
Chapter 1
EgoClustering: Overlapping Community
Detection via Merged Friendship-Groups

Bradley S. Rees and Keith B. Gallagher

Abstract There has been considerable interest in identifying communities within
large collections of social networking data. Existing algorithms will classify an actor
(node) into a single group, ignoring the fact that in real-world situations people
tend to belong concurrently to multiple (overlapping) groups. Our work focuses on
the ability to find overlapping communities. We use egonets to form friendship-
groups. A friendship-group is a localized community as seen from an individual’s
perspective that allows an actor to belong to multiple communities. Our algorithm
finds overlapping communities and identifies key members that bind communities
together. Additionally, we will highlight the parallel feature of the algorithm as a
means of improving runtime performance, and the ability of the algorithm to run
within a database and not be constrained by system memory.

1.1 Introduction

An escalation in the number of Community Detection algorithms [2,9,11–14,22,24,
26, 34–36, 38, 40, 45, 46] has occurred in recent years. The focus of the algorithms
shifted away from the classical clustering principles of grouping nodes based upon
some type of shared attribute [20,36], to one where the relationships and interactions
between individuals are emphasized. The shift has caused algorithms to view the
data as a graph and focus on exploiting (detecting) the “small-world effect” [44]
found in social networks – the phenomena that a small path length separates any
two randomly selected nodes – and on detecting the clustering property of social
networks in which the density of the edges is higher within the group than between
the groups [2, 13, 14, 22, 24, 26, 34–36, 38, 40, 45].
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Moody and White [33] reasoned that communities are held together by the
presence of multiple independent paths between members. Extrapolating from the
goal of discovering clusters, where internal edge density is maximized, it follows
that the identification of cliques [15, 26, 38] {k-cliques, k-clans, or k-cores, where
k is the number of nodes comprising the group} would be a viable approach;
the density is maximal within those structures. However, given that a five-clique,
for example, contains a number of overlapping four-cliques, each of which is a
community in its own right [15], presents the question of whether the algorithm
is really revealing communities or just doing pattern matching.

Other approaches have focused on centrality [17] to identify key nodes or
edges, and follow a hierarchical clustering approach to recursively extract clusters
[13, 22, 26]. While centrality is a powerful and useful idea for identifying key
(central) actors in a network, many of the centrality approaches require that the
centrality measurement be recalculated after each graph edit, causing the algorithms
to be highly inefficient [13, 35, 36].

In this paper, which is an expanded version of the one we presented at ASONAM
2010 [41], we present a radically different approach to group detection that finds
communities based on the collective viewpoint of individuals. The notion postulated
is that each node in the network knows, by way of its egonet [16, 18], who
is in its Friendship-Groups. We use the term friendship-group to represent the
small clusters, extracted from egonets, containing the central node and communal
neighbors. Therefore, by calculating the aggregation of each individual’s friendship-
groups, we find overlapping communities, in a process we term EgoClustering.
Additionally, the algorithm is designed to be highly parallelizable as a means
of improving runtime, and able to operate within a database and therefore not
constrained by system memory.

The contributions of this paper are:

1. A precise mathematical formulation of a Friendship-Group
2. A full fledged implementation of the EgoClustering algorithm
3. An algorithm producing communities with maximal size by allowing for overlap
4. A more intuitive approach to community detection
5. An algorithm that can be run on disk-based data
6. An Algorithm that can be easily parallelized.

1.1.1 Terminology

Social Network Analysis derives from the social sciences with its own taxonomy
and argot, while graph theory derives from mathematics with a different taxonomy.
In graph theory [6], the terms vertex and edge are used to describe a graph, while
social networking [10, 43] uses node or actor and edge, link, or arc to describe a
graph. For the purpose of this paper, the terms are used interchangeably, with a
slight preference toward nodes and edges.
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A graph is defined as G D fV; Eg where V is a set of vertices (nodes) and E is
a set of edges, represented by unordered pairs of vertices, called the start node and
end node. The edge set defines connections between pairs of vertices. An optional
weighting can be assigned to the pair. If the pairs are ordered, the graph is directed.
A path is an ordered sequence of edges in the graph where the end node of an edge
is the start node of the next in the sequence. Any two nodes on a path are connected.
The shortest path between to nodes is one with the least number of edges. If there is
no path between two nodes, they are disconnected.

The neighbors of a vertex, v, is defined as the set of vertexes connected by way
of an edge to vertex v, or N.v/ D fU g where v 2 V and 8u 2 U 9 edge.v; u/ 2 E.
The degree of a vertex, ı.v/, is the number of edges incident to that vertex. In the
case where the graph contains no loops (edges that have the same starting and ending
vertex) the degree of a vertex is also equal to the number of neighbors, ı.v/ D jN.v/j.

The density of a graph, or subgraph, is the measure of the number of edges in
the graph, over the maximum number of possible edges. A value of 1 indicates that
all possible edges are present, while a value of 0 indicates the absence of any edges.
The most edges a node can have is .n � 1/; the maximum number of edges possible
in an undirected graph is n.n�1/

2
. Density can then be defined as: d.n/ D 2m

n.n�1/
,

where n is the number of nodes and m is the number of edges. A sparse graph is one
where the number of edges is close to the number of nodes, and a dense graph is
one where the density measurement approaches, or is equal to, 1. There is no agreed
upon threshold between a sparse graph and a dense graph.

Centrality [17] is a measure of how important, or central, a node is in relation to
the whole graph. The betweenness centrality of a node, n, is number of paths that
contain n in the all-pairs-shortest-path set of the graph G. Betweenness centrality
can also be obtained for edges [36].

The term egonet [10, 16, 18] derives from egocentric network. An egonet is an
induced subgraph consisting of a central node, (the ego-node), its neighbors, and all
edges among the neighbors. The individual’s viewpoint reduces the network under
consideration to just those vertices adjacent to the central “ego” node and any edges
between those nodes.

Given a graph G, the egonet on a node, n, is:
ego(n) D the subgraph H of G where

V.H/ D fv; N.v/g
E.H/ D

8.n1; n2/ 2 V.H/ if
9 e.n1; n2/ 2 E.G/ then
9 e.n1; n2/ 2 E.H/

A dyad is two nodes joined by an edge. A triad is three nodes connected by a
minimum of two edges and a maximum of three edges.

All graphs in this work are considered to be “sparse”, unweighted, undirected,
and containing no loops. For this work, we define sparse as being graphs with
density less than 0.4.
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1.2 Related Work

One of the more prevalent algorithms comes from work by Girvin and New-
man [22,36] (GN). The GN algorithm follows a divisive hierarchical method, which
iteratively removes edges with the highest edge-betweenness centrality score. This
is based on the principle that between community edges have higher centrality than
within community edges, as shown in Fig. 1.1.

The GN algorithm recognized that the centrality score must be recalculated after
each edge removal. However, the recalculating of centrality causes the algorithm
to have high computational demands, running in O.n3/ to O.n4/ time on sparse
graphs. Newman addressed the performance factor in a subsequent paper [35] by
developing an agglomerative method that reduced runtime to O.n2/.

Hierarchical clustering approaches, divisive or agglomerative, present some
problems. As Newman points out [35] “. . . the GN community structure algorithm
always produces some division of vertices into communities, regardless of whether
the network has any natural such divisions.” Moreover, the “fast-Newman” [35]
algorithm suffers from an NP-complete subproblem [46].

The notion of using some form of centrality as the means for determining edge
removal was extended by Hwang et al. [34], by the concept of Bridging Centrality.
A bridge, in graph theory terms, is an edge whose removal will break the graph
into two disconnected subgraphs. Hwang et al. defined Bridging Centrality as the
ranked product of betweenness centrality and a bridging coefficient. Informally, the
bridging coefficient is the probability of having common neighbors.

Agglomerative methods start with one node per cluster and iteratively joins clus-
ters; divisive methods start with one cluster and iteratively divides. The iterations
of both processes can be represented as a dendrogram. Selecting different stopping
points in those processes will produce different numbers of communities [34, 36].
The challenge is that the decision of where to stop should to be done a priori. The
following illustration, Fig. 1.2, shows a dendrogram with three possible cut points
(A, B, and C), producing two, four, or six possible clusters, each of which does not
necessarily equate to a community [40]. Modularity (a probabilistic method) and
density have both been used as means of determining the stopping point [26, 36].

Modularity was first introduced by Newman and Girvan [36] as a means of
determining when to stop processing within their divisive algorithm. Since then,
modularity has become a widely studied community quality measure [7, 8, 37, 42]
(non-exhaustive list). More recently, Brandes et. al. [5] published a critique of
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Fig. 1.2 Dendrogram with
three possible cuts

modularity and illustrated how finding the optimal modularity value is an NP-
complete problem. Modularity can be described as the notion that communities
do not occur by random change. The Modularity, denoted Q, is the measure of a
cluster against the same cluster in a null (or random) graph. A greater than random
probability indicates a good cluster.

These approaches suffer the additional problem that nodes are forced to exist
only in a single community. Real-world networks are not so nicely constrained, and
contain realistic amounts of overlap between communities [9, 33, 38]. Each person
(node) could have a community for family, friends, work, and interest, for example,
and community detection algorithms must allow for, and detect, overlapping groups.
Forcing a node into a single community and not allowing for overlap could prevent
the detection of the true underlying community structures [9, 30, 38].

A number of solutions for finding overlapping communities have been devel-
oped [2, 9, 13, 14, 24, 38]. Gregory [24], for example, modified the GN algorithm to
highlight overlapping communities by splitting nodes, thus permitting a node to be
represented in the graph multiple times, and allowing each instance of the node to
clustered into a different community. While the modification does find overlapping
communities, it also degrades the algorithm’s performance.

Local clustering has been explored in a number of algorithms [1, 8, 30]. This
technique, which builds communities independently, does not remove nodes from
the graph for subsequent iterations. Overlapping communities can be found using
local clustering. Baumes et al. [2, 3] present a unique two-step approach to finding
overlapping communities. The first part of the algorithm is called Rank Removal,
or RaRe, which iteratively removes high ranked nodes, thus breaking the network
into disconnected clusters. Baumes et al. discuss the use of PageRank and high
degree nodes (degree-centrality) as a means of finding important nodes, however
it would seem logical to expand that process to leverage any of the previously
discussed community detection approaches. The second step is the truly unique
portion of their algorithm, and involves adding nodes that were not part of the
cluster and evaluating whether the clusters density increased. This step considers
all neighboring nodes, rather than all nodes, as a means of improving performance.
Additionally, it is this step that permits the assumption that nodes belong to multiple
communities and therefore overlap.

The notion of local-based community construction was also used by Lanci-
chinetti et al. [30] in what they termed as finding the “natural community” of a node.
Lancichinetti’s algorithm works by randomly selecting a node and iteratively adding
neighboring nodes, checking for an increase in “fitness.” Fitness is roughly similar
to modularity [35] or Radicchi’s definition of community [40], and is defined as the
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measure of edges within a community over the sum of edges within and leaving the

community: fG D kG
in

.kG
inCkG

out /˛
.

The factor, ˛, is used to control, or limit, community size. However, as
Lancichinetti points out, the best results are obtained where ˛ D 1. The values of kin
and kout are the degree of edges within the community and leaving the community
respectively. Since each community is built independently, and based on the full
graph, overlap between the communities can occur.

The notion of a clique (a subgraph with maximal density) being synonymous
with a community is not new, and approaches for finding cliques originated as early
as the late 1940s [15]. Palla et al. [38] extended the theory of cliques as communities
by introducing the definition that a community, specifically a k-clique-community,
is a union of all k-cliques that can be reached via adjacent k-cliques. The process
works by rolling, or percolating, a k-clique over the network to find other k-cliques
that share k � 1 nodes. The percolating [11] is performed by moving the selection
of one node within the k-clique to an unselected neighbor node that also form a
k-clique. Since only one node is selected each time, the subsequent k-clique must
share exactly k � 1 nodes.

1.3 Our Approach

1.3.1 Defining Community

There is no formal, or conventional, definition of social community [12] beyond
“a collection of individuals linked by a common interest” [32]. Rather than trying to
define, or redefining community, we turn instead to work by Moody and White [33],
who focused on defining four characteristics that bind a community together,
referred to as “structural cohesion.” One definition of interest from Moody and
White is that community cohesion is tied to the number of independent paths
between members. That definition is supported by the qualitative observations [40]
that communities have greater internal edge density than external, inter-community,
density. Consider the graph in Fig. 1.3a; it contains two obvious communities with a
single edge between them. As the number of links between communities increases,
the ability of clustering algorithms to find distinct communities degrades [22].
Increasing the number of edges between the two communities, Fig. 1.3a, b poses
the question: Are there still two communities, have the two merged into one, or are
there now three communities?

A second definition from Moody and White is that the removal of one member
(node) should not cause the community to collapse. Therefore, for this version of
the algorithm, a dyad is not a community; likewise a node of degree 1 cannot be
part of a community. However, nodes of degree 1 could be easily subsumed into its
neighbor – future version of the algorithm.
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1.3.2 The Need to Allow Overlapping

A key feature [11] of most real-world communities from social networks is that they
overlap [9, 13, 24, 30], allowing a single node to belong to multiple communities.
The notion should be intuitive, and empirically evident [9, 19] that individuals can
belong to multiple simultaneous groups, for example families, social circles, and
work communities. Moreover, in hierarchical clustering, as several have pointed
out [9, 30, 38, 39], the assignment of a node to a single community can cause the
remaining communities to fall apart, thus preventing the detection, or discovery,
of the true social structures. A simple proof to this statement can be seen in the
following example.

We ran two popular community detection algorithms on the simple and very
small graph – for illustration purposes – shown in Fig. 1.4a. In this case, the
FastModularity algorithm of Clauset and Newman [7], and the modified GN [22]
algorithm, called “A Fast Algorithm”, from Radicchi et al. [40]. Each of the
algorithms detected the same two communities shown in Fig. 1.4b.

If we examine the smaller community, {E, G, F}, Fig. 1.4b, independent of
the other communities and under the premise that all nodes and edges not within
that community are available for consideration in the community, we can then
evaluate the effect of adding each neighbor node into the community. In this case
the inclusion of node D within the smaller community increases the modularity
score, and therefore uncovers the true community. Both local clustering and our
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EgoClustering algorithms produce the result of Fig. 1.4c, which we believe are the
valid communities of the graph.

For the purpose of this study, we are interested in finding all communities within
a social network, and not simply on partitioning nodes into clusters. Therefore we
make the statement that detected communities can only be guaranteed to be maximal
if overlap is allowed, and by not allowing overlap, erroneous results can be obtained;
moreover all overlapping nodes must be found.

1.3.3 Triangles

When examining undirected, unweighted, and unlabeled graphs, a few assumptions
need to be made: (1) That there is some form of homophily (common interest)
that binds communities together; (2) that each edge represents the same level of
relationship strength; and, (3) that there is an equal amount of reciprocity in each
edge. With those assumptions in mind, we can look at triads and their relationship
to communities.

Consider a triad comprised of the three nodes {A, B, C}, Fig. 1.5a. If there is a
tie between A and B, and A and C, the probability that B and C are linked is so
much greater than random that Granovetter [23, 27] deemed the absence of such a
link as the “Forbidden” triad. The presence of a triad indicates that there is a strong
tie [23] between the nodes and therefore some type of shared interest, which could
be called a community.

For the purpose of this work, we are considering the absence of a link between
node B and C, Fig. 1.5b, to be an indication that B and C are not similar and
therefore, initially, not within the same community. Conversely, the presence of a
tie between B and C, Fig. 1.5c, is an indication of a community.

1.3.4 Friendship-Groups

With the rudimentary definition of community, the need to allow overlap, and the
value of triad defined, we can now define the basic building block of our algorithm,
the Friendship-Group. Consider the graph shown in Fig. 1.6a, an egonet build
around node A.
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Fig. 1.6 Friendship-Groups

Node A has a strong connection to nodes B and C, since nodes B and C are
connected. Additionally, node A has a strong connection to nodes C and D, which
are also connected. Without additional information we can infer that node A, B,
C, and D form a community, Fig. 1.6b. At the same time, node A has a strong
connection to nodes E and F, due to the connection between E and F. Since nodes
are allowed to belong to multiple communities, we conclude that nodes A, E, and
F form a community as shown in Fig. 1.6c. The connection between node A and G
fits the definition of a dyad, which we have previously defined as not constituting a
community.

We define a Friendship-Group to be the local view of communities within an
egonet from the perspective of the ego node. Or, an induced subgraph extracted
from an egonet, adhering to the same constraints mentioned above for a community;
multiple paths and no dyads or single nodes. We make the distinction between
communities and friendship-group since the friendship-group is myopic view of the
egonet, and one or more friendships-groups can be combined to form a community.
The egonet in Fig. 1.6 contains two friendship-groups as shown in Fig. 1.6d.

1.3.5 Algorithm

The algorithm executes in two phases; the first phase is the detection of friendship-
groups, the second phase comprises the aggregation of friendship-groups into
communities.

In phase 1, the algorithm iterates through every vertex in the graph and
derives the egonet for that vertex. From that derived egonet, friendship-groups are
extracted. The process for finding friendship-groups from the egonet is performed
by first removing the central, or ego, node, since it is known to exist in multiple
friendship-groups. By removing the ego vertex, the graph breaks into multiple
connected components, each of which can be easily found. The egocentric vertex
is then added back to each found component to form the friendship-groups.

For example, given the following simple network, Fig. 1.7a, the egonet for vertex
D would be just those vertices connected to D, or B, C, E, and F, as shown in
Fig. 1.7b.



10 B.S. Rees and K.B. Gallagher

A

a b c

C

B

D F

E G

A C

B

D F

E G

C

B

D F

E

Fig. 1.7 Detecting Friendship-Groups

Pseudo code:

1. For each node 8n 2 fV g
• Get egonet of n: H D ego(n)
• Find Friendship-Groups:

– Remove n from the egonet
– Find the connected components of the remaining subgraph
– Add n to each component

2. Merge and Reduce Sets

• Remove proper subsets
• Merge “close” matches
• Repeat until no more merges can be performed

From the point-of-view of vertex D, nodes B and C are friends and E and F are
friends. The removal of D, grayed out in Fig. 1.7c, creates two distinct components.
That yields two friendship-groups, with the ego vertex added back in, of {B, C, D}
and {D, E, F}. That process is repeated for every vertex in the network. The result
of that first phase is a collection of friendship-groups, from an egocentric point-of-
view.

The next step, phase 2, is to merge all the friendship-groups into communities.
That process is done by first merging all exact matches, groups that are either
complete or proper subsets of other groups. The final step is to merge groups that are
“relatively close”; in this case, groups that match all but one item from the smaller
group. Given two sets, Sl and Ss, where Sl is larger than, or equal to, Ss, then the
sets are merged (union) if the size of the intersection is equal to one less than the
size of the smaller set: Sl

T
Ssj D jSsj � 1; i.e., the size of the set difference is 1.

This step compensates for egonets not having a complete picture of the community,
and allows communities of different sizes to be compared. Continuing the example
from above, Fig. 1.7a, group {A, B, C}, obtained from egonet centered on node A,
would merge with group {B, C, D}, from egonet centered on B and/or C, to form
{A, B, C, D}. Notice that even though A and D are not directly connected, they are
in the same community.
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1.3.6 Performance

The runtime performance of the algorithm is greatly influenced by the density of the
graph being analyzed. Consequently, we will compute performance for the boundary
conditions, density D 0 and density D 1, and for the anticipated runtime when
applied to sparse graphs, typical of social networks. For performance definition,
we use n to represent the number of nodes, m to represent the number of edges,
ı to represent the average degree of a node, and s to represent the number of
friendship-groups sets identified. We will delay reducing any equation until after
the base equation has been defined. Lastly, as with any algorithm, the method of
implementation can affect performance. Here we assume that the graph is stored
either as an adjacency matrix, or spared edge list.

The first phase of the algorithm comprises the identification of friendship-groups
within derived egonets. The process of identifying the egonet can be done in
constant time, since the base graph does not have to be modified. The process only
needs to identify the neighbors of the selected node. If the data is stored in an edge
matrix, then the neighbors are specified in the row corresponding to the ego-node.
The complexity of iterating over each node is captured in the following description.

The process of finding the egonet friendship-groups, or disjoint connected
components, can be done using the classic union-find algorithm, in O.log.n// time.
The process of finding the friendship groups requires that the approximately ı

incident nodes of the egonode be compared against the ı incident nodes of each
neighbor of the egonode, gives O.ı2/. Since the process of finding friendship-
groups is done for each node in the network, the runtime for the first phase is
O.nı2/.

The second step is filtering and merging, which can be accomplished with
a modified merge-sort algorithm. A traditional merge-sort runs in O.slog.s//,
however the merging process in this case produces a new set (partial community)
that needs to be reexamined and compared to the remaining set. That modification
increases runtime to O.s2log.s//.

Lower Boundary: When density equals 0 (i.e. there are no edges), all nodes are
disconnected. Therefore, the average degree of a node is 0 and ı D 0. That reduces
the first phase to O.n/. As detected friendship-groups consist of only the ego-node,
the number of sets is equal to the number of nodes, s D n. Additionally, since we
know that each set is unique, no merges will occur and the algorithm will not need
to reexamine any merged sets. This brings the runtime of the second phase down
to O.nlog.n//. The total runtime is then O.n2log.n//. Since we know that single
node sets cannot merge during the second phase, we could programmatically have
removed those sets and not done the all-pair comparison, further reducing runtime
to: O.n/.

Upper Boundary: When density equals 1 (i.e. every possible edge exists), then the
graph is one large clique. The average degree of every node is ı D .n � 1/, which
we reduce to just ı D n. This causes the first phase to have a runtime of O.n3/.
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Fig. 1.8 Runtime

For the second phase, each node will have detected only a single friendship-group,
s D n. However, all friendship-groups will be the same, hence the first pass will
merge all sets down to a single set. This reduces the runtime of the second phase to
O.n/. The total runtime is thus: O.n C n3/.

Anticipated Runtime: For sparse graphs where the number of edges scales
linearly with the number of nodes, Hwang et al. [26] points out that the average
degree is approximately logn, which we will use for the anticipated engonet size of
a sparse graph, ı D log.n/. The first phase becomes: O.nlog2.n//. For the second
phase, we assume that the maximum number of sets per friendship-groups is the
same as the average degree, or s D log.n/. Runtime for phase 2 then becomes:
O.n2log.n//, and the total runtime is: O.n.log2.n// C n2log.n//.

The runtime performance of the algorithm can now be expressed as:

O.n/ < O.n.log2.n// C n2log.n// < O.n3/

Figure 1.8 depicts the performance of running the algorithm over a graph with
100 nodes and increasing the density from 0 to 1. The inserted box represents the
targets sparse area.
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Fig. 1.9 Caveman graph

1.3.7 Improving Performance

The runtime performance shown above is not an improvement, and in some cases
inferior, to existing algorithms. Conversely, our algorithm is designed to operate in
a parallel fashion as a means of improving performance and scalability.

The initial phase of the algorithm is the identification of friendship groups by
iterating over all nodes in the graph. Friendship groups are found for each node,
independent of the other nodes, and therefore can be performed in a parallel fashion.
The second phase is an all-pair comparison, where a selected set (friendship-group
or community) is compared with all others to determine if the set warrants merging,
deletion, or retention. As each comparison is acted independently from the previous
examination, these processes can also be performed in parallel.

Disk-Resided Processing

One advantage of the algorithm is that it does not need to operate on the graph as a
whole; this is true for sparse graphs that are the focus of this work. The algorithm
can extract egonets from database resident adjacency matrixes and save detected
friendship-groups as sets within a caches database table for the merge and reduce
phase. This allows the algorithm to operate against very large graphs that would be
too large to fit within available memory.

1.4 Application

1.4.1 Caveman

The algorithm was first applied against a Caveman graph, Fig. 1.9, a term coined
by Watts and Strogatz [44] for a network containing a number of fully-connected
clusters (cliques) or “caves.” The number of connections between the caves is
increased to determine at which point the algorithm stops identifying the core cave
groups.
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Fig. 1.10 Fully connected
Caveman graph

In the case of the three examples shown in Fig. 1.9, the algorithm found the
groups with no errors. Although this was a simple case and the links were not
really added at random – additional links did not form any new triads and thus
no additional groups were detected. When additional links were added linking all
the center nodes, Fig. 1.10, the algorithm then detected the six original groups plus a
new overlapping community formed by the center nodes. The introduction of a new
community is an indication that linkages between communities cannot be added
without regard for the implication of the newly formed relationships.

1.4.2 Zachary

The Zachary [47] Karate Club dataset is well studied, and widely utilized as a
test bed for many community detection algorithms [13, 22, 24, 34–36, 45]. Zachary
observed the social interactions of members of his karate club over a period of
2 years. By chance a dispute broke out between two members that caused the club
to split into two smaller groups.

When our algorithm was applied to the Zachary dataset, four communities were
found. The following graph, Fig. 1.11, illustrates the discovered networks as well
as highlighting the two clubs formed after the split, group 1 is shown by the circles
hexagons and group 2 shown by squares and triangles.

Cluster A: [1, 17, 7, 11, 6, 5]
Cluster B: [13, 33, 1, 4, 14, 3, 22, 20, 2, 9, 18, 8]
Cluster C: [25, 32, 26]
Cluster D: [29, 33, 1, 21, 3, 31, 9, 15, 34, 28, 24, 30, 16, 27, 32, 19, 23]
Not a member of a community: 10, 12

At first glance, it might appear that our algorithm was in error when it detected
four communities in contrast with what the Zachary states as the final outcome.
However, the focus of the Zachary paper was on group fission and not on communi-
ties, or overlapping communities, within the group. Additionally, the Zachary paper
presented a method for creating edge weights based on an aggregation of the number



1 EgoClustering: Overlapping Community Detection via Merged Friendship-Groups 15

19

15

16

21 23

34

10

33

30

27

24

26

25

32

28 29

3

9

31

20

14 4

13

1

2

8

18

22
12

11

6

7

5

17

Fig. 1.11 The Zachary Karate club dataset

of different social interaction domains at individuals attended together. Each of these
domains has the possibility of defining a community.

Hierarchical clustering allows for the algorithm to be stopped at various points,
producing from 1 to n clusters. Since the anticipated results were two clusters, that
is the stopping point of most benchmarks against the Zachary dataset. The GN [22]
algorithm, for example, identifies the two communities within the dataset, when
programmed to extract only two communities.

The FastModularity algorithm of Clauset and Newman [7], selects a stopping
point by optimizing modularity. Their algorithm finds three communities, denoted
as circles, squares, and triangles as shown in Fig. 1.12.

As we mentioned in Sect. 1.3.2, a community can only be guaranteed to be
maximal – inclusion or removal of one additional node decreases quality of the
community – if overlap is allowed. Since the FastModularity algorithm does not
allow for overlap, it appears as if one community, denoted as squares, is a collection
of left over nodes. The inclusion of node “1” within the square community would
increase modularity and density.

As an additional comparison, Donetti and Muñoz [12] presented an overlapping
algorithm based on modularity that stops processing when modularity is maximized.
Their algorithm finds four clusters and one single node.

If the goal was to simply produce two clusters, then a few additional communities
merging would have to occur. Looking at Community A, this community is virtually
independent from the rest of the communities, with the overlap occurring solely due
to node “1”. When the split in the karate group happened, this group would follow
node “1” and community A would merge in with community B. Looking at the
dendrogram from the GN [22] and the Donetti [12] papers, the node comprising
cluster A and B are merged in the final step. Community C is less independent than
A, but only has an overlap with community D at node “32” and would merge in
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Fig. 1.12 Results using FastModularity

with that cluster. A merger of cluster A with cluster B and cluster C with cluster D
would produce two communities, with the only error being the overlapping nodes
that appear within both communities.

Yet the purpose of our algorithm was to find overlapping communities and
not graph partitioning. In detecting communities, the algorithm also identifies
those nodes that form the overlap and act as brokers, or social bridges, between
communities. Of particular interest from the karate club are nodes 1, 3, 9, and 33.
Those four nodes appear to be the glue that held the groups together. For example,
breaking the edge between nodes 3 and 33 and nodes 9 and 1 causes our algorithm
to remove the overlap between the two groups. From that we can deduce that any
strife within the group affected those four nodes, has the potential to impact the
entire karate club.

1.4.3 Other Datasets and Follow-on Work

A number of other datasets were processed by our algorithm and are shown in
Table 1.1. However, as the sizes of the graphs being examined grew, so did the
complexity of displaying and analyzing the results. The table shows some basic
metrics – number of nodes (order), the number of edges (size), the average degree,
and the density – on each dataset along with the number of detected communities
and the number of nodes not assigned to any community, show in parentheses.
Additionally, the number of communities detected from running the FastModularity
from Clauset and Newman [7] and the CFinder algorithm of Palla et al. [38] are
shown for comparison. For CFinder, the results for k D 3 were used. (Each author on
his or her respected web sites generously provided source code for each algorithm).
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Table 1.1 Additional datasets and number of communities detected

Communities Fast
Avg. detected # Runtime modul-

Dataset Nodes Edges degree Density (single) (s) arity CFinder

Dolphinsa 62 159 5:13 0.084 6 (16) 0:117 4 4
Zacharyb 34 78 4:6 0.14 4 (2) 0:45 3 3
Footballc 115 613 10:66 0.0935 23 (0) 0:277 7 4
Jazzd 198 2,742 27:69 0.14 64 (6) 0:86 4 2
Emaile 1,133 5,452 9:6 0.008 390 (293) 24:38 12 41
PGPf 10,680 24,316 4:55 0.26 793 (7,181) 654:74 698 734
Datasets from http://deim.urv.cat/~Eaarenas/data/welcome.htm
aSee reference [31].
bSee reference [47].
cSee reference [22].
dSee reference [21].
eSee reference [25].
fSee reference [4].

1.5 Follow-on Work

Since our algorithm presents a new definition of community, it was anticipated
that there would be significant deviation in results between our algorithm and
what others have achieved. Identifying the most efficient methods to measure and
compare our results against other algorithms, beyond a simple Jaccard similarity
score, is an area for future research. As our algorithm also identifies the nodes that
form the overlap, an analysis of those nodes for their ability to act as brokers, and
as structural holes, should be cultivated.

In processing the larger datasets, a growing number of nodes not belonging
to any community were detected, raising two questions that we plan to further
investigate: (1) Is our assumption that a single edge node does not belong to a
community valid? (2) Can link weighting be used to further cast a node into one
community or another?

Another technique for evaluating our algorithm is to compare it using the
LFR [28, 29] benchmark from Lancichinetti, Fortunato, and Radicchi. The bench-
mark includes a data generator that produces a graph with a known number of
communities, and a known internal structure of those communities. Furthermore,
the generator does allow communities to overlap. The generator can produce a
number of graphs with varying amount of interaction (i.e. links) between the
communities. The benchmark measures an algorithm’s ability to detect communities
as the numbers of cross-community edges are increased. Excepting the algorithm to
constantly detect the original communities as the number of cross-community edges
increases we believe to be erroneous.

The main focus of this research has been on the community detection portion of
the algorithm and not on the merging of the friendship groups. An investigation of

http://deim.urv.cat/~{}Eaarenas/data/welcome.htm
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that set merging is expected to aid in the reduction of overall runtime. Lastly, we
would like to further study the parallel capabilities of the algorithm by exploring
multi-threading options or rewriting the algorithm in OpenCL.

1.6 Conclusion

Detection of the underlying community structure is an important part of intuitive
network analysis. Failure to consider and account for overlapping groups creates a
situation where the true community structure can go undetected. In this paper, we
have presented a new approach for detecting overlapping communities, based on
the unique perspective of individual group members, which we called friendship-
groups. This approach, we believe, defines a more insightful notion of community
and creates a potential for future performance enhancements.

Acknowledgements The authors are grateful to Graham Cruickshank for his proofreading skill.
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