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13.1 Preterm Delivery

Preterm delivery in humans, defined as birth before 90 % gestation, is a leading

cause of infant morbidity and mortality worldwide, occurring in approximately

10 % of all pregnancies (McIntire et al. 1999). Infants born prematurely account for

the majority of all neonatal deaths. Not surprisingly, preterm infants show various

signs of organ immaturity and this may make preterm neonates more sensitive to

serious feeding-induced gastrointestinal complications (Siggers et al. 2011). The

immature gastrointestinal tract is less able to deal with microbiology, immunology,

and nutrition-related challenges of postnatal life as a result of deficiencies in

intestinal structural integrity, digestive capacity, and intestinal immunity (Neu

2007). Such deficiencies are associated with increased enteric disease susceptibility

in preterm versus term neonates. Thus, investigating means of improving these

deficiencies will aid in improving the maturation of the preterm gastrointestinal

tract, in reducing gut inflammation, and in optimizing nutrition and health in this

compromised population.

13.2 Animal Models

However, less detailed information is available from human infants partly due to

the difficulties in performing well-controlled studies on this vulnerable population

of infants. In addition, it is neither ethical nor practical to conduct these experiments

with the human fetus or infant.

Often, the more suitable approach is the use of animal models. While some

earlier studies have focused on information derived mainly from rodent models

(e.g., rats and mice) (Sodhi et al. 2008), it is difficult to conduct experiments with

laboratory rodents because of their small body size and immature organs at birth,

and this makes the large farm animals (e.g., pigs, cattle, sheep) more attractive

models in this field.

Although no animal model will ever perfectly mimic the human condition, the

pig has emerged as a superior non-primate experimental animal model because of

similarities in anatomy, development, nutrition, and physiology between the pig

and the human (Ball et al. 1996; Clouard et al. 2012). Pigs are also the only widely

utilized animal model that is truly omnivorous, and they have strikingly similar

nutritional requirements to that of humans (Patterson et al. 2008). The gut in the

newborn pig is more mature than in newborn rodents, although less mature than in

infants (Sangild 2006). Thus, in pigs, preterm delivery at 90 % gestation is compar-

able to preterm infants born at approximately 75 % gestation (30 weeks) (Siggers

et al. 2011). In contrast to rodent models, the size of the newborn pig easily allows for

clinically tissue collections and experimental manipulation of physiologic conditions.

Besides, the ontogeny, the physiology of digestion, and associated metabolic pro-

cesses are very similar between humans and pigs (Patterson et al. 2008; Patrycja and
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Barbara 2008), which makes the pig an attractive animal model for further studies on

intestinal complications related to preterm birth.

13.3 Determinants in Intestinal Inflammatory Diseases

Preterm infants suffer from numerous devastating intestinal diseases, including

necrotizing enterocolitis (NEC). Nutritional, microbial, and immunological

dysfunctions may all play a role in disease progression. The lowered digestive

and nutrient absorptive function, impaired intestinal epithelial barrier, inappropri-

ate bacterial colonization, and a dysregulated mucosal immune system may add to

this increased susceptibility to enteric disease.

13.3.1 Immature Digestion and Nutrient Absorption in
Preterm Neonates

Preterm birth is associated with immature motility, digestive capacity, and nutrient

absorption, thus leading to nutrient fermentation, bacterial overgrowth, and mucosal

inflammation.

Gastrointestinal motility is limited largely to infants less than 34 weeks gestation

(Riezzo et al. 2009). The motility is found considerably less organized in premature

infants (Neu 2007), probably, because of the intrinsic immaturity of the enteric

neurons. Also in preterm piglets, bowel movements are not well developed during

the first days of enteral feeding (Sangild et al. 2002a, b, c). The incomplete

innervation and poor motility of the immature gut, thereby, may lead to stasis,

nutrient fermentation, inappropriate colonization, and further contribute to the

development of enteric disease in preterm infants (Neu 2007; Oste et al. 2005).

Studies in both animals and infants indicate that immature brush-border enzyme

activities following preterm delivery may result in maldigestion, excessive nutrient

fermentation, intestinal distension, and mucosal ischemia in preterm infants. In

preterm infants, the intestine is relatively short (Weaver et al. 1991) and may have a

reduced absorptive area, consistent with studies in pigs (Sangild et al. 2000, 2002a,

b, c). Besides, preterm-delivered pigs also differ from term neonates in their

intestinal cell proliferative and apoptotic responses (Burrin et al. 2000; Bittrich

et al. 2004). The impaired ability of the immature intestine to increase cell prolifer-

ation, decrease apoptosis, and regulate the mesenteric blood flow (Crissinger et al.

1994; Clark et al. 2005; Dyess et al. 1993) may lead to mucosal atrophy, dysfunc-

tion, and necrosis in preterm neonates. In addition to ontogenetic immaturity of

enterocyte function, the possible hypoxia, hypothermia, altered endocrine and

metabolic status may make preterm neonates more sensitive to serious feeding-

induced complications (Sangild 2006).

These deficiencies in intestinal structure and function appear to be one of the most

critical problems resulting in feeding intolerance, a commonly encountered problem
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in neonatal care. Formula-fed preterm neonates are thus at increased risk of develop-

ing diseases due to their compromised digestive system. Similar results are observed

in preterm newborn pigs. Preterm birth affects the intestinal response to enteral

nutrition in newborn piglets. Formula feeding in preterm newborn pigs leads to a

diminished intestinal trophic responses relative to colostrum (Bjornvad et al. 2005;

Oste et al. 2005; Sangild et al. 2006), marked atrophy of the mucosal surface, and

increased permeability (Rouwet et al. 2002). Preterm neonates, thus, may require a

period of total parenteral nutrition (TPN) before enteral nutrition is administered

(Heird and Gomez 1996; Sangild et al. 2002a, b, c). Nevertheless, parenteral nutrition

has significant detrimental side effects, including intestinal atrophy, malfunction, and

sepsis leading to increased susceptibility to inflammatory stimuli and the development

of intestinal inflammation (Siggers et al. 2011). This is consistent with the observation

that TPN increases the risk of NEC in prematurely born piglets.

13.3.2 Deficient Host-Associated Defense Mechanisms in
Preterm Neonates

Relative to term neonates, preterm neonates show immature intestinal barrier that

lacks several key protective mechanisms that normally prevent invasion by luminal

bacteria. The premature gastrointestinal tract also has increased intestinal perme-

ability (Neu 1996) commonly observed in preterm neonates (Neu 2007), making

the immature intestine more permeable to macromolecules, while little is known

about the maturation of tight junction proteins such as occludin and claudins, which

constitute the major paracellular barrier of the epithelium (Nusrat et al. 2000). The

mucus layer forms a physical barrier between the underlying epithelium and the

lumen of the gastrointestinal tract (Atumal et al. 2001), protecting the epithelium

against noxious agents and pathogenic bacteria. However, the production of

mucous was reported to be immature in preterm infants (Claud and Walker 2001;

Omari and Davidson 2003; Sangild 2006), leading to a diminished intestinal barrier

function, impaired mucosal repair, and lowered degradation of bacterial toxins.

Additionally, impaired functioning of immune defenses in preterms (Sangild

et al. 2002a, b, c; Baxter 2010), as well as lower levels of immunoglobulins (e.g.,

IgA, IgM, IgG) (Lin 2004), gut B and T lymphocytes, makes premature neonates

particularly susceptible to enteric inflammation and injury during the early postna-

tal period (Claud andWalker 2001; Kuitunen and Savilahti 1995). Coupled with the

increased intestinal mucosal permeability in preterms (Rouwet et al. 2002; van

Elburg et al. 2003), this impairment leads to transmural translocation of microbes or

their toxic products into the immature intestinal mucosal barrier in neonates. This

may, in turn, further compromise intestinal defense mechanisms and eventually

culminate in an inflammatory cascade, leading to NEC (Berman and Moss 2011).

Furthermore, the premature gastrointestinal tract also has decreased regenerative

capabilities, and the imbalance between epithelial cell injury and repair usually

leads to a vicious cycle of maldigestion, impaired mucosal protection, immune

activation and results in a greater potential for tissue damage (Siggers et al. 2011).
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13.3.3 Gut Microflora and Inflammatory Responses in
Preterm Neonates

Several studies in both human infants and piglets show that assemblages of gut

bacteria differ markedly between preterm and term neonates (Schmidt et al. 2008;

Cilieborg et al. 2010). While the full-term infants are rapidly colonized with a more

diverse microbiota, preterm neonates have a slow bacterial colonization and

decreased bacterial diversity present, which may predispose the premature gut to

bacterial overgrowth by pathogenic bacteria (Arboleya et al. 2012; Fanaro et al.

2003; Schwiertz et al. 2003), and this difference may be directly related to the

degree of intestinal prematurity, the deficient mechanical defense barriers, as well

as the environmental factors (Hallstrom et al. 2004). Wang et al (2011) showed that

intestinal microbiota had important functions in host energy metabolism, amino

acid nutrition, immunity, and health.

Moreover, the nature of the enteral foods may affect initial bacterial colonization

patterns in preterm infants (Caicedo et al. 2005; Claud and Walker 2001) and pigs

(Shulman 2002; Wang et al. 2011), and the use of parenteral nutrition further delay

colonization (Fanaro et al. 2003; Caicedo et al. 2005) in neonates following preterm

delivery. Maldigestion and disturbances in intestinal barrier function may lead to

bacterial overgrowth and excessive nutrient fermentation, thereby rendering the

mucosa more susceptible to bacterial infections and further initiating uncontrolled

inflammatory reactions (Siggers et al. 2011).

A disordered enterocyte signaling to bacterial toxins, via the production of

various pro-inflammatory cytokines (e.g., IL-1, IL-6, IL-8, TNF-alpha), is thought

to be crucial in the development of NEC in the susceptible preterm infants (Hunter

et al. 2008). Those pro-inflammatory mediators may further initiate the inflammatory

cascade, thus favoring mucosal barrier disruption and adversely affecting mucosal

repair. Toll-like receptors are identified among the immunological components of

the early mucosal dysfunction. It has been shown that TLRs (2 and 4) are upregulated

in intestinal tissue from preterm pigs with NEC (Sangild 2006). In addition, p38

kinase, cyclooxygenase-2, and NF-kB signaling pathways may all be involved in

mucosal inflammation (Grishin et al. 2006; Wang et al. 2010). It remains difficult,

however, to further understand why the premature newborn is susceptible to NEC as

well as other inflammatory bowel diseases, which may need further study in preterm

animal models.

13.4 Nutritional Modulation of Mucosal Defense and

Immunology in Preterm Neonates

As previously stated, the immature neonates are prone to bacterial infection and

exaggerated immune responses, potentially resulting in irreversible tissue damage.

Mother’s milk and colostrum contains numerous bioactive factors, including growth

factors, immunoglobulins, anti-inflammatory components, as well as amino acids
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(Møller et al. 2011; Claud et al. 2003), which help to protect against the development

of intestinal diseases. Immunonutrition with specific nutrients may also be effective

to modulate the activity of the immune system. Some dietary components, such as

amino acids, have already been shown to enhance mucosal barrier function and

immunologic responses in animal models and in humans (Stechmiller et al. 2004).

Kim et al (2007) reported that provision of amino acids and fatty acids with specific

functions may enhance the performance of pregnant and lactating sows by

modulating key metabolic pathways by which can enhance conception rates,

embryogenesis, blood flow, antioxidant activity, appetite, translation initiation for

protein synthesis, immune cell proliferation, and intestinal development. Increasing

evidence shows that dietary supplementation of specific amino acids to animals and

humans with malnutrition and infectious disease enhances the immune status,

thereby reducing morbidity and mortality (Li et al. 2007; Yin et al. 2010).

13.4.1 Arginine

The arginine, which is nutritionally essential for neonates, is involved in a number

of biological and physiological processes. Arginine is crucial for the synthesis of

protein and molecules (e.g., nitric oxide (NO), creatine, and polyamines) with

enormous physiological importance (Flynn et al. 2002; Rhoads et al. 2004; He

et al. 2009; Kim et al. 2007; Li et al. 2007; Wu et al. 2009). Nitric oxide is a

vasodilator involved in intestinal permeability, mucosal integrity, and barrier func-

tion (Upperman et al. 2005; Wu et al. 2007). Moderate levels of NO are important

for regulation of mesenteric blood flow and protect the mucosa from injury.

Polyamines are involved in the regulation of gene expression, DNA and protein

synthesis, apoptosis, as well as cellular division (Flynn et al. 2002). Moreover,

arginine stimulates the secretion of growth hormone and insulin in preterm infants

(Vlaardingerbroek et al. 2011), thereby playing an important role in regulating

nutrients metabolism (Liu et al. 2008; Yao et al. 2008, 2011; Yin and Tan 2010;

Tan et al. 2009, 2011).

Intestinal amino acid metabolism differs between preterm and term birth.

A significant nutritional problem in preterm infants is a severe deficiency of

arginine (hypoargininemia), which occurs in more than 50 % of the preterm infant

population (Wu et al. 2004). Arginine deficiency may result in hyperammonemia as

well as intestinal, immunological, and neurological dysfunction (Flynn et al. 2002)

and it is often associated with an increased incidence of NEC in preterm infants

(Becker et al. 2000). Thus, the knowledge of arginine metabolism and physiological

effects is beneficial for optimizing neonatal survival and health in this compromised

population.

Wu et al. (1999) reported that the amino acid composition of the fetal pig was

similar to that of human fetus. It has been reported that endogenous synthesis of

arginine is important for maintaining arginine homeostasis in the neonatal pigs

(Flynn and Wu 1996), and the underdevelopment of intestinal arginine synthesis
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may be primarily responsible for hypoargininemia in preterm neonates (Dekaney

et al. 2003). Glutamine and proline are major substrates for intestinal synthesis of

citrulline in pigs (Wu et al. 2000a, b, 2009;Wang et al. 2008). However, synthesis of

citrulline is low and there is little conversion of citrulline into arginine in enterocytes

of preterm neonates owing to the limited expression of the genes for key enzymes

(e.g., pyrroline-5-carboxylate synthase, argininosuccinate synthase, and lyase),

thereby contributing to hypoargininemia (Wu et al. 2004). Furthermore, the possible

increase in whole-body arginine catabolism, as well as absence of perinatal cortisol

surge due to premature delivery, may also be responsible for the limited endogenous

synthesis of arginine. In preterm piglets, low rates of intestinal arginine synthesis are

associated with low plasma arginine concentrations (Urschel et al. 2007). Plasma

levels of citrulline, arginine, and glutamine are lower in premature neonates with

NEC compared with healthy infants (Wu et al. 2001; Becker et al. 2000); and

provision of exogenous arginine prevents hyperammonemia and reduces NEC

(Amin et al. 2002). Thus, an enhancement of endogenous arginine synthesis in

preterm neonates may be obtained by the promotion of the maturation of intestinal

arginine-synthetic enzymes.

Glucocorticoids play a crucial role in advancing the maturation of intestinal

arginine synthesis and possibly decrease the incidence of NEC in preterm infants

(Bauer et al. 1984). Administration of cortisol is effective to advance the maturation

of intestinal arginine synthesis in preterm neonates (Wu et al. 2004). Another

promising candidate is glucagon-like peptide-2 (GLP-2), a nutrient-responsive gut

hormone, which may exert multiple effects on intestinal mucosa growth in preterm

neonates (Estall and Drucker 2005). In neonates, proline is a dietary precursor for

arginine and is dependent on intact gut metabolism (Vlaardingerbroek et al. 2011).

Preterm infants receiving PN are unable to synthesize sufficient proline de novo

(Miller et al. 1995). Future research is needed to define mechanisms for arginine

metabolism and develop strategies for arginine deficiency in preterm infants.

Arginine plays an important role in improving intestinal function and regulating

nutrient metabolism, but the underlying mechanisms are largely unknown (Liu

et al. 2008). He et al. (2009) conducted metabolomic analysis of the response of

growing pigs to dietary L-arginine and found that arginine alters the catabolism of

fat and amino acids in the whole body, enhances protein synthesis in skeletal

muscle, and modulates intestinal microbial metabolism. Tan et al (2011) indicated

that Arg differentially regulates expression of fat-metabolic genes and increases

mTOR signaling activity in skeletal muscle (Yao et al. 2008) and white adipose

tissue, therefore favoring lipogenesis in muscle but lipolysis in adipose tissue.

13.4.2 Glutamine

Glutamine is the preferred fuel for rapidly proliferating cells including enterocytes

(Chauhan et al. 2008). It is essential for many metabolic processes, and supplemen-

tation with this amino acid has been demonstrated to improve mucosal integrity and

intestinal barrier function in critically ill patients. In vitro, glutamine is required for
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barrier function (Ewaschuk et al. 2011) and helps recovery from loss of

transepithelial resistance and increase of permeability induced by stress in Caco-

2 cells (Li et al. 2003). Wang et al (2008) found that early weaning resulted in

increased expression of genes related to oxidative stress and immune activation but

decreased expression of genes related to macronutrient metabolism and cell prolif-

eration in the gut. Dietary glutamine supplementation increased intestinal expres-

sion (120–124 %) of genes that are necessary for cell growth and removal of

oxidants, while reducing (34–75 %) expression of genes that promote oxidative

stress and immune activation. Functionally, the glutamine treatment enhanced

intestinal oxidative-defense capacity, prevented jejunal atrophy, and promoted

small intestine growth and body weight gain in weaned piglets. These findings

reveal coordinate alterations of gene expression in response to weaning and aid in

providing molecular mechanisms for the beneficial effect of dietary glutamine

supplementation to improve nutrition status in young mammals.

Glutamine is abundant in mother’s milk but present in much lower levels in

formula milk (Agostoni et al. 2000). Thus, neonates, prematurely born infants,

would benefit from glutamine addition. However, clinical studies of glutamine

supplementation remain inconclusive. Parenteral glutamine appears to be well

tolerated and safe in preterm neonates and this amino acid reduces the time to

achieve full enteral nutrition (Thompson et al. 2003). Provision of glutamine

showed some beneficial effects such as inhibition of whole body protein breakdown

(Kadrofske et al. 2006) and activation of immune system in preterm infants (Parimi

and Kalhan 2007). However, Tubman and Thompson (2001) reported that no

additional benefit of the addition of glutamine to preterm infants was observed in

their study. More studies are needed to evaluate the efficacy of this amino acid in

neonatal nutrition and to understand the mechanism of glutamine dysfunction-

related pathology.

13.4.3 Methionine and Cysteine

Methionine, an essential amino acid, is also a source through cysteine production

for the synthesis of glutathione (GSH). This latter compound plays a crucial role in

reducing intestinal oxidative damage and inflammation (Thomas et al. 2008). The

rates of transsulfuration of methionine are high in prematurely born low birth

weight infants (Maaike et al. 2007a, b). This may reflect high demands for gluta-

thione (GSH) and methionine in parenteral amino acid mixtures for premature

babies. It is reported that general cysteine requirement is less than 18 mg/kg per

day and that cysteine is probably not a conditionally essential amino acid in the

prematurely born infant (Maaike et al. 2007a, b). Regardless of the adequate GSH

and protein synthesis, methionine has been implicated in increased homocysteine

concentration (Courtney-Martin et al. 2008; Shoveller et al. 2004) in the neonate.

Therefore, a balance between methionine and cysteine should be taken in consider-

ation to provide the adequate total sulfur amino acid (SAA) in neonatal nutrition

(Courtney-Martin et al. 2010).
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13.4.4 Branched-Chain Amino Acids

The essential branched-chain amino acids (BCAAs), leucine, isoleucine, and

valine, are used for incorporation into body protein (Maingay-de Groof et al.

2010; Li et al. 2011), and utilization by intestine is also high. The uptakes of total

leucine and valine carbon are relatively large and the oxidation rates of these

essential branched-chain amino acids are high in fetuses and neonates (van den

Akker et al. 2011). Among the BCAAs, leucine can act as a nutrient signal and

stimulates protein synthesis via the activation of translation initiation factors

(Vlaardingerbroek et al. 2011). Recent work with young pigs shows that reducing

dietary protein intake can improve gut function after weaning but result in inade-

quate provision of essential amino acids for muscle growth. Yin et al. (2010)

reported that supplementing L-leucine to a low-protein diet may maintain the

activation of translation initiation factors and adequate protein synthesis in multiple

organs of post-weaning pigs. This novel finding provides a molecular basis for

designing effective nutritional means to increase the efficiency of nutrient utiliza-

tion for protein accretion in neonates. Leucine is not only a substrate for protein

synthesis of skeletal muscle but also plays as signaling molecules to affect feeding

behavior, energy balance, and fuel efficiency (Li et al. 2011). Leucine activates

signaling factor of mammalian target of rapamycin (mTOR) to promote protein

synthesis in skeletal muscle and in adipose tissue. It is also a major regulator of the

mTOR sensitive response of food intake to high protein diet. Meanwhile, leucine

regulates blood glucose level by promoting gluconeogenesis and aids in the reten-

tion of lean mass in a hypocaloric state. It is beneficial to animal nutrition and

clinical application and extrapolation to humans (Li et al. 2011). Studies in new-

born pigs suggest that enteral leucine supplementation may have a beneficial effect

on neonatal growth as it may enhance protein synthesis in an mTORC1-dependent

pathway (Suryawan et al. 2012; Li et al. 2011). The gut has a high demand for

leucine and protein synthesis has been found to be limited by deficient leucine

intake (Elango et al. 2002). BCAA-enriched parenteral nutrition in preterm

neonates might influence functional outcome in the direct postnatal phase.

The requirements of the individual BCAAs are almost twice the current

recommendations (Maingay-de Groof et al. 2010). To optimize current parenteral

and enteral feeding, the optimal BCAA ratio should be determined for both. Further

studies are required to better understand the role of BCAAs in the regulation of

neonatal growth.

13.4.5 Threonine

Threonine is an indispensable amino acid that must come from dietary sources. It is

critical in the production of mucins in the gut (Schaart et al. 2009). Therefore, this

amino acid is of presumably vital nutritional importance to maintain the protective

mucus layer and thus the intestinal barrier function. Lack of threonine can result in
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diarrhea and reduced mucin production, indicating the important role of threonine

in the structure and function of the gut (Vlaardingerbroek et al. 2011). However,

prolonged dietary excess of threonine fed to neonates, may have negative behav-

ioral consequences and may induce serious metabolic disturbances (Chapman et al.

2009). Dietary threonine imbalance is known to reduce the growth of the small

intestine, liver, and skeletal muscle in young animals. Using the pig model, Wang

et al. (2007) found that either a deficiency or an excess of dietary threonine impairs

protein synthesis in these tissues. This finding provides a mechanism for the low

growth performance of animals fed a threonine-imbalanced diet. Currently, neona-

tal amino acid solutions provide intakes of threonine (111–165 mg/kg per day) are

greater than an infant’s enteral intake from breast milk (76 mg/kg per day) (WHO

2007). Chapman et al. (2009) concluded that current parenteral solutions should be

revised to incorporate the population-safe requirements of threonine to promote

optimum metabolic and neurologic growth in neonates.

13.4.6 Tryptophan

Tryptophan is an essential amino acid while the concentration is low in plasma and

content low in proteins compared with the other essential amino acids (Vlaardin-

gerbroek et al. 2011). Intestinal inflammation, malnutrition, and pro-inflammatory

situation may result in tryptophan depletion (Christmas et al. 2011), thus affecting

the weight gain and nitrogen balance in neonates. In young pigs, experimental

inflammation was associated to a decrease in plasma tryptophan concentrations

compared with healthy piglets (Le Floc’h et al. 2008). Furthermore, studies showed

that in neonatal piglets, no difference is found in tryptophan requirements when

enteral and parenteral feeding are compared (Alegria et al. 1999). Therefore, most

parenteral neonatal amino acid solutions contain similar concentrations of trypto-

phan compared with human breast milk (Cvitkovic et al. 2004). Lastly, the com-

mercially available preterm formula content ranges from 18 to 36 mg/kg per day

when infants receive 160 ml/kg per day of milk (Vlaardingerbroek et al. 2011).

13.4.7 Other Amino Acids

Taurine is considered conditionally essential because needs are not met when intake

is low (Verner et al. 2007). It has important roles in intestinal absorption, membrane

stability, and visual development in preterm infants. Currently, taurine

concentrations in modern parenteral amino acid solutions are more than sufficient

to meet recommendations (Verner et al. 2007). Tyrosine is also a conditionally

essential amino acid resulting from the insufficient enzymatic activity in preterm

infants. Due to poor tyrosine solubility in parenteral nutrition (Roberts et al. 2001),

hydroxylation of phenylalanine to tyrosine may be a good way to provide tyrosine

when the diet is tyrosine-deficient.
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13.5 Conclusion

Deficiencies in intestinal integrity, barrier function, digestive capacities, and intes-

tinal immunity, make preterm neonates more susceptible to inflammatory diseases.

Using preterm pigs, recent evidence suggests that nutritional modulation has great

potential to improve neonatal intestinal development, manipulate the gut

microbiota, in parallel with direct effects on the mucosal immune system, to

prevent the onset of NEC. Some amino acids have been shown to enhance mucosal

barrier function, immunologic responses, and NEC resistance in piglets and in

neonates. However, it always remains a challenge to translate data generated

from animal models to corresponding conditions in humans. Understanding the

unique function of amino acids could eventually play a pivotal role in improving

future nutritional strategies for premature infants. Clearly, further studies involving

amino acids as compounds for prevention and clinical therapies against devastating

intestinal diseases are needed, both in parenterally and enterally fed infants. Such

work will greatly advance our knowledge with regard to the “optimal” amino acid

pattern and it will also be beneficial for designing the next generation of amino acid

supplemental solutions to optimize survival and health in preterm neonates.
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