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Abstract Standard continuum models do not incorporate an in-
ternal length scale, and therefore suffer from excessive mesh depen-
dence when strain-softening models are used in numerical analyses.
In this contribution this phenomenon will be analysed and remedied
through the use of higher-order continua. To enable an efficient and
robust implementation algorithms based on damage and on plastic-
ity theories will be described for higher-order gradient models and
for a Cosserat continuum.

1 Introduction

Localisation of deformation refers to the emergence of narrow regions in
a structure where all further deformation tends to concentrate, in spite of
the fact that the external actions continue to follow a monotonic loading
programme. The remaining parts of the structure usually unload and be-
have in an almost rigid manner. The phenomenon has a detrimental effect
on the integrity of the structure and often acts as a direct precursor to
structural failure. It is observed for a wide range of materials, including
rocks, concrete, soils, metals, alloys and polymers, although the scale of
localisation phenomena in the various materials may differ by some orders
of magnitude: the band width is typically less than a millimeter in metals
and several meters for crestal faults in rocks.

In this contribution we address the fundamental issue of developing
(higher-order) continuum models that admit localisation of deformation
while preserving well-posedness of the rate boundary value problem. In
a standard (Boltzmann) continuum well-posedness is normally lost when
the homogenised constitutive relation exhibits a descending branch, which
is commonly referred to as strain softening.

A part of this contribution is hence devoted to uniqueness and stability
issues of non-linear boundary value problems in standard continua. Em-
phasis is placed on the critical conditions which entail a change of type
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of the differential equation, and the consequences of such a change for the
discretisation sensitivity of computations. Subsequently, we discuss simple
enhancements of the standard continuum theory within the framework of
damage theory and of plasticity theory. Our aim is to obtain an enhanced
continuum formulation that does not exhibit a change of type of the differ-
ential equation and therefore, does not suffer from excessive mesh sensitivity
when strain softening occurs.

For large-scale applications of such higher-order continuum methods it
is pivotal that the damage and plasticity models utilised are cast in an
algorithmic framework that is robust and efficient. For this reason a major
part of this contribution is devoted to the description of such algorithms.

2 Isotropic Elasticity-Based Damage

The basic structure of constitutive models that are set up in the spirit of
damage mechanics is simple. We have a total stress-strain relation (Lemaitre
and Chaboche, 1990):

σσσ = Ds(ω,ωωω,ΩΩΩ) : εεε (1)

where σσσ is the stress tensor, εεε is the strain tensor and Ds is a secant, fourth-
order stiffness tensor, which can depend on a number of internal variables,
like scalar-valued variables ω, second-order tensors ωωω and fourth-order ten-
sors ΩΩΩ. Equation (1) differs from non-linear elasticity in the sense that a
history dependence is incorporated via a loading-unloading function f . The
theory is completed by specifying the appropriate (material-dependent) evo-
lution equations for the internal variables.

For isotropic damage evolution, the secant stiffness tensor of Eq. (1)
becomes (in matrix format):

Ds =
Es

(1 + νs)(1− 2νs)

⎡⎢⎢⎢⎢⎢⎢⎣

1− νs νs νs 0 0 0
νs 1− νs νs 0 0 0
νs νs 1− νs 0 0 0

0 0 0 1−2νs

2 0 0

0 0 0 0 1−2νs

2 0

0 0 0 0 0 1−2νs

2

⎤⎥⎥⎥⎥⎥⎥⎦
(2)

with Es = E(1 − ω1) the secant stiffness modulus, and νs = ν(1 − ω2) the
secant value of Poisson’s ratio. The scalar-valued damage variables ω1 and
ω2 grow from zero to one at complete damage. A further simplification can
be achieved if it is assumed that Poisson’s ratio remains constant during
the damage process, which is equivalent to the assumption that the secant
shear stiffness and bulk moduli degrade in the same manner during damage
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evolution. Equation (2) then simplifies to:

Ds = (1− ω)De (3)

with ω the single damage variable.
The total stress-strain relation (3) is complemented by a damage loading

function f , which reads:

f = f(ε̃, σ̃, κ) (4)

with ε̃ and σ̃ scalar-valued functions of the strain and stress tensors, re-
spectively, and κ the internal variable. The internal variable κ starts at
an initial level κi and is updated by the requirement that during damage
growth f = 0, whereas at unloading f < 0 and κ̇ = 0. Damage growth
occurs according to an evolution law such that ω = ω(κ), which can be de-
termined from a uniaxial test. The loading-unloading conditions of inelas-
tic constitutive models are often formalised using the Karush-Kuhn-Tucker
conditions:

f ≤ 0 , κ̇ ≥ 0 , f κ̇ = 0 (5)

We here limit the treatment to the case that the damage loading function
does not depend on σ̃. For such a strain-based, or elasticity-based, damage
model we have:

f(ε̃, κ) = ε̃− κ (6)

For metals a common choice for ε̃ is the energy measure:

ε̃ =
1

2
εεε : De : εεε (7)

Equation (7) is less convenient in the sense that it does not reduce to the
uniaxial strain for uniaxial stressing. For this reason it is sometimes replaced
by the modified expression

ε̃ =

√
1

E
εεε : De : εεε (8)

Expression (8) is represented graphically in the principal strain space for
plane-stress conditions in Figure 1(a). In this figure, a scaling has been
applied such that ε̃ = 1, while ν = 0.2. The dashed lines are uniaxial stress
paths.

The above energy release rate definition for ε̃ gives equal weights to
tensile and compressive strain components, which makes it unsuitable to
describe the mechanical behaviour of quasi-brittle materials like concrete,
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Figure 1. Contour plots for ε̃ for (a) the energy-based concept, (b) the
Mazars definition (Mazars and Pijaudier-Cabot, 1989) and (c) the modified
Von Mises definition for k = 10

rock and ceramics. To remedy this deficiency, Mazars and Pijaudier-Cabot
(1989) have suggested the definition

ε̃ =

√√√√ 3∑
i=1

(< εi >)2 (9)

with εi the principal strains, with < · > the MacAulay brackets defined
such that < εi >= εi if εi > 0 and < εi >= 0 otherwise. A contour plot for
ε̃ = 1 is given in Figure 1(b). A third definition for the equivalent strain
ε̃ has been proposed by de Vree et al. (1995). This proposition, which has
been named a Modified von Mises definition, is given by

ε̃ =
k − 1

2k(1− ν)
Iε1 +

1

2k

√
(k − 1)2

(1− 2ν)2
(Iε1)

2 +
12k

(1 + ν)2
Jε
2 (10)

with Iε1 the first invariant of the strain tensor and Jε
2 the second invariant of

the deviatoric strain tensor. The parameter k governs the sensitivity to the
compressive strain components relative to the tensile strain components.
The definition of ε̃ is such that a compressive uniaxial stress kσ has the
same effect as a uniaxial tensile stress σ. k is therefore normally set equal
to the ratio of the compressive uniaxial strength and the tensile uniaxial
strength. A graphical representation of the Modified von Mises definition
is given in Figure 1(c).

From a computational point of view the above elasticity-based dam-
age model is cast easily into a simple and robust algorithm. Indeed, in a
displacement-based finite element formulation we can directly compute the
strains from the given nodal displacements. The equivalent strain follows
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in a straightforward fashion, since ε̃ = ε̃(εεε). After evaluation of the dam-
age loading function, Eq. (6), the damage variable ω can be updated, and
the new value for the stress tensor can be computed directly. The simple
structure of the algorithm, see Box 1 for details, is due to the fact that the
stress-strain relation of Eq. (1) is a total stress-strain relation, in the sense
that there exists a bijective relation for unloading, and a surjective, but
non-injective relation between the stress and strain tensors for loading.

Box 1. Algorithm for a isotropic elasticity-based damage model.

1. Compute the strain increment: Δεεεj+1

2. Update the total strain: εεεj+1 = εεε0 +Δεεεj+1

3. Compute the equivalent strain: ε̃j+1 = ε̃(εεεj+1)

4. Evaluate the damage loading function: f = ε̃j+1 − κ0

if f ≥ 0 , κj+1 = ε̃j+1

else κj+1 = κ0

5. Update the damage variable: ωj+1 = ω(κj+1)

6. Compute the new stresses: σσσj+1 = (1− ωj+1)D
e : εεεj+1

The algorithm described above evaluates the stress from a given strain.
To arrive at a computationally efficient procedure that utilises a Newton-
Raphson method, it must be complemented by a tangential stiffness tensor,
which is derived by a consistent linearisation of the stress-strain relation.
Differentiating Eq. (3) gives:

σ̇σσ = (1− ω)De : ε̇εε− ω̇De : εεε (11)

Since ω = ω(κ), and because the internal variable κ depends on the equiv-
alent strain via ε̃ and the loading function (6), we obtain:

ω̇ =
∂ω

∂κ

∂κ

∂ε̃
˙̃ε (12)

where ∂κ/∂ε̃ ≡ 1 for loading and ∂κ/∂ε̃ ≡ 0 for unloading. Considering the
dependence ε̃ = ε̃(εεε), we can elaborate this relation as:

ω̇ =
∂ω

∂κ

∂κ

∂ε̃

∂ε̃

∂εεε
: ε̇εε (13)
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Substitution of Eq. (13) into the expression for the stress rate yields:

σ̇σσ =

(
(1− ω)De − ∂ω

∂κ

∂κ

∂ε̃
(De : εεε)⊗ ∂ε̃

∂εεε

)
: ε̇εε (14)

For unloading the second term in Eq. (14) cancels and we retrieve the secant
stiffness matrix (1−ω)De as the tangential stiffness matrix for unloading. It
is finally noted, cf. Simo and Ju (1987), that the tangential stiffness matrix
as defined in (14) is generally non-symmetric. For the special choice that
the equivalent strain is given by Eq. (7), symmetry is restored, since then

σ̇σσ =

(
(1− ω)De − ∂ω

∂κ

∂κ

∂ε̃
(De : εεε)⊗ (De : εεε)

)
: ε̇εε (15)

3 Stability, Ellipticity, and Mesh Sensitivity

A fundamental problem of incorporating damage evolution in standard con-
tinuum models is the inherent mesh sensitivity that occurs after reaching
a certain damage level. This mesh sensitivity goes beyond the standard
discretisation sensitivity of numerical approximation methods for partial
differential equations and is not related to deficiencies in the discretisation
methods. Instead, the underlying reason for this mesh sensitivity is a local
change in character of the governing partial differential equations. This lo-
cal change of character of the governing set of partial differential equations
leads to a loss of well-posedness of the initial boundary value problem and
results in an infinite number of possible solutions. After discretisation, a
finite number of solutions results. For a finer discretisation, the number of
solutions increases, which explains the observed mesh sensitivity.

Since the observed mesh sensitivity is of a fundamental nature, we shall
first discuss some basic notions regarding stability and ellipticity. Subse-
quently, we elucidate the mathematical concepts by simple examples regard-
ing mesh sensitivity.

3.1 Stability and Ellipticity

At the continuum level stable material behaviour is usually defined as the
scalar product of the stress rate σ̇σσ and the strain rate ε̇εε being positive (Hill,
1958; Maier and Hueckel, 1979):

ε̇εε : σ̇σσ > 0 (16)

although it can be linked in a rigorous manner to Lyapunov’s mathematical
definition of stability only for elastic materials (Koiter, 1969). In Eq. (16)
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restriction is made to geometrical linearity. Extension to geometrical non-
linearity is straightforward by replacing σ̇σσ by the rate of the First Piola-
Kirchhoff stress tensor and ε̇εε by the velocity gradient. Evidently, the scalar
product of Eq. (16) becomes negative when, in a uniaxial tension or com-
pression test, the slope of the homogenised axial stress-axial strain curve is
negative. This phenomenon is named strain softening and is not restricted
to a damage mechanics framework, but can also occur in plasticity.

There is a class of material instabilities that can cause the scalar product
of stress rate and strain rate to become negative without the occurrence of
strain softening in the sense as defined above. These instabilities can arise
when the predominant load-carrying mechanism of the material is due to
frictional effects such as in sands, rock joints and in pre-cracked concrete.
At a phenomenological level such material behaviour typically results in
constitutive models which, in a multiaxial context, have a non-symmetric
relation between the stress-rate tensor and the strain-rate tensor, e.g. as in
Eq. (14), unless a special choice is made for the equivalent strain ε̃. This
lack of symmetry is sufficient to cause loss of material stability, even if the
slope of the axial stress-strain curve is still rising (Rudnicki and Rice, 1974).

In the above discussion, the terminology ‘homogenised’ has been used.
Here, we refer to the fact that initial flaws and boundary conditions in-
evitably induce an inhomogeneous stress state in a specimen. During pro-
gressive failure of a specimen these flaws and local stress concentrations
cause strongly inhomogeneous deformations of the specimen. The proce-
dure that is normally utilised to derive stress-strain relations, i.e. dividing
the force by the virgin load-carrying area and dividing the displacement of
the end of the specimen by the original length so as to obtain stress and
strain, respectively, then no longer reflects what happens at a lower length
scale and loses physical significance.

Limiting the discussion to incrementally-linear stress-strain relations,
that is the relation between the stress rate σ̇σσ and the strain rate ε̇εε can
be written as

σ̇σσ = D : ε̇εε (17)

with D the material tangential stiffness tensor, inequality (16) can be re-
formulated as

ε̇εε : D : ε̇εε > 0 (18)

The limiting case that the inequality (18) is replaced by an equality, marks
the onset of unstable material behaviour. Mathematically, this is expressed
by the loss of positive definiteness of the material tangential stiffness tensor
D:

det(Dsym) = 0 (19)
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where the superscript sym denotes a symmetrised operator. Material in-
stability can lead to structural instability. For a structure that occupies a
volume V , Hill’s definition (Hill, 1958) guarantees structural stability if∫

V

ε̇εε : σ̇σσ dV > 0 (20)

for all kinematically admissible ε̇εε. Obviously, violation of inequality (16), i.e.
loss of material stability, can lead to violation of Eq. (20), thus opening the
possibility of structural instability. Accordingly, the existence of material
instabilities, such as strain softening, can lead to structural instability, even
in the absence of geometrically destabilising terms. Of course, there exist
many cases where material instabilities and geometrical terms interact and
are both (partly) responsible for structural instability.

n

n

V

V

+

−

S

Sd

Figure 2. Body composed of continuous displacement fields at each side of
the discontinuity Sd

Yet, the occurrence of unstable material behaviour does not explain the
frequently observed discretisation-sensitive behaviour of computations of
such solids. Indeed, a crucial consequence of the loss of positive definiteness
of the material tangential stiffness tensor D is that it can result in loss of
ellipticity of the governing set of rate equations. Considering quasi-static
loading conditions, the governing differential equations – equilibrium equa-
tions, kinematic equations and constitutive equations – normally have an
elliptic character. Mathematically, this implies that discontinuities in the
solution are not possible. Now suppose that within the given context of
quasi-static loading conditions, a (possibly curved) plane emerges, say Sd

(Figure 2), across which the solution can be discontinuous. The difference
in the traction rate ṫd across this plane reads:

[[ṫd]] = nSd
· [[σ̇σσ]] (21)

with nSd
the normal vector to the discontinuity Sd. Using the tangential
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stress-strain relation defined in Eq. (17) we obtain

[[ṫd]] = nSd
·D : [[ε̇εε]] (22)

where the assumption of a linear comparison solid (Hill, 1958) has been
introduced, i.e. D is assumed to have the same value at both sides of
the discontinuity Sd. A displacement field u that is crossed by a single
discontinuity can be represented as:

u = ū+HSd
ũ (23)

with the Heaviside function HSd
separating the continuous displacement

fields ū and ũ. The strain field is subsequently obtained by straightforward
differentiation:

εεε = ∇symū+HSd
∇symũ+ δSd

(ũ⊗ nSd
)sym (24)

where δSd
is the Dirac function placed at the discontinuity Sd. For a station-

ary discontinuity, so that there is no variation of the Heaviside function HSd

and the Dirac function δSd
, the strain rate field follows by differentiation

with respect to time:

ε̇̇ε̇ε = ∇sym ˙̄u+HSd
∇sym ˙̃u+ δSd

( ˙̃u⊗ nSd
)sym (25)

The difference in strain rate fields at Sd is proportional to the unbounded
term at the interface:

[[ε̇εε]] = ζ( ˙̃u⊗ nSd
)sym (26)

also known as the Maxwell compatibility condition and ζ a non-zero scalar.
Substitution into Eq. (22) gives:

[[ṫd]] = ζ(nSd
·D · nSd

) · ˙̃u (27)

where the minor symmetry of the tangential stiffness tensor has been ex-
ploited. A non-trivial solution can exist if and only if the determinant of
the acoustic tensor A = nSd

·D · nSd
vanishes:

det(nSd
·D · nSd

) = 0 (28)

Thus, if condition (28) is met, discontinuous solutions can emerge and loss
of ellipticity of the governing differential equations occurs. It is noted that
condition (28) is coincident with Hill’s condition for the propagation of plane
acceleration waves in solids (Hill, 1962). Analyses that aim at determining
the load level at which the determinant of the acoustic tensor vanishes are
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also denoted as discontinuous bifurcation analyses, cf. Vardoulakis and
Sulem (1995).

Ellipticity is a necessary condition for well-posedness of the rate bound-
ary value problem, in the sense that a finite number of linearly independent
solutions are admitted, continuously depending on the data and not involv-
ing discontinuities, cf. Benallal et al. (1988). Loss of ellipticity therefore
allows an infinite number of solutions to occur, including those which in-
volve discontinuities. A numerical approximation method will try to capture
the discontinuity as good as possible and resolve it in the smallest possible
volume which the discretisation allows. Accordingly, mesh refinement will
result in a smaller and smaller localisation volume, but obviously, a discon-
tinuity cannot be represented exactly unless special approximation methods
are used that can capture a discontinuity rigorously.

For small displacement gradients loss of material stability as expressed
by Eq. (19) is a necessary condition for loss of ellipticity. We show this
by substituting the strain field (26) into the condition for loss of material
stability (18):

(ũ⊗ nSd
) : D : (ũ⊗ nSd

) > 0 (29)

The left-hand side of this inequality vanishes for arbitrary ũ if and only if

det(nSd
·Dsym · nSd

) = 0 (30)

Because the real-valued eigenspectrum of the acoustic tensor A is bounded
by the minimum and maximum eigenvalues of nSd

· Dsym · nSd
, Eq. (30)

is always met prior to satisfaction of Eq. (28). Since Eq. (30) can only
be satisfied if material stability is lost, Eq. (19), it follows that loss of
ellipticity can occur only after loss of material stability. However, when
geometrically non-linear terms are included, ellipticity can be lost prior to
loss of material stability. This, for instance, can occur at low, but positive
values of the plastic hardening modulus, in situations where geometrically
non-linear terms have a destabilising effect.

3.2 Mesh Sensitivity

Mesh sensitivity in a standard continuum equipped with a strain-softening
stress-strain relation is conveniently demonstrated by the example of a sim-
ple bar loaded in uniaxial tension, Figure 3. Let the bar be divided into
m elements. Prior to reaching the tensile strength ft a linear relation is
assumed between the normal stress σ and the normal strain ε:

σ = Eε
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After reaching the peak strength a descending slope is defined in this dia-
gram through an affine transformation from the measured load-displacement
curve. The result is given in Figure 4(a), where κu marks the point where
the load-carrying capacity is exhausted. In the post-peak regime the con-
stitutive model thus reads:

σ = ft + h(ε− κi) (31)

where, evidently, in case of degrading materials, h < 0 and may be termed
a softening modulus. For linear strain softening we have

h = − ft
κu − κi

(32)

L

m elements
σ

Figure 3. Bar with length L subjected to an axial tensile stress σ

σ

εκ i κ u

E

ft

σ

ft

εκ i κ u

m = 1m = n

Figure 4. Left: Elastic-linear damaging material behaviour. Right: Re-
sponse of an imperfect bar in terms of a stress-average strain curve

We next suppose that one element has a tensile strength that is marginally
below that of the other m− 1 elements. Upon reaching the tensile strength
of this element, failure will occur. In the other, neighbouring elements the
tensile strength is not exceeded and they will unload elastically. Beyond the
peak strength the average strain in the bar is thus given by:

ε̄ =
σ

E
+

E − h

Eh

σ − ft
m

(33)
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Substitution of Eq. (32) for the softening modulus h and introduction of
n as the ratio between the strain κu at which the residual load-carrying
capacity is exhausted and the threshold damage level κi, n = κu/κi and
h = −E/(n− 1), gives

ε̄ =
σ

E
+

n(ft − σ)

mE
(34)

This result has been plotted in Figure 4(b) for different values of m for given
n. The computed post-peak curves do not seem to converge to a unique
curve. In fact, they do, because the governing equations predict the failure
mechanism to be a line crack with zero thickness. The numerical solution
simply tries to capture this line crack, which results in localisation in one
element, irrespective of the width of the element. The impact on the stress-
average strain curve is obvious: For an infinite number of elements (m → ∞)
the post-peak curve doubles back on the original loading curve. A major
problem is now that, since in continuum mechanics the constitutive model is
phrased in terms of a stress-strain relation and not as a force-displacement
relation, the energy that is dissipated tends to zero upon mesh refinement,
simply because the volume in which the failure process occurs also becomes
zero. From a physical point of view this is unacceptable.

4 Non-Local and Gradient Damage Models

4.1 Non-Local Damage Models

In a non-local generalisation the equivalent strain ε̃ is normally replaced
by a spatially averaged quantity in the damage loading function (Pijaudier-
Cabot and Baz̆ant, 1987):

f(ε̄, κ) = ε̄− κ (35)

where the non-local strain ε̄ is computed from:

ε̄(x) =
1

Ψ(x)

∫
V

ψ(y,x)ε̃(y)dV , Ψ(x) =

∫
V

ψ(y,x)dV (36)

with ψ(y,x) a weight function. Often, the weight function ψ is assumed
to be homogeneous and isotropic, so that it only depends on the norm
s = ‖ x − y ‖. In this formulation all the other relations remain local:
the local stress-strain relation, Eq. (3), the loading-unloading conditions,
Eqs. (5), and the dependence of the damage variable ω on the internal
variable κ: ω = ω(κ). As an alternative to Eq. (36), the locally defined
internal variable κ can be replaced in the damage loading function f by a
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spatially averaged quantity κ̄:

κ̄(x) =
1

Ψ(x)

∫
V

ψ(y,x)κ(y)dV (37)

The fact that in elasticity-based damage models the stress can be computed
directly from the given strain, enables that a straightforward algorithm can
be set up for non-local damage models. For the non-local damage model
defined by Eq. (36) the algorithm of Box 2 applies. Although conceptually
straightforward, the tangential stiffness matrix entails some inconvenient
properties. Due to the non-local character of the constitutive relation the
tangential stiffness matrix is full, i.e. the bandedness is lost. The introduc-
tion of a cut-off on the averaging function partly remedies this disadvantage,
but an increased band width will nevertheless result. Secondly, symmetry
can be lost (Pijaudier-Cabot and Huerta, 1991).

Box 2. Algorithm for a non-local elasticity-based damage model.

1. Compute the strain increment: Δεεεj+1

2. Update the total strain: εεεj+1 = εεεj +Δεεεj+1

3. Compute the equivalent strain: ε̃j+1 = ε̃(εεεj+1)

4. Compute the non-local equivalent strain:

ε̄j+1(x) =
∑

i wiψ(yi,x)ε̃j+1(yi)Velem

5. Evaluate the damage loading function: f = ε̄j+1 − κ0

if f ≥ 0 , κj+1 = ε̄j+1

else κj+1 = κ0

6. Update the damage variable: ωj+1 = ω(κj+1)

7. Compute the new stresses: σσσj+1 = (1− ωj+1)D
e : εεεj+1

4.2 Gradient Damage Models

Non-local constitutive relations can be considered as a point of depar-
ture for constructing gradient models, although we wish to emphasise that
the latter class of models can also be defined directly by supplying higher-
order gradients in the damage loading function. Yet, we will follow the
first-mentioned route to underline the connection between integral and dif-
ferential type non-local models. This is done either by expanding the kernel
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ε̃ of the integral in Eq. (36) in a Taylor series, or by expanding of the in-
ternal variable κ in Eq. (37) in a Taylor series. We will first consider the
expansion of ε̃ and then we will do the same for κ. If we truncate after the
second-order terms and carry out the integration implied in Eq. (36) under
the assumption of isotropy, the following relation ensues:

ε̄ = ε̃+ c∇2ε̃ (38)

where c is a gradient parameter of the dimension length squared. It can
be related to the averaging volume and then becomes dependent on the
precise form of the weight function ψ. For instance, for a one-dimensional
continuum and taking

ψ(s) =
1√
2πl

e−s2/2�2 (39)

we obtain c = 1/2�2. Here, we adopt the phenomenological view that
� =

√
2c reflects the internal length scale of the failure process which we

wish to describe macroscopically.
Formulation (38), known as the explicit gradient damage model, has a

disadvantage when applied in a finite element context, namely that it re-
quires computation of second-order gradients of the local equivalent strain ε̃.
Since this quantity is a function of the strain tensor, and since the strain ten-
sor involves first-order derivatives of the displacements, third-order deriva-
tives of the displacements have to be computed, which would necessitate
C2-continuity of the shape functions. To obviate this problem, Eq. (38) is
differentiated twice and the result is substituted again into Eq. (38). Again
neglecting fourth-order terms this leads to:

ε̄− c∇2ε̄ = ε̃ (40)

In Peerlings et al. (2001) it has been shown that the implicit gradient dam-
age model of Eq. (40) becomes formally identical to a fully non-local for-
mulation for a specific choice of the weighting function ψ in Eq. (36), which
underlines that this formulation has a truly non-local character, in contrast
to the explicit gradient formulation of Eq. (38).

Higher-order continua require additional boundary conditions. With
Eq. (40) governing the damage process, either the averaged equivalent strain
ε̄ itself or its normal derivative must be specified on the boundary S of the
body:

ε̄ = ε̄s or nS · ∇ε̄ = ε̄ns (41)

In most example calculations in the literature the natural boundary condi-
tion nS · ∇ε̄ = 0 has been adopted.
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In a fashion similar to the derivation of the gradient damage models
based on the averaging of the equivalent strain ε̃, we can elaborate a gra-
dient approximation of Eq. (37), i.e. by developing κ into a Taylor series.
For an isotropic, infinite medium and truncating after the second term we
have (de Borst et al., 1996):

κ̄ = κ+ c∇2κ (42)

Since the weight functions for the different gradient formulations may be
quite different, also the gradient parameter c may be very different for the
various formulations. For instance, the gradient parameter c of Eq. (42)
may differ considerably from those in Eqs. (38) or (40). The additional
boundary conditions now apply to κ. Although formally similar to those of
Eq. (41), namely

κ = κs or nS · ∇κ = κns (43)

they have a different character, since they apply to an internal variable
instead of to a kinematic quantity, which seems somewhat suspect. On the
other hand, the physical interpretation that can be given to the boundary
condition (43)2 is rather clear. Since the damage variable ω is a function of
the internal variable κ, and therefore, the differential equation (42) and the
boundary conditions (43) can be replaced by (de Borst et al., 1996):

ω̄ = ω + c∇2ω (44)

where ω̄ is a spatially averaged damage field, similar to ε̄ or κ̄, and the
corresponding boundary conditions

ω = ωs or nS · ∇ω = ωns (45)

Equation (45)2 with ωns = 0 can be identified as a condition of no damage
flux through the boundary S of the body.

Numerical schemes for gradient-enhanced continua typically have the
character of a coupled problem and depart from the weak form of the balance
of momentum, ∫

V

δεεεTσσσdV =

∫
S

δuTtdS (46)

and a weak form of the averaging equation, e.g. Eq. (40):∫
V

δε̄ (ε̄− c∇2ε̄− ε̃)dV = 0 (47)

with δε̄ the variational field of the non-local strain ε̄. Transforming Eq. (47),
using the divergence theorem and the natural boundary condition nS ·∇ε̄ =
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0 yields: ∫
V

(δε̄ ε̄+ c∇δε̄ · ∇ε̄)dV =

∫
V

δε̄ ε̃dV (48)

From Eq. (48) it is clear that in this formulation a C0-interpolation for ε̄
suffices. Accordingly, we can discretise the displacements u and the non-
local strains

u = Ha and ε̄ = H̄e (49)

where H and H̄ contain C0-interpolation polynomials which can have a
different order. Similarly, for the variations

δu = Hδa and δε̄ = H̄δe (50)

Substitution into Eqs. (46), (48) and requiring that the result holds for
arbitrary (δa, δe), yields the discrete format of the equilibrium equation:∫

V

BTσσσdV =

∫
S

HTtdS (51)

and of the averaging equation:∫
V

(H̄TH̄+ cB̄TB̄)dV =

∫
V

H̄Tε̃εεdV (52)

where B̄ contains the spatial derivatives of H̄. An algorithm for computing
the right-hand side of this model is given in Box 3.

Box 3. Algorithm for a second-order implicit gradient damage model.

1. Compute the strain increment: Δεεεj+1 and the non-local strain in-
crement Δε̄j+1

2. Update the total strain: εεεj+1 = εεεj +Δεεεj+1 and
the non-local strain ε̄j+1 = ε̄j +Δε̄j+1

3. Evaluate the damage loading function: f = ε̄j+1 − κ0

if f ≥ 0 , κj+1 = ε̄j+1

else κj+1 = κ0

4. Update the damage variable: ωj+1 = ω(κj+1)

5. Compute the new stresses: σσσj+1 = (1− ωj+1)D
e : εεεj+1
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The tangential stiffness matrix needed for an iterative solution via the
Newton-Raphson method reads (Peerlings et al., 1996):[

Kaa Kae

Kea Kee

](
da
de

)
=

(
faext − faint
f eint −Keee

)
(53)

with f eint given by the right-hand side of Eq. (52). The stiffness matrices are
given by:

Kaa =

∫
V

(1− ω)BTDeBdV (54)

Kae =

∫
V

qBTDeεεεH̄dV (55)

Kea =

∫
V

H̄T

(
∂ε̃

∂εεε

)
BdV (56)

Kee =

∫
V

(
H̄TH̄+ cB̄TB̄

)
dV (57)

where q = ∂ω/∂κ for loading and vanishes if otherwise. The expressions for
Kae and Kea exhibit a non-symmetry. This non-symmetry is caused by the
damage formalism and not by the gradient enhancement, cf. Eq. (14).

5 Cosserat Elasto-Plasticity

5.1 Cosserat Elasticity

In the present treatment we shall limit attention to two-dimensional,
planar deformations. In that case, each material point in a micro-polar
solid has two translational degrees-of-freedom, namely ux and uy and a
rotational degree-of-freedom ωz, the rotation axis of which is orthogonal to
the x, y-plane. The normal strains are defined as in a standard continuum,
but for the shear strains we have:

εxy =
∂ux

∂y
+ ωz (58)

and

εyx =
∂uy

∂x
− ωz (59)

In addition to the normal strains and the shear strains, the Cosserat theory
requires the introduction of micro-curvatures:

κzx =
∂ωz

∂x
(60)
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and

κzy =
∂ωz

∂y
(61)

Anticipating the treatment for elasto-plasticity we will rather use the gen-
eralised curvatures κzx� and κzy�, where � is a material parameter with the
dimension of length. It is this parameter which effectively sets the internal
length scale in the continuum, and attains the role of a characteristic length
scale.

The strain components introduced sofar may be assembled in a vector,

εεε = (εxx, εyy, εzz, εxy, εyx, κzx�, κzy�)
T (62)

Note that in addition to the strain components, also the normal strain in
the z-direction, εzz has been included in the strain vector εεε. This has been
done because, although this strain component remains zero under plane
strain conditions during the entire loading process, this is not necessarily
the case for the elastic and plastic contributions of this strain component.
Also, the normal stress σzz, which acts in the z-direction, may be non-zero,
which necessitates inclusion of εzz and σzz in the stress-strain relation. It
is furthermore noted that by multiplying the micro-curvatures κzx and κzy

by the length parameter � all the components of the strain vector εεε have
the same dimension.

We now consider the statics of a Cosserat continuum. While the strain
vector εεε is comprised of seven components for planar deformations, so is the
stress vector σσσ. As in a classical continuum we have the normal stresses σxx,
σyy and σzz, and the shear stresses σxy, σyx. For the Cosserat continuum we
also have to introduce stress quantities that are conjugate to the curvatures
κzx and κzy, namely the couple stresses mzx and mzy. Dividing the couple
stresses by the length parameter �, we obtain a stress vector σσσ in which all
the entries have the same dimension:

σσσ = (σxx, σyy, σzz, σxy, σyx,mzx/�,mzy/�)
T (63)

Omitting body forces and body couples for sake of simplicity, translational
equilibrium in the x and the y-directions, respectively, results in the usual
balance of momentum:

∂σxx

∂x
+

∂σxy

∂y
= 0

∂σyx

∂x
+

∂σyy

∂y
= 0
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which replicates the results obtained for a classical, non-polar continuum.
However, for rotational equilibrium we find that:

∂mzx

∂x
+

∂mzy

∂y
− (σxy − σyx) = 0 (64)

which shows that the stress tensor is in general only symmetric – σxy = σyx –
if the couple-stressesmzx andmzy vanish, the so-called Boltzmann’s Axiom.

Anticipating the treatment of Cosserat plasticity we decompose the strain
vector into an elastic contribution εεεe and a plastic part εεεp:

εεε = εεεe + εεεp (65)

while we assume that the elastic strains are linearly related to the stresses:

σσσ = De : εεεe (66)

where De is the stiffness matrix that contains the elastic moduli:

De =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2μc1 2μc2 2μc2 0 0 0 0
2μc2 2μc1 2μc2 0 0 0 0
2μc2 2μc2 2μc1 0 0 0 0
0 0 0 μ+ μc μ− μc 0 0
0 0 0 μ− μc μ+ μc 0 0
0 0 0 0 0 2μ 0
0 0 0 0 0 0 2μ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(67)

with c1 = 1−ν
1−2ν and c2 = ν

1−2ν . The elastic constants μ and ν have the clas-
sical meaning of the shear modulus and Poisson’s ratio, respectively. μc is
an additional material constant, completing the total of four material con-
stants, viz. μ, ν, � and μc that are needed to describe the elastic behaviour
of an isotropic Cosserat continuum under planar deformations. The coeffi-
cient two has been introduced in the terms De

66 and De
77 in order to arrive

at a convenient form of the elasto-plastic constitutive equations. The total
(bending) stiffness that sets the relation between the micro-curvatures and
the couple stresses is basically determined by the value of the internal length
scale �. All the elastic stiffness moduli in De have the same dimension. This
is attributable to the fact that all components of the strain vector εεε and the
stress vector σσσ have the same dimension.

5.2 Cosserat Plasticity

As an example we use a pressure-dependent J2-flow theory (Drucker-
Prager model). Accordingly, the yield function f can be written as

f(σσσ, γ) =
√

3J2 + αp− σ̄(γ) (68)
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with σ̄ a function of the hardening parameter γ and α a friction coefficient.
p = 1

3 (σxx + σyy + σzz) and J2 is the second invariant of the deviatoric
stresses, which, for a micro-polar continuum, can be generalised as:

J2 = a1s
T : s+ a2s : s+ a3m : m/�2 (69)

where the summation convention with respect to repeated indices has been
adopted. s is the deviatoric stress tensor and a1, a2 and a3 are material
parameters. In the absence of couple-stresses, i.e. m = 0, s = sT, so that:

J2 = a1s
T : s+ a2s : s (70)

which implies that the constraint a1 + a2 = 1
2 must be enforced to achieve

that the classical expression for J2 be retrieved. Introduction of the proje-
tion matrix

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
3 − 1

3 − 1
3 0 0 0 0

− 1
3

2
3 − 1

3 0 0 0 0
− 1

3 − 1
3

2
3 0 0 0 0

0 0 0 2a1 2a2 0 0
0 0 0 2a2 2a1 0 0
0 0 0 0 0 2a3 0
0 0 0 0 0 0 2a3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(71)

and the projection vector:

πππT =

(
1

3
,
1

3
,
1

3
, 0, 0, 0, 0

)
(72)

for planar deformations, enables a rewriting of the yield function in an
appealingly compact format:

f(σσσ, γ) =

√
3

2
σσσTPσσσ + απππTσσσ − σ̄(γ) (73)

A (non-associated) flow rule is now obtained in an identical fashion to that
in a non-polar continuum by defining a resembling plastic potential function:

g(σσσ, γ) =

√
3

2
σσσTPσσσ + βπππTσσσ − σ̄(γ) (74)

with β a dilatancy factor, from which the plastic strain rates can be derived:

ε̇̇ε̇εp = λ̇
∂g

∂σσσ
(75)
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with λ̇ the plastic multiplier which, in analogy with standard plasticity
theory, is determined from the consistency condition ḟ = 0. Substitution of
the plastic potential for the Drucker-Prager plasticity model, Eq. (74), into
the above expression for the plastic strain rate yields

ε̇̇ε̇εp = λ̇

⎛⎝ 3Pσσσ

2
√

3
2σσσ

TPσσσ
+ βπππ

⎞⎠ (76)

It remains to identify the hardening parameter γ in a Cosserat contin-
uum. For this purpose we recall the conventional strain-hardening hypoth-
esis:

γ̇ =

√
2

3
ėp : ėp (77)

with ėp the deviatoric plastic strain-rate tensor. Since there are no couple-
stress effects in uniaxial loading we require that any modification for a
Cosserat continuum does not affect the behaviour for uniaxial loading. A
possible generalisation is then:

γ̇ =
√
b1(ėp)T : ėp + b2ėp : ėp + b3κ̇̇κ̇κp : κ̇̇κ̇κp/�2 (78)

with b1 + b2 = 2
3 in order that definition the strain-hardening hypothesis in

a non-polar solid be retrieved. Introduction of the matrix

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
3 − 1

3 − 1
3 0 0 0 0

− 1
3

2
3 − 1

3 0 0 0 0
− 1

3 − 1
3

2
3 0 0 0 0

0 0 0 3
2b1

3
2b2 0 0

0 0 0 3
2b2

3
2b1 0 0

0 0 0 0 0 3
2b3 0

0 0 0 0 0 0 3
2b3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(79)

allows γ̇ to be written as:

γ̇ =

√
2

3
(ε̇εεp)TQε̇εεp (80)

for planar deformations. We next substitute the flow rule, Eq. (76), into
this expression. The result is given by:

γ̇ = λ̇

√
σσσTPQPσσσ

σσσTPσσσ
(81)
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since λ̇ and σ̄ are non-negative, and Qπππ = 0. In line with a standard
continuum we choose a1, a2, a3 and b1, b2, b3 such, that

PQP = P (82)

and we obtain
γ̇ = λ̇ (83)

which has the same format as in standard Drucker-Prager plasticity theory.

5.3 A Return-Mapping Algorithm

With the governing rate equations for the micro-polar elasto-plastic solid
at hand, we can develop an algorithm that determines the stress increment
in a finite loading step. Here, a variety of algorithms exist, but we shall
only consider the Euler backward algorithm, in which the state parameters
are evaluated at the end of the loading step:

σσσj+1 = σσσ0 +De(Δεεε−Δεεεp) (84)

The expression for the plastic strain rate, Eq. (76) is now integrated using
a single-point Euler backward rule. This results in:

Δεεεp = Δλ

⎛⎝ 3Pσσσj+1

2
√

3
2σσσ

T
j+1Pσσσj+1

+ βπππ

⎞⎠ (85)

so that the expression for the stress can be elaborated as:

σσσj+1 = σσσe −Δλ

(
3DePσσσj+1

2(σ̄(λj+1)− απππTσσσj+1)
+ βDeπππ

)
(86)

Unfortunately, σσσj+1 also enters the denominator on the right-hand side. To
eliminate σσσj+1 from the right-hand side of the identity we premultiply by
the projection vector πππ, which results in:

πππTσσσj+1 = πππTσσσe −ΔλβK (87)

with K = πππTDeπππ. For isotropic elasticity K can be identified as the bulk
modulus. Substitution into Eq. (86) yields a formulation in which σσσj+1 is
expressed in terms of the trial stress σσσe and the elastic parameters:

σσσj+1 = A−1(σσσe −ΔβDeπππ) (88)

where

A = I+
3ΔλDeP

2(σ̄(λj+1) + ΔλαβK − απππTσσσe)
(89)

Substitution in the yield condition f(σσσj+1, γj+1) = 0 gives a non-linear
equation in Δλ: f(Δλ) = 0.
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5.4 Consistent Tangent Operator

For the derivation of a properly linearised set of tangential moduli we
can differentiate the return map, Eq. (88), to give:

σ̇σσ = H (ε̇εε− ε̇εεp) (90)

where, for Drucker-Prager plasticity:

H−1 = (De)−1 −Δλ

√
3

2

σσσTPσσσP−PσσσσσσTP√
σσσTPσσσ

(91)

Since f = f(σσσ, γ), the consistency condition ḟ = 0 can be elaborated as:(
∂f

∂σσσ

)T

σ̇σσ − hλ̇ = 0 (92)

with the hardening modulus

h =
∂σ̄

∂γ
(93)

Eqs. (90) and (92) can now be combined to give the consistent tangential
stiffness relation:

σ̇σσ =

⎛⎜⎝H−
H ∂g

∂σσσ

(
∂f
∂σσσ

)T
H

h+
(

∂f
∂σσσ

)T
H ∂g

∂σσσ

⎞⎟⎠ ε̇̇ε̇ε (94)

A deficiency of the Cosserat plasticity model is that it is only effective when
the local rotations are mobilised, i.e. for mode-II failure.

6 Non-Local and Gradient Plasticity

6.1 Non-Local Plasticity

Alternatively, Bažant and Lin (1988) have suggested to average γ̇ for a
standard continuum, such that:

˙̄γ(x) =
1

Ψ(x)

∫
V

ψ(y,x)γ̇(y)dV (95)

with Vr(x) =
∫
g(s − x)dV and g(s) a weighting function, for which the

error function is usually substituted, and to make f dependent on γ̄ instead
of on γ:

f = f(σσσ, γ̄) (96)
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Alternatively, one can first average the plastic strain rate tensor ε̇εεp and
then form ˙̄γ. Numerical experience indicates that the differences between
both approaches are marginal. Either approach can lead to a set of rate
equations that remains elliptic after the onset of localisation. This holds
true for mode-I type failure mechanisms (decohesion) and mode-II type
failures (slip).

A disadvantage that adheres to non-local plasticity is the fact that the
consistency condition, i.e. ḟ = 0, results in an integro-differential equation
instead of in an algebraic equation that can be solved locally:(

∂f

∂σσσ

)T

σ̇̇σ̇σ − h

Ψ

∫
V

ψ(y,x)γ̇(y)dV = 0 (97)

where it is implied that Ψ = Ψ(x), σ̇σσ = σ̇σσ(x) etc. Using the elasto-plastic
decomposition, Eq. (65), the flow rule, Eq. (75), and the strain-hardening
hypothesis, Eq. (77), we can rework this identity as:

λ̇ = λ̇local − h

Ψ
(

∂f
∂σσσ

)T
De ∂g

∂σσσ

∫
V

ψ(y,x)λ̇(y)ϕ(y)dV (98)

with

λ̇local =

(
∂f
∂σσσ

)T
Deε̇̇ε̇ε(

∂f
∂σσσ

)T
De ∂g

∂σσσ

(99)

and

ϕ =

√
2

3

(
∂g

∂σσσ

)T
∂g

∂σσσ
(100)

Next, we consider a one-dimensional continuum for simplicity and we ap-
proximate the integral by a finite sum:

λ̇i = (λ̇local)i − h

Ψ
(

∂f
∂σσσ

)T
De ∂g

∂σσσ

ni∑
j=0

wjψ(yj , xi)λ̇(yj)ϕ(yj) (101)

with wj a weight factor. To obtain a proper solution we must carry out an
iterative procedure within each global equilibrium iteration:

λ̇i = (λ̇local)i − h

Ψ
(

∂f
∂σσσ

)T
De ∂g

∂σσσ

ni∑
j=0

wjψ(yj , xi)λ̇
k−1(yj)ϕ(yj) (102)
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where the superscript k is the iteration counter. A simple alternative would
be to carry out no iterations, so that:

λ̇i = (λ̇local)i − h

Ψ
(

∂f
∂σσσ

)T
De ∂g

∂σσσ

ni∑
j=0

wjψ(yj , xi)λ̇local(yj)ϕ(yj) (103)

Such an averaging procedure has been utilised by Bažant and Lin (1988).
Unfortunately, omission of an iteration loop in which λ̇i is computed prop-
erly results in loss of satisfaction of the consistency condition, which makes
the algorithm defect, especially for large loading steps.

The numerical difficulty discussed above does not occur when total stress-
strain relations are employed, that is when the strain is not decomposed into
elastic and plastic components. An example is the elasticity-based non-local
damage model of Pijaudier-Cabot and Baz̆ant (1987), where the averaging
process can be carried out directly with respect to the strains.

6.2 Gradient plasticity

Gradient plasticity models can be derived from fully non-local models
by first expanding the weight function g(s) in a Taylor series about s = 0
and then carrying out the integration. The result is given by

˙̄γ = γ̇ + c1∇2γ̇ + c2∇4γ̇ + . . . (104)

where the coefficients c1, c2 depend on the form of the weighting function and
the dimension considered. Note that the odd derivates cancel because of the
implicit assumption of isotropy. Restricting the treatment to second-order
derivatives, the functional dependence on the yield function now becomes:

f = f(σσσ, γ,∇2γ) (105)

The numerical problem delineated above, which prevents an efficient
use of elasto-plastic non-local models, in principle also applies to gradient
plasticity models. However, gradient plasticity has the advantage that the
consistency condition yields a partial differential equation instead of an
integro-differential equation, namely for the yield function of Eq. (105):(

∂f

∂σσσ

)T

σ̇̇σ̇σ − hλ̇+ c∇2γ̇ = 0 (106)

where h and c̄ are defined as:

h = − γ̇

λ̇

∂f

∂γ
(107)
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and

c =
∂f

∂∇2γ
(108)

If the partial differential equation (106) is, just as the equilibrium condition,
cf. Eq. (46), satisfied in a weak sense only, a set of equations results that
is suitable as a starting point for large-scale finite element computations in
two and three dimensions:∫

V

δε̇̇ε̇εTσσσdV =

∫
S

δu̇TtdS (109)

and ∫
V

δλ̇

((
∂f

∂σσσ

)T

σ̇̇σ̇σ − hλ̇+ c∇2γ̇

)
dV = 0 (110)

Together with the kinematic relations and the elastic stress-strain relation,
Eq. (66), which are both satisfied in a pointwise manner, this set of equa-
tions define the elasto-plastic rate boundary value problem. The fact that
the consistency condition is no longer satisfied in a pointwise manner marks
a departure from return-mapping algorithms that are used in standard plas-
ticity and in Cosserat plasticity. Now, the plastic multiplier λ̇ is considered
as a fundamental unknown and has a role similar to that of the displace-
ments. It is solved for at global level together with the displacement degrees-
of-freedom.

The displacement field u and the field of plastic multipliers λ can be
discretized to nodal variables a and ΛΛΛ:

u = Ha , λ = hTλλλ (111)

Use of a Bubnov-Galerkin approach and linearising then leads to the fol-
lowing set of equations:[

Kaa Kaλλλ

KT
aλλλ Kλλλλλλ

](
da
dλλλ

)
=

(
faext − faint

0

)
(112)

where

Kaa =

∫
V

BTDeBdV (113)

Kaλλλ = −
∫
V

BTDe ∂f

∂σσσ
hTdV (114)

Kλλλλλλ =

∫
V

[(
h+

(
∂f

∂σσσ

)T

De ∂f

∂σσσ

)
hhT − ch∇2hT

]
dV (115)
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and fext the external force vector. In the preceding hT = (h1, . . . , hn) is the
vector that contains the interpolation polynomials for the plastic multiplier
and pT = (∇2h1, . . . ,∇2hn). The detailed derivation of these equations
and the finite elements that have been constructed on the basis of them are
described in de Borst and Mühlhaus (1992); de Borst and Pamin (1996).

An unpleasant property of Eq. (112) is the unsymmetry that enters
through Kλλ. For the pure rate problem Kλλ can be symmetrised. In-
troducing qT = (∇h1, . . . ,∇hn) and using Green’s theorem we obtain

−h∇2hT → ∇h∇hT (116)

and the non-standard boundary conditions at the elasto-plastic boundary
Sλ: δλ̇ = 0 or (∇λ̇)Tnλ = 0, with nλ the outward normal at Sλ.
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