
Chapter 5
Pixel-Oriented Network Visualization: Static
Visualization of Change in Social Networks

Klaus Stein, René Wegener, and Christoph Schlieder

Abstract Most common network visualizations rely on graph drawing. While
without doubt useful, graphs suffer from limitations like cluttering and important
patterns may not be realized especially when networks change over time. We
propose a novel approach for the visualization of user interactions in social
networks: a pixel-oriented visualization of a graphical network matrix where activity
timelines are folded to inner glyphs within each matrix cell. Users are ordered
by similarity which allows to uncover interesting patterns. The visualization is
exemplified using social networks based on corporate wikis.

5.1 Introduction

One important aspect of social network analysis consists in finding interaction
patterns between social actors by appropriate visualization paradigms.1 Social
network visualizations offer great help in getting deeper insights in structure and
relations. Most commonly graphs are used to represent social networks giving an
overview especially over smaller networks, but normally do not cover network
dynamics. Too little attention has been paid to networks changing over time: new
users come in, old ones leave, new links between users get established, interaction
between certain users declines, etc.

1This chapter is based on a conference paper at ASONAM 2010.
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Techniques like animated graphs give some insights into network dynamics but
also inherit several shortcomings: graphs tend to clutter when larger networks are
being displayed, and animation requires digital media as well as more cognitive
resources compared to static visualizations. A static visualization technique able to
display dynamics even in large social networks is needed.

The visualization problem addressed in this chapter first arised when we analyzed
user collaboration in organizational wikis where we missed a good visualization for
temporal dynamics which could be used in the context of visual data mining. The
social networks studied are extended coauthor networks extracted from organiza-
tional wikis using the interlocking measure.2 The idea of interlocking is simple: if
an user B edits a page previously edited by another user A, a directed link from B
to A is established. An user C editing the same page afterwards establishes links to
A and B and so on. Each link is associated with a time stamp, so the network holds
the interaction record of users in time.

The analysis of interlocking networks can be applied to many different data
sets from SVN or GIT repositories over email corpuses to newsgroups, discussion
boards, CMS. Interlocking gives a directed network, as each user action is consid-
ered as an “answer” to actions of other users before. The visualizations presented
in this chapter are nevertheless also useful on undirected graphs, as long as time
stamps of interaction are available.

This chapter describes the following contributions to the state of the art: (1) We
introduce a new kind of social network visualization based on the pixel-oriented
visualization paradigm and extend it for the presentation of networks evolving in
time in a way that supports visual data mining; (2) We compare different glyph lay-
out patterns and their application to the problem domain; (3) We provide measures
for arranging (sorting) nodes; and (4) We show that temporal patterns indicating
cooccurrence and similar behavior are perceptually salient in our visualization even
on larger networks.

The chapter is organized as follows. We discuss common visualization
approaches for social networks and time series in Sect. 5.2. Section 5.3 introduces
our pixel-oriented network visualization approach and describes the adequate
choices of glyph layouts and node arrangement. Section 5.4 presents a case study
that illustrates how to apply our approach to real-world network data. We conclude
in Sect. 5.5 with a discussion of the results and an outlook on future work.

5.2 Related Work

Visual data mining techniques take advantage of the efficient perceptual grouping
processes of the human visual system (see e.g. [7, 26]). Even in large data sets,
perceptual saliency draws the observer’s attentions to patterns. Visualization is most

2See [32] for a detailed discussion of this measure.
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useful to generate hypothesis about regularities in a data set. On the other hand
visualization does not provide a proof. For instance nodes positioned close together
by a layout algorithm suggest some correlation which vanishes by using another
layout.

Shneiderman [29] gives an overviews on visualization of large datasets, a detailed
description can be found in [33].

5.2.1 Social Network Graphs

Much research has been conducted in the field of social network visualization (for
an overview see [8, 20]). For a discussion of the explanatory power of network
visualization see [6]. The most common way to present a social network is the
network graph. The nodes are arranged by one of various graph layout algorithms
which continue to be improved in their computational properties as well as their
usability (see e.g. [11]). Most software packages for network analysis include graph
drawing functionality. Furthermore, a variety of specialized graph drawing packages
are available.3

Alternatively networks can be presented by adjacency matrices that represent
the network by some kind of numbers for actors and relations. Ghoniem et al. [13]
compare node-link diagrams and matrices. While probably less appealing to the
user, matrix visualizations avoid common problems like cluttering. The authors
conclude that node-link representations are best suited for smaller graphs while
a higher number of nodes and higher degree of density are better visualized as
matrix representations. Shneiderman and Aris [30] state that network graphs can
be understood best if they contain between 10–50 nodes and 20–100 links. A higher
number of nodes and links makes it more difficult to follow the links, count or
identify nodes etc.

One way to avoid cluttering is to group related nodes. For example Shi et al.
[28] and Balzer and Deussen [3] use hierarchical clustering, Peng and SiKun [25]
propose a subgroup analysis layout algorithm based on attributes and Chen et al. [9]
create subgraphs for subgroups. Leung and Carmichel [22] also group nodes and
arrange them in a rectangular grid using horizontal edges to show relations between
different actors.

Henry et al. [15] take a different approach. They combine node-link layouts
and matrix representations in order to give an easy to understand overview of a

3For example UCINET (http://www.analytictech.com/ucinet/), JUNG (http://jung.sourceforge.
net/), Graphviz (http://www.graphviz.org/), GUESS (http://graphexploration.cond.org/), Pajek
(http://pajek.imfm.si/), Visone (http://visone.info/), and others. See also http://www.google.com/
Top/Science/Math/Combinatorics/Software/Graph_Drawing/, http://www.graphdrawing.org/ and
the INSNA software list (http://www.insna.org/software/).

http://www.analytictech.com/ucinet/
http://jung.sourceforge.net/
http://jung.sourceforge.net/
http://www.graphviz.org/
http://graphexploration.cond.org/
http://pajek.imfm.si/
http://visone.info/
http://www.google.com/Top/Science/Math/Combinatorics/Software/Graph_Drawing/
http://www.google.com/Top/Science/Math/Combinatorics/Software/Graph_Drawing/
http://www.graphdrawing.org/
http://www.insna.org/software/
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network while also revealing details that couldn’t be recognized in a pure node-link
visualization (see also [27]).

5.2.2 Change in Time

For visualizing time-oriented data a variety of methods is available, for an overview
see [1]. Broadly speaking, the methods for visualizing time oriented data in social
networks fall into two classes: sequences of snapshots and (interactive) animations.
Moody [24] considers a third class: network summary statistics plotted as a
line graph over time. Since the network topology cannot be recovered from this
visualization, we will not consider it.

Two major problems arise with using a temporal sequence of snapshots as
visualization: (1) The temporal resolution, i.e., the number of elements of the
sequence, is severely restricted, (2) The optimization of the layout algorithm
conflicts with changes. We illustrate the problems of visualizations using sequences
of snapshots with a network from our own data.

The network presented in Fig. 5.1 shows students working on a larger project
across three terms using a wiki as documentation platform. So in each term a bunch
of new students join, others leave. The visualization uses a spring embedding layout
algorithm that optimizes the length of the edges between the nodes (see [16]) in
order to achieve a grouping of highly interconnected sets of nodes. Figure 5.1b–d
show snapshots of the network at different times that illustrate the temporal change.
While for each subgraph both spatial dimensions are used to lay out the graph on
the big scale, the x-axis represents time from left (past) to right (future). The spatial
extension of each “data point” (network graph) restricts the temporal resolution to
few (three) time points.

We could not layout each of the graphs with spring embedding but had to keep
each node at a fixed position to be able to compare the graphs. So while the change
shows up very well in Fig. 5.1b–d the grouping in the single graphs is not optimal.

Moody states that the “poor job” of representing change in the network is a
problem “fundamental to the media” and suggests to use animations. Network
animation software is available either stand alone (e.g. SoNIA,4 see [4]) or as part
of dedicated network analysis software (e.g. SONIVIS5) as most of the network
visualization libraries support dynamic node and edge change. By interpolating
between the graphs that represent the different intervals of the network, nodes
are moved to smoothly re-layout the graph responding to changing edges. One
drawback here is that this representation cannot be published in print, some kind

4http://www.stanford.edu/group/sonia/
5http://sonivis.org

http://www.stanford.edu/group/sonia/
http://sonivis.org
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Mar. 2007–Sep. 2008

a

Mar.–Sep. 2007

b

Sep. 2007–Mar. 2008

c

Mar.–Sep. 2008

d

Fig. 5.1 Network evolution in time (students wiki). (a) Full timespan. (b) First term. (c) Second
term. (d) Third term

of digital medium is needed.6 More important, animations are nice and striking in
presentations but less useful for analysis as they do not give an overview at a glance.
Animations inherit the issues of change blindness which means that some changes
(maybe just because the glimpse of an eye) will not be realized by the user [7].

The static graphical presentation of data allows to externalize concepts as
everything is available on paper. The visual system provides the data analyst
with scanning routines that permit a very efficient processing of externalized data.
Presenting all the information on one single figure instead of using an animation
takes advantage of this ability. In fact, switching our attention from one area of a
single figure to another will usually not only be much faster than finding the right
interval of an animation with the help of a slide bar [34], it will also allow to for
deeper inspection. Human’s visual working memory only stores a handful of objects
at a time [34] and watching animations forces us to remember what we have seen
while a static representation keeps everything accessible in parallel.

5.3 Pixel-Oriented Visualization of Network Data

The idea of pixel-oriented visualization was introduced by Keim et al. [18]
and further developed in [17, 19] and other publications. Although the original
publications do not provide a concise definition, the basic idea of the visualization
methods is simple to describe. Each pixel of the screen is used to visualize one
data point, representing its value by its color. This allows to visualize great amounts
of data while avoiding overlapping and cluttering. Pixel-oriented visualization has
been applied by Guo et al. [14] for the visualization of very large scale network
matrices (BOSAM,7) but to the best of our knowledge it has not been tried on
temporal and weighted networks.

6For an animated representation of the network shown in Fig. 5.1 see http://www.kinf.wiai.uni-
bamberg.de/mwstat/examples/wiki_1_weekly_network.swf.
7Bitmap of sorted adjacency matrix.

http://www.kinf.wiai.uni-bamberg.de/mwstat/examples/wiki_1_weekly_network.swf
http://www.kinf.wiai.uni-bamberg.de/mwstat/examples/wiki_1_weekly_network.swf
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In this section we show, how to adapt the idea of pixel-oriented visualization for
a static representation of social network data in time.

5.3.1 Collaboration in Time

Figure 5.2a shows typical time series data in graph representation: the x-axis rep-
resents time as the independent variable, while the dependent variable (interaction
activity) is displayed on the y-axis. Different colors (levels of gray) are used to
distinguish the different users. Figure 5.2c gives exactly the same data in pixel-
oriented representation. The x-axis again represents time, the y-axis now is used to
separate the users line by line. Color (grayscale) represents interaction intensity.

The advantage of the graph-based representation consists in a visually salient
rendering of extreme values (intensity spikes around June 07, August 08 and
April 09) but makes it hard to distinguish the different users (Fig. 5.2a) as their
graphs overlap.

In the pixel-oriented representation the activity of different users is clearly visible
as there is no overlapping. The user timelines are easy to compare (we see in
Fig. 5.2c which users where active in August 08 and which in April 09), but we do
not get the absolute intensity values, only the relative intensity distribution is visible.

Figure 5.2b, d present the same data in higher resolution, i.e. day by day instead
of month by month following the idea that “to map each data value to a colored pixel
[. . . ] allow[s] us to visualize the largest amount of data which is possible on current
displays” [17]. The pixel-oriented visualization delivers additional implications: As
you can see high collaboration values in 1 month are usually generated by the high
collaboration rates of only a few days and not by continuing collaboration during
this month.

Figure 5.2d uses the calendar metaphor which means to arrange the timeline in a
weekly zigzag:

user

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

1 8 15 22 29 36 Monday
2 9 16 23 30 37 Tuesday
3 10 17 24 31 38 : : : Wednesday
4 11 18 25 32 39 Thursday
5 12 19 26 33 40 Friday
6 13 20 27 34 41 Saturday
7 14 21 28 35 Sunday

Although the single dots are too fine to be able to tell which day exactly it represents
we nevertheless get the interesting patterns. We not only get an impression which
users collaborate a lot at which time during the year (as every pixel column
represents a week), we additionally see8 that only users U6 and U1 are working
on Sunday while no one works on Saturday.

8At least I hope this is visible in the printout.
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Fig. 5.2 Collaboration activity per user (workgroup wiki). All figures show the same timespan
from April 2007 to September 2009 (x-axis), only the resolution is different. (a) Monthly. (b) Daily.
(c) Monthly. (d) Daily
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a b c

Fig. 5.3 Workgroup wiki network matrix. (a) Shows the adjacency matrix of the network. Each
matrix element is colored according to its value. In (b) and (c) each glyph shows the folded timeline
row by row. The nodes are sorted by their (weighted) degree

5.3.2 The Pixel Matrix

We adapt the idea of pixel-oriented visualization applying it to social network
graphs. We present the network as an adjacency matrix with each row and each
column corresponding to one node and the matrix elements giving the weight of the
edge between the corresponding nodes, as shown in Fig. 5.3a.

Following the pixel-oriented visualization paradigm to present each value by one
colored pixel we can inject the whole timeline of user interaction in one matrix
element by folding it. Figure 5.3b gives the network matrix with each matrix
element showing one glyph which holds the timeline folded row by row, each pixel
representing the user-user-interaction within 4 weeks. This is somehow the inverse
representation to Fig. 5.1 where time is given on the outer x-axis while now time is
folded at the inside, i.e. within each glyph.

The scale is changed from monthly to 4 weeks to get timespans of equal length.
While monthly data is easier to present and describe it has the disadvantage that
each month covers a different number of days and a different number of certain
weekdays: June 2010 has four Fridays, July has five. This is important when work
is organized weekly, e.g. the workgroup has a weekly meeting on Friday generating
extra social interaction. On a monthly raster this generates 20 % more activity for
July while everything is even. The other way around if there is some monthly event
the 4-weeks raster would show irritating data.

We see users U12, U7, U6 and U1 interacting a lot with each other over the whole
timespan. Users U8 and U5 come in after around 1 year for 3 months, working
closely together with small interaction with others (U8 has few connections to the
most prominent four users while U5 only meets U6). And users U10, U13 and U3
join the network even later, interacting mainly with the prominent four and not with
each other.

This small example gives first insight on the potential of pixel-oriented network
visualization (PONV). We do not know exactly at which time users U8 and U5
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came in and we do not get a detailed analysis on the interaction between users U12
to U1, but we see gray dots sprinkled over the whole glyph telling us that there
was interaction between these users all the time. And we see that U10, U13 and U3
came in at the same time even though their timelines are not layed out side by side.
Our visual perception is perfect in detecting that these gray dots are on the same
position within their glyph. While we are not able to read absolute data from the
graph (neither exact times nor exact intensity values of collaboration) we get a good
overview over the temporal behavior of each user as well as temporal cooccurrence
of certain events.

And this is exactly what visual data mining is meant for: an exploratory analysis
of the data to detect regularities. In a next step, all evidence in the data set is
evaluated that supports the hypothetical regularity or conflicts with it. For instance,
it could be checked at what time U5 did his first edit operation, at what time U8 her
last edit operation and so on. In other words, the cues from visual examination are
backed up with hard data.

An additional remark about U14. As we see in the U14 row he comes in rather
early, interacts once and is gone, but in the U14 column there are several interactions
visible even at later times. This is a result of the network creation method we used.
Interlocking response graphs are directed and an edge from user B to user A is set
at the time B edits a page A edited before. And in the network matrix as presented
in Fig. 5.3 the row gives the tail node (R) and the column gives the head node (C),
so the edge points from R to C. So what we see here is that U14 edited a page users
U12 to U1 edited before, and months later users U12 to U8 “responded” by editing
this page. And we can also see some closer interaction between U6 and U14 as the
(U6,U14)-glyph shows us U6 must have edited this page shortly before U14.

5.3.3 Inner Glyphs

Our visual perception is good in pattern recognition and edge detection. Looking
at Fig. 5.3b we detect some interesting vertical bars at (U6,U12), (U6,U1) and
(U7,U12). Unfortunately these findings are arbitrary. The timeline is packed into
the glyph row by row (see Fig. 5.4a) and each glyph has 6 � 6 pixel. This means that
two pixel aligned vertically contain data that is 24 weeks apart. Looking at the same
data with glyphs of width 7 would reveal other arbitrary vertical bars. On the other
hand we may miss timespans of high activity which start at the end of one column
and end at the beginning of the next one. The latter problem can be reduced by
laying out the rows in a snake-like way (see Fig. 5.4b) as here continuous timespans
are not ripped apart.

Things are different in the example before (Fig. 5.2d).9 Each column represents
1 week with Monday in the top and Sunday in the bottom row which allowed us to

9Where the timeline was presented column by column.
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row by row row snake col by col col snake diagonal diag. snake hilbert z-curve
a b c d e f g h

i j k l m n o p

Fig. 5.4 Layout patterns for inner glyphs. (a) to (h) give the layout path while (i) to (p) show
example glyphs for a color gradient from black to white in the corresponding layout. (See also
[17, 19])

see who is working on weekends, and obviously a snake pattern (Fig. 5.4d) would
disturb.

While Fig. 5.3b kind of allows to distinguish single pixels and – with some
effort – even to see which row a pixel belongs to we are lost in Fig. 5.3c with a
weekly resolution. There are darker and lighter regions and you can hardly see how
many rows are involved, in other words: you see darker and lighter region patterns
which may be incidental as our vision groups events which are layed out next to
each other in successive rows while in fact being numbers of weeks apart.

Space-filling curves like the well-known Hilbert curve (Fig. 5.4g) are one answer
to this problem as these curves lay out one-dimensional data in two-dimensional
space in a locality-preserving way, i.e. data points being close together in the
one-dimensional representation are kept close in the two-dimensional layout.
Unfortunately it also brings data points close which were very far away from each
other as visible in Fig. 5.4o.

A second disadvantage of this layout is that the main data order is non-linear.
While the layouts Fig. 5.4a–f show a main linear direction (top!down, left!right,
topleft!downright)10 the main timeline for the Hilbert curve is U-shaped which is
kind of irritating not only for the uninformed reader.

The recursive z-curve Fig. 5.4h roughly maintains an overall topleft!downright
direction with partly more locality than the pure diagonal layouts Fig. 5.4e, f but on
the other hand shows leaps.

We found the row and column layouts least irritating to the uninformed as well
as expert user, they are easy to explain and the more complicated layouts are not
capable of solving all the issues described above. And finally its up to the decision
of the user which layout he or she prefers.

If the data timeline is known to be structured by periods relevant to the problem
domain, e.g. quarters or terms, the pixel-oriented visualization can easily adapt to

10Which could be flipped e.g. for Arabic readers who may prefer right!left.
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that fact. For example, to present 10 years of data month by month use a row by row
or column by column layout with 12 � 10, and you may be able to see some pattern
for Christmas time, for 1 year (52 weeks) day by day use 14 � 26 or 21 � 18 and so
on. If no such rhythm applies choose quadratic glyphs with any layout you may like
but keep in mind how to interpret it and which patterns may show up spuriously.

5.3.4 Arranging the Glyphs

Displaying the timelines of the users row by row as in Fig. 5.2c, d raises the
question about the best order to arrange them. A similar issue arises with the matrix
representation (Fig. 5.3).

In many cases additional background knowledge is available about the members
of the social network. They belong to some part of the organization, work together
in a certain project, have a certain role (manager, clerk, intern etc.). Grouping users
by one of this aspects can help to identify certain patterns (are members of the same
projects working together within certain timespans? Are there different patterns
showing up for different roles?).

A second criterion for grouping is some node feature. For the examples up to
now we used the (weighted) degree of each node, that is we sorted by a network
parameter. This is reasonable as such parameters provide well-defined sorting
criteria, but it is also kind of arbitrary as one would need to argue why not to base
sorting on content-based criteria such as activity, timespan, or grouped nodes highly
connected in the network.

The pixel-oriented network visualization supports the identification of patterns
in the timelines. The layout algorithm can support the pattern recognition process
by choosing arrangements placing similar objects side by side. Figure 5.5 shows
the same user collaboration timelines as Fig. 5.2 with users grouped by similarity
of their timelines. The most outstanding change is that U10, U13 and U3, the three
users only working in April 2009, are grouped together and not longer disturbed by
U14. We give a larger and more substantial example in Sect. 5.4 (Figs. 5.9 and 5.10).

The rest of this section focusses on ordering by these similar patterns. First
an approach for computing distances (dissimilarities) on user timelines is given.
Based on these distances the timelines are then ordered by multidimensional scaling
(MDS). And finally we describe additional considerations for matrix ordering.

5.3.4.1 Comparing Timelines

Each user timeline gives a high dimensional vector, where each data point (user
activity at a certain time) is mapped to one vector component. So each timeline
is represented as a point in a high dimensional space. This allows to compute the
distance (i.e. the discrepancy) between each pair of timelines and to group users
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Fig. 5.5 Collaboration activity per user (workgroup wiki), users arranged by similarity of timelines
(a) Monthly (b) Daily

with close timelines and put them side by side. We will not discuss the large number
of algorithms for high dimensional clustering11 but concentrate on the specifics of
the network data.

Consider the following timelines ( D 5; D 1; D 0):

day 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

T1
T2
T3
T4
T5
T6
T7

Each timeline is a vector presenting a point in 45-dimensional space. Simply
computing the distance between these points using some metric works for T1 and
T2. They are close compared to the others as they only differ in their 9. component,
so with euclidean distance we get: d.T1; T2/ D 5, compared to d.T1; T3/ D 10,
d.T2; T3/ D 11:18, d.T1; T4/ D 10 and so on.

11For example CLIQUE [2]. For an overview on cluster analysis see Everitt et al. [12].
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But d.T1; T5/ D 12:25, so T1 is closer to T4 than to T5. Mathematically, this
is obvious as dimensions are independent to each other and T4 and T5 differ in six
coordinates by j5 � 0j D 5, but it may not be what we want. Users T1, T4 and T5
were active in the 6 week so it may be reasonable to count their timelines as similar,
even if they did not show active on the same days.

One way to solve this would be to use a coarser raster for computing the
distances, we can use weekly timelines for ordering and daily timelines for
presentation. So T1 and T5 show activity intensity of 15 in week 6 and no activity
in other weeks giving a complete match. But it would not work for users T3 and T4,
as we are unlucky with the weekly border: T3 shows activity in week 3 while T4 is
active in week 4.

Therefore, we propose another solution. The basic idea consists in not computing
the distances on the timelines as given above but instead to smoothen (blur) them.
For each component ai of the timeline vector the neighbors ai�k; ai�kC1; : : : ; ai�1

and aiC1; aiC2; : : : ; aiCk are modified by the value of ai , e.g. by addition of 1
2
ai .

For example with k D 1 by computing: a0
i D 1

2
ai�1 C ai C 1

2
aiC1 we get the

ordering timeline for all timepoints12 i .
This gives modified timelines ( D 5; D 2:5; D 1; D 0):

day 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

T10

T20

T40

T50

d.T10; T20/ D 6:12, d.T10; T40/ D 13:23, d.T10; T50/ D 5, d.T20; T50/ D 7:9. So
T10 and T50 are closer than T10 and T40, as requested. So in general smoothing
works. How to do the smoothing exactly, e.g. how to choose the size of the
neighborhood k, depends on the specific problem domain. For the daily timelines
of the workgroup wiki (Fig. 5.5b) we used k D 7 which means that activities of two
users are overlapping as long as they are not more than 1 week apart which is
feasible for users collaborating in a wiki over several years.

5.3.4.2 Distance Measures

In the examples given the distances are computed using the euclidean distance
metric. Comparing the timelines for T5, T6 and T7 gives the euclidean distances
d.T5; T6/ D 6:93 and d.T6; T7/ D 1:73, so T6 is much closer to T7 than to T5.
This holds for all minkowski (p-norm) metrices, e.g. manhattan metric gives
d.T5; T6/ D 12 and d.T6; T7/ D 3 and maximum metric gives d.T5; T6/ D 4

and d.T6; T7/ D 1.

12For indices outside the time range (e.g. a�1) the value 0 is substituted.
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Whether this is the desired result depends on the scenario. Are two users which
are active at the same time similar even if the activity of one is very high and of the
other is very low or is low activity more similar to no activity?

The former can be achieved in several ways. Adding some ı to each value
greater than 0 increases the relative gap between 0 (no activity) and other values.
Alternatively transforming the activity values by ai

0 D m
p

ai reduces the importance
of high values, for very large m it is similar to setting all non-zero values to 1. Now
a distance measure can be applied to the modified timelines. For example, with
m D 5 and the euclidean metric we get d.T5; T6/ D 0:66 and d.T6; T7/ D 1:73 as
expected.

Other measures like the Pearson correlation (known as r) or the cosine coeffi-
cient13 (which computes the cosine of the angle between two vectors) can be used to
compare timelines by their relative intensity pattern. As they compute the similarity
s of two vectors with 1 indicating maximum similarity, and not the distance, we
define d.TA; TB/ D 1 � s.TA; TB/ to get a distance measure as required for MDS.
Two timeline vectors with TA D � � TB; .� > 0/ are considered similar by these
measures, so we get d.T5; T6/ D 0. With cosine similarity we get d.T10; T20/ D
0:11, d.T10; T40/ D 1 (the maximum distance possible) and d.T10; T50/ D 0:09,
i.e. sensible values.

Unfortunately both measures do not allow to compare with the zero vector (which
has no direction). While this is not a problem for ordering collaboration activities
as in Fig. 5.5 where users with empty timelines could simply be put at the end, it
will give problems for ordering matrices (Sect. 5.3.4.4) as here a lot of glyphs with
empty timelines are normal (see e.g. Fig. 5.6). Therefore comparison with the zero
vector has to be handled as special case. Two empty timelines have distance 0. As
absolute intensity is ignored by cosine, it seems natural to take the limes for � ! 0

and set the distance of any to the zero vector to 0. As this does not give the desired
effect a possible solution is to use a fixed maximum distance of 2 (which is larger
than all other distances).

5.3.4.3 From Timeline Distances to User Arrangement

Applying distance measures as described for all pairs of timelines gives a distance
matrix. Now timelines with low distances can be clustered together. Using multidi-
mensional scaling14 down to one dimension assigns a one dimensional position to
each timeline. Please note that this even works if the distance matrix does not fulfil
all properties of a metric space (e.g. triangle inequality).

Sorting the users according to these positions of their corresponding timelines
arranges similar ones next to each other as visible in Fig. 5.5. While the sorting

13Which are in fact very similar, see e.g. [23].
14Multidimensional scaling (MDS, [21]) in several variants [10].
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Fig. 5.6 Workgroup wiki
network matrix ordered by
collaboration activity

is done on the smoothened timelines which, as noted above, may have coarser
resolution than the original timelines, the original ones are used in visualization.

Choosing good projections for MDS is known as a difficult problem [5],
especially to only one dimension. We tested a lot of distance measures and
parameters (more than described above) on social network data of several wikis
(examples are given in Sect. 5.4) and found the ordering of the nodes to be very
sensitive even to small changes of the distance matrix while the grouping of users
with very similar timelines stays rather robust. This means small parameter changes
give different layouts, but within these similar users (e.g. U5 and U8 in Fig. 5.5) are
grouped together. So it is important to choose the right distance measure for the
general decision whether to focus on absolute intensity or on relative cooccurrence
of activity, as this defines which timelines should be grouped together, and adjusting
the parameters can improve the visual appearance.

5.3.4.4 Arranging Matrix Rows and Columns

For the network matrix further parameters have to be considered for sorting the
nodes. While grouping by external knowledge or some node feature stays the same
arranging by similarity gets more complex as now each node does not longer
correspond to exactly one timeline but (for n nodes) is connected to 2 .n � 1/

timelines (the corresponding row and column).
We cannot simply arrange these n.n � 1/ timelines by similarity as this would

destroy the matrix structure. We can only rearrange whole columns and rows so that
rows/columns containing similar timelines are placed next to each other. While it is
possible to have a different order for rows and columns we would not recommend
this, as it is unintuitive for a network matrix.

An easy and often sufficient approach is to use the node arrangement computed
on their collaboration activity timelines for the matrix (Figs. 5.5b and 5.6). Our
workgroup wiki example will not gain any further improvements by more sophisti-
cated measures.
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For other (larger) networks things are different as we will see later (Figs. 5.9–
5.11). The user timelines only show the unspecific activity pattern of the users. So
two users being active at the same time are grouped together even if their activity is
totally unrelated. To compute the similarity of two user rows in the network matrix
we therefore compute the distances of their glyphs column by column, e.g. for the
users U3 and U13 in Fig. 5.6 (third and second bottommost row) we compare the
glyph distances d.U3=U8,U13=U8/, d.U3=U5,U13=U5/; : : : ; d.U3=U10; U13=U10/.
The distance of the rows U3 and U13 is the sum of the distances of their glyphs.
Please note that for comparison of the single glyph timelines everything described
in Sect. 5.3.4.1 (smoothing, distance measures etc.) can be used.

Pairs involving diagonal elements (in the example i.e. d.U3=U3; U13=U3/ and
d.U3C=U13; U13=U13/) cannot be computed and are either skipped or the diagonal
glyph is virtually set to a timeline with each point set to the maximum of all
values in the matrix. The latter measure supports users working closely together to
be considered more similar, e.g. d.U1=U12; U12=U12/ < d.U10=U12; U12=U12/.
Both options work and we found the effect of the latter negligible on large networks.

5.3.5 Interactive Visual Data Mining

The visualization paradigm described in this section has been implemented as part of
a network analysis package. Figure 5.7 gives a screenshot of PONVA, our interactive
pixel-oriented network visualization application, which allows us to experiment
with different layout algorithms and settings on various networks.15

Zooming into the full plot as well as “zooming” the glyphs by changing the
resolution (Fig. 5.3b, c) allows to switch between overview and detailed inspection.
Selecting the active timespan within one glyph or one column or row and high-
lighting the corresponding pixels in the other glyphs helps comparing user activity
in time. Same holds for selecting one user or a pair of users and highlighting the
corresponding row(s), column(s) (and intersections). And clicking on a pixel reveals
detailed data from the point in time it represents to its numeric value.

Selecting one of the different glyph layout mechanisms, color scales and some
� -correction appropriate to the network to be analyzed is done interactively. And
finally rows and columns can be sorted according to various similarity measures,
which are not discussed within this chapter due to limited space.

Additionally an interactive application allows to use the distance information
available from MDS. Figure 5.8 shows a two-dimensional configuration of the
timelines (folded to row-by-row glyphs) scaled to two dimensions. This places the
users/glyphs according to the similarity relations of their timelines, so similar glyphs
are visually clustered together. This representation is not too useful on a printed

15POVNA [35] is written in Java. Not all features described are included in the current stable
release.
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U13
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Fig. 5.7 Two-dimensional
MDS representation of the
workgroup wiki timelines

Fig. 5.8 Graphical user interface of PONVA. The main window shows a pixel-oriented visualiza-
tion of the network matrix while the dialog in front allows to change �-correction. To the right
detailed information about one selected pixel is displayed

paper as it takes a larger amount of space which conflicts with the paradigm of
pixel-oriented visualization that requires to use every pixel on the screen to represent
one data point. The visualizations also suffers from cluttering as there are problems
with overlapping glyphs and the annotation of the user names. However it is useful
for interactive exploration where one can scroll and zoom in and annotations are
dynamically displayed on mouseover or mouseclick.
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5.4 Exploring Larger Networks

In the following we demonstrate the practical value of pixel-oriented visualization
with three real world data sets. The datasets were collected during our research
on organizational wikis.16 A particularity of the data set is the fact that rich
background knowledge about the organization context of the social networks has
been collected independently. We show how user interaction patterns in time
become visually salient in the pixel-oriented visualization and demonstrate that
these findings correspond to social patterns in the organization. Additionally whe
show how different node ordering methods improve the visualization.

5.4.1 Students Wiki

In Sect. 5.2.1 we introduced the students wiki (Fig. 5.1). Figure 5.9 shows the pixel-
oriented visualization of this network sorted by (weighted) node degree: Fig. 5.9b
gives the interaction timeline for each user (day by day grouped weekly) and
Fig. 5.9a the corresponding network matrix. Both plots only give users with at least
50 interactions as the full matrix with 142 users would not be readable on this paper
size.17

The first thing catching our eye in Fig. 5.9b is this dotted horizontal bar showing
up at about one third of the timeline (users marked with �). This is the start of the
second term and obviously the new and some of the older students did a lot of work
in this week. Next we see heavy traffic at the beginning of the timeline for a 2 week
timespan (�). Some users continue to participate, others leave, but most of the active
users within the first two terms do not show up in the third one, and the users active
in the third term (ı) were not present before. Exceptions are only users U8 and U105
who show up again at the end of the third term and U68 who came in the middle of
the second term but without being very active. The users of the first and second term
overlap but there is low connection to the third term, and this confirms what we see
in Fig. 5.1b–d.

While all this is visible in Fig. 5.9b, it gets more obvious in Fig. 5.10b where the
user timelines are arranged by similarity as described in Sect. 5.3.4.3. The students
active in the first, second and third term are now grouped together with the ones
active during a whole year (first and second term) nicely placed in between.

The network matrix in Fig. 5.9a presents a nearly regular pattern of similar glyphs
interrupted by rows and columns with rather empty glyphs and some few darker
ones. By looking closer we can distinguish users with different glyph patterns. The

16In-depth case studies of the wikis used here including other types of (not pixel-oriented)
visualizations are provided by Stein and Blaschke [31].
17This is less a problem in interactive usage where we can scroll.
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Fig. 5.9 students wiki (users with at least 50 links). (a) Network matrix. (b) Collaboration
intensity. Time goes from bottom to top
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a

b

Fig. 5.10 Students wiki (users with at least 50 links), grouped by collaboration intensity timeline
similarity. (a) Network matrix. (b) Collaboration intensity. Time goes from bottom to top
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changed arrangement of rows and columns in Fig. 5.10a makes things easier by
revealing patterns which give further insights: while there is collaboration between
the students of the first and second term visible in the matrix the third term is nearly
fully disconnected. Most of the students present in the first term collaborate with
most of their fellows, for the wiki this means they all worked on the same wiki
pages, they did not split up in subgroups working on different pages. Only user
U120 stands out. While joining the wiki in the third term contrary to his fellows, he
connects to most of the users of the first and second term, i.e. works on the pages
they edited before.

In Fig. 5.11 not the collaboration intensity of the student timelines but the similar-
ity of the glyph rows in the matrix is used to arrange the students. The difference to
Fig. 5.10 is not as big as between Figs. 5.9 and 5.10 but noticeable. The three groups
of students are clearly visible in the matrix, as well as the connection between the
first and second group (users U83 to U43, i.e. the first six rows/columns in the
matrix, plus some connection for rows/columns U112 to U16).

The exact configuration of rows and columns is highly dependent from the
parameters chosen (smooth factor, distance metric, etc.) as if the distances between
rows are small even small changes give different MDS to the one-dimensional space.
Nevertheless the general patterns visible in the figure are rather stable.

So Figs. 5.9–5.11 are a good example for the perceptual salience of regular
temporal collaboration patterns on one hand and the improvements possible by
sophisticated grouping of the nodes. They not only show cooccurrence of activity of
single users but also which users and groups of users are connected at which time.

5.4.2 Facilitation Wiki

Figure 5.12 introduces a new network. It shows the internal wiki of an organization
that lends support for information and communication technologies to small and
medium enterprises. The wiki features mostly research articles, project reports,
and later publications thereof. The wiki is maintained as a dedicated project, and
employees are enforced to generate a certain amount of input per anno.

The first thing catching the eye when inspecting the collaboration intensity
timelines Fig. 5.12a is that users U35 (�) and U48 (ı) stand out.18 U35 was the
project manager of the wiki project and obviously did a lot of work until she left
the company after three quarters of the timeline, where U48 had to take over this
position. Both users were connected to almost everybody else as we can see in the
first two rows of the network matrix (Fig. 5.12b). Only a connection from U35 to U33
is missing and as we can see in the user timelines U33 joined the wiki after U35 left.

18We may also see that they never edited the wiki on weekends.
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Fig. 5.11 Students wiki (users with at least 50 links), grouped by glyph row similarity. (a) Network
matrix. (b) Collaboration intensity. Time goes from bottom to top
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Fig. 5.12 Facilitation wiki (users with at least 50 links). (a) Collaboration intensity. (b) Network
matrix

We could backup our findings by interviews where we learned that U35 (and later
U48) was asked by all others to assist them with the wiki. However, the wiki was
never really accepted by the users, and almost nobody started to use the wiki as a
collaboration tool, so she had to work as a “gardener”, formating the articles others
had written. And the missing collaboration is visible in the network matrix, most of
the glyphs are empty or very sparsely filled, only the pair U80 and U46 � stands
out, here direct collaboration shows up.

Contrary to the last example no uniform patterns are visible, but temporal
cooccurrence as well as temporal connection draw attention when present in the
fuzzy gray-spotted area of glyphs as our visual perception smoothens single dots to
larger areas.

5.4.3 Startup Wiki

Our last example (Fig. 5.13) shows the startup wiki . It is the company wiki of an
European market leader for one-stop solutions and services in mobile or proximity
marketing. It was installed during the founding of the company and since then
keeps its role as primary collaboration and main content management system for
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Fig. 5.13 Startup wiki network matrix. (a) Collaboration intensity. (b) Network matrix

the engineers. Growing from 3 to 26 users the primary users never stopped to use
the wiki and new employees joining get connected to the others. Wiki growth at its
best, and nicely visible in the user interlocking network matrix.

We see users with high activity as well as ones showing up only once which is
not surprising as e.g. accounting uses other specialized software and other groups
only need to read wiki contents without editing.

Contrary to the facilitation wiki users connect to each other, we do not have
this one “gardener” getting all the connections but collaboration between the active
users. Not everyone is using the wiki intensely but those who do are connected to
each other.

5.5 Conclusions and Outlook

In this chapter we introduced pixel-oriented network visualization (PONV), a
new visualization for weighted social networks changing in time. Our approach
focuses on using static visualization of dynamic network data as a method of data
exploration by the means of visual data mining which works best on medium-size
networks where the whole matrix fits on the screen or paper at once.

We discussed different patterns for pixel as well as the glyph arrangement.
Furthermore, we presented different pixel layouts from simple ones like plain rows
to more complex space-filling curves. It turns out that the arrangement of the
glyphs should be adapted according to the actual task and can be lead by external
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knowledge, some node feature or similarity. We therefore introduced different
distance measures.

The interpretation of PONV is not immediately obvious but easily learned
by the interested expert. Using several interlocking coauthor networks extracted
from organizational wikis we could show how pixel-oriented network visualization
reveals perceptual salient patterns for temporal cooccurrence of user collaboration
as well as user-user-connection. In our examples we tended to stick to the simple
row by row approach for the arrangement of the pixels which we found to be least
irritating. In addition a glyph arrangement according to similarity lead to the visually
most appealing results.

PONV allows to detect similar collaboration patterns across users and to reveal
the collaboration between a pair of users across time. It is nevertheless meant
as complementary visualization besides network graphs and others and not as a
substitution, as interactions between groups of more than two users only show up
indirectly, it focuses on temporal patterns, not on the detection of network clusters.
This also means that PONV is less useful on rather sparse networks with low traffic
where no visual patterns emerge.

Topics for future work are the development of more sophisticated glyph layouts
as well as combining pixel-oriented visualization with other layout algorithms like
using the glyphs as nodes in a graph representation integrating both visualization
techniques. Finally the understandability and usefulness of PONV shall be exam-
ined and at best improved by user studies.

The analysis and graphics in this chapter are produced using the pixvis/PONV
module of our own Wiki Explorator library.19 It is available for download under an
open source licence.20
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