
Chapter 7
A Local Structure-Based Method for Nodes
Clustering: Application to a Large Mobile
Phone Social Network

Alina Stoica, Zbigniew Smoreda, and Christophe Prieur

Abstract In this paper we present a method for describing how a node of a given
graph is connected to the network. We also propose a method for grouping nodes
into clusters based on the structure of the network in which they are embedded,
so on the description provided by the first method. We apply these methods to a
mobile phone communications network. When confronting the obtained clusters of
individuals to their age and to their intensity of communication, the results are quite
promising: the two measures are correlated to the social network cluster. We finish
by providing a typology of the mobile phone users based on social network cluster,
communication intensity and age.

7.1 Introduction

In this paper, we want to describe how each individual of a given social network is
connected to the network and to cluster nodes that are connected in a similar way to
the network. One can see this distribution of nodes into clusters as an identification
of network “roles”. Without pretending to have solved the problem of identification
of roles, we present a method to distribute nodes into clusters based on the local
structure of the network.
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We apply the method to a large mobile phone network. The obtained results
are quite promising, in particular when the clusters are confronted to other char-
acteristics of the individuals. Indeed the probability that an individual belongs to a
certain cluster depends on his or her age; even more, using these probabilities we
are able to group together different ages, thus discovering four groups containing
consecutive ages, corresponding to four life stages. The probability that a person
belongs to a certain cluster also depends on his or her mobile phone communication
intensity; moreover the intensity of communication allows us to predict with rather
high accuracy the cluster membership of a person.

We begin by recalling some work related to the subject. Next we present the
method for describing how a node of a given graph is embedded in the network. We
then propose a method for clustering nodes based on the structure of the network
surrounding them. Next we present the results of the application of the methods
to the mobile phone communications network: the obtained clusters of individuals,
the correlations with the age and the intensity of communication and a typology
of mobile phone users based on social network cluster, communication intensity
and age.

7.2 Related Work

Social roles. The notion of role refers to the position of an actor in society and
it is based on the relationships that the actor in question has with other actors.
Actors playing a particular social role are connected in the same way to the network.
Generally, the nodes in a network can be grouped into equivalence classes based on
the roles they play, so nodes having the same role have to be equivalent or similar to
each other by some metric. Probably the best known equivalence relations for this
purpose are the structural, the automorphic and the regular equivalence.

Structural equivalence [11]. Two nodes are considered equivalent if and only if
they have exactly the same neighbors in the graph, so they are linked to exactly
the same set of nodes with (in the case of directed graphs) the arrows pointing
in the same directions. Thus, two structurally equivalent actors can exchange their
positions without changing the network.

However, it is not frequent to find two persons with identical relations. There are
examples of actors who play the same role without being connected to exactly the
same people, but rather have similar relations with people who have themselves a
same role. The two following relations express this idea.

Automorphic equivalence. Two nodes are considered equivalent if one is the
automorphic image of the other one. Formally, two vertices u and v of a graph G are
automorphically equivalent if there is an automorphism ' of G such that '.u/ D v.1

1The notion of automorphism is presented in Sect. 7.3.
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Regular equivalence [3, 18]. Two nodes are considered equivalent if they are
connected to equivalent nodes. Imagine that nodes having the same role are given
the same color (and nodes with distinct roles are given distinct colors). If two
nodes are equivalent, the colors found in the neighborhood of one node are also
found (possibly in different numbers) in the neighborhood of the other node. Also,
the definition can be understood in the following way: every equivalence class is
represented by a single node in an “image graph” (also called “blockmodel” or “role
model”). The nodes of the image graph are connected (disconnected) if the nodes in
the corresponding classes are connected (disconnected) in the original graph.

A lot of research has been devoted to blockmodeling. Some authors focused on
efficient algorithms for blockmodeling [2], others on its mathematical foundations
[1, 5, 18], others proposed problem relaxations [15] or generalizations for different
types of relations [5]. The method we propose here is different from the research
on blockmodels. Although the goal is the same, to cluster nodes that share some
network characteristics, our method can be applied to nodes that belong to the same
graph as well as to nodes belonging to different graphs (as for example nodes in
personal networks obtained by interviews). The blockmodeling, on the other hand,
searches for roles in a same graph. Also, our method can be easily applied to (very)
large networks, taking a few dozens of minutes to compute clusters of nodes in a
graph containing millions of nodes.

The method we propose here is somehow related to the equivalence of roles
introduced by Burt [4] who published in English the work of Hummell and Sodeur
[8]. In this paper the authors characterized each node of a given network by the
number of occurrences of the node in triads. One looks for the presence/absence
of links between the given node and every other two nodes of the network. As the
graph where the triads are computed is directed, one counts the presence of the node
in 36 types of triads. Then the Euclidian distance is used in order to find similar
nodes. In a way, the method we propose here follows this idea. However, we look
for patterns of a higher order than the triads. Also, one major difference is that, when
characterizing a node, we look only at its neighbors and the connections between
them, while Hummell and Sodeur look at its relation with every pair of nodes in
the network. Their characterization is therefore more detailed, but way too complex
for large networks. Looking at

�
n�1

2

�
nodes in order to characterize one node of

a network with n nodes is impossible when n is high, so this method cannot be
applied to large social networks. Another difference is that our method is designed
for undirected networks, but it can be easily modified to take into consideration
directed graphs.

Mobile phone social networks. We apply the method proposed here to a large
network built from mobile phone communications. Different properties have been
already identified in such networks [12,13]. Onnela et al. [13] show with no surprise
that the distributions of degree and of the duration of calls are power-laws. They also
give a definition for the strength of ties depending on the duration of calls and they
analyze the connection between the strength and the connectivity or the community
structure.
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Using mobile phone communication data, Lambiotte et al. [10] were able to test
the sociological hypothesis that the existence of a call between two persons depends
on the geographical distance between them. They thus show that the probability of a
mobile phone call is inversely proportional to the square of the geographical distance
between the two persons. Several researchers analyzed the temporal dynamics of
mobile phone networks e.g. the temporal stability of links [7, 14]. In [7], Hidalgo
and Rodriguez-Sickert define the persistence of a link over a set of time periods
as the number of periods where the link is activated (i.e. there are reciprocal calls
between the two persons during that period). They find that persistent links are more
common with people with low degree and high clustering.

However, the properties of mobile phone social networks computed in these
studies are global, characterizing the network as a whole. Here, our aim is to
characterize the local structure of the graph. We thus propose methods to describe
the way each node is embedded into the network and to find similarly connected
nodes. We then apply the methods to a large mobile phone network.

7.3 Preliminaries

7.3.1 Basic Graph Notions

Let G D .V; E/ be a graph; V is the set of its vertices, E � V � V is the set of its
edges. The graph G is undirected if for all .u; v/ 2 E also .v; u/ 2 E i.e. edges are
unordered pairs of nodes. G is connected if there exists a finite path between every
two vertices and it is simple if it has no multiple edges (i.e. for all u; v 2 V there is
at most one edge connecting u to v) and no self-loops (.v; v/ … E , for all v 2 V ).
All the graphs we consider here are simple and undirected.

Given a vertex v 2 V , a vertex u 2 V is a neighbor of v if and only if
.u; v/ 2 E: The set of neighbors of v represents its neighborhood denoted by
N.v/ D fu 2 V; .u; v/ 2 Eg and the cardinal of this set represents its degree.
Two graphs G D .V; E/ and H D .V 0; E 0/ are isomorphic if and only if there
exists a bijective function ' W V ! V 0 such that, for any two vertices u and
v in V; .u; v/ 2 E if and only if .'.u/; '.v// 2 E 0: If G and H represent the
same graph, the function ' is called automorphism of the graph G: The subgraph
induced by a set of vertices V 0 � V in G is the graph H D .V 0; E 0/ with
E 0 D f..u; v/ 2 E j u; v 2 V 0/g :

7.3.2 Data Mining Notions

ANOVA test. This test measures the correlation between a continuous variable
and a categorization. It tells if the mean of the continuous variable is the same
for the different categories. If this is true then the two variables are independent.
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For instance, one can use the ANOVA test in order to see if the salary (the
continuous variable) is independent from the gender (the categories, male and
female). However, this test says only if the means are different or not, but it does not
say for which categories the means are significantly different and for which they are
not. A test that can provide such information is called a multiple comparison test.
Such tests are the Bonferroni [6] and the ScheffKe tests [16].

We also present briefly two widely-used methods for clustering objects.

K-means clustering. Given a set of objects, the k-means algorithm groups them
into a given number k of clusters using the distance between the objects. If each
object is characterized by a feature vector with n elements, one usually uses the
Euclidian distance between the feature vectors as distance between objects. The
Euclidian distance is defined as

d.u; v/ D
p

.u1 � v1/2 C .u2 � v2/2 C � � � C .un � vn/2 D
vu
u
t

nX

iD1

.ui � vi /2

where u and v are two objects characterized by two feature vectors with n elements
.u1; : : : un/ and .v1; : : : vn/ respectively.

Given a cluster K containing nK objects characterized by feature vectors of
n elements, the center (or centroid) CK of the cluster is a vector representing the
average of all the objects in the cluster i.e. for each variable i from 1 to n, the i-th
value of the vector is the arithmetic mean of the i-th values of the feature vectors of

the objects in the cluster: CK.i/ D 1

nK

P
v2K vi where v is an object in the cluster

and vi is the i-th value of its feature vector.

Kohonen self organizing maps. Given a set of p individuals (or objects) charac-
terized by feature vectors with n variables, the aim of the Kohonen self-organizing
map[9] is to cluster the individuals and also to build a bi-dimensional map with n

layers (a layer for each variable describing the individuals) where the individuals are
placed depending on their topological proximity. The map’s smallest entity is a cell,
and each individual is placed in only one cell (the individual has the same position
and therefore cell on all the layers); there are

pjpj cells. The method has three
steps. The first one is the learning. The feature vectors of the cells are randomly
initialized. Then a subset of the population to model is randomly selected; for each
individual in this selection the SOM finds the (“winner”) cell whose feature vector
is the most similar (i.e. is the closest by a given distance). The feature vector of the
winner cell is updated to take into account the feature values of the individual. The
feature vector of the neighbor cells are then modified to reduce the vectors gradient
with the new values of the cells’ feature vector. The second step of the algorithm is
the processing of the global population to model: each individual is placed in the cell
with the closest feature vector. Finally the last step is the clustering of the cells with,
for instance, a k-means algorithm, based on the similarity of their feature vectors.
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Fig. 7.1 The nine patterns
with at most four vertices and
at least one edge

Fig. 7.2 A graph (a) and its patterns (b)

7.4 Local Structure-Based Node Characterization

Suppose that we are given a network that represents a set of individuals and some
connections between them. We want to study how each one of the individuals is
connected to the network. For that, we analyze the connections between each node
and its neighbors and between these neighbors. More precisely, we characterize the
egocentred network of each one of the nodes in the network. By egocentred network
of a given node we mean the network formed by its neighbors and the links between
them.

Formally, let G D .V; E/ be a simple undirected graph such that V corresponds
to the set of individuals and E to the set of connections between them: two vertices
u and v are connected by an edge .u; v/ if there is a connection between the two
individuals u and v: We call egocentred network of the node v 2 V the graph Eg.v/

induced by the neighbors of v in G i.e. the graph whose vertices are the neighbors
of v and whose edges are the edges between these neighbors in G:

We call patterns the nine non-isomorphic undirected connected graphs with at
most four vertices and at least one edge (Fig. 7.1). We say that a pattern P appears
in a graph G D .V; E/ if there exists a set of vertices VP � V such that the subgraph
induced by VP in G is isomorphic to P: Listing all the occurrences of the pattern P

in the graph G means finding all the sets of vertices VP according to the previous
definition. As an example, Fig. 7.2 represents a graph .a/ and the patterns it contains
and their number of occurrences .b/:
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Fig. 7.3 A vertex v and its neighbors (a), the egocentred network Eg.v/ of v (b) and the patterns
of Eg.v/ (c)

Now, to characterize a node v of a graph G we proceed as it follows (method
characterize(v); this is part of the method local_structure that we introduced
in [17]):

Step 1. Extract the egocentred network Eg.v/ of v i.e. the subgraph induced by
the neighbors of v in G;

Step 2. List the patterns of Eg.v/;

Let us explain the two steps of the method with an example. In Fig. 7.3a, the black
circles correspond to the neighbors of v. The egocentred network Eg.v/ of v is
represented in Fig. 7.3b and the patterns of Eg.v/ in Fig. 7.3c.2 We chose not to
include v in its egocentred network because we know that it is connected to all the
vertices in this graph, its presence doesn’t bring any information. After performing
the two steps of the method one has a rich description of the way v is connected to
the graph G: For a more detailed description of the local structure of G around v
one can list the patterns of a higher order (with five vertices or more); the patterns
with four vertices are however a good compromise between the variety of forms and
their number, providing, in many cases, a detailed enough picture.

We call pattern-frequency vector of v the vector containing the number of
occurrences of the different patterns in its egocentred network (along with the
number of isolated vertices and edges in its network):

Definition 1. Given a vertex v of a graph G D .V; E/, we call pattern-frequency
vector of v the vector

f .v/ D .fiv.v/; fie.v/; f .v/; f .v/; f .v/; f .v/; f .v/; f .v/;

f .v/; f .v/; f .v//

2We have also counted the number of isolated vertices and edges in Eg.v/:
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where:

• fiv.v/ is the number of isolated vertices in the egocentred network Eg.v/,
• fie.v/ is the number of isolated edges

and the subsequent components are the numbers of occurrences of the patterns as
induced subgraphs in the egocentred network Eg.v/ of v:

• f .v/, pattern 1, edges,
• f .v/, pattern 2, paths with two vertices,
• f .v/, pattern 3, triangles,
• f .v/, pattern 4, paths with three vertices,
• f .v/, pattern 5, stars,
• f .v/, pattern 6,
• f .v/, pattern 7, chordless squares,
• f .v/, pattern 8, squares with one chord,
• f .v/, pattern 9, four-cliques.

For instance, for the vertex in Fig. 7.3a, its pattern-frequency vector is

f .v/ D .4; 1; 6; 3; 1; 2; 0; 1; 0; 0; 0/:

Note that this method provides a description of how a given vertex is connected
to the network; it can be applied to the set of all the vertices of the graph or only
to some of them. As it is local, one doesn’t need to have all the vertices and edges
in the graph, but only the neighbors of each studied vertex and the edges between
them.

7.5 Pattern Frequency Clustering of Nodes

In this section we want to group together nodes that are connected in a similar way
to the network. We use the previously defined pattern-frequency vectors in order
to describe how the different nodes are connected to the network. Now we have to
define what “connected in similar ways” represents.

One possibility is to define an equivalence relation on nodes using the pattern-
frequency vectors. For instance:

Definition 2. Two vertices of the graph G are said to be equivalent if and only if
they have identical pattern-frequency vectors. We call this pattern equivalence.

Note that this equivalence is less strict than the structural and the automorphic
equivalences. Indeed, vertices that have exactly the same neighbors in the network
(so are structurally equivalent) have identical egocentred network, so identical
feature vectors, and therefore are pattern equivalent. Also, vertices that are auto-
morphically equivalent have isomorphic egocentred networks, so identical feature
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vectors and are thus pattern equivalent. For the two definitions, the opposite is
not always true, so one can say that the pattern equivalence is included in the
structural and automorphic equivalences. This means that the pattern equivalence
is less strict than these two relations. However, it is still not enough flexible for
real-world networks where nodes having exactly the same patterns in exactly the
same amounts are rare (at least for values of the degree higher than, let’s say, 10).
Thus, the equivalence classes obtained when applying the definition to large graphs
are much too numerous. Here we want to group the nodes of a given large network
into a small number of classes (i.e. smaller than a given constant, for instance 20).
Each class should contain similar nodes in terms of network structure. It is the local
structure of the network surrounding the node that should matter when attributing a
node to a class, and not its degree or the fact of being connected to other nodes in the
class. The interest of computing such classes is that they are very easy to use. Thus,
one can measure correlations with other properties of the nodes or make predictions
(e.g. predict a property when knowing the class and vice-versa).

Instead of grouping together nodes that have identical pattern-frequency vectors
(as in the pattern equivalence), we cluster nodes that have similar vectors. For that,
we use a classical clustering method, the k-means algorithm. The advantage of
performing a clustering to define vertex equivalence is its flexibility: one can
distribute the vertices into a small number of clusters (if this is his or her goal)
or a large number of clusters (where vertices in the same cluster are very similar to
each other).

Before performing the clustering, we filter out vertices that have identical
pattern-frequency vectors. These vertices are not distinguishable by using only the
patterns; their egocentred networks contain exactly the same patterns in exactly
the same number. By default, they belong to the same cluster. The elimination of
multiple copies of the same pattern-frequency vector insures a smaller complexity
of computation and also allows us to perform a finer clustering. Of course, after
having clustered the remaining vertices (we call them the reduced population), we
put the filtered out vertices into the clusters where the vertices with identical vectors
have been already placed.

Definition 3. Given a graph G, we call reduced population of G a maximal set of
vertices of G that have distinct pattern-frequency vectors. Given a positive integer
d; we denote by Popd .G/ the set of vertices in the reduced population of G that
have degree d (in G).

7.5.1 The Issue of the Degree

There is an important factor that must be taken into consideration prior to the
clustering: the degree of vertices. It is difficult to compare the number of occurrences
of patterns in egocentred networks of vertices with different degrees because these
values are biased by the degree. For vertices with high degrees, the number of
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Fig. 7.4 An example of four
egocentred networks with five
vertices (a and b) and ten
vertices (c and d) respectively
(ego has been removed)

occurrences can have high values, too. Actually, for a vertex (ego) with degree d ,
a pattern with k vertices can occur at most

�
d

k

�
times in its egocentred network.

So, while the minimal value of the number of occurrences of a pattern is always
0, the maximal value depends on the degree of ego. Therefore, the exact values
of the number of occurrences of patterns can be misleading. Look, for instance,
at the four egocentred networks in Fig. 7.4 (ego has been removed). Their pattern-
frequency vectors are presented in Table 7.1 where one can see that the values of
many variables are higher for C and D than for A and B . Even more, the networks
C and D look more similar to each other than A and B , so the vectors of C and
D should be closer to each other than those of A and B: However, the Euclidian
distance between the pattern-frequency vectors is 74 for A and B and 1,726 for C

and D.
In order to avoid the problem of the degree, we choose to perform a clustering

for each degree. Thus, the distance between the vertices C and D in the previous
example will be compared to the distances between other pairs of vertices of degree
10 and not to all the input vertices. If we manage to group together the vertices of
each degree in a same number of clusters and to match together the clusters obtained
for the different degrees, then we have that each cluster contains vertices of all the
degrees. This is exactly our goal here: we want a vertex to belong to a given cluster
because it has a certain type of connection to the network and not because it has
a certain degree. Thus, if a vertex gets another degree during time, we can see if
the type of structure in which it is connected also changes by checking if its cluster
changes. It is not the difference of degree that we want to capture but the difference
of structure. If we don’t have exactly the same clusters for all the degrees, we cannot
do this. And this is exactly what might happen if we perform a single clustering for
all the degrees (and not for each degree separately): there might be clusters with
no vertices of some degrees (because, for instance, there are fewer vertices of that
degree).
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Table 7.1 The pattern-frequency vectors of the egocentred networks in Fig. 7.4

net. fdeg fiv fev f f f f f f f f f

A 5 0 0 4 6 0 0 4 0 0 0 0

B 5 1 0 6 0 4 0 0 0 0 0 1

C 10 0 0 9 36 0 0 84 0 0 0 0

D 10 1 0 10 26 2 0 45 10 0 1 0

7.5.2 Pattern-Frequency Clustering of Nodes

We proceed as it follows:

1. For each degree, we perform several k-means clusterings on the vertices with
that degree in the reduced population, using different numbers of clusters; we
compute the best number of clusters;

2. We keep as final number of clusters the number indicated as best for most
degrees; let this number be nc ;

3. For each degree, we divide the vertices with that degree into nc clusters;
4. We finally match the clusters found for the different degrees.

Let us explain the different steps.

STEP 1. Given that we base our clustering on occurrences of patterns with four
vertices and less, we cluster only vertices with degree at least 4. For each degree,
we use the k-means algorithm on modified versions of the pattern-frequency vectors
of the nodes. As k-means starts by randomly picking the first centers, we perform 50

clusterings for each degree and each number of clusters and choose the clustering
with the lowest intra-cluster variance. The best number of clusters is computed
by comparing the average silhouette values obtained for the different numbers of
clusters.

Let us explain why and how we modify the pattern-frequency vectors. The
k-means algorithm uses a given distance between elements in order to compute the
clusters; this distance is usually the Euclidian distance between the feature vectors
of the elements. We need to modify the pattern-frequency vectors before computing
the Euclidian distance on them. There are several reasons for that.

(a) Modifying the ranges of values. Even if we focus on each degree at a time, the
numbers of occurrences of the different patterns are not placed in the same ranges
of values. For instance, the maximal number of occurrences of the �pattern is
generally a lot higher than the maximal number of the �pattern. We need to
place the ranges of values of all the variables participating to the Euclidian distance
between the same extreme values. This can be done for instance by centering and
scaling the variables or by giving them new values, obtained from a computation of
slices. It is the second solution that we adopt here.

Generally, given a group of n elements that have values a1; a2 : : : an for a given
attribute (or variable) a, one can compute k bins (or slices) such that there is a fairly



168 A. Stoica et al.

equivalent number of elements whose values are placed in each bin. For that, one
needs to compute k C 1 ascendant values (called limits) such that the first limit is
the minimal value of ai for i 2 f1; 2; : : : ng, the last limit is the maximal value of ai

and there is a fairy equivalent number of elements (i.e. n
k

) whose values are placed
between two consecutive limits. Now, one can use instead of the values a1; a2 : : : an

the corresponding slices: instead of the value ai one uses the value x if ai belongs
to the x�th bin. Note that the computation of only two bins (k D 2) is equivalent
to the computation of the median value of the attribute a. In this case, one can use,
instead of the real value ai of the attribute, a value that is either 1 or 2 depending on
ai W if ai is inferior to the median value, then one uses 1, otherwise 2.

This is the technique that we apply here. Instead of using the real values of the
pattern-frequency vectors, we compute and use slices of values. There are several
advantages in doing this. First, we eliminate the problem of comparing very different
values for different patterns: now we have, for all the patterns, the same possible
values. Second, the new values are established using the ranges of values, as found
in the network. Thus, the number of occurrences of a given pattern in a given
egocentred network can be very small comparing to the maximal possible value and,
in the same time, very high comparing to its value in the other egocentred networks.
We want to emphasize the fact that this value is high in our network, which the
slices do. Third, the extreme values (often difficult to handle) are simply put in the
marginal slices and are no longer seen as extreme.

For each degree d and each one of the 11 components of the pattern-frequency
vector, we choose five bins such that an equivalent number of nodes in Popd (the
reduced population with degree d ) have values in each one of the bins.

(b) Using the absent patterns. By using the pattern-frequency vectors we take
into consideration the presence of different structures in the egocentred networks.
Besides this, it can be useful to take into consideration also the absence of different
structures. Thus, two nodes are similar if they have many common patterns in
their egocentred networks, but also if patterns that are not present in one are not
present in the other one either. To take this information into consideration, we add
to the pattern-frequency vector of each node the pattern-frequency vector of the
complement graph of its egocentred network. The complement graph of a graph
G D .V; E/ is a graph G0 D .V 0; E 0/ where the vertices are the same as in G

(i.e. V 0 D V ) and the edges are all the possible edges between vertices in V that
are not present in E (i.e. E 0 D f.u; v/; u; v 2 V and .u; v/ … Eg).We thus have, for
each vertex v, a vector containing the number of occurrences of patterns in the
egocentred network Eg.v/, followed by the number of occurrences of patterns in
the complement graph Eg0.v/ of the egocentred network. Next we replace the real
values in this new vector by the corresponding slices as previously explained; we
thus obtain the extended pattern-frequency vector.

Definition 4. Given a vertex v of a graph G; we call extended pattern-frequency
vector of v the vector with 22 components containing first the slice values of the
pattern-frequency vector of v and then the slice values of the pattern-frequency
vector of the complement graph Eg0.v/ of the egocentred network Eg.v/ of v:
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It is on the extended pattern-frequency vectors that we compute the Euclidian
distance and we perform the k-means clustering.

STEP 3. Suppose nc was found as best number of clusters for most degrees, so we
need to divide the nodes with each degree in the reduced population into nc clusters.
We perform again 50 k-means clusterings with k D nc for each degree and we keep
the clustering with the lowest intra-cluster variance.

STEP 4. We have now nc clusters for each degree greater than 3. We need to match
the clusters obtained for the different degrees so that, every node, no matter its
degree, belongs to one of the nc clusters. In order to do the matching, we compute
the center (or centroid) of each cluster for each degree. Recall that the center of
a cluster is the average of all the points in the cluster i.e. a vector where each
component is the arithmetic mean of the values of that component for all the
elements in the cluster.

We match clusters for consecutive degrees by using the centers: for each degree
d > 4, we compute the centers of the clusters obtained for d (let Ci be the center
of the i th cluster, with i from 1 to nc) and for d � 1 (let C 0

i be the center of the
i th cluster, with i from 1 to nc) and the Euclidean distances between these centers.
For each one of the clusters obtained for degree d we have to choose exactly one
cluster from those obtained for degree d � 1, and each one of these clusters must
be chosen exactly once. This corresponds to a permutation of nc elements: each
cluster with index 1 to nc obtained for degree d is given a new index, also from 1

to nc , corresponding to the cluster for degree d � 1 with which it is matched. We
choose the permutation � that minimizes the sum of distances between centers of
matched clusters:

P
iD1;:::;nc

dist.Ci ; C 0
�.i//: For that, let us observe that if there is a

valid permutation � such that, for all i from 1 to nc , dist.Ci ; C 0
�.i// is the minimum

distance between Ci and any C 0
j , with j from 1 to nc , then � is the permutation that

minimizes the sum of distances. This case may occur for many pairs of consecutive
degrees, so in this case no other computation is needed. After having computed the
permutation � that minimizes the sum of distances, one has a bijective matching of
clusters for the given pair of consecutive degrees. By doing this for each pair, we
obtain a matching of all the clusters.

Each vertex in the reduced population thus belongs to one of the nc clusters.
We now distribute into clusters the vertices that we have previously filtered out by
putting them in the clusters of the vertices with the same pattern-frequency vector.

7.6 Mobile Phone Communications Network

We apply the previously presented methods to a large mobile phone communication
network. We first present the dataset and some statistics on duration and frequency
of communication depending on the age of the person. Then we describe how each
node is connected to the network using the method that we have introduced in
Sect. 7.4. Next, we group the individuals in the social network into clusters using
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the method presented in Sect. 7.5. Finally, we compare the obtained clusters to the
age and communication intensity of the people in the social network.

7.6.1 Data Description

The analyzed dataset contains the CDRs (call detail records) of the mobile phone
communications of the customers of a mobile phone operator (we call it O) in a
European country during the month of October 2006. O has approximately 30 %
share market in the country. The dataset contains several details of each mobile
phone communication in the O network: the identifiers of the two persons in com-
munication, their mobile phone operators (for the communication to be recorded,
at least one of the two persons must be a O customer), the type of communication
(this can be call or short message SMS), the time when the communication began
and its duration (in the case of a phone call). The phone numbers have been hashed
and each person has been given a unique identifier that does not allow finding the
identity of the person. The dataset contains over one billion records involving ten
millions users. As we do not have the mobile phone communications between the
persons not belonging to O , we keep in our analysis only the communications where
the two persons are both O customers. We thus analyze 3.3 million users that have
exchanged more than 170 million phone calls and SMS during the followed month.
For these customers the database contains also their age. We compared the age
distribution of the mobile phone customers in our dataset to the census distribution
in the population of the analyzed country. The differences between the two are very
small, so there is no systematic bias in our data as regarding this characteristic
(except for people over 55 who are underrepresented among mobile phone users).
The following analysis has been done on customers aged 18–55 thus the older age
groups under-representation in the mobile phone dataset does not affect our results.

First, we computed some statistics of mobile phone usage by age. The age
seems an interesting variable here as different generations of people began to use
the mobile phone at different ages. As the mobile phone diffusion started in the
mid-1990s, there is only the nowadays youngest part of population who entered in
their “communication age” directly with a cell phone at hand. We thus expected
a different usage of the mobile phone between age groups. Figure 7.5 shows the
average number of out-going calls and SMS by age during the studied month. We
observe no important difference in the number of calls by age. The main distinction
concerns SMS usage: younger users send more SMS than older ones. In the age
group 18–25 this tendency is really impressive: the SMS is used four times more
frequently than a conversational exchange. This means that to recognize a younger
customer in the dataset, one can look at the number of SMS sent. Figure 7.6 shows
the average of the total duration of calls by age. We observe that people from 22
to 34 have in average the greatest total durations (these are out-going calls, so the
age is that of the caller); for older people, the total duration of calls decreases with
the age.
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Fig. 7.5 Average number of calls and SMS as a function of phone user’s age

Fig. 7.6 Average total duration of calls (in seconds) as a function of phone user’s age
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While these measures represent a first analysis of the mobile phone commu-
nication data, our purpose is to study the social network modeling this data. The
remaining part of this paper deals with the clustering of individuals using the
social network structures and with the correlation between clusters and intensity
of communication or age.

7.7 Personal Network Clusters

We model the mobile phone communications set by a simple undirected graph
G. In this graph the vertices are the customers; we connect such two vertices by
an undirected link if there had been at least one communication in each direction
between the two persons during the followed period. This way we do not take into
consideration the one-way contacts (calls or messages), single events in most of the
cases suggesting that the two individuals do not know each other personally. We
keep only the vertices with degree greater than 0, thus obtaining a graph G with
2:7 � 106 vertices and 6:4 � 106 edges.

In this graph, we apply the method characterize introduced in Sect. 7.4 in order
to analyze how each one of the 2:7M vertices is connected to the network. Next, we
apply the method introduced in Sect. 7.5 in order to group the nodes into clusters
based on their network insertion.

The best number of clusters is found to be 6. Figure 7.7 represents the distribution
into clusters of the egocentred networks of vertices with degrees 4 (up) and 5
(bottom). In our graph, all the possible egocentred networks for these degrees are
present; these are all the possible undirected graphs with four and five vertices
respectively. For each network, we have marked the cluster to which it belongs.

We observe that cluster 1 contains dense networks, while cluster 6 contains very
sparse networks. Networks in cluster 2 seem to have a high number of stars, while
those in cluster 5 have both isolated vertices and a rather dense group. For clusters
3 and 4 we can say that networks in cluster 3 are denser than those in cluster 4.
These observations have been made by simply analyzing the clusters obtained for
degrees 4 and 5. When looking at the centers of the clusters obtained for the different
degrees, we observe that, for all degree:

• The center of cluster 1 has the maximal value for the number of edges and for
the number of triangles i.e. vertices in cluster 1 have the highest average of f

and of f ;
• The opposite situation happens for cluster 6: the center of this cluster has the

minimal value for the number of edges and for the number of triangles i.e.
vertices in cluster 6 have the lowest average of f and of f ;

• From the remaining clusters, the center of cluster 5 has the maximal value for
the number of isolated vertices multiplied by the number of edges i.e. vertices in
cluster 5 have the highest average of fiv � f ;
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Fig. 7.7 All the possible egocentred networks of vertices with degrees 4 (up) and 5 (bottom) and
their clusters

• The center of cluster 2 has the maximal value for the number of stars i.e. vertices
in cluster 2 have the highest average of f ;

• From the remaining two clusters, the center of cluster 3 has a higher value for
the number of edges than the center of cluster 4 i.e. vertices in cluster 3 have a
higher average of f than vertices in cluster 4.

This sustains our previously made observations for degrees 4 and 5: cluster 1
contains the densest networks, while cluster 6 contains the sparsest ones. Networks
in cluster 2 have many stars, while those in cluster 5 have both isolated vertices and
a dense group. Finally, networks in cluster 3 are denser than those in cluster 4.
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Fig. 7.8 The distribution of
the reduced population into
the six clusters

Table 7.2 The distribution
of the reduced and total
population into the six
clusters

% of the reduced % of the total
Cluster population population

1 23.16 4.15
2 18.6 2.91
3 12.24 2.54
4 17.05 26.93
5 11.12 5.04
6 17.83 58.43

Remember that before computing the clusters we have eliminated the multiple
copies of pattern-frequency vectors. It is in this reduced population that we have
computed the six clusters. The different resulting clusters contain fairly similar
percentages of the reduced population (see Fig. 7.8 and Table 7.2).

However, when reintroducing the filtered out vertices, the population is not
equally divided into clusters any more. This is caused by the low local density of the
graph: most vertices have very sparse egocentred networks, so the different patterns
occur in their networks in a small number. Thus the majority of the eliminated
vertices belongs to cluster 6. After the introduction of the previously filtered out
vertices, the new repartition into clusters becomes very unbalanced (Table 7.2).

In the following sections we confront the identified clusters to other characteris-
tics of the mobile phone customers.

7.7.1 Clusters Versus Age

For the mobile phone customers who have provided their birth year when sub-
scribing to the studied operator, we want to see if there is a connection between
the age of a person and his or her cluster. Remember that in Sect. 7.6 we have
presented some statistics on mobile phone use. There are some differences in call
frequency and duration between ages, but the main distinction concerns SMS usage,
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Fig. 7.9 For each cluster (each image), the probability of belonging to that cluster by age
(on x-axis)

the younger users sending a lot more SMS than the older ones. Here we want to see
if these differences in mobile phone uses are visible in the structure of the network
surrounding each person.

We compute, for each cluster k from 1 to 6 and for each age a from 18 to 55,3 the
probability that a person of age a who has at least four contacts belongs to cluster k W

P.a; k/ D nb. persons of age a and cluster k

nb. persons of age a and degree > 3

The plot of these probabilities is presented in Fig. 7.9. We observe that middle age
people (30–45) have the lowest probability of belonging to cluster 1, so generally
they are not involved in dense structures. This can be seen also in the plot for cluster
6 (the cluster containing the sparsest networks), where there is a peak for 35–40.
Younger people belong generally to clusters 2, 3 and 4 and rarely to cluster 6 (in
any case, a lot less frequently than older people). The oldest people are generally

318 is the minimal age to have a mobile phone subscription, while for persons of more than 55 years
old, 70 % of them have degree smaller than 4.
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Fig. 7.10 Hierarchical clustering of ages on probabilities of belonging to the six clusters

placed in cluster 5: there is an increasing probability of having a densely connected
group and some isolated contacts when going from 40 years old to 55.

Let us now group together the ages that have similar probabilities for the
six clusters. We perform a hierarchical clustering on the ages using the cluster
probabilities previously computed, after having centered and scaled the probabilities
so that they have the same mean and standard deviation for each profile. The result
of this analysis is shown in Fig. 7.10. We observe that there are four principal,
homogeneous age groups similar to life stages categories: 19–23 (who can be
associated with “students”), 24–27 (young people starting their active life), 28–
48 (the age of living in couple, often with children), and 49–55 (people at an
advanced stage of the professional life, whose children are adult or living apart).
Note that this classification is based exclusively on structural characteristics of the
local communication network where the degree was neutralized.

To sum up, there are some differences in the mobile phone usage and in the
network structure depending on the age that allow recovering homogeneous age
groups from mobile phone data. The personal network structure changes with age
and the communication practices follow this transformation. Our analysis shows
that the particular ways of interconnection to a personal network are in fact markers
of age-related sociability of the mobile phone user.
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7.7.2 Clusters Versus Intensity of Communication

7.7.2.1 Basic Statistics

We compute for each person (ego) the total number of calls he or she had during
the followed period (both in-coming and out-going calls), the total duration of the
calls and the total number of SMS (similarly, in-coming and out-going SMS). Also,
we compute the average number of calls, total duration and number of SMS he or
she had with each one of the contacts. We limit the contacts to the persons who
initiated at least one communication (call or SMS) with ego and who also received
at least one call or SMS from ego; these persons correspond to ego’s neighbors in
our graph. Besides the average values, we also compute the standard deviation for
the number of calls, the duration and the number of SMS per contact. We thus have
for each ego a vector with nine variables characterizing ego’s communications. We
use these vectors to measure the relation between communication intensity and the
previously obtained clusters.

We begin by testing, for each one of the nine variables, the independence of
the variable and the clusters by performing an ANOVA test: we test the hypothesis
that the mean value of the variable is the same for the different clusters. As the
distributions for the nine components are heavily right-skewed, we use the log
values instead of the real ones. The ANOVA test rejects the hypothesis of equal
means for each one of the components with p D 0: However, the ANOVA test
specifies only that the means are different (i.e. they are not all equal) but does not say
for which pairs of clusters these means are significantly different and for which they
are not. In order to find this information, we perform a Bonferroni multi-comparison
test for each one of the nine variables. We thus have:

• For the total number of calls, all the means are significantly different, except for
the clusters 1 and 2; the order of the mean values of the total number of calls for
the six clusters is, from low to high: 6, 4, 5, 3, 2, 1;

• Similarly, for the total duration of calls and the total number of SMS, all the
means are significantly different, except for the clusters 1 and 2; in this case the
order is 6, 5, 4, 3, 1, 2;

• Very similar results are obtained for the other variables; the ascending order of
the values is always 6, 4, 5, 3, 2, 1, maybe with an interchange of 4 and 5 and of
1 and 2; the average duration of calls per contact is the only variable for which
there isn’t a significant difference between the mean values for the six clusters.

So, for each one of the nine components, cluster 6 has the lowest mean, followed
by clusters 5 and 4 (or 4 and 5), cluster 3 and finally 2 and 1 (or 1 and 2). However,
using the mean values is not satisfying as the different variables have a right-
skewed distribution. Therefore, for each variable, we compute ten slices as we did
in Sect. 7.5: we divide its spectrum of values into ten slices or bins such that a
fairly equal number of values belong to each one of the bins. Then, we compute the
probability that an individual belonging to a given cluster has values in a certain bin:
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P.variable, cluster, bin/ D #individuals 2 cluster s.t. value(variable) 2 bin

#individuals 2 cluster:

We plot these probabilities for the first three variables in Fig. 7.11: the number of
calls in .a/, the total duration of calls in .b/ and the number of SMS in .c/: Each
bar corresponds to a bin, going from the bin with the lowest values (left side) to
the bin with the highest ones (right side). For each cluster, the height of each bin
represents the previously computed probability i.e. the probability that an individual
in that cluster has values in that bin; the sum of heights of bins of one cluster is
thus equal to 1. For the three variables, individuals in clusters 1, 2 and 3 have a
greater probability to have values in the highest bins than in the lowest ones, while
for cluster 6 the opposite situation happens. Cluster 4 has values especially in the
intermediate bins, while cluster 5 has values both in high and low bins, but fewer in
the intermediate ones.

7.7.2.2 Predicting the Cluster from the Communications

Given these differences in quantity of communications for the different clusters, we
want to see if we can guess in which cluster an individual is placed given his or
her communications. For that, we use a decision tree to unveil the relation between
communication intensity and cluster and thus to predict the cluster of each indi-
vidual. The explanatory variables are the nine characterizing the communications
of an individual: the number of calls, the total duration of calls, the number of
SMS, the average number of calls, duration and number of SMS per contact, and
the standard deviation of the number of calls, duration and number of SMS per
contact. Based on the learning population, the tree learns the associations between
intensity of communication and cluster; then it predicts the cluster of the individuals
in the test population. If the predicted cluster is the same with the real cluster of the
person, then the prediction is correct; otherwise the prediction is false. To measure
the accuracy of the tree, one counts the correct predictions as compared to the size
of the test population: the higher this number, the better the prediction. This number
is then compared to the random prediction, where one attributes individuals into
clusters randomly, with an equal probability.

Remember that the number of individuals in the six clusters is very uneven, with
cluster 6 over-represented. If the decision tree learns and tests its rules of association
on populations with such uneven distribution of clusters, it will associate everybody
with cluster 6: no matter the communication characteristics of the different persons,
if everybody is put in cluster 6, the tree gives the correct class to all the individuals
in cluster 6 and the wrong cluster to all the others. As the individuals in cluster 6 are
much more numerous then the others, the tree has a high rate of success. We want
to avoid this situation and impose to the tree to search for associations between
communications and clusters. Therefore, we give it a learning population where
there is an equal number of individuals belonging to each cluster; the individuals
are randomly chosen from the individuals in each cluster. We do the same thing
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Fig. 7.11 For each cluster
(Ox-axis), the probability that
the communications of an
individual in that cluster are
in a given slice of values of
the number of calls (a), total
duration of calls (b) and
number of SMS (c). In each
image, the ten slices for each
cluster are grouped together,
with the lowest values in the
left side
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Table 7.3 The proportion of
correct predictions in the six
clusters

Cluster Rate of success (%)

1 31.2
2 22.6
3 24.3
4 40.4
5 51.8
6 37.1

for the test population. As we want to predict six clusters, the rate of success of
the random prediction is 100

6
D 16:66 %. Our decision tree has a rate of success of

34.6 %, so more than twice the random one. The rate of correct predictions in the
different clusters is presented in Table 7.3.

This result shows that there is a correlation between the intensity of communica-
tion and the cluster to which an individual belongs. Even more, we are able to predict
the cluster with a rather high accuracy (as compared to the random prediction) given
a set of variables characterizing the communications of each person.

7.7.3 A Typology of Customers

In the previous two sections we compared the social network clusters first to
customers’ age and then to their communication intensity, observing that the
probability that an individual belongs to a given cluster is not independent from
these measures.

Here we want to take into consideration, in the same time, all the three
dimensions characterizing the individuals: the age, the communication intensity and
the social network cluster. We want to see how these characteristics are distributed
in the population and also to create a typology of customers based on these three
dimensions. We would thus obtain groups of individuals such that the persons in
a same group have similar communication practices and about the same age and
cluster.

We use the Kohonen self organizing map. Remember that this clustering method
produces a map with several layers, one for each variable characterizing the
individuals. This shows how the different variables are distributed in the population.
Also, the algorithm produces cells grouping individuals with close characteristics. In
a second step, the algorithm computes a clustering of the individuals. The obtained
clustering will represent our typology.

We choose the following parameters to characterize the individuals:

• Thier age (socio-demographic variable);
• Cluster membership (social network variable, from 1 to 6, as obtained in the

previous sections); as it takes only six values, this variable can be seen as a class
or a label of each individual;

• Communication intensity: number of calls, total duration of calls and number of
SMS; (three communication variables).
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Fig. 7.12 SOM results: the individuals are grouped into cells depending on their communication
intensity and age

Each individual is thus characterized by a vector with five elements. For the
communication variables, we use a log transformation instead of the values them-
selves as these variables are heavily right-skewed. Also, recall that the distribution
of individuals into clusters is very uneven, with cluster 6 being overrepresented. As
we want to measure the influence of the variable “cluster”, too, we randomly choose
a same number of individuals in each cluster.

The set of individuals is then processed by the Kohonen self organizing map.
This algorithm does not take labels into consideration when building the map, so it
builds the map using only the other variables.

The processing of the set of individuals by the Self Organizing Map (SOM)
provides Fig. 7.12. We observe that, unsurprisingly, the number of calls and the total
duration are highly correlated, with increasing values on the south-north axis: the
individuals with the lowest number of calls and total duration are placed in the south
part of the map, while those with the highest values are placed in the north part. The
number of SMS, however, is not correlated to the two previous ones, its values
increasing from east to west. This variable seems to be correlated to the age: the
highest values of the number of SMS are in the west part, where the youngest people
are placed, while the lowest values are placed in the east part, where the oldest
persons are placed. All these observations sustain our previous ones, presented in
Sect. 7.6: there is no influence of the age on the call frequency and duration, but
there is a high influence on the number of SMS.

Let us now analyze the distribution of the variable “cluster” in the different cells.
Figure 7.13 shows this distribution, cluster by cluster. Each image in the figure
corresponds to a cluster: the dark cells contain mostly individuals of the given
cluster, while the white cells contain mostly individuals of other clusters. Recall
that the different clusters are not taken into consideration when building the map;
the cells are colored depending on the clusters of the people present in the cell, after
all the computations. We observe that clusters 1, 2 and 3 are present especially in
the north-west side of the map, while clusters 4, 5 and 6 are placed especially in
the south-east side. Most of the cells labeled cluster 1 contain individuals with very
high number of SMS or very high number of calls and total duration. Cluster 2 is
generally associated with cells containing individuals with a high number of SMS
or a high number of calls and total duration. Clusters 3 and 4 are generally present
in cells where the individuals have a medium number of calls, total duration and
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Fig. 7.13 For each cluster (each image), the cells where the cluster is in the majority
(the dark cells)

number of SMS. Cluster 6 is especially placed in the south-east part of the area,
where there are individuals with low number of calls, total duration and number
of SMS. There seems to be no clear relation between the label of the cell and the
average age of the persons in the cell, except for cluster 5 which is present especially
in the cells containing the oldest people.

We now cluster the cells using the k-means algorithm. We thus obtain nine
profiles, as showed in Fig. 7.14. We present the different characteristics of the people
with each profile in Table 7.4. This result represents a typology of individuals based
on their age, communication intensity and social network cluster.

7.8 Conclusions

In this paper we presented a method for clustering nodes, thus relating to the
problem of identification of roles in a network. In this problem often encountered in
social network analysis, one wants to group together the nodes of the network that
are connected in similar ways to the network. There are however several questions
that make this problem difficult to solve: What is a good characterization of the
way a node is connected to the network? What does “similar connections” mean?
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Fig. 7.14 The nine profiles
produced by the Kohonen
SOM

Table 7.4 The different characteristics of the individuals in the nine profiles produced by the SOM

Profile Age Nb. calls and duration nb. SMS Most represented cluster(s)

1 Youngest High Very high 1.45 %/; 2.41 %/

2 Youngest Medium High 2.38 %/; 3.20 %/

3 Young-middle Very low Low 6.70 %/

4 Young-middle Very high Medium 1.31 %/; 2.31 %/

5 Young-middle Medium-high Low 4.39 %/; 6.24 %/

6 Young-middle Low Low 4.45 %/; 6.43 %/

7 Oldest High High 2.29 %/; 1.19 %/

8 Oldest Low Low 4.34 %/; 6.29 %/

9 Oldest Low Very low 5.42 %/; 6.35 %/

Can the solution be applied to large graphs? How can one check the relevance of the
different groups of nodes? In which conditions can one say that there is no better
way of grouping the nodes?

We have made several choices in order to answer the different questions. First,
we have characterized the way a node is connected to the network by counting
the patterns present in its egocentred network; we have stored the number of
occurrences of the different patterns in a pattern-frequency vector characterizing
the node. Second, we have considered that nodes connected in a similar way to
the network have close pattern-frequency vectors; here “close” is defined with
respect to a set of transformations made on the pattern-frequency vectors. We have
thus proposed a method for nodes clustering that groups together vertices that are
embedded in similar egocentred networks. The clustering is done efficiently, so the
method can be applied to large graphs. As said before, we have made several choices
in order to answer the different questions. The proposed method gives promising
results when applied to our real-world graph. As always, in this kind of methods,
the solution validation is a delicate problem, but the results we have obtained for
our large social network sustain the relevance of our method.

We have applied the proposed method to a mobile phone graph. This graph mod-
els 1-month mobile phone communications between the three million individuals.
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The clusters produced by the method can be seen as a segmentation of the set of
customers based on their social network insertions. We have compared the different
clusters to the other information we had on the individuals (age and communication
intensity), showing that the different parameters characterizing the individuals are
not independent. Thus, the probability that a node belongs to a given cluster is not
independent from the age and the mobile phone use of the person represented by the
node. These results confirm the soundness of our method, even though, as always,
many concurrent clusterings for various purposes may as well be relevant.
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