Chapter 14
Clustering Social Networks Using
Distance-Preserving Subgraphs

Ronald Nussbaum, Abdol-Hossein Esfahanian, and Pang-Ning Tan

Abstract Cluster analysis describes the division of a dataset into subsets of related
objects, which are usually disjoint. There is considerable variety among the different
types of clustering algorithms. Some of these clustering algorithms represent the
dataset as a graph, and use graph-based properties to generate the clusters. However,
many graph properties have not been explored as the basis for a clustering algorithm.
In graph theory, a subgraph of a graph is distance-preserving if the distances (lengths
of shortest paths) between every pair of vertices in the subgraph are the same as the
corresponding distances in the original graph. In this paper, we consider the question
of finding proper distance-preserving subgraphs, and the problem of partitioning
a simple graph into an arbitrary number of distance-preserving subgraphs for
clustering purposes. We then present a clustering algorithm called DP-Cluster, based
on the notion of distance-preserving subgraphs. We also introduce the concept of
relaxation values to the distance-preserving subgraph finding heuristic embedded
in DP-Cluster, and investigate this and other variations of the algorithm. One area
of research that makes considerable use of graph theory is the analysis of social
networks. For this reason we evaluate the performance of DP-Cluster on two real-
world social network datasets.

14.1 Introduction

Cluster analysis is a technique for partitioning a dataset into groups of similar
objects. It is often used as an exploratory data analysis tool to determine the
underlying structure of a data set. A recent area of application is in the realm
of social networks, where the goal is to find tightly-knit groups of people, also
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known as communities, based on their social relations. Communities are detected
by partitioning the network into subgraphs in such a way that optimizes certain
graph properties (e.g., minimizing the cut between clusters [9], or maximizing an
edge-based modularity function [16]). In addition to these criteria, there are other
graph invariants that are potentially applicable to clustering social networks. The
motivation for our work is to explore the effect of alternative graph invariants on the
process of community finding.

One of the difficulties with cluster analysis is that there is no strict definition of
what a cluster is. This makes it more difficult to conjecture what sort of concepts
might be usable in creating a clustering algorithm. In a social network, a vertex
usually represents a person or small group of persons, while the edges represent
the ties between them. We might wish to cluster participants according to family
ties, peer groups, business relationships, and other personal attributes or common
interests. For the graph of a social network, we expect to find higher connectivity
between similar vertices than dissimilar ones. More importantly, we expect the
centers of social groups to be quite dense, with fewer edges between communities.
Since social networks tend to follow a scale-free distribution, we will not find large
cliques. Still, we expect the shortest path between any two members of the same
community in the network to involve other members from the same community
rather than members from other communities. It is this last premise that gives
us reason to explore the use of distance-preserving subgraphs as the basis of a
clustering algorithm.

A distance-preserving subgraph is an induced proper subgraph that maintains
the distances (lengths of shortest paths) as in the original graph. Consider the
toy example of a social network shown in Fig. 14.1 which has 8 vertices and 13
edges. There are two natural communities in the network, one involving vertices
(A, B,C, D) and the other (E, F, G, H). Clearly, both subgraphs are distance-
preserving because the shortest path distance between any two vertices within each
subgraph is identical to the one computed from the entire network. However, adding
the vertex E to the subgraph (A4, B, C, D) no longer preserves the distance between
the vertex pair (E, B). Similarly, the addition of vertex F to (4, B, C, D) would
make the subgraph non-distance-preserving because the distance between (F, C) is
not the same as that in the original graph.

We face a number of challenges along the way to creating a useful clustering
algorithm. As previously mentioned, we need to find distance-preserving subgraphs
within a graph that represent clusters. While we generally cannot divide a given
graph into an arbitrary number of distance-preserving subgraphs, we can always
divide it into at least as many as desired, since isolated vertices are distance-
preserving subgraphs. So we must devise a method of merging extra clusters such
that we can always reach the desired number of clusters. We might also encounter
graphs that can be divided into less than the desired number of distance-preserving
clusters, in which case we will have to split them. Once we have addressed these
challenges, we can use the heuristics found to develop a clustering algorithm.

This work is an extension of a previous paper of ours, Clustering Social
Networks Using Distance-Preserving Subgraphs [17]. The bulk of the new material
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Fig. 14.1 A toy example of a
social network

may be found in Sect. 14.4.4 and throughout Sects. 14.5 and 14.6. In the next
section, we review related work in cluster analysis and give further background on
distance-preserving subgraphs. In Sect. 14.3, we give a formal problem statement.
In Sect. 14.4, we describe our algorithm, DP-Cluster, and variations on the basic
algorithm. In Sect. 14.5, we present the results of applying the DP-Cluster algorithm
on two social network datasets. We state our conclusions in Sect. 14.6.

14.2 Related Work

Many different clustering algorithms exist. Here we cover some of the more
common ones, along with those based on the use of graph properties. We also
provide some background into the topic of community finding. Finally, we give
a more thorough explanation of distance-preserving subgraphs.

14.2.1 Clustering Algorithms

One of the better known methods of cluster analysis is k-means, whose name dates
back to a paper by MacQueen [15]. k-means is a partitional algorithm that iteratively
assigns objects to their nearest cluster centers, then recomputes the centers until they
converge. Another important class of clustering methods is hierarchical clustering,
which can be done in agglomerative or divisive fashion. Hierarchical clustering
produces a dendrogram, which represents a series of clustering solutions, from all
objects in one cluster to each object in a cluster of its own. Many variations of
hierarchical clustering algorithms exist, including single-link, complete-link, group
average, and Ward’s method. An alternate approach is to define clusters as regions
of high density objects separated by low density regions often populated by noisy
observations. Two such algorithms are DBSCAN [8] and OPTICS [1].

A number of graph theoretic clustering algorithms have been developed. These
algorithms are designed to optimize certain graph properties. For example, spectral
clustering methods were developed to minimize variants of the graph cut property
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using the eigenvectors of the graph Laplacian matrix. Other heuristics have also
been proposed based on minimizing diameter, p-centers, and other graph properties
[4,9,18].

14.2.2 Community Finding

The technique of community finding, also called group detection [11], positional
analysis [7, 21] or blockmodelling [21], is the process of placing vertices into
groups in such a way that the vertices within a group are “similar” to each other
and “dissimilar” to vertices in other groups. For example, Newman and Girvan
[16] proposed an approach for discovering community structure in networks using
modularity function as a measure of cluster quality. Scripps et al. [19] presented
an overlapping clustering algorithm, taking into account the ill-effects of bridge
vertices in a network. Liu et al. [14] gave an algorithm for building hierarchical
communities using client-side web browsing history. More recently, there has
been considerable interest in discovering dynamic communities in an evolving
social network. For example, Zhou et al. [23] presented an algorithm for finding
dynamic communities by combining the statically derived communities subject to
certain constraints to ensure consistency of the clusters at different time periods.
Tantipathananandh et al. [20] developed a community finding algorithm for dynamic
networks using a graph coloring method.

14.2.3 Distance-Preserving Subgraphs

The topic of distance-preserving subgraphs is relatively unexplored. A subgraph
of a graph G of order n is called a distance-preserving subgraph if the distances
between every pair of vertices in the subgraph are the same as the corresponding
distances between them in G, and the subgraph is a proper subgraph of G. A
distance-preserving subgraph is necessarily induced if all edge weights in G are
equal, since the omission of any edge would increase the distance between the
endpoints of that edge. One can determine whether a given subgraph is distance-
preserving by computing all-pairs shortest paths for the subgraph, and for G. If
there are no negative cycles in G, then Floyd Warshall’s algorithm [10] may be
used to accomplish this, which has a time complexity of O(n?). If instead we have a
subgraph H C G thatis known to be distance-preserving, and another vertex v € G,
determining whether H Uv is a distance-preserving subgraph of G is a single-source
shortest path problem. This can be computed in O(n?) using Dijkstra’s algorithm
[6], or the Bellman-Ford algorithm [3] if G has negative edge weights.

A related concept is the distance-hereditary graph, first proposed by Howorka
[13]. A graph G is distance-hereditary if every connected induced subgraph is
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distance-preserving. Distance-hereditary graphs are a subset of perfect graphs, and
have been studied extensively [2,5, 12].

14.3 Problem Statement

Let G = (V, E) be a graph representing a connected social network of order |V | =n.
Order refers to the number of vertices in a graph, and size refers to the number of
edges. Our goal is to use the concept of distance-preserving subgraphs to partition
V(G) into k pairwise disjoint subsets Vi,..., Vi, such that V; U --- U V, =V,
where V; induces a distance-preserving subgraph. With n vertices and k clusters, on
average a cluster must contain n/ k vertices. Of course, the purpose of using cluster
analysis is to find good clusters, not just ones of equal order. However, this fact
hints at the fundamental question facing us: Given a graph G and integer m, does G
contain a distance-preserving subgraph of order m? Answering this question raises
several immediate issues.

14.3.1 Challenges

Our foremost concern is attaining clusters that are distance-preserving. Naturally,
G will not always contain a distance-preserving subgraph of order m. So it will not
always be possible to partition G into k distance-preserving clusters. Instead, we
will seek to find clusters that are as close to being distance-preserving as possible.
In the next section, we offer a way to quantitatively measure such almost distance-
preserving subgraphs.

Even if G does have a distance-preserving subgraph of order m, we still have to
find it. We suspect that this cannot be done for the general case in polynomial time.
It definitely is computationally infeasible to do so in a naive fashion, so we resort to
heuristics.

Since any distance-preserving algorithm is based off of distances between pairs
of vertices, we have a problem if G is not connected. Our distance-preserving
clustering algorithm assumes that G is a connected network. If the graph G is
disconnected, we could apply our algorithm to each component separately.

14.3.2 Algorithmic Approach

Here we are at a crossroads. In the DP-Cluster algorithm presented in the next
section, we partition G into as few properly distance-preserving clusters as we
can find according to a heuristic, and proceed to merge them until we have k
clusters. However, once we define a measure for how distance-preserving a subgraph
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is, we could instead construct an agglomerative hierarchical clustering algorithm.
Specifically, we could start with G partitioned into n distance-preserving clusters,
and repeatedly merge the two clusters whose union was most distance-preserving
according to some metric, until we had k clusters left. It is less apparent how we
might construct an efficient divisive hierarchical clustering algorithm. We proceed
with our hybrid method in the interest of keeping larger parts of the clusters distance-
preserving. It is not clear which path might lead to a better performing or less
computationally expensive algorithm, although our algorithm seeks to minimize the
number of times an all-pairs shortest paths algorithm is invoked.

14.4 DP-Cluster

Here we describe our heuristic for finding distance-preserving subgraphs, give a
definition for an almost distance-preserving subgraph that we can use as a metric to
merge these clusters, and present a simple clustering algorithm that combines the
two, which we call DP-Cluster. The basic algorithm is covered in Subsect. C, and
variations on the basic algorithm are discussed in Subsect. D. In the next section we
compare DP-Cluster to the hierarchical clustering algorithm in Matlab’s Statistics
Toolbox (see linkage and cluster), along with random clustering for a baseline.

14.4.1 Finding Distance-Preserving Subgraphs

Finding large distance-preserving proper subgraphs in a graph is not an easy task.
Clearly we cannot test each of the almost 2" induced subgraphs of G to see whether
or not it is distance-preserving. The best heuristic we have found so far is to start
with a single vertex as a cluster C, which is trivially distance-preserving. At each
step, we attempt to add each neighbor not in C to C in turn. If there is some non-
empty set of neighbors such that the union of a single element with C leaves C
distance-preserving, we choose one of them to permanently add to C according to
some criteria, and continue. Once we reach a step where no neighbors can be added
to C and have it remain distance-preserving, we are done.

14.4.2 Almost Distance-Preserving Subgraphs

We define the average distance increase for a subgraph of G as the sum of the
distance increases between the subgraph and G, divided by the number of vertices
in the subgraph. If the subgraph is distance-preserving, then this value is 0. The less
distance-preserving the subgraph is, the higher this number will be.
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14.4.3 The Algorithm

Our algorithm begins with each vertex from G in a separate cluster, all of which
are trivially distance-preserving subgraphs of G. These clusters must be combined
until there are only k clusters left. We pick one of these singleton clusters at random
and use it as the start vertex to find a distance-preserving subgraph as described in
the first part of this section. Random selection is used when there is more than one
choice of vertices to add to the current cluster. Once this has finished, we set these
vertices aside, pick another vertex at random, and repeat the process. Eventually, this
will leave us with G partitioned into some number of distance-preserving clusters.

If we do not stop cluster growth at n/k vertices, we may end up with less
that k distance-preserving clusters. In this case, we would have to break distance-
preserving clusters apart to achieve k clusters. Since this has not happened with an
actual dataset, we do not concern ourselves further with this possibility. Instead, we
end up with a number of distance-preserving clusters larger than k. We then take
each pair of clusters, and calculate how close to distance-preserving each potential
merger is, according to the metric given in the second part of this section. The merge
with the lowest value, i.e., the most distance-preserving, is made. This process is
repeated until only k clusters remain.

Below is pseudocode for the basic versions of DP-Cluster. clusters is the set of
clusters, whose members are sets of vertices. unused is the set of vertices that have
not been placed into a cluster. neighbors is the set available vertices adjacent to
some vertex in the current cluster. usable is the set of available vertices which can
be added to the current cluster, and still have it be distance-preserving. RANDOM
returns a random element from a set. NEIGHBORS returns the set of neighbors for
a given vertex of a graph. RANDOMIZE returns a random permutation of a set.
COUNT returns the number of elements in a set. ALMOST-DP returns how close a
cluster is from being distance-preserving, according to the method described in the
previous subsection.

14.4.4 Variations

Very often our distance-preserving subgraph finding heuristic will detect more than
one neighbor whose addition leaves the resulting subgraph distance-preserving. In
these cases, we must choose between them according to some criteria. Our default
method is to do so randomly. This approach has the benefit that the search may be
terminated after the first suitable vertex is found. The use of other metrics will affect
subgraph generation in different ways. For reasons of efficiency, we prefer simple
local measures that can be precomputed from G, rather than non-hereditary graph
invariants that must be computed during execution. Unfortunately, this prevents us
from using potentially useful graph invariants, such as diameter or girth, as tiebreak
methods. Instead, we use the degree and clustering coefficient (CC) of vertices as



338 R. Nussbaum et al.

Algorithm 1 DP-Cluster
input : A graph G = (V, E), and integer k.
output: A partition of V' into k disjoint clusters.

unused <—V

fori «<— ltondo

v <—RANDOM (unused)

unused <— unused \ {v}

clusters[i] <— {v}

neighbors <—NEIGHBORS(G, v) N unused

while unused do

neighbors <—RANDOMIZE (neighbors)

usable <— {}

foreach v € neighbors do

if IS_DP(G, clusters[i] U v) then
usable <— usable U v

end

end

if usable # {} then

v <—RANDOM ((usable)

unused <— unused \ {v}

clusters|[i] <— clusters[i] U v

neighbors <— neighbors UNEIGHBORS(G, v) N unused

else
| break
end

end
Cl,Cy <— 0
best <— o0
while COUNT (clusters) > k do
foreach i € clusters do
foreach j € clusters\ {i} do
if ALMOST_DP(clusters, i, j) < best then
cp <1
<
best <—ALMOST_DP(clusters, i, j)
end
end
end
clusters <— clusters U {C; U C,} \ {C1, C>}

end

end
return clusters

computed from the original graph. The clustering coefficient of a vertex v is the
number of edges found between the neighbors of v divided by the total possible
number of edges between the neighbors of v [22].

The DP-Cluster algorithm consists of two fairly independent parts, the distance-
preserving subgraph finding heuristic, and the metric used to merge subgraphs. The
first part partitions all vertices into distance-preserving subgraphs, and the second
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merges them as best it can. If we want more work done in the first part, we can relax
the requirement that each subgraph found must be distance-preserving. Instead,
we require that each distance in the subgraph found must be less than or equal
to the corresponding distance in G, plus some constant. We call this constant the
relaxation value. A relaxation value of O (and random tiebreaks) is equivalent to
the basic version of DP-Cluster, i.e., each subgraph found in the first part of the
algorithm must be distance-preserving.

14.4.5 Efficiency

Using distance-preserving subgraphs in any manner requires running an all-pairs
shortest paths algorithm on G. Regardless of how we formulate our clustering
algorithm, our running time must be at least O(n*). However, in generating
distance-preserving subgraphs by adding one vertex at a time, we can use a
single-source shortest paths algorithm in our distance-preserving subgraph finding
heuristic. Variations that increase the size of the distance-preserving subgraphs
found decrease the number of costly merges that must be performed.

14.5 Experimental Evaluation

In this section we compare and contrast DP-Cluster against a few existing hierar-
chical clustering algorithms, as well a random clustering algorithm, using different
social network datasets. In each of our experiments, we test the basic algorithm, and
examine the effects of using different tiebreaking methods and nonzero relaxation
values. For clarity, we will continue to refer to the unmodified DP-Cluster algorithm
as presented in Sect. 14.4.3, with random tiebreaks, and a relaxation value of 0, by
using the adjective basic.

14.5.1 Datasets

The two datasets we use for testing are CiteSeer and Cora. They can be down-
loaded from the University of Maryland website at http://www.cs.umd.edu/~sen/
Ibc-proj/LBC.html. Vertices in these datasets are scientific publications, and edges
represent citations, i.e., if the graph contains an edge (A, B), then either paper A
cites paper B or paper B cites paper A. Although the papers represent authors,
clustering in these datasets is closer to document classification than community
finding in an ordinary social network. CiteSeer, which is composed of general
topic computer science papers, contains 3,312 vertices, 4,536 edges, and 6 class
labels: Agents, Artificial Intelligence, Database, Information Retrieval, Machine
Learning, and Human-Computer Interaction. Cora, which consists entirely of
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Table 14.1 Dataset properties — largest component

Dataset Order Size Diameter Number of classes
CiteSeer 2,110 3,668 28 6
Cora 2,485 5,069 19 7

machine learning papers, contains 2,708 vertices, 5,278 edges, and 7 class labels:
Cased Based, Genetic Algorithms, Neural Networks, Probabilistic Methods, Rein-
forcement Learning, Rule Learning, and Theory. Since we want connected social
networks for testing purposes, we extract the largest component from each dataset.
For the remainder of this paper, we are referring to the largest component whenever
we reference CiteSeer and Cora (Table 14.1).

14.5.2 Experiments

Before attempting to evaluate the full DP-Cluster algorithm, we want to look at
results for each of the intermediate steps. Our first experiment is simply to find a
single distance-preserving subgraph, using the incremental approach described in
Sect. 14.4.1. When multiple vertices can be added to a cluster such that the cluster
is still distance-preserving, we must choose between them in some fashion. We
consider random selection, as well as the degree and clustering coefficient of the
vertex as found in the original graph G. For vertex degree and clustering coefficient,
we run two trials for each metric, one using ascending order, and the other with
descending order. The goal in this experiment is to determine the effect of using
different tiebreak methods and relaxation values on the clusters found, and to help
choose which tiebreak methods to focus on going forward. We run 100 trials for each
combination of dataset and method of breaking ties, and present statistics for the
distance-preserving subgraphs found. We also run 100 trials for each combination
of dataset and method of breaking ties with a relaxation value of 1. For each trial, we
calculate the entropy of the final distance-preserving subgraph using the actual class
labels. If G has k labels, then the entropy of the subgraph is given by the equation

k
mi mi
entropy = ; - log; ot
where m is the order of the subgraph, m; is the number of vertices in the subgraph
with label i, and m; + ... + m; = m. Over all trials, we calculate the average order,
standard deviation (o) of the order, and the average diameter and entropy of the
distance-preserving subgraphs found.

In the second experiment we examine the first part of the DP-Cluster algorithm,
using random tiebreaks, as well as vertex degree and clustering coefficient in
descending order only. That is, we run the algorithm as normal, but discard any
clusters in excess of the number of class labels instead of merging them. As a result,
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each run of the DP-Cluster algorithm gives us a different subset of the vertices in G.
The goal of this experiment is to give us some idea of the applicability of distance-
preserving subgraphs to cluster analysis, without testing our definition of almost
distance-preserving subgraphs as defined in Sect. 14.4.2. Here we run 100 trials on
each dataset for each of the specified tiebreak methods, and calculate the average
order and entropy over all trials. We run additional trials using random tiebreaks
and nonzero relaxation values. In this experiment, the entropy for a given trial
is the weighted average of the individual cluster entropies. For comparison, we
calculate these same values using MATLAB’s hierarchical clustering (HC) with
various metrics, described in more detail below, and random clustering. Random
clustering is exactly that, assigning each vertex to one of the k clusters with equal
probability. As a different subset of vertices from G are used in each trial, the
inputs to the hierarchical clustering and random clustering algorithms are only those
vertices found by DP-Cluster in that particular trial.

The third experiment tests the full DP-Cluster algorithm as presented in
Sect. 14.4.3, again using random tiebreaks, as well as vertex degree and clustering
coefficient in descending order only. For each trial G is fully partitioned into
distance-preserving subgraphs, which are then merged into k almost distance-
preserving subgraphs. For this experiment, we run 20 trials on each dataset for
each tiebreak method, and present the average entropy over all runs. Again, we
run additional trials using random tiebreaks and nonzero relaxation values. We also
consider cluster stability. For each run, we create an n x n incidence matrix, where
entry i, j is 1 if i and j belong to the same cluster, and O if they do not. We then
calculate the average correlation between these matrices for each pair of trials.
Again, we calculate these same values using hierarchical clustering, and random
clustering algorithms.

For evaluating MATLAB’s hierarchical clustering algorithm, we use three
different distance metrics. Single linkage (nearest neighbor) uses the minimum of
all the distances between pairs of vertices in the two clusters. Complete linkage
(furthest neighbor) uses the maximum of all the distances between pairs of vertices
in the two clusters. Average linkage uses the average unweighted distance between
all pairs of vertices in the two clusters. For each of these distance metrics, the pair
of clusters with the minimum distance between clusters are merged at each step.

14.5.3 Results

In this subsection we give the results for our three experiments.

14.5.3.1 Finding a Single Distance-Preserving Subgraph

In Tables 14.2 and 14.3 we see that the average distance-preserving subgraph found
was reasonably large, with considerable variation depending on the tiebreak method
used. Even so, the average order is still much smaller than the average cluster needs
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Table 14.2 Finding a single distance-preserving subgraph — CiteSeer

Tiebreak method Relaxation value Average order o(order) Average diameter Average entropy

Random 0 101 58 14 0.636
Degree, incr. 0 56 35 12 0.664
Degree, decr. 0 176 87 16 0.645
CC, incr. 0 86 51 14 0.657
CC, decr. 0 131 69 15 0.652
Random 1 223 112 17 0.684
Degree, incr. 1 131 87 16 0.666
Degree, decr. 1 416 184 19 0.720
CC, incr. 1 149 85 16 0.684
CC, decr. 1 334 182 19 0.667

Table 14.3 Finding a single distance-preserving subgraph — Cora

Tiebreak method Relaxation value Average order o(order) Average diameter Average entropy

Random 0 110 86 10 0.618
Degree, incr. 0 47 52 8 0.562
Degree, decr. 0 169 109 11 0.634
CC, incr. 0 64 57 9 0.590
CC, decr. 0 150 106 10 0.626
Random 1 188 140 11 0.642
Degree, incr. 1 91 99 11 0.624
Degree, decr. 1 339 166 13 0.707
CC, incr. 1 124 103 11 0.615
CC, decr. 1 298 189 12 0.666

to be, so we do not have to consider the problem of splitting excessively large
distance-preserving subgraphs. The standard deviation (o) of the order is also quite
high, indicating that the heuristic is sensitive to the choice of initial vertex. More
intelligent selection of starting vertices might not only reduce this, but improve the
performance of the DP-Cluster algorithm as well. The average diameter found with
the CiteSeer dataset is much higher than the one found for Cora, which corresponds
to the fact that the original CiteSeer graph had a diameter of 28 compared to a
diameter of 19 for Cora (Table 14.1).

It is clear from our results that the method of tiebreaking used has a significant
effect on the order of the subgraph found. Specifically, using vertex degree and
clustering coefficient in descending order both bias our heuristic towards using
higher degree vertices earlier. This yields much larger subgraphs compared to
selecting a vertex at random, along with an expected increase in diameter and
entropy. We suspect what is happening here is that if higher degree vertices are
not chosen sooner, they are likely never able to be used at all, limiting the pool
of unused neighbors, and ultimately the size of the distance-preserving subgraph
found. Notably, although using these metrics in ascending order produces clusters
smaller than those found using random tiebreaks, entropy does not decrease. With
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Table 14.4 Basic DP-Cluster, discarding excess clusters — Cite-

Seer

Algorithm Average entropy
DP-Cluster 0.656

HC, single 0.815

HC, complete 0.627

HC, average 0.660

Random 0.888

Table 14.5 Basic DP-Cluster, discarding excess clusters — Cora

Algorithm Average entropy
DP-Cluster 0.618
HC, single 0.795
HC, complete 0.589
HC, average 0.637
Random 0.811

the CiteSeer dataset, average entropy actually increases when using vertex degree
and clustering coefficient in ascending order instead of random tiebreaks. Other
methods of breaking ties might produce even larger subgraphs, or subgraphs of
lower entropy. As previously mentioned, many graph invariants we would like
to use are unfeasible for complexity reasons. Given the results here, subsequent
experiments will focus on the use of random tiebreaks, as well as vertex degree and
clustering coefficient in descending order only.

The effect of relaxing the distance-preserving requirement even by 1 is signif-
icant. Average cluster size is slightly less than double in most cases compared to
the corresponding trial with a relaxation value of 0. Results using higher relaxation
values continue the trend towards larger and larger clusters, and are omitted for
brevity.

14.5.3.2 Partial Clustering With DP-Cluster

The basic DP-Cluster algorithm used approximately one quarter of the vertices from
the largest component of the corresponding dataset on average. The hierarchical and
random clustering algorithms used the same subset of vertices found by DP-Cluster
in each trial as inputs, which is why the average order of these clustering algorithms
is the same. We had some concern that the order of successive distance-preserving
subgraphs would decrease rapidly after the first one. This was not observed in
practice, and the average order for these trials was only slightly less than the average
order for the corresponding trials in our first experiment times the number of class
labels for that dataset (Tables 14.4 and 14.5).

The average entropy for all the clusters found by the basic DP-Cluster algorithm,
while not as low as we might desire, did not increase appreciably from the previous
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Fig. 14.2 DP-Cluster variations, discarding excess clusters — CiteSeer

experiment. For the CiteSeer dataset, DP-Cluster resulted in an average cluster order
of 581, and it outperformed two of the three hierarchical clustering algorithms.
With the Cora dataset, DP-Cluster resulted in an average cluster order of 633, and
it outperformed the same two hierarchical clustering algorithms. Since the set of
vertices used here varies from trial to trial, it is meaningless to consider correlation
(Tables 14.4 and 14.5).

As seen in Figs. 14.2 and 14.3, variations in DP-Cluster drastically affect our
results. Here we examine alternate tiebreak methods and nonzero relaxation values,
without comparing each one back to the hierarchical clustering algorithm. In line
with what we saw in the first experiment, the number of vertices used increases
dramatically with each successive relaxation value. As we increase the relaxation
value from O to 4, we go from using a quarter of the vertices in the dataset in each
trial, to using nearly all of them.

The alternate tiebreak methods tested performed somewhat differently than we
anticipated from the results of the first experiment. Using vertex degree resulted
in much larger clusters as expected, and the average entropy of these trials did not
show an improvement over random tiebreaks after taking into account the number of
vertices used. With the clustering coefficient, the average number of vertices used in
all clusters found was not that much higher than using random tiebreaks. This stands
in contrast to the first experiment, where the average subgraph order found using
the clustering coefficient metric was much higher than when choosing randomly. As
with vertex degree, the entropy is again roughly in line with random tiebreaks after
adjusting for the number of vertices used.
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Fig. 14.3 DP-Cluster variations, discarding excess clusters — Cora

14.5.3.3 Full Clustering With DP-Cluster

For the CiteSeer dataset, performance of the hierarchical clustering algorithms range
from somewhat better to much worse than basic DP-Cluster, depending on the
distance metric used to create the hierarchical cluster tree. Unsurprisingly, random
clustering led to much higher average entropies than all other clustering algorithms
(Tables 14.6 and 14.7).

With the Cora dataset, basic DP-Cluster performs better than all but one of
the distance metrics. It is not immediately clear why complete-link hierarchical
clustering, which merges clusters according to the furthest distance between them,
performs so well here. What is certain is that cluster entropy has significantly
increased from the previous experiment. Also of concern is the relatively low
correlation found between trials using DP-Cluster (Table 14.7).

We were less optimistic after the previous experiment that nonzero relaxation val-
ues would improve results using the full DP-Cluster algorithm. Here we see that for
both datasets entropy decreases up to a relaxation value of 2, after which it increases
again (Figs. 14.4 and 14.5). Correlation also increases along with the relaxation
value, although this is probably due to the increase in variance of cluster order.

As with the previous experiment, using alternate tiebreak methods had mixed
performance. Results using vertex degree and the clustering coefficient had
entropies similar to DP-Cluster with a relaxation value of around 2. With both
datasets, results using the clustering coefficient had higher correlations than those
using vertex degree.
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Table 14.6 Basic DP-Cluster, merging excess clusters — CiteSeer

R. Nussbaum et al.

Algorithm Average entropy Average correlation Average clusters
DP-Cluster 0.778 0.264 102
HC, single 0.952 1.000 N/A
HC, complete 0.727 1.000 N/A
HC, average 0.898 1.000 N/A
Random 0.951 0.091 N/A

Table 14.7 Basic DP-Cluster, merging excess clusters — Cora

Algorithm Average entropy Average correlation Average clusters
DP-Cluster 0.783 0.205 181
HC, single 0.937 1.000 N/A
HC, complete 0.748 1.000 N/A
HC, average 0.883 1.000 N/A
Random 0.937 0.077 N/A
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Fig. 14.4 DP-Cluster variations, merging excess clusters — CiteSeer

14.5.4 Discussion

Overall, the results of DP-Cluster compare favorably to hierarchical clustering
methods. The algorithm has some obvious weaknesses, some of which may be
due to the current implementation. Like many incremental algorithms, DP-Cluster
is order dependent. It does find clusters of reasonably low entropy, even after
“leftover” clusters are taken into account. However, complete-link hierarchical
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Fig. 14.5 DP-Cluster variations, merging excess clusters — Cora

clustering outperforms DP-Cluster on the CiteSeer and Cora datasets, although the
gap is smaller with some of the DP-Cluster variations. This outperformance might
disappear on other datasets depending on their structure. Also, DP-Cluster found
clusters of fairly low stability given their low entropy. A better distance-preserving
subgraph finding heuristic should reduce this effect. An algorithm with better time
complexity would allow us to explore larger datasets as well. So far we have only
tested DP-Cluster on datasets of modest size.

In this paper, we treat paper citations as undirected links, rather than directed
arcs. One avenue of exploration would be to treat them as arcs instead. Alternately,
we could investigate social networks in which links indicate a bidirectional relation-
ship, rather than a unidirectional relationship like a citation or following another
profile. An entirely different approach with the paper citation networks would be to
treat authors as links instead of papers.

Our experimental results lead us to make the following conjecture.

Conjecture 1. Almost all graphs are distance-preserving, i.e., an arbitrary graph
on n vertices has at least one distance-preserving subgraph for each order m =
1,...,n.

If true, it underscores the need to develop heuristics for identifying distance-
preserving subgraphs that better reflect actual communities in social networks. An
exhaustive search of all connected graphs on up to 11 vertices provides some support
for our conjecture, as seen in the table below (Table 14.8).
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Table 14.8 A survey of distance-preserving graphs

# connected # connected, Proportion connected,
n graphs non-DP graphs non-DP graphs
5 21 1 0.04762
6 112 1 0.00892
7 853 4 0.00469
8 11,117 19 0.00171
9 261,080 183 0.00070
10 11,716,571 2,474 0.00021
11 1,006,700,565 107,176 0.00011

14.6 Conclusions and Future Work

The performance of the fairly simple DP-Cluster algorithm shows promise for the
use of distance-preserving subgraphs in community finding. Nonetheless, further
exploration is needed to develop a better performing algorithm. Along with finding
better clusters, finding more consistent clusters is an issue. Possibilities here include
improving the heuristic for finding distance-preserving clusters through intelligent
selection of initial vertices, different tiebreak methods, or other variations in the
same vein as our concept of relaxation values. Changing the manner in which the
distance-preserving clusters are merged is also an option. Another approach is to
create an agglomerative distance-preserving based hierarchical algorithm, which
would combine the “finding” and “merging” processes into a single step. Our
previously stated efficiency concerns regarding the use of all-pairs shortest paths
versus single-source shortest path algorithms apply here.
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