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Abstract In this series of lectures, after an introduction of the most
basic elements and some historical perspective on the matter, an ex-
position of electromagnetic source terms to be taken into account
in the Galilean invariant continuum thermodynamics of deformable
continua is first given. The emphasis here is placed on the notions
of ponderomotive force and couple, of which the latter already hints
at some generalization of usual continua by the necessity to envis-
age nonsymmetric Cauchy stress tensors. Then the notion of mag-
netic continua endowed with a dynamic magnetic structure, such
as in ferromagnets and antiferromagnets, is envisioned. The corre-
sponding modelling can be made by exploiting different methods,
among these a direct model of magneto-mechanical interactions in
the manner of H. F. Tiersten but also an application of a generalized
version of the principle of virtual power, or that of a Hamiltonian
variational principle in the absence of dissipation. Such approaches
allow one to exhibit a strict analogy with the equations that gov-
ern generalized, purely mechanical, continua such as micropolar or
oriented media in the manner of the Cosserat brothers or Eringen,
by introducing the notions of spin and couple stress. A parallel
approach is given for electro-deformable media endowed with per-
manent electric polarization, e.g., ferroelectrics. Then analogies are
established between the resonance couplings arising in certain struc-
tures (plates, shells) as shown by Mindlin in classical studies, and
those existing for coupled magnetoelastic and electroelastic waves
of different types. Finally, the contribution of these electromagnetic
microstructures in the computation of configurational forces (e.g.,
driving forces acting on cracks) is shown to be quite similar to the
terms due to a mechanical microstructure.

1 Introduction and Historical Perspective

An introduction to basic properties of electromagnetic properties is to be
found in Chapter 1, pp. 1–61, of Maugin (1988).
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Placed in an electric field E, a point-like electric charge (monopole, a
scalar) q is subjected to a force

Fe = qE. (1)

In the same condition an electric dipole p (a polar vector) is acted upon by
a couple (axial vector)

Ce = p×E. (2)

There exists, so far, no evidence for the existence of magnetic monopoles
(magnetic charges). But a magnetic dipole m (an axial vector) placed in a
magnetic field H is the object of a mechanical couple

Cm = m×H. (3)

It is this concept that explains the alignment of the needle of a compass
with the local earth magnetic field. Full alignment after a transient period
nullifies the couple (3).

In a continuous body where one assumes a continuous distribution of
electric charges, electric dipoles, magnetic dipoles, etc., the force expression
per unit volume generalizing (1) is much more complicated and requires a
specific derivation (see Section 2). But the generalizations of (2) and (3) are
relatively simple. One defines the electric polarization P and magnetization
M per unit volume in such a way that (2) and (3) are replaced by

Cm = P×E+M×H. (4)

Here P and M are primarily determined by E and H, i.e., we can write
symbolically

P = P(E; .), M = M(H; .) (5)

the missing arguments being temperature, strain, etc. Equations (5) are
constitutive equations that characterize a specific material. The fields P
and M are “material” fields (they vanish in a vacuum) and are classically
defined per unit of matter. They introduce the difference between E and
the electric displacement vector D on the one hand, and between H and the
magnetic induction B, on the other hand, so that — in so-called Lorentz–
Heaviside electromagnetic units —

H = B−M, D = E+P. (6)

This, in turn, means that D can be used instead of E in equation (4).
Similarly, B can be used in place of H in that equation.

Equation (4) is important in the present context for the following rea-
son. It has long been difficult to conceive of a purely mechanical means to
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produce a couple per unit volume. Accordingly, the possible existence of
couples such as (4) has regularly been advanced as a justification to consider
nonsymmetric stress tensors (that are classically shown to be symmetric
in the absence of body couple) and this, as we know (cf. Maugin, 2010,
2011a), was the primary reason to introduce the first and simplest general-
ization of continuum mechanics.

In truth the interaction between electromagnetic behavior and micro-
structure and the mechanical, statical or dynamical, response of a material
may be much more farfetched than simply through the couple (4).

First of all, while (4) may be referred to as the ponderomotive couple
(the naming is misleading as it still smells of its “point-like” origin), the
corresponding ponderomotive force (a force per unit volume of the material)
may be much more involved than that given by (1). A justification for a
rather reasonable form of this force will be given in Section 2.

Second, and that is most important as quite often these are the only
remaining effects accounted for by engineers, there may exist couplings
of energetic origin such as of piezoelectric, electrostrictive, electroelastic,
piezomagnetic and magnetostrictive types. It might be a surprise to most
readers to learn that magnetostriction (a longitudinal strain produced in a
mechanically free body by a magnetic field in the length direction of the
specimen, and that goes like the square of this field) was discovered by
James Joule (of electric-conduction and thermodynamics fame) in 1842 in
Nickel. This magneto-mechanical coupling exists in all ferromagnetic bodies
to a greater or lesser extent. There is no symmetry restriction. The anal-
ogous electro-mechanical coupling is called electrostriction and also exists
in all electro-deformable bodies to a greater or lesser extent for the same
reason. Like magnetostriction it is an effect of the second order in the field.
Because of its smallness the effect was in fact observed and modelled only in
the 1920s. The energy electro-magneto-mechanical effects of the first order
are of different nature and complexity for they necessarily involve appropri-
ate symmetry properties of the considered material. Thus, (inverse) piezo-
electricity, discovered in 1881 by the Curie brothers after their discovery of
the “direct” piezoelectric effect (1880; appearance of electric charges at the
boundary of a deformed body), provides a strain that is linear in the applied
electric field but only for certain allowed material symmetries of crystals (see
Katzir, 2003). It requires the absence of a center of symmetry to allow for
a direct coupling between a stress (essentially a second-order tensor vari-
able) and an electric field (essentially a polar vector). Piezomagnetism, the
somewhat equivalent magneto-mechanical coupling first observed in Russia
in 1960 (Borovik-Romanov), is even rarer in that the axial nature of a mag-
netic field requires a specific magnetic symmetry of the material (e.g., some
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antiferromagnetic fluorides). Higher order electro- and magneto-mechanical
couplings of energy origin are simply referred to as electroelastic couplings
and magnetoelastic couplings of higher order (see, e.g., Maugin et al., 1992).
It must be noted that Pierre Curie paid special attention to the differences
between polar vectors (e.g., electric polarization) and axial vectors (e.g.,
magnetization) as this plays a fundamental role in his well known state-
ment of his principle of symmetry.

The just mentioned energetic couplings do not modify before hand the
standard balance equations of mechanics (e.g., the balance of moment of
momentum: the stress remains symmetric as it still is the derivative of the
internal or free energy with respect to a symmetric strain). With much
more drastic consequences is the fact that some electromagnetic materials
are endowed with an electric or magnetic microstructure which, in spite of
being of microscopic origin, does influence the mechanical behavior and, in
particular, yields a non symmetric stress tensor in an equation of moment
of momentum that acquires additional contributions. This is the case in
materials exhibiting so-called ferroic states (for a classification of these, see
Aizu, 1970). Here, because of the different vectorial natures of electric
polarization and magnetization we must distinguish between the magnetic
case and the electric case.

Examining first the electric case, we note that electric polarization is akin
to a mechanical displacement up to an electric charge (cf. Maugin, 1988,
chap. 1). That is why in some electric materials we can associate a kind
of classical inertia with the electric microstructure provided by a network
of permanent electric dipoles. That is, ṗ denoting the time derivative of
an electric dipole density, we may have to consider an associated “kinetic
energy” of the type

K(ṗ) =
1

2
dE ṗ · ṗ, (7)

where dE is a kind of inertia to be evaluated from a microscopic model. Such
an evaluation was given in a work by Pouget et al. (1986a,b) for ferroelec-
tric materials of the molecular-group type (e.g., NaNO2). An expression
such as (7) is reminiscent of the kinetic energy formally associated with
so-called directors in Ericksen’s (1960) theory of “anisotropic” (microstruc-
tured, liquid-crystal) fluids. In addition, because of a prevalent electric
ordering in the network of electric dipoles in ferroelectrics, the interaction
between neighbouring electric dipoles leads to considering the presence of
the gradient of electric polarization in the internal or free density energy of
the material considered as a continuum, a kind of weak nonlocality.

In the magnetic case of ferroic states — in ferromagnetism, antiferro-
magnetism and ferrimagnetism — the magnetic dipole density is akin to an
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angular momentum — a spin, as of a particle in rotation about an axis; see
the microscopic definition of magnetization in Maugin (1988). Accordigly,
there exists the celebrated gyromagnetic relation of quantum-mechanical
origin between a spin density and a magnetization density, e.g., per unit of
mass of the material,

s = γ−1 μ, (8)

where γ is the so-called gyromagnetic ratio and μ denotes the magnetization
per unit mass (cf. Van Vleck, 1932).

The existence of the relation (8) makes that inertia in magnetic ferroic
states is completely different in form from that in ferroelectrics — equation
(7). As a matter of fact, since (8) obviously relates to rotational-precessional
dynamical properties, there does not exist a closed form for the continuum
magnetic kinetic energy in such bodies. The reason is that, magnetization
having reached saturation in small domains of the material, we have the
important identity

ṡ · ω ≡ 0, (9)

where ω is the precessional velocity of the magnetic spin. We say that
ṡ is a d’Alembertian inertia couple (i.e., like a minute gyroscope, it does
not produce any power in a real precessional velocity; see Tiersten, 1964).
Only a quantum-mechanical formulation using the appropriate formalism
(spinors, Pauli matrices) allows one to introduce an integrated form of the
kinetic energy (cf. Nelson and Chen, 1994). Authors not aware of these
facts were tempted to introduce a magnetization kinetic energy by analogy
with that of electric dipoles (7) and Ericksen’s (1960) director theory. This
is the case of Lenz (1972) and more recent works that ignore the physical
bases (e.g., De Simone and Podio-Guidugli, 1996). This is pitiful because
it yields wrong results concerning wave propagation phenomena. But simi-
larly to the ferroelectric case, the interaction between neighboring magnetic
spins induces a dependency of the internal or free energy on the gradient of
magnetization.

On account of the above-made remarks, we can cite a selection of those
papers that have contributed much to the development of the equations,
and their dynamical exploitation thereof, of deformable ferroelectrics and
ferromagnets in a continuum landscape:

• For ferroelectrics and ionic crystals: Voigt (1928), Tiersten (1971),
Mindlin (1972), Maugin (1976c), Maugin and Pouget (1980);

• For ferromagnets and their generalizations: Kittel (1958), Tiersten
(1964, 1965), Brown (1966), Akhiezer et al. (1968), Maugin and Erin-
gen (1972a), Maugin (1971, 1976a,b, 1988), Soumahoro and Pouget
(1994), Maugin et al. (1992).
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From the above exposed arguments, we deduce that a microstructure
related to electric polarization properties will be primarily described dy-
namically by an equation that governs a “displacement”, i.e., an equation
that will resemble a standard equation of motion governing a linear momen-
tum in continuum physics. In contrast, a microstructure related to magnetic
properties will be described dynamically by an equation that will essentially
be an equation governing a moment of momentum. As to the means of es-
tablishing such equations, we identify three basic ones:

(i) In the absence of dissipation but knowing the functional dependence
of the energy density, a variational principle may be appropriate, but
caution should be taken in the magnetic case because of the property
(9) — see Tiersten (1965); Maugin and Eringen (1972a). For the
electric case see Suhubi (1969).

(ii) For a general thermodynamical behavior and basing on an a priori
statement of balance laws, one needs a model for introducing the bal-
ance equation related to the relevant electromagnetic microstructure.
For this approach see Askar et al. (1970), Tiersten (1971), Mindlin
(1972), Maugin (1976c) for electric properties; Tiersten (1964), Mau-
gin and Eringen (1972a), Maugin (1976a, p. 1737), Maugin (1988,
Figure 6.2.1), Eringen and Maugin (1990, chap. 9) for magnetic prop-
erties.

(iii) For an equivalent state of generality but a more formal structural
algebraic approach, one may exploit a modern formulation of the
principle of virtual power in which new electromagnetic degrees of
freedom are granted a status equivalent to that of standard deforma-
tion processes; for this see Collet and Maugin (1974), Maugin and
Pouget (1980), Soumahoro and Pouget (1994) for electric properties,
and Maugin (1974, 1976a,b) for magnetic ones; Maugin (1980a) for a
general comprehensive presentation.

Before proceeding to the construction of these equations, we need recall
the expression of source terms due to electromagnetic fields that appear in
standard balance laws of continuum mechanics. This itself is based on the
consideration of microscopic fields and a meaningful modelling.

2 Electromagnetic Sources in Galilean Invariant
Continuum Physics

2.1 Maxwell’s Equations

In magnetized, electrically polarized, and electrically conducting matter,
the celebrated set of Maxwell’s equations in a fixed laboratory frame reads
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in full generality — and according to Heaviside’s synthetic formulation —
as

∇×E+
1

c

∂B

∂t
= 0, ∇ ·B = 0, (10)

and

∇×H− 1

c

∂D

∂t
=

1

c
J, ∇ ·D = qf , (11)

where c is the velocity of light in vacuum, J is the electric current vector,
and qf is the density of free electric charges. The first set (10) is valid every-
where and yields the notion of electromagnetic potentials. In order to close
the system of field equations (10)–(11), we must be given electromagnetic
constitutive equations (5) together with an equation for electric current,
e.g., J = J(E, ..) and the relations (6).

Taking the divergence of (11)1 and accounting for (11)2, we obtain the
law of conservation of electric charge:

∂qf
∂t

+∇ · J = 0, (12)

a strict conservation law. Second, by a usual manipulation, one also deduces
from (10)–(11) an energy identity called the “Poynting–Umov theorem”,
such that

H · ∂B
∂t

+E · ∂D
∂t

= −J ·E−∇ · S, S ≡ cE×H, (13)

without any hypothesis concerning the electromagnetic constitutive equa-
tions. Note that the Joule term J·E can be interpreted as a power expended
by an electric force. Indeed, we can write as an example

J ·E = (q v) ·E = (qE) · v = f · v, (14)

where f = qE is seen in statics, according to Lorentz, as the elementary
mechanical force acting on a point particle of electric charge q in an electric
field E. For a particle moving at velocity ẋ = v, we have the Lorentz force

f = qE+
q

c
v ×B = q Ẽ, Ẽ = E+

1

c
v ×B, (15)

where the electric field Ẽ is called the electromotive intensity. In addition to
this field, we will be led to introducing other fields in a so-called co-moving
frame:

J̃ = J− qf v, M̃ = M+
1

c
v ×P (16)

where the first is the conduction current per se, and the last is the magne-
tization per unit volume in this frame. The large classes of electromagnetic
materials are defined thus:
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• Insulators:
qf = 0, J̃ = 0; (17)

• Non-polarized materials [Galilean approximation; compare to (16)2,
see Maugin (1988)]:

P̃ ≡ P = 0. (18)

• Non-magnetized materials:

M̃ = 0. (19)

This reduces to M = 0 in statics or if the material simultaneously is
non polarized electrically.

• Dielectric materials: These are insulators in which, generally,

P �= 0. (20)

• In quasi-electrostatics (true electro-magnetic effects discarded but the
remaining fields are still time-dependent), (10) and (11) reduce to

∇×E = 0, ∇ ·D = qf , D = E+P; (21)

The first of these tells us that we can introduce a scalar electric po-
tential ϕ such that E = −∇ϕ.

• In quasi-magnetostatics (true electro-magnetic effects discarded but
the remaining fields are still time-dependent), (10) and (11) reduce to

∇×H =
1

c
J, ∇ ·B = 0, H = B−M. (22)

• For dielectrics one has to take qf = 0 in the second of (21), while
for insulators one has to take J = 0 in the first of (22). In this case
∇×H = 0 and one can introduce a scalar magneto-static potential φ
such that H = −∇φ.

Equation (12) is fully discarded in the case of dielectrics. The Poynting–
Umov theorem (13) takes the form

E · ∂D
∂t

= −∇ · S (23)

in non-magnetized dielectrics in quasi-electrostatics, while it reduces to

H · ∂B
∂t

= −∇ · S, (24)

in insulating non-polarized magnetic materials in quasi-magnetostatics.
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These two equations show that without loss in generality we can define
the Poynting–Umov energy flux as

S = ϕ
∂D

∂t
and S = φ

∂B

∂t
(25)

in the corresponding approximations because ∇ · D = 0 in dielectrics and
∇ ·B = 0 always, respectively.

2.2 Ponderomotive Force and Couple in a Continuum

The generalization of the force expression (15) and the corresponding
couple in a general electromagnetic continuum is a difficult matter that was
pondered for a long time. Rather than postulating a form (on what bases?)
we prefer to follow the line of H. A. Lorentz (1909, 1952) already followed by
Dixon and Eringen (1965), Nelson (1979) and Maugin and Eringen (1977).
This involves a type of homogenization (passing from the discrete to the con-
tinuum) introducing the approximations of multipoles, a truncation of these
at a certain order, and effecting a volume or phase-space average. Lorentz’s
vision is essentially that of a free space containing charged point particles
(Figure 1). We report here only the general traits of this derivation, and
give the resulting expressions in the comprehensive form given by Maugin

Figure 1. Stable group of elementary electric charges in the Lorentz’s av-
eraging approach.
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and Eringen (1977). Each elementary electric charge δqα, α = 1, 2, . . . con-
tained in a representative volume element ΔV is acted upon by a Lorentz
force (compare (15))

δfα = δqα

(
e(rα) +

1

c
ẋα × b(rα)

)
, (26)

where e and b are the electric field and magnetic induction at the actual
placement rα of the charge δqα. The computation consists then in evaluating
the quantities (here, for the sake of simplicity, we adopt a simple volume
average, while De Groot and Suttorp (1972) use a relativistically invariant
phase average):∑

α∈ΔV

δfα,
∑

α∈ΔV

(rα × δfα),
∑

α∈ΔV

δfα · ẋα, (27)

and then dividing by ΔV . On neglecting quadrupole contributions and
higher order multipoles, lengthy calculations (cf. Maugin and Eringen,
1977) lead to electromagnetic source terms of force, couple and energy per
unit continuum volume:

fem = qf Ẽ+
1

c
(J̃+P∗)×B+ (P · ∇)E+ (∇B) · M̃, (28)

cem = r× fem + c̃em, (29)

wem = fem · v + c̃em · Ω+ ρ hem, (30)

where r refers to the center of charges of the volume element, ρ is the matter
density, and v is the physical velocity of the continuum, Ω is the vorticity
Ω = (∇× v)/2, and we have set

qf (x, t) = (ΔV )−1
∑

α∈ΔV

δqα, (31)

P(x, t) = (ΔV )−1
∑

α∈ΔV

δqα ξα(x, t), (32)

M(x, t) = (ΔV )−1
∑

α∈ΔV

1

2 c
δqα ξα × ξ̇α, (33)

where ξα = xα(t)−x are internal coordinates vectors in ΔV . Note the lack
of symmetry between polarization and magnetization effects which clearly
demonstrates the “displacement” nature of the polarization and the axial
nature (involving a rotation) of the magnetization — cf. section 1 above.
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Various contributions in (28) are easily identified. The first term is a con-
tinuum generalization of (1). The third term means that P, essentially a
continuum density of electric dipoles, is the object of a force when placed
in a spatially nonuniform electric field. The last term is quite similar but it
relates to a continuum density of magnetic dipoles that feels a nonuniform
magnetic induction. As to the second term, it can be understood since a
time varying electric polarization creates a displacement current according
to Maxwell’s equations. We have also defined the intrinsic electromagnetic
sources of couple, energy and stress by (here tr = trace; subscript s stands
for symmetrization)

c̃em = P× Ẽ+ M̃×B, (34)

ρ hem = J̃ · Ẽ+ Ẽ ·P∗ − M̃ ·B∗ + tr
(
t̃em (∇v)S

)
, (35)

and
t̃em = P⊗ Ẽ−B⊗ M̃+

(
M̃ ·B)1. (36)

We note that c̃em is the axial vector dual to the skewsymmetric part of this
last tensor. Electromagnetic fields in a co-moving frame have already been
defined while E and B are simple volume averages of e and b. The first
contribution in the r-h-s of (28) is none other than a “Lorentz force” per
unit volume (compare (15)).

Finally, a right asterisk denotes a so-called convected time derivative
such that

P∗ =
∂P

∂t
+∇× (P× v) + v (∇ ·P) =

dP

dt
− (P · ∇)v +P (∇ · v). (37)

In principle, the above obtained source terms, once their origin forgotten,
have to be carried into the classical balance laws of a continuum (allowing for
a possibly non symmetric Cauchy stress), leaving however the internal/free
energy of the medium to depend on the electromagnetic fields. A remarkable
fact is that in spite of their farfetched outlook, some may be given a form
that reminds us of some standard expression (such as in (5)). For instance,
Maugin and Eringen (1977) have shown that (30) can also be written as

wem = J ·E+E · ∂P
∂t

−M · ∂B
∂t

+∇(v (E ·P)
)

= −∂uem.f

∂t
−∇ · (S− v (E ·P)

)
,

(38)

in which we identify some of the terms in (13) or a possible direct combina-
tion with some of them. The volume energy density of free electromagnetic
fields uem.f is given by

uem.f =
1

2

(
E2 +B2

)
. (39)
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Another interesting equivalent form of (38) is given by (cf. Maugin and
Eringen, 1977, a superimposed dot denotes the material time derivative):

wem = fem · v + ρ ėmag + ρ Ẽ · π̇ + ρB · μ̇+ J̃ · Ẽ, (40)

where π and μ are the electric polarization and magnetization per unit mass

π = P/ρ, μ = M̃/ρ, (41)

and
emag = −μ ·B (42)

is the energy of magnetic doublets per unit mass.

Particular Cases

We have the following obvious reductions for the ponderomotive force
and couple and the accompagning energy source:

In the quasi-electrostatics of dielectrics:

fem = (P · ∇)E ≡ (∇E) ·P,
c̃em = P×E = P×D,

(43)

we = fem · v + ρE · π̇, (44)

In the quasi-magnetostatics of insulators :

fem = (∇B) ·M ≡ (M · ∇)H+ 1
2 ∇M2,

c̃em = M×B ≡ M×H,
(45)

wem = fem · v + ρ ėmag + ρB · μ̇. (46)

3 Deformable Magnetized Bodies with Magnetic
Microstructure

3.1 Model of Interactions

For the sake of simplicity we consider the quasi-magnetostatics of non-
electrically polarized insulators.

Using the standard notation of nonlinear continuum mechanics we may
consider to start with the following generalized motion for deformable mag-
netized bodies of the ferröıc type:

x = x(X, t); μ = μ̄(X, t), (47)



Electromagnetism and Generalized Continua 313

where the first of these denotes the classical finite deformation at Newtonian
time t between the reference configuration KR and the actual configuration
Kt. Here x is the placement of Euclidean coordinates xi, i = 1, 2, 3, and
X denotes the material point of coordinates XK , K = 1, 2, 3 in material
space. The second of (47) means that the magnetization per unit mass here
is considered as a primary quantity. The reason for this is that in ferröıc
states in small regions of the bodies (so-called domains), one may have a
nonvanishing magnetization in the absence of applied magnetic field. This
in fact is the very definition of such a state. Borrowing the denomination
introduced by Tiersten (1964), we may say that the first of (47) describes
the time evolution of the lattice continuum or LC (standard matter in
the macroscopic description), while — because of the relation (8) — the
second of (47) provides the time evolution of the (magnetic or electronic)
spin continuum or SC. These two continua should be treated on an equal
footing in the vision of generalized continua. But they do not respond
exactly to the same kind of loads while we must also envisage interactions
between these two “continua”.

In particular, the spin continuum cannot translate with respect to the
lattice continuum. It, therefore, “expands” and “contracts” with the lattice
continuum and, accordingly, its volumetric behavior is governed by the usual
continuity equation. As usual, the lattice continuum is assumed to be able to
respond to volume and surface forces, hence exhibits stresses, and to volume
couples, so that stress is not expected to be symmetric. We assume that it is
not equipped with any mechanism to respond to surface couples, so that it
does not exhibit couple stresses of mechanical origin. The balance of linear
(physical) momentum simply says that whatever force of magnetic origin
— e.g., the reduced ponderomotive force in (45) — is applied to a point
in the spin continuum, it is directly transferred to the lattice continuum
at the same point. The spin continuum, by its very nature, can respond
only to couples, which may be either of the volume or of the surface type.
Accordingly, we consider that the ponderomotive couple (cf. Equations
(45))

cem = M̃×B = ρμ×B (48)

is directly applied to the spin continuum.
In so far as the interactions between lattice and spin continua are con-

cerned, they must necessarily be of the couple type since the spin continuum
is sensitive only to that type of interaction. Following Tiersten (1964), we
naturally assume that this couple is due to a local magnetic induction BL

— to be given a constitutive equation —, so that we can apply the “recipe”
(compare (48))

c(LC/SC) = M×BL = ρμ×BL. (49)
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Figure 2. Interactions in deformable ferromagnets (after Maugin, 1979).

Angular momentum being conserved (exchanged) between the two continua,
an equal and opposite couple (see Figure 2)

c(SC/LC) = −c(LC/SC) = BL ×M = ρBL × μ (50)

is exerted on the unit volume of the lattice continuum.
Finally, in order to account for ferromagnetic (Heisenberg) exchange

forces of quantum origin (interactions between neighbouring spins) that fall
off rapidly with distance, we can represent these “forces” in a continuum
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description by a contact action in much the same manner as the stress vector
for a Cauchy deformable continuum, except that this “surface exchange
contact force” must also obey the “recipe” of a magnetic couple (the density
ρ is included in A):

c(LC−surface) = μ×A, (51)

where A is an axial vector that depends on the local unit normal n to the
surface and can be written in the same way as the classical stress vector
(Cauchy principle), i.e.,

A = A(n) = A(x, t;n) = n · B̂(x, t), (52)

so that (51) yields the following surface couple density acting on the spin
continuum:

c(SC−surface) = μ×A = μ× (n · B̂). (53)

Because of this very expression we can surmise that only the portion of A
orthogonal to M is effectively defined. Thus, without loss in generality we
can set forth the following condition:

A ·M = n · B̂ ·M = 0 (54)

at any point at the surface of the body. A similar orthogonality condition
can be imposed on BL but at any point inside the body.

3.2 Statement of Global Balance Laws

Collecting now the various proposed expressions according to the scheme
shown in Figure 2, we can write down the global balance laws at time t in
Kt for a magnetic body of volume Bt and regular bounding surface ∂Bt (for
the sake of simplicity we ignore any discontinuity surface within the body;
for the equations at discontinuity surfaces, see Maugin (1988)):

Balance of mass for the combined continuum:

d

dt

∫
B

ρ dv = 0; (55)

Balance of linear momentum for the LC:

d

dt

∫
B

ρv dv =

∫
B

(f + fem) dv +

∫
∂B

t(n) da; (56)

Balance of angular momentum for the LC:

d

dt

∫
B

(r× ρv) dv =

∫
B

(r× (f + fem) + c(SC/LC)) dv

+

∫
∂B

(r× t(n)) da;

(57)
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Balance of angular momentum for the SC:

d

dt

∫
B

ρ γ−1 μ dv =

∫
B

(cem + c(LC/SC)) dv +

∫
∂B

μ×A(n) da; (58)

First law of thermodynamics for the combined continuum:

d

dt

∫
B

ρ

(
1

2
v2 + e

)
dv =

∫
B

(f · v + wem + ρ h) dv

+

∫
∂B

(
t(n) · v +A(n) · μ̇+ q(n)

)
da;

(59)

Second law of thermodynamics for the combined continuum:

d

dt

∫
B

ρ η dv ≥
∫
B

ρ θ−1 h dv +

∫
∂B

θ−1 q(n) da. (60)

In these equations, t(n) is the surface traction, f is a body mechanical force
(e.g., gravity), e is the internal energy per unit mass, η is the entropy
per unit mass, h is the body heat source, q is the heat influx. Classically
(compare (52)),

t(n) = n · t, q(n) = −n · q, (61)

where t is the Cauchy stress and q is the heat-flux vector.
Standard localization of these global equations on account of the assumed

continuity of all fields yields the following local equations at any point in B:

ρ̇+ ρ∇ · v = 0, (62)

ρ v̇ = div t+ f + fem, (63)

εijk (tjk + ρBL
j μk) = 0, (64)

γ−1 μ̇i =
[
μ× (

B+BL + ρ−1 div B̂
)]

i
+ ρ−1 εijk B̂pk μj,p, (65)

ρ

(
ė+

d

dt

(
1

2
v2

))
= tji vi,j + (tkj,k vj + f · v) + B̂kj μ̇j,k

+ B̂kj,k μ̇j + wem + ρ h−∇ · q,
(66)

and

ρ η̇ ≥ θ−1 ρ h− θ−1 ∇ · q− q · ∇(θ−1), (67)

where the divergence of nonsymmetric tensors is to be taken on the first
index, and a superimposed dot denotes the classical material time derivative.
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Equations (66), (64), (65) and (67) are transformed thus. In (66), we
must account for the kinetic energy theorem obtained by taking the inner
product of the motion equation (63) by v:

ρ
d

dt

(
1

2
v2

)
= (tkj,k vj + f · v) + fem · v, (68)

while wem is given by the reduced form (46). Therefore, (66) reads

ρ ˙̂e = tji vi,j + ρB · μ̇+ B̂kj μ̇jk + B̂kj,k μ̇j + ρ h−∇ · q,
ê = e− emag ≡ e+ μ ·B.

(69)

But if (8) and (9) hold good, μ̇ must be of the purely precessional form

μ̇ = ω × μ. (70)

This corresponds to saturation of the magnetization in each magnetic do-
main. As a consequence the last contribution in (65) must vanish:

B̂k[j μi],k = 0. (71)

On account of this we check that

(div B̂) · μ̇ = −ρ (B+BL) · μ̇, (72)

because
ω = −γBeff, Beff = B+BL + ρ−1 div B̂. (73)

This may be viewed as a continuum generalization of the celebrated Larmor
precession equation ωLarmor = −γB for an isolated electron in a magnetic
induction B.

Finally, (69) transforms to the following form using an intrinsic notation
(T = transpose):

ρ ˙̂e = tr
[
t (∇v)T

]− ρBL · μ̇+ tr
[
B̂ (∇μ̇)T

]−∇ · q+ ρ h. (74)

We let the reader show that in the same conditions (67) provides the fol-
lowing Clausius–Duhem inequality :

−ρ (
˙̂
ψ+ η θ̇)+ tr

[
t (∇v)T

]− ρBL · μ̇+tr
[
B̂ (∇μ̇)T

]− θ−1 q · ∇θ ≥ 0, (75)

wherein the free energy density has been defined by

ψ̂ = ê− η θ. (76)
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Equation (75) nowadays plays an essential role in the construction of con-
stitutive equations that we need for the set of quantities{

ψ̂, η, t,BL, B̂,q
}
. (77)

Equation (75) represents a constraint imposed by thermodynamic irreversi-
bility (in particular in the so-called Coleman–Noll exploitation that we shall
adopt here). In this formulation we usually look for the expression of so-
called objective (or materially indifferent) entities. To that purpose we
should rewrite (75) in terms of such quantities. This is achieved as follows.
On the one hand we note from (64) that the skewsymmetric part of t is
given by

t[ji] = ρμ[j B
L
i] (78)

and we can write

t = tS + tA, i.e., tji = t(ji) + t[ji]. (79)

We introduce the following objective time rates (Maugin, 1974):

Dij =
1

2
(vi,j + vj,i) (80)

and
m̂i = (DJ μ)i ≡ μ̇i − Ωij μj , M̂ij = (μ̇i),j − Ωik μk,j , (81)

with

Ωij =
1

2
(vi,j − vj,i). (82)

We let the reader prove that the quantities defined in (80) and (81) are
indeed objective.

The first of (81) is none other than a so-called Jaumann derivative. The
second of (81) is not exactly the Jaumann derivative of the gradient of μ,
but it is closely related to it modulo a term involving the rate of strain (81).
On account of these we show that

tr
[
t (∇v)T

]− ρBL · μ̇+ tr
[
B̂ (∇μ̇)T

]
≡ tr

(
tS D

)− ρBL · m̂+ tr
(
B̂ M̂T

)
,

(83)

whence the looked for reduced useful expression for (74) and (75).
In summary, for the present modeling the local field equations at any

regular material point in the body B are provided by equations (62), (63),
(70), (74) and the reduced form of Maxwell’s equations

∇×H = 0, ∇ ·B = 0, H = B− ρμ, (84)
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in which the Cauchy stress t is given by equations (78) and (79), and the
effective magnetic induction Beff is given by (73). Equation (74) will even-
tually provide the heat-propagation equation while the inequality (75) con-
strains the constitutive behavior. Interestingly enough, we note that the
energy equation (59) does not contain any contribution due to the spin lat-
tice by virtue of the d’Alembertian nature of this quantity (cf. (9)) — more
on this point in the following two paragraphs.

3.3 Approach via the Principle of Virtual Power

In modern continuum mechanics, an elegant and powerful means of con-
structing field equations and associated natural boundary conditions is pro-
vided by an algebraically structured formulation of the (d’Alembert) prin-
ciple of virtual power as exposed at length in Maugin (1980a). In this
somewhat abstract formulation this principle is enunciated in the follow-
ing form for global powers over the body B and its boundary ∂B: The
virtual power of inertial forces is, at each instant of time, balanced by the
total virtual power of “internal forces” and that of externally applied forces
both in the bulk and at the surface, the word “force” being understood in a
generalized manner. Inertial forces have an expression provided by physics,
internal forces need to be given a constitutive equation, and external forces
are prescribed in form and perhaps in value. In mathematical terms:

P ∗
inert(B) = P ∗

int(B) + P ∗
extern(B, ∂B), (85)

where an asterisk will denote the value of an expression is a so-called vir-
tual velocity field (itself noted with an asterisk). In the present case, the
generalized kinematical description of the model (47) from which the basic
virtual velocity field is given by

v∗ =
{
v∗i , (μ̇i)

∗ = (ω∗ × μ)i
}
, (86)

where ω∗ is a virtual precessional velocity of the SC. Thus

P ∗
inert(B) =

∫
B

(ρ v̇ · v∗ + γ−1 ρ μ̇ · ω∗) dv, (87)

where we clearly distinguish between real fields (no asterisks; actual solu-
tions of a problem) and virtual ones (noted with an asterisk; at our disposal
in this type of variational formulation). In particular, for real fields, because
of (8) and (9), (86) yields

Pinert(B) =
d

dt

∫
B

(
1

2
ρv2

)
dv =

d

dt
K(B), (88)
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where K(B) is the total kinetic energy of the traditional motion.
The total power of external forces is obviously given by the following

expression:
P ∗
extern(B, ∂B) = P ∗(B) + P ∗(∂B) (89)

wherein

P ∗(B) =

∫
B

(
(f + fem) · v∗ + ρB · (μ̇)∗) dv, (90)

and

P ∗(∂B) =

∫
∂B

(
(t(n) + tem(n)) · v∗ +A · (μ̇)∗) da, (91)

where tem(n) is an eventual magnetic surface traction related to the possible

existence of a magnetic field outside B (see Maugin, 1988, chap. 6).
Finally, the global virtual power of internal forces is constructed as fol-

lows. First a “gradient order” is selected for the kinematics associated with
internal forces. Generalizing classical continuum mechanics (which is a first
order gradient theory of displacement) we consider a first-order gradient
theory based on (86). That is,

V =
{
vi, vi,j , μ̇i, μ̇i,j

}
. (92)

But internal forces must be objective, i.e., frame indifferent, or invariant
under changes of observer in the actual configuration (superimposition of
a rigid body motion of dimension 6). Accordingly, one must extract from
the 24-dimensional space spanned by (92) a set of objective quantities, this
set Vobj , a quotient space, being necessarily of dimension 24− 6 = 18. We
have shown elsewhere (Maugin, 1980a) how to systematically construct such
quotient spaces. In the present case a good set is given by

Vobj =
{
Dij , m̂i, M̂ij

}
, (93)

where it happens that the quantities thus formally introduced have already
been defined in (80)–(82). Then the power P ∗

inter is written as a contin-
uous linear form on the set V ∗

obj , introducing thus formally internal forces

{tS ,−ρBL, B̂} as co-factors of the elements of V ∗
obj . That is (signs are

chosen for convenience),

P ∗
int(B) = −

∫
B

(
tSji v

∗
i,j − ρBL

i m̂∗
i + B̂ji M̂

∗
ij

)
dv. (94)

Collecting the various contributions and assuming that the obtained global
expression is valid for any element of volume and surface and any virtual
velocity field (86) we obtain the local equations

ρ v̇ = div t+ f + fem in B, (95)
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and
γ−1 μ̇ = −(Beff × μ) in B, (96)

with the nonsymmetric stress t given by

tji = tSji − ρBL
[j μi] (97)

on account of the constraint (71), and Beff given by the second of (73).
Simultaneously, we obtain the natural boundary conditions (not given here
— see Maugin, 1988, chap. 6 —) for t and A.

It is readily checked that equations (95) and (96), together with (97)
and (73) are identical to the equations deduced in the foregoing paragraph.
Pursuing along the same line, and considering the principle (85) for real
velocity fields, on account of (88) we obtain the global equation of kinetic
energy in the form:

d

dt
K(B) = Pint(B) + Pextern(B, ∂B). (98)

This is to be combined with the global statement of the first law of ther-
modynamics (59) to deduce the global form of the internal-energy theorem.
By localization this will yield (74) with the already transformed expression
involving the objective internal forces. The exploitation of the inequality
(75) is unchanged.

The present formulation (introduced in Maugin, 1974) — formal as it is
— has certain advantages, one of which being the account of the d’Alembert-
inertia couple in the expression (86). But more interestingly, it provides a
direct modelling of more general ferröıc cases such as in ferrimagnets and
antiferromagnets (see Paragraph 3.5).

3.4 Hamiltonian Variational Formulation

The above-given formulation is valid for both deformable solid and fluid
behaviors and also in the presence of dissipative processes such as viscosity
(via D) and spin-lattice relaxation (via m̂). In the absence of dissipative
processes and for an a priori known behavior — e.g., elasticity — it is possi-
ble to approach the present theory via a Hamiltonian variational principle.
Such an approach to elastic ferromagnets is to be found in Tiersten (1965),
Brown (1966), and Maugin and Eringen (1972a). We base the present ex-
position on the latter. Again, we must account for the d’alembertian nature
of the magnetic spin inertia and, therefore, introduce an already varied term
for this effect. That is, we shall write down the variational formulation as
follows:

δWspin + δA+ δWdata + δWconstr = 0. (99)



322 G.A. Maugin

Here δWspin is the mentioned already varied term

δWspin =

∫
t

dt

∫
BR

ρR γ−1 μ̇ · δΘ dvR, (100)

the scalar A is the action such that

A =

∫
t

dt

∫
BR

L dvR, (101)

L =
1

2
ρR v2 −Ψ(F = ∇R x, μ, ∇R μ̄), (102)

δWdata accounts for the external loads in such a way that

δWdata =

∫
t

dt

∫
BR

(
(f + fem) · δx+ ρR B · δμ) dvR

+

∫
t

dt

∫
∂BR

(
(t(n) + tem(n)) · δx+A · δμ) daR, (103)

and δWconstr is possibly introduced to account, via the introduction of ap-
propriate Lagrange multipliers, for the constraints provided by the con-
stancy of the modulus of μ i.e., μi μi = μ2

S = const., and the derived
relation (∇Rμ) ·μ = 0 for its spatial uniformity within a domain, where ∇R

denotes the material gradient that commutes with the partial time deriva-
tive. But these are accounted for systematically in the variation of the other
terms. Here the variations are Lagrangian (taken at fixed material coordi-
nates so that they commute with the material gradient), ρR is the matter
density in the reference configuration KR of the body of volume BR and
regular boundary ∂BR. The Lagrangian variation δμ respects the constraint
μ · δμ = 0 and therefore is such that it involves the infinitesimal (vectorial)
angular variation δΘ through the relation δμ = δΘ × μ. The Lagrangian
density L involves the standard kinetic energy per unit material volume and
a magneto-elastic energy Ψ that accounts for a first-order gradient theory
with respect to the two basic elements of the generalized motion. We let
the reader exploit the variational formulation (99) for arbitrary variations
(δx, δΘ) as the above expressions are given only for the sake of comparison
with the previous formulation exploiting the principle of virtual power. In
particular, we note the introduction of the term (100) that compares to
the spin contribution in P ∗

inertia. Just the same, we emphasize the simi-
larity between the expression of δWdata and that of P ∗

extern. We also note
the following that is of interest compared to the Cosserats’work of 1909
on “Cosserat” continua. This is the possible exploitation of the so-called
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Euclidean invariance — a first attempt to use group theory in continuum
mechanics taken over by Toupin (1964) and Maugin (1970). This consists
in applying (99) with special variations corresponding to pure spatial trans-
lations:

δx = εd, δμ = 0 (104)

and then simultaneous infinitesimal rotation of both LC and SC such as

δxi = ε�ij xj , δμi = ε�ij μj , (105)

where ε is an infinitesimally small parameter, d is a fixed finite vector, and
�ij = −�ji is a fixed skewsymmetric tensor. Application of (104) and
(105) directly yields the local balance of linear and angular momentum in
the form of the theory of Cosserat continua (Maugin, 1971; Maugin and
Eringen, 1972a). We shall return to this point in Paragraph 3.6.

3.5 Ferrimagnetic and Antiferromagnetic Materials

The magnetic description considered in the foregoing paragraphs often
is insufficient and not realistic enough for many magnetic materials such as
ferrites. Louis Néel (Nobel prize in physics 1970 for this matter) introduced
in the early 1940s a model in which the most general description of the
magnetization field in a magnetically ordered crystal below its magnetic-
phase-transition temperature consists in the vectorial resultant of the sum
of n magnetization fields μα, α = 1, 2, . . . , n per unit mass — referred to as
magnetic sub-lattices — arising at each point from n different ionic species
having different spectroscopic splitting factors, thus various gyromagnetic
ratios γα, so that the total magnetic spin per unit mass is not necessarily
aligned with the total magnetization. This model proved to be efficient
in accounting for the unusual magnetic properties (e.g., susceptibility) of
ferrites — iron oxides — for which Néel coined the behavior name ferri-
magnetism. Simple antiferromagnetism is the special case for which only
two magnetic sub-lattices subsist, of equal magnitude and opposite direc-
tion, allowing for the absence of global magnetization in the absence of
applied magnetic field. But the magnetic response is quite different from
that of classical ferromagnetism when a magnetic field is applied (see Erin-
gen and Maugin, 1990, Vol. I, pp. 110–111). The resulting dynamics is also
much more involved yielding a multiplicity of magnon branches in the case
of ferrimagnetism.

A rational modelling of deformable ferrimagnetic bodies in the spirit of
the model of Paragraph 3.1 would be somewhat messy, although a scheme
generalizing that of Figure 2 can easily be drawn for antiferromagnetic de-
formable bodies equipped with two co-existing interacting magnetic sub-
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Figure 3. Interactions in a deformable antiferromagnet (after Maugin,
1976a,b, JMP).

lattices (see Figure 3 — from Maugin, 1976a). It is much more convenient
and safe to exploit a modelling generalizing that of the principle of virtual
power in the manner of Paragraph 3.3 in which it is “sufficient” to enlarge
the initial set by replacing μ by the series of μα

′s and constructing the var-
ious sets of velocities for the corresponding power of internal forces once
a gradient order has been selected (first-order is sufficient). A new type
of interactions will appear, that between different magnetic sub-lattices,
having in turn strong consequences for the coupling between elastic waves
(phonons) and magnetic oscillations (magnons) — see Eringen and Mau-
gin, 1990, Vol. II, pp. 492–493. Such a modelling was initially proposed by
Maugin (1976a,b) and its dynamical consequences examined in detail by
Sioké-Rainaldy and Maugin (1983); Maugin and Sioké-Rainaldy (1983).
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3.6 Analogy with Cosserat Continua

Returning of the ferromagnetic case, we note that the spin-precession
equation (96) deals with axial vectors. Accordingly, we can introduce dual
skewsymmetric tensors by applying the alternation symbol εkli to its i-
component. On account of the well known formula

εkli εipq = δkp δlq − δkq δlp, (106)

this operation results in the equation

1

2
ρ γ−1 εkli μ̇i = ρμ[k Bl] + ρμ[k B

L
l] +

(
μ[k B̂ml]

)
,m

− μ[k,m B̂ml]. (107)

But we note that the last term in the right-hand of this equation vanishes
identically because of the constraint (71), while the resulting penultimate
term is none other that the skew part of the Cauchy stress according to (97),
and the first term is none other than the ponderomotive couple written as
a skew tensor (dual of the axial vector cem). Thus equation (107) reads

ρ Ṡkl = Mpkl,p + t[kl] + Ckl, (108)

wherein

Skl =
1

2
γ−1 εkli μi, Mpkl = μ[k B̂pl], Ckl = Cem

kl = εkli c̃
em
i . (109)

Equation (108) is in the canonical form of the balance equation of angular
momentum in Cosserat or micropolar continua — compare Eringen (1999)
and the present Appendix A — except that all contributions have a mag-
netic origin, the gyromagnetic relation for the inertial term Skl, Heisenberg
exchange forces for the couple stress tensor Mpkl, the applied coupled Cij ,
and the skew part of the nonsymmetric Cauchy stress. Equation (108) and
the accompanying boundary condition were deduced by the author in his
PhD thesis (Maugin, 1971). A formally similar result can easily be obtained
for the model of ferrimagnetic deformable bodies mentioned in the forego-
ing paragraph with the appropriate summation over the various magnetic
sub-lattices. In the case of an exploitation of a Hamiltonian variational
formulation, application of the rotational part (105) of the Euclidean in-
variance directly yields (108) (Maugin, 1971).

3.7 Reduction to a Model without Microstructure (Paramag-
netic and Soft-Ferromagnetic Bodies)

When true ferromagnetic effects (gyromagnetic effect, Heisenberg ex-
change forces) are discarded, equation (108), reduces to

t[kl] = Cem
[kl] = −M[k Bl] = B[k Ml]. (110)
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This applies to the simpler cases of nonlinear paramagnetic and soft-fer-
romagnetic bodies. The resulting theory applies, in particular, to magne-
toelastic polymers as recently developed (on this subject, one can refer to
the Udine course of 2009; Ogden and Steigmann, 2010, Editors; and also,
Eringen and Maugin, 1990, chap. 8, Vol. I). Whenever field and magnetiza-
tion are aligned (case of magnetically isotropic bodies) or in a purely linear
theory in which one discards the right-hand side of (110) as being second
order in the fields, the skew part of the stress is zero. The only remaining
magneto-mechanical coupling in the first case remains magnetostriction for
any symmetry, while in the second case, only piezomagnetism may exist,
under severe symmetry conditions however.

4 Deformable Dielectrics with Electric-Polarization
Microstructure

4.1 Model of Interactions

We consider the case of the quasi-electrostatics of deformable dielectrics
for the sake of simplicity. We can envisage a generalized motion described
by the functions

x = x(X, t), π = π(X, t), (111)

where π is an electric polarization (polar vector) per unit mass in the de-
formed configuration. The second function defines a polarization con-
tinuum, PC. According to the contents of Section 1, PC responds to
electric fields only. Accounting for the inertia introduced in Section 1, we
are tempted to write down a balance equation for PC for the whole body
B in a more or less standard form:

d

dt

∫
B

ρ dE π̇ dv =

∫
B

ρ (E+EL) dv +

∫
∂B

A da, (112)

where E is the Maxwellian electrostatic field, EL is a quantity akin to an
electric field and due to the possible interaction with the lattice continuum
LC, whose deformation is described by the first of (111). Finally, A, also
akin to an electric field or a surface electric polarization, accounts in the form
of a contact action for interactions between neighbouring electric dipoles.
Applying to this the Cauchy principle, we can introduce a second order —
nonsymmetric — tensor Ê such that

A = n · Ê at ∂B. (113)

Localization of (112) therefore yields the balance equation

dE π̈ = E+EL + ρ−1 div Ê in B. (114)
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Although considered by some authors (e.g., Maugin, 1976c), it is difficult to
grant a true physical meaning to the balance (112) which strongly resem-
bles the balance law postulated, with the same degree of arbitrariness, in
anisotropic fluids (nematic liquid crystals) by Ericksen (1960). One possi-
bility of interpretation is that (114) is a standard equation of motion for a
unit (hypothetical) electric charge (but the medium considered is a dielec-
tric free of charges). Indeed, as exemplified by equation (1) the product of
a charge and an electric field is a classical force. In this interpretation LC
and PC may be viewed as two interpenetrating continua. Such an a priori
interpretation was advanced by Tiersten (1971). As to the surface condition
(113) we can write it more explicitly as

ρ−1 n · Ê = πS , (115)

where πS is a density of surface electric polarization (a polar vector).
The global balances of linear and angular momenta for the lattice con-

tinuum naturally read as

d

dt

∫
B

ρv dv =

∫
B

(f + fem) dv +

∫
∂B

t(n) da; (116)

and

d

dt

∫
B

(r× ρv) dv =

∫
B

(
r× (f + fem) + c(PC/LC)

)
dv

+

∫
∂B

(r× t(n)) da.

(117)

Then, artificial as this may look, the balance of angular momentum for the
PC is given by:

d

dt

∫
B

ρ π × π̇ dv =

∫
B

(
cem + c(LC/PC)

)
dv +

∫
∂B

π ×A(n) da. (118)

This is complemented by the first law of thermodynamics for the combined
continuum:

d

dt

∫
B

ρ

(
1

2
v2 + e

)
dv =

∫
B

(
f · v + wem + ρ h

)
dv

+

∫
∂B

(
t(n) · v +A(n) · π̇ + q(n)

)
da,

(119)

and the second law of thermodynamics for the combined continuum:

d

dt

∫
B

ρ η dv ≥
∫
B

ρ θ−1 h dv +

∫
∂B

θ−1 q(n) da. (120)
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In these equations,

cem = ρ π ×E, cLC/PC = ρ π ×EL, A(n) = n · Ê. (121)

On account of (114) and the local form of (116) the local forms of (117) and
(118) are easily established as

t[ji] = ρEL
[j πi] − Êp[j πi],p (122)

and

ρ
d

dt
(π × π̇)i = cemi + cLi + εijk

(
πj Êpk

)
,p
. (123)

The rest of this approach consists in expressing (119) and (120). In intro-
ducing objective time rates such as (80) and (compare (81))

p̂i = (DJ π)i ≡ π̇i − Ωij πj ,

Π̂ij = (π̇i),j − Ωik πk,j
(124)

we can show that (119) and (120) lead to the following local forms of the
energy equation and of the Clausius–Duhem inequality:

ρ ė = tr(tS D)− ρEL · p̂+ tr
(
ÊL Π̂T

)−∇ · q+ ρ h (125)

and

−ρ
(
ψ̇ + η θ̇

)
+ tr(tS D)− ρEL · p̂+ tr

(
Ê Π̂T

)− θ−1 q · ∇θ ≥ 0, (126)

with
tji = tSji + t[ji], t[ji] = ρEL

[j πi] − Êp[j πi],p. (127)

Together with the Maxwell’s electrostatic equations for dielectrics,

∇×E = 0, ∇ ·D = 0, D = E+ ρ π, (128)

this concludes the formal construction of the theory before establishing con-
stitutive equations constrained by the inequality (126).

4.2 Approach via the Principle of Virtual Power

It is now clear that an approach exploiting directly the principle of virtual
power for the present theory will be very much like what was achieved in
Paragraph 3.4 for ferromagnets except for the essential difference regarding
the inertial force of the polarization lattice PC. That is, we shall a priori
write

P ∗
inert(B) =

∫
B

(
ρ v̇ · v∗ + ρ dE π̈i π̇

∗
i

)
dv, (129)
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where we clearly distinguish between real fields (actual solutions of a prob-
lem) and virtual ones (at our disposal in this type of variational formula-
tion). In particular, for real fields, this yields

Pinert(B) =
d

dt

∫
B

(
1

2
ρv2 +

1

2
ρ dE π̇2

)
dv =

d

dt
K(B). (130)

The other global virtual powers are directly written down as

P ∗(B) =

∫
B

(
(f + fem) · v∗ + ρE · (π̇)∗) dv, (131)

P ∗(∂B) =

∫
∂B

(
(t(n) + tem(n)) · v∗ + ρ πS · (π̇)∗) da, (132)

and

P ∗
int(B) = −

∫
B

(
tSji v

∗
i,j − ρEL

i p̂∗i + Êji Π̂
∗
ij

)
dv. (133)

From the standard application of the principle of virtual power for any vol-
ume and surface elements and for arbitrary members of the set {v∗, (π̇)∗},
one deduces the local equations of linear momentum of the LC and the gov-
erning equation (114) of the PC, together with the accompanying natural
boundary conditions. Then equations (115) and (126) follow in the usual
way, using the result (130).

4.3 Hamiltonian Variational Principle

Again this strategy applies when one knows a priori the functional depen-
dence of the internal energy. There is no special problem with the kinetic
energy that is given by the expression appearing in (130). For instance,
for a first-order gradient theory of electroelasticity one would consider a
Lagrangian density per unit volume of the reference configuration KR

L =
1

2
ρR v2 +

1

2
ρR π̇2 −Ψ(F = ∇R x, π, ∇R π̄), (134)

but one must add to this the electrostatic energy including both free-field
and electric-dipole energies:

eelec =
1

2
E2 + ρR π ·E. (135)

This formulation applies to both elastic ferroelectrics (theory of Pouget and
Maugin) and elastic ionic crystals (theory of Mindlin). Suhubi (1969) gave
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such a formulation for Mindlin’s theory of elastic dielectrics with polariza-
tion gradients. The true aficionados will find in Maugin and Eringen (1972b)
a relativistically invariant variational formulation containing simultaneously
both ferromagnetic and ferroelectric descriptions (see also Maugin, 1978).
Similarly, he will find in Collet and Maugin (1974) and Maugin (1980a), a
formulation using the principle of virtual power for these two descriptions
simultaneously.

4.4 Antiferroelectric Materials

It is easily imagined that a theory of deformable antiferroelectrics (e.g.,
lead zirconate or sodium niobate) in which an antiparallel arrangement of
permanent electric dipoles can be devised by analogy with the theory of
antiferromagnetics, i.e., by considering the polarization density π as arising
from the vectorial sum of two opposite polarization sub-lattices of equal
magnitude. Such a model was constructed by Soumahoro and Pouget (1994)
who also studied in detail its dynamical consequences.

4.5 Analogy with Cosserat Continua

Applying the alternation symbol to equation (123) and using the identity
(106) or, equivalently, taking the tensor product of (114) and then the skew
part of the result we obtain

ρ
d

dt
(dE π̇[i πj]) = E[i Pj] +

(
ρEL

[i πj] − Êk[i πj],k

)
+
(
Êk[i πj]

)
,k
, (136)

or

ρ Ṡij = Cem
ij + t[ji] +Mkij,k, (137)

where we accounted for (127) and we set

Sij = dE π̇[i πj], Cem
ij = E[i Pj], Mkij = Êk[i πj]. (138)

Simultaneously, (115) yields the associated natural boundary condition at
∂B:

nk Mkij = M(n)ij ≡ πS[i Pj]. (139)

Equations (137) and (139) are in the canonical form of the local balance
of angular momentum for a Cosserat or micropolar continuum in Eringen’s
classification, but all terms have an electric origin. These equations were
obtained by the author (Maugin, 1971, 1980a).
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4.6 Reduction to a Model without Microstructure

When pure ferroelectric features are ignored or neglecting polarization
inertia and polarization-gradient effects in Mindlin’s theory, equation (137)
reduces to

t[ij] = E[i Pj]. (140)

This corresponds to the classical theory of nonlinear dielectrics as origi-
nally built by Toupin (1956, 1963) and Eringen (1963) — see Eringen and
Maugin, 1990, Vol. 1, chap. 7). This nonlinear theory in finite strains ap-
plies in particular to electroelastic polymers. The skewsymmetric part of the
stress vanishes when polarization and electric fields are aligned. This occurs
in isotropic bodies. Still the ponderomotive force is present. However, if
quadratic effects in the electric field are discarded altogether, corresponding
to a fully linear theory, then both ponderomotive force and couple disap-
pear leaving for only possible electromechanical couplings piezoelectricity,
material symmetry permitting (no center of symmetry).

4.7 Remark on Electric Quadrupoles

The microscopic electric description considered in Section 2 and at the
beginning of this section views electric macroscopoic polarization as a po-
lar vector. Its thermodynamical dual is akin to an electric field (EL). Its

gradient has for thermodynamical dual Ê (dimensionally, an elecric field
multiplied by a length). However, another view consists, while making the
construct recalled in Section 2, to consider macroscopic electric polarization
as made of an electric dipole density P, per se, and an electric quadrupole
density, Q, so that P = P− div Q (a natural outcome of the Lorentz mod-
elling), and then considering P and Q as independent electric independent
variables. The thermodynamical dual of Q will then be a gradient of elec-
tric field. Such a description, envisaged by the author in the early 1970s,
also yields an electric continuum endowed with a microstructure involving
couple stresses. For instance, in quasi-electrostatics, we would have instead
of (28), (34), (36) and (44),

fem
i = P j Ei,j +Qjp Ei,jp,

cemi = εijk
(
P j Ek +Qmj Ek,m

) (141)

and

temji = Dj Ei +Qjk Ei,k − 1

2
E2 δji,

wem = fem
j vj + ρEi π̇i + ρEi,j d

(
Qji/ρ

)
/dt.

(142)

More on these in the form of problems in pp. 87–89 in Eringen and Maugin,
1990, Vol. 1.
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5 Dynamical Couplings between Deformation and
Electromagnetic Microstructure

5.1 Introductory Note: Resonance Coupling between Wave
Modes

A. General Features

In linear or linearized dynamical theories of continua expressed by a
system of partial differential equations with derivatives in terms of space
and time, one is often interested in knowing the possible travelling wave
modes, functions of a space-time phase variable ϕ = k · x − ω t, where
k = km is the wave vector, k is the wave number, m denotes the director
cosines, and ω is the circular frequency. In substituting for trigonometric
functions of ϕ or exponential functions of i ϕ in the system of field equations
one is led for nonzero amplitudes to a relation between the components of
k and ω known as the dispersion relation written as

D(k, ω) = 0. (143)

The quantity vϕ = ω/k is called the phase velocity while the quantity
vg = ∂ω/∂k is the group velocity. The wavelength is defined as λ = 2π/k.
When vϕ does not depend on λ or k, the studied system is said to be nondis-
persive. Then the corresponding group velocity equals the phase velocity for
any ω and k (or λ). If this is not the case, then the system is said to be dis-
persive. In the latter case the Fourier components of a non-monochromatic
signal travel at different velocities – causing the dispersion of the signal –,
all this independently of the amplitude (that does not depend on these prop-
erties for a linear system). Dispersive systems are characterized by systems
of partial differential equations that do not admit a polynomial of differen-
tiation that is homogeneous (a homogeneous polynomial of differentiation
has all terms with space-time partial derivatives of the same order). Thus
the classical d’Alembert equation

∂2u

∂t2
− c2

∂2u

∂x2
= 0, (144)

where c is a constant provides a nondispersive system, while the Klein–
Gordon equation

∂2u

∂t2
− c2

∂2u

∂x2
+mu = 0 (145)

where m is also a constant, yields a dispersive system. The so-called sine-
Gordon equation

∂2u

∂t2
− c2

∂2u

∂x2
+m sinu = 0, (146)
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is both dispersive and nonlinear (since obviously trigonometric functions
are not linear functions of their argument). An equation such as the Boussi-
nesq equation of crystal physics,

∂2u

∂t2
− c2

∂2u

∂x2
− c2 δ2

∂4u

∂x4
− c2 β

∂u

∂x

∂2u

∂x2
= 0 (147)

where δ is a characteristic length and β a nondimensional nonlinearity pa-
rameter, also is both dispersive and nonlinear. We shall have the oppor-
tunity later on to deal with equations such as (146) or (147). For the time
being we are concerned with equations of the simpler types (144) and (145).

B. Resonance Coupling between Modes

We are interested in the following exemplary situation. Consider a linear
physical system in which three bulk modes, Aα, α = 1, 2, 3, of the plane
time-harmonic type may propagate:

Aα = Âα exp[i (k · x− ω t)]. (148)

Assume that the system of considered field equations is such that with trial
solutions (148) it yields a dispersion relation of the type (cf. Maugin, 1980b)

D(ω, k) = [ω − ω3(k)]
(
[ω − ω1(k)] [ω − ω2(k)]− ε�2

)
= 0 (149)

where the ωα
′s are known functions of k and of material parameters, � is a

characteristic (eventually wave number dependent) angular frequency, and
ε is an infinitesimally small parameter. The relations

Dα(ω, k) = ω − ωα(k) = 0, α = 1, 2, 3, (150)

are the dispersion relations for uncoupled modes.
Of course, equation (149) tells us that the component A3 is not coupled

with the other two, and its associated dispersion relation is influenced only
by material parameters that may appear in ω3(k). The remaining two
solutions of (149) are coupled via ε. Let (ω0, k0) denote the intersection
point of the two curves Dα(ω, k) = 0, α = 1, 2, in the positive quarter of
the (ω, k) plane. In the neighbourhood of this critical point C, which is
called a crossover region for the coupled modes, we have

ωα(k) ∼= ω0 + vα(k − k0), ω0 = ω1(k0) = ω2(k0), (151)

and the vα
′s are the group velocities of the uncoupled modes of C.
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In the neighbourhood of C the remaining factor in (149) yields two
approximate coupled solutions

ω±(k)−ω0 =
1

2

(
(v1+v2) (k−k0)±

(
(k−k0)

2 (v1−v2)
2+4 ε�2

)1/2)
(152)

or

k±(ω)− k0 =
1

2 v1 v2

(
(v1 + v2) (ω − ω0)

± (
(ω − ω0)

2 (v1 − v2)
2 + 4 ε�2 v1 v2

)1/2)
.

(153)

Depending on the sign of ε and of the product v1 v2, four different pictures
of the crossover region can be sketched out. But we single out the case
ε > 0, v1 v2 > 0, both vα > 0, that is typical of what happens in problems
of mechanics. The overall behavior of the remaining two coupled solutions
therefore is as follows. For k ∈ [0,+∞) = R+, we have

ωI(k) = fI
(
ω1(k), ω2(k); ε

)
,

ωII(k) = fII
(
ω1(k), ω2(k); ε

)
,

(154)

with
ωI

∼= ω1, ωII
∼= ω2, for k � k0, (155)

and the reverse situation for k � k0, while in the neighbourhood of point
C,

ωI
∼= ω0 + ω+, ωII

∼= ω0 + ω−.

We see that the critical point C, in fact, no longer belongs to the coupled
dispersion diagram. It is said that a repulsion of the dispersion curves has
occurred at point C. This repulsion has the essential property to be such
that

Δω

�
=

∣∣∣∣ ω2
I − ω2

II

� (ωI + ωII)

∥∥∥∥
k=k0

∼=
∣∣∣∣ω2

I − ω2
II

2ω0 �

∣∣∣∣ (k0) = O(
√
ε). (156)

Simultaneously, a resonance effect takes place in the crossover region since
it can be shown that the amplitudes satisfy a relation of the type∣∣∣∣ Â1

Â2

∣∣∣∣ ∝ √
ε�

∣∣ω(k)− ω2(k)
∣∣−1

, (157)

which blows up for ω(k) approaching ω2(k) at C in the absence of damp-
ing. Furthermore, in following continuously one of the coupled dispersion
curves with increasing k we observe an energy conversion from one type of
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oscillation to the other type. This is typical of some wave systems in the
mechanics of deformable solids as studied in depth by R. D. Mindlin (e.g.,
in a three-term model of rectangular rod or in the dynamics of plates; cf.
Mindlin, 1955, 1960; Graff, 1975).

Two essential remarks are in order concerning this resonance phenome-
non:

• First, in the case where a dissipative process is associated with each of
the Aα

′s, the resonance effect is smoothed out (it presents a maximum
instead of a divergence), and the ω′s becoming complex, a relaxation
time accompanies each real-frequency solution and an interchange of
relaxation is observed in the cross over region.

• Second, in the case of surface waves the requirement that the ampli-
tudes decrease with depth in the substrate implies that the allowed
domain of dispersion may be reduced and that some of the coupled
branches (154) in fact are not attainable.

The subsequent sections illustrate this phenomenon in the models of coupled
fields sketched out in previous sections.

5.2 The Case of Magnetoelasticity in Ferromagnets

A. Magnon

Magnons are the quasi-particles quantum mechanically associated with
spin waves that are oscillations in the ordered array of magnetic spins such
as described by equations (70) in the absence of couplings with elasticity.
The corresponding frequency mode is shown to be parabolic (ω ≈ k2) with a
cut-off defined by the initial non-zero static magnetizationM0, i.e., typically
for such a mode

ωS(k) = ωM (αk2 + β), ωM = γM0, (158)

where α and β are reduced exchange and magnetic anisotropy constants.
In the magnetoelastic case the mode (158) will couple with elastic modes

that typically have a linear dispersion relation (subscript P for “phonon”
= elastic vibrations)

ωP (k) = cT k. (159)

The coupling between these two via magnetostriction (or piezomagnetism
induced by magnetostriction in the presence of a bias magnetization) is of
the resonance type discussed in the preceding paragraph.

B. Bulk Magnetoelastic Modes

It is not the purpose here to establish in detail the coupling between
“magnons” and “phonons” on the basis of the coupled continuum equations
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recalled in Paragraph 3.2. The reader will find this dealt with at length
in Maugin (1988, chap. 6), and Eringen and Maugin (1990, chap. 9). We
shall rather exhibit exemplary pictures of this dynamical magnetoelastic (or
“magnetoacoustic”) coupling. What in fact happens is the resonance cou-
pling between one elastic transverse mode and the spin mode while the other
elastic transverse mode is practically uncoupled, and we are in the dispersion
situation sketched out in equation (149), so that the comments in Paragraph
3.1 apply. This is true for a propagation at zero angle with respect to the
direction of the initial magnetization (see Figure 4). For a nonzero angle an
additional coupling with the elastic longitudinal mode occurs (see Figure 5).
Figures 6 and 7 show numerically computed coupled dispersion relations for
two good deformable ferromagnets, Cobalt and Yttrium-Iron-Garnet (YIG).
These figures also exhibit a so-called magnetoelastic Faraday effect (the
fact that the polarization plane of magnetoelastic waves rotates as right-
polarized and left-polarized waves propagate at different speeds; Part (c) in
these figures). Furthermore, if viscosity and spin-relaxation are taken into
account, according to the modelling developed by the author, an exchange
of relaxation between modes take place in the cross-over region (Part (d) in

Figure 4. Dispersion diagram for coupled magnetoelastic waves in ferro-
magnets (after Maugin, 1981, IJES).



Electromagnetism and Generalized Continua 337

Figure 5. Dispersion diagram for coupled magnetoelastic waves in ferro-
magnets (after Maugin, 1981, IJES).

these figures).

C. Surface Magnetoelastic Modes

This case is much more subtle because we must account for the condi-
tion of existence of surface waves while the symmetry between right and
left propagation is broken (so called “non-reciprocity” of propagation to
the right and the left). With an initial setting of the static magnetization
orthogonal the sagittal plane, and neglect of the curvature (magnetization
gradients) of the spin-wave mode, one obtains dispersion curves such as
sketched out in Figure 8. Here hatched regions are forbidden (surface modes
with amplitude attenuation with depth do not exist), the low branches are
limited to small wave numbers, while for forward travelling waves the up-
per branch tends to a shear-horizontal elastic mode, which is not the case
for the backward travelling mode where the dynamic upper branch tends
towards a so-called “magnetostatic” mode (as obtained in a nondeformable
half space).
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Figure 6. Magnetoaoustic resonance in Cobalt: (a) dimensionless real dis-
persion relation for coupled magnons and transverse phonons (ω versus k);
(b) dimensionless real dispersion relation (R = k2 versus ω); (c) magnetoa-
coustic Faraday effect; (d) exchange of relaxation between modes. (after
Maugin and Pouget, 1981, IJES).
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Figure 7. Magnetacoustic resonance in Yttrium-Iron-Garnet (YIG): (a)
dimensionless real dispersion relation for coupled magnons and transverse
phonons (ω versus k); (b) dimensionless real dispersion relation (R =
k2 versus ω); (c) magneoacoustic Faraday effect; (d) exchange of relaxation
between modes. (after Maugin and Pouget, 1981, IJES).
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Figure 8. Dispersion curves for coupled surface magnetoelastic waves for
an orthogonal setting of the bias magnetic field (exchange forces neglected):
Difference between right and left propagation (after Maugin and Hakmi,
1985, JASA).

D. Case of Elastic Antiferromagnets

In the case of ferrimagnets, the multiplicity of magnetic lattices has for
consequence the existence of several magnon branches, two in the case of an-
tiferromagnets equipped with two magnetic sublattices. The magnetoelastic
couplings are exhibited in the model sketched out in Figure 3. Examples
of possible couplings between transverse elastic modes and two (lower and
upper) spin-wave branches are shown in Figure 9 after the author and co-
workers. The coupling scheme becomes complicated but reminds us exactly
of what happens in the pure mechanical wave modes in some structures
according to Mindlin. Figure 10 reproduces experimental results of such
couplings in antiferromagnetic FeCl2 (energy versus reduced wave number).

E. Magnetoacoustic Solitons

Solitons is the name given to strongly localized dynamical solutions
that propagate undeformed and interact just like elastic particles during
collisions. They exist because of a strict compensation between nonlinear-
ity (that tends to make a signal getting more and more steep like in the
formation of a shock wave) and dispersion (that tends to spread out a sig-
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Figure 9. Qualitative dispersion relation for coupled magnetoelastic waves
in simple antiferromagnets (after Maugin and Sioké-Rainaldy, 1983, 1985,
JAP): (a) Longitudinal setting for a moderate bias field for nonzero global
magnetization initially; (b) orthogonal setting for a moderate bias field,
same initial configuration; (c) orthogonal setting for a strong bias field with
nonzero global magnetization initially; (d) longitudinal setting for a strong
bias field.
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Figure 10. Real dispersion relation in antiferromagnetic FeCl2 (experimen-
tal results of Ziebeck and Houmann; after Maugin, 1980b).

nal by making the various Fourier components of the signal to travel at
different speeds). Equations (146) and (147) exhibit such solutions.

In the foregoing paragraphs only small amplitude oscillations of both
the mechanical displacement, and the magnetic spin orientation were consid-
ered. But we may also contemplate large angular deviations of the magnetic
spin allowed by the essentially non-linear (gyroscopic-like) spin equation,
still coupled via magnetostriction with small elastic strains. This situation
in which the simultaneous presence of nonlinearity and dispersion favours
the existence of solitons was first studied by the author and Miled (1986a).
They have shown that the coupled system of Section 3.2 can yield a sys-
tem of partial differential equations now called the sine-Gordon-D’Alembert
system that coupled via magnetostriction an equation such as (146) with a
linear elastic mode. That is, in appropriate units,

∂2φ

∂t2
− ∂2φ

∂x2
+ sinφ = −β

∂u

∂x
(cosφ), (160)

∂2u

∂t2
− c2T

∂2u

∂x2
= β

∂

∂x
(sinφ), (161)
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where u is a transverse elastic displacement, φ is the only remaining an-
gle describing the spin precession, and β stands for the magnetostriction
coupling. System (160)–(161) exhibits soliton-like solutions which are not
exactly soliton solutions in the mathematical sense because it exhibits some
radiations due to the essentially linear equation (161). Such solutions repre-
sent the dynamics of magnetoelastic domain walls of the Néel type (in-plane
180 degrees rotation of the local magnetization through the wall) in thin
magnetic films. Remarkably enough, a similar nonlinear dispersive wave
system was exhibited in the purely mechanical cases of micropolar elastic-
ity — in the sense of Eringen — (Maugin and Miled, 1986b; also Eringen,
1999) and elastic media endowed with a microstructure described by a set
of rigid directors – i.e., oriented media in the sense of Duhem & Ericksen –
(Pouget and Maugin, 1989).

5.3 The Case of Electroelasticity in Ferroelectrics

A. Polaritons

Polaritons refer to the waves that result from a coupling between os-
cillations in the system of ordered electric dipoles — governed by equation
of (114) — and the full set of Maxwell electromagnetic equations. The po-
larization mode is slightly dispersive and presents a cut-off, while the elec-
tromagnetic one is characterized by its high (light) velocity. This results in
Figure 11a in a large split between the two modes 2 and 3.

Figure 11. Dispersion relation curves for coupled transverse modes in elas-
tic ferroelectrics: (a) mixed acoustic-polariton branches; (b) schematic view
with Maxwell electrostatic equations and neglect of polarization gradients
(after Maugin, 1988, p. 531).
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Figure 12. Numerical dispersion curves for BaTiO3 (mixed transverse
acoustic and polariton modes in presence of dissipation (after Pouget and
Maugin, 1980, JASA).

B. Bulk and Surface Coupled Mode

For our purpose, however, the coupling with the electromagnetic mode
can be discarded (quasi-electrostatic hypothesis) and we retain only the
possible resonance coupling between an elastic mode and a practically flat
polarization mode such as shown in Figure 11b. Such coupled modes cal-
culated on the basis of the model developed by Maugin and Pouget (1980)
are sketched in Figure 12 for a good ferroelectric material such as BaTiO3

(after Pouget and Maugin, 1980). The eventual exchange of relaxation ac-
companying this coupling is also shown in the bottom part of the figure.
Coupled surface wave modes localized in the vicinity of a limiting plane
surface and characterized by a decrease of amplitude with depth can also
be placed in evidence. Figure 13 shows the corresponding coupling between
the polarization mode (c) and a transverse elastic mode (a) for a wave of the
Rayleigh surface type (elastic displacement polarized in the sagittal plane)
with a hatched forbidden dispersion zone (after Pouget and Maugin, 1981).

Finally, quite similar to the magnetoelastic solitons of the previous para-
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Figure 13. Piezoelectric Rayleigh waves in elastic ferroelectrics: qualitative
sketch of the dispersion relation (hatched region is forbidden) (after Maugin,
1988, p. 552).

graph, electroelastic solitons can be shown to exist for ferroelectrics of
the molecular group type (e.g., NaCl2). They are governed by a nonlinear
dispersive system of equations of the type of (160)–(161); cf. Pouget and
Maugin, 1984.

6 Configurational Forces in Presence of an
Electromagnetic Microstructure

6.1 Definition

The theory of configurational forces has recently become a rapidly de-
veloping active chapter of continuum thermomechanics (see the book Mau-
gin, 2011b for an overview for professionals). We remind the reader that
configurational forces are those forces of thermodynamical nature that are
associated with changes of the reference configuration while traditional
Newtonian-Eulerian forces are those that appear in the actual configuration
of the body (standard applied forces or couples, Cauchy stress). Accord-
ingly, configurational forces are the driving forces behind the evolution of
structural defects on, and topological changes of, the material manifold. The
theories of fracture, dislocation and disclination motions, structural changes
such as in plasticity, damage and material growth, and the progress of phase-
transition fronts belong in the general theory of configurational forces (Mau-
gin, 2011b). In the absence of dissipation — a case which is sufficient in the
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present context — the relevant thermomechanical equations of the theory of
configurational forces are those equations of conservation that follow from
the application of Noether’s theorem in a Hamiltonian-Lagrangian varia-
tional formulation. They are the local conservation equations of energy and
material momentum that account for the invariance of the considered phys-
ical system under changes of time and space parametrization (the system
is then said to be homogeneous in time and material space). These two
equations can also be obtained by direct manipulation of the field equations
by appropriate multiplication by time derivative and spatial gradient of the
fields and rearrangement of the results on account of the known constitutive
equations. We shall only give a flavour of the matter by recalling first what
happens for a pure mechanical system, e.g., the case of micropolar solids in
small deformation and small micro-rotations.

6.2 Reminder of a Purely Mechanical Case

In the dynamical case of small deformation and small micro-rotation the
standard balance laws of linear and angular momenta are given in Carte-
sian tensorial components by (cf. present Appendix and Eringen, 1968; no
applied force and couple for the sake of simplicity):

ρ0
∂2ui

∂t2
− ∂

∂xj
σji = 0, (162)

and

ρ0 jij
∂2φj

∂t2
− ∂mji

∂xj
− εipq σpq = 0. (163)

Isotropic microinertia, j = I 1, i.e., jij = I δij is often assumed for the sake
of simplicity or as an evident conclusion from a true micro-analysis. In terms
of the displacement of components ui and the microrotation of components
φi, the relevant measures of generalized deformations for elastic solids are
defined by

e := (∇u)T + dual φ = {eji = ui,j − εjik φk},
γ := ∇φ = {γji = φi,j},

(164)

and the constitutive equations of interest are given by

σ =
∂Ŵ

∂e
, m =

∂Ŵ

∂γ
, S = −∂Ŵ

∂θ
; W = Ŵ (e, γ, θ;x) (165)

for the usual (but here nonsymmetric) Cauchy stress tensor σ and the
couple-stress tensor m. Here θ is the thermodynamical temperature and
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S is the entropy per unit volume. The presence of x among the dependence
of the free energy W indicates a possible material inhomogeneity via the
constitutive equations. Such a dependence is also a priori considered for
the density ρ0 in the reference configuration. Let us define a “Lagrangian”
density per unit volume by

L̂ = K −W, (166)

with

K =
1

2
ρ0
(
u̇i u̇i + φ̇i jij φ̇j

)
, W = Ŵ . (167)

We encourage the reader to prove the following two equations by multiply-
ing equations (162) and (163), respectively by u̇i and φ̇i, adding the two
results, and rearranging terms on account of (165), and performing similar
operations but by applying ui,k and φi,k to (162) and (163), adding the
two results, and accounting for (165). This results in obtaining the local
canonical balance equations of energy and momentum in the following form
(e = internal energy per unit mass, q is a possible heat flux)

∂

∂t

(
ρ0

(
e+

1

2
u̇2 +

1

2
φ̇i jij φ̇j

))
− ∂

∂xj

(
σji u̇i +mji φ̇i − qj

)
= 0, (168)

and
∂

∂t
P tot.f
i − ∂

∂xj
bji = f inh

i + f th
i , (169)

wherein

P tot.f
i = −ρ0

(
u̇j uj,i+φ̇k jkj φj,i

)
, f inh

i =

(
∂L̂

∂xi

)
expl

, f th
i = S

∂θ

∂xi
, (170)

and
b = −L1− σ · (∇u)T −m · (∇φ)T

or bji = −(Lδji + σjk uk,i +mjk φk,i).
(171)

The nonsymmetric stress tensor b is referred to as the Eshelby stress tensor;
it is a true fully material stress tensor on the material manifold in the
original finite-strain formulation.

Here the notation used in (170)2 means (assuming jij is the same at all
material points)(

∂L̂

∂xk

)
expl

=
1

2

∂ρ0
∂xk

(u̇i u̇i + φ̇i jij φ̇j)− ∂

∂xk
Ŵ

∣∣∣∣
fixed fields

. (172)
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In the absence of thermal effects and for materially homogeneous bodies,
equations (168) and (169) reduce to the following strict conservation laws:

∂

∂t
H − ∂

∂xj
(σji u̇i +mji φ̇i) = 0, (173)

and
∂

∂t
P tot.f
i − ∂

∂xj
bji = 0, (174)

wherein
H = K +W, W = Ŵ (eij , γij). (175)

Equations (173) and (174) and the associated jump relations across a dis-
continuity surface provide the basis for most calculations of driving forces
on defects. In particular, for a straight through crack in the direction x1

(see Figure 14) the celebrated J-integral of fracture theory for a quasi-static
progress is given by

J =

∮
Γ

(
W n1 − nj

(
σji

∂ui

∂x1
+mji

∂φi

∂x1

))
dΓ, (176)

where Γ is a circuit in the (x1, x2)-plane starting form the bottom stress-free
face of the crack and ending on its tip stress-free face (hence in a counter-
clockwise circuit with unit outward normal of components ni; component
n1 along the direction x1). Formula (176), generalizing the standard (no
microstructure) elastic case of Rice (1968), was first given by Atkinson and
Leppington (1974), and reformulated since then by various authors (see

Figure 14. Straight through crack with integration contour for the J-
integral.
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Maugin, 2011b, p. 268). Equation (176) is obtained by integrating (174) in
a domain of the (x1, x2)-plane encircling the crack tip, ignoring the inertia
terms, invoking the divergence theorem, and projecting the result onto the
x1 direction. In the same approximation, the expression of the accompany-
ing energy-release rate is obtained by performing similar manipulations on
equation (173).

In a similar manner, the configurational force driving a phase-transition
front Σ of unit oriented normal n is obtained by the formula

fΣ = n · [b] · n, (177)

where b is reduced to its quasi-static part and the brackets denote the
jump of the enclosed quantity. The details of the proof of (177) are given
in Maugin (2011b, pp. 264–267) in the case of finite fields.

6.3 The Ferroelectric Case

It is clear that the ferroelectric elastic case sketched out in Section 4 is
very similar to the micropolar case recalled in Paragraph 6.2. In particular,
in parallel with (166) and (167) we have the following expressions:

L̂ = K −W, (178)

with

K =
1

2
ρ0 (u̇i u̇i + π̇i dE π̇i), W = Ŵ , (179)

but here

Ŵ = W (eij = u(i,j), πi, πi,j)−
(
1

2
E2 + ρ0 πi Ei

)
, (180)

where Ei are the components of the Maxwellian quasi-static electric field
E, and we consider only small strains and electric fields in the absence of
thermal and other dissipative effects, and of material inhomogeneities, the
whole in the quasi-electrostatics of dielectrics. The relevant constitutive
equations are given by (see, e.g., Maugin, 1988, chap. 7)

σji =
∂W

∂eij
,

EL
i = −ρ−1

0

∂W

∂πi
,

Êji =
∂W

∂πi,j
,

(181)
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while the field equations are the equation of motion, the equation govern-
ing the electric polarization, and the remaining Maxwell’s equations for
dielectrics. That is,

ρ0
∂2ui

∂t2
=

∂σji

∂xj
+ fem

i , fem
i = ρ0 πj

∂Ei

∂xj
, (182)

dE
∂2πi

∂t2
= Ei + EL

i + ρ−1
0

∂Êji

∂xj
, (183)

and
∇ ·D = 0,
∇×E = 0 ⇒ E = −∇φ,
Di = Ei + ρ0 πi.

(184)

Here φ is the electrostatic potential not to be mistaken for the microrotation
of the previous paragraph.

Because the conservation laws of energy and material momentum are
canonical (i.e., their formal expression is independent of the true physical in-
terpretation of the variables; see Maugin, 2011b) we could write them down
at once by analogy with equations (168) through (171). The thermomechan-
ics of the corresponding configurational forces was given by Restuccia and
Maugin (2008) in the finite-strain framework. We could exploit Noether’s
theorem — as there is no dissipation — since all equations are derivable
from a unique Hamiltonian-Lagrangian variational principle. More naively,
for example, in order to obtain the conservation equation of canonical (ma-
terial) momentum, we can simply combine the three co-vectorial equations
obtained by applying the field ui,k, πi,k and ∇φ, respectively to (182), (183)
and (184) and accounting for (179) through (181), to arrive at the equation

∂

∂t
P tot.f
i − ∂

∂xj
bji = 0 (185)

wherein
P tot.f
i = −ρ0 (u̇j uj,i + dE π̇j πj,i), (186)

and
bji = −(Lδji + σjk uk,i +Dj φ,i + Êjk πk,i

)
. (187)

Just the same as (174), equation (185) provides the basis for the construc-
tion of configurational forces acting on defects in elastic ferroelectrics. In
particular, in quasi-statics, the integral of (185) in the proper plane (see
Figure 14) yields the generalized J-integral useful in fracture studies:

J =

∮
Γ

(
W n1 − nj

(
σji

∂ui

∂x1
+Dj

∂φ

∂x1
+ Êji

∂πi

∂x1

))
dΓ. (188)
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If the body is piezoelectric but not ferroelectric, then dE = 0, Êij = 0, and
equation (183) reduces to

E+EL = 0, (189)

while

W = W (eij , πi), EL
i = −ρ−1

0

∂W

∂πi
. (190)

We can perform a partial Legendre transformation onW such as, on account
of (189):

Ei =
∂W

∂Pi
,

Pi = ρ0 πi = −∂W̃

∂Ei
,

W (eij , Pi)− W̃ (eij , Ej) = Ek Pk = ρ0 πk Ek.

(191)

Thus, in this approximation,

Di = Ei + Pi = −∂
�

W

∂Ei
,

�

W (eji, Ei) = −1

2
E2 + W̃ (eij , Ej). (192)

This is the standard theory of electroelasticity of piezoelectrics for which
(188) reduces to the known formula (given by several authors, see Maugin,
2011b, sec. 11.9)

J =

∮
Γ

(
W n1 − nj

(
σji

∂ui

∂x1
+Dj

∂φ

∂x1

))
dΓ. (193)

For the formulation of the driving force acting on phase-transition fronts,
we refer the reader to our book (Maugin, 2011b, sec. 11.9).

6.4 The Ferromagnetic Case

This case is peculiar in the dynamic framework because of the special
nature of the magnetic spin for which there is no kinetic energy expressed
in the traditional form. First of all it can be shown (Maugin, 2011b, p. 370)
that the local energy equation (66) for small strains can be rewritten in a
more traditional (canonical) form as

∂

∂t

(
ρ0

(
1

2
u̇2 + e−B · μ

))
− ∂

∂xj

(
σji u̇i + B̂ji μ̇i − qj

)
= 0, (194)

where e is the internal energy per unit mass and qj stands for the heat flux.
In the absence of thermal and dissipative processes this is rewritten as

∂

∂t

(
1

2
ρ0 u̇

2 +W − ρ0 Bj μj

)
− ∂

∂xj

(
σji u̇i + B̂ji μ̇i

)
= 0, (195)



352 G.A. Maugin

where there is no apparent kinetic energy for the magnetic spin, while the
volume energy W remains a function of the set of variables (eji, μi, μi,j).
The associated canonical conservation law of (material) momentum was
formulated by Fomethe and Maugin (1996). In small strains and materially
homogeneous materials it reads

∂

∂t
Pmech
i − ∂

∂xj
bji = f ferro

i , (196)

wherein
Pmech
i = −ρ0 u̇k uk,i, (197)

bji = −(Lδji + σjk uk,i + B̂jk μk,i

)
, (198)

L =
1

2
ρ0 u̇

2 + ρ0 Bj μj −W (eji, μi, μi,j), (199)

and
f ferro
i = −γ−1 ωk μk,i, (200)

where ωi are the components of the precessional velocity of the magnetic
spin, i.e.,

ωi = −γ
(
Bi +BL

i + ρ−1
0 B̂ji,j

)
. (201)

The generally nonvanishing right-hand side in (196) is the print left by the
peculiar gyroscopic nature of the magnetic spin. Whatever we do, we cannot
incorporate it in any of the two terms in the left-hand side. This “material”
force (200) can also be written in the self-speaking form

f ferro
i = ρ0

δL

δμk
μk,i, (202)

where the Euler–Lagrange variational derivative is given by

δL

δμk
=

∂L

∂μk
− ∂

∂xp

∂L

∂μk,p
= Bk − δW

δμk
. (203)

It is verified that the “ferromagnetic” material force (200) or (202) has no
dissipative contents by computing the (identically nil) power that it expends
in a material velocity field on the material manifold by virtue of equation
(9), in full agreement with (195). Thus it will not contribute any term in the
energy-release rate that we could deduce from (196) in a study of fracture.
We refer the reader to Chapter 11 of Maugin (2011b) for further applications
to fracture and the progress of phase-transition fronts and magnetic domain
walls.
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7 Conclusive Remark

In the early developments of three-dimensional generalized continuum me-
chanics the difficulty of physically realizing a volume density of distributed
mechanical couples was noticed. An early justification for considering mag-
netized and electrically polarized materials was the possibility to induce
such couples by electromagnetic means: the general non-alignment of mag-
netic field and magnetization in the magnetic case, that of electric field and
electric dipoles in the electric case. What we have shown in the foregoing
sections is that a further electromagnetic microstructure, whether magnetic
or electric in nature, induces the presence of other fields that theoretically
exist in purely mechanical theories, those of hyperstress and intrinsic spin.
As shown in this set of lectures, a consequence of the presence of such fields
makes that some of the results and expressions of pure continuum mechan-
ics are translated into new electromagnetically-based quantities. This is
true in most of the applications such as coupled-wave propagation, driving
forces on cracks and phase-transformation. This does not come as a surprise
in the field-theoretical approach presented in these lectures where many of
the expressions are indeed canonical, and thus formally independent of the
precise physical meaning of the involved fields.

A Reminder of Basic Equations of Generalized
Mechanical Continua

Here we remind the reader of the basic local equations of balance of now
standard generalized continua (see, e.g., Eringen, 1999; Maugin, 2011a).

Let σ the Cauchy stress of continuum mechanics, i.e., the stress tensor
of Cartesian tensor components σji in the actual configuration of a body B
at Newtonian time t. In classical continuum mechanics (no applied couple,
no internal structure) this is symmetric satisfying the two local balance
equations of linear momentum and moment of momentum:

∂

∂t
(ρ0 v)− div σ = 0 or

∂

∂t
(ρ0 u̇i)− σji,j = 0, (204)

and
σ = σT or σji = σij ⇐⇒ σ[ji] = 0, (205)

in the absence of body force. Here ρ0 is the constant matter density (for a
homogeneous body) and vi := u̇i denotes the velocity.

In the most popular (purely mechanical) generalized continuum mechan-
ics, Equation (205) generalizes to the following ones (written in quasi-statics
for the sake of simplicity):
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Micromorphic Bodies (Eringen, Mindlin; 1964):

μkij,k + σji − sji + lij = 0,
σji = σ(ji) + σ[ji], s[ji] = 0,
lji = Cji + l(ji).

(206)

Micropolar Bodies (Cosserat brothers, etc.):

μk[ji],k + σ[ji] + Cij = 0 (207)

or
mji,j + εikj σkj + Ci = 0. (208)

Bodies with Microstretch (Eringen, 1969):

μklm =
1

3
mk δlm − 1

2
εlmr mkr (209)

so that
mkl,k + εlmn σmn + Cl = 0,
mk,k + σ − s+ l = 0.

(210)

Dilatational Elasticity (Cowin and Nunziato, 1983):

mk,k + σ − s+ l = 0. (211)

In these equations given in Cartesian components in order to avoid any
misunderstanding (note that the divergence is always taken on the first
index of the tensorial object to which it applies), μkij is a new internal
force having the nature of a third-order tensor. It has no specific symmetry
in Equation (206) and it may be referred to as a hyperstress. In the case of
Equations (207) this quantity μkij is skewsymmetric in its last two indices
and a dual second order tensor — called a couple stress — of components
mji can be introduced having axial nature with respect to its second index.
The fields sji and lij are, respectively, a symmetric second order tensor
and a general second order tensor. The former is an intrinsic interaction
stress, while the latter refers to an external source of both stress and couple
according to the last of Equations (206). Only the skew part of the later
remains in the special case of micropolar materials (Equations (207) in which
Ci represents the components of an applied couple, an axial vector associated
with the skewsymmetric tensor Cji). The latter can be of electromagnetic
origin, and more rarely of pure mechanical origin. Equations (209) and (210)
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represent a kind of intermediate case between micromorphic and micropolar
materials. The case of dilatational elasticity in Equation (211) appears
as a further reduction of that in Equation (210). This can be useful in
describing the mechanical behavior of media exhibiting a distribution of
holes or cavities in evolution.

In a fully dynamical case, a dynamic (inertia) term is present in the
right-hand side of equations (206)1, (207)1, (210)1 and (211). For instance,
in the case of (207)1, its dynamical generalization reads

μk[ji],k + σ[ji] + Cij = ρ0 Sji (212)

or
mji,j + εikj σkj + Ci = ρ0 Si, (213)

where the intrinsic spin tensor of components Sji (and its dual axial vector
Sk) are given by

Sji = −εjik Sk, Sk =
d

dt
(jkp νp), (214)

where jkp stands for a symmetric tensor of rotational (or micro) “inertia”
and νp denotes the vector components of an intrinsic rotational velocity
(generally different from standard vorticity ωi =

1
2 (∇×v)i). Eringen (1966)

has shown that jkp satisfies a “balance law of micro-inertia” in perfect anal-
ogy with the standard conservation of mass for the macroscopic motion. For
the purpose of analogy with electromagnetically micro-structured media, we
note that the spin tensor that will appear in the right-hand side of equation
(206)1 would be defined microscopically by an average of the type

Sji ≡
〈
ξ̈j ξi

〉
, (215)

where ξj refers to internal coordinates in a micro-element defined at point
X in the body. Only the skewsymmetric (i.e., antisymmetric) part of this
tensor is involved in a micropolar body so that we have the reduction

Sji =
〈
ξ̈[j ξi]

〉
=

〈
d

dt

(
ξ̇[j ξi]

)〉
=

d

dt

〈
ξ̇[j ξi]

〉
. (216)

This is to be compared to expressions such as that in the left-hand side of
(123).
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