
Chapter 11
Efficient Extraction of High-Betweenness
Vertices from Heterogeneous Networks

Wen Haw Chong, Wei Shan Belinda Toh, and Loo Nin Teow

Abstract Centrality measures are crucial in quantifying the roles and positions
of vertices in complex network analysis. An important and popular measure is
betweenness centrality, which is computed based on the number of shortest paths
that vertices fall on. However, betweenness is computationally expensive to derive,
resulting in much research on efficient computation techniques. We note that in
many applications, it is the set of vertices with high betweenness that is of key
interest and that their betweenness rankings rather than the exact values is usually
adequate for analysts to work with. Hence, we have developed a novel algorithm that
efficiently returns the set of vertices with highest betweenness. The convergence
criterion for our algorithm is based on the membership stability of the high-
betweenness set. Through experiments on various artificial and real-world networks,
we show that the algorithm is both efficient and accurate. From the experiments,
we also demonstrated that the algorithm tends to perform better on networks with
heterogeneous betweenness distributions.

11.1 Introduction

In the real world, a variety of networks exist and their statistical, mechanical
and temporal properties are the subject of much research, known broadly as
complex network analysis. Networks of interest include social groups, collaboration
networks, computer networks, food webs, etc.

In complex networks, centrality measures play an important role in quantifying
how vertices and edges are positioned within the network. Popular concepts include
degree centrality, which measures the number of neighbors a vertex has; closeness
centrality, which measures the proximity of a vertex to all other vertices in the
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network; betweenness centrality [1, 9], which is based on the number of shortest
paths that a vertex or edge sits on as an intermediary; and eccentricity centrality,
which measures the distance from a vertex to the vertex furthest from it in the
network.

This paper focuses on betweenness centrality. Amongst the various centrality
concepts, betweenness centrality is well known to be computationally demanding.
Despite recent advances, betweenness computation for large networks remains
expensive. The fastest known algorithm was developed by Brandes [5] and
computes exact betweenness for unweighted graphs in O.mn/ time and weighted
graphs in O.mn C n2 log n/ time, where n is the number of vertices and m is the
number of edges. It is based on computing the Single Source Shortest Path (SSSP)
from every vertex in the network. Partial sums are accumulated over these SSSPs
to derive betweenness values. In the process, closeness and eccentricity can also be
derived. For application on large networks, the algorithm can be easily parallelized
by distributing the SSSP computations amongst multiple processors. Building on
this algorithm, an approximation technique was developed in [6]. This computes
SSSPs from a subset of vertices chosen through some selection scheme. Since
the subset can be chosen to be much smaller than the network size, computation
savings can be achieved at the expense of accuracy. The authors referred to the
selected source vertices as pivots. Henceforth, we shall refer to the approximation
technique in [6] as the pivot method.

In this paper, we specify that instead of computing the exact betweenness for all
vertices in the network, we merely need to extract the k highest ranking vertices,
where k can be any number smaller than n. This is effectively a simpler problem.
In many practical applications, k � n. In addition, many such applications do not
require the actual betweenness values for analysis purposes. Hence complete and
exact derivation expends computational resources to solve a much harder problem
than necessary. Typically, it is the set of vertices with high betweenness that is of
interest. These vertices have various practical purposes, e.g. corresponding to key
nodes or gateways in computer networks. They may also be crucial vertices with a
large impact on average shortest path length in a network upon elimination. In the
case of a social network, high-betweenness vertices may be interpreted as having a
strong middleman role. In designing our algorithm, we walk the line advocated by
Tarjan [18]: “the most efficient algorithms are generally those that compute exactly
the information relevant to the problem situation”. It is rare that vertices with low
betweenness are of interest. In any case, simply selecting vertices with one neighbor,
or whose neighbors induce a clique will already extract many such vertices. In
addition, our algorithm will terminate even though the betweenness rankings of
vertices below the top k may not have converged.

Theoretical error bounds for the convergence of both closeness and between-
ness centralities were derived in [6] based on Hoeffding’s theorem [11] (See
Appendix 2). It has also been shown that the computation of betweenness is more
difficult and unreliable than that of closeness. In their conclusion, the authors in [6]
proposed an approach for extracting k vertices of highest closeness. This was
investigated in [16]. The strategy is to first use the approximation technique to obtain
k0 vertices with highest (estimated) closeness, where k0 > k. k0 is chosen such that it
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is guaranteed with a high probability that the k vertices (of highest exact closeness)
is a subset of the k0 vertices. Then, the exact closeness is computed for each of the
k0 vertices, to extract the final top-k vertices. To our knowledge, the problem of
how to extract the highest ranking vertices in terms of betweenness has not been
explored, nor has any strategy been proposed. Unfortunately, the framework in [16]
is not extensible to extracting high-betweenness vertices due to the different nature
of the metrics. While it is possible to obtain the exact closeness value of a single
vertex via one SSSP computation with it as the root, it is necessary to compute
multiple SSSPs for the betweenness of a single vertex. Another strategy is required
for efficient extraction of high-betweenness vertices.

In Sect. 11.2, we formally describe betweenness centrality and the prior work
that is directly relevant to this paper. We provide the basis for our algorithm design
in Sect. 11.3, followed by a description of the algorithm itself. Section 11.4 presents
our evaluation metrics and the various networks for experimentation. In Sect. 11.5,
we compare our technique in terms of efficiency and accuracy against the exact
algorithm and present the experimental results. In Sect. 11.6, we compare accuracies
against another more recent competitive technique. We conclude in Sect. 11.7.

11.2 Preliminaries

Betweenness centrality is a metric based on the enumeration of shortest paths
between vertex pairs in a network. Let �st denote the number of shortest
paths between vertices s and t , and �st .v/ be the number that pass through the
vertex v. Define the pair wise dependency as the fraction of shortest paths between
s and t that pass through v:

ıst .v/ D �st .v/

�st

; (11.1)

where s ¤ v ¤ t . The betweenness centrality of a vertex v accumulates the pair
wise dependencies for all vertex pairs whose shortest paths pass through v:

BC.v/ D
X

st

ıst .v/ : (11.2)

Before describing the strategy for our algorithm, it is necessary to describe the
workings of the exact algorithm by Brandes [5] and the pivot method [6].

11.2.1 Exact Algorithm

The one-sided dependency of a vertex s on another vertex v is derived by summation
over the appropriate pair wise dependencies:

ıs.v/ D
X

t

ıst .v/ : (11.3)
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The betweennness of v can then be computed as

BC.v/ D
X

s

ıs.v/ : (11.4)

The algorithm is based on the following recursive relation for computing one-sided
dependencies:

ıs.v/ D
X

wWv2Ps.w/

�sv

�sw
.1 C ıs.w// ; (11.5)

where Ps.w/ denotes the set of predecessors of a vertex w on the shortest path
tree with s as the root. Essentially, an SSSP is computed for each vertex in the
network, producing the shortest path tree from that vertex. For a given shortest path
tree with s as the root, a backward pass then traverses through the vertices in order
of non-increasing distance from s. During the traversal, the recursive relation in
(11.5) is used to compute the dependencies of s on all other vertices in the tree. To
compute the betweenness of any vertex, the appropriate dependencies arising from
all SSSPs are summed up as in (11.4). For memory efficiency, a running sum can be
maintained and updated for each vertex during the computations.

11.2.2 Pivot Method

The pivot method is very similar to the exact algorithm. The main difference is that
instead of computing SSSPs for all vertices in the network, it selects a subset of
vertices (pivots) to compute SSSPs and then extrapolates from the contributions of
this smaller set to estimate betweenness values. Various pivot selection schemes
have been tested [6] and it has been observed that random sampling of pivots
consistently performs the best across different kinds of networks.

The efficiency and accuracy of the pivot method depends on the number of pivots
used. Accuracy is largely monotonic with the number of pivots. Using fewer pivots
leads to higher efficiency at the cost of accuracy. When all vertices in the network
are used as pivots, the method is equivalent to the exact algorithm.

11.3 Proposed Algorithm

This section covers the basis for our algorithm design as well as its technical details.

11.3.1 Basis for Design

Through comprehensive experiments on various artificial and real-world net-
works [6], it was empirically shown that the following applies for the pivot
method:
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• Random selection of pivots is superior to more sophisticated selection schemes
and performs consistently well on different kinds of networks;

• The inversion distance, i.e. the number of wrongly ordered pairs, decreases
approximately monotonically with the number of pivots added.

The second point implies that as the number of pivots is increased, the ranking of
each vertex approaches the true rank value. This observation forms the basis for our
algorithm design. Given all the vertices in a network ranked in decreasing order of
betweenness, we are only interested in the subset of k-highest ranked vertices. If a
sufficient number of pivots is used to obtain the ranking, we expect that the member-
ship of this subset would remain fairly consistent even if more pivots were added.

Formally, let Sk be the set of k vertices with highest exact betweenness. Denote
OSk as the corresponding approximate set returned from the pivot method. Clearly, OSk

is cheaper to compute than Sk. If the approximation is good, there is a large overlap
between OSk and Sk . For discussion purpose, we introduce a subscript denoting the
number of pivots such that OSk;r means that the estimated set is returned from the
pivot method with r pivots. If q pivots are chosen in another trial of the pivot
method, where q > r , it can be shown largely that jSk \ OSk;qj > jSk \ OSk;r j.
Intuitively, this means that using a larger number of pivots leads to a more accurate
approximation of Sk . Now consider the case where r is sufficiently large such that
jSk \ OSk;r j D k, i.e. the approximation is perfect. Note that r may be less than or
equal to the network size n. Obviously, r � n is desired and the smaller r is, the
greater the computational savings. Given r < n, a larger set of pivots of size q can be
selected such that jSk \ OSk;qj D jSk \ OSk;r j D k, i.e. OSk;q D OSk;r D Sk . Although we
are not able to compute jSk \ OSk;qj and jSk \ OSk;r j since we do not have the ground
truth Sk , we can directly and easily compare OSk;q and OSk;r . This naturally leads
to the design of an iterative algorithm where pivots are incrementally added to re-
estimate OSk, and convergence is formulated based on its membership stability across
iterations. In accordance with the first observation, we use the random selection
scheme for pivots. Next we describe the algorithm in detail.

11.3.2 Detailed Description

Our algorithm is essentially a modification of the pivot method. Instead of speci-
fying an overall number of pivots at initialization, pivots are added incrementally
in batches. At each iteration, we compute the SSSPs for the new batch of pivots,
update all vertices’ approximate betweenness values and extract the highest ranked
set. Batches are made unique such that previously added pivots will not be re-added.
Also note that normalization of the betweenness values is optional and does not
affect the ranking. Let OSk.t/ be the set of k highest ranked vertices extracted at
iteration t . We compare it with the corresponding set extracted during previous
iterations. If the membership of the sets remains largely stable according to some
predefined criteria, the algorithm terminates.
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Fig. 11.1 Proposed algorithm

The pseudo code for the algorithm is shown in Fig. 11.1. The final set of k highest
betweenness vertices is saved in OSk. The parameter max_pivots specifies the
maximum number of pivots to be used in the event that convergence does not occur.
It can be set to less than or equal to the network size. Lines 1–3 correspond to
initialization. In line 4, the pivot_set is created by randomly ordering all vertices
in the network such that consecutive batches of pivots can be easily added in itera-
tions. This is in accordance with the random pivot selection scheme. Line 5 starts the
algorithm iterations. At the start of each iteration t , we take a new batch of �p pivots
frompivot_set (lines 6–7). The value of �p determines the amount of additional
computations that is done in an iteration. A large value means that the algorithm
takes larger steps across iterations, but achieves coarser resolution. We have
arbitrarily set �p to 10 in our experiments. Following the method based on (11.5),
SSSPs are computed over the newly added pivots to obtain the latest betweenness
approximations (line 8). The current set of k highest ranking vertices OSk.t/ is then
extracted (line 9). This can be done via sorting or by any efficient order statistics
algorithm. In lines 10–17, we evaluate the convergence criteria. This is based on
the membership stability of OSk.t/ across consecutive iterations. If the membership
of this set remains unchanged over some number of consecutive iterations (we
have used three in our experiments), we deem convergence to have occurred and
terminate the algorithm. The speedup of the algorithm is directly proportional to
the number of pivots used. The running time is O.mp/, where p D P

t �p, i.e.
the total number of pivots added over all iterations. We also point out that the
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convergence criteria can be tweaked in many ways to achieve a tradeoff between
efficiency and accuracy. A much stricter criterion would be to terminate only if the
absolute order of vertex rankings in the sets are identical over multiple iterations.
Another adjustment would be to increase the number of iterations for which the
members of OSk.t/ must remain unchanged. In our experiments, we have relaxed
the convergence criterion somewhat to achieve greater computational efficiency.
This has proven adequate to achieve good accuracy. One can think of special cases
where the convergence criterion will not be met. For example, consider a network
of vertices connected in a ring. All vertices have the same betweenness values and
the membership of OSk.t/ be unstable across iterations. However such contrived
scenarios are generally rare in real networks. We deem it fruitful to investigate the
performance of our algorithm on popular network models and real-world data.

11.4 Experiments

We describe our experiments, starting with the evaluation metrics and networks
used, followed by an analysis of the results.

11.4.1 Evaluation Metrics

We term vertices in Sk as relevant vertices. Our estimated set OSk is also of size k.
Accuracy is evaluated using precision, which measures the proportion of relevant
vertices returned in OSk :

prec D j OSk \ Skj
k

: (11.6)

If all vertices in OSk correspond exactly to those in Sk, precision is 1. Where
precision is less than 1, OSk contains irrelevant vertices. In such a case, it is desired
that such vertices are ranked low in OSk. We evaluate this using average precision,
which is commonly used in document retrieval tasks and emphasizes returning
relevant documents earlier. In our context, vertices from Sk are relevant and should
be returned earlier, i.e. ranked higher. Average precision can be computed as

ave_prec D
kX

iD1

prec.i/ � �rec.i/ ; (11.7)

where prec.i/ is the precision at a cut-off rank position i of OSk, i.e. prec.i/ D
j OSi \ Skj=i . �rec.i/ is the change in recall from position i � 1 to i whereby
recall measures the proportion of relevant vertices included in the result set, i.e.
rec.i/ D j OSi \ Skj=k. Note that average precision is upper bounded by precision at
position k.
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Using the two measures above we only evaluate the extent that relevant vertices
are included in OSk and if they are ranked above any irrelevant vertices that are also
included. We do not directly compare the rankings of OSk with Sk using any rank
correlation metrics, since OSk is not a closed list guaranteed to have the same set of
members as Sk . The inversion distance is also not very meaningful since pairs of
vertices can be ordered correctly in OSk even though one or both vertices in each pair
may be irrelevant.

11.4.2 Heterogeneity Measure

We have implemented the entropy-based measure to quantify the heterogeneity of
the actual betweenness distributions for our various tested networks. The motivation
here is to check for any correlation between the performance of the algorithm
and the heterogeneity of the underlying betweenness distribution. The entropy-
based measure has previously been advocated by Wu et al. [20] to quantify the
heterogeneity of degree distributions. To derive the measure for betweenness
distribution, first construct a histogram of betweenness values. The histogram bins
are uniform in width and cover the entire range of betweenness values from the
distribution being evaluated. Let bi be the probability that a randomly chosen vertex
will have a betweenness value that is covered by the i th bin. The entropy-based
measure H is then defined as

H D �
BX

iD1

bi ln bi : (11.8)

Small H values are indicative of heterogeneous betweenness distribution. The
maximum value of H occurs when bi D 1=B for all bins, which corresponds to
a uniform distribution. In our experiments, we have used 1,000 bins across all
networks for computing H .

11.4.3 Networks

We apply our algorithm on various artificial and real-world networks. For evalua-
tion, it is necessary to compute exact betweenness and derive Sk for each network.
This limits our experiments to networks of small to medium sizes. For all networks,
we process them as undirected and unweighted networks. Loops and multiple edges
between vertex pairs are excluded.

We examine three popular types of artificial networks. Each network generated is
specified to have exactly 1,000 vertices and roughly 10,000 edges. The actual edge
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count depends on the generation scheme specific to each network type. Efficient
generation schemes are described in [3]. The network types are:

Random Such networks [10] are defined by the edge probability � , where 0 <

� < 1. For each pair of vertices, an edge is independently formed with probability
� . In our experiments, we use � D 0:02 such that each random network has around
10,000 edges.

Small world (SW) This model was introduced by Watts and Strogatz [19]. The
model starts with an initial ring of n vertices, with each vertex connected to its
nearest 2d neighbors. Depending on the generation variant used, shortcut edges are
then obtained by randomly and independently rewiring existing edges or by adding
new random edges [15]. We use the latter. Five thousand random edges are added
to the initial ring in which each vertex is connected to its nearest ten neighbors, i.e.
d D 5.

Preferential Attachment (Pref. A.) Barabási and Albert [2] formulated a model
for generating networks with heavy tailed degree distributions. In this model,
vertices are added one at a time. The newly added vertex connects a fixed number
of edges to existing vertices with probability proportional to the degree of the latter.
We implement the model of Bollobás et al. [4].

In addition to artificial networks, we select several real-world networks of
various origins and sizes for our experiments. We feel that this is a good repre-
sentation of the complex networks popularly analyzed in the literature. The selected
networks are:

Protein This is the protein interaction network for yeast. The data originates from
Jeong et al. [12]. Each vertex corresponds to a protein while the edges represent
protein-protein interactions.

Enron Enron emails [17] are used to construct a network of email users. Email
users correspond to vertices. Two users are linked if they have communicated by
email at least once.

Ticker Following the September 11th terrorist attacks, Corman et al. [8] compiled
and transformed Reuters ticker news articles into a network text representation.
Words appearing in noun phrases are represented as vertices. Words appearing
together in the same noun phrase or consecutively within a sentence are linked via
edges.

Internet Autonomous Systems (AS) An AS is effectively a set of routers under a
single administration. Routing in a network of ASes is coordinated by the Border
Gateway Protocol. There are several types of ASes, e.g. ISPs, end-users; and
relationships between ASes, e.g. provider-customer. AS networks can be obtained
from [7]. We have used a sample network from 1 January 2007.

DBLP DBLP [13] is an on-line database of computer science publications with the
authorship and publication details of hundreds of thousands of articles. The records
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Table 11.1 Vertex and edge
counts for the selected
real-world networks

Protein Enron Ticker AS DBLP

Vertices 1,458 5,312 13,308 24,013 75,207
Edges 1,993 15,578 148,034 49,332 202,291

span many years, with information in the recent years being more complete. We
have constructed a collaboration network for the year 2006. Authors are represented
as vertices while edges are formed between all authors who have co-authored
publication(s). For each real world network, we extract the largest connected com-
ponent to work on. This ensures that all pivots contribute properly to betweenness
computation and that none fall in isolated small components. Generally, when
processing a network with multiple components, the proper procedure is to extract
the components and process each individually. Table 11.1 shows the number of
vertices and edges corresponding to the largest component of each network.

11.5 Results

11.5.1 Artificial Networks

Two scenarios are considered: extraction of the 10 and 20 highest ranked vertices
in terms of betweenness. We specify max_pivots to be 1,000 and add pivots in
batches of 10. For each scenario in each artificial network type, we conduct 20 trials
whereby each trial consists of a realization of the network type followed by the
application of the algorithm. Results are averaged over the 20 trials to obtain the
mean precision (MP) and mean average precision (MAP), shown in Table 11.2.

The best performance is observed on the preferential attachment networks, where
the MP is higher than 0.9 for both scenarios with almost equally high MAP. It is
remarkable that these results are achieved using relatively few pivots. For example,
to extract the 10 highest ranked vertices of preferential attachment networks, the
algorithm requires just an average of 11 % of the vertices as pivots. This is well
below the network size of 1,000 and implies substantial savings in computation
time.

The algorithm performs less impressively on the small world and random
networks, although accuracy and computational savings are still reasonable. Perfor-
mance on these two types of networks is very similar. We note that as k is increased
from 10 to 20, MP and MAP improvement is in the range of 10–20 %. However, this
is at a cost of using many more pivots. This can be explained as follows: with larger
k for these two network types, it becomes more difficult for the membership of OSk to
stabilize early. Convergence is only achieved at larger iterations when more pivots
have been added. The larger number of pivots in turn results in higher accuracy.
Compared to the preferential attachment networks, both network types require many
more pivots for the algorithm to converge: more than three times as many when
k D 10 and more than four times when k D 20.
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Table 11.2 Results for each scenario (k D 10; 20) in each artificial network type,
with standard deviations enclosed in brackets. The best results for each k are in
bold

k Network type % of vertices used as pivots MP MAP

10 Random 38.9 (17.8) 0.71 (0.13) 0.64 (0.16)
SW 38.4 (15.9) 0.68 (0.16) 0.62 (0.19)
Pref. A. 11.0 (0.041) 0.91 (0.07) 0.91 (0.07)

20 Random 65.5 (19.9) 0.81 (0.12) 0.79 (0.14)
SW 69.7 (20.5) 0.85 (0.07) 0.82 (0.09)
Pref. A. 16.1 (0.069) 0.92 (0.04) 0.91 (0.05)

For further analysis, we investigate how the betweenness distributions of the net-
works affect the difficulty of the extraction task. Figure 11.2 shows the histograms
of true betweenness values from three sample networks, one from each network
type. For numerical comparison of heterogeneity, the average H values of the true
betweenness distribution over each network type are shown in Table 11.3.

For better visual comparison, the top 20 betweenness values for the preferential
attachment network have been excluded in its histogram. The distributions of the
random and small world networks appear fairly similar and Gaussian-like, while
that of the preferential attachment network is heavily skewed with a tiny portion
of vertices taking on very high betweenness values. Compared to the first two
networks, the range of betweenness values is much more extreme (by comparing
the horizontal scales). Analogous to the fact that extreme outliers are more easily
detected in outlier detection problems, the extremity of the high-betweenness
vertices results in them being extracted more readily by the algorithm. We can
also arrive at the same insight by considering the earlier example of a network
comprising of a ring of vertices. In such a network, all vertices have the same
betweenness, i.e. a uniform betweenness distribution. It is clear that even with
the maximum number of iterations of the algorithm, i.e. using all vertices in the
network as pivots, higher betweenness vertices will not be surfaced since there are
no extremities.

Table 11.3 provides a numerical quantification for Fig. 11.2. H values are signif-
icantly smaller for preferential attachment networks, indicating their betweenness
distributions are much more heterogeneous than random and small world networks.
The current results are intuitive. A heterogeneous distribution may have more
extreme values, which leads to greater ease of extraction. However note that H is
computed over the entire distribution, rather than just over the large betweenness
values of interest. Hence extremity and heterogeneity does not have a perfect
correlation.

Finally, we have ruled out the power-law distribution for the betweenness values
of the preferential attachment network after plotting the cumulative distribution
function on doubly logarithmic axes. The distribution type is left for future
investigation.
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Table 11.3 Entropy-based heterogeneity values for
each artificial network type (averaged over 20 trials)
with standard deviations enclosed in brackets

Network type H

Random 5.91 (0.067)
SW 5.93 (0.066)
Pref. A. 2.12 (0.13)

Table 11.4 Results for each scenario (k D 10; 20) in each real-world
network, with standard deviations enclosed in brackets. The best results for
each k are in bold

k Network % of vertices used as pivots MP MAP

10 Protein 6.79 (2.26) 0.96 (0.07) 0.96 (0.07)
Enron 1.62 (0.45) 0.98 (0.04) 0.97 (0.05)
Ticker 1.32 (0.34) 0.81 (0.10) 0.78 (0.13)
AS 0.52 (0.32) 0.90 (0.05) 0.90 (0.05)
DBLP 0.23 (7.31E � 4) 0.73 (0.12) 0.69 (0.14)

20 Protein 15.43 (4.73) 0.90 (0.07) 0.90 (0.07)
Enron 2.56 (0.77) 0.92 (0.03) 0.92 (0.04)
Ticker 1.71 (0.59) 0.86 (0.05) 0.85 (0.06)
AS 0.67 (0.20) 0.92 (0.03) 0.91 (0.04)
DBLP 0.34 (9.57e � 4) 0.83 (0.07) 0.80 (0.09)

11.5.2 Real-World Networks

We consider the same scenarios of extracting the top 10 and 20 vertices. For each
network, ten trials of the algorithm are conducted whereby trials differ due to
the random selection of pivots. Algorithm parameters are identical to those used
for the artificial networks. Results are averaged over the ten trials and shown in
Table 11.4. Excellent accuracies are obtained, with both MP and MAP above 0.8
for all network scenarios except the co-authorships network with k D 10. However,
in this scenario the mean percentage of vertices used as pivots is extremely low
compared to the network size, i.e. 0.23 %. More pivots can certainly be used to
improve accuracy (this can be done by adjusting the convergence criterion). To
illustrate this, we conduct separate experiments and plot the MP and MAP per
iteration as the number of pivots is increased to 500. Figure 11.3 shows the plots
for the DBLP co-authorships and Ticker news networks. All other networks exhibit
fairly similar plots. The MP and MAP scores improve approximately monotonically
as the number of pivots is increased. The approximate monotonicity is reflected
in the kinks of the curves. The rate of improvement slows for larger number of
pivots. At 500 pivots (0.66 % of network size), MP of 0.86 is achieved for the co-
authorships network.
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Fig. 11.3 MP/MAP of two real-world networks with increasing pivots, where k D 10. Each point
is the respective MP/MAP score over ten trials. Networks: (a) DBLP and (b) Ticker

Returning to Table 11.4, it can be seen that for the protein interaction, Enron
email and internet AS networks, the algorithm achieves MP and MAP scores of 0.9
and above. Across the board, these impressive results have been achieved at very
low pivot counts relative to network size.

Similar to the case for the artificial networks, the number of pivots required for
convergence increases at higher k, but the increase is generally less than linear,
except for the protein interaction network. Further research can be conducted to
explore the relationship between k and the number of pivots required for networks
with different characteristics.
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Table 11.5 Entropy-based
heterogeneity values for each
real-world network

Network type H

Protein 2.57
Enron 1.26
Ticker 0.86
AS 0.38
DBLP 1.20

Table 11.5 indicates that the real world networks have various degrees of
heterogeneity in their true betweenness distributions, although all H values are
fairly low. Comparing Tables 11.4 and 11.5, there does not seem to be any
obvious correlation between accuracies, efficiencies and heterogeneity measures.
For example, while the protein network appears to have the least heterogeneous
distribution, the algorithm still achieves good accuracies on it. However we note
that the proportion of vertices required as pivots is the largest amongst all networks,
with more than four times the proportion as the nearest competitor, the Enron
network. Hence we are apt to conclude that the relative lack of heterogeneity is
being compensated for with the use of more vertices.

11.6 Further Comparison

In previous experiments on each network, we have tabulated the percentage of
vertices used as pivots by our algorithm. Implicitly, comparisons of both efficiency
and accuracy are being made with the exact algorithm (akin to a baseline) described
in Sect. 11.2.1. The baseline uses all vertices as pivots and achieves perfect
accuracies at a high cost. For example, extracting the top 10 vertices from the
Enron network requires just 1.62 % of vertices as pivots, and implies an efficiency
improvement of more than 98 % over the baseline. This comes at a trade off of a
2 % drop in MP.

In this section, we conduct further experiments with real-world networks for
explicit comparisons against a recent competitive method [14], which we term the
sub-graph technique. This samples a large network greedily such that the extracted
sub-graph contains the set of nodes with high betweennness and other centralities.
To extract the high betweenness nodes, the exact betweenness computation algo-
rithm is then applied on the sub-graph.

Denote ng as the number of vertices and mg as the number of edges in the sub-
graph. For undirected networks, extracting Sk with the sub-graph technique then
has a computational complexity of O.g C ngmg/ where the first term g represents
the cost of sub-graph construction. Larger sub-graphs have higher probabilities of
containing Sk and hence higher accuracies.

In this experiment, we compare the extraction accuracies given the same
computation cost for our proposed and the sub-graph techniques. This is done by
fixing the sub-graph size for each real world network such that the computational
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Table 11.6 Average
sub-graph sizes used

k Network ng mg

10 Protein 403.1 (0.74) 489.9 (0.74)
Enron 579 (0) 2,341.9 (2.85)
Ticker 838 (0) 31,305.7 (27.77)
AS 1,152 (0) 5,550.6 (0.7)
DBLP 5,114 (0) 7,074.8 (3.71)

20 Protein 618.2 (0.42) 728.4 (1.26)
Enron 780 (0) 2,719.5 (0.97)
Ticker 998 (0) 33,993.4 (10.94)
AS 1,344 (0) 6,077.7 (0.48)
DBLP 6,091 (0) 8,510 (3.33)

Fig. 11.4 Mean Precision
(MP) over ten trials of our
proposed and the sub-graph
techniques given equal
computation costs, for
(a) k D 10 and (b) k D 20

cost equals that incurred by our algorithm in Sect. 11.5.2, i.e. O.ngmg/ D O.mp/.
We have ignored O.g/ which is small and hence given a slight advantage to the
sub-graph technique. The average dimensions of the sub-graphs used are shown
in Table 11.6 in Appendix 2. Figure 11.4 compares the mean precision over ten
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Table 11.7 Detailed
accuracy results for the
sub-graph technique

k Network MP MAP

10 Protein 0.3 (0) 0.3 (0)
Enron 0.9 (0) 0.9 (0)
Ticker 0.7 (0) 0.68 (2.3E � 3)
AS 0.8 (0) 0.78 (0)
DBLP 0.55 (0.05) 0.53 (0.03)

20 Protein 0.57 (0.05) 0.4 (0.04)
Enron 0.55 (0) 0.4 (2.6E � 3)
Ticker 0.85 (0) 0.79 (2.8E � 3)
AS 0.75 (0) 0.74 (0)
DBLP 0.7 (0) 0.58 (6.7E � 3)

trials for both techniques on each real world network. Detailed numerical results are
shown in Table 11.7 in Appendix 2.

Figure 11.4 shows that our proposed technique consistently outperforms the sub-
graph technique for each real-world network. We are apt to conclude that given the
same computation cost, the former extracts Sk with higher precision. In particular,
the difference in MP is largest for the protein network. For k D 10 on this network,
the sub-graph technique performs poorly. Performance may have been impacted
by the fact that the protein network is a much less heterogeneous network, as
compared with the other networks.

Lastly, in terms of inclusion of high betweenness vertices, the sub-graph
technique has been shown previously [14] to outperform sampling schemes based
on depth-first search, breadth-first search and random walk. Hence by extension, our
proposed technique outperforms these other techniques as well in terms of accuracy.

11.7 Conclusion

Betweenness computation is a notoriously expensive problem. Prior to the current
work, it was not clear how the highest betweenness vertices of complex networks
could be extracted accurately and efficiently in a systematic manner. Much work
in the literature has focused on the efficient computation of betweenness values for
vertices.

In this paper, we have developed a novel algorithm to accomplish the mentioned
extraction task, using well known observations of the pivot method. The algorithm
performs with excellent results on preferential attachment networks and various
real-world networks. It performs less well, but still achieves reasonable results, on
random and small world networks.

At the next stage, it is useful to investigate in detail the relationship between
precision, number of pivots and the convergence criterion. The objective will be to
provide hints to the potential user about the expected runtime and pivots required to
obtain some required level of precision. This will enhance the utility of the algorithm
in real applications.
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Appendix 1: Hoeffding’s Theorem

For independently identically distributed random variables X1; : : : Xk , where 0 �
Xi � M for i D 1 : : : k, and an arbitrary � � 0, the following probability bound
applies:

Pr
�ˇ̌ NX � E

� NX�ˇ̌ � �
� � exp

 
�2k

�
�

M

�2
!

; (11.9)

where NX D .X1 C : : : C Xk/=k and E
� NX� is the expected value of NX .

Appendix 2: Detailed Results for Sect. 12.6

Table 11.6 shows the average number of vertices and edges (over ten trials)
contained in the sampled sub-graph for each real-world network. Applying the exact
algorithm on the sub-graph will incur a computation cost roughly equivalent to
that incurred by our algorithm in Table 11.4. Standard deviations are enclosed in
brackets. For each network, the required sub-graph dimensions increase with k as is
intuitively expected.

Table 11.7 displays detailed MP and MAP results for the sub-graph technique.
For each real-world network, ten trials are conducted. Standard deviations are
enclosed in brackets.
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