 
cells have reduced capacity to express CD40 
ligand after TCR-CD3 activation, which in turn 
negatively affect antibody production, Ig switch, 
and memory B cell generation [ 23 ]. Helper T 
cell responses after immunizations in newborns 
have been investigated in many contexts [ 1 ], and 
several factors (antigen dose, adjuvant, routes 
of immunization) infl uence whether a predomi-
nantly Th1 or Th2 response will be elicited. A 
majority of current childhood vaccine elicit a 
predominantly Th2- biased response with the 
exception of BCG and whole-cell pertussis vac-
cines [ 24 ]. 

 So, the T cell responses early in life are 
skewed towards a Th2 response, and neonatal 
helper T cells have reduced capacity to support B 
cell differentiation and antibody production.  

4.5     Neonatal and Childhood 
B Cells 

 Several studies show age-dependant developmen-
tal changes in peripheral blood B cell subsets dur-
ing the fi rst 5 years of life with a signifi cant 
decrease in total B cells with age. Most striking is 
the shift from a predominantly naïve and transi-
tional blood B cell pool during infancy to an 
increase of the memory B cell fraction in the older 
child and adult. The transitional B cells are 
increased in infants compared to adults, which may 
bridge the gap between innate and adaptive immu-
nity early in life. Transitional B cells produce IgM 
upon TLR 9 stimulation and thus may be an impor-
tant mechanism for a fi rst line defense against bac-
teria at birth [ 25 ]. The expansion of the memory B 
cell pool is most evident during the fi rst year of life, 
where after the absolute number is stable over time. 
Taken together, these fi ndings suggest that the 
decrease in total B cells with age is mainly related 
to a reduction in the output from the bone marrow 
(BM) of transitional and naïve cells [ 26 ,  27 ]. 

 Using CD27 as a surrogate marker of human 
memory B cells together with the surface expres-
sion of IgD, several memory B cell populations 
have been characterized. Classical switched 
memory B cells increase during infancy and 
reaches a peak between 5 and 10 years of age [ 27 , 
 28 ]. Differentiation of classical switched memory 
B cells occurs in the germinal center (GC) of sec-
ondary lymphoid organs; immunohistochemistry 
studies show that GCs are absent at birth and 
gradually develop to adult size between 12 and 
24 months of life [ 29 ]. Interestingly, gut coloniza-
tion of  Escherichia coli  promotes the early devel-
opment (0–4 months) of the CD27+ memory pool 
in infants [ 30 ]. The IgM memory subset appears 
gradually in circulation from around birth and 
reaches adult levels at 2 years of age [ 31 ]. Several 
studies have shown that IgM memory B cells con-
fer protection against  Streptococcus pneumoniae,  
both after infection and immunization [ 32 ]. 

 Less is known on the terminally differentiated 
plasma cell pool in infants and children. In pre-
school children, the plasma cell compartment is 
similar in size as reported for adults [ 33 ]. However, 
in the mouse model of KLH-NP immunization, it 
has been shown that survival of plasma cells is 
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impaired in neonatal mice compared to adults 
[ 34 ]. The supportive network of BM stromal cells 
was less capable of supporting plasma cell sur-
vival factors in neonatal mice compared to adults. 

 In summary, postnatal maturation of the B cell 
compartment occurs in the presence of antigenic 
stimulation by microbes and also requires maturation 
of lymphoid organs and the bone marrow (Fig.  4.1 ).

4.6        Quality of Antibody 
Responses in Infants 

 During fetal and early neonatal ontogeny, the 
peripheral B cell population is much less diverse 
that that of adults. Early studies showed that the B 
cell repertoire expressed early in life is skewed 
towards specifi c V H  genes and that early neonatal 
cells lack molecular mechanisms utilized by adult 

cells for diversifi cation [ 35 ]. It is also known that 
in vivo antibody (Ab) responses are of lower affi n-
ity and restricted heterogeneity compared to adults. 

 One important difference in outcome of B cell 
activation is that neonatal B cells produce less 
amounts of Abs than adults after antigen- specifi c 
activation [ 36 ]. The differences in Ab secretion 
could be due to impaired antigen presentation by 
DCs or macrophages as well as  suboptimal secre-
tion of cytokines by T cells. However, there are also 
intrinsic B cell differences in that neonatal B cells 
show little or no proliferation after B cell receptor 
(BCR) cross-linking [ 37 ] even though signal trans-
duction occurs upon Ig ligation [ 38 ]. It has been 
demonstrated that neonatal B cells are more prone 
to tolerance induction and/or apoptosis after BCR 
ligation. Neonatal B cells also express less MHC 
class II and the co- stimulatory molecules CD80/
CD86 are not upregulated after BCR triggering 

Birth 2 years Time

B cells

DCs

T cells

  Fig. 4.1    Maturation of peripheral blood cell populations 
involved in adaptive immune responses occurs during the 
fi rst 2 years in children. At birth, translational ( orange ) 
and naive B cells ( dark orange ) are most abundant, and 
the T cell compartment is dominated by naive T cells 
( dark green ). After stimulation by environmental anti-
gens, the memory B cell ( pale orange ), memory CD4 

T cell ( pale green ), and follicular T cell ( green ) pool 
increases. Accordingly, the interactions between DCs, 
B cells, and T cells increase, and the antibody response 
matures with the production of IgG and IgA. Dendritic 
cells (DCs) at birth are predominantly plasmacytoid DCs 
( blue ), but the myeloid DCs ( pale blue ) increase after 
1 year       
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[ 39 ]. While these impairments may render neonatal 
B cells hyporesponsive, CD40 ligation and IL-4 
stimulation leads to B cell activation and prolifera-
tion allowing B cell differentiation. Thus, in the 
presence of T helper mechanisms, the neonatal B 
cell response is adequate, although more stimula-
tory signals may be needed to achieve similar out-
comes as for adult B cells [ 35 ]. 

 Somatic hypermutation (SHM) occurs pre-
dominantly in germinal centers of spleen or lymph 
node and is essential to diversify and improve the 
antibody formation as it leads to selection of anti-
bodies with high affi nity [ 40 ]. This process is 
dependent on the enzyme activation- induced 
deaminase (AID), which inserts point mutations 
in to the Ig heavy and light chain genes and thus, 
play an essential role in repertoire diversifi cation 

and affi nity maturation [ 41 ]. Data on SHM in 
human infants are rare, but one early study 
reported SHM in IgG and IgA heavy chain tran-
scripts in cord blood [ 42 ]. In peripheral blood of 
newborns, few or no mutations could be detected 
when sequencing the V H 6 gene, but in older 
infants (10–60 days), more mutations were found 
in the same locus [ 43 ]. By 8 months of age, the 
range of mutations reached adults levels, and 
there were signs of repertoire selection [ 44 ]. 

 So, neonatal B cells are less responsive to 
BCR ligation and more prone to apoptosis or tol-
erance induction. Antibody maturation is limited. 
The responses to the majority of antigens will be 
less effi cient due to both T and B cell inabilities 
(Fig.  4.2 ). For type 1 T cell-independent anti-
gens, which themselves can activate immature B 
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  Fig. 4.2    A schematic fi gure on adaptive immune 
responses in young children. At birth, translational B cells 
respond to certain T-independent antigens ( TI-1 ) with the 
formation of short-lived plasma cells that mainly produce 
IgM as a fi rst line defense. IgM+ mature B cells are also 
able to respond to T cell-independent antigens ( TI-2 ) 

which cross-link several BCR through binding of repeti-
tive antigenic structures. The response to T-dependent 
antigens is not present at birth but mature during the fi rst 
2 years. The production of switched memory B cells and 
homing of plasma cells to the bone marrow are therefore 
impaired in the infant       
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cells, these are partially hampered by lack of 
TLR and BCR signalling (Fig.  4.2 ).    For type 2 T 
cell-independent antigens, which are repetitive 
structures that can cross-link BCR by multiple 
binding on mature B cell responses are very lim-
ited in young children, both due to few mature B 
cells and also poor BCR function. Children hence 
respond poorly to vaccines consisting of such 
antigens (polysaccharide vaccines).

4.7        Soluble Factors in Neonatal 
Blood Affecting Adaptive 
Immune Responses 

 Although most components of the immune sys-
tem appear during fetal development, the concen-
trations of soluble components can differ 
markedly from those of adults. In particular, the 
plasma complement proteins and their activity 
are low in infants. The complement system is an 
important part of innate immunity, but it may also 
impact on adaptive immune responses, it 
enhances the effects of specifi c immunoglobu-
lins, it primes antigen-presenting cells and aid 
their maturation, and fi nally, it enhances the 
antigen- driven maturation of antibody responses 
by B lymphocytes. The level of classical comple-
ment components in newborns is decreased com-
pared to adult levels, which probably contributes 
to the defi cit in early adaptive immune responses 
[ 45 ]. During the fi rst 6 months of life, there is an 
evolution towards adult levels for several of the 
complement proteins [ 46 ]. 

 In recent years, neonatal plasma has been shown 
to contain other molecules with immune modula-
tory functions mainly affecting the outcome of TLR 
activation on antigen-presenting cells. Adenosine, 
an endogenous purine metabolite, selectively inhib-
its TNF production from TLR2-activated mono-
cytes while IL-6 production is preserved. Thus, 
adenosine contributes to the Th2-polarizing proper-
ties of neonatal plasma [ 47 ]. In addition, yet uniden-
tifi ed factors in neonatal plasma have the capacity to 
polarize TLR4- mediated cytokine responses with 
low IL-12p70 production and high IL-10 produc-
tion, thus mediating immunosuppression during the 
fi rst month of life [ 48 ]. 

 The infl uence of maternal antibodies on adap-
tive immune responses is debated. Potential mech-
anisms by which maternal antibodies could affect 
infant vaccine responses include specifi c masking 
of infant B cell epitopes by maternal antibodies 
and the uptake of maternal antibodies: antigen 
complexes by APC [ 49 ]. Abundant data in the lit-
erature favors these models, and it also fi ts well 
with the observation that maternal antibodies lack 
the capacity to interfere with infant T cell priming 
in vivo. This issue will be discussed more below.  

4.8     Current Pediatric Vaccines, 
Worldwide 

 More than half of the children that die under the age 
of fi ve worldwide do so because of an infectious 
disease. Many of these diseases are vaccine pre-
ventable, and WHO estimates that around 1.5 mil-
lion children below the age of 5 died in 2008 in such 
diseases.  S. pneumoniae  (pneumococcal) infections 
and rotavirus infections are the leading causes, fol-
lowed by infections caused by  Haemophilus infl u-
enzae B  (HIB),  Bordetella pertussis  (pertussis), 
measles virus, and  Clostridium tetani  infection in 
the neonatal period (neonatal tetanus). 

 The vaccine schedules used in the world differ 
due to economic issues and the endemic infection 
situation of the region. The goals from WHO are 
focused on reaching a 90 % vaccine coverage rate 
of each country’s national policy. In almost all 
parts of the world, these include vaccinations 
against diphtheria, tetanus, pertussis, and polio, 
which have lead to a drastic reduction in the inci-
dence the past 30 years. Neonatal tetanus is still 
quite prevalent, mostly due to low vaccine cover-
age rates in mothers, hence less antibodies are 
transferred in utero. The MMR vaccine (measles, 
mumps, rubella) is used in Europe, America, 
Australia, and some Eastern Mediterranean coun-
tries, whereas the plain measles vaccine is used in 
most African countries and South East Asia. The 
measles vaccination coverage is 85 % worldwide; 
however, the coverage is poor in mid- and south-
ern Africa. Furthermore, the introduction of the 
pneumococcus vaccine is recently established in 
Europe, North America, Australia, and many 
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African and South American countries now 
follow. Vaccines against HIB are also becoming 
very prevalent worldwide, but only recently, thus 
less than half of the world population were pro-
tected in 2010, though this number is likely to 
rise. The introduction of the varicella vaccine has 
been less successful, and it is primarily used in 
America but also in other countries for risk 
groups. 

 In the coming years the rotavirus vaccines will 
be introduced with a focus on African countries, 
but also in America, Europe, and Eastern 
Mediterranean areas. Vaccines against local 
endemic infections including  Neisseria menin-
gitidis  (meningococcus), Japanese encephalitis, 
 Mycobacterium tuberculosis , hepatitis, rabies, 
 Salmonella typhi  (typhoid fever), and yellow 
fever may also be included in childhood vaccina-
tion schedules. In the older children, utilization 
of the human papillomavirus (HPV) vaccine, 
reducing cervical cancer, is increasing in all parts 
of the world, with the exception of the East 
Mediterranean countries.  

4.9     Vaccine Side Effects 

 Side effects of vaccinations are a debated fi eld. 
Immediate reactions, such as allergy [ 50 ] and 
local reactions, with swelling, sourness, and pain 
at the site of injection, are easily measured and 
described. In addition, common early systemic 
side effects including irritability and fever can be 
measured on a population basis. Less common 
side effects, occurring in close proximity to vac-
cination, are also described. For example, febrile 
seizures 7–10 days post MMR vaccination have 
long been recognized occurring in 1 of 600 doses 
[ 51 ]. Similarly, MMR vaccination associates 
with a 1/50,000 doses risk of immune thrombo-
cytopenic purpura [ 52 ]. 

 When it comes to rare and long-term side 
effects, the burden of proof is more challenging. 
Furthermore, such reactions/diseases are often 
multifactorial. There are basically two approaches 
to long-term side effect investigations: either a 
purely logical hypothesis based on immunologi-
cal data from the vaccine or a suspicion from epi-

demiological data. One example of the fi rst is the 
effects of childhood vaccination on allergy and 
atopy. It is known that children who retain the 
neonatal Th2 profi le longer may have an increased 
likelihood of allergies and that an early Th1 tilted 
response will decrease incidence of allergy and 
asthma [ 17 ]. Pediatric vaccines that give a pre-
dominant Th1 or Th2 response may hence affect 
development of allergy and atopy. Circumstantial 
clinical reports suggest such an association for 
the pertussis vaccine, and controlled clinical tri-
als point away from allergy promoting or pre-
venting effects [ 50 ]. 

 One example of the second type, where epide-
miological data has prompted further investiga-
tion, comes from the increased frequency of 
childhood narcolepsy in Scandinavia post H1N1 
infl uenza vaccinations in 2009. For the group 
under 11 years, the frequency rose from around 0 
cases/100,000 inhabitants to around 3.4/100,000 
in 2010. For 11–16 year olds, it rose from around 
1/100,000 to around 8.7/100,000 in 2010 [ 53 ]. 
This occurred almost exclusively in Finland and 
Sweden and has been attributed to the genetic 
background and possibly other unknown factors. 
It has been suggested based on genetic data and 
the lowered onset age that vaccination brought 
forward the onset of a disease that normally 
would have occurred later [ 53 ]. In much the same 
way, the pertussis vaccine has been described as 
a trigger of severe myoclonic epilepsy (Dravet 
syndrome) in genetically susceptible individuals. 
Time for vaccination coincides, however, with 
characteristic onset time for this disease, and 
fever (which may be associated with vaccination) 
is known to trigger fi rst events. Pertussis vaccina-
tion does not associate with any altered outcome 
of disease as compared to unvaccinated geneti-
cally susceptible individuals [ 54 ]. The proposed 
link between autism spectrum diseases and vac-
cination (in particular MMR) is hereto not proven 
[ 55 ,  56 ]. 

 In parallel, data also suggest that you are more 
likely to have side effects if you are vaccinated 
early in a vaccine campaign. One interpretation of 
this is that people with underlying disease and/or 
risk factors are vaccinated early, and such indi-
viduals appear more prone to side effects. This 
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was shown for the H1N1 vaccine, where the early 
cohorts had increased frequencies of Bell’s palsy, 
paresthesia, and infl ammatory bowel disease [ 57 ]. 

 Finally, it is not only the antigen as such that is 
important for the side effects but also the formu-
lation. This has been demonstrated by comparing 
the seizure frequency when giving a combined 
MMR-varicella (MMRV) vaccination or MMR 
and varicella (MMR+V) vaccine separately on 
the same day. Using MMRV the seizure fre-
quency rises to 1/2,300 doses, as compared to 
MMR+V where the seizure risk is comparable to 
MMR alone [ 58 ]. 

 So when it comes to side effects causing long- 
term morbidity, these are linked to the onset of a 
disease that most likely would have occurred in 
an unvaccinated child as well. Children with 
underlying disease may be at higher risk of side 
effects. For the short-term side effects, formula-
tion appears to play a role.  

4.10     Vaccination During 
Pregnancy 

 Since vaccinations are less effi cient in very young 
children, one way to protect neonates against 
severe infection is to vaccinate women during 
pregnancy, utilizing the transmission of antibod-
ies from the mother to the child in utero. This 
strategy is already in use in some countries, and 
US health authorities recommend the seasonal tri-
valent inactivated infl uenza vaccine and the teta-
nus/diphtheria/acellular pertussis vaccine to be 
used during second and third trimester of preg-
nancy. Furthermore, a number of other killed vac-
cines are recommended to pregnant risk groups 
including vaccines against hepatitis A, hepatitis 
B, meningococcus, and the 23-valent pneumo-
coccus polysaccharide vaccine. Live viral vac-
cines are contraindicated in pregnant women. 

 General concerns include the safety and effi -
cacy of maternal-fetal immunization. Safety has 
been shown using killed vaccines against seasonal 
as well as H1N1 infl uenza [ 59 ]. Furthermore, 
similar data are available for the adult-type teta-
nus, reduced diphtheria toxoids, and acellular 
pertussis vaccine [ 60 ]. 

 For the discussion of effi cacy, several aspects 
have to be taken into consideration. First, whether 
fetal immunization is effi cient in preventing fetal 
illness, either from the community or from the 
mother during fetal life or not.    In addition, 
whether there will be negative effects of the pas-
sive antibodies transferred on later immunizations 
of the child or not. For the effi cacy two types of 
vaccines will be discussed: the vaccines contain-
ing T-dependent antigens and the vaccines con-
taining T-independent antigens. One can assume 
that T-dependent antigens will be more effi cient, 
as they give rise to antibodies that are more effi -
ciently enriched over the placenta. For T-dependent 
antigens, such as the infl uenza vaccine, epidemio-
logical data show that children born to vaccinated 
mothers have milder infl uenza- like symptoms and 
a reduced incidence of verifi ed infl uenza [ 61 ]. 

 For T-independent antigens, the effi cacy is 
less clear. It has been shown that pneumococcal 
antibodies are transferred in utero, at suffi cient 
levels, post maternal immunization with the 
pneumococcal polysaccharide vaccine [ 62 ]. 
These are results for serotypes 1 and 5, where 
only 5 can be really seen as T-independent due to 
the zwitterionic nature of the serotype 1 polysac-
charide [ 63 ]. Maternal immunization does in this 
case interfere with early childhood vaccination 
(7–17 weeks postpartum), in that vaccination 
does not increase the amount of specifi c antibod-
ies, if already present at high concentration in the 
infant. No effect of maternal vaccination was 
seen on vaccination effi cacy at 3 years of age 
[ 64 ]. There is little evidence for a role of these 
antibodies in preventing disease, and neonatal 
pneumococcal colonization is not affected [ 65 ]. 

 One argument against fetal immunization is 
the possible interference with later childhood 
immunizations. This can be mediated both by the 
ability of neutralizing antibodies to interfere with 
specifi c T cell responses and the ability of neutral-
izing antibodies to interfere with humoral 
responses upon immunization. As for T cell 
responses, these are clearly less prominent, as dis-
cussed above, in small children as compared to in 
adults. The presence of maternal neutralizing anti-
bodies does not affect effi cacy of T cell responses, 
measured as IFN-γ production [ 49 ,  66 ]. 
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 When it comes to the humoral response, the 
situation is more complex. It is clear that lower 
levels of neutralizing antibodies are produced 
upon vaccination in children that are still retain-
ing maternal antibodies at the age of 9 month 
[ 66 ] and that at 6 months, the ability to produce 
antibodies upon vaccination is poor in general 
irrespective of maternal antibodies. The potential 
interference with childhood immunization at 
9 months will then depend of the persistence of 
maternal antibodies. Antibodies against different 
antigens show different half-life in vivo, and anti-
bodies against measles virus and rubella virus 
persist longer than, for example, antibodies 
against mumps virus. Mumps antibodies also 
persist even shorter if the mother has been vacci-
nated as compared to infected naturally [ 67 ]. 
Furthermore, transport across the placenta will 
not depend only on subclass, as both IgG1 and 
IgG2 antibodies against pneumococcus are trans-
ferred less well than antibodies of similar sub-
classes against tetanus [ 68 ]. Clearly, the potential 
interference will have to be judged for each vac-
cine. Most children that were vaccinated while 
still immune from the mother, however, have a 
good response upon second dose vaccination 
[ 66 ]. Some studies have found a slightly higher 
vaccine failure rate upon second vaccination, 
where the fi rst early vaccination has failed [ 69 ]. 
   If this is a result of the child’s intrinsic ability to 
respond to vaccination or a result of interference 
by maternal antibodies is not known. 

 Vaccination with killed vaccines, preferen-
tially in third trimester, appears safe and at least 
for some vaccines effi cient. There are confl icting 
data on interference with childhood immuniza-
tions, but most data point towards little interfer-
ence. Recommendations will have to be specifi c 
for each vaccine, and more studies are required.  

4.11     Immunization Responses 
in Children with Primary or 
Acquired Immunodefi ciency 

 A growing number of children survive infancy and 
early childhood despite severe immunodefi ciency 
including transplantation and chemotherapy, 

 primary inherited immunodefi ciency disorders, or 
congenital HIV infection. These children are vul-
nerable to infections and thus would benefi t from 
effective immunizations. It is also possible that a 
better understanding of the molecular defi cits 
behind impaired vaccine responses in these 
patients could contribute to the development of 
better vaccines. 

 Common variable immunodefi ciency disorder 
(CVID) affects antibody production and is charac-
terized by low serum concentrations of IgG and 
IgA and/or IgM and increased susceptibility to 
respiratory infections with encapsulated bacteria 
( H. infl uenzae ,  S. pneumoniae ). CVID is a hetero-
geneous disease with several genetic defects 
involving important molecules for B cell signal-
ling and/or T-B cell interactions. In adult CVID 
patients, who had switched memory B cells 
(CD27+) in peripheral blood before immuniza-
tion, a protective antibody response could be 
detected against several antigens [ 70 ]. Similarly, 
in a pediatric study, 11/16 children were found to 
respond to the meningococcal group C polysac-
charide vaccine [ 71 ]. In addition, vaccine 
responses against polysaccharide vaccines were 
associated with the presence of IgM memory B 
cells in these patients. A similar study of CVID 
patients indicates that there is a block in the for-
mation of plasmablasts after immunization against 
both  Clostridium tetani  and  S. pneumoniae  [ 72 ]. 

 Immunization responses in HIV-1-infected 
patients are severely impaired, both in adults and 
children [ 73 ] for the majority of antigens. The 
introduction of highly active antiretroviral ther-
apy (HAART) has improved vaccination out-
come for the majority of patients [ 74 ]. 
Immunization guidelines for this vulnerable 
pediatric group have recently been published 
[ 75 ]. Vaccination is safe with few side effects, 
and the only vaccine that is contraindicated as of 
today is BCG for HIV-1-infected children. 
However, there are still unresolved questions 
regarding immunizations in pediatric HIV-1 
infection and, in particular, how durable the anti-
body response in HAART-treated children will 
be compared to healthy individuals. 

 Re-immunization of children posttransplanta-
tion and after chemotherapy is required since the 
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different treatment modalities eradicate protec-
tive antibody-mediated memory [ 76 ]. As for 
HIV-1-infected children, most vaccines are safe 
although revaccination with live vaccines should 
be postponed 12–24 months after completion of 
therapy. There is no consensus on the optimal 
time to start revaccination or how many doses 
that should be administered to achieve long- 
lasting protection [ 77 ,  78 ].  

4.12     Development of New 
Pediatric Vaccines 

 Traditional vaccines often consist of whole-killed 
viruses, administered by intra muscular injection 
(i.m.). For some important childhood pathogens, 
for example, respiratory syncytial virus (RSV), 
such attempts have failed. The development of a 
RSV vaccine will be discussed as an example of 
a novel vaccine strategy in infants. Initial clini-
cal studies using formalin-inactivated RSV for 
administration to small children resulted in dis-
ease aggravation upon infection, hospitalization, 
and in some cases death [ 79 ]. This has later been 
attributed to a devastating Th2 response, resulting 
in lung pathology. RSV causes a localized respi-
ratory disease, without general viremia, result-
ing in signifi cant hospitalization, morbidity, and 
mortality rates. From an immunological perspec-
tive, RSV is challenging because of the failure of 
adaptive immunity to prevent reinfection. 

 This has been ascribed to the poor quality of the 
T cell response and the short durability of the anti-
body response. One hypothesis is that the mucosal 
immunity is to slow for this rapid virus and that the 
serum antibodies are present at low levels in the 
tissue. Finding alternative strategies for RSV vac-
cination is key. One such way is to deliver the vac-
cine at mucosal linings such as intranasally (i.n.), 
instead of i.m. Then immune activation will take 
place within the mucosa- associated lymphoid tis-
sue (MALT) with activation of microfold epithelial 
cells (M cells) and subsequently underlying anti-
gen-presenting cells such as DCs. This will induce 
both local IgA and systemic IgG. 

 Depending on which route that is used, differ-
ent local immunity will result. For example, using 

i.n. administration, immunity in the upper respira-
tory tract and the cervicovaginal tract will prevail, 
whereas oral administration will induce IgA pro-
duction mostly in the small intestine and in the 
mammary glands. Experiments using live- killed 
RSV nanoemulsions for i.n. administration in 
mice have shown an IgA response in the lung as 
well as protective capacity [ 80 ]. Current most 
promising results come from clinical phase II trials 
where live attenuated RSV strains have been given 
i.n [ 79 ]. Still, RSV vaccine development suffers 
from the initial failures, and no good vaccine is yet 
available. Results are to be awaited from clinical 
studies of naked DNA and vector- expressed DNA 
vaccines in the pediatric population. 

 Development of new vaccines also includes the 
introduction of adjuvants with enhanced immune 
stimulatory capacity to compensate for low intrin-
sic immunogenicity of antigens [ 81 ]. Novel adju-
vants aim at optimizing B cell responses and 
generating appropriate T cell responses, which 
could be of particular importance in childhood 
vaccines. One of new adjuvants is the TLR4 ago-
nist monophosphoryl lipid A (MPL) which of to 
date is licensed or in phase III clinical trials [ 82 ]. 
MPL, when combined with alum, acts on DCs 
and promotes IFN-γ production and thus over-
comes the Th2-bias response associated with 
alum. It is now licensed in a human papillomavi-
rus (HPV)-16/18 vaccine and has been shown to 
induce long-lasting B cell memory and persistent 
antibodies [ 83 ]. In children immunized at 
1–4 years of age against  Plasmodium falciparum , 
an MPL-containing adjuvant-induced high anti-
parasite antibodies with long-term protection 
against clinical disease as a result [ 84 ]. An addi-
tional potential new adjuvant, the non-toxic 
mutant of heat-labile enterotoxin (LT) of  E. coli 
(LTK63),  was shown to overcome delayed matu-
ration of follicular DCs and thus induce germinal 
centers when given parentally in mice together 
with a polysaccharide conjugate vaccine [ 85 ]. In 
addition to an improved B cell response, LTK63 
upon binding to macrophages, induces a balanced 
Th1/Th2 cytokine production as well as cytotoxic 
T cell responses [ 86 ]. 

 So, the development of new effi cient vaccines 
to be administered early in life may take advantage 
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of novel adjuvants to circumvent the hyporespon-
siveness of neonatal adaptive immunity. Finally, a 
summary of the key points outlined in this chapter 
is shown in Fig.  4.3 .
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