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Adoptive T-Cell Immunotherapy: Perfecting

Self-Defenses

Katrina Shamalov, Yair Tal, Chen Ankri, and Cyrille J. Cohen

Abstract The unrivaled potential of T cells for targeted immune function is central

to the eradication of cancer. While their natural anti-tumor response might some-

times be insufficient, several studies and importantly, multiple clinical trials in

terminally-ill cancer patients have demonstrated that it is possible to design novel

and efficient immunotherapeutic approaches based on the adoptive transfer of

autologous tumor-specific T lymphocytes. Herein, we will expand on the develop-

ment and the use of such strategies using tumor-infiltrating lymphocytes or

genetically-engineered T cells. We will also comment on the requirements and

potential hurdles encountered when elaborating and implementing such treatments

as well as the exciting prospects for this kind of emerging personalized medicine

therapy.
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9.1 Tumor Antigens: Defining the Target

T cells play a central role in the immune response against cancer. Their activation is

initiated by the interaction of the T-cell receptor (TCR) with its cognate

MHC-peptide complex presented on the surface of the target cell, which activates

them specifically [1]. Whether T cells could recognize endogenous tissues was a

matter of debate during several decades, especially as T cells are supposed to be

tolerant to self-antigens. Nevertheless, molecular and immunological advances in

the 1990s led to the discovery of self-originated proteins that could be recognized
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by T lymphocytes [2]. Accordingly, tumor-specific T cells have been shown to be

activated through the binding of their TCR to specific epitopes derived from tumor

antigens (TA) presented by a major histocompatibility complex (MHC) molecule

[3]. TA are present on some tumor cells but also on normal tissues (in this case, they

are termed tumor-associated antigens—TAA), and were shown to represent effec-

tive targets for T-cell-based cancer immunotherapy. They can be classified into

several categories; this division pertains to the pattern of expression of these

antigens (e.g., over-expressed, oncofetal, . . .) and whether these antigens are

“self” or mutated [4]. Several sources indicate different classifications, but five

known classes of TA can be broadly described:

Cancer/testis antigens (C/T)—they are expressed in various human cancers, but

also in normal testis tissues. Some evidences suggest that there may be some

level of T-cell tolerance toward these antigens [5].

Tissue-specific differentiation antigens—these antigens are typically expressed

only by the tumor and its tissue of origin. Known examples of tissue-specific

differentiation antigens include the MART-1/Melan-A and gp100, which are

expressed in both melanocytes and melanoma cells. These antigens have

emerged as very promising target antigens for T-cell-based adoptive immuno-

therapy, but their presence on normal tissues can be the source of auto-immune

manifestations.

Mutated self-proteins—usually when mutations occur in the initial cancerous cell

(or one of its early daughter cells), this class of tumor antigens can potentially

provide targets for T-cell-based immunotherapy of cancer, as they are to be

expressed in most of the tumor tissues.

Over-expressed antigens—this type of antigens constitutes also an important TA

class, which is relevant in both T-cell therapy and antibody-based treatments.

Based on clinical data, it seems that their over-expression in several tumor

tissues (e.g., Her2/neu) but then again their reduced levels in healthy cells may

limit the potential for deleterious autoimmune side-effects [4].

Viral antigens—as it is believed that around 20 % of all cancer cases are linked to

infectious agents [6], antigens derived from oncogenic viruses would provide a

source of “non-self” targets, which would be recognized more efficiently than

TAA due to a potential lack of tolerance against the viral epitopes.

9.2 Tumor-Infiltrating Lymphocytes

9.2.1 Presence of Intra-tumoral T Lymphocytes

For several decades, it has been demonstrated that tumor-specific T cells can

massively migrate into tumor sites. Some of these tumor-infiltrating lymphocytes

(TILs) have thus the ability to specifically recognize tumor antigens expressed on

the surface of tumor cells, and may greatly influence directly or indirectly the anti-

tumor immune responses and the progression of a variety of solid tumors [7]. The
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presence of TILs in the tumor vicinity, and the nature of their interactions with target

cells, contribute to determine whether a tumor is destroyed or grows unimpeded. It

may also correlate with responses to chemotherapy/radiotherapy and disease prog-

nosis. Indeed, high densities of CD3+ T cells, CD8+ cytotoxic T cells, and memory T

cells into tumor sites could represent a reliable prognostic factor for the disease-free

and overall survival of patients with different tumor types, such as melanoma, and

head and neck, breast, bladder, urothelial, ovarian, colorectal, renal, prostatic, and

lung cancer [8]. In contrast to the effects of cytotoxic T cells andmemory T cells that

are associated with a positive clinical outcome, the impact of CD4+ T cell infiltration

on survival and prognosis is unclear; for example, there are conflicting data about the

role of regulatory T-cells (Tregs) in this context, and their effects on tumor progres-

sion have been amatter of debate for the past decade [7, 9].Moreover, there is a great

variability in the density and location of these infiltrating T cells between different

patients bearing the same type of cancer [7].

9.2.2 Adoptive TIL Immunotherapy

Nonetheless, to harness the potential benefit of tumor-specific T cells in cancer

treatment settings, pioneering therapeutic approaches (Fig. 9.1) were developed in

the last three decades [10]. Adoptive immunotherapy using autologous TILs has

become an appealing strategy for the treatment of mainly melanoma and renal cell

carcinoma. This necessitated the development of techniques and systems to grow

large numbers of anti-tumor lymphocytes. An important milestone in the develop-

ment of this kind of immunotherapy occurred in 1987 when tumor-infiltrating

lymphocytes from patients with metastatic malignant melanoma were successfully

cultured and expanded using the T-cell growth factor interleukin 2 (IL-2) [11]. Dur-

ing this expansion process performed ex vivo, fragments from resected tumors were

grown in culture vessels in conditions that favor T-cell growth (using for example

high concentrations of IL-2). Tumor-specific T-cell populations can be identified on

the basis of their reactivity with MHC-matched tumor cell lines or the autologous

tumor. Reactive cultures can be then selected and expanded, and adoptively infused

back into cancer patients. Furthermore, to facilitate the engraftment of this autolo-

gous T-cell transplant, patients receive high-dose intravenous bolus IL-2 [12,

13]. As exemplified in several studies, the transfer of these cells back into the

patient led to dramatic partial or complete clinical responses and durable regression

[14, 15].

The adoptive transfer of TILs is one of the most effective treatments for patients

with stage IV melanoma. The first study aimed at directly targeting human tumor

using autologous TILs to treat patients with metastatic melanoma was reported in

1988 by Rosenberg et al. at the National Cancer Institute [16], and a significant

improvement in the response rate and durability of response was steadily reported in

subsequent studies [15]. This improvement occurred when bulk cultures (CD8+

and CD4+) were transferred and more importantly, when a non-myeloablative
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conditioning regimen (depleting chemotherapy or whole-body irradiation) was

administered to the patient prior to T-cell transfer [12]. In that regard, studies

reported a significant correlation between the intensity of lymphodepletion and the

in-vivo anti-tumor effect of the infused cells [17]. It has been suggested that the

positive impact of lymphodepletion prior to TIL transfer is based in part on the

elimination of suppressive CD4+CD25+ Tregs as well as of normal endogenous

lymphocytes that could compete with the transferred cells for homeostatic cytokines

such as IL-7 and IL-15 [18, 19].

Recent results indicate that the objective clinical response observed in patients

with metastatic melanoma that were treated with adoptively transferred autologous

TILs ranges between 49 % and 72 % [15]. Importantly, objective response was

highly associated with the persistence of the transferred cells [20]. Indeed, many

patients in the recently reported trials display high levels of persistence, sometimes

reaching up to 75 % of all of the circulating CD8+ T cells. Still, it appears that

persistence alone was not a sufficient requirement for an effective response [20,

21]. Studies have also shown that the state of differentiation of the transferred cells

may be inversely correlated to the effectiveness of these cells in adoptive cell

therapy (ACT) settings, and to their capacity to proliferate and persist [12, 22]. In

other words, early effector T cells seem to mediate better anti-tumor response than

intermediate and late effector T cells.

Fig. 9.1 A summary of different adoptive T-cell therapy approaches. OR objective response,

PBLs peripheral blood lymphocytes
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9.2.3 Tumor Microenvironment and Potential Hurdles

Solid tumors contain many other cell types, including cells derived from the innate

and adoptive immune system, stromal cells, and myeloid-derived suppressor cells

(MDSCs) [23, 24]. The latter are endowed with potent immunosuppressive

properties, and their intratumoral presence at a high frequency correlates with a

poor prognosis in patients with different tumor types. Recent findings indicate that

targeting these cells, and the supportive environment (for the tumor) they promote,

might represent an effective approach to promoting the destruction of cancer cells,

leading to tumor elimination [25].

Despite its aforementioned success (especially in melanoma), adoptive cell

transfer (ACT) therapy with autologous TILs bears some limitations which include,

for example, the requirement to isolate and expand T cells with anti-tumor activity.

Even if such cells are generated, adoptive T-cell therapy for some tumors will not

necessarily be effective, as these may be poorly antigenic. Other tumors, such as

colon and breast tumors, are infiltrated by T cells, but the specificities and functions

of the latter are unclear [26, 27]. In this regard, a potential explanation as to why

melanoma has been widely studied as a target for therapeutic TILs is that this type

of cancer appears to be unique among human cancers because of its ability to

promote elevated numbers of lymphocytes with anti-tumor activity. This might be

due to the fact that melanoma tumors express a high number of mutated antigens

that could help in breaking self-tolerance and were also shown to harbor class

II-MHC molecules [10, 28]. Renal cell carcinoma (RCC) is also considered an

immunogenic tumor that exhibits rich intra-tumoral lymphocytic infiltration. Still,

it seems that T-cell activation is insufficient at the tumor site due to many immuno-

suppressive mechanisms induced in the microenvironment of RCC [29–32]. This

may provide an explanation as to why previous clinical trials with TILs in RCC did

not yield substantial benefit compared to melanoma. Nevertheless, current knowl-

edge and experience with TIL generation from—and treatment of—melanoma

patients could provide clues to elaborate an improved therapeutic regiment for

ACT in RCC and other malignancies [33, 34].

9.2.4 TIL Treatment: Current Status and Future Promises

By utilizing current techniques today, tumor-infiltrating lymphocytes can be

detected in approximately 80 % of melanoma patients [35]. However, in most

cancer patients, those naturally-occurring TILs fail to destroy the tumor as they

are outnumbered, subjected to constant immunosuppression, and due to other

factors that are not fully understood. Additionally, the generation of a TIL culture

(s) that prove reactive for each patient tumor is not always feasible and requires

several weeks. The latter might be overcome, as exemplified in new clinical studies

designed to improve the TIL anti-tumor activity, growth, and expansion by
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generating “young TIL” cultures [36, 37]. In this method, tumor-infiltrating

lymphocytes are grown and expanded briefly (around 2–3 weeks compared to

4–6 in the conventional TIL protocol) and are introduced back into patients without

testing for selection. Thus, the “young TIL” protocol utilizes bulk unselected TIL

which spend minimal time in culture by eliminating the individualized tumor

reactivity screening step [38]. As no further selection process is required, all

established “young TIL” cultures are technically eligible for treatment

[37]. “Young TIL” protocols reduce labor time and can be implemented in most

patients, but importantly, recent studies indicate that this approach leads to an

objective response rate of 50 %, close to that observed in classical TIL

protocols [36].

As immunomodulatory monoclonal antibodies show promise in the clinical

trials recently conducted, the combination of T-cell transfer with antibodies

blocking CTLA-4 or PD-1 function may help to overcome negative costimulatory

signals, which may improve the function of the transferred T cells [39, 40]. In

addition, it is possible to manipulate the T-cell differentiation state during culture/

expansion to improve TIL-ACT for the treatment of human cancer, using, for

example, molecules that may inhibit differentiation processes (e.g., GSK-3b [41])

or by subjecting TIL cultures to different cytokines, such as IL-7, IL-15, or IL-21

alone or in addition to IL-2 [42–47].

While TIL-based clinical trials have demonstrated impressive results in

terminally-ill melanoma patients, they require dedicated facilities, and collabora-

tion between surgical and cell therapy teams, which may have limited their imple-

mentation to a few clinical centers worldwide. Nonetheless, parallel approaches

aimed at exploiting the unrivaled potential of T cells to mediate tumor regression

are being developed, and are based on the genetic modification of T cells to express

tumor-specific receptors.

9.3 Adoptive Immunotherapy Based on the Genetic

Modification of Lymphocytes

9.3.1 TCR Gene Transfer

9.3.1.1 Development and Implementation of TCR Gene Transfer

Approaches

As T-cell specificity is solely based on the nature of its TCR, TCR gene transfer

therapy represents a promising approach based on the genetic modification of T

cells engineered to recognize tumor antigens. A study by Steinmetz and colleagues

back in 1986 demonstrated for the first time the feasibility of the TCR gene transfer

approach. In this study, T cells were redirected by genetic engineering in order to

study the receptor dynamics [48]. Since then, several studies have demonstrated
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how human T cells can be redirected toward specific antigen by TCR gene transfer

using a melanoma-specific TCR in vitro [49], followed by an in-vivo study using a

mouse model [50]. In 2006, the first clinical trial involving TCR gene therapy was

reported by Morgan et al. involving metastatic melanoma patients, who were

treated with autologous peripheral blood lymphocytes (PBLs) retrovirally trans-

duced with a MART-1 specific TCR following a lymphodepletion regimen. An

objective clinical response was observed in two out of 17 patients treated in this

trial (12 %), demonstrating dramatic tumor regression [51].

Three years later, the results of a second clinical trial were reported by the same

group (led by Dr. Steven Rosenberg, NCI); in this trial, metastatic melanoma

patients were treated with two high-affinity TCRs against the melanoma antigens

MART-1 and gp100 [52]. The expression levels of the TCR and the persistence of

modified T cells were markedly increased compared with the first trial, and an

objective response rate of 30 % (six out of 20 patients) was reported. Since then,

progress has been made towards the clinical testing of additional TCRs, specific to

other antigens such as p53 [53], NY-ESO-1 [54], and CEA [55], in order to target

cancers other than melanoma.

So far, TCR gene transfer has been proven to be an effective strategy to create

specific tumor-reactive T cells, without the restrictions or the need of isolating

natural tumor-reactive T cells from the patient. Factors that should be taken into

account towards improving the clinical efficacy of this approach, and that will be

discussed in part below are, for instance, the persistence of the TCR-modified T

cells after infusion, the prolonged expression of the TCR genes, and the need to

reach sufficient T-cell functional avidity.

9.3.1.2 How to Select the Appropriate (Suitable) Antigen?

As for other therapeutic treatments, two main factors should be considered to

choose the proper target antigen for TCR gene therapy: safety and efficiency. By

choosing a target antigen characterized by high levels of tumor-specific expression

and lacking any expression levels in the normal tissue, one can limit the possibility

of on/off-target effects and the possible dose-limiting toxicity which can result from

the destruction of normal tissues that express the aimed target antigen [55].

Currently, over-expressed antigens, cancer-testis (CT) antigens, and differentia-

tion antigens represent the most common target antigens for TCR-based adoptive

immunotherapy. NY-ESO-1, a cancer-testis antigen (CT), is one of the most

promising targets that have been the subject of a recent clinical trial for TCR

gene therapy, which resulted in a 40–60 % objective response in melanoma and

synovial cell sarcoma patients [54]. Many CT antigens have been identified in

various human cancers is discussed above [5, 56], while they are normally

expressed only in the human germ line. The restriction of CTs to cells that partially

or do not express human leukocyte antigen (HLA) molecules (in healthy tissues)

makes them unsusceptible to recognition by a TCR, thus preventing toxicity to

normal tissues when targeting T cells to tumor-associated CT antigens. Two other
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classes of tumor antigens that may be also taken into account as targets for TCR

gene therapy are the mutation antigens and the neo-antigens [57, 58]. Indeed, it

seems that the majority of these antigens are to be safe targets owing to their

exclusive expression in tumor cells. While the first group is represented by antigens

that are common not only to a variety of patients but also shared between several

tumor types, the second group is constituted of patient-specific antigens that can be

characterized using recent technological advancements such as individual tumor

sequencing [57]. Still, as an immune selective pressure builds up, the down-

regulation of target antigens could represent a concrete impediment to the thera-

peutic efficacy of TCR gene therapy [59, 60], especially as it is based on mono-

specific T cells. Recently, the study of Kaluza and colleagues demonstrated tumor

(B16/Ovalbumin) recurrence after adoptive transfer of specific (OT-1) effector

cells, due to the loss of the target tumor antigen [61]. Possible solutions for the

down-regulation of target antigen expression may consist in: (1) targeting of

proteins that have an essential role in the survival of the tumor [4], (2) combining

two (or more) different specificities expressed by the same T cell [61], or (3) using

multiple populations of T cells, each expressing a different tumor-specific TCR.

9.3.1.3 Choosing the “Right” TCR for the “Right” pMHC Complex

Several approaches have been described in order to isolate the desirable TCR,

which will not only recognize specifically the targeted peptide–MHC complex, but

will also endow T cells with superior functional avidity. As mentioned above, the

objective response rate observed in the first two clinical TCR-gene therapy trials, in

which MART-1-specific TCRs were produced from a melanoma patient [51, 52],

was low in comparison to that in TIL therapy trials [17, 38, 62]. This disparity could

be due to: (1) low levels of TCR expression of the introduced TCR on the

engineered T cells, (2) a diminished persistence of TCR-modified T cells after

infusion, and/or (3) the induction of immunological self-tolerance that might hinder

a proper response to target antigens with suboptimal affinity to their cognate TCR.

Therefore, unmodified TCRs derived from melanoma patients may require further

optimization steps to endow T cells with an improved performance.

High-affinity TCRs could be isolated from HLA-mismatched donors, since one

does not expect that those TCRs would be subjected to any tolerance mechanism

pertaining to the targeted MHC–peptide complex, which thus would be recognized

as non-self [63–65]. Similarly, HLA-transgenic mice [66–69] and phage/yeast/T-

cell display systems [70–73] also provide platforms that could be exploited to

isolate “non-tolerized TCR.” The TCR phage display technique, for example,

yielded TCRs with high affinity specific for human telomerase reverse transcriptase

(hTERT), human T-cell lymphotropic virus type 1 (HTLV-1), TAX antigen, and

additional antigens [73, 74].

Additionally, a human-TCR repertoire transgenic mice system was recently

established. In this system, the entire human TCR loci was cloned into HLA-A2-

transgenic mice [75], and this resulted in the reconstitution of a potentially broad
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human TCR repertoire in the mouse recipient which can provide a platform to

isolate human high-affinity TCRs, provided the targeted epitope is not expressed by

the mouse recipient.

9.3.1.4 TCR Expression Systems

In most of the clinical trials reported, TCR gene therapy made use of γ-retroviral
vectors which are common viral expression systems that facilitate transgene inte-

gration into the genome of the host cells [76–78]. MFG/SFG-, MP71/SF91-, and

MSGV1- are examples for such γ-retroviral vectors that in pre-clinical studies and

clinical trials exhibit high transduction efficiency together with minimal vector-

associated toxicity. Lentiviral vectors are another viral expression platform that,

unlike γ-retroviral vectors, is largely independent from cells’ dividing status and

thus could successfully infect minimally activated T cells [79, 80]. Moreover,

lentiviral vectors display a greater gene insertion capacity, allowing the transfer

of larger and highly complex gene constructs into T cells.

There are also several non-viral alternatives for TCR-gene transfer into T-cells.

One main advantage of the latter is that, unlike viral platforms, they require a

minimal production and testing time from a regulatory standpoint. The Sleeping
Beauty and the piggyBac are example of transposon-based systems that have been

used to alternatively redirect T cells to express antigen-specific receptors [81,

82]. This approach relies on the expression of the transposase in the target cell,

together with the transfer of the transposon that encodes the genes of interest [83,

84]. Transfer of mRNA molecules encoding TCR chains by electroporation may

also be used as a non-viral expression system to modify T cells; it eliminates the

risk of insertional mutagenesis. Still, the main downside of this approach is the

short-term expression of the transgene (a few days), which necessitates repetitive

injection of electroporated cells to achieve in-vivo effects [85].

9.3.1.5 Off-Target and Safety Risks Involved in TCR Gene Transfer

Strategy

Off-target events following TCR gene therapy may be due to self/cross-reactivity of

the transduced TCR and/or the formation of mixed dimmers between the two α and

two β chains that are co-expressed in the transduced cell, which may potentially

lead to new auto-immune specificity [86]. Four different TCR combinations can

form when mixing the chains that originated from the exogenous α/β TCR with the

two chains that originate from natural/endogenous α/β TCR. The two mispaired

heterodimeric TCRs may result either in a non-functioning TCR or a receptor with a

new specificity that can prove self-reactive. In this regard, a recent study

demonstrated how the formation of mixed TCRs can result in self-reactive T cells

that engendered autoimmune manifestations in a mouse model [87].
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Several strategies have been devised to increase the expression of the introduced

TCRs, which are often based on molecular approaches aiming for better pairing/

association of the α/β chains of the introduced-exogenous TCR [86, 88]. For

example, hybrid human TCRs that are composed of parts of/entire murine constant

regions [89–93] mediated an improved expression of the transferred TCR. The

inclusion of an additional disulfide bond within the constant region of the TCR [94,

95], molecular “knob into holes” inversions in the constant regions of the TCR

chains [96], single-chain TCRs [97], and the use of TCR/CD3ζ fusion products [98]
were also recently demonstrated as potential pairing-optimization strategies. Since

α/β and γ/δ TCR chains cannot mutually pair [99], the use of γδ T cells that are

transduced with an αβ TCR is also an alternative approach [100]. Silencing the

endogenous TCRs is another strategy, which can be achieved by co-transferring

siRNAs/shRNAs targeting the endogenous TCR [101] or by making use of zinc-

finger nucleases (ZFNs) that are specific for the endogenous TCR chains [102].

9.3.1.6 How to Further Improve the Anti-tumor Efficacy of TCR Gene

Transfer?

In addition to the aforementioned strategies to improve adoptive T-cell therapy

(such as lymphodepletion and cytokine polarization), several approaches are being

developed in order to enhance functional and durable responses by TCR gene

therapy. TCR affinity enhancement, which is believed to lead to an improved

functional avidity, could be achieved by introducing selective modifications in

the CDR3 region of the TCR α or β chain, which has been shown to be crucial

for the recognition and binding of the antigen [70, 73]. The use of pairing (see

above) and codon optimization (to improve protein expression) may also contribute

to enhancing antigen-specific reactivity in T cells [68, 103]. Additionally, it has

been demonstrated that reduced TCR glycosylation can elevate functional avidity

and prevent the internalization of the transduced TCRs [104]. Recently, we

demonstrated that it is possible to greatly enhance T-cell functional avidity against

tumor cells by mutating three transmembrane residues in the TCRα chain into

hydrophobic amino acid, which led to increased TCR stability and expression and

augmented TCR expression in the transduced T cells [105]. In addition, the design

of the gene expression cassette may also influence TCR expression: the use of P2A

or IRES elements, which link the α and β chains, has been shown to improve TCR

expression and to reduce the risk of induced autoimmune pathology [87, 106].

Beyond the engineering of T-cell specificity using TCR transgenes, several

genetic approaches to further amplify/generate important T-cell functions (such

as co-stimulation, cytokine secretion, expression of chemokine receptors and hom-

ing factors) have been described (reviewed in [107]). For example, though the

administration of IL-12 in tumor mouse models can improve host survival and

tumor regression rate [108, 109], the associated toxicities are a major drawback.

Engineering gene-modified T cells to produce IL-12 in vivo using an inducible

retroviral vector demonstrated intensified anti-tumor activity against B16 murine
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melanoma tumors [110]. Alternatively, the use of T cells that are conjugated to

adjuvant cytokine-loaded nanoparticles is another potential way to lead to a local

production/delivery of cytokines, while reducing toxicity [111]. The (sub-) type of

T-cell to be transduced is also of importance; recent studies have demonstrated the

superior properties of other kinds of lymphocytes, such as memory T cells, naı̈ve T

cells, memory stem cells and central-memory T cells [41, 112–114].

In addition to TCR signaling, T-cell function is controlled by both positive and

negative regulation. The tumor microenvironment has been shown to greatly induce

immune suppression. For example, the immunosuppressive role of transforming

growth factor-β (TGF-β) involves the inhibition of proliferation and function of T

cells [115, 116]. By expressing a non-functional TGF-β receptor, tumor cells may

also escape the apoptotic effects of TGF-β [117, 118]. In order to diminish the

inhibition induced by TGF-β, it is possible to express in the genetically engineered

T cells a truncated (dominant negative) form of TGF-β receptor [119], or to use a

decoy-soluble TGF-β receptor II [120]. Bollard et al. recently reported that human

T cells transduced with a dominant negative form of TGF-β receptor were resistant
to the anti-proliferative and anti-cytotoxic effects of exogenous TGF-β [121,

122]. More recently, several groups [120, 123] have shown that this strategy is

also effective in vivo, though the sustained effects of this might not last as

expected [123].

9.3.2 Chimeric Antigen Receptor Gene Transfer

In parallel to the TCR gene transfer approach, it is possible to redirect the specificity

of T-cells using chimeric antigen receptors (CARs). These CARs, also known as

“T-bodies” or “chimeric immune receptors” are fusion proteins that generally

contain an extracellular targeting domains based on an antibody single-chain

variable fragment (scFv) that is fused to intracellular signaling elements. As

mentioned above for TCRs, transduction of peripheral blood T cells with CARs

allows the redirection of T-cell specificity against tumor cell surface antigen.

9.3.2.1 CAR Development

The development of antibody-based chimer receptor, was first reported in 1989 in

the pioneering studies by Gross and Eshhar [124]. They generated a chimeric T-cell

receptor assembled from the TCR constant domains fused to the variable domains

of an antibody specific for anti-2,4,6-trinitrophenyl (TNP). T cells that expressed

this chimeric receptor successfully recognized TNP, which led to the production of

IL-2 and cell-mediated cytotoxicity of TNP-expressing targets. Thus, the use of

CARs enables the targeting of tumor in an HLA-independent manner, which
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suggests the possibility, in theory, of treating a larger part of the population,

compared to TCR-based therapies. Moreover, CARs allow the targeting of not

only protein-based antigens but also carbohydrates and glycolipids, provided

targeting moieties/monoclonal antibodies can be generated against these. Another

advantage of the CAR approach, as these function in an MHC-independent way, is

their ability to stimulate both CD8+ and CD4+ T cells, which have been shown to

act synergistically in enhancing the T-cell anti-tumor effect [125]. Still, it is

important to remember that technically CARs can target only surface expressed

antigens (though intracellular antigens could be also detected by CARs based on

antibodies that target a specific pMHC (peptide–MHC) complex, and thus can

mimic the mode of action of the TCR [126, 127]).

9.3.2.2 CAR Structure

As mentioned earlier, the common design of CARs is based on a binding domain,

an extracellular spacer/hinge element, a trans-membrane region, and an intracellu-

lar singling domain (Fig. 9.2). Most of the CAR targeting domains are scFv (i.e., the

variable regions of heavy and light chains joined together by a short linker peptide).

If the scFv is derived from a murine antibody, it is possible to “humanize” it by

replacing the mouse framework regions by their human counterparts. Another

possible design for the targeting moiety of CARs (instead of scFv) are protein

receptor/ligands; such alternatives include, for instance, a vascular endothelial

growth factor polypeptide [128], an integrin binding peptide heregulin [129],

interleukin—13 mutein [130], NKp30 (NCR3/CD337) [131], and the NKG2D

receptor [132].

The second component in this design is the hinge region that serves as spacer,

which increases the distance of the binding domain from the transmembrane region,

providing more flexibility for the binding domain. The nature of the hinge region

can influence cytokine secretion and cell-mediated killing of target cells by

CAR-modified T cells [133]. Some common examples for hinge region are immu-

noglobulin domains such as the fragment crystallizable (Fc) regions of antibodies,

or immunoglobulin-like domains derived from CD8α and CD28 molecules. It has

been found that the function of the hinge region in the CAR is dependent on the

binding site on the antigen itself; if the binding site is a membrane-proximal

epitope, the use of a hinge region will be beneficial. In contrast, when the binding

site is a membrane-distal epitope, improved cytokine release and cytotoxicity will

be higher in the absence of a hinge region [134].

The third component in the CARs is the transmembrane region: in most cases, it

is based on transmembrane domains derived from co-receptor/costimulatory

molecules such as CD8 and CD28.

The fourth module in the structure of the CARs is the intracellular signaling

domain. Importantly, a lot of effort is being invested in order to develop optimal
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conformation of the intracellular signaling portions to achieve the best activation.

The first generation of CARs included only one signaling domain (Fig. 9.2) derived

either from the CD3ζ or FcRγ chains, which are the common signal-transducing

subunits of the TCR or the immunoglobulin receptor respectively [135]. One main

difference between these two subunits is the number of the immunoreceptor

tyrosine-based activation motifs (ITAMs); while the CD3ζ chain contains three

ITAMs, the FcRγ chain contains only one and this feature has been shown to impact

on T-cell function and survival [136].

9.3.2.3 CAR Development and Generations

When first compared, the ζ and γ subunits were fused to single-chain variable

domain chimeric receptors recognizing the carcinoembryonic antigen (CEA).

Although similar levels of expression were detected after transduction, some

significant functional difference was found after co-culture with target cells

[137]. These assays demonstrated the superiority of the chimeric receptors that

contained the CD3ζ, mainly in improved cytokine production and enhanced ability

to mediate lysis of target cells. Additionally, it was revealed that CD3ζ-based
chimeric receptors displayed a better ability to eradicate human tumors in vivo.

While it has been postulated that the anti-tumor activity mediated by the CD3ζ
moiety might result in activation-induced T-cell death (AICD) because of the

numerous ITAMs (3), these claims have been refuted [138], and so far most of

the CAR designs include a CD3ζ moiety as their main signaling domain.

Despite the encouraging results that were obtained in the studies with the first-

generation CARs (that contained only the CD3ζ chain in the intracellular singling

domain) and which demonstrated anti-tumor activity against a range of target cells

Fig. 9.2 Schematic representation of the different CAR generations
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[139], the lack of co-stimulatory signals (“signal 2”) led to inefficient cytokine

production, reduced proliferation, and even a state of T-cell anergy [140, 141]. A

second generation of CAR was designed to include a co-stimulatory portion in

addition to the CD3ζ signaling domain. The most common co-stimulatory molecule

that fills this role is CD28, the first isolated co-stimulatory molecule, which is

essential to prevent anergy and to drive increased cytokine secretion [142]. Still, the

possibility of generating two chimeras that express the ζ chain and the CD28

separately was explored, and this approach did mediate increased secretion of

IL-2 in vitro [143]. More recently, a similar concept to reduce CAR side-effects

made use of a first-generation CAR transduced in conjunction with a CCR (chime-

ric co-stimulatory receptor) specific for a second antigen, which enabled safer

in-vivo targeting of tumors which expressed both cognate antigens [144]. So far,

a more widespread concept is to combine both signaling moieties in the same

receptor [145]. From a structural standpoint, a better surface expression of the

CAR can be achieved by positioning the CD28 domain in proximity to the CD3ζ
domain and immediately after the transmembrane region [146]. Several studies

have demonstrated the improved function of second-generation CAR-modified T

cells in mediating increased proliferation [147] and cytokine secretion (IL-2,

interferon-γ, granulocyte–macrophage colony-stimulating factor) [148, 149]. Fur-

thermore, this kind of design promoted the up-regulation of anti-apoptotic proteins

such as Bcl-2 (which would contribute to reduce AICD) and better resistance to

immunosuppressive conditions prevalent in the tumor microenvironment; studies

have shown that second-generation CAR-modified T cells are less sensitive to

TGF-β-mediated suppression [150], and could increase the expression of NFκB
counteracting Tregs-induced inhibition [151].

There does not seem to be an optimal signaling moiety for CARs, and thus there

is often a need to evaluate empirically several combinations for each given

targeting moiety. Although most of the CARs use the CD28 signaling domain,

alternative co-stimulatory molecules that were tested include the inducible T-cell

costimulator (ICOS) B7 family member, and CD27, CD137 (4-1BB), and CD134

(OX-40) from the TNFR family members, which can enhance effector functions

also in resting human T cells [152–154]. However, to further improve second-

generation CARs, several studies have shown that it was possible to include another

co-stimulatory moiety in addition to CD3ζ chain and CD28 in the signaling domain,

leading to the design of third-generation CARs [155]. For example, a CAR for

prostate-specific membrane antigen (PSMA), which contains CD28+ 4-1BB+ CD3ζ
signaling domain, showed an increased cytokine production and mediated an

improved prostate tumor regression in vivo [154]. Furthermore, third-generation

CARs can induce PI3Kinase/Akt activation and BclXL expression and can help to

reduce T-cell apoptosis. Another study showed that a CAR that contained the

antigen-binding domain of the anti-GD2a fused to a CD28/OX40/ζ signaling

domain endowed T-cells with improved proliferative capacity and anti-tumor

function [156]. Still, the presence of the three activation/stimulation motifs in a

single signaling domain may theoretically cause a lower sensitivity threshold,

which should be taken into account when designing future clinical applications.
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9.3.2.4 Driving the CARs into the Clinic

Results from in-vitro and in-vivo (in animal models) studies that show the potential

of CARs in mediating tumor regression in several types of cancer—such as

medulloblastoma, prostate [157] and colon carcinoma [158]—,facilitated their

translation into the clinic. In the first clinical trial that made use of first-generation

CAR-modified T cells, Lamers et al. treated three patients with metastatic renal cell

carcinoma (RCC) using a CAR that recognizes carboxy-anhydrase-IX (CAIX),

which is over-expressed by RCC tumors. All three patients were reported to suffer

from liver toxicity, which was apparently caused by on-target effects of

CAR-modified T cells against the CAIX+ bile duct epithelial cells and no clinical

responses were observed [159]. In another trial, 14 patients with metastatic ovarian

cancer were treated with CAR-modified T cells against the ovarian cancer-

associated antigen α-folate receptor (FR) [160]. Analysis of the CAR-modified

T-cell presence in the circulation showed it quickly declined in the majority of

the patients after 1 month, and also in this case no clinical response was observed in

any of the patients treated.

Pule et al. engineered Epstein–Barr virus (EBV)-specific CTLs to express a first-

generation CAR directed to the diasialoganglioside GD2 antigen, which is

expressed on neuroblastoma cells. Infusion of these CAR-modified T cells seemed

safe, and resulted in encouraging tumor regressions in half of the subjects tested

[161]. Whereas these three clinical trials used retroviral transduction, in a clinical

trial reported by Till et al., CAR-modified T cells were generated by electroporation

with a vector plasmid encoding a CAR specific to CD20, to target indolent B-cell

lymphoma (or mantle cell lymphoma). Out of seven patients treated, two achieved

complete responses, one had a partial response, and four had stable disease

[162]. Another notable clinical study was carried out recently by Kalos et al., in

which three patients with advanced chronic lymphocytic leukemia (CLL) were

treated with an anti-CD19 second-generation CAR that contained a CD3ζ chain

coupled with CD137 domain. CAR-modified T-cells expanded over 1,000-fold

in vivo, trafficked to the bone marrow and remained detectable 6 months post-

infusion; a fraction of these cells even differentiated into memory T cells. Ten

months after treatment, all the patients demonstrated an objective clinical response,

with two of the three patients treated showing complete remission and one partial

response [163]. A recent clinical trial using a third-generation CAR was conducted

by Till et al. using a CAR targeting CD20 (which is expressed on indolent B-cell

and mantle cell lymphomas) [164]. This third-generation CAR contained two

co-stimulatory domains, CD28 and CD137, in addition to CD3ζ. CAR-modified

T cells were detected for up to 1 year in patients’ blood. Moreover, one out of four

patients treated had an objective partial response (later relapsed a year after

infusion), one patient developed transient infusional symptoms, and two patients

remained progression-free for 12 and 24 months. Thus, some 20 years after they

were initially developed, chimeric antigen receptors have entered the clinic and are

showing promising results.
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Nevertheless, one has to bear in mind that side-effects may arise, and unfortu-

nately these may on rare occasions be lethal. In a trial that made use of a

trastuzumab (Herceptin)-based third-generation CAR to target breast tumors, infu-

sion of CAR-modified T cells led to the death of one patient. This was attributed to a

“cytokine storm,” possibly linked to the widespread expression of the targeted

antigen, Her2/neu (ERBB2), by normal lung cells [165]. Another fatality was

noted after using a second-generation CAR targeting CD19, in combination with

cyclophosphamide lymphodepleting chemotherapy [166]. This treatment led to

hypotension, dyspnea, and renal failure in the treated patient, and 4 days after the

initial infusion the patient died. This suggests the need to include suicide genes in

the CAR-bearing viral construct, or to use a dual-CAR/CCR design [144] to

potentially provide another layer of safety. In addition, knocking down the expres-

sion of the endogenous TCR might prove valuable in order to prevent undesired/

non-specific responses of CAR-activated T-cells [167].

9.4 Conclusions

In the past 25 years, adoptive T-cell transfer has established itself as a promising

immunotherapeutic strategy for the treatment of advanced cancer. The basic idea,

that the (autologous) immune system can be manipulated in order to promote tumor

regression and remission, is appealing as it may provide long-lasting protection.

Still, from the “bench-side” of things, additional targets/antigens have to be

defined/characterized to provide safer treatments targeting a broad spectrum of

tumors. From a clinical standpoint, there is a need to speed up processing times

[168] and to ease regulatory requirements [169]. Improving the success rate of

adoptive T-cell transfer will also require its combination with multi-modal

therapies targeting, for instance, the tumor micro-environment as well as immuno-

suppressive agents. Much has to be done also to encourage partnership with the

industry in order to commercialize this kind of immunotherapy that requires cell

manipulation and conditioning [170]. Several studies also suggest that these

concepts can be applied to treat other conditions than cancer [88]. Adoptive

T-cell immunotherapy is certainly earning a respected place in the “Hall of

Fame” of personalized medicine treatments.
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