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Abstract An effective and efficient approach in designing software systems to
describe system requirements is using scenarios. A scenario, commonly shown
as a message sequence chart or a sequence diagram, is a temporal sequence of
messages sent between system components. Scenarios are appealing because of
their expressive power and simplicity. Moreover due to the clear and concise
syntactic of scenarios, they can be used to analyze the system requirements for
general validity, lack of deadlock, and existence of emergent behavior. Emergent
behavior or implied scenarios are specifications of behavior that are derived from
compiling of all requirements together but are not explicitly specified in the set of
scenarios. Although emergent behavior is not necessarily unwanted, nevertheless it
is useful for system designers and engineers to be aware of its existence. Defining
requirements using scenarios and conducting consequent analysis has been done for
distributed systems as well as multi-agent system. In this research the requirements
of a social network are described using scenarios. The scenarios are then used to
detect emergent behavior using a systematic methodology. This is illustrated using
a prototype of a social network of MAS for semantic search that blends the search
and ontological concept learning.
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17.1 Introduction

Social networks have received enormous international interest in recent years,
especially after the ubiquitous use of the internet as a communication medium [1].
Social network is a set of individuals and relationships between them. It can be
represented as a set of actors (nodes or agents) that have one or more kind of
relationships (ties) among them. The importance of the social network is due to its
effect in diffusion of information among actors included within the network [2]. In
this paper, when we use the term social network, we are referring to the abstract
meaning of this term and not the social networks in popular culture such as
Facebook or twitter. In other words, by social networks we mean a set of nodes
that can communicate with each other via a network where they may have different
types of relationships (ties) and different levels of strength of these relationships
depending on several factors. The strength of ties represents how close the nodes
are with respect to one another. We propose a semantic search framework that is
based on a multi-agent system (MAS). Each MAS controls a document repository
and each repository has a different ontology. The agents cooperate with each other
to select the best subset of documents suitable for a semantic search query sent by a
user. A query is in the form of searching for keywords in the context of one or more
concepts. We use social networks in our system to communicate between agents
from different MAS, which allows for proper handling of the concepts in the query.
This allows agents to find peers that may have close but slightly different concepts
in their respective ontologies.

Due to the integrated nature of social networks, gathering comprehensive and
correct requirements for such software systems can be challenging. Scenario-based
specification is an effective and efficient way to describe the behavior of a variety
of software systems such as multi-agent systems (MAS) and distributed systems.
Scenarios enable engineers and designers to describe system’s functionality using
the partial interactions of the system elements. In this research, the approach of
scenario-based software engineering (SBSE) has been followed to represent the
requirements of social networks.

There are two main ways of representing scenarios, namely, Sequence Diagrams
(SD) developed by the object management group (OMG) [3] and Message Sequence
Charts (MSC) which were developed by the International Telecommunications
Union (ITU) [4]. In this paper MSCs are used to represent scenarios.

There are several advantages of using scenarios such as expressive power and
simplicity. However, there are also several challenges such as weak partial ordering
semantics that may result in missing some behavioral requirements particularly for
software systems with distribution of control such as distributed systems, MAS and
social networks. For instance, because each scenario gives a local and partial story
of interaction between two or system components, the challenge is how the behavior
of the whole system can be constructed from those scenarios and more importantly
whether the derived behavior is acceptable or not. In the analysis of social networks,
the interacting system components are individual nodes.



17 Detecting Emergent Behavior in a Social Network of Agents 395

The model which describes the behavior of each system component (i.e. node for
social networks) is usually called behavioral model, and the procedure of building
the behavioral model from a scenario-based specification, is called synthesis of
behavioral models, or simply, synthesis process. A commonly used model for
behavioral modeling of individual components is the state machine. There are
several reports on the procedure of converting a set of scenarios to a behavioral
model expressed by state machines [5–10]. In the synthesis process, one state
machine will be built for each node. The state machine includes all the interactions
of a particular node based on the messages that it receives or sends. Theoretically,
the behavior of the network can be described by the union (parallel execution) of all
the state machines of the individual nodes.

One of the challenges during the synthesis process, is implied scenarios [11–14],
also known as emergent behavior. An implied scenario is a specification of behavior
that is in the synthesized model of the system but is not explicitly specified in the
set of scenarios. This usually happens when several autonomous components need
to handle a joint task as a group in a shared environment where control is also
distributed. Although emergent behavior is not always unwanted, it is extremely
useful for system designers and engineers to be aware of its existence. In this paper
we use an example of a social network of MAS for semantic search to demonstrate
the ideas.

The structure of this paper is as follows: in Sect. 17.2 some background on
social networks, particularly about the relationships between nodes is presented.
The case study for the social networks of MAS for semantic search is given
in Sect. 17.3. In Sect. 17.4 system behavioural modeling is explained and the
detection of indeterminism and emergent behaviour is discussed in Sect. 17.5.
Finally conclusions and future work are presented in Sect. 17.6.

17.2 Social Networks

As mentioned previously, a social network is a set of individuals and relationships
between them. Social networks are often shown using graphs which consist of
several nodes representing actors of the network (such as agents) and arrows or
lines representing the relationships between the actors [15] as shown in Fig. 17.1.

This section contains a brief overview on the structure of social networks and the
measurement of tie strengths which of particular interest to this research.

17.2.1 Connection between Nodes

One of the most important features of a social networks is the connections between
its nodes. It is necessary to identify the way the actors are embedded within a
relation. There are many different types of relations. The most important types
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Fig. 17.1 Example of agents connected in a social network. The arrow head represents the
direction of the relationship and the thickness of the line represents the strength of the relationship

of relation are the dyad relation (two actors involved in the relation) or the triad
relation (three actors involved in the relation). In the dyad relation between A and B
there are four possibilities; A has a relation with B, B has a relation with A, neither
A nor B has relation with each other or both A and B has a mutual relation.

The size of the network is the number of nodes within the network. The density
of the network is the ratio between the existing connections of the network to
all possible connections. The number of possible connections within a network is
k.k � 1/, where k is the number of the nodes in the network in the case of the
directed graph or the symmetric network. In the case of an asymmetric network,
the number of possible connections equals .k.k � 1//=2 because in this case the
connection between A and B is the same as the connection between B and A.
Note that when the number of the nodes increases linearly, the number of possible
relations within the network increases exponentially.

The degree of a node is the number of connections in which this node is involved.
In the case of a directed network, there are two types of degrees, in-degree and
out-degree representing the number of relations towards and outwards from the
node respectively. The degree of a node is a very important property of a node.
The in-degree represents how powerful the node is. It corresponds to the amount
of knowledge it has. The larger the in-degree the more knowledge it has. The
out-degree represents how influential this node is. The larger the out-degree of a
node the more it affects the surrounding nodes.

The reachability of an actor to another is the ability of one actor to reach another
one by any sequence of steps. In directed graphs there may be a case that A can
reach B but B cannot reach A. In symmetric data if two actors cannot reach each
other so there will be a kind of division within the network.
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The distance between two nodes is the number of steps required to exchange
information between them. This is an important property of nodes in a social
network because it specifies how effective a node is and how far knowledge at a
node can propagate.

17.2.2 Tie Strength in Social Networks

Most social networks only consider if there is a relationship between two members
or not. They do not consider the strength of the ties between members. Recently
more attention has been paid towards this property (i.e. the tie strength). The
strength of the tie is affected by several factors. Grannovetler [16–18] proposed
four dimensions that may affect the tie strength:

• The duration of the relationship
• The intimacy between the two individuals participating in the relationship
• The intensity of their communication with each other
• The reciprocal services they provide to each other

In other literature, such as in the works of Wellman and Wortley [19], it is argued that
emotional support strongly affect the strength of the tie between any two members
in a social network. Other factors, such as socioeconomic status, educational level,
political affiliation, race and gender are also considered to affect the strength of
ties [20]. Moreover the structural factors, such as network topology and information
about social circles may affect the tie strength [21].

17.3 Case Study: Social Networks of MAS
for Semantic Search

Traditional search engines depend on the number of occurrence of given words
in documents. Semantic search depends on understanding the meaning of the
concepts used in the context of other words. It then tries to retrieve the related
documents to these concepts. The backbone of semantic search is the semantic
interoperability which is the main ingredient for notation extraction from the search
phrase. Using social networks in this system provides great flexibility; especially
in dealing with concepts in ontologies. It allows MAS to understand the meaning
of the same concept even though its definition might be slightly different in each
agent’s ontology.

In our framework, we assume that in a society of n MAS (Mas1, Mas2, . . . Masn/,
each MAS (Masi / manages a repository Ri and consists of different agents, each
with its own responsibilities. These repositories use different ontologies to represent
their knowledge. The ontologies used within the repositories are not necessarily the
same. Also, agents do not need to understand concepts in the same way. The most
important concept here is the ability of agents to understand each other.
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In our framework, we try to make agents from different MAS able to commu-
nicate with each other and to understand each other by interacting through a social
network. In this social network, the strengths of relationships (ties) between agents
are not the same.

The tie strength between agents is a good indicator of how close these agents are
to each other. It helps in both semantic search and concept learning modules.

In the learning module, when the user sends a search query to a local agent,
the local agent checks for new concepts that are not defined in the repository.
If the local agent found new concepts, it asks its peers/neighbors for this new
concept. These selected agents are now teacher agents. The choice of teacher agents
depends on the tie strengths between the local agent and all its peers. The teacher
agents teach the local agent the new concept by sending some illustrative examples
representing this concept. If conflicts occur during the learning process, the local
agent depends more on the examples sent by teachers with which it has stronger
relationships (i.e. higher tie strengths).

The semantic search module starts when the local agent is sure that all new
concepts in the search query are learnt correctly. The local agent annotates its
own repository using keywords in the search statement. The annotation procedure
re-categorizes the repository by conforming to concept hierarchy. Then the local
agent searches the annotated repository for the search query and returns the results
(called local results). At the same time the local agent sends the search query to all
its neighbors (in this case they are called remote agents). Each of these remote agents
searches its own repository by annotating it with the search keywords. Then each
remote agent returns more results (called remote results). After gathering all the
results of the search from all remote agents, the local agent tries to rank the results.
The purpose of this ranking is to decide the order in which the local agent deliv-
ers the results to the user. The raking process depends also on the tie strength
between the local agent and each of remote agents. The stronger the tie between
them, the higher a rank is given to results returned from this particular agent.

17.3.1 Semantic Search Process

We have devised a spiral workflow to incorporate both search and concept learning
in the semantic search process [22]. The spiral workflow and its suggested scenario
are shown in Fig. 17.2. On one hand, search engines should be capable of responding
to the requests according to agreements with the concept learning module. On the
other hand, annotation procedures of search engines can be done on the fly based
on the obtained concepts instead of depending on fixed predefined ontological
concepts. This view exposes the intrinsic relationship between concept learning
and semantic search in a heterogeneous environment. In such an environment,
concept learning and semantic search are treated equally as basic roles, involved
in the process which support each other to achieve their own goals by enriching
the set of ontological concepts and reducing ambiguity of the search, respectively.
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Fig. 17.2 Spiral workflow between semantic search and concept learning

Following the spiral process, concept learning module and semantic search take
actions alternately.

The scenario of this process is as follow:

• The system is initiated by the user when he/she sends the search query to one
agent (we call it local agent).

• Concepts are extracted from the search query.
• The concepts in the search query are compared by those defined with the

ontology in the local repository. This comparison is essential to enable the local
agent to find out the new concepts in the search query that are not defined in its
local repository.

• If new concepts are found in the search query, the local agent requests the other
agents (remote agents) to teach it these new concepts. (This step represents the
initialization of the concept learning process.)

• The concept learning mechanism is continued until the local agent learns the new
concepts adequately.

• After learning all new concepts, the concept hierarchy in local repository is
reorganized to add the new concepts in their proper position.

• The annotation procedure is then performed on the fly on all the concepts in the
local repository; old and newly learned concepts. UIMA [23] is used to enable
search and classification within each document repository.

• In the same time, the local agent broadcasts the search query to all remote agents
to search their local repository and send back the result documents.

The local agent collects the returned documents from remote agents and ranks them
using social networks before retrieving them to the user.
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Fig. 17.3 The system
architecture

17.3.2 Semantic Search Infrastructure

In the previous section, we describe the importance of the concept learning module
in the semantic search system. The main obstacle in the concept learning system is
the complexity of ontological heterogeneity solution. In order to solve this problem
we propose to leverage of the power of a multi-agent system to use it in the
infrastructure of our semantic search system. A great social network of MAS is
used to set up the backbone elements that communicate with each other. As shown
in Fig. 17.3, each MAS controls a repository that uses an ontology to cover a specific
area of knowledge. Each repository contains some documents that are related to
concepts defined within the ontology. Using MAS allows the system to hide the
search complexity from the user.

17.3.3 Prototype System Architecture

Figure 17.4 shows different agent roles in each MAS in our prototype system. These
roles are defined below.

Query Handler: This role involves accepting search query and processing it by
extracting concepts from it. Also it is responsible for broadcasting the query
statement to all the neighbor repositories.

Concept Manager: This role involves finding the new concepts in the search
query and broadcast it to all neighbour agents in order to be learnt.

Concept Learner: This role involves maintaining and confirming newly learnt
concepts; including creation of taxonomies of interested domain. It is also
responsible of broadcasting these concepts to all group members to share
searching for it. Moreover it rearranges local repositories with the newly learned
concepts.

Document Annotator: This role involves annotating the documents in local repos-
itory and filtering them according to the search keywords, then returning back the
filtered documents.

Peer Finder: This role involves detecting cooperative peers (agents) in the social
network that communicate with the current agent with a relationship.
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Fig. 17.4 Roles of different
agents

Tie Manager: This role involves keeping track of common concepts between
peers in the social network and the interactions which occur between those peers
in the learning process. Tie manager is able to change the strength of tie between
peers dynamically. It is also responsible for setting the initial strength of the
relationship between agents.

17.4 System Behavioral Modeling

The requirements for the social network of MAS defined in the previous section
are described using partial message sequence charts (pMSCs); defined formally in
Definition 1.

This system consists of a large social network of multi-agent systems. Each MAS
contains a repository and connects to other MAS on the network for concept learning
purposes. The structure of the social network is ever-changing as MAS continue
to strengthen or weaken the ties among them based on their commonalities. The
managing of the ties is done by two agents of “peer finder” and “tie manager” which
are part of each MAS in the network as shown in Fig. 17.4. For the purpose of this
case study, it is assumed that the strength of ties between each two nodes in the
network (i.e. each MAS) depends on the following criteria:

1. Number of times they have been able to successfully cooperate
2. Number of peers they have in common

Criteria (a) indicates that MAS which have the most concepts in common and
continue to have a working relationship will have stronger ties. On the other hand
(b) is derived from the social network concept that for node A to be balanced in
its relationship (or friendship) with B and C, then A must believe that B and C are
peers.
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Fig. 17.5 The tie between MAS A and B are established based on their mutual peers

Peer Finder Tie Manager
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Maintain Tie (decrease)

Can’t Cooperate

Fig. 17.6 The relation between MAS A and B is decided based on their ability to cooperate on a
given query

In the following case study, three arbitrary MAS of A, B and C are selected
from the social network. It is assumed that ties already exist between A and C as
well as between B and C; however there are no relations between A and B. The
following scenarios expressed using MSCs, define the behavior of the network in
identifying peers. It is important to note that these scenarios have been devised from
the perspective of MAS_A.

MSC1 shown in Fig. 17.5 illustrates a scenario where the ties between MAS
A and B is established based on their mutual peer; Peer_C. Alternatively, MSC2
shown in Fig. 17.6, displays a scenario where the relations between MAS A and
B are decided based on their ability to cooperate on a given query. The scenario
shown in MSC1 (Fig. 17.5) typically occurs when each MAS attempts to update its
ties with other nodes on periodic bases, whereas the scenario in MSC2 (Fig. 17.6)
would occur when the ties with other MAS are updated as the result of a sent query.

However there could emerge a scenario where the periodic update of the ties of a
MAS would coincide with the update of the ties triggered by sending a query. Such
a scenario can be derived from the scenarios shown in MSCs 1 and 2 (Figs. 17.5
and 17.7 respectively) and is illustrated in MSC 3 (Fig. 17.7).
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Fig. 17.7 Possible emergent behavior

17.4.1 Definitions

In this section, we give some definitions related to MSC notation based on a subset
of ITU definitions for MSC [1, 4, 7].

Let P be a finite set of agents in a distributed system (with the total number of
agents p � 2) and C be a finite set of message contents (or message labels) that are
passed among the agents. Let

P
i D fi Šj.c/; i‹j.c/j j 2 P nfig; c 2 C g be the

set of alphabet (i.e. events) for the agent i 2 P , where i Šj.c/ denotes an event that
sends a message from agent i with content c to agent j, whereas i‹j.c/ denotes an
event that is received by agent i a message with content c from agent j. The set of
alphabet will be ˙ D S

i2P ˙i and each member of ˙ is called a message.
In the following, we try to capture a causal relationship between a message and

its predecessors by defining partial Message Sequence Chart (pMSC).

Definition 1 (Partial Message Sequence Chart). A partial Message Sequence
Chart (pMSC) over P and C is defined to be a tuple m D .E; ˛; ˇ; �/ where:

E is a finite set of events.
˛ W E ˙ maps each event with its label. The set of events located on agent i is

Ei D ˛�1 .˙i /. The set of all send events in the event set E is denoted by EŠ D
fe 2 E j 9i; j 2 P; c 2 C W ˛.e/ D i Šj.c/g and the set of receive events as E‹ D
EnEŠ.

ˇ W F ŠE‹ is a bijection mapping between send and receive events such that
whenever ˇ .e1/ D e2 and ˛ .e1/ D i Šj.c/, then ˛ .e2/ D j ‹i.c/.

� is a partial order on E such that for every agent i 2 P , the result
of � on Ei is a total order of its members and the transitive closure of
f.e1; e2/ je1 � e2; 9i 2 P W e1; e2 2 Ei g [ f.e; ˇ.e// je 2 Eg is a partial order
of the members of E.

The partial order � captures casual relationship between the events of a pMSC.
This causality basically represents two things. First, a receive event cannot happen
without having its corresponding send event happened before. Second, a receive
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(or send) event, cannot happen until all the previous events, which are causal
predecessors of it have already been accomplished. Obviously, if all the send events
have their corresponding receive events (i.e. as defined by the function ˇ), the
structure is called a Message Sequence Chart or simply an MSC. In other words,
an MSC has the same structural components as a pMSC, except that ˇ is defined for
F Š D EŠ.

Definition 2 (Projection). The projection mji for agent i in MSC m, is the ordered
sequence of messages which correspond to the events for the agent i in the pMSC m.
For mji , kmji k indicates its length, which is equal to the total number of events
of m for the agent i, and mji Œj � refers to j th element of mji , so that if ej is
the j th interaction event for agent i according to the total order of the events of
i in m, then ˛m.ej / D mji Œj � 1�; 0 � j � kmji k. In mji , we call every
element i Šj.c/; i; j 2 P; c 2 C , a send message and every element i‹j.c/, a receive
message.

For example, the projection for the agent QH in MSC1 in Fig. 17.2 will be
“QH!CL(send concept) ”.

Definition 3 (Equivalent Finite State Machine for a projection). For the pro-
jection mji , we define the corresponding deterministic finite state machine Am

i D�
Sm; ˙m; ım; qm

0 ; qm
f

�
such that:

Sm is a finite set of states labelled by qm
0 to qm

kmji k.
˙m is the set of alphabet
qm

0 is the initial state
qm

f D qm
kmji k is the final state (accepting state)

ım is the transition function for Am
i such that ı

�
qm

j ; mji Œj �
�

D qm
j C1; 0 � j �

kmji k � 1: Thus the only word accepted by Am
i is mji .

Note that scenarios can be treated as words in a formal language, which is defined
over send and receive events in MSCs. Then, a well-formed word for an agent is one
that for every receive event there exists a send event in that word, which in fact
captures the essence of definition given for a pMSC (Definition 1). On the other
hand, a complete word for a agent is the one that for every send event in it, its
corresponding receive event also exists in it. In practice, a system designer must
look for complete and well-formed words for each agent, which is not necessarily
an easy task. For any MSC m in the set of MSCs M, any sequence ! of m, obtained
from a sequence of events in m that respects the partial order of the events defined
for m, is called a linearization of m, and is a word in the language L(M) of M.

17.4.2 Constructing Behavioral Models

As mentioned in the previous section, scenario based specification is an efficient
and effective way to represent system requirements for software systems. How-
ever as each scenario only partially describes system’s behaviour, scenario based
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Fig. 17.8 eFSM for the Tie Manager agent of MAS_A in MSC1
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Fig. 17.9 eFSM for the Tie Manager of MAS_A in MSC2
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Fig. 17.10 The union of eFSMs built from MSCs 1 and 2

specifications are subject to deficiencies such as incompleteness and contradictions.
Therefore having a methodology which can systematically discover system design
errors before implementation will result in enormous savings in time and cost. The
first part of this approach, which is the synthesis of state machines from message
sequence charts is described in this section and is demonstrated using the example
of the semantic search system.

The first step is to construct behaviour models for individual system component
using finite state machines (FSMs). As explained earlier, the procedure of con-
structing FSMs from message sequence charts (MSCs) is referred to as behaviour
modeling. For any system component i of a partial message sequence chart (pMSC)
defined in Definition 1, an equivalent finite state machine (Definition 3) can be
constructed. For the example of semantic search system, behaviour model of the
tie manager (TM) agent of MAS_A is demonstrated. Figures 17.8 and 17.9 show
the eFSMs that are constructed for the TM agent in MSC1 (Fig. 17.5) and MSC2
(Fig. 17.6) respectively.

To complete behavior model for the TM agent another FSM, which is the union
of its corresponding eFSMs from different scenarios that contain TM is built and
shown in Fig. 17.10.
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17.5 Detection of Emergent Behavior

Emergent behaviour occurs when there exists a state, in which the component
becomes confused as to what course of action to take. This happens when identical
states exist in the union of eFSMs obtained through behavioural modelling. A
definition for identical states is needed for detection of emergent behaviour. To
achieve this we must first have a clear procedure to assign values to the states of
the eFSMs. This is a very important step and is performed differently in various
works. For instance, [9] proposes the assignment of global variables to the states of
eFSMs by the system engineer. However the outcome of this approach is not always
consistent as the global variables chosen by different system engineers may vary.
Therefore to achieve consistency in assigning state values, the approaches of [24,25]
which make use of an invariant property of the system called semantic causality is
followed.

Definition 4 (Semantic causality). A message mji Œj � is a semantical cause for

message mji Œk� and is denoted by mji Œj �
se�! mji Œk�, if agent i has to keep the result

of the operation of mji Œj � in order to perform mji Œk�.
For example, in MSC1 in Fig. 17.5, message “New Peer Detected (B)” is a

semantic cause for message “Mutual Peer Exists (C)”. As semantic causality is an
invariant property of the system and is part of the system’s architecture and the
domain knowledge, it is independent of the choices made by the system engineers.
In other words, we let the current state of the agent to be defined by the messages that
the agent needs in order to perform the messages that come after its current states.
Thus in order to evaluate state values of the resulting FSM, a domain theory which
consists of the domain knowledge of the system must be constructed as defined
formally in Definition 5.

Definition 5 (Domain theory). The domain theory Di for a set of MSCs M and

agent i 2 P is defined such that for all m 2 M , if mji Œj �
se�! mji Œk� then

.mji Œj �; mji Œk�/ 2 Di .
Continuing with the above example, since the message “New Peer Detected

(B)” is a semantic cause for message “Mutual Peer Exists (C)”, both messages are
part of the domain theory. However building the domain theory can be very time
consuming. Therefore as a part of this systematic approach, building a light domain
theory is introduced. The concept of light domain theory is closely tied to the
calculated state values as defined in Definition 6. Using this definition, it becomes
evident only states with the same incoming transitions have the potential to exhibit
indeterministic behaviour which have the same incoming transitions. Assigning
state values to states of eFSMs is done by making use of semantic causality as
defined in Definition 6.

Definition 6 (State value). The state value vi j.qm
k / for the state qm

k in eFSM Am
i D�

Sm; ˙m; ım; qm
0 ; qm

f

�
is a word over the alphabet ˙i U f1g such that vi j

�
qm

f

�
D

m ji Œf � 1�, and for 0 < k < f is defined as follows:
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New Peer
Detected (B)

Mutual Peer
Exists (C)

Can’t Cooperate

Maintain Tie
(increase)

S0 S1 S2

S3

Sf

Maintain Tie
(Decrease)

Sf

Fig. 17.11 Resulted FSM after merging identical states

1. vi j.qm
k / D m ji Œk � 1�vi j.qm

j /, if there exist some j and l such that j is the

maximum index that mji Œj � 1�
se�! mji Œl � ; 0 <j <k; k � l <f

2. vi j.qm
k / D m ji Œk � 1� if case (i) does not hold but mji Œk � 1�

se�! mji Œl �, for
some k � l < f

3. vi j.qm
k / D 1, if none of the above cases hold

Getting back to our systematic approach to find emergent behaviour, by consider-
ing the resulting FSM in Fig. 17.10, we select pairs of states with the same incoming
transitions and evaluate their state to look for identical states. Figure 17.11illustrates
the constructed FSM as the result of the merging of identical states.

As it is shown in Fig. 17.11, state S1 is where the tie manager of MAS_A falls
into confusion. That is, as it is illustrated in MSC3 (Fig. 17.7), TM will not be able
to distinguish whether or not it should increase the tie with MAS_B or decrease it.
Therefore as a result of the systematic approach in detecting emergent behavior in
MAS, the system engineers is notified of such possible scenarios and is able to make
modifications where necessary.

17.6 Conclusions and Future Work

Scenario based specification is an efficient and effective approach to illustrate the
requirements of software system. Aside from their simplicity and expressive powers,
scenarios can be used to analyze the requirements and design of software systems.
Some of the failures in software systems can be directly attributed to their design.
Research suggests that detection of failures and removal of faults during field
use of a system is about 20 times more expensive than detection and removal
in the requirement and design phase [26]. Unfortunately, manual review of the
design documents may not efficiently detect all the design flaws due to the scale
and complexity of the system. Therefore devising an automated and systematic
methodology to analyze system requirements is greatly beneficial.
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Furthermore, in this paper a method to identify the exact cause of implied
scenarios is provided, so that by capturing it, implied scenarios can be detected
and removed. This method is novel in the sense of formalization of the cause of
implied scenarios. We believe that this is the main reason for some shortcomings
and conflicts in the current works, as they have been revealed in [25, 27].

In this research we devised and demonstrated a method to detect and remove
design flaws that may lead to emergent behaviors in social networks. These
techniques were illustrated using a prototype of a social network of multi-agent
systems for semantic search. Due to the lack of central control in social networks,
the requirement gathering and design of such systems can be difficult. Thus the
presented methodologies can be used to systematically validate the requirements of
social networks.

In this research the requirements of social networks were analyzed with a
component level perspective. For future work, the requirements of these systems
can be analyzed with a system-level outlook. Furthermore since emergent behavior
is not necessarily a negative quality of the system, the presented methodologies
can be utilized to discover implied scenarios which do not cause problems for the
system.

References

1. Scott, J.: Social Network Analysis: A Handbook, 2nd ed. Sage, London/Thousands Oaks
(2000)

2. Hanneman, R.A., Riddle, M.: Introduction to Social Networks Methods. Sage, London/Thou-
sand Oaks (2005)

3. Unified Modeling Language Specification. Version 2. Available from Rational Software
Corporation, Cupertino (2006)

4. ITU: Message Sequence Charts. Recommendation, International Telecommunication Union
(1992)

5. Harel, D., Kugler, H.: Synthesizing state-based object systems from lsc specifications. Int.
J. Found. Comput. Sci. 13(1), 5–51 (2002)

6. Kruger, I., Grosu, R., Scholz, P., Broy, M.: From mscs to statecharts. In: Rammig, F.J. (ed.)
Distributed and Parallel Embedded Systems. Kluwer, Boston (1999)

7. Makinen, E., Systa, T.: MAS – an interactive synthesizer to support behavioral modeling in
UML. In: ICSE 2001, Toronto (2001)

8. Uchitel, S., Kramer, J., Magee, J.: Synthesis of behavioral models from scenarios. IEEE
Transaction on Software Engineering, Feb 2003, pp. 99–115

9. Whittle, J., Schumann, J.: Generating statecharts designs from scenarios. In: ICSE, Limerick
(2000)

10. Whittle, J., Schumann, J.: Scenario-based engineering of multi-agent systems. In: Agent
Technology from a Formal Perspective, 3d ed. Springer, London (2006)

11. Adsul, B., Mukund, M., Kumar, K.N., Narayanan, V.: Casual closure for MSC languages. In:
FSTTCS, pp. 335–347. Hyderabad, India (2005)

12. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. IEEE Transac-
tion on Software Engineering, July 2003, pp. 623–633

13. Muccini, H.: Detecting implied scenarios analyzing nonlocal branching choices. In: FASE
2003, Warsaw (2003)



17 Detecting Emergent Behavior in a Social Network of Agents 409

14. Uchitel, S., Kramer, J., Magee, J.: Negative scenarios for implied scenario elicitation. In: 10th
ACM SIGSOFT International Symposium on the Foundations of Software Engineering (FSE
2002), Charleston (2002)

15. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge
University Press, Cambridge/New York (1994)

16. Granovetter, M.S.: The strength of weak ties. Am. J. Sociol. 78, 1360–1380 (1973)
17. Granovetter, M.S.: Getting A Job: A Study of Contacts and Careers. University Of Chicago

Press, Cambridge (1974)
18. Granovetter, M.S.: The strength of weak ties: a network theory revisited. Sociol. Theory 1,

201–233 (1983)
19. Wellman, B., Wortley, S.: Different strokes from different folks: community ties and social

support. Am. J. Sociol. 96, 558–588 (1990)
20. Lin, N., Ensel, W.M., Vaughn, J.C.: Social resources and strength of ties: structural factors in

occupational status attainment. Am. Sociol. Rev. 46, 393–405 (1981)
21. Burt, R.: Structural Holes: The Social Structure of Competition. Harvard University Press,

Cambridge (1995)
22. Far, B.H., Zhong, C., Yang, Z., Afsharchi, M.: Realization of semantic search using concept

learning and document annotation agents. In: Proceeding of Twenty-First International Con-
ference on Software Engineering and Knowledge Engineering (SEKE), pp. 164–169. Boston,
USA (2009)

23. Lally, A., Verspoor, K., Nyberg, E.: Unstructured Information Management Architecture
(UIMA) Version 1.0 (OASIS, 2008) (2008)

24. Moshirpour, M., Mousavi, A., Far, B.: Detecting emergent behavior in distributed systems
using scenario-based specifications. In: International Conference on Software Engineering and
Knowledge Engineering, San Francisco (2010)

25. Mousavi, A.: Inference of emergent behaviours of scenario-based specifications. In: Depart-
ment of Electrial and Computer Engineering, vol. PhD, University of Calgary, Calgary (2009)

26. Goldenson, D.R., Gibson, D.L.: Demonstrating the impact and benefits of CMMI: an update
and preliminary results. CMU/SEI-2003-SR-009, Pittsburgh, Oct 2003

27. Mousavi, A., Far, B.: Eliciting scenarios from scenarios. In: Proceedings of 20th Inter-
national Conference on Software Engineering and Knowledge Engineering (SEKE 2008),
San Francisco, 1–3 July 2008


	Chapter17 Detecting Emergent Behavior in a Social Network of Agents
	17.1 Introduction
	17.2 Social Networks
	17.2.1 Connection between Nodes
	17.2.2 Tie Strength in Social Networks

	17.3 Case Study: Social Networks of MAS for Semantic Search
	17.3.1 Semantic Search Process
	17.3.2 Semantic Search Infrastructure
	17.3.3 Prototype System Architecture

	17.4 System Behavioral Modeling
	17.4.1 Definitions
	17.4.2 Constructing Behavioral Models

	17.5 Detection of Emergent Behavior
	17.6 Conclusions and Future Work
	References


